1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/AsmPrinter.h"
15#include "DwarfDebug.h"
16#include "DwarfException.h"
17#include "WinException.h"
18#include "WinCodeViewLineTables.h"
19#include "llvm/ADT/SmallString.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/CodeGen/Analysis.h"
23#include "llvm/CodeGen/GCMetadataPrinter.h"
24#include "llvm/CodeGen/MachineConstantPool.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/MachineInstrBundle.h"
28#include "llvm/CodeGen/MachineJumpTableInfo.h"
29#include "llvm/CodeGen/MachineLoopInfo.h"
30#include "llvm/CodeGen/MachineModuleInfoImpls.h"
31#include "llvm/IR/DataLayout.h"
32#include "llvm/IR/DebugInfo.h"
33#include "llvm/IR/Mangler.h"
34#include "llvm/IR/Module.h"
35#include "llvm/IR/Operator.h"
36#include "llvm/MC/MCAsmInfo.h"
37#include "llvm/MC/MCContext.h"
38#include "llvm/MC/MCExpr.h"
39#include "llvm/MC/MCInst.h"
40#include "llvm/MC/MCSection.h"
41#include "llvm/MC/MCStreamer.h"
42#include "llvm/MC/MCSymbolELF.h"
43#include "llvm/MC/MCValue.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/Support/Format.h"
46#include "llvm/Support/MathExtras.h"
47#include "llvm/Support/TargetRegistry.h"
48#include "llvm/Support/Timer.h"
49#include "llvm/Target/TargetFrameLowering.h"
50#include "llvm/Target/TargetInstrInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetLoweringObjectFile.h"
53#include "llvm/Target/TargetRegisterInfo.h"
54#include "llvm/Target/TargetSubtargetInfo.h"
55using namespace llvm;
56
57#define DEBUG_TYPE "asm-printer"
58
59static const char *const DWARFGroupName = "DWARF Emission";
60static const char *const DbgTimerName = "Debug Info Emission";
61static const char *const EHTimerName = "DWARF Exception Writer";
62static const char *const CodeViewLineTablesGroupName = "CodeView Line Tables";
63
64STATISTIC(EmittedInsts, "Number of machine instrs printed");
65
66char AsmPrinter::ID = 0;
67
68typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type;
69static gcp_map_type &getGCMap(void *&P) {
70  if (!P)
71    P = new gcp_map_type();
72  return *(gcp_map_type*)P;
73}
74
75
76/// getGVAlignmentLog2 - Return the alignment to use for the specified global
77/// value in log2 form.  This rounds up to the preferred alignment if possible
78/// and legal.
79static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL,
80                                   unsigned InBits = 0) {
81  unsigned NumBits = 0;
82  if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
83    NumBits = DL.getPreferredAlignmentLog(GVar);
84
85  // If InBits is specified, round it to it.
86  if (InBits > NumBits)
87    NumBits = InBits;
88
89  // If the GV has a specified alignment, take it into account.
90  if (GV->getAlignment() == 0)
91    return NumBits;
92
93  unsigned GVAlign = Log2_32(GV->getAlignment());
94
95  // If the GVAlign is larger than NumBits, or if we are required to obey
96  // NumBits because the GV has an assigned section, obey it.
97  if (GVAlign > NumBits || GV->hasSection())
98    NumBits = GVAlign;
99  return NumBits;
100}
101
102AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
103    : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
104      OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)),
105      LastMI(nullptr), LastFn(0), Counter(~0U) {
106  DD = nullptr;
107  MMI = nullptr;
108  LI = nullptr;
109  MF = nullptr;
110  CurExceptionSym = CurrentFnSym = CurrentFnSymForSize = nullptr;
111  CurrentFnBegin = nullptr;
112  CurrentFnEnd = nullptr;
113  GCMetadataPrinters = nullptr;
114  VerboseAsm = OutStreamer->isVerboseAsm();
115}
116
117AsmPrinter::~AsmPrinter() {
118  assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
119
120  if (GCMetadataPrinters) {
121    gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
122
123    delete &GCMap;
124    GCMetadataPrinters = nullptr;
125  }
126}
127
128/// getFunctionNumber - Return a unique ID for the current function.
129///
130unsigned AsmPrinter::getFunctionNumber() const {
131  return MF->getFunctionNumber();
132}
133
134const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
135  return *TM.getObjFileLowering();
136}
137
138const DataLayout &AsmPrinter::getDataLayout() const {
139  return MMI->getModule()->getDataLayout();
140}
141
142// Do not use the cached DataLayout because some client use it without a Module
143// (llmv-dsymutil, llvm-dwarfdump).
144unsigned AsmPrinter::getPointerSize() const { return TM.getPointerSize(); }
145
146const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
147  assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
148  return MF->getSubtarget<MCSubtargetInfo>();
149}
150
151void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
152  S.EmitInstruction(Inst, getSubtargetInfo());
153}
154
155StringRef AsmPrinter::getTargetTriple() const {
156  return TM.getTargetTriple().str();
157}
158
159/// getCurrentSection() - Return the current section we are emitting to.
160const MCSection *AsmPrinter::getCurrentSection() const {
161  return OutStreamer->getCurrentSection().first;
162}
163
164
165
166void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
167  AU.setPreservesAll();
168  MachineFunctionPass::getAnalysisUsage(AU);
169  AU.addRequired<MachineModuleInfo>();
170  AU.addRequired<GCModuleInfo>();
171  if (isVerbose())
172    AU.addRequired<MachineLoopInfo>();
173}
174
175bool AsmPrinter::doInitialization(Module &M) {
176  MMI = getAnalysisIfAvailable<MachineModuleInfo>();
177
178  // Initialize TargetLoweringObjectFile.
179  const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
180    .Initialize(OutContext, TM);
181
182  OutStreamer->InitSections(false);
183
184  Mang = new Mangler();
185
186  // Emit the version-min deplyment target directive if needed.
187  //
188  // FIXME: If we end up with a collection of these sorts of Darwin-specific
189  // or ELF-specific things, it may make sense to have a platform helper class
190  // that will work with the target helper class. For now keep it here, as the
191  // alternative is duplicated code in each of the target asm printers that
192  // use the directive, where it would need the same conditionalization
193  // anyway.
194  Triple TT(getTargetTriple());
195  if (TT.isOSDarwin()) {
196    unsigned Major, Minor, Update;
197    TT.getOSVersion(Major, Minor, Update);
198    // If there is a version specified, Major will be non-zero.
199    if (Major) {
200      MCVersionMinType VersionType;
201      if (TT.isWatchOS())
202        VersionType = MCVM_WatchOSVersionMin;
203      else if (TT.isTvOS())
204        VersionType = MCVM_TvOSVersionMin;
205      else if (TT.isMacOSX())
206        VersionType = MCVM_OSXVersionMin;
207      else
208        VersionType = MCVM_IOSVersionMin;
209      OutStreamer->EmitVersionMin(VersionType, Major, Minor, Update);
210    }
211  }
212
213  // Allow the target to emit any magic that it wants at the start of the file.
214  EmitStartOfAsmFile(M);
215
216  // Very minimal debug info. It is ignored if we emit actual debug info. If we
217  // don't, this at least helps the user find where a global came from.
218  if (MAI->hasSingleParameterDotFile()) {
219    // .file "foo.c"
220    OutStreamer->EmitFileDirective(M.getModuleIdentifier());
221  }
222
223  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
224  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
225  for (auto &I : *MI)
226    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
227      MP->beginAssembly(M, *MI, *this);
228
229  // Emit module-level inline asm if it exists.
230  if (!M.getModuleInlineAsm().empty()) {
231    // We're at the module level. Construct MCSubtarget from the default CPU
232    // and target triple.
233    std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
234        TM.getTargetTriple().str(), TM.getTargetCPU(),
235        TM.getTargetFeatureString()));
236    OutStreamer->AddComment("Start of file scope inline assembly");
237    OutStreamer->AddBlankLine();
238    EmitInlineAsm(M.getModuleInlineAsm()+"\n",
239                  OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
240    OutStreamer->AddComment("End of file scope inline assembly");
241    OutStreamer->AddBlankLine();
242  }
243
244  if (MAI->doesSupportDebugInformation()) {
245    bool EmitCodeView = MMI->getModule()->getCodeViewFlag();
246    if (EmitCodeView && TM.getTargetTriple().isKnownWindowsMSVCEnvironment()) {
247      Handlers.push_back(HandlerInfo(new WinCodeViewLineTables(this),
248                                     DbgTimerName,
249                                     CodeViewLineTablesGroupName));
250    }
251    if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) {
252      DD = new DwarfDebug(this, &M);
253      Handlers.push_back(HandlerInfo(DD, DbgTimerName, DWARFGroupName));
254    }
255  }
256
257  EHStreamer *ES = nullptr;
258  switch (MAI->getExceptionHandlingType()) {
259  case ExceptionHandling::None:
260    break;
261  case ExceptionHandling::SjLj:
262  case ExceptionHandling::DwarfCFI:
263    ES = new DwarfCFIException(this);
264    break;
265  case ExceptionHandling::ARM:
266    ES = new ARMException(this);
267    break;
268  case ExceptionHandling::WinEH:
269    switch (MAI->getWinEHEncodingType()) {
270    default: llvm_unreachable("unsupported unwinding information encoding");
271    case WinEH::EncodingType::Invalid:
272      break;
273    case WinEH::EncodingType::X86:
274    case WinEH::EncodingType::Itanium:
275      ES = new WinException(this);
276      break;
277    }
278    break;
279  }
280  if (ES)
281    Handlers.push_back(HandlerInfo(ES, EHTimerName, DWARFGroupName));
282  return false;
283}
284
285static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
286  if (!MAI.hasWeakDefCanBeHiddenDirective())
287    return false;
288
289  return canBeOmittedFromSymbolTable(GV);
290}
291
292void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
293  GlobalValue::LinkageTypes Linkage = GV->getLinkage();
294  switch (Linkage) {
295  case GlobalValue::CommonLinkage:
296  case GlobalValue::LinkOnceAnyLinkage:
297  case GlobalValue::LinkOnceODRLinkage:
298  case GlobalValue::WeakAnyLinkage:
299  case GlobalValue::WeakODRLinkage:
300    if (MAI->hasWeakDefDirective()) {
301      // .globl _foo
302      OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
303
304      if (!canBeHidden(GV, *MAI))
305        // .weak_definition _foo
306        OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
307      else
308        OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
309    } else if (MAI->hasLinkOnceDirective()) {
310      // .globl _foo
311      OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
312      //NOTE: linkonce is handled by the section the symbol was assigned to.
313    } else {
314      // .weak _foo
315      OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak);
316    }
317    return;
318  case GlobalValue::AppendingLinkage:
319    // FIXME: appending linkage variables should go into a section of
320    // their name or something.  For now, just emit them as external.
321  case GlobalValue::ExternalLinkage:
322    // If external or appending, declare as a global symbol.
323    // .globl _foo
324    OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
325    return;
326  case GlobalValue::PrivateLinkage:
327  case GlobalValue::InternalLinkage:
328    return;
329  case GlobalValue::AvailableExternallyLinkage:
330    llvm_unreachable("Should never emit this");
331  case GlobalValue::ExternalWeakLinkage:
332    llvm_unreachable("Don't know how to emit these");
333  }
334  llvm_unreachable("Unknown linkage type!");
335}
336
337void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
338                                   const GlobalValue *GV) const {
339  TM.getNameWithPrefix(Name, GV, *Mang);
340}
341
342MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
343  return TM.getSymbol(GV, *Mang);
344}
345
346/// EmitGlobalVariable - Emit the specified global variable to the .s file.
347void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
348  bool IsEmuTLSVar = TM.Options.EmulatedTLS && GV->isThreadLocal();
349  assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
350         "No emulated TLS variables in the common section");
351
352  // Never emit TLS variable xyz in emulated TLS model.
353  // The initialization value is in __emutls_t.xyz instead of xyz.
354  if (IsEmuTLSVar)
355    return;
356
357  if (GV->hasInitializer()) {
358    // Check to see if this is a special global used by LLVM, if so, emit it.
359    if (EmitSpecialLLVMGlobal(GV))
360      return;
361
362    // Skip the emission of global equivalents. The symbol can be emitted later
363    // on by emitGlobalGOTEquivs in case it turns out to be needed.
364    if (GlobalGOTEquivs.count(getSymbol(GV)))
365      return;
366
367    if (isVerbose()) {
368      // When printing the control variable __emutls_v.*,
369      // we don't need to print the original TLS variable name.
370      GV->printAsOperand(OutStreamer->GetCommentOS(),
371                     /*PrintType=*/false, GV->getParent());
372      OutStreamer->GetCommentOS() << '\n';
373    }
374  }
375
376  MCSymbol *GVSym = getSymbol(GV);
377  MCSymbol *EmittedSym = GVSym;
378  // getOrCreateEmuTLSControlSym only creates the symbol with name and default attributes.
379  // GV's or GVSym's attributes will be used for the EmittedSym.
380
381  EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
382
383  if (!GV->hasInitializer())   // External globals require no extra code.
384    return;
385
386  GVSym->redefineIfPossible();
387  if (GVSym->isDefined() || GVSym->isVariable())
388    report_fatal_error("symbol '" + Twine(GVSym->getName()) +
389                       "' is already defined");
390
391  if (MAI->hasDotTypeDotSizeDirective())
392    OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
393
394  SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
395
396  const DataLayout &DL = GV->getParent()->getDataLayout();
397  uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType());
398
399  // If the alignment is specified, we *must* obey it.  Overaligning a global
400  // with a specified alignment is a prompt way to break globals emitted to
401  // sections and expected to be contiguous (e.g. ObjC metadata).
402  unsigned AlignLog = getGVAlignmentLog2(GV, DL);
403
404  for (const HandlerInfo &HI : Handlers) {
405    NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
406    HI.Handler->setSymbolSize(GVSym, Size);
407  }
408
409  // Handle common and BSS local symbols (.lcomm).
410  if (GVKind.isCommon() || GVKind.isBSSLocal()) {
411    if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
412    unsigned Align = 1 << AlignLog;
413
414    // Handle common symbols.
415    if (GVKind.isCommon()) {
416      if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
417        Align = 0;
418
419      // .comm _foo, 42, 4
420      OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
421      return;
422    }
423
424    // Handle local BSS symbols.
425    if (MAI->hasMachoZeroFillDirective()) {
426      MCSection *TheSection =
427          getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM);
428      // .zerofill __DATA, __bss, _foo, 400, 5
429      OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align);
430      return;
431    }
432
433    // Use .lcomm only if it supports user-specified alignment.
434    // Otherwise, while it would still be correct to use .lcomm in some
435    // cases (e.g. when Align == 1), the external assembler might enfore
436    // some -unknown- default alignment behavior, which could cause
437    // spurious differences between external and integrated assembler.
438    // Prefer to simply fall back to .local / .comm in this case.
439    if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
440      // .lcomm _foo, 42
441      OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align);
442      return;
443    }
444
445    if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
446      Align = 0;
447
448    // .local _foo
449    OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local);
450    // .comm _foo, 42, 4
451    OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
452    return;
453  }
454
455  MCSymbol *EmittedInitSym = GVSym;
456
457  MCSection *TheSection =
458      getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM);
459
460  // Handle the zerofill directive on darwin, which is a special form of BSS
461  // emission.
462  if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
463    if (Size == 0) Size = 1;  // zerofill of 0 bytes is undefined.
464
465    // .globl _foo
466    OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
467    // .zerofill __DATA, __common, _foo, 400, 5
468    OutStreamer->EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
469    return;
470  }
471
472  // Handle thread local data for mach-o which requires us to output an
473  // additional structure of data and mangle the original symbol so that we
474  // can reference it later.
475  //
476  // TODO: This should become an "emit thread local global" method on TLOF.
477  // All of this macho specific stuff should be sunk down into TLOFMachO and
478  // stuff like "TLSExtraDataSection" should no longer be part of the parent
479  // TLOF class.  This will also make it more obvious that stuff like
480  // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
481  // specific code.
482  if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
483    // Emit the .tbss symbol
484    MCSymbol *MangSym =
485      OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
486
487    if (GVKind.isThreadBSS()) {
488      TheSection = getObjFileLowering().getTLSBSSSection();
489      OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
490    } else if (GVKind.isThreadData()) {
491      OutStreamer->SwitchSection(TheSection);
492
493      EmitAlignment(AlignLog, GV);
494      OutStreamer->EmitLabel(MangSym);
495
496      EmitGlobalConstant(GV->getParent()->getDataLayout(),
497                         GV->getInitializer());
498    }
499
500    OutStreamer->AddBlankLine();
501
502    // Emit the variable struct for the runtime.
503    MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
504
505    OutStreamer->SwitchSection(TLVSect);
506    // Emit the linkage here.
507    EmitLinkage(GV, GVSym);
508    OutStreamer->EmitLabel(GVSym);
509
510    // Three pointers in size:
511    //   - __tlv_bootstrap - used to make sure support exists
512    //   - spare pointer, used when mapped by the runtime
513    //   - pointer to mangled symbol above with initializer
514    unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
515    OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
516                                PtrSize);
517    OutStreamer->EmitIntValue(0, PtrSize);
518    OutStreamer->EmitSymbolValue(MangSym, PtrSize);
519
520    OutStreamer->AddBlankLine();
521    return;
522  }
523
524  OutStreamer->SwitchSection(TheSection);
525
526  EmitLinkage(GV, EmittedInitSym);
527  EmitAlignment(AlignLog, GV);
528
529  OutStreamer->EmitLabel(EmittedInitSym);
530
531  EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
532
533  if (MAI->hasDotTypeDotSizeDirective())
534    // .size foo, 42
535    OutStreamer->emitELFSize(cast<MCSymbolELF>(EmittedInitSym),
536                             MCConstantExpr::create(Size, OutContext));
537
538  OutStreamer->AddBlankLine();
539}
540
541/// EmitFunctionHeader - This method emits the header for the current
542/// function.
543void AsmPrinter::EmitFunctionHeader() {
544  // Print out constants referenced by the function
545  EmitConstantPool();
546
547  // Print the 'header' of function.
548  const Function *F = MF->getFunction();
549
550  OutStreamer->SwitchSection(
551      getObjFileLowering().SectionForGlobal(F, *Mang, TM));
552  EmitVisibility(CurrentFnSym, F->getVisibility());
553
554  EmitLinkage(F, CurrentFnSym);
555  if (MAI->hasFunctionAlignment())
556    EmitAlignment(MF->getAlignment(), F);
557
558  if (MAI->hasDotTypeDotSizeDirective())
559    OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
560
561  if (isVerbose()) {
562    F->printAsOperand(OutStreamer->GetCommentOS(),
563                   /*PrintType=*/false, F->getParent());
564    OutStreamer->GetCommentOS() << '\n';
565  }
566
567  // Emit the prefix data.
568  if (F->hasPrefixData())
569    EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData());
570
571  // Emit the CurrentFnSym.  This is a virtual function to allow targets to
572  // do their wild and crazy things as required.
573  EmitFunctionEntryLabel();
574
575  // If the function had address-taken blocks that got deleted, then we have
576  // references to the dangling symbols.  Emit them at the start of the function
577  // so that we don't get references to undefined symbols.
578  std::vector<MCSymbol*> DeadBlockSyms;
579  MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
580  for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
581    OutStreamer->AddComment("Address taken block that was later removed");
582    OutStreamer->EmitLabel(DeadBlockSyms[i]);
583  }
584
585  if (CurrentFnBegin) {
586    if (MAI->useAssignmentForEHBegin()) {
587      MCSymbol *CurPos = OutContext.createTempSymbol();
588      OutStreamer->EmitLabel(CurPos);
589      OutStreamer->EmitAssignment(CurrentFnBegin,
590                                 MCSymbolRefExpr::create(CurPos, OutContext));
591    } else {
592      OutStreamer->EmitLabel(CurrentFnBegin);
593    }
594  }
595
596  // Emit pre-function debug and/or EH information.
597  for (const HandlerInfo &HI : Handlers) {
598    NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
599    HI.Handler->beginFunction(MF);
600  }
601
602  // Emit the prologue data.
603  if (F->hasPrologueData())
604    EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrologueData());
605}
606
607/// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
608/// function.  This can be overridden by targets as required to do custom stuff.
609void AsmPrinter::EmitFunctionEntryLabel() {
610  CurrentFnSym->redefineIfPossible();
611
612  // The function label could have already been emitted if two symbols end up
613  // conflicting due to asm renaming.  Detect this and emit an error.
614  if (CurrentFnSym->isVariable())
615    report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
616                       "' is a protected alias");
617  if (CurrentFnSym->isDefined())
618    report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
619                       "' label emitted multiple times to assembly file");
620
621  return OutStreamer->EmitLabel(CurrentFnSym);
622}
623
624/// emitComments - Pretty-print comments for instructions.
625static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
626  const MachineFunction *MF = MI.getParent()->getParent();
627  const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
628
629  // Check for spills and reloads
630  int FI;
631
632  const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
633
634  // We assume a single instruction only has a spill or reload, not
635  // both.
636  const MachineMemOperand *MMO;
637  if (TII->isLoadFromStackSlotPostFE(&MI, FI)) {
638    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
639      MMO = *MI.memoperands_begin();
640      CommentOS << MMO->getSize() << "-byte Reload\n";
641    }
642  } else if (TII->hasLoadFromStackSlot(&MI, MMO, FI)) {
643    if (FrameInfo->isSpillSlotObjectIndex(FI))
644      CommentOS << MMO->getSize() << "-byte Folded Reload\n";
645  } else if (TII->isStoreToStackSlotPostFE(&MI, FI)) {
646    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
647      MMO = *MI.memoperands_begin();
648      CommentOS << MMO->getSize() << "-byte Spill\n";
649    }
650  } else if (TII->hasStoreToStackSlot(&MI, MMO, FI)) {
651    if (FrameInfo->isSpillSlotObjectIndex(FI))
652      CommentOS << MMO->getSize() << "-byte Folded Spill\n";
653  }
654
655  // Check for spill-induced copies
656  if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
657    CommentOS << " Reload Reuse\n";
658}
659
660/// emitImplicitDef - This method emits the specified machine instruction
661/// that is an implicit def.
662void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
663  unsigned RegNo = MI->getOperand(0).getReg();
664
665  SmallString<128> Str;
666  raw_svector_ostream OS(Str);
667  OS << "implicit-def: "
668     << PrintReg(RegNo, MF->getSubtarget().getRegisterInfo());
669
670  OutStreamer->AddComment(OS.str());
671  OutStreamer->AddBlankLine();
672}
673
674static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
675  std::string Str;
676  raw_string_ostream OS(Str);
677  OS << "kill:";
678  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
679    const MachineOperand &Op = MI->getOperand(i);
680    assert(Op.isReg() && "KILL instruction must have only register operands");
681    OS << ' '
682       << PrintReg(Op.getReg(),
683                   AP.MF->getSubtarget().getRegisterInfo())
684       << (Op.isDef() ? "<def>" : "<kill>");
685  }
686  AP.OutStreamer->AddComment(Str);
687  AP.OutStreamer->AddBlankLine();
688}
689
690/// emitDebugValueComment - This method handles the target-independent form
691/// of DBG_VALUE, returning true if it was able to do so.  A false return
692/// means the target will need to handle MI in EmitInstruction.
693static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
694  // This code handles only the 4-operand target-independent form.
695  if (MI->getNumOperands() != 4)
696    return false;
697
698  SmallString<128> Str;
699  raw_svector_ostream OS(Str);
700  OS << "DEBUG_VALUE: ";
701
702  const DILocalVariable *V = MI->getDebugVariable();
703  if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
704    StringRef Name = SP->getDisplayName();
705    if (!Name.empty())
706      OS << Name << ":";
707  }
708  OS << V->getName();
709
710  const DIExpression *Expr = MI->getDebugExpression();
711  if (Expr->isBitPiece())
712    OS << " [bit_piece offset=" << Expr->getBitPieceOffset()
713       << " size=" << Expr->getBitPieceSize() << "]";
714  OS << " <- ";
715
716  // The second operand is only an offset if it's an immediate.
717  bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
718  int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0;
719
720  for (unsigned i = 0; i < Expr->getNumElements(); ++i) {
721    if (Deref) {
722      // We currently don't support extra Offsets or derefs after the first
723      // one. Bail out early instead of emitting an incorrect comment
724      OS << " [complex expression]";
725      AP.OutStreamer->emitRawComment(OS.str());
726      return true;
727    }
728    uint64_t Op = Expr->getElement(i);
729    if (Op == dwarf::DW_OP_deref) {
730      Deref = true;
731      continue;
732    }
733    uint64_t ExtraOffset = Expr->getElement(i++);
734    if (Op == dwarf::DW_OP_plus)
735      Offset += ExtraOffset;
736    else {
737      assert(Op == dwarf::DW_OP_minus);
738      Offset -= ExtraOffset;
739    }
740  }
741
742  // Register or immediate value. Register 0 means undef.
743  if (MI->getOperand(0).isFPImm()) {
744    APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
745    if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
746      OS << (double)APF.convertToFloat();
747    } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
748      OS << APF.convertToDouble();
749    } else {
750      // There is no good way to print long double.  Convert a copy to
751      // double.  Ah well, it's only a comment.
752      bool ignored;
753      APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
754                  &ignored);
755      OS << "(long double) " << APF.convertToDouble();
756    }
757  } else if (MI->getOperand(0).isImm()) {
758    OS << MI->getOperand(0).getImm();
759  } else if (MI->getOperand(0).isCImm()) {
760    MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
761  } else {
762    unsigned Reg;
763    if (MI->getOperand(0).isReg()) {
764      Reg = MI->getOperand(0).getReg();
765    } else {
766      assert(MI->getOperand(0).isFI() && "Unknown operand type");
767      const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
768      Offset += TFI->getFrameIndexReference(*AP.MF,
769                                            MI->getOperand(0).getIndex(), Reg);
770      Deref = true;
771    }
772    if (Reg == 0) {
773      // Suppress offset, it is not meaningful here.
774      OS << "undef";
775      // NOTE: Want this comment at start of line, don't emit with AddComment.
776      AP.OutStreamer->emitRawComment(OS.str());
777      return true;
778    }
779    if (Deref)
780      OS << '[';
781    OS << PrintReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
782  }
783
784  if (Deref)
785    OS << '+' << Offset << ']';
786
787  // NOTE: Want this comment at start of line, don't emit with AddComment.
788  AP.OutStreamer->emitRawComment(OS.str());
789  return true;
790}
791
792AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
793  if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
794      MF->getFunction()->needsUnwindTableEntry())
795    return CFI_M_EH;
796
797  if (MMI->hasDebugInfo())
798    return CFI_M_Debug;
799
800  return CFI_M_None;
801}
802
803bool AsmPrinter::needsSEHMoves() {
804  return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry();
805}
806
807void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
808  ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
809  if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
810      ExceptionHandlingType != ExceptionHandling::ARM)
811    return;
812
813  if (needsCFIMoves() == CFI_M_None)
814    return;
815
816  const MachineModuleInfo &MMI = MF->getMMI();
817  const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions();
818  unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
819  const MCCFIInstruction &CFI = Instrs[CFIIndex];
820  emitCFIInstruction(CFI);
821}
822
823void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
824  // The operands are the MCSymbol and the frame offset of the allocation.
825  MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
826  int FrameOffset = MI.getOperand(1).getImm();
827
828  // Emit a symbol assignment.
829  OutStreamer->EmitAssignment(FrameAllocSym,
830                             MCConstantExpr::create(FrameOffset, OutContext));
831}
832
833/// EmitFunctionBody - This method emits the body and trailer for a
834/// function.
835void AsmPrinter::EmitFunctionBody() {
836  EmitFunctionHeader();
837
838  // Emit target-specific gunk before the function body.
839  EmitFunctionBodyStart();
840
841  bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
842
843  // Print out code for the function.
844  bool HasAnyRealCode = false;
845  for (auto &MBB : *MF) {
846    // Print a label for the basic block.
847    EmitBasicBlockStart(MBB);
848    for (auto &MI : MBB) {
849
850      // Print the assembly for the instruction.
851      if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
852          !MI.isDebugValue()) {
853        HasAnyRealCode = true;
854        ++EmittedInsts;
855      }
856
857      if (ShouldPrintDebugScopes) {
858        for (const HandlerInfo &HI : Handlers) {
859          NamedRegionTimer T(HI.TimerName, HI.TimerGroupName,
860                             TimePassesIsEnabled);
861          HI.Handler->beginInstruction(&MI);
862        }
863      }
864
865      if (isVerbose())
866        emitComments(MI, OutStreamer->GetCommentOS());
867
868      switch (MI.getOpcode()) {
869      case TargetOpcode::CFI_INSTRUCTION:
870        emitCFIInstruction(MI);
871        break;
872
873      case TargetOpcode::LOCAL_ESCAPE:
874        emitFrameAlloc(MI);
875        break;
876
877      case TargetOpcode::EH_LABEL:
878      case TargetOpcode::GC_LABEL:
879        OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol());
880        break;
881      case TargetOpcode::INLINEASM:
882        EmitInlineAsm(&MI);
883        break;
884      case TargetOpcode::DBG_VALUE:
885        if (isVerbose()) {
886          if (!emitDebugValueComment(&MI, *this))
887            EmitInstruction(&MI);
888        }
889        break;
890      case TargetOpcode::IMPLICIT_DEF:
891        if (isVerbose()) emitImplicitDef(&MI);
892        break;
893      case TargetOpcode::KILL:
894        if (isVerbose()) emitKill(&MI, *this);
895        break;
896      default:
897        EmitInstruction(&MI);
898        break;
899      }
900
901      if (ShouldPrintDebugScopes) {
902        for (const HandlerInfo &HI : Handlers) {
903          NamedRegionTimer T(HI.TimerName, HI.TimerGroupName,
904                             TimePassesIsEnabled);
905          HI.Handler->endInstruction();
906        }
907      }
908    }
909
910    EmitBasicBlockEnd(MBB);
911  }
912
913  // If the function is empty and the object file uses .subsections_via_symbols,
914  // then we need to emit *something* to the function body to prevent the
915  // labels from collapsing together.  Just emit a noop.
916  if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode)) {
917    MCInst Noop;
918    MF->getSubtarget().getInstrInfo()->getNoopForMachoTarget(Noop);
919    OutStreamer->AddComment("avoids zero-length function");
920
921    // Targets can opt-out of emitting the noop here by leaving the opcode
922    // unspecified.
923    if (Noop.getOpcode())
924      OutStreamer->EmitInstruction(Noop, getSubtargetInfo());
925  }
926
927  const Function *F = MF->getFunction();
928  for (const auto &BB : *F) {
929    if (!BB.hasAddressTaken())
930      continue;
931    MCSymbol *Sym = GetBlockAddressSymbol(&BB);
932    if (Sym->isDefined())
933      continue;
934    OutStreamer->AddComment("Address of block that was removed by CodeGen");
935    OutStreamer->EmitLabel(Sym);
936  }
937
938  // Emit target-specific gunk after the function body.
939  EmitFunctionBodyEnd();
940
941  if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() ||
942      MMI->hasEHFunclets() || MAI->hasDotTypeDotSizeDirective()) {
943    // Create a symbol for the end of function.
944    CurrentFnEnd = createTempSymbol("func_end");
945    OutStreamer->EmitLabel(CurrentFnEnd);
946  }
947
948  // If the target wants a .size directive for the size of the function, emit
949  // it.
950  if (MAI->hasDotTypeDotSizeDirective()) {
951    // We can get the size as difference between the function label and the
952    // temp label.
953    const MCExpr *SizeExp = MCBinaryExpr::createSub(
954        MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
955        MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
956    if (auto Sym = dyn_cast<MCSymbolELF>(CurrentFnSym))
957      OutStreamer->emitELFSize(Sym, SizeExp);
958  }
959
960  for (const HandlerInfo &HI : Handlers) {
961    NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
962    HI.Handler->markFunctionEnd();
963  }
964
965  // Print out jump tables referenced by the function.
966  EmitJumpTableInfo();
967
968  // Emit post-function debug and/or EH information.
969  for (const HandlerInfo &HI : Handlers) {
970    NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
971    HI.Handler->endFunction(MF);
972  }
973  MMI->EndFunction();
974
975  OutStreamer->AddBlankLine();
976}
977
978/// \brief Compute the number of Global Variables that uses a Constant.
979static unsigned getNumGlobalVariableUses(const Constant *C) {
980  if (!C)
981    return 0;
982
983  if (isa<GlobalVariable>(C))
984    return 1;
985
986  unsigned NumUses = 0;
987  for (auto *CU : C->users())
988    NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
989
990  return NumUses;
991}
992
993/// \brief Only consider global GOT equivalents if at least one user is a
994/// cstexpr inside an initializer of another global variables. Also, don't
995/// handle cstexpr inside instructions. During global variable emission,
996/// candidates are skipped and are emitted later in case at least one cstexpr
997/// isn't replaced by a PC relative GOT entry access.
998static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
999                                     unsigned &NumGOTEquivUsers) {
1000  // Global GOT equivalents are unnamed private globals with a constant
1001  // pointer initializer to another global symbol. They must point to a
1002  // GlobalVariable or Function, i.e., as GlobalValue.
1003  if (!GV->hasUnnamedAddr() || !GV->hasInitializer() || !GV->isConstant() ||
1004      !GV->isDiscardableIfUnused() || !dyn_cast<GlobalValue>(GV->getOperand(0)))
1005    return false;
1006
1007  // To be a got equivalent, at least one of its users need to be a constant
1008  // expression used by another global variable.
1009  for (auto *U : GV->users())
1010    NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1011
1012  return NumGOTEquivUsers > 0;
1013}
1014
1015/// \brief Unnamed constant global variables solely contaning a pointer to
1016/// another globals variable is equivalent to a GOT table entry; it contains the
1017/// the address of another symbol. Optimize it and replace accesses to these
1018/// "GOT equivalents" by using the GOT entry for the final global instead.
1019/// Compute GOT equivalent candidates among all global variables to avoid
1020/// emitting them if possible later on, after it use is replaced by a GOT entry
1021/// access.
1022void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1023  if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1024    return;
1025
1026  for (const auto &G : M.globals()) {
1027    unsigned NumGOTEquivUsers = 0;
1028    if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1029      continue;
1030
1031    const MCSymbol *GOTEquivSym = getSymbol(&G);
1032    GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1033  }
1034}
1035
1036/// \brief Constant expressions using GOT equivalent globals may not be eligible
1037/// for PC relative GOT entry conversion, in such cases we need to emit such
1038/// globals we previously omitted in EmitGlobalVariable.
1039void AsmPrinter::emitGlobalGOTEquivs() {
1040  if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1041    return;
1042
1043  SmallVector<const GlobalVariable *, 8> FailedCandidates;
1044  for (auto &I : GlobalGOTEquivs) {
1045    const GlobalVariable *GV = I.second.first;
1046    unsigned Cnt = I.second.second;
1047    if (Cnt)
1048      FailedCandidates.push_back(GV);
1049  }
1050  GlobalGOTEquivs.clear();
1051
1052  for (auto *GV : FailedCandidates)
1053    EmitGlobalVariable(GV);
1054}
1055
1056bool AsmPrinter::doFinalization(Module &M) {
1057  // Set the MachineFunction to nullptr so that we can catch attempted
1058  // accesses to MF specific features at the module level and so that
1059  // we can conditionalize accesses based on whether or not it is nullptr.
1060  MF = nullptr;
1061
1062  // Gather all GOT equivalent globals in the module. We really need two
1063  // passes over the globals: one to compute and another to avoid its emission
1064  // in EmitGlobalVariable, otherwise we would not be able to handle cases
1065  // where the got equivalent shows up before its use.
1066  computeGlobalGOTEquivs(M);
1067
1068  // Emit global variables.
1069  for (const auto &G : M.globals())
1070    EmitGlobalVariable(&G);
1071
1072  // Emit remaining GOT equivalent globals.
1073  emitGlobalGOTEquivs();
1074
1075  // Emit visibility info for declarations
1076  for (const Function &F : M) {
1077    if (!F.isDeclarationForLinker())
1078      continue;
1079    GlobalValue::VisibilityTypes V = F.getVisibility();
1080    if (V == GlobalValue::DefaultVisibility)
1081      continue;
1082
1083    MCSymbol *Name = getSymbol(&F);
1084    EmitVisibility(Name, V, false);
1085  }
1086
1087  const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1088
1089  // Emit module flags.
1090  SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
1091  M.getModuleFlagsMetadata(ModuleFlags);
1092  if (!ModuleFlags.empty())
1093    TLOF.emitModuleFlags(*OutStreamer, ModuleFlags, *Mang, TM);
1094
1095  if (TM.getTargetTriple().isOSBinFormatELF()) {
1096    MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1097
1098    // Output stubs for external and common global variables.
1099    MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1100    if (!Stubs.empty()) {
1101      OutStreamer->SwitchSection(TLOF.getDataSection());
1102      const DataLayout &DL = M.getDataLayout();
1103
1104      for (const auto &Stub : Stubs) {
1105        OutStreamer->EmitLabel(Stub.first);
1106        OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1107                                     DL.getPointerSize());
1108      }
1109    }
1110  }
1111
1112  // Finalize debug and EH information.
1113  for (const HandlerInfo &HI : Handlers) {
1114    NamedRegionTimer T(HI.TimerName, HI.TimerGroupName,
1115                       TimePassesIsEnabled);
1116    HI.Handler->endModule();
1117    delete HI.Handler;
1118  }
1119  Handlers.clear();
1120  DD = nullptr;
1121
1122  // If the target wants to know about weak references, print them all.
1123  if (MAI->getWeakRefDirective()) {
1124    // FIXME: This is not lazy, it would be nice to only print weak references
1125    // to stuff that is actually used.  Note that doing so would require targets
1126    // to notice uses in operands (due to constant exprs etc).  This should
1127    // happen with the MC stuff eventually.
1128
1129    // Print out module-level global variables here.
1130    for (const auto &G : M.globals()) {
1131      if (!G.hasExternalWeakLinkage())
1132        continue;
1133      OutStreamer->EmitSymbolAttribute(getSymbol(&G), MCSA_WeakReference);
1134    }
1135
1136    for (const auto &F : M) {
1137      if (!F.hasExternalWeakLinkage())
1138        continue;
1139      OutStreamer->EmitSymbolAttribute(getSymbol(&F), MCSA_WeakReference);
1140    }
1141  }
1142
1143  OutStreamer->AddBlankLine();
1144  for (const auto &Alias : M.aliases()) {
1145    MCSymbol *Name = getSymbol(&Alias);
1146
1147    if (Alias.hasExternalLinkage() || !MAI->getWeakRefDirective())
1148      OutStreamer->EmitSymbolAttribute(Name, MCSA_Global);
1149    else if (Alias.hasWeakLinkage() || Alias.hasLinkOnceLinkage())
1150      OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference);
1151    else
1152      assert(Alias.hasLocalLinkage() && "Invalid alias linkage");
1153
1154    // Set the symbol type to function if the alias has a function type.
1155    // This affects codegen when the aliasee is not a function.
1156    if (Alias.getType()->getPointerElementType()->isFunctionTy())
1157      OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction);
1158
1159    EmitVisibility(Name, Alias.getVisibility());
1160
1161    // Emit the directives as assignments aka .set:
1162    OutStreamer->EmitAssignment(Name, lowerConstant(Alias.getAliasee()));
1163
1164    // If the aliasee does not correspond to a symbol in the output, i.e. the
1165    // alias is not of an object or the aliased object is private, then set the
1166    // size of the alias symbol from the type of the alias. We don't do this in
1167    // other situations as the alias and aliasee having differing types but same
1168    // size may be intentional.
1169    const GlobalObject *BaseObject = Alias.getBaseObject();
1170    if (MAI->hasDotTypeDotSizeDirective() && Alias.getValueType()->isSized() &&
1171        (!BaseObject || BaseObject->hasPrivateLinkage())) {
1172      const DataLayout &DL = M.getDataLayout();
1173      uint64_t Size = DL.getTypeAllocSize(Alias.getValueType());
1174      OutStreamer->emitELFSize(cast<MCSymbolELF>(Name),
1175                               MCConstantExpr::create(Size, OutContext));
1176    }
1177  }
1178
1179  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1180  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1181  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1182    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1183      MP->finishAssembly(M, *MI, *this);
1184
1185  // Emit llvm.ident metadata in an '.ident' directive.
1186  EmitModuleIdents(M);
1187
1188  // Emit __morestack address if needed for indirect calls.
1189  if (MMI->usesMorestackAddr()) {
1190    MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1191        getDataLayout(), SectionKind::getReadOnly(),
1192        /*C=*/nullptr);
1193    OutStreamer->SwitchSection(ReadOnlySection);
1194
1195    MCSymbol *AddrSymbol =
1196        OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1197    OutStreamer->EmitLabel(AddrSymbol);
1198
1199    unsigned PtrSize = M.getDataLayout().getPointerSize(0);
1200    OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1201                                 PtrSize);
1202  }
1203
1204  // If we don't have any trampolines, then we don't require stack memory
1205  // to be executable. Some targets have a directive to declare this.
1206  Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1207  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1208    if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1209      OutStreamer->SwitchSection(S);
1210
1211  // Allow the target to emit any magic that it wants at the end of the file,
1212  // after everything else has gone out.
1213  EmitEndOfAsmFile(M);
1214
1215  delete Mang; Mang = nullptr;
1216  MMI = nullptr;
1217
1218  OutStreamer->Finish();
1219  OutStreamer->reset();
1220
1221  return false;
1222}
1223
1224MCSymbol *AsmPrinter::getCurExceptionSym() {
1225  if (!CurExceptionSym)
1226    CurExceptionSym = createTempSymbol("exception");
1227  return CurExceptionSym;
1228}
1229
1230void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1231  this->MF = &MF;
1232  // Get the function symbol.
1233  CurrentFnSym = getSymbol(MF.getFunction());
1234  CurrentFnSymForSize = CurrentFnSym;
1235  CurrentFnBegin = nullptr;
1236  CurExceptionSym = nullptr;
1237  bool NeedsLocalForSize = MAI->needsLocalForSize();
1238  if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() ||
1239      MMI->hasEHFunclets() || NeedsLocalForSize) {
1240    CurrentFnBegin = createTempSymbol("func_begin");
1241    if (NeedsLocalForSize)
1242      CurrentFnSymForSize = CurrentFnBegin;
1243  }
1244
1245  if (isVerbose())
1246    LI = &getAnalysis<MachineLoopInfo>();
1247}
1248
1249namespace {
1250// Keep track the alignment, constpool entries per Section.
1251  struct SectionCPs {
1252    MCSection *S;
1253    unsigned Alignment;
1254    SmallVector<unsigned, 4> CPEs;
1255    SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {}
1256  };
1257}
1258
1259/// EmitConstantPool - Print to the current output stream assembly
1260/// representations of the constants in the constant pool MCP. This is
1261/// used to print out constants which have been "spilled to memory" by
1262/// the code generator.
1263///
1264void AsmPrinter::EmitConstantPool() {
1265  const MachineConstantPool *MCP = MF->getConstantPool();
1266  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1267  if (CP.empty()) return;
1268
1269  // Calculate sections for constant pool entries. We collect entries to go into
1270  // the same section together to reduce amount of section switch statements.
1271  SmallVector<SectionCPs, 4> CPSections;
1272  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1273    const MachineConstantPoolEntry &CPE = CP[i];
1274    unsigned Align = CPE.getAlignment();
1275
1276    SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1277
1278    const Constant *C = nullptr;
1279    if (!CPE.isMachineConstantPoolEntry())
1280      C = CPE.Val.ConstVal;
1281
1282    MCSection *S =
1283        getObjFileLowering().getSectionForConstant(getDataLayout(), Kind, C);
1284
1285    // The number of sections are small, just do a linear search from the
1286    // last section to the first.
1287    bool Found = false;
1288    unsigned SecIdx = CPSections.size();
1289    while (SecIdx != 0) {
1290      if (CPSections[--SecIdx].S == S) {
1291        Found = true;
1292        break;
1293      }
1294    }
1295    if (!Found) {
1296      SecIdx = CPSections.size();
1297      CPSections.push_back(SectionCPs(S, Align));
1298    }
1299
1300    if (Align > CPSections[SecIdx].Alignment)
1301      CPSections[SecIdx].Alignment = Align;
1302    CPSections[SecIdx].CPEs.push_back(i);
1303  }
1304
1305  // Now print stuff into the calculated sections.
1306  const MCSection *CurSection = nullptr;
1307  unsigned Offset = 0;
1308  for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1309    for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1310      unsigned CPI = CPSections[i].CPEs[j];
1311      MCSymbol *Sym = GetCPISymbol(CPI);
1312      if (!Sym->isUndefined())
1313        continue;
1314
1315      if (CurSection != CPSections[i].S) {
1316        OutStreamer->SwitchSection(CPSections[i].S);
1317        EmitAlignment(Log2_32(CPSections[i].Alignment));
1318        CurSection = CPSections[i].S;
1319        Offset = 0;
1320      }
1321
1322      MachineConstantPoolEntry CPE = CP[CPI];
1323
1324      // Emit inter-object padding for alignment.
1325      unsigned AlignMask = CPE.getAlignment() - 1;
1326      unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1327      OutStreamer->EmitZeros(NewOffset - Offset);
1328
1329      Type *Ty = CPE.getType();
1330      Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty);
1331
1332      OutStreamer->EmitLabel(Sym);
1333      if (CPE.isMachineConstantPoolEntry())
1334        EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1335      else
1336        EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1337    }
1338  }
1339}
1340
1341/// EmitJumpTableInfo - Print assembly representations of the jump tables used
1342/// by the current function to the current output stream.
1343///
1344void AsmPrinter::EmitJumpTableInfo() {
1345  const DataLayout &DL = MF->getDataLayout();
1346  const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1347  if (!MJTI) return;
1348  if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1349  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1350  if (JT.empty()) return;
1351
1352  // Pick the directive to use to print the jump table entries, and switch to
1353  // the appropriate section.
1354  const Function *F = MF->getFunction();
1355  const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1356  bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
1357      MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
1358      *F);
1359  if (JTInDiffSection) {
1360    // Drop it in the readonly section.
1361    MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(*F, *Mang, TM);
1362    OutStreamer->SwitchSection(ReadOnlySection);
1363  }
1364
1365  EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL)));
1366
1367  // Jump tables in code sections are marked with a data_region directive
1368  // where that's supported.
1369  if (!JTInDiffSection)
1370    OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
1371
1372  for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1373    const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1374
1375    // If this jump table was deleted, ignore it.
1376    if (JTBBs.empty()) continue;
1377
1378    // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1379    /// emit a .set directive for each unique entry.
1380    if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1381        MAI->doesSetDirectiveSuppressesReloc()) {
1382      SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1383      const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1384      const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1385      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1386        const MachineBasicBlock *MBB = JTBBs[ii];
1387        if (!EmittedSets.insert(MBB).second)
1388          continue;
1389
1390        // .set LJTSet, LBB32-base
1391        const MCExpr *LHS =
1392          MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1393        OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1394                                    MCBinaryExpr::createSub(LHS, Base,
1395                                                            OutContext));
1396      }
1397    }
1398
1399    // On some targets (e.g. Darwin) we want to emit two consecutive labels
1400    // before each jump table.  The first label is never referenced, but tells
1401    // the assembler and linker the extents of the jump table object.  The
1402    // second label is actually referenced by the code.
1403    if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
1404      // FIXME: This doesn't have to have any specific name, just any randomly
1405      // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1406      OutStreamer->EmitLabel(GetJTISymbol(JTI, true));
1407
1408    OutStreamer->EmitLabel(GetJTISymbol(JTI));
1409
1410    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1411      EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1412  }
1413  if (!JTInDiffSection)
1414    OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1415}
1416
1417/// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1418/// current stream.
1419void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1420                                    const MachineBasicBlock *MBB,
1421                                    unsigned UID) const {
1422  assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1423  const MCExpr *Value = nullptr;
1424  switch (MJTI->getEntryKind()) {
1425  case MachineJumpTableInfo::EK_Inline:
1426    llvm_unreachable("Cannot emit EK_Inline jump table entry");
1427  case MachineJumpTableInfo::EK_Custom32:
1428    Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
1429        MJTI, MBB, UID, OutContext);
1430    break;
1431  case MachineJumpTableInfo::EK_BlockAddress:
1432    // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1433    //     .word LBB123
1434    Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1435    break;
1436  case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1437    // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1438    // with a relocation as gp-relative, e.g.:
1439    //     .gprel32 LBB123
1440    MCSymbol *MBBSym = MBB->getSymbol();
1441    OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1442    return;
1443  }
1444
1445  case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1446    // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1447    // with a relocation as gp-relative, e.g.:
1448    //     .gpdword LBB123
1449    MCSymbol *MBBSym = MBB->getSymbol();
1450    OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1451    return;
1452  }
1453
1454  case MachineJumpTableInfo::EK_LabelDifference32: {
1455    // Each entry is the address of the block minus the address of the jump
1456    // table. This is used for PIC jump tables where gprel32 is not supported.
1457    // e.g.:
1458    //      .word LBB123 - LJTI1_2
1459    // If the .set directive avoids relocations, this is emitted as:
1460    //      .set L4_5_set_123, LBB123 - LJTI1_2
1461    //      .word L4_5_set_123
1462    if (MAI->doesSetDirectiveSuppressesReloc()) {
1463      Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
1464                                      OutContext);
1465      break;
1466    }
1467    Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1468    const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1469    const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
1470    Value = MCBinaryExpr::createSub(Value, Base, OutContext);
1471    break;
1472  }
1473  }
1474
1475  assert(Value && "Unknown entry kind!");
1476
1477  unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
1478  OutStreamer->EmitValue(Value, EntrySize);
1479}
1480
1481
1482/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1483/// special global used by LLVM.  If so, emit it and return true, otherwise
1484/// do nothing and return false.
1485bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1486  if (GV->getName() == "llvm.used") {
1487    if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1488      EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1489    return true;
1490  }
1491
1492  // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1493  if (StringRef(GV->getSection()) == "llvm.metadata" ||
1494      GV->hasAvailableExternallyLinkage())
1495    return true;
1496
1497  if (!GV->hasAppendingLinkage()) return false;
1498
1499  assert(GV->hasInitializer() && "Not a special LLVM global!");
1500
1501  if (GV->getName() == "llvm.global_ctors") {
1502    EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1503                       /* isCtor */ true);
1504
1505    if (TM.getRelocationModel() == Reloc::Static &&
1506        MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1507      StringRef Sym(".constructors_used");
1508      OutStreamer->EmitSymbolAttribute(OutContext.getOrCreateSymbol(Sym),
1509                                       MCSA_Reference);
1510    }
1511    return true;
1512  }
1513
1514  if (GV->getName() == "llvm.global_dtors") {
1515    EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1516                       /* isCtor */ false);
1517
1518    if (TM.getRelocationModel() == Reloc::Static &&
1519        MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1520      StringRef Sym(".destructors_used");
1521      OutStreamer->EmitSymbolAttribute(OutContext.getOrCreateSymbol(Sym),
1522                                       MCSA_Reference);
1523    }
1524    return true;
1525  }
1526
1527  return false;
1528}
1529
1530/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1531/// global in the specified llvm.used list for which emitUsedDirectiveFor
1532/// is true, as being used with this directive.
1533void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1534  // Should be an array of 'i8*'.
1535  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1536    const GlobalValue *GV =
1537      dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1538    if (GV)
1539      OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
1540  }
1541}
1542
1543namespace {
1544struct Structor {
1545  Structor() : Priority(0), Func(nullptr), ComdatKey(nullptr) {}
1546  int Priority;
1547  llvm::Constant *Func;
1548  llvm::GlobalValue *ComdatKey;
1549};
1550} // end namespace
1551
1552/// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1553/// priority.
1554void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List,
1555                                    bool isCtor) {
1556  // Should be an array of '{ int, void ()* }' structs.  The first value is the
1557  // init priority.
1558  if (!isa<ConstantArray>(List)) return;
1559
1560  // Sanity check the structors list.
1561  const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1562  if (!InitList) return; // Not an array!
1563  StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1564  // FIXME: Only allow the 3-field form in LLVM 4.0.
1565  if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3)
1566    return; // Not an array of two or three elements!
1567  if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1568      !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1569  if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U)))
1570    return; // Not (int, ptr, ptr).
1571
1572  // Gather the structors in a form that's convenient for sorting by priority.
1573  SmallVector<Structor, 8> Structors;
1574  for (Value *O : InitList->operands()) {
1575    ConstantStruct *CS = dyn_cast<ConstantStruct>(O);
1576    if (!CS) continue; // Malformed.
1577    if (CS->getOperand(1)->isNullValue())
1578      break;  // Found a null terminator, skip the rest.
1579    ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1580    if (!Priority) continue; // Malformed.
1581    Structors.push_back(Structor());
1582    Structor &S = Structors.back();
1583    S.Priority = Priority->getLimitedValue(65535);
1584    S.Func = CS->getOperand(1);
1585    if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue())
1586      S.ComdatKey = dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
1587  }
1588
1589  // Emit the function pointers in the target-specific order
1590  unsigned Align = Log2_32(DL.getPointerPrefAlignment());
1591  std::stable_sort(Structors.begin(), Structors.end(),
1592                   [](const Structor &L,
1593                      const Structor &R) { return L.Priority < R.Priority; });
1594  for (Structor &S : Structors) {
1595    const TargetLoweringObjectFile &Obj = getObjFileLowering();
1596    const MCSymbol *KeySym = nullptr;
1597    if (GlobalValue *GV = S.ComdatKey) {
1598      if (GV->hasAvailableExternallyLinkage())
1599        // If the associated variable is available_externally, some other TU
1600        // will provide its dynamic initializer.
1601        continue;
1602
1603      KeySym = getSymbol(GV);
1604    }
1605    MCSection *OutputSection =
1606        (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
1607                : Obj.getStaticDtorSection(S.Priority, KeySym));
1608    OutStreamer->SwitchSection(OutputSection);
1609    if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
1610      EmitAlignment(Align);
1611    EmitXXStructor(DL, S.Func);
1612  }
1613}
1614
1615void AsmPrinter::EmitModuleIdents(Module &M) {
1616  if (!MAI->hasIdentDirective())
1617    return;
1618
1619  if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
1620    for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
1621      const MDNode *N = NMD->getOperand(i);
1622      assert(N->getNumOperands() == 1 &&
1623             "llvm.ident metadata entry can have only one operand");
1624      const MDString *S = cast<MDString>(N->getOperand(0));
1625      OutStreamer->EmitIdent(S->getString());
1626    }
1627  }
1628}
1629
1630//===--------------------------------------------------------------------===//
1631// Emission and print routines
1632//
1633
1634/// EmitInt8 - Emit a byte directive and value.
1635///
1636void AsmPrinter::EmitInt8(int Value) const {
1637  OutStreamer->EmitIntValue(Value, 1);
1638}
1639
1640/// EmitInt16 - Emit a short directive and value.
1641///
1642void AsmPrinter::EmitInt16(int Value) const {
1643  OutStreamer->EmitIntValue(Value, 2);
1644}
1645
1646/// EmitInt32 - Emit a long directive and value.
1647///
1648void AsmPrinter::EmitInt32(int Value) const {
1649  OutStreamer->EmitIntValue(Value, 4);
1650}
1651
1652/// Emit something like ".long Hi-Lo" where the size in bytes of the directive
1653/// is specified by Size and Hi/Lo specify the labels. This implicitly uses
1654/// .set if it avoids relocations.
1655void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1656                                     unsigned Size) const {
1657  OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
1658}
1659
1660/// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1661/// where the size in bytes of the directive is specified by Size and Label
1662/// specifies the label.  This implicitly uses .set if it is available.
1663void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1664                                     unsigned Size,
1665                                     bool IsSectionRelative) const {
1666  if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
1667    OutStreamer->EmitCOFFSecRel32(Label);
1668    return;
1669  }
1670
1671  // Emit Label+Offset (or just Label if Offset is zero)
1672  const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
1673  if (Offset)
1674    Expr = MCBinaryExpr::createAdd(
1675        Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
1676
1677  OutStreamer->EmitValue(Expr, Size);
1678}
1679
1680//===----------------------------------------------------------------------===//
1681
1682// EmitAlignment - Emit an alignment directive to the specified power of
1683// two boundary.  For example, if you pass in 3 here, you will get an 8
1684// byte alignment.  If a global value is specified, and if that global has
1685// an explicit alignment requested, it will override the alignment request
1686// if required for correctness.
1687//
1688void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const {
1689  if (GV)
1690    NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits);
1691
1692  if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
1693
1694  assert(NumBits <
1695             static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
1696         "undefined behavior");
1697  if (getCurrentSection()->getKind().isText())
1698    OutStreamer->EmitCodeAlignment(1u << NumBits);
1699  else
1700    OutStreamer->EmitValueToAlignment(1u << NumBits);
1701}
1702
1703//===----------------------------------------------------------------------===//
1704// Constant emission.
1705//===----------------------------------------------------------------------===//
1706
1707const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
1708  MCContext &Ctx = OutContext;
1709
1710  if (CV->isNullValue() || isa<UndefValue>(CV))
1711    return MCConstantExpr::create(0, Ctx);
1712
1713  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1714    return MCConstantExpr::create(CI->getZExtValue(), Ctx);
1715
1716  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
1717    return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
1718
1719  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
1720    return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
1721
1722  const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1723  if (!CE) {
1724    llvm_unreachable("Unknown constant value to lower!");
1725  }
1726
1727  if (const MCExpr *RelocExpr
1728      = getObjFileLowering().getExecutableRelativeSymbol(CE, *Mang, TM))
1729    return RelocExpr;
1730
1731  switch (CE->getOpcode()) {
1732  default:
1733    // If the code isn't optimized, there may be outstanding folding
1734    // opportunities. Attempt to fold the expression using DataLayout as a
1735    // last resort before giving up.
1736    if (Constant *C = ConstantFoldConstantExpression(CE, getDataLayout()))
1737      if (C != CE)
1738        return lowerConstant(C);
1739
1740    // Otherwise report the problem to the user.
1741    {
1742      std::string S;
1743      raw_string_ostream OS(S);
1744      OS << "Unsupported expression in static initializer: ";
1745      CE->printAsOperand(OS, /*PrintType=*/false,
1746                     !MF ? nullptr : MF->getFunction()->getParent());
1747      report_fatal_error(OS.str());
1748    }
1749  case Instruction::GetElementPtr: {
1750    // Generate a symbolic expression for the byte address
1751    APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
1752    cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
1753
1754    const MCExpr *Base = lowerConstant(CE->getOperand(0));
1755    if (!OffsetAI)
1756      return Base;
1757
1758    int64_t Offset = OffsetAI.getSExtValue();
1759    return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
1760                                   Ctx);
1761  }
1762
1763  case Instruction::Trunc:
1764    // We emit the value and depend on the assembler to truncate the generated
1765    // expression properly.  This is important for differences between
1766    // blockaddress labels.  Since the two labels are in the same function, it
1767    // is reasonable to treat their delta as a 32-bit value.
1768    // FALL THROUGH.
1769  case Instruction::BitCast:
1770    return lowerConstant(CE->getOperand(0));
1771
1772  case Instruction::IntToPtr: {
1773    const DataLayout &DL = getDataLayout();
1774
1775    // Handle casts to pointers by changing them into casts to the appropriate
1776    // integer type.  This promotes constant folding and simplifies this code.
1777    Constant *Op = CE->getOperand(0);
1778    Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
1779                                      false/*ZExt*/);
1780    return lowerConstant(Op);
1781  }
1782
1783  case Instruction::PtrToInt: {
1784    const DataLayout &DL = getDataLayout();
1785
1786    // Support only foldable casts to/from pointers that can be eliminated by
1787    // changing the pointer to the appropriately sized integer type.
1788    Constant *Op = CE->getOperand(0);
1789    Type *Ty = CE->getType();
1790
1791    const MCExpr *OpExpr = lowerConstant(Op);
1792
1793    // We can emit the pointer value into this slot if the slot is an
1794    // integer slot equal to the size of the pointer.
1795    if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
1796      return OpExpr;
1797
1798    // Otherwise the pointer is smaller than the resultant integer, mask off
1799    // the high bits so we are sure to get a proper truncation if the input is
1800    // a constant expr.
1801    unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
1802    const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
1803    return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
1804  }
1805
1806  // The MC library also has a right-shift operator, but it isn't consistently
1807  // signed or unsigned between different targets.
1808  case Instruction::Add:
1809  case Instruction::Sub:
1810  case Instruction::Mul:
1811  case Instruction::SDiv:
1812  case Instruction::SRem:
1813  case Instruction::Shl:
1814  case Instruction::And:
1815  case Instruction::Or:
1816  case Instruction::Xor: {
1817    const MCExpr *LHS = lowerConstant(CE->getOperand(0));
1818    const MCExpr *RHS = lowerConstant(CE->getOperand(1));
1819    switch (CE->getOpcode()) {
1820    default: llvm_unreachable("Unknown binary operator constant cast expr");
1821    case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
1822    case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
1823    case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
1824    case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
1825    case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
1826    case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
1827    case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
1828    case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
1829    case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
1830    }
1831  }
1832  }
1833}
1834
1835static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
1836                                   AsmPrinter &AP,
1837                                   const Constant *BaseCV = nullptr,
1838                                   uint64_t Offset = 0);
1839
1840static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
1841
1842/// isRepeatedByteSequence - Determine whether the given value is
1843/// composed of a repeated sequence of identical bytes and return the
1844/// byte value.  If it is not a repeated sequence, return -1.
1845static int isRepeatedByteSequence(const ConstantDataSequential *V) {
1846  StringRef Data = V->getRawDataValues();
1847  assert(!Data.empty() && "Empty aggregates should be CAZ node");
1848  char C = Data[0];
1849  for (unsigned i = 1, e = Data.size(); i != e; ++i)
1850    if (Data[i] != C) return -1;
1851  return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
1852}
1853
1854
1855/// isRepeatedByteSequence - Determine whether the given value is
1856/// composed of a repeated sequence of identical bytes and return the
1857/// byte value.  If it is not a repeated sequence, return -1.
1858static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
1859  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1860    uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
1861    assert(Size % 8 == 0);
1862
1863    // Extend the element to take zero padding into account.
1864    APInt Value = CI->getValue().zextOrSelf(Size);
1865    if (!Value.isSplat(8))
1866      return -1;
1867
1868    return Value.zextOrTrunc(8).getZExtValue();
1869  }
1870  if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1871    // Make sure all array elements are sequences of the same repeated
1872    // byte.
1873    assert(CA->getNumOperands() != 0 && "Should be a CAZ");
1874    Constant *Op0 = CA->getOperand(0);
1875    int Byte = isRepeatedByteSequence(Op0, DL);
1876    if (Byte == -1)
1877      return -1;
1878
1879    // All array elements must be equal.
1880    for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
1881      if (CA->getOperand(i) != Op0)
1882        return -1;
1883    return Byte;
1884  }
1885
1886  if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
1887    return isRepeatedByteSequence(CDS);
1888
1889  return -1;
1890}
1891
1892static void emitGlobalConstantDataSequential(const DataLayout &DL,
1893                                             const ConstantDataSequential *CDS,
1894                                             AsmPrinter &AP) {
1895
1896  // See if we can aggregate this into a .fill, if so, emit it as such.
1897  int Value = isRepeatedByteSequence(CDS, DL);
1898  if (Value != -1) {
1899    uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
1900    // Don't emit a 1-byte object as a .fill.
1901    if (Bytes > 1)
1902      return AP.OutStreamer->EmitFill(Bytes, Value);
1903  }
1904
1905  // If this can be emitted with .ascii/.asciz, emit it as such.
1906  if (CDS->isString())
1907    return AP.OutStreamer->EmitBytes(CDS->getAsString());
1908
1909  // Otherwise, emit the values in successive locations.
1910  unsigned ElementByteSize = CDS->getElementByteSize();
1911  if (isa<IntegerType>(CDS->getElementType())) {
1912    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1913      if (AP.isVerbose())
1914        AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
1915                                                 CDS->getElementAsInteger(i));
1916      AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i),
1917                                   ElementByteSize);
1918    }
1919  } else {
1920    for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
1921      emitGlobalConstantFP(cast<ConstantFP>(CDS->getElementAsConstant(I)), AP);
1922  }
1923
1924  unsigned Size = DL.getTypeAllocSize(CDS->getType());
1925  unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
1926                        CDS->getNumElements();
1927  if (unsigned Padding = Size - EmittedSize)
1928    AP.OutStreamer->EmitZeros(Padding);
1929
1930}
1931
1932static void emitGlobalConstantArray(const DataLayout &DL,
1933                                    const ConstantArray *CA, AsmPrinter &AP,
1934                                    const Constant *BaseCV, uint64_t Offset) {
1935  // See if we can aggregate some values.  Make sure it can be
1936  // represented as a series of bytes of the constant value.
1937  int Value = isRepeatedByteSequence(CA, DL);
1938
1939  if (Value != -1) {
1940    uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
1941    AP.OutStreamer->EmitFill(Bytes, Value);
1942  }
1943  else {
1944    for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
1945      emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
1946      Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
1947    }
1948  }
1949}
1950
1951static void emitGlobalConstantVector(const DataLayout &DL,
1952                                     const ConstantVector *CV, AsmPrinter &AP) {
1953  for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
1954    emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
1955
1956  unsigned Size = DL.getTypeAllocSize(CV->getType());
1957  unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
1958                         CV->getType()->getNumElements();
1959  if (unsigned Padding = Size - EmittedSize)
1960    AP.OutStreamer->EmitZeros(Padding);
1961}
1962
1963static void emitGlobalConstantStruct(const DataLayout &DL,
1964                                     const ConstantStruct *CS, AsmPrinter &AP,
1965                                     const Constant *BaseCV, uint64_t Offset) {
1966  // Print the fields in successive locations. Pad to align if needed!
1967  unsigned Size = DL.getTypeAllocSize(CS->getType());
1968  const StructLayout *Layout = DL.getStructLayout(CS->getType());
1969  uint64_t SizeSoFar = 0;
1970  for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
1971    const Constant *Field = CS->getOperand(i);
1972
1973    // Print the actual field value.
1974    emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
1975
1976    // Check if padding is needed and insert one or more 0s.
1977    uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
1978    uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
1979                        - Layout->getElementOffset(i)) - FieldSize;
1980    SizeSoFar += FieldSize + PadSize;
1981
1982    // Insert padding - this may include padding to increase the size of the
1983    // current field up to the ABI size (if the struct is not packed) as well
1984    // as padding to ensure that the next field starts at the right offset.
1985    AP.OutStreamer->EmitZeros(PadSize);
1986  }
1987  assert(SizeSoFar == Layout->getSizeInBytes() &&
1988         "Layout of constant struct may be incorrect!");
1989}
1990
1991static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
1992  APInt API = CFP->getValueAPF().bitcastToAPInt();
1993
1994  // First print a comment with what we think the original floating-point value
1995  // should have been.
1996  if (AP.isVerbose()) {
1997    SmallString<8> StrVal;
1998    CFP->getValueAPF().toString(StrVal);
1999
2000    if (CFP->getType())
2001      CFP->getType()->print(AP.OutStreamer->GetCommentOS());
2002    else
2003      AP.OutStreamer->GetCommentOS() << "Printing <null> Type";
2004    AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2005  }
2006
2007  // Now iterate through the APInt chunks, emitting them in endian-correct
2008  // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2009  // floats).
2010  unsigned NumBytes = API.getBitWidth() / 8;
2011  unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2012  const uint64_t *p = API.getRawData();
2013
2014  // PPC's long double has odd notions of endianness compared to how LLVM
2015  // handles it: p[0] goes first for *big* endian on PPC.
2016  if (AP.getDataLayout().isBigEndian() && !CFP->getType()->isPPC_FP128Ty()) {
2017    int Chunk = API.getNumWords() - 1;
2018
2019    if (TrailingBytes)
2020      AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes);
2021
2022    for (; Chunk >= 0; --Chunk)
2023      AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2024  } else {
2025    unsigned Chunk;
2026    for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2027      AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2028
2029    if (TrailingBytes)
2030      AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes);
2031  }
2032
2033  // Emit the tail padding for the long double.
2034  const DataLayout &DL = AP.getDataLayout();
2035  AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) -
2036                            DL.getTypeStoreSize(CFP->getType()));
2037}
2038
2039static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2040  const DataLayout &DL = AP.getDataLayout();
2041  unsigned BitWidth = CI->getBitWidth();
2042
2043  // Copy the value as we may massage the layout for constants whose bit width
2044  // is not a multiple of 64-bits.
2045  APInt Realigned(CI->getValue());
2046  uint64_t ExtraBits = 0;
2047  unsigned ExtraBitsSize = BitWidth & 63;
2048
2049  if (ExtraBitsSize) {
2050    // The bit width of the data is not a multiple of 64-bits.
2051    // The extra bits are expected to be at the end of the chunk of the memory.
2052    // Little endian:
2053    // * Nothing to be done, just record the extra bits to emit.
2054    // Big endian:
2055    // * Record the extra bits to emit.
2056    // * Realign the raw data to emit the chunks of 64-bits.
2057    if (DL.isBigEndian()) {
2058      // Basically the structure of the raw data is a chunk of 64-bits cells:
2059      //    0        1         BitWidth / 64
2060      // [chunk1][chunk2] ... [chunkN].
2061      // The most significant chunk is chunkN and it should be emitted first.
2062      // However, due to the alignment issue chunkN contains useless bits.
2063      // Realign the chunks so that they contain only useless information:
2064      // ExtraBits     0       1       (BitWidth / 64) - 1
2065      //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2066      ExtraBits = Realigned.getRawData()[0] &
2067        (((uint64_t)-1) >> (64 - ExtraBitsSize));
2068      Realigned = Realigned.lshr(ExtraBitsSize);
2069    } else
2070      ExtraBits = Realigned.getRawData()[BitWidth / 64];
2071  }
2072
2073  // We don't expect assemblers to support integer data directives
2074  // for more than 64 bits, so we emit the data in at most 64-bit
2075  // quantities at a time.
2076  const uint64_t *RawData = Realigned.getRawData();
2077  for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2078    uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2079    AP.OutStreamer->EmitIntValue(Val, 8);
2080  }
2081
2082  if (ExtraBitsSize) {
2083    // Emit the extra bits after the 64-bits chunks.
2084
2085    // Emit a directive that fills the expected size.
2086    uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType());
2087    Size -= (BitWidth / 64) * 8;
2088    assert(Size && Size * 8 >= ExtraBitsSize &&
2089           (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2090           == ExtraBits && "Directive too small for extra bits.");
2091    AP.OutStreamer->EmitIntValue(ExtraBits, Size);
2092  }
2093}
2094
2095/// \brief Transform a not absolute MCExpr containing a reference to a GOT
2096/// equivalent global, by a target specific GOT pc relative access to the
2097/// final symbol.
2098static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2099                                         const Constant *BaseCst,
2100                                         uint64_t Offset) {
2101  // The global @foo below illustrates a global that uses a got equivalent.
2102  //
2103  //  @bar = global i32 42
2104  //  @gotequiv = private unnamed_addr constant i32* @bar
2105  //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2106  //                             i64 ptrtoint (i32* @foo to i64))
2107  //                        to i32)
2108  //
2109  // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2110  // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2111  // form:
2112  //
2113  //  foo = cstexpr, where
2114  //    cstexpr := <gotequiv> - "." + <cst>
2115  //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2116  //
2117  // After canonicalization by evaluateAsRelocatable `ME` turns into:
2118  //
2119  //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2120  //    gotpcrelcst := <offset from @foo base> + <cst>
2121  //
2122  MCValue MV;
2123  if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2124    return;
2125  const MCSymbolRefExpr *SymA = MV.getSymA();
2126  if (!SymA)
2127    return;
2128
2129  // Check that GOT equivalent symbol is cached.
2130  const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2131  if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2132    return;
2133
2134  const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2135  if (!BaseGV)
2136    return;
2137
2138  // Check for a valid base symbol
2139  const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2140  const MCSymbolRefExpr *SymB = MV.getSymB();
2141
2142  if (!SymB || BaseSym != &SymB->getSymbol())
2143    return;
2144
2145  // Make sure to match:
2146  //
2147  //    gotpcrelcst := <offset from @foo base> + <cst>
2148  //
2149  // If gotpcrelcst is positive it means that we can safely fold the pc rel
2150  // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2151  // if the target knows how to encode it.
2152  //
2153  int64_t GOTPCRelCst = Offset + MV.getConstant();
2154  if (GOTPCRelCst < 0)
2155    return;
2156  if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2157    return;
2158
2159  // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2160  //
2161  //  bar:
2162  //    .long 42
2163  //  gotequiv:
2164  //    .quad bar
2165  //  foo:
2166  //    .long gotequiv - "." + <cst>
2167  //
2168  // is replaced by the target specific equivalent to:
2169  //
2170  //  bar:
2171  //    .long 42
2172  //  foo:
2173  //    .long bar@GOTPCREL+<gotpcrelcst>
2174  //
2175  AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2176  const GlobalVariable *GV = Result.first;
2177  int NumUses = (int)Result.second;
2178  const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2179  const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2180  *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2181      FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2182
2183  // Update GOT equivalent usage information
2184  --NumUses;
2185  if (NumUses >= 0)
2186    AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2187}
2188
2189static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2190                                   AsmPrinter &AP, const Constant *BaseCV,
2191                                   uint64_t Offset) {
2192  uint64_t Size = DL.getTypeAllocSize(CV->getType());
2193
2194  // Globals with sub-elements such as combinations of arrays and structs
2195  // are handled recursively by emitGlobalConstantImpl. Keep track of the
2196  // constant symbol base and the current position with BaseCV and Offset.
2197  if (!BaseCV && CV->hasOneUse())
2198    BaseCV = dyn_cast<Constant>(CV->user_back());
2199
2200  if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2201    return AP.OutStreamer->EmitZeros(Size);
2202
2203  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2204    switch (Size) {
2205    case 1:
2206    case 2:
2207    case 4:
2208    case 8:
2209      if (AP.isVerbose())
2210        AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2211                                                 CI->getZExtValue());
2212      AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size);
2213      return;
2214    default:
2215      emitGlobalConstantLargeInt(CI, AP);
2216      return;
2217    }
2218  }
2219
2220  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2221    return emitGlobalConstantFP(CFP, AP);
2222
2223  if (isa<ConstantPointerNull>(CV)) {
2224    AP.OutStreamer->EmitIntValue(0, Size);
2225    return;
2226  }
2227
2228  if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2229    return emitGlobalConstantDataSequential(DL, CDS, AP);
2230
2231  if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2232    return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2233
2234  if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2235    return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2236
2237  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2238    // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2239    // vectors).
2240    if (CE->getOpcode() == Instruction::BitCast)
2241      return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2242
2243    if (Size > 8) {
2244      // If the constant expression's size is greater than 64-bits, then we have
2245      // to emit the value in chunks. Try to constant fold the value and emit it
2246      // that way.
2247      Constant *New = ConstantFoldConstantExpression(CE, DL);
2248      if (New && New != CE)
2249        return emitGlobalConstantImpl(DL, New, AP);
2250    }
2251  }
2252
2253  if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2254    return emitGlobalConstantVector(DL, V, AP);
2255
2256  // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
2257  // thread the streamer with EmitValue.
2258  const MCExpr *ME = AP.lowerConstant(CV);
2259
2260  // Since lowerConstant already folded and got rid of all IR pointer and
2261  // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2262  // directly.
2263  if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2264    handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2265
2266  AP.OutStreamer->EmitValue(ME, Size);
2267}
2268
2269/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2270void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2271  uint64_t Size = DL.getTypeAllocSize(CV->getType());
2272  if (Size)
2273    emitGlobalConstantImpl(DL, CV, *this);
2274  else if (MAI->hasSubsectionsViaSymbols()) {
2275    // If the global has zero size, emit a single byte so that two labels don't
2276    // look like they are at the same location.
2277    OutStreamer->EmitIntValue(0, 1);
2278  }
2279}
2280
2281void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2282  // Target doesn't support this yet!
2283  llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2284}
2285
2286void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2287  if (Offset > 0)
2288    OS << '+' << Offset;
2289  else if (Offset < 0)
2290    OS << Offset;
2291}
2292
2293//===----------------------------------------------------------------------===//
2294// Symbol Lowering Routines.
2295//===----------------------------------------------------------------------===//
2296
2297MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
2298  return OutContext.createTempSymbol(Name, true);
2299}
2300
2301MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2302  return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2303}
2304
2305MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2306  return MMI->getAddrLabelSymbol(BB);
2307}
2308
2309/// GetCPISymbol - Return the symbol for the specified constant pool entry.
2310MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2311  const DataLayout &DL = getDataLayout();
2312  return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2313                                      "CPI" + Twine(getFunctionNumber()) + "_" +
2314                                      Twine(CPID));
2315}
2316
2317/// GetJTISymbol - Return the symbol for the specified jump table entry.
2318MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2319  return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2320}
2321
2322/// GetJTSetSymbol - Return the symbol for the specified jump table .set
2323/// FIXME: privatize to AsmPrinter.
2324MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2325  const DataLayout &DL = getDataLayout();
2326  return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2327                                      Twine(getFunctionNumber()) + "_" +
2328                                      Twine(UID) + "_set_" + Twine(MBBID));
2329}
2330
2331MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
2332                                                   StringRef Suffix) const {
2333  return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, *Mang,
2334                                                           TM);
2335}
2336
2337/// Return the MCSymbol for the specified ExternalSymbol.
2338MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2339  SmallString<60> NameStr;
2340  Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
2341  return OutContext.getOrCreateSymbol(NameStr);
2342}
2343
2344
2345
2346/// PrintParentLoopComment - Print comments about parent loops of this one.
2347static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2348                                   unsigned FunctionNumber) {
2349  if (!Loop) return;
2350  PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2351  OS.indent(Loop->getLoopDepth()*2)
2352    << "Parent Loop BB" << FunctionNumber << "_"
2353    << Loop->getHeader()->getNumber()
2354    << " Depth=" << Loop->getLoopDepth() << '\n';
2355}
2356
2357
2358/// PrintChildLoopComment - Print comments about child loops within
2359/// the loop for this basic block, with nesting.
2360static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2361                                  unsigned FunctionNumber) {
2362  // Add child loop information
2363  for (const MachineLoop *CL : *Loop) {
2364    OS.indent(CL->getLoopDepth()*2)
2365      << "Child Loop BB" << FunctionNumber << "_"
2366      << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
2367      << '\n';
2368    PrintChildLoopComment(OS, CL, FunctionNumber);
2369  }
2370}
2371
2372/// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2373static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2374                                       const MachineLoopInfo *LI,
2375                                       const AsmPrinter &AP) {
2376  // Add loop depth information
2377  const MachineLoop *Loop = LI->getLoopFor(&MBB);
2378  if (!Loop) return;
2379
2380  MachineBasicBlock *Header = Loop->getHeader();
2381  assert(Header && "No header for loop");
2382
2383  // If this block is not a loop header, just print out what is the loop header
2384  // and return.
2385  if (Header != &MBB) {
2386    AP.OutStreamer->AddComment("  in Loop: Header=BB" +
2387                               Twine(AP.getFunctionNumber())+"_" +
2388                               Twine(Loop->getHeader()->getNumber())+
2389                               " Depth="+Twine(Loop->getLoopDepth()));
2390    return;
2391  }
2392
2393  // Otherwise, it is a loop header.  Print out information about child and
2394  // parent loops.
2395  raw_ostream &OS = AP.OutStreamer->GetCommentOS();
2396
2397  PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2398
2399  OS << "=>";
2400  OS.indent(Loop->getLoopDepth()*2-2);
2401
2402  OS << "This ";
2403  if (Loop->empty())
2404    OS << "Inner ";
2405  OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2406
2407  PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2408}
2409
2410
2411/// EmitBasicBlockStart - This method prints the label for the specified
2412/// MachineBasicBlock, an alignment (if present) and a comment describing
2413/// it if appropriate.
2414void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const {
2415  // End the previous funclet and start a new one.
2416  if (MBB.isEHFuncletEntry()) {
2417    for (const HandlerInfo &HI : Handlers) {
2418      HI.Handler->endFunclet();
2419      HI.Handler->beginFunclet(MBB);
2420    }
2421  }
2422
2423  // Emit an alignment directive for this block, if needed.
2424  if (unsigned Align = MBB.getAlignment())
2425    EmitAlignment(Align);
2426
2427  // If the block has its address taken, emit any labels that were used to
2428  // reference the block.  It is possible that there is more than one label
2429  // here, because multiple LLVM BB's may have been RAUW'd to this block after
2430  // the references were generated.
2431  if (MBB.hasAddressTaken()) {
2432    const BasicBlock *BB = MBB.getBasicBlock();
2433    if (isVerbose())
2434      OutStreamer->AddComment("Block address taken");
2435
2436    // MBBs can have their address taken as part of CodeGen without having
2437    // their corresponding BB's address taken in IR
2438    if (BB->hasAddressTaken())
2439      for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
2440        OutStreamer->EmitLabel(Sym);
2441  }
2442
2443  // Print some verbose block comments.
2444  if (isVerbose()) {
2445    if (const BasicBlock *BB = MBB.getBasicBlock())
2446      if (BB->hasName())
2447        OutStreamer->AddComment("%" + BB->getName());
2448    emitBasicBlockLoopComments(MBB, LI, *this);
2449  }
2450
2451  // Print the main label for the block.
2452  if (MBB.pred_empty() ||
2453      (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) {
2454    if (isVerbose()) {
2455      // NOTE: Want this comment at start of line, don't emit with AddComment.
2456      OutStreamer->emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false);
2457    }
2458  } else {
2459    OutStreamer->EmitLabel(MBB.getSymbol());
2460  }
2461}
2462
2463void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2464                                bool IsDefinition) const {
2465  MCSymbolAttr Attr = MCSA_Invalid;
2466
2467  switch (Visibility) {
2468  default: break;
2469  case GlobalValue::HiddenVisibility:
2470    if (IsDefinition)
2471      Attr = MAI->getHiddenVisibilityAttr();
2472    else
2473      Attr = MAI->getHiddenDeclarationVisibilityAttr();
2474    break;
2475  case GlobalValue::ProtectedVisibility:
2476    Attr = MAI->getProtectedVisibilityAttr();
2477    break;
2478  }
2479
2480  if (Attr != MCSA_Invalid)
2481    OutStreamer->EmitSymbolAttribute(Sym, Attr);
2482}
2483
2484/// isBlockOnlyReachableByFallthough - Return true if the basic block has
2485/// exactly one predecessor and the control transfer mechanism between
2486/// the predecessor and this block is a fall-through.
2487bool AsmPrinter::
2488isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2489  // If this is a landing pad, it isn't a fall through.  If it has no preds,
2490  // then nothing falls through to it.
2491  if (MBB->isEHPad() || MBB->pred_empty())
2492    return false;
2493
2494  // If there isn't exactly one predecessor, it can't be a fall through.
2495  if (MBB->pred_size() > 1)
2496    return false;
2497
2498  // The predecessor has to be immediately before this block.
2499  MachineBasicBlock *Pred = *MBB->pred_begin();
2500  if (!Pred->isLayoutSuccessor(MBB))
2501    return false;
2502
2503  // If the block is completely empty, then it definitely does fall through.
2504  if (Pred->empty())
2505    return true;
2506
2507  // Check the terminators in the previous blocks
2508  for (const auto &MI : Pred->terminators()) {
2509    // If it is not a simple branch, we are in a table somewhere.
2510    if (!MI.isBranch() || MI.isIndirectBranch())
2511      return false;
2512
2513    // If we are the operands of one of the branches, this is not a fall
2514    // through. Note that targets with delay slots will usually bundle
2515    // terminators with the delay slot instruction.
2516    for (ConstMIBundleOperands OP(&MI); OP.isValid(); ++OP) {
2517      if (OP->isJTI())
2518        return false;
2519      if (OP->isMBB() && OP->getMBB() == MBB)
2520        return false;
2521    }
2522  }
2523
2524  return true;
2525}
2526
2527
2528
2529GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
2530  if (!S.usesMetadata())
2531    return nullptr;
2532
2533  assert(!S.useStatepoints() && "statepoints do not currently support custom"
2534         " stackmap formats, please see the documentation for a description of"
2535         " the default format.  If you really need a custom serialized format,"
2536         " please file a bug");
2537
2538  gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2539  gcp_map_type::iterator GCPI = GCMap.find(&S);
2540  if (GCPI != GCMap.end())
2541    return GCPI->second.get();
2542
2543  const char *Name = S.getName().c_str();
2544
2545  for (GCMetadataPrinterRegistry::iterator
2546         I = GCMetadataPrinterRegistry::begin(),
2547         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2548    if (strcmp(Name, I->getName()) == 0) {
2549      std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
2550      GMP->S = &S;
2551      auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
2552      return IterBool.first->second.get();
2553    }
2554
2555  report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2556}
2557
2558/// Pin vtable to this file.
2559AsmPrinterHandler::~AsmPrinterHandler() {}
2560
2561void AsmPrinterHandler::markFunctionEnd() {}
2562