1//===-- CodeGen/AsmPrinter/EHStreamer.cpp - Exception Directive Streamer --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains support for writing exception info into assembly files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "EHStreamer.h"
15#include "llvm/CodeGen/AsmPrinter.h"
16#include "llvm/CodeGen/MachineFunction.h"
17#include "llvm/CodeGen/MachineInstr.h"
18#include "llvm/CodeGen/MachineModuleInfo.h"
19#include "llvm/IR/Function.h"
20#include "llvm/MC/MCAsmInfo.h"
21#include "llvm/MC/MCStreamer.h"
22#include "llvm/MC/MCSymbol.h"
23#include "llvm/Support/LEB128.h"
24#include "llvm/Target/TargetLoweringObjectFile.h"
25
26using namespace llvm;
27
28EHStreamer::EHStreamer(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {}
29
30EHStreamer::~EHStreamer() {}
31
32/// How many leading type ids two landing pads have in common.
33unsigned EHStreamer::sharedTypeIDs(const LandingPadInfo *L,
34                                   const LandingPadInfo *R) {
35  const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
36  unsigned LSize = LIds.size(), RSize = RIds.size();
37  unsigned MinSize = LSize < RSize ? LSize : RSize;
38  unsigned Count = 0;
39
40  for (; Count != MinSize; ++Count)
41    if (LIds[Count] != RIds[Count])
42      return Count;
43
44  return Count;
45}
46
47/// Compute the actions table and gather the first action index for each landing
48/// pad site.
49unsigned EHStreamer::
50computeActionsTable(const SmallVectorImpl<const LandingPadInfo*> &LandingPads,
51                    SmallVectorImpl<ActionEntry> &Actions,
52                    SmallVectorImpl<unsigned> &FirstActions) {
53
54  // The action table follows the call-site table in the LSDA. The individual
55  // records are of two types:
56  //
57  //   * Catch clause
58  //   * Exception specification
59  //
60  // The two record kinds have the same format, with only small differences.
61  // They are distinguished by the "switch value" field: Catch clauses
62  // (TypeInfos) have strictly positive switch values, and exception
63  // specifications (FilterIds) have strictly negative switch values. Value 0
64  // indicates a catch-all clause.
65  //
66  // Negative type IDs index into FilterIds. Positive type IDs index into
67  // TypeInfos.  The value written for a positive type ID is just the type ID
68  // itself.  For a negative type ID, however, the value written is the
69  // (negative) byte offset of the corresponding FilterIds entry.  The byte
70  // offset is usually equal to the type ID (because the FilterIds entries are
71  // written using a variable width encoding, which outputs one byte per entry
72  // as long as the value written is not too large) but can differ.  This kind
73  // of complication does not occur for positive type IDs because type infos are
74  // output using a fixed width encoding.  FilterOffsets[i] holds the byte
75  // offset corresponding to FilterIds[i].
76
77  const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
78  SmallVector<int, 16> FilterOffsets;
79  FilterOffsets.reserve(FilterIds.size());
80  int Offset = -1;
81
82  for (std::vector<unsigned>::const_iterator
83         I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) {
84    FilterOffsets.push_back(Offset);
85    Offset -= getULEB128Size(*I);
86  }
87
88  FirstActions.reserve(LandingPads.size());
89
90  int FirstAction = 0;
91  unsigned SizeActions = 0;
92  const LandingPadInfo *PrevLPI = nullptr;
93
94  for (SmallVectorImpl<const LandingPadInfo *>::const_iterator
95         I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) {
96    const LandingPadInfo *LPI = *I;
97    const std::vector<int> &TypeIds = LPI->TypeIds;
98    unsigned NumShared = PrevLPI ? sharedTypeIDs(LPI, PrevLPI) : 0;
99    unsigned SizeSiteActions = 0;
100
101    if (NumShared < TypeIds.size()) {
102      unsigned SizeAction = 0;
103      unsigned PrevAction = (unsigned)-1;
104
105      if (NumShared) {
106        unsigned SizePrevIds = PrevLPI->TypeIds.size();
107        assert(Actions.size());
108        PrevAction = Actions.size() - 1;
109        SizeAction = getSLEB128Size(Actions[PrevAction].NextAction) +
110                     getSLEB128Size(Actions[PrevAction].ValueForTypeID);
111
112        for (unsigned j = NumShared; j != SizePrevIds; ++j) {
113          assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!");
114          SizeAction -= getSLEB128Size(Actions[PrevAction].ValueForTypeID);
115          SizeAction += -Actions[PrevAction].NextAction;
116          PrevAction = Actions[PrevAction].Previous;
117        }
118      }
119
120      // Compute the actions.
121      for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
122        int TypeID = TypeIds[J];
123        assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
124        int ValueForTypeID =
125            isFilterEHSelector(TypeID) ? FilterOffsets[-1 - TypeID] : TypeID;
126        unsigned SizeTypeID = getSLEB128Size(ValueForTypeID);
127
128        int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
129        SizeAction = SizeTypeID + getSLEB128Size(NextAction);
130        SizeSiteActions += SizeAction;
131
132        ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
133        Actions.push_back(Action);
134        PrevAction = Actions.size() - 1;
135      }
136
137      // Record the first action of the landing pad site.
138      FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
139    } // else identical - re-use previous FirstAction
140
141    // Information used when created the call-site table. The action record
142    // field of the call site record is the offset of the first associated
143    // action record, relative to the start of the actions table. This value is
144    // biased by 1 (1 indicating the start of the actions table), and 0
145    // indicates that there are no actions.
146    FirstActions.push_back(FirstAction);
147
148    // Compute this sites contribution to size.
149    SizeActions += SizeSiteActions;
150
151    PrevLPI = LPI;
152  }
153
154  return SizeActions;
155}
156
157/// Return `true' if this is a call to a function marked `nounwind'. Return
158/// `false' otherwise.
159bool EHStreamer::callToNoUnwindFunction(const MachineInstr *MI) {
160  assert(MI->isCall() && "This should be a call instruction!");
161
162  bool MarkedNoUnwind = false;
163  bool SawFunc = false;
164
165  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
166    const MachineOperand &MO = MI->getOperand(I);
167
168    if (!MO.isGlobal()) continue;
169
170    const Function *F = dyn_cast<Function>(MO.getGlobal());
171    if (!F) continue;
172
173    if (SawFunc) {
174      // Be conservative. If we have more than one function operand for this
175      // call, then we can't make the assumption that it's the callee and
176      // not a parameter to the call.
177      //
178      // FIXME: Determine if there's a way to say that `F' is the callee or
179      // parameter.
180      MarkedNoUnwind = false;
181      break;
182    }
183
184    MarkedNoUnwind = F->doesNotThrow();
185    SawFunc = true;
186  }
187
188  return MarkedNoUnwind;
189}
190
191void EHStreamer::computePadMap(
192    const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
193    RangeMapType &PadMap) {
194  // Invokes and nounwind calls have entries in PadMap (due to being bracketed
195  // by try-range labels when lowered).  Ordinary calls do not, so appropriate
196  // try-ranges for them need be deduced so we can put them in the LSDA.
197  for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
198    const LandingPadInfo *LandingPad = LandingPads[i];
199    for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
200      MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
201      assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
202      PadRange P = { i, j };
203      PadMap[BeginLabel] = P;
204    }
205  }
206}
207
208/// Compute the call-site table.  The entry for an invoke has a try-range
209/// containing the call, a non-zero landing pad, and an appropriate action.  The
210/// entry for an ordinary call has a try-range containing the call and zero for
211/// the landing pad and the action.  Calls marked 'nounwind' have no entry and
212/// must not be contained in the try-range of any entry - they form gaps in the
213/// table.  Entries must be ordered by try-range address.
214void EHStreamer::
215computeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
216                     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
217                     const SmallVectorImpl<unsigned> &FirstActions) {
218  RangeMapType PadMap;
219  computePadMap(LandingPads, PadMap);
220
221  // The end label of the previous invoke or nounwind try-range.
222  MCSymbol *LastLabel = nullptr;
223
224  // Whether there is a potentially throwing instruction (currently this means
225  // an ordinary call) between the end of the previous try-range and now.
226  bool SawPotentiallyThrowing = false;
227
228  // Whether the last CallSite entry was for an invoke.
229  bool PreviousIsInvoke = false;
230
231  bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
232
233  // Visit all instructions in order of address.
234  for (const auto &MBB : *Asm->MF) {
235    for (const auto &MI : MBB) {
236      if (!MI.isEHLabel()) {
237        if (MI.isCall())
238          SawPotentiallyThrowing |= !callToNoUnwindFunction(&MI);
239        continue;
240      }
241
242      // End of the previous try-range?
243      MCSymbol *BeginLabel = MI.getOperand(0).getMCSymbol();
244      if (BeginLabel == LastLabel)
245        SawPotentiallyThrowing = false;
246
247      // Beginning of a new try-range?
248      RangeMapType::const_iterator L = PadMap.find(BeginLabel);
249      if (L == PadMap.end())
250        // Nope, it was just some random label.
251        continue;
252
253      const PadRange &P = L->second;
254      const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
255      assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
256             "Inconsistent landing pad map!");
257
258      // For Dwarf exception handling (SjLj handling doesn't use this). If some
259      // instruction between the previous try-range and this one may throw,
260      // create a call-site entry with no landing pad for the region between the
261      // try-ranges.
262      if (SawPotentiallyThrowing && Asm->MAI->usesCFIForEH()) {
263        CallSiteEntry Site = { LastLabel, BeginLabel, nullptr, 0 };
264        CallSites.push_back(Site);
265        PreviousIsInvoke = false;
266      }
267
268      LastLabel = LandingPad->EndLabels[P.RangeIndex];
269      assert(BeginLabel && LastLabel && "Invalid landing pad!");
270
271      if (!LandingPad->LandingPadLabel) {
272        // Create a gap.
273        PreviousIsInvoke = false;
274      } else {
275        // This try-range is for an invoke.
276        CallSiteEntry Site = {
277          BeginLabel,
278          LastLabel,
279          LandingPad,
280          FirstActions[P.PadIndex]
281        };
282
283        // Try to merge with the previous call-site. SJLJ doesn't do this
284        if (PreviousIsInvoke && !IsSJLJ) {
285          CallSiteEntry &Prev = CallSites.back();
286          if (Site.LPad == Prev.LPad && Site.Action == Prev.Action) {
287            // Extend the range of the previous entry.
288            Prev.EndLabel = Site.EndLabel;
289            continue;
290          }
291        }
292
293        // Otherwise, create a new call-site.
294        if (!IsSJLJ)
295          CallSites.push_back(Site);
296        else {
297          // SjLj EH must maintain the call sites in the order assigned
298          // to them by the SjLjPrepare pass.
299          unsigned SiteNo = MMI->getCallSiteBeginLabel(BeginLabel);
300          if (CallSites.size() < SiteNo)
301            CallSites.resize(SiteNo);
302          CallSites[SiteNo - 1] = Site;
303        }
304        PreviousIsInvoke = true;
305      }
306    }
307  }
308
309  // If some instruction between the previous try-range and the end of the
310  // function may throw, create a call-site entry with no landing pad for the
311  // region following the try-range.
312  if (SawPotentiallyThrowing && !IsSJLJ && LastLabel != nullptr) {
313    CallSiteEntry Site = { LastLabel, nullptr, nullptr, 0 };
314    CallSites.push_back(Site);
315  }
316}
317
318/// Emit landing pads and actions.
319///
320/// The general organization of the table is complex, but the basic concepts are
321/// easy.  First there is a header which describes the location and organization
322/// of the three components that follow.
323///
324///  1. The landing pad site information describes the range of code covered by
325///     the try.  In our case it's an accumulation of the ranges covered by the
326///     invokes in the try.  There is also a reference to the landing pad that
327///     handles the exception once processed.  Finally an index into the actions
328///     table.
329///  2. The action table, in our case, is composed of pairs of type IDs and next
330///     action offset.  Starting with the action index from the landing pad
331///     site, each type ID is checked for a match to the current exception.  If
332///     it matches then the exception and type id are passed on to the landing
333///     pad.  Otherwise the next action is looked up.  This chain is terminated
334///     with a next action of zero.  If no type id is found then the frame is
335///     unwound and handling continues.
336///  3. Type ID table contains references to all the C++ typeinfo for all
337///     catches in the function.  This tables is reverse indexed base 1.
338void EHStreamer::emitExceptionTable() {
339  const std::vector<const GlobalValue *> &TypeInfos = MMI->getTypeInfos();
340  const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
341  const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
342
343  // Sort the landing pads in order of their type ids.  This is used to fold
344  // duplicate actions.
345  SmallVector<const LandingPadInfo *, 64> LandingPads;
346  LandingPads.reserve(PadInfos.size());
347
348  for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
349    LandingPads.push_back(&PadInfos[i]);
350
351  // Order landing pads lexicographically by type id.
352  std::sort(LandingPads.begin(), LandingPads.end(),
353            [](const LandingPadInfo *L,
354               const LandingPadInfo *R) { return L->TypeIds < R->TypeIds; });
355
356  // Compute the actions table and gather the first action index for each
357  // landing pad site.
358  SmallVector<ActionEntry, 32> Actions;
359  SmallVector<unsigned, 64> FirstActions;
360  unsigned SizeActions =
361    computeActionsTable(LandingPads, Actions, FirstActions);
362
363  // Compute the call-site table.
364  SmallVector<CallSiteEntry, 64> CallSites;
365  computeCallSiteTable(CallSites, LandingPads, FirstActions);
366
367  // Final tallies.
368
369  // Call sites.
370  bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
371  bool HaveTTData = IsSJLJ ? (!TypeInfos.empty() || !FilterIds.empty()) : true;
372
373  unsigned CallSiteTableLength;
374  if (IsSJLJ)
375    CallSiteTableLength = 0;
376  else {
377    unsigned SiteStartSize  = 4; // dwarf::DW_EH_PE_udata4
378    unsigned SiteLengthSize = 4; // dwarf::DW_EH_PE_udata4
379    unsigned LandingPadSize = 4; // dwarf::DW_EH_PE_udata4
380    CallSiteTableLength =
381      CallSites.size() * (SiteStartSize + SiteLengthSize + LandingPadSize);
382  }
383
384  for (unsigned i = 0, e = CallSites.size(); i < e; ++i) {
385    CallSiteTableLength += getULEB128Size(CallSites[i].Action);
386    if (IsSJLJ)
387      CallSiteTableLength += getULEB128Size(i);
388  }
389
390  // Type infos.
391  MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection();
392  unsigned TTypeEncoding;
393  unsigned TypeFormatSize;
394
395  if (!HaveTTData) {
396    // For SjLj exceptions, if there is no TypeInfo, then we just explicitly say
397    // that we're omitting that bit.
398    TTypeEncoding = dwarf::DW_EH_PE_omit;
399    // dwarf::DW_EH_PE_absptr
400    TypeFormatSize = Asm->getDataLayout().getPointerSize();
401  } else {
402    // Okay, we have actual filters or typeinfos to emit.  As such, we need to
403    // pick a type encoding for them.  We're about to emit a list of pointers to
404    // typeinfo objects at the end of the LSDA.  However, unless we're in static
405    // mode, this reference will require a relocation by the dynamic linker.
406    //
407    // Because of this, we have a couple of options:
408    //
409    //   1) If we are in -static mode, we can always use an absolute reference
410    //      from the LSDA, because the static linker will resolve it.
411    //
412    //   2) Otherwise, if the LSDA section is writable, we can output the direct
413    //      reference to the typeinfo and allow the dynamic linker to relocate
414    //      it.  Since it is in a writable section, the dynamic linker won't
415    //      have a problem.
416    //
417    //   3) Finally, if we're in PIC mode and the LDSA section isn't writable,
418    //      we need to use some form of indirection.  For example, on Darwin,
419    //      we can output a statically-relocatable reference to a dyld stub. The
420    //      offset to the stub is constant, but the contents are in a section
421    //      that is updated by the dynamic linker.  This is easy enough, but we
422    //      need to tell the personality function of the unwinder to indirect
423    //      through the dyld stub.
424    //
425    // FIXME: When (3) is actually implemented, we'll have to emit the stubs
426    // somewhere.  This predicate should be moved to a shared location that is
427    // in target-independent code.
428    //
429    TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding();
430    TypeFormatSize = Asm->GetSizeOfEncodedValue(TTypeEncoding);
431  }
432
433  // Begin the exception table.
434  // Sometimes we want not to emit the data into separate section (e.g. ARM
435  // EHABI). In this case LSDASection will be NULL.
436  if (LSDASection)
437    Asm->OutStreamer->SwitchSection(LSDASection);
438  Asm->EmitAlignment(2);
439
440  // Emit the LSDA.
441  MCSymbol *GCCETSym =
442    Asm->OutContext.getOrCreateSymbol(Twine("GCC_except_table")+
443                                      Twine(Asm->getFunctionNumber()));
444  Asm->OutStreamer->EmitLabel(GCCETSym);
445  Asm->OutStreamer->EmitLabel(Asm->getCurExceptionSym());
446
447  // Emit the LSDA header.
448  Asm->EmitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
449  Asm->EmitEncodingByte(TTypeEncoding, "@TType");
450
451  // The type infos need to be aligned. GCC does this by inserting padding just
452  // before the type infos. However, this changes the size of the exception
453  // table, so you need to take this into account when you output the exception
454  // table size. However, the size is output using a variable length encoding.
455  // So by increasing the size by inserting padding, you may increase the number
456  // of bytes used for writing the size. If it increases, say by one byte, then
457  // you now need to output one less byte of padding to get the type infos
458  // aligned. However this decreases the size of the exception table. This
459  // changes the value you have to output for the exception table size. Due to
460  // the variable length encoding, the number of bytes used for writing the
461  // length may decrease. If so, you then have to increase the amount of
462  // padding. And so on. If you look carefully at the GCC code you will see that
463  // it indeed does this in a loop, going on and on until the values stabilize.
464  // We chose another solution: don't output padding inside the table like GCC
465  // does, instead output it before the table.
466  unsigned SizeTypes = TypeInfos.size() * TypeFormatSize;
467  unsigned CallSiteTableLengthSize = getULEB128Size(CallSiteTableLength);
468  unsigned TTypeBaseOffset =
469    sizeof(int8_t) +                            // Call site format
470    CallSiteTableLengthSize +                   // Call site table length size
471    CallSiteTableLength +                       // Call site table length
472    SizeActions +                               // Actions size
473    SizeTypes;
474  unsigned TTypeBaseOffsetSize = getULEB128Size(TTypeBaseOffset);
475  unsigned TotalSize =
476    sizeof(int8_t) +                            // LPStart format
477    sizeof(int8_t) +                            // TType format
478    (HaveTTData ? TTypeBaseOffsetSize : 0) +    // TType base offset size
479    TTypeBaseOffset;                            // TType base offset
480  unsigned SizeAlign = (4 - TotalSize) & 3;
481
482  if (HaveTTData) {
483    // Account for any extra padding that will be added to the call site table
484    // length.
485    Asm->EmitULEB128(TTypeBaseOffset, "@TType base offset", SizeAlign);
486    SizeAlign = 0;
487  }
488
489  bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
490
491  // SjLj Exception handling
492  if (IsSJLJ) {
493    Asm->EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site");
494
495    // Add extra padding if it wasn't added to the TType base offset.
496    Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign);
497
498    // Emit the landing pad site information.
499    unsigned idx = 0;
500    for (SmallVectorImpl<CallSiteEntry>::const_iterator
501         I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
502      const CallSiteEntry &S = *I;
503
504      // Offset of the landing pad, counted in 16-byte bundles relative to the
505      // @LPStart address.
506      if (VerboseAsm) {
507        Asm->OutStreamer->AddComment(">> Call Site " + Twine(idx) + " <<");
508        Asm->OutStreamer->AddComment("  On exception at call site "+Twine(idx));
509      }
510      Asm->EmitULEB128(idx);
511
512      // Offset of the first associated action record, relative to the start of
513      // the action table. This value is biased by 1 (1 indicates the start of
514      // the action table), and 0 indicates that there are no actions.
515      if (VerboseAsm) {
516        if (S.Action == 0)
517          Asm->OutStreamer->AddComment("  Action: cleanup");
518        else
519          Asm->OutStreamer->AddComment("  Action: " +
520                                       Twine((S.Action - 1) / 2 + 1));
521      }
522      Asm->EmitULEB128(S.Action);
523    }
524  } else {
525    // Itanium LSDA exception handling
526
527    // The call-site table is a list of all call sites that may throw an
528    // exception (including C++ 'throw' statements) in the procedure
529    // fragment. It immediately follows the LSDA header. Each entry indicates,
530    // for a given call, the first corresponding action record and corresponding
531    // landing pad.
532    //
533    // The table begins with the number of bytes, stored as an LEB128
534    // compressed, unsigned integer. The records immediately follow the record
535    // count. They are sorted in increasing call-site address. Each record
536    // indicates:
537    //
538    //   * The position of the call-site.
539    //   * The position of the landing pad.
540    //   * The first action record for that call site.
541    //
542    // A missing entry in the call-site table indicates that a call is not
543    // supposed to throw.
544
545    // Emit the landing pad call site table.
546    Asm->EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site");
547
548    // Add extra padding if it wasn't added to the TType base offset.
549    Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign);
550
551    unsigned Entry = 0;
552    for (SmallVectorImpl<CallSiteEntry>::const_iterator
553         I = CallSites.begin(), E = CallSites.end(); I != E; ++I) {
554      const CallSiteEntry &S = *I;
555
556      MCSymbol *EHFuncBeginSym = Asm->getFunctionBegin();
557
558      MCSymbol *BeginLabel = S.BeginLabel;
559      if (!BeginLabel)
560        BeginLabel = EHFuncBeginSym;
561      MCSymbol *EndLabel = S.EndLabel;
562      if (!EndLabel)
563        EndLabel = Asm->getFunctionEnd();
564
565      // Offset of the call site relative to the previous call site, counted in
566      // number of 16-byte bundles. The first call site is counted relative to
567      // the start of the procedure fragment.
568      if (VerboseAsm)
569        Asm->OutStreamer->AddComment(">> Call Site " + Twine(++Entry) + " <<");
570      Asm->EmitLabelDifference(BeginLabel, EHFuncBeginSym, 4);
571      if (VerboseAsm)
572        Asm->OutStreamer->AddComment(Twine("  Call between ") +
573                                     BeginLabel->getName() + " and " +
574                                     EndLabel->getName());
575      Asm->EmitLabelDifference(EndLabel, BeginLabel, 4);
576
577      // Offset of the landing pad, counted in 16-byte bundles relative to the
578      // @LPStart address.
579      if (!S.LPad) {
580        if (VerboseAsm)
581          Asm->OutStreamer->AddComment("    has no landing pad");
582        Asm->OutStreamer->EmitIntValue(0, 4/*size*/);
583      } else {
584        if (VerboseAsm)
585          Asm->OutStreamer->AddComment(Twine("    jumps to ") +
586                                       S.LPad->LandingPadLabel->getName());
587        Asm->EmitLabelDifference(S.LPad->LandingPadLabel, EHFuncBeginSym, 4);
588      }
589
590      // Offset of the first associated action record, relative to the start of
591      // the action table. This value is biased by 1 (1 indicates the start of
592      // the action table), and 0 indicates that there are no actions.
593      if (VerboseAsm) {
594        if (S.Action == 0)
595          Asm->OutStreamer->AddComment("  On action: cleanup");
596        else
597          Asm->OutStreamer->AddComment("  On action: " +
598                                       Twine((S.Action - 1) / 2 + 1));
599      }
600      Asm->EmitULEB128(S.Action);
601    }
602  }
603
604  // Emit the Action Table.
605  int Entry = 0;
606  for (SmallVectorImpl<ActionEntry>::const_iterator
607         I = Actions.begin(), E = Actions.end(); I != E; ++I) {
608    const ActionEntry &Action = *I;
609
610    if (VerboseAsm) {
611      // Emit comments that decode the action table.
612      Asm->OutStreamer->AddComment(">> Action Record " + Twine(++Entry) + " <<");
613    }
614
615    // Type Filter
616    //
617    //   Used by the runtime to match the type of the thrown exception to the
618    //   type of the catch clauses or the types in the exception specification.
619    if (VerboseAsm) {
620      if (Action.ValueForTypeID > 0)
621        Asm->OutStreamer->AddComment("  Catch TypeInfo " +
622                                     Twine(Action.ValueForTypeID));
623      else if (Action.ValueForTypeID < 0)
624        Asm->OutStreamer->AddComment("  Filter TypeInfo " +
625                                     Twine(Action.ValueForTypeID));
626      else
627        Asm->OutStreamer->AddComment("  Cleanup");
628    }
629    Asm->EmitSLEB128(Action.ValueForTypeID);
630
631    // Action Record
632    //
633    //   Self-relative signed displacement in bytes of the next action record,
634    //   or 0 if there is no next action record.
635    if (VerboseAsm) {
636      if (Action.NextAction == 0) {
637        Asm->OutStreamer->AddComment("  No further actions");
638      } else {
639        unsigned NextAction = Entry + (Action.NextAction + 1) / 2;
640        Asm->OutStreamer->AddComment("  Continue to action "+Twine(NextAction));
641      }
642    }
643    Asm->EmitSLEB128(Action.NextAction);
644  }
645
646  emitTypeInfos(TTypeEncoding);
647
648  Asm->EmitAlignment(2);
649}
650
651void EHStreamer::emitTypeInfos(unsigned TTypeEncoding) {
652  const std::vector<const GlobalValue *> &TypeInfos = MMI->getTypeInfos();
653  const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
654
655  bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
656
657  int Entry = 0;
658  // Emit the Catch TypeInfos.
659  if (VerboseAsm && !TypeInfos.empty()) {
660    Asm->OutStreamer->AddComment(">> Catch TypeInfos <<");
661    Asm->OutStreamer->AddBlankLine();
662    Entry = TypeInfos.size();
663  }
664
665  for (const GlobalValue *GV : make_range(TypeInfos.rbegin(),
666                                          TypeInfos.rend())) {
667    if (VerboseAsm)
668      Asm->OutStreamer->AddComment("TypeInfo " + Twine(Entry--));
669    Asm->EmitTTypeReference(GV, TTypeEncoding);
670  }
671
672  // Emit the Exception Specifications.
673  if (VerboseAsm && !FilterIds.empty()) {
674    Asm->OutStreamer->AddComment(">> Filter TypeInfos <<");
675    Asm->OutStreamer->AddBlankLine();
676    Entry = 0;
677  }
678  for (std::vector<unsigned>::const_iterator
679         I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
680    unsigned TypeID = *I;
681    if (VerboseAsm) {
682      --Entry;
683      if (isFilterEHSelector(TypeID))
684        Asm->OutStreamer->AddComment("FilterInfo " + Twine(Entry));
685    }
686
687    Asm->EmitULEB128(TypeID);
688  }
689}
690