LiveInterval.cpp revision 1920156982643a1c5c28af6f4684580b516eb597
1//===-- LiveInterval.cpp - Live Interval Representation -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveRange and LiveInterval classes.  Given some
11// numbering of each the machine instructions an interval [i, j) is said to be a
12// live interval for register v if there is no instruction with number j' > j
13// such that v is live at j' and there is no instruction with number i' < i such
14// that v is live at i'. In this implementation intervals can have holes,
15// i.e. an interval might look like [1,20), [50,65), [1000,1001).  Each
16// individual range is represented as an instance of LiveRange, and the whole
17// interval is represented as an instance of LiveInterval.
18//
19//===----------------------------------------------------------------------===//
20
21#include "llvm/CodeGen/LiveInterval.h"
22#include "RegisterCoalescer.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/SmallSet.h"
26#include "llvm/CodeGen/LiveIntervalAnalysis.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/Support/raw_ostream.h"
30#include "llvm/Target/TargetRegisterInfo.h"
31#include <algorithm>
32using namespace llvm;
33
34LiveInterval::iterator LiveInterval::find(SlotIndex Pos) {
35  // This algorithm is basically std::upper_bound.
36  // Unfortunately, std::upper_bound cannot be used with mixed types until we
37  // adopt C++0x. Many libraries can do it, but not all.
38  if (empty() || Pos >= endIndex())
39    return end();
40  iterator I = begin();
41  size_t Len = ranges.size();
42  do {
43    size_t Mid = Len >> 1;
44    if (Pos < I[Mid].end)
45      Len = Mid;
46    else
47      I += Mid + 1, Len -= Mid + 1;
48  } while (Len);
49  return I;
50}
51
52VNInfo *LiveInterval::createDeadDef(SlotIndex Def,
53                                    VNInfo::Allocator &VNInfoAllocator) {
54  assert(!Def.isDead() && "Cannot define a value at the dead slot");
55  iterator I = find(Def);
56  if (I == end()) {
57    VNInfo *VNI = getNextValue(Def, VNInfoAllocator);
58    ranges.push_back(LiveRange(Def, Def.getDeadSlot(), VNI));
59    return VNI;
60  }
61  if (SlotIndex::isSameInstr(Def, I->start)) {
62    assert(I->valno->def == I->start && "Inconsistent existing value def");
63
64    // It is possible to have both normal and early-clobber defs of the same
65    // register on an instruction. It doesn't make a lot of sense, but it is
66    // possible to specify in inline assembly.
67    //
68    // Just convert everything to early-clobber.
69    Def = std::min(Def, I->start);
70    if (Def != I->start)
71      I->start = I->valno->def = Def;
72    return I->valno;
73  }
74  assert(SlotIndex::isEarlierInstr(Def, I->start) && "Already live at def");
75  VNInfo *VNI = getNextValue(Def, VNInfoAllocator);
76  ranges.insert(I, LiveRange(Def, Def.getDeadSlot(), VNI));
77  return VNI;
78}
79
80// overlaps - Return true if the intersection of the two live intervals is
81// not empty.
82//
83// An example for overlaps():
84//
85// 0: A = ...
86// 4: B = ...
87// 8: C = A + B ;; last use of A
88//
89// The live intervals should look like:
90//
91// A = [3, 11)
92// B = [7, x)
93// C = [11, y)
94//
95// A->overlaps(C) should return false since we want to be able to join
96// A and C.
97//
98bool LiveInterval::overlapsFrom(const LiveInterval& other,
99                                const_iterator StartPos) const {
100  assert(!empty() && "empty interval");
101  const_iterator i = begin();
102  const_iterator ie = end();
103  const_iterator j = StartPos;
104  const_iterator je = other.end();
105
106  assert((StartPos->start <= i->start || StartPos == other.begin()) &&
107         StartPos != other.end() && "Bogus start position hint!");
108
109  if (i->start < j->start) {
110    i = std::upper_bound(i, ie, j->start);
111    if (i != ranges.begin()) --i;
112  } else if (j->start < i->start) {
113    ++StartPos;
114    if (StartPos != other.end() && StartPos->start <= i->start) {
115      assert(StartPos < other.end() && i < end());
116      j = std::upper_bound(j, je, i->start);
117      if (j != other.ranges.begin()) --j;
118    }
119  } else {
120    return true;
121  }
122
123  if (j == je) return false;
124
125  while (i != ie) {
126    if (i->start > j->start) {
127      std::swap(i, j);
128      std::swap(ie, je);
129    }
130
131    if (i->end > j->start)
132      return true;
133    ++i;
134  }
135
136  return false;
137}
138
139bool LiveInterval::overlaps(const LiveInterval &Other,
140                            const CoalescerPair &CP,
141                            const SlotIndexes &Indexes) const {
142  assert(!empty() && "empty interval");
143  if (Other.empty())
144    return false;
145
146  // Use binary searches to find initial positions.
147  const_iterator I = find(Other.beginIndex());
148  const_iterator IE = end();
149  if (I == IE)
150    return false;
151  const_iterator J = Other.find(I->start);
152  const_iterator JE = Other.end();
153  if (J == JE)
154    return false;
155
156  for (;;) {
157    // J has just been advanced to satisfy:
158    assert(J->end >= I->start);
159    // Check for an overlap.
160    if (J->start < I->end) {
161      // I and J are overlapping. Find the later start.
162      SlotIndex Def = std::max(I->start, J->start);
163      // Allow the overlap if Def is a coalescable copy.
164      if (Def.isBlock() ||
165          !CP.isCoalescable(Indexes.getInstructionFromIndex(Def)))
166        return true;
167    }
168    // Advance the iterator that ends first to check for more overlaps.
169    if (J->end > I->end) {
170      std::swap(I, J);
171      std::swap(IE, JE);
172    }
173    // Advance J until J->end >= I->start.
174    do
175      if (++J == JE)
176        return false;
177    while (J->end < I->start);
178  }
179}
180
181/// overlaps - Return true if the live interval overlaps a range specified
182/// by [Start, End).
183bool LiveInterval::overlaps(SlotIndex Start, SlotIndex End) const {
184  assert(Start < End && "Invalid range");
185  const_iterator I = std::lower_bound(begin(), end(), End);
186  return I != begin() && (--I)->end > Start;
187}
188
189
190/// ValNo is dead, remove it.  If it is the largest value number, just nuke it
191/// (and any other deleted values neighboring it), otherwise mark it as ~1U so
192/// it can be nuked later.
193void LiveInterval::markValNoForDeletion(VNInfo *ValNo) {
194  if (ValNo->id == getNumValNums()-1) {
195    do {
196      valnos.pop_back();
197    } while (!valnos.empty() && valnos.back()->isUnused());
198  } else {
199    ValNo->markUnused();
200  }
201}
202
203/// RenumberValues - Renumber all values in order of appearance and delete the
204/// remaining unused values.
205void LiveInterval::RenumberValues() {
206  SmallPtrSet<VNInfo*, 8> Seen;
207  valnos.clear();
208  for (const_iterator I = begin(), E = end(); I != E; ++I) {
209    VNInfo *VNI = I->valno;
210    if (!Seen.insert(VNI))
211      continue;
212    assert(!VNI->isUnused() && "Unused valno used by live range");
213    VNI->id = (unsigned)valnos.size();
214    valnos.push_back(VNI);
215  }
216}
217
218/// extendIntervalEndTo - This method is used when we want to extend the range
219/// specified by I to end at the specified endpoint.  To do this, we should
220/// merge and eliminate all ranges that this will overlap with.  The iterator is
221/// not invalidated.
222void LiveInterval::extendIntervalEndTo(Ranges::iterator I, SlotIndex NewEnd) {
223  assert(I != ranges.end() && "Not a valid interval!");
224  VNInfo *ValNo = I->valno;
225
226  // Search for the first interval that we can't merge with.
227  Ranges::iterator MergeTo = llvm::next(I);
228  for (; MergeTo != ranges.end() && NewEnd >= MergeTo->end; ++MergeTo) {
229    assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
230  }
231
232  // If NewEnd was in the middle of an interval, make sure to get its endpoint.
233  I->end = std::max(NewEnd, prior(MergeTo)->end);
234
235  // If the newly formed range now touches the range after it and if they have
236  // the same value number, merge the two ranges into one range.
237  if (MergeTo != ranges.end() && MergeTo->start <= I->end &&
238      MergeTo->valno == ValNo) {
239    I->end = MergeTo->end;
240    ++MergeTo;
241  }
242
243  // Erase any dead ranges.
244  ranges.erase(llvm::next(I), MergeTo);
245}
246
247
248/// extendIntervalStartTo - This method is used when we want to extend the range
249/// specified by I to start at the specified endpoint.  To do this, we should
250/// merge and eliminate all ranges that this will overlap with.
251LiveInterval::Ranges::iterator
252LiveInterval::extendIntervalStartTo(Ranges::iterator I, SlotIndex NewStart) {
253  assert(I != ranges.end() && "Not a valid interval!");
254  VNInfo *ValNo = I->valno;
255
256  // Search for the first interval that we can't merge with.
257  Ranges::iterator MergeTo = I;
258  do {
259    if (MergeTo == ranges.begin()) {
260      I->start = NewStart;
261      ranges.erase(MergeTo, I);
262      return I;
263    }
264    assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
265    --MergeTo;
266  } while (NewStart <= MergeTo->start);
267
268  // If we start in the middle of another interval, just delete a range and
269  // extend that interval.
270  if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) {
271    MergeTo->end = I->end;
272  } else {
273    // Otherwise, extend the interval right after.
274    ++MergeTo;
275    MergeTo->start = NewStart;
276    MergeTo->end = I->end;
277  }
278
279  ranges.erase(llvm::next(MergeTo), llvm::next(I));
280  return MergeTo;
281}
282
283LiveInterval::iterator
284LiveInterval::addRangeFrom(LiveRange LR, iterator From) {
285  SlotIndex Start = LR.start, End = LR.end;
286  iterator it = std::upper_bound(From, ranges.end(), Start);
287
288  // If the inserted interval starts in the middle or right at the end of
289  // another interval, just extend that interval to contain the range of LR.
290  if (it != ranges.begin()) {
291    iterator B = prior(it);
292    if (LR.valno == B->valno) {
293      if (B->start <= Start && B->end >= Start) {
294        extendIntervalEndTo(B, End);
295        return B;
296      }
297    } else {
298      // Check to make sure that we are not overlapping two live ranges with
299      // different valno's.
300      assert(B->end <= Start &&
301             "Cannot overlap two LiveRanges with differing ValID's"
302             " (did you def the same reg twice in a MachineInstr?)");
303    }
304  }
305
306  // Otherwise, if this range ends in the middle of, or right next to, another
307  // interval, merge it into that interval.
308  if (it != ranges.end()) {
309    if (LR.valno == it->valno) {
310      if (it->start <= End) {
311        it = extendIntervalStartTo(it, Start);
312
313        // If LR is a complete superset of an interval, we may need to grow its
314        // endpoint as well.
315        if (End > it->end)
316          extendIntervalEndTo(it, End);
317        return it;
318      }
319    } else {
320      // Check to make sure that we are not overlapping two live ranges with
321      // different valno's.
322      assert(it->start >= End &&
323             "Cannot overlap two LiveRanges with differing ValID's");
324    }
325  }
326
327  // Otherwise, this is just a new range that doesn't interact with anything.
328  // Insert it.
329  return ranges.insert(it, LR);
330}
331
332/// extendInBlock - If this interval is live before Kill in the basic
333/// block that starts at StartIdx, extend it to be live up to Kill and return
334/// the value. If there is no live range before Kill, return NULL.
335VNInfo *LiveInterval::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) {
336  if (empty())
337    return 0;
338  iterator I = std::upper_bound(begin(), end(), Kill.getPrevSlot());
339  if (I == begin())
340    return 0;
341  --I;
342  if (I->end <= StartIdx)
343    return 0;
344  if (I->end < Kill)
345    extendIntervalEndTo(I, Kill);
346  return I->valno;
347}
348
349/// removeRange - Remove the specified range from this interval.  Note that
350/// the range must be in a single LiveRange in its entirety.
351void LiveInterval::removeRange(SlotIndex Start, SlotIndex End,
352                               bool RemoveDeadValNo) {
353  // Find the LiveRange containing this span.
354  Ranges::iterator I = find(Start);
355  assert(I != ranges.end() && "Range is not in interval!");
356  assert(I->containsRange(Start, End) && "Range is not entirely in interval!");
357
358  // If the span we are removing is at the start of the LiveRange, adjust it.
359  VNInfo *ValNo = I->valno;
360  if (I->start == Start) {
361    if (I->end == End) {
362      if (RemoveDeadValNo) {
363        // Check if val# is dead.
364        bool isDead = true;
365        for (const_iterator II = begin(), EE = end(); II != EE; ++II)
366          if (II != I && II->valno == ValNo) {
367            isDead = false;
368            break;
369          }
370        if (isDead) {
371          // Now that ValNo is dead, remove it.
372          markValNoForDeletion(ValNo);
373        }
374      }
375
376      ranges.erase(I);  // Removed the whole LiveRange.
377    } else
378      I->start = End;
379    return;
380  }
381
382  // Otherwise if the span we are removing is at the end of the LiveRange,
383  // adjust the other way.
384  if (I->end == End) {
385    I->end = Start;
386    return;
387  }
388
389  // Otherwise, we are splitting the LiveRange into two pieces.
390  SlotIndex OldEnd = I->end;
391  I->end = Start;   // Trim the old interval.
392
393  // Insert the new one.
394  ranges.insert(llvm::next(I), LiveRange(End, OldEnd, ValNo));
395}
396
397/// removeValNo - Remove all the ranges defined by the specified value#.
398/// Also remove the value# from value# list.
399void LiveInterval::removeValNo(VNInfo *ValNo) {
400  if (empty()) return;
401  Ranges::iterator I = ranges.end();
402  Ranges::iterator E = ranges.begin();
403  do {
404    --I;
405    if (I->valno == ValNo)
406      ranges.erase(I);
407  } while (I != E);
408  // Now that ValNo is dead, remove it.
409  markValNoForDeletion(ValNo);
410}
411
412/// join - Join two live intervals (this, and other) together.  This applies
413/// mappings to the value numbers in the LHS/RHS intervals as specified.  If
414/// the intervals are not joinable, this aborts.
415void LiveInterval::join(LiveInterval &Other,
416                        const int *LHSValNoAssignments,
417                        const int *RHSValNoAssignments,
418                        SmallVectorImpl<VNInfo *> &NewVNInfo) {
419  verify();
420
421  // Determine if any of our live range values are mapped.  This is uncommon, so
422  // we want to avoid the interval scan if not.
423  bool MustMapCurValNos = false;
424  unsigned NumVals = getNumValNums();
425  unsigned NumNewVals = NewVNInfo.size();
426  for (unsigned i = 0; i != NumVals; ++i) {
427    unsigned LHSValID = LHSValNoAssignments[i];
428    if (i != LHSValID ||
429        (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) {
430      MustMapCurValNos = true;
431      break;
432    }
433  }
434
435  // If we have to apply a mapping to our base interval assignment, rewrite it
436  // now.
437  if (MustMapCurValNos && !empty()) {
438    // Map the first live range.
439
440    iterator OutIt = begin();
441    OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]];
442    for (iterator I = llvm::next(OutIt), E = end(); I != E; ++I) {
443      VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]];
444      assert(nextValNo != 0 && "Huh?");
445
446      // If this live range has the same value # as its immediate predecessor,
447      // and if they are neighbors, remove one LiveRange.  This happens when we
448      // have [0,4:0)[4,7:1) and map 0/1 onto the same value #.
449      if (OutIt->valno == nextValNo && OutIt->end == I->start) {
450        OutIt->end = I->end;
451      } else {
452        // Didn't merge. Move OutIt to the next interval,
453        ++OutIt;
454        OutIt->valno = nextValNo;
455        if (OutIt != I) {
456          OutIt->start = I->start;
457          OutIt->end = I->end;
458        }
459      }
460    }
461    // If we merge some live ranges, chop off the end.
462    ++OutIt;
463    ranges.erase(OutIt, end());
464  }
465
466  // Rewrite Other values before changing the VNInfo ids.
467  // This can leave Other in an invalid state because we're not coalescing
468  // touching segments that now have identical values. That's OK since Other is
469  // not supposed to be valid after calling join();
470  for (iterator I = Other.begin(), E = Other.end(); I != E; ++I)
471    I->valno = NewVNInfo[RHSValNoAssignments[I->valno->id]];
472
473  // Update val# info. Renumber them and make sure they all belong to this
474  // LiveInterval now. Also remove dead val#'s.
475  unsigned NumValNos = 0;
476  for (unsigned i = 0; i < NumNewVals; ++i) {
477    VNInfo *VNI = NewVNInfo[i];
478    if (VNI) {
479      if (NumValNos >= NumVals)
480        valnos.push_back(VNI);
481      else
482        valnos[NumValNos] = VNI;
483      VNI->id = NumValNos++;  // Renumber val#.
484    }
485  }
486  if (NumNewVals < NumVals)
487    valnos.resize(NumNewVals);  // shrinkify
488
489  // Okay, now insert the RHS live ranges into the LHS.
490  LiveRangeUpdater Updater(this);
491  for (iterator I = Other.begin(), E = Other.end(); I != E; ++I)
492    Updater.add(*I);
493}
494
495/// MergeRangesInAsValue - Merge all of the intervals in RHS into this live
496/// interval as the specified value number.  The LiveRanges in RHS are
497/// allowed to overlap with LiveRanges in the current interval, but only if
498/// the overlapping LiveRanges have the specified value number.
499void LiveInterval::MergeRangesInAsValue(const LiveInterval &RHS,
500                                        VNInfo *LHSValNo) {
501  LiveRangeUpdater Updater(this);
502  for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I)
503    Updater.add(I->start, I->end, LHSValNo);
504}
505
506/// MergeValueInAsValue - Merge all of the live ranges of a specific val#
507/// in RHS into this live interval as the specified value number.
508/// The LiveRanges in RHS are allowed to overlap with LiveRanges in the
509/// current interval, it will replace the value numbers of the overlaped
510/// live ranges with the specified value number.
511void LiveInterval::MergeValueInAsValue(const LiveInterval &RHS,
512                                       const VNInfo *RHSValNo,
513                                       VNInfo *LHSValNo) {
514  LiveRangeUpdater Updater(this);
515  for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I)
516    if (I->valno == RHSValNo)
517      Updater.add(I->start, I->end, LHSValNo);
518}
519
520/// MergeValueNumberInto - This method is called when two value nubmers
521/// are found to be equivalent.  This eliminates V1, replacing all
522/// LiveRanges with the V1 value number with the V2 value number.  This can
523/// cause merging of V1/V2 values numbers and compaction of the value space.
524VNInfo* LiveInterval::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) {
525  assert(V1 != V2 && "Identical value#'s are always equivalent!");
526
527  // This code actually merges the (numerically) larger value number into the
528  // smaller value number, which is likely to allow us to compactify the value
529  // space.  The only thing we have to be careful of is to preserve the
530  // instruction that defines the result value.
531
532  // Make sure V2 is smaller than V1.
533  if (V1->id < V2->id) {
534    V1->copyFrom(*V2);
535    std::swap(V1, V2);
536  }
537
538  // Merge V1 live ranges into V2.
539  for (iterator I = begin(); I != end(); ) {
540    iterator LR = I++;
541    if (LR->valno != V1) continue;  // Not a V1 LiveRange.
542
543    // Okay, we found a V1 live range.  If it had a previous, touching, V2 live
544    // range, extend it.
545    if (LR != begin()) {
546      iterator Prev = LR-1;
547      if (Prev->valno == V2 && Prev->end == LR->start) {
548        Prev->end = LR->end;
549
550        // Erase this live-range.
551        ranges.erase(LR);
552        I = Prev+1;
553        LR = Prev;
554      }
555    }
556
557    // Okay, now we have a V1 or V2 live range that is maximally merged forward.
558    // Ensure that it is a V2 live-range.
559    LR->valno = V2;
560
561    // If we can merge it into later V2 live ranges, do so now.  We ignore any
562    // following V1 live ranges, as they will be merged in subsequent iterations
563    // of the loop.
564    if (I != end()) {
565      if (I->start == LR->end && I->valno == V2) {
566        LR->end = I->end;
567        ranges.erase(I);
568        I = LR+1;
569      }
570    }
571  }
572
573  // Now that V1 is dead, remove it.
574  markValNoForDeletion(V1);
575
576  return V2;
577}
578
579unsigned LiveInterval::getSize() const {
580  unsigned Sum = 0;
581  for (const_iterator I = begin(), E = end(); I != E; ++I)
582    Sum += I->start.distance(I->end);
583  return Sum;
584}
585
586raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange &LR) {
587  return os << '[' << LR.start << ',' << LR.end << ':' << LR.valno->id << ")";
588}
589
590#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
591void LiveRange::dump() const {
592  dbgs() << *this << "\n";
593}
594#endif
595
596void LiveInterval::print(raw_ostream &OS) const {
597  if (empty())
598    OS << "EMPTY";
599  else {
600    for (LiveInterval::Ranges::const_iterator I = ranges.begin(),
601           E = ranges.end(); I != E; ++I) {
602      OS << *I;
603      assert(I->valno == getValNumInfo(I->valno->id) && "Bad VNInfo");
604    }
605  }
606
607  // Print value number info.
608  if (getNumValNums()) {
609    OS << "  ";
610    unsigned vnum = 0;
611    for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e;
612         ++i, ++vnum) {
613      const VNInfo *vni = *i;
614      if (vnum) OS << " ";
615      OS << vnum << "@";
616      if (vni->isUnused()) {
617        OS << "x";
618      } else {
619        OS << vni->def;
620        if (vni->isPHIDef())
621          OS << "-phi";
622      }
623    }
624  }
625}
626
627#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
628void LiveInterval::dump() const {
629  dbgs() << *this << "\n";
630}
631#endif
632
633#ifndef NDEBUG
634void LiveInterval::verify() const {
635  for (const_iterator I = begin(), E = end(); I != E; ++I) {
636    assert(I->start.isValid());
637    assert(I->end.isValid());
638    assert(I->start < I->end);
639    assert(I->valno != 0);
640    assert(I->valno == valnos[I->valno->id]);
641    if (llvm::next(I) != E) {
642      assert(I->end <= llvm::next(I)->start);
643      if (I->end == llvm::next(I)->start)
644        assert(I->valno != llvm::next(I)->valno);
645    }
646  }
647}
648#endif
649
650
651void LiveRange::print(raw_ostream &os) const {
652  os << *this;
653}
654
655//===----------------------------------------------------------------------===//
656//                           LiveRangeUpdater class
657//===----------------------------------------------------------------------===//
658//
659// The LiveRangeUpdater class always maintains these invariants:
660//
661// - When LastStart is invalid, Spills is empty and the iterators are invalid.
662//   This is the initial state, and the state created by flush().
663//   In this state, isDirty() returns false.
664//
665// Otherwise, segments are kept in three separate areas:
666//
667// 1. [begin; WriteI) at the front of LI.
668// 2. [ReadI; end) at the back of LI.
669// 3. Spills.
670//
671// - LI.begin() <= WriteI <= ReadI <= LI.end().
672// - Segments in all three areas are fully ordered and coalesced.
673// - Segments in area 1 precede and can't coalesce with segments in area 2.
674// - Segments in Spills precede and can't coalesce with segments in area 2.
675// - No coalescing is possible between segments in Spills and segments in area
676//   1, and there are no overlapping segments.
677//
678// The segments in Spills are not ordered with respect to the segments in area
679// 1. They need to be merged.
680//
681// When they exist, Spills.back().start <= LastStart,
682//                 and WriteI[-1].start <= LastStart.
683
684void LiveRangeUpdater::print(raw_ostream &OS) const {
685  if (!isDirty()) {
686    if (LI)
687      OS << "Clean " << PrintReg(LI->reg) << " updater: " << *LI << '\n';
688    else
689      OS << "Null updater.\n";
690    return;
691  }
692  assert(LI && "Can't have null LI in dirty updater.");
693  OS << PrintReg(LI->reg) << " updater with gap = " << (ReadI - WriteI)
694     << ", last start = " << LastStart
695     << ":\n  Area 1:";
696  for (LiveInterval::const_iterator I = LI->begin(); I != WriteI; ++I)
697    OS << ' ' << *I;
698  OS << "\n  Spills:";
699  for (unsigned I = 0, E = Spills.size(); I != E; ++I)
700    OS << ' ' << Spills[I];
701  OS << "\n  Area 2:";
702  for (LiveInterval::const_iterator I = ReadI, E = LI->end(); I != E; ++I)
703    OS << ' ' << *I;
704  OS << '\n';
705}
706
707void LiveRangeUpdater::dump() const
708{
709  print(errs());
710}
711
712// Determine if A and B should be coalesced.
713static inline bool coalescable(const LiveRange &A, const LiveRange &B) {
714  assert(A.start <= B.start && "Unordered live ranges.");
715  if (A.end == B.start)
716    return A.valno == B.valno;
717  if (A.end < B.start)
718    return false;
719  assert(A.valno == B.valno && "Cannot overlap different values");
720  return true;
721}
722
723void LiveRangeUpdater::add(LiveRange Seg) {
724  assert(LI && "Cannot add to a null destination");
725
726  // Flush the state if Start moves backwards.
727  if (!LastStart.isValid() || LastStart > Seg.start) {
728    if (isDirty())
729      flush();
730    // This brings us to an uninitialized state. Reinitialize.
731    assert(Spills.empty() && "Leftover spilled segments");
732    WriteI = ReadI = LI->begin();
733  }
734
735  // Remember start for next time.
736  LastStart = Seg.start;
737
738  // Advance ReadI until it ends after Seg.start.
739  LiveInterval::iterator E = LI->end();
740  if (ReadI != E && ReadI->end <= Seg.start) {
741    // First try to close the gap between WriteI and ReadI with spills.
742    if (ReadI != WriteI)
743      mergeSpills();
744    // Then advance ReadI.
745    if (ReadI == WriteI)
746      ReadI = WriteI = LI->find(Seg.start);
747    else
748      while (ReadI != E && ReadI->end <= Seg.start)
749        *WriteI++ = *ReadI++;
750  }
751
752  assert(ReadI == E || ReadI->end > Seg.start);
753
754  // Check if the ReadI segment begins early.
755  if (ReadI != E && ReadI->start <= Seg.start) {
756    assert(ReadI->valno == Seg.valno && "Cannot overlap different values");
757    // Bail if Seg is completely contained in ReadI.
758    if (ReadI->end >= Seg.end)
759      return;
760    // Coalesce into Seg.
761    Seg.start = ReadI->start;
762    ++ReadI;
763  }
764
765  // Coalesce as much as possible from ReadI into Seg.
766  while (ReadI != E && coalescable(Seg, *ReadI)) {
767    Seg.end = std::max(Seg.end, ReadI->end);
768    ++ReadI;
769  }
770
771  // Try coalescing Spills.back() into Seg.
772  if (!Spills.empty() && coalescable(Spills.back(), Seg)) {
773    Seg.start = Spills.back().start;
774    Seg.end = std::max(Spills.back().end, Seg.end);
775    Spills.pop_back();
776  }
777
778  // Try coalescing Seg into WriteI[-1].
779  if (WriteI != LI->begin() && coalescable(WriteI[-1], Seg)) {
780    WriteI[-1].end = std::max(WriteI[-1].end, Seg.end);
781    return;
782  }
783
784  // Seg doesn't coalesce with anything, and needs to be inserted somewhere.
785  if (WriteI != ReadI) {
786    *WriteI++ = Seg;
787    return;
788  }
789
790  // Finally, append to LI or Spills.
791  if (WriteI == E) {
792    LI->ranges.push_back(Seg);
793    WriteI = ReadI = LI->ranges.end();
794  } else
795    Spills.push_back(Seg);
796}
797
798// Merge as many spilled segments as possible into the gap between WriteI
799// and ReadI. Advance WriteI to reflect the inserted instructions.
800void LiveRangeUpdater::mergeSpills() {
801  // Perform a backwards merge of Spills and [SpillI;WriteI).
802  size_t GapSize = ReadI - WriteI;
803  size_t NumMoved = std::min(Spills.size(), GapSize);
804  LiveInterval::iterator Src = WriteI;
805  LiveInterval::iterator Dst = Src + NumMoved;
806  LiveInterval::iterator SpillSrc = Spills.end();
807  LiveInterval::iterator B = LI->begin();
808
809  // This is the new WriteI position after merging spills.
810  WriteI = Dst;
811
812  // Now merge Src and Spills backwards.
813  while (Src != Dst) {
814    if (Src != B && Src[-1].start > SpillSrc[-1].start)
815      *--Dst = *--Src;
816    else
817      *--Dst = *--SpillSrc;
818  }
819  assert(NumMoved == size_t(Spills.end() - SpillSrc));
820  Spills.erase(SpillSrc, Spills.end());
821}
822
823void LiveRangeUpdater::flush() {
824  if (!isDirty())
825    return;
826  // Clear the dirty state.
827  LastStart = SlotIndex();
828
829  assert(LI && "Cannot add to a null destination");
830
831  // Nothing to merge?
832  if (Spills.empty()) {
833    LI->ranges.erase(WriteI, ReadI);
834    LI->verify();
835    return;
836  }
837
838  // Resize the WriteI - ReadI gap to match Spills.
839  size_t GapSize = ReadI - WriteI;
840  if (GapSize < Spills.size()) {
841    // The gap is too small. Make some room.
842    size_t WritePos = WriteI - LI->begin();
843    LI->ranges.insert(ReadI, Spills.size() - GapSize, LiveRange());
844    // This also invalidated ReadI, but it is recomputed below.
845    WriteI = LI->ranges.begin() + WritePos;
846  } else {
847    // Shrink the gap if necessary.
848    LI->ranges.erase(WriteI + Spills.size(), ReadI);
849  }
850  ReadI = WriteI + Spills.size();
851  mergeSpills();
852  LI->verify();
853}
854
855unsigned ConnectedVNInfoEqClasses::Classify(const LiveInterval *LI) {
856  // Create initial equivalence classes.
857  EqClass.clear();
858  EqClass.grow(LI->getNumValNums());
859
860  const VNInfo *used = 0, *unused = 0;
861
862  // Determine connections.
863  for (LiveInterval::const_vni_iterator I = LI->vni_begin(), E = LI->vni_end();
864       I != E; ++I) {
865    const VNInfo *VNI = *I;
866    // Group all unused values into one class.
867    if (VNI->isUnused()) {
868      if (unused)
869        EqClass.join(unused->id, VNI->id);
870      unused = VNI;
871      continue;
872    }
873    used = VNI;
874    if (VNI->isPHIDef()) {
875      const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
876      assert(MBB && "Phi-def has no defining MBB");
877      // Connect to values live out of predecessors.
878      for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
879           PE = MBB->pred_end(); PI != PE; ++PI)
880        if (const VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI)))
881          EqClass.join(VNI->id, PVNI->id);
882    } else {
883      // Normal value defined by an instruction. Check for two-addr redef.
884      // FIXME: This could be coincidental. Should we really check for a tied
885      // operand constraint?
886      // Note that VNI->def may be a use slot for an early clobber def.
887      if (const VNInfo *UVNI = LI->getVNInfoBefore(VNI->def))
888        EqClass.join(VNI->id, UVNI->id);
889    }
890  }
891
892  // Lump all the unused values in with the last used value.
893  if (used && unused)
894    EqClass.join(used->id, unused->id);
895
896  EqClass.compress();
897  return EqClass.getNumClasses();
898}
899
900void ConnectedVNInfoEqClasses::Distribute(LiveInterval *LIV[],
901                                          MachineRegisterInfo &MRI) {
902  assert(LIV[0] && "LIV[0] must be set");
903  LiveInterval &LI = *LIV[0];
904
905  // Rewrite instructions.
906  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg),
907       RE = MRI.reg_end(); RI != RE;) {
908    MachineOperand &MO = RI.getOperand();
909    MachineInstr *MI = MO.getParent();
910    ++RI;
911    // DBG_VALUE instructions don't have slot indexes, so get the index of the
912    // instruction before them.
913    // Normally, DBG_VALUE instructions are removed before this function is
914    // called, but it is not a requirement.
915    SlotIndex Idx;
916    if (MI->isDebugValue())
917      Idx = LIS.getSlotIndexes()->getIndexBefore(MI);
918    else
919      Idx = LIS.getInstructionIndex(MI);
920    LiveRangeQuery LRQ(LI, Idx);
921    const VNInfo *VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined();
922    // In the case of an <undef> use that isn't tied to any def, VNI will be
923    // NULL. If the use is tied to a def, VNI will be the defined value.
924    if (!VNI)
925      continue;
926    MO.setReg(LIV[getEqClass(VNI)]->reg);
927  }
928
929  // Move runs to new intervals.
930  LiveInterval::iterator J = LI.begin(), E = LI.end();
931  while (J != E && EqClass[J->valno->id] == 0)
932    ++J;
933  for (LiveInterval::iterator I = J; I != E; ++I) {
934    if (unsigned eq = EqClass[I->valno->id]) {
935      assert((LIV[eq]->empty() || LIV[eq]->expiredAt(I->start)) &&
936             "New intervals should be empty");
937      LIV[eq]->ranges.push_back(*I);
938    } else
939      *J++ = *I;
940  }
941  LI.ranges.erase(J, E);
942
943  // Transfer VNInfos to their new owners and renumber them.
944  unsigned j = 0, e = LI.getNumValNums();
945  while (j != e && EqClass[j] == 0)
946    ++j;
947  for (unsigned i = j; i != e; ++i) {
948    VNInfo *VNI = LI.getValNumInfo(i);
949    if (unsigned eq = EqClass[i]) {
950      VNI->id = LIV[eq]->getNumValNums();
951      LIV[eq]->valnos.push_back(VNI);
952    } else {
953      VNI->id = j;
954      LI.valnos[j++] = VNI;
955    }
956  }
957  LI.valnos.resize(j);
958}
959