LiveInterval.cpp revision 1920156982643a1c5c28af6f4684580b516eb597
1//===-- LiveInterval.cpp - Live Interval Representation -------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the LiveRange and LiveInterval classes. Given some 11// numbering of each the machine instructions an interval [i, j) is said to be a 12// live interval for register v if there is no instruction with number j' > j 13// such that v is live at j' and there is no instruction with number i' < i such 14// that v is live at i'. In this implementation intervals can have holes, 15// i.e. an interval might look like [1,20), [50,65), [1000,1001). Each 16// individual range is represented as an instance of LiveRange, and the whole 17// interval is represented as an instance of LiveInterval. 18// 19//===----------------------------------------------------------------------===// 20 21#include "llvm/CodeGen/LiveInterval.h" 22#include "RegisterCoalescer.h" 23#include "llvm/ADT/DenseMap.h" 24#include "llvm/ADT/STLExtras.h" 25#include "llvm/ADT/SmallSet.h" 26#include "llvm/CodeGen/LiveIntervalAnalysis.h" 27#include "llvm/CodeGen/MachineRegisterInfo.h" 28#include "llvm/Support/Debug.h" 29#include "llvm/Support/raw_ostream.h" 30#include "llvm/Target/TargetRegisterInfo.h" 31#include <algorithm> 32using namespace llvm; 33 34LiveInterval::iterator LiveInterval::find(SlotIndex Pos) { 35 // This algorithm is basically std::upper_bound. 36 // Unfortunately, std::upper_bound cannot be used with mixed types until we 37 // adopt C++0x. Many libraries can do it, but not all. 38 if (empty() || Pos >= endIndex()) 39 return end(); 40 iterator I = begin(); 41 size_t Len = ranges.size(); 42 do { 43 size_t Mid = Len >> 1; 44 if (Pos < I[Mid].end) 45 Len = Mid; 46 else 47 I += Mid + 1, Len -= Mid + 1; 48 } while (Len); 49 return I; 50} 51 52VNInfo *LiveInterval::createDeadDef(SlotIndex Def, 53 VNInfo::Allocator &VNInfoAllocator) { 54 assert(!Def.isDead() && "Cannot define a value at the dead slot"); 55 iterator I = find(Def); 56 if (I == end()) { 57 VNInfo *VNI = getNextValue(Def, VNInfoAllocator); 58 ranges.push_back(LiveRange(Def, Def.getDeadSlot(), VNI)); 59 return VNI; 60 } 61 if (SlotIndex::isSameInstr(Def, I->start)) { 62 assert(I->valno->def == I->start && "Inconsistent existing value def"); 63 64 // It is possible to have both normal and early-clobber defs of the same 65 // register on an instruction. It doesn't make a lot of sense, but it is 66 // possible to specify in inline assembly. 67 // 68 // Just convert everything to early-clobber. 69 Def = std::min(Def, I->start); 70 if (Def != I->start) 71 I->start = I->valno->def = Def; 72 return I->valno; 73 } 74 assert(SlotIndex::isEarlierInstr(Def, I->start) && "Already live at def"); 75 VNInfo *VNI = getNextValue(Def, VNInfoAllocator); 76 ranges.insert(I, LiveRange(Def, Def.getDeadSlot(), VNI)); 77 return VNI; 78} 79 80// overlaps - Return true if the intersection of the two live intervals is 81// not empty. 82// 83// An example for overlaps(): 84// 85// 0: A = ... 86// 4: B = ... 87// 8: C = A + B ;; last use of A 88// 89// The live intervals should look like: 90// 91// A = [3, 11) 92// B = [7, x) 93// C = [11, y) 94// 95// A->overlaps(C) should return false since we want to be able to join 96// A and C. 97// 98bool LiveInterval::overlapsFrom(const LiveInterval& other, 99 const_iterator StartPos) const { 100 assert(!empty() && "empty interval"); 101 const_iterator i = begin(); 102 const_iterator ie = end(); 103 const_iterator j = StartPos; 104 const_iterator je = other.end(); 105 106 assert((StartPos->start <= i->start || StartPos == other.begin()) && 107 StartPos != other.end() && "Bogus start position hint!"); 108 109 if (i->start < j->start) { 110 i = std::upper_bound(i, ie, j->start); 111 if (i != ranges.begin()) --i; 112 } else if (j->start < i->start) { 113 ++StartPos; 114 if (StartPos != other.end() && StartPos->start <= i->start) { 115 assert(StartPos < other.end() && i < end()); 116 j = std::upper_bound(j, je, i->start); 117 if (j != other.ranges.begin()) --j; 118 } 119 } else { 120 return true; 121 } 122 123 if (j == je) return false; 124 125 while (i != ie) { 126 if (i->start > j->start) { 127 std::swap(i, j); 128 std::swap(ie, je); 129 } 130 131 if (i->end > j->start) 132 return true; 133 ++i; 134 } 135 136 return false; 137} 138 139bool LiveInterval::overlaps(const LiveInterval &Other, 140 const CoalescerPair &CP, 141 const SlotIndexes &Indexes) const { 142 assert(!empty() && "empty interval"); 143 if (Other.empty()) 144 return false; 145 146 // Use binary searches to find initial positions. 147 const_iterator I = find(Other.beginIndex()); 148 const_iterator IE = end(); 149 if (I == IE) 150 return false; 151 const_iterator J = Other.find(I->start); 152 const_iterator JE = Other.end(); 153 if (J == JE) 154 return false; 155 156 for (;;) { 157 // J has just been advanced to satisfy: 158 assert(J->end >= I->start); 159 // Check for an overlap. 160 if (J->start < I->end) { 161 // I and J are overlapping. Find the later start. 162 SlotIndex Def = std::max(I->start, J->start); 163 // Allow the overlap if Def is a coalescable copy. 164 if (Def.isBlock() || 165 !CP.isCoalescable(Indexes.getInstructionFromIndex(Def))) 166 return true; 167 } 168 // Advance the iterator that ends first to check for more overlaps. 169 if (J->end > I->end) { 170 std::swap(I, J); 171 std::swap(IE, JE); 172 } 173 // Advance J until J->end >= I->start. 174 do 175 if (++J == JE) 176 return false; 177 while (J->end < I->start); 178 } 179} 180 181/// overlaps - Return true if the live interval overlaps a range specified 182/// by [Start, End). 183bool LiveInterval::overlaps(SlotIndex Start, SlotIndex End) const { 184 assert(Start < End && "Invalid range"); 185 const_iterator I = std::lower_bound(begin(), end(), End); 186 return I != begin() && (--I)->end > Start; 187} 188 189 190/// ValNo is dead, remove it. If it is the largest value number, just nuke it 191/// (and any other deleted values neighboring it), otherwise mark it as ~1U so 192/// it can be nuked later. 193void LiveInterval::markValNoForDeletion(VNInfo *ValNo) { 194 if (ValNo->id == getNumValNums()-1) { 195 do { 196 valnos.pop_back(); 197 } while (!valnos.empty() && valnos.back()->isUnused()); 198 } else { 199 ValNo->markUnused(); 200 } 201} 202 203/// RenumberValues - Renumber all values in order of appearance and delete the 204/// remaining unused values. 205void LiveInterval::RenumberValues() { 206 SmallPtrSet<VNInfo*, 8> Seen; 207 valnos.clear(); 208 for (const_iterator I = begin(), E = end(); I != E; ++I) { 209 VNInfo *VNI = I->valno; 210 if (!Seen.insert(VNI)) 211 continue; 212 assert(!VNI->isUnused() && "Unused valno used by live range"); 213 VNI->id = (unsigned)valnos.size(); 214 valnos.push_back(VNI); 215 } 216} 217 218/// extendIntervalEndTo - This method is used when we want to extend the range 219/// specified by I to end at the specified endpoint. To do this, we should 220/// merge and eliminate all ranges that this will overlap with. The iterator is 221/// not invalidated. 222void LiveInterval::extendIntervalEndTo(Ranges::iterator I, SlotIndex NewEnd) { 223 assert(I != ranges.end() && "Not a valid interval!"); 224 VNInfo *ValNo = I->valno; 225 226 // Search for the first interval that we can't merge with. 227 Ranges::iterator MergeTo = llvm::next(I); 228 for (; MergeTo != ranges.end() && NewEnd >= MergeTo->end; ++MergeTo) { 229 assert(MergeTo->valno == ValNo && "Cannot merge with differing values!"); 230 } 231 232 // If NewEnd was in the middle of an interval, make sure to get its endpoint. 233 I->end = std::max(NewEnd, prior(MergeTo)->end); 234 235 // If the newly formed range now touches the range after it and if they have 236 // the same value number, merge the two ranges into one range. 237 if (MergeTo != ranges.end() && MergeTo->start <= I->end && 238 MergeTo->valno == ValNo) { 239 I->end = MergeTo->end; 240 ++MergeTo; 241 } 242 243 // Erase any dead ranges. 244 ranges.erase(llvm::next(I), MergeTo); 245} 246 247 248/// extendIntervalStartTo - This method is used when we want to extend the range 249/// specified by I to start at the specified endpoint. To do this, we should 250/// merge and eliminate all ranges that this will overlap with. 251LiveInterval::Ranges::iterator 252LiveInterval::extendIntervalStartTo(Ranges::iterator I, SlotIndex NewStart) { 253 assert(I != ranges.end() && "Not a valid interval!"); 254 VNInfo *ValNo = I->valno; 255 256 // Search for the first interval that we can't merge with. 257 Ranges::iterator MergeTo = I; 258 do { 259 if (MergeTo == ranges.begin()) { 260 I->start = NewStart; 261 ranges.erase(MergeTo, I); 262 return I; 263 } 264 assert(MergeTo->valno == ValNo && "Cannot merge with differing values!"); 265 --MergeTo; 266 } while (NewStart <= MergeTo->start); 267 268 // If we start in the middle of another interval, just delete a range and 269 // extend that interval. 270 if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) { 271 MergeTo->end = I->end; 272 } else { 273 // Otherwise, extend the interval right after. 274 ++MergeTo; 275 MergeTo->start = NewStart; 276 MergeTo->end = I->end; 277 } 278 279 ranges.erase(llvm::next(MergeTo), llvm::next(I)); 280 return MergeTo; 281} 282 283LiveInterval::iterator 284LiveInterval::addRangeFrom(LiveRange LR, iterator From) { 285 SlotIndex Start = LR.start, End = LR.end; 286 iterator it = std::upper_bound(From, ranges.end(), Start); 287 288 // If the inserted interval starts in the middle or right at the end of 289 // another interval, just extend that interval to contain the range of LR. 290 if (it != ranges.begin()) { 291 iterator B = prior(it); 292 if (LR.valno == B->valno) { 293 if (B->start <= Start && B->end >= Start) { 294 extendIntervalEndTo(B, End); 295 return B; 296 } 297 } else { 298 // Check to make sure that we are not overlapping two live ranges with 299 // different valno's. 300 assert(B->end <= Start && 301 "Cannot overlap two LiveRanges with differing ValID's" 302 " (did you def the same reg twice in a MachineInstr?)"); 303 } 304 } 305 306 // Otherwise, if this range ends in the middle of, or right next to, another 307 // interval, merge it into that interval. 308 if (it != ranges.end()) { 309 if (LR.valno == it->valno) { 310 if (it->start <= End) { 311 it = extendIntervalStartTo(it, Start); 312 313 // If LR is a complete superset of an interval, we may need to grow its 314 // endpoint as well. 315 if (End > it->end) 316 extendIntervalEndTo(it, End); 317 return it; 318 } 319 } else { 320 // Check to make sure that we are not overlapping two live ranges with 321 // different valno's. 322 assert(it->start >= End && 323 "Cannot overlap two LiveRanges with differing ValID's"); 324 } 325 } 326 327 // Otherwise, this is just a new range that doesn't interact with anything. 328 // Insert it. 329 return ranges.insert(it, LR); 330} 331 332/// extendInBlock - If this interval is live before Kill in the basic 333/// block that starts at StartIdx, extend it to be live up to Kill and return 334/// the value. If there is no live range before Kill, return NULL. 335VNInfo *LiveInterval::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) { 336 if (empty()) 337 return 0; 338 iterator I = std::upper_bound(begin(), end(), Kill.getPrevSlot()); 339 if (I == begin()) 340 return 0; 341 --I; 342 if (I->end <= StartIdx) 343 return 0; 344 if (I->end < Kill) 345 extendIntervalEndTo(I, Kill); 346 return I->valno; 347} 348 349/// removeRange - Remove the specified range from this interval. Note that 350/// the range must be in a single LiveRange in its entirety. 351void LiveInterval::removeRange(SlotIndex Start, SlotIndex End, 352 bool RemoveDeadValNo) { 353 // Find the LiveRange containing this span. 354 Ranges::iterator I = find(Start); 355 assert(I != ranges.end() && "Range is not in interval!"); 356 assert(I->containsRange(Start, End) && "Range is not entirely in interval!"); 357 358 // If the span we are removing is at the start of the LiveRange, adjust it. 359 VNInfo *ValNo = I->valno; 360 if (I->start == Start) { 361 if (I->end == End) { 362 if (RemoveDeadValNo) { 363 // Check if val# is dead. 364 bool isDead = true; 365 for (const_iterator II = begin(), EE = end(); II != EE; ++II) 366 if (II != I && II->valno == ValNo) { 367 isDead = false; 368 break; 369 } 370 if (isDead) { 371 // Now that ValNo is dead, remove it. 372 markValNoForDeletion(ValNo); 373 } 374 } 375 376 ranges.erase(I); // Removed the whole LiveRange. 377 } else 378 I->start = End; 379 return; 380 } 381 382 // Otherwise if the span we are removing is at the end of the LiveRange, 383 // adjust the other way. 384 if (I->end == End) { 385 I->end = Start; 386 return; 387 } 388 389 // Otherwise, we are splitting the LiveRange into two pieces. 390 SlotIndex OldEnd = I->end; 391 I->end = Start; // Trim the old interval. 392 393 // Insert the new one. 394 ranges.insert(llvm::next(I), LiveRange(End, OldEnd, ValNo)); 395} 396 397/// removeValNo - Remove all the ranges defined by the specified value#. 398/// Also remove the value# from value# list. 399void LiveInterval::removeValNo(VNInfo *ValNo) { 400 if (empty()) return; 401 Ranges::iterator I = ranges.end(); 402 Ranges::iterator E = ranges.begin(); 403 do { 404 --I; 405 if (I->valno == ValNo) 406 ranges.erase(I); 407 } while (I != E); 408 // Now that ValNo is dead, remove it. 409 markValNoForDeletion(ValNo); 410} 411 412/// join - Join two live intervals (this, and other) together. This applies 413/// mappings to the value numbers in the LHS/RHS intervals as specified. If 414/// the intervals are not joinable, this aborts. 415void LiveInterval::join(LiveInterval &Other, 416 const int *LHSValNoAssignments, 417 const int *RHSValNoAssignments, 418 SmallVectorImpl<VNInfo *> &NewVNInfo) { 419 verify(); 420 421 // Determine if any of our live range values are mapped. This is uncommon, so 422 // we want to avoid the interval scan if not. 423 bool MustMapCurValNos = false; 424 unsigned NumVals = getNumValNums(); 425 unsigned NumNewVals = NewVNInfo.size(); 426 for (unsigned i = 0; i != NumVals; ++i) { 427 unsigned LHSValID = LHSValNoAssignments[i]; 428 if (i != LHSValID || 429 (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) { 430 MustMapCurValNos = true; 431 break; 432 } 433 } 434 435 // If we have to apply a mapping to our base interval assignment, rewrite it 436 // now. 437 if (MustMapCurValNos && !empty()) { 438 // Map the first live range. 439 440 iterator OutIt = begin(); 441 OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]]; 442 for (iterator I = llvm::next(OutIt), E = end(); I != E; ++I) { 443 VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]]; 444 assert(nextValNo != 0 && "Huh?"); 445 446 // If this live range has the same value # as its immediate predecessor, 447 // and if they are neighbors, remove one LiveRange. This happens when we 448 // have [0,4:0)[4,7:1) and map 0/1 onto the same value #. 449 if (OutIt->valno == nextValNo && OutIt->end == I->start) { 450 OutIt->end = I->end; 451 } else { 452 // Didn't merge. Move OutIt to the next interval, 453 ++OutIt; 454 OutIt->valno = nextValNo; 455 if (OutIt != I) { 456 OutIt->start = I->start; 457 OutIt->end = I->end; 458 } 459 } 460 } 461 // If we merge some live ranges, chop off the end. 462 ++OutIt; 463 ranges.erase(OutIt, end()); 464 } 465 466 // Rewrite Other values before changing the VNInfo ids. 467 // This can leave Other in an invalid state because we're not coalescing 468 // touching segments that now have identical values. That's OK since Other is 469 // not supposed to be valid after calling join(); 470 for (iterator I = Other.begin(), E = Other.end(); I != E; ++I) 471 I->valno = NewVNInfo[RHSValNoAssignments[I->valno->id]]; 472 473 // Update val# info. Renumber them and make sure they all belong to this 474 // LiveInterval now. Also remove dead val#'s. 475 unsigned NumValNos = 0; 476 for (unsigned i = 0; i < NumNewVals; ++i) { 477 VNInfo *VNI = NewVNInfo[i]; 478 if (VNI) { 479 if (NumValNos >= NumVals) 480 valnos.push_back(VNI); 481 else 482 valnos[NumValNos] = VNI; 483 VNI->id = NumValNos++; // Renumber val#. 484 } 485 } 486 if (NumNewVals < NumVals) 487 valnos.resize(NumNewVals); // shrinkify 488 489 // Okay, now insert the RHS live ranges into the LHS. 490 LiveRangeUpdater Updater(this); 491 for (iterator I = Other.begin(), E = Other.end(); I != E; ++I) 492 Updater.add(*I); 493} 494 495/// MergeRangesInAsValue - Merge all of the intervals in RHS into this live 496/// interval as the specified value number. The LiveRanges in RHS are 497/// allowed to overlap with LiveRanges in the current interval, but only if 498/// the overlapping LiveRanges have the specified value number. 499void LiveInterval::MergeRangesInAsValue(const LiveInterval &RHS, 500 VNInfo *LHSValNo) { 501 LiveRangeUpdater Updater(this); 502 for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) 503 Updater.add(I->start, I->end, LHSValNo); 504} 505 506/// MergeValueInAsValue - Merge all of the live ranges of a specific val# 507/// in RHS into this live interval as the specified value number. 508/// The LiveRanges in RHS are allowed to overlap with LiveRanges in the 509/// current interval, it will replace the value numbers of the overlaped 510/// live ranges with the specified value number. 511void LiveInterval::MergeValueInAsValue(const LiveInterval &RHS, 512 const VNInfo *RHSValNo, 513 VNInfo *LHSValNo) { 514 LiveRangeUpdater Updater(this); 515 for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) 516 if (I->valno == RHSValNo) 517 Updater.add(I->start, I->end, LHSValNo); 518} 519 520/// MergeValueNumberInto - This method is called when two value nubmers 521/// are found to be equivalent. This eliminates V1, replacing all 522/// LiveRanges with the V1 value number with the V2 value number. This can 523/// cause merging of V1/V2 values numbers and compaction of the value space. 524VNInfo* LiveInterval::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) { 525 assert(V1 != V2 && "Identical value#'s are always equivalent!"); 526 527 // This code actually merges the (numerically) larger value number into the 528 // smaller value number, which is likely to allow us to compactify the value 529 // space. The only thing we have to be careful of is to preserve the 530 // instruction that defines the result value. 531 532 // Make sure V2 is smaller than V1. 533 if (V1->id < V2->id) { 534 V1->copyFrom(*V2); 535 std::swap(V1, V2); 536 } 537 538 // Merge V1 live ranges into V2. 539 for (iterator I = begin(); I != end(); ) { 540 iterator LR = I++; 541 if (LR->valno != V1) continue; // Not a V1 LiveRange. 542 543 // Okay, we found a V1 live range. If it had a previous, touching, V2 live 544 // range, extend it. 545 if (LR != begin()) { 546 iterator Prev = LR-1; 547 if (Prev->valno == V2 && Prev->end == LR->start) { 548 Prev->end = LR->end; 549 550 // Erase this live-range. 551 ranges.erase(LR); 552 I = Prev+1; 553 LR = Prev; 554 } 555 } 556 557 // Okay, now we have a V1 or V2 live range that is maximally merged forward. 558 // Ensure that it is a V2 live-range. 559 LR->valno = V2; 560 561 // If we can merge it into later V2 live ranges, do so now. We ignore any 562 // following V1 live ranges, as they will be merged in subsequent iterations 563 // of the loop. 564 if (I != end()) { 565 if (I->start == LR->end && I->valno == V2) { 566 LR->end = I->end; 567 ranges.erase(I); 568 I = LR+1; 569 } 570 } 571 } 572 573 // Now that V1 is dead, remove it. 574 markValNoForDeletion(V1); 575 576 return V2; 577} 578 579unsigned LiveInterval::getSize() const { 580 unsigned Sum = 0; 581 for (const_iterator I = begin(), E = end(); I != E; ++I) 582 Sum += I->start.distance(I->end); 583 return Sum; 584} 585 586raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange &LR) { 587 return os << '[' << LR.start << ',' << LR.end << ':' << LR.valno->id << ")"; 588} 589 590#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 591void LiveRange::dump() const { 592 dbgs() << *this << "\n"; 593} 594#endif 595 596void LiveInterval::print(raw_ostream &OS) const { 597 if (empty()) 598 OS << "EMPTY"; 599 else { 600 for (LiveInterval::Ranges::const_iterator I = ranges.begin(), 601 E = ranges.end(); I != E; ++I) { 602 OS << *I; 603 assert(I->valno == getValNumInfo(I->valno->id) && "Bad VNInfo"); 604 } 605 } 606 607 // Print value number info. 608 if (getNumValNums()) { 609 OS << " "; 610 unsigned vnum = 0; 611 for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e; 612 ++i, ++vnum) { 613 const VNInfo *vni = *i; 614 if (vnum) OS << " "; 615 OS << vnum << "@"; 616 if (vni->isUnused()) { 617 OS << "x"; 618 } else { 619 OS << vni->def; 620 if (vni->isPHIDef()) 621 OS << "-phi"; 622 } 623 } 624 } 625} 626 627#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 628void LiveInterval::dump() const { 629 dbgs() << *this << "\n"; 630} 631#endif 632 633#ifndef NDEBUG 634void LiveInterval::verify() const { 635 for (const_iterator I = begin(), E = end(); I != E; ++I) { 636 assert(I->start.isValid()); 637 assert(I->end.isValid()); 638 assert(I->start < I->end); 639 assert(I->valno != 0); 640 assert(I->valno == valnos[I->valno->id]); 641 if (llvm::next(I) != E) { 642 assert(I->end <= llvm::next(I)->start); 643 if (I->end == llvm::next(I)->start) 644 assert(I->valno != llvm::next(I)->valno); 645 } 646 } 647} 648#endif 649 650 651void LiveRange::print(raw_ostream &os) const { 652 os << *this; 653} 654 655//===----------------------------------------------------------------------===// 656// LiveRangeUpdater class 657//===----------------------------------------------------------------------===// 658// 659// The LiveRangeUpdater class always maintains these invariants: 660// 661// - When LastStart is invalid, Spills is empty and the iterators are invalid. 662// This is the initial state, and the state created by flush(). 663// In this state, isDirty() returns false. 664// 665// Otherwise, segments are kept in three separate areas: 666// 667// 1. [begin; WriteI) at the front of LI. 668// 2. [ReadI; end) at the back of LI. 669// 3. Spills. 670// 671// - LI.begin() <= WriteI <= ReadI <= LI.end(). 672// - Segments in all three areas are fully ordered and coalesced. 673// - Segments in area 1 precede and can't coalesce with segments in area 2. 674// - Segments in Spills precede and can't coalesce with segments in area 2. 675// - No coalescing is possible between segments in Spills and segments in area 676// 1, and there are no overlapping segments. 677// 678// The segments in Spills are not ordered with respect to the segments in area 679// 1. They need to be merged. 680// 681// When they exist, Spills.back().start <= LastStart, 682// and WriteI[-1].start <= LastStart. 683 684void LiveRangeUpdater::print(raw_ostream &OS) const { 685 if (!isDirty()) { 686 if (LI) 687 OS << "Clean " << PrintReg(LI->reg) << " updater: " << *LI << '\n'; 688 else 689 OS << "Null updater.\n"; 690 return; 691 } 692 assert(LI && "Can't have null LI in dirty updater."); 693 OS << PrintReg(LI->reg) << " updater with gap = " << (ReadI - WriteI) 694 << ", last start = " << LastStart 695 << ":\n Area 1:"; 696 for (LiveInterval::const_iterator I = LI->begin(); I != WriteI; ++I) 697 OS << ' ' << *I; 698 OS << "\n Spills:"; 699 for (unsigned I = 0, E = Spills.size(); I != E; ++I) 700 OS << ' ' << Spills[I]; 701 OS << "\n Area 2:"; 702 for (LiveInterval::const_iterator I = ReadI, E = LI->end(); I != E; ++I) 703 OS << ' ' << *I; 704 OS << '\n'; 705} 706 707void LiveRangeUpdater::dump() const 708{ 709 print(errs()); 710} 711 712// Determine if A and B should be coalesced. 713static inline bool coalescable(const LiveRange &A, const LiveRange &B) { 714 assert(A.start <= B.start && "Unordered live ranges."); 715 if (A.end == B.start) 716 return A.valno == B.valno; 717 if (A.end < B.start) 718 return false; 719 assert(A.valno == B.valno && "Cannot overlap different values"); 720 return true; 721} 722 723void LiveRangeUpdater::add(LiveRange Seg) { 724 assert(LI && "Cannot add to a null destination"); 725 726 // Flush the state if Start moves backwards. 727 if (!LastStart.isValid() || LastStart > Seg.start) { 728 if (isDirty()) 729 flush(); 730 // This brings us to an uninitialized state. Reinitialize. 731 assert(Spills.empty() && "Leftover spilled segments"); 732 WriteI = ReadI = LI->begin(); 733 } 734 735 // Remember start for next time. 736 LastStart = Seg.start; 737 738 // Advance ReadI until it ends after Seg.start. 739 LiveInterval::iterator E = LI->end(); 740 if (ReadI != E && ReadI->end <= Seg.start) { 741 // First try to close the gap between WriteI and ReadI with spills. 742 if (ReadI != WriteI) 743 mergeSpills(); 744 // Then advance ReadI. 745 if (ReadI == WriteI) 746 ReadI = WriteI = LI->find(Seg.start); 747 else 748 while (ReadI != E && ReadI->end <= Seg.start) 749 *WriteI++ = *ReadI++; 750 } 751 752 assert(ReadI == E || ReadI->end > Seg.start); 753 754 // Check if the ReadI segment begins early. 755 if (ReadI != E && ReadI->start <= Seg.start) { 756 assert(ReadI->valno == Seg.valno && "Cannot overlap different values"); 757 // Bail if Seg is completely contained in ReadI. 758 if (ReadI->end >= Seg.end) 759 return; 760 // Coalesce into Seg. 761 Seg.start = ReadI->start; 762 ++ReadI; 763 } 764 765 // Coalesce as much as possible from ReadI into Seg. 766 while (ReadI != E && coalescable(Seg, *ReadI)) { 767 Seg.end = std::max(Seg.end, ReadI->end); 768 ++ReadI; 769 } 770 771 // Try coalescing Spills.back() into Seg. 772 if (!Spills.empty() && coalescable(Spills.back(), Seg)) { 773 Seg.start = Spills.back().start; 774 Seg.end = std::max(Spills.back().end, Seg.end); 775 Spills.pop_back(); 776 } 777 778 // Try coalescing Seg into WriteI[-1]. 779 if (WriteI != LI->begin() && coalescable(WriteI[-1], Seg)) { 780 WriteI[-1].end = std::max(WriteI[-1].end, Seg.end); 781 return; 782 } 783 784 // Seg doesn't coalesce with anything, and needs to be inserted somewhere. 785 if (WriteI != ReadI) { 786 *WriteI++ = Seg; 787 return; 788 } 789 790 // Finally, append to LI or Spills. 791 if (WriteI == E) { 792 LI->ranges.push_back(Seg); 793 WriteI = ReadI = LI->ranges.end(); 794 } else 795 Spills.push_back(Seg); 796} 797 798// Merge as many spilled segments as possible into the gap between WriteI 799// and ReadI. Advance WriteI to reflect the inserted instructions. 800void LiveRangeUpdater::mergeSpills() { 801 // Perform a backwards merge of Spills and [SpillI;WriteI). 802 size_t GapSize = ReadI - WriteI; 803 size_t NumMoved = std::min(Spills.size(), GapSize); 804 LiveInterval::iterator Src = WriteI; 805 LiveInterval::iterator Dst = Src + NumMoved; 806 LiveInterval::iterator SpillSrc = Spills.end(); 807 LiveInterval::iterator B = LI->begin(); 808 809 // This is the new WriteI position after merging spills. 810 WriteI = Dst; 811 812 // Now merge Src and Spills backwards. 813 while (Src != Dst) { 814 if (Src != B && Src[-1].start > SpillSrc[-1].start) 815 *--Dst = *--Src; 816 else 817 *--Dst = *--SpillSrc; 818 } 819 assert(NumMoved == size_t(Spills.end() - SpillSrc)); 820 Spills.erase(SpillSrc, Spills.end()); 821} 822 823void LiveRangeUpdater::flush() { 824 if (!isDirty()) 825 return; 826 // Clear the dirty state. 827 LastStart = SlotIndex(); 828 829 assert(LI && "Cannot add to a null destination"); 830 831 // Nothing to merge? 832 if (Spills.empty()) { 833 LI->ranges.erase(WriteI, ReadI); 834 LI->verify(); 835 return; 836 } 837 838 // Resize the WriteI - ReadI gap to match Spills. 839 size_t GapSize = ReadI - WriteI; 840 if (GapSize < Spills.size()) { 841 // The gap is too small. Make some room. 842 size_t WritePos = WriteI - LI->begin(); 843 LI->ranges.insert(ReadI, Spills.size() - GapSize, LiveRange()); 844 // This also invalidated ReadI, but it is recomputed below. 845 WriteI = LI->ranges.begin() + WritePos; 846 } else { 847 // Shrink the gap if necessary. 848 LI->ranges.erase(WriteI + Spills.size(), ReadI); 849 } 850 ReadI = WriteI + Spills.size(); 851 mergeSpills(); 852 LI->verify(); 853} 854 855unsigned ConnectedVNInfoEqClasses::Classify(const LiveInterval *LI) { 856 // Create initial equivalence classes. 857 EqClass.clear(); 858 EqClass.grow(LI->getNumValNums()); 859 860 const VNInfo *used = 0, *unused = 0; 861 862 // Determine connections. 863 for (LiveInterval::const_vni_iterator I = LI->vni_begin(), E = LI->vni_end(); 864 I != E; ++I) { 865 const VNInfo *VNI = *I; 866 // Group all unused values into one class. 867 if (VNI->isUnused()) { 868 if (unused) 869 EqClass.join(unused->id, VNI->id); 870 unused = VNI; 871 continue; 872 } 873 used = VNI; 874 if (VNI->isPHIDef()) { 875 const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 876 assert(MBB && "Phi-def has no defining MBB"); 877 // Connect to values live out of predecessors. 878 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), 879 PE = MBB->pred_end(); PI != PE; ++PI) 880 if (const VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI))) 881 EqClass.join(VNI->id, PVNI->id); 882 } else { 883 // Normal value defined by an instruction. Check for two-addr redef. 884 // FIXME: This could be coincidental. Should we really check for a tied 885 // operand constraint? 886 // Note that VNI->def may be a use slot for an early clobber def. 887 if (const VNInfo *UVNI = LI->getVNInfoBefore(VNI->def)) 888 EqClass.join(VNI->id, UVNI->id); 889 } 890 } 891 892 // Lump all the unused values in with the last used value. 893 if (used && unused) 894 EqClass.join(used->id, unused->id); 895 896 EqClass.compress(); 897 return EqClass.getNumClasses(); 898} 899 900void ConnectedVNInfoEqClasses::Distribute(LiveInterval *LIV[], 901 MachineRegisterInfo &MRI) { 902 assert(LIV[0] && "LIV[0] must be set"); 903 LiveInterval &LI = *LIV[0]; 904 905 // Rewrite instructions. 906 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg), 907 RE = MRI.reg_end(); RI != RE;) { 908 MachineOperand &MO = RI.getOperand(); 909 MachineInstr *MI = MO.getParent(); 910 ++RI; 911 // DBG_VALUE instructions don't have slot indexes, so get the index of the 912 // instruction before them. 913 // Normally, DBG_VALUE instructions are removed before this function is 914 // called, but it is not a requirement. 915 SlotIndex Idx; 916 if (MI->isDebugValue()) 917 Idx = LIS.getSlotIndexes()->getIndexBefore(MI); 918 else 919 Idx = LIS.getInstructionIndex(MI); 920 LiveRangeQuery LRQ(LI, Idx); 921 const VNInfo *VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined(); 922 // In the case of an <undef> use that isn't tied to any def, VNI will be 923 // NULL. If the use is tied to a def, VNI will be the defined value. 924 if (!VNI) 925 continue; 926 MO.setReg(LIV[getEqClass(VNI)]->reg); 927 } 928 929 // Move runs to new intervals. 930 LiveInterval::iterator J = LI.begin(), E = LI.end(); 931 while (J != E && EqClass[J->valno->id] == 0) 932 ++J; 933 for (LiveInterval::iterator I = J; I != E; ++I) { 934 if (unsigned eq = EqClass[I->valno->id]) { 935 assert((LIV[eq]->empty() || LIV[eq]->expiredAt(I->start)) && 936 "New intervals should be empty"); 937 LIV[eq]->ranges.push_back(*I); 938 } else 939 *J++ = *I; 940 } 941 LI.ranges.erase(J, E); 942 943 // Transfer VNInfos to their new owners and renumber them. 944 unsigned j = 0, e = LI.getNumValNums(); 945 while (j != e && EqClass[j] == 0) 946 ++j; 947 for (unsigned i = j; i != e; ++i) { 948 VNInfo *VNI = LI.getValNumInfo(i); 949 if (unsigned eq = EqClass[i]) { 950 VNI->id = LIV[eq]->getNumValNums(); 951 LIV[eq]->valnos.push_back(VNI); 952 } else { 953 VNI->id = j; 954 LI.valnos[j++] = VNI; 955 } 956 } 957 LI.valnos.resize(j); 958} 959