LiveInterval.cpp revision 45c5c57179e8b4938042431f8e12c9bfad67b3c8
1//===-- LiveInterval.cpp - Live Interval Representation -------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the LiveRange and LiveInterval classes. Given some 11// numbering of each the machine instructions an interval [i, j) is said to be a 12// live interval for register v if there is no instruction with number j' > j 13// such that v is live at j' and there is no instruction with number i' < i such 14// that v is live at i'. In this implementation intervals can have holes, 15// i.e. an interval might look like [1,20), [50,65), [1000,1001). Each 16// individual range is represented as an instance of LiveRange, and the whole 17// interval is represented as an instance of LiveInterval. 18// 19//===----------------------------------------------------------------------===// 20 21#include "llvm/CodeGen/LiveInterval.h" 22#include "llvm/CodeGen/LiveIntervalAnalysis.h" 23#include "llvm/CodeGen/MachineRegisterInfo.h" 24#include "llvm/ADT/DenseMap.h" 25#include "llvm/ADT/SmallSet.h" 26#include "llvm/ADT/STLExtras.h" 27#include "llvm/Support/Debug.h" 28#include "llvm/Support/raw_ostream.h" 29#include "llvm/Target/TargetRegisterInfo.h" 30#include "RegisterCoalescer.h" 31#include <algorithm> 32using namespace llvm; 33 34LiveInterval::iterator LiveInterval::find(SlotIndex Pos) { 35 // This algorithm is basically std::upper_bound. 36 // Unfortunately, std::upper_bound cannot be used with mixed types until we 37 // adopt C++0x. Many libraries can do it, but not all. 38 if (empty() || Pos >= endIndex()) 39 return end(); 40 iterator I = begin(); 41 size_t Len = ranges.size(); 42 do { 43 size_t Mid = Len >> 1; 44 if (Pos < I[Mid].end) 45 Len = Mid; 46 else 47 I += Mid + 1, Len -= Mid + 1; 48 } while (Len); 49 return I; 50} 51 52VNInfo *LiveInterval::createDeadDef(SlotIndex Def, 53 VNInfo::Allocator &VNInfoAllocator) { 54 assert(!Def.isDead() && "Cannot define a value at the dead slot"); 55 iterator I = find(Def); 56 if (I == end()) { 57 VNInfo *VNI = getNextValue(Def, VNInfoAllocator); 58 ranges.push_back(LiveRange(Def, Def.getDeadSlot(), VNI)); 59 return VNI; 60 } 61 if (SlotIndex::isSameInstr(Def, I->start)) { 62 assert(I->start == Def && "Cannot insert def, already live"); 63 assert(I->valno->def == Def && "Inconsistent existing value def"); 64 return I->valno; 65 } 66 assert(SlotIndex::isEarlierInstr(Def, I->start) && "Already live at def"); 67 VNInfo *VNI = getNextValue(Def, VNInfoAllocator); 68 ranges.insert(I, LiveRange(Def, Def.getDeadSlot(), VNI)); 69 return VNI; 70} 71 72/// killedInRange - Return true if the interval has kills in [Start,End). 73bool LiveInterval::killedInRange(SlotIndex Start, SlotIndex End) const { 74 Ranges::const_iterator r = 75 std::lower_bound(ranges.begin(), ranges.end(), End); 76 77 // Now r points to the first interval with start >= End, or ranges.end(). 78 if (r == ranges.begin()) 79 return false; 80 81 --r; 82 // Now r points to the last interval with end <= End. 83 // r->end is the kill point. 84 return r->end >= Start && r->end < End; 85} 86 87// overlaps - Return true if the intersection of the two live intervals is 88// not empty. 89// 90// An example for overlaps(): 91// 92// 0: A = ... 93// 4: B = ... 94// 8: C = A + B ;; last use of A 95// 96// The live intervals should look like: 97// 98// A = [3, 11) 99// B = [7, x) 100// C = [11, y) 101// 102// A->overlaps(C) should return false since we want to be able to join 103// A and C. 104// 105bool LiveInterval::overlapsFrom(const LiveInterval& other, 106 const_iterator StartPos) const { 107 assert(!empty() && "empty interval"); 108 const_iterator i = begin(); 109 const_iterator ie = end(); 110 const_iterator j = StartPos; 111 const_iterator je = other.end(); 112 113 assert((StartPos->start <= i->start || StartPos == other.begin()) && 114 StartPos != other.end() && "Bogus start position hint!"); 115 116 if (i->start < j->start) { 117 i = std::upper_bound(i, ie, j->start); 118 if (i != ranges.begin()) --i; 119 } else if (j->start < i->start) { 120 ++StartPos; 121 if (StartPos != other.end() && StartPos->start <= i->start) { 122 assert(StartPos < other.end() && i < end()); 123 j = std::upper_bound(j, je, i->start); 124 if (j != other.ranges.begin()) --j; 125 } 126 } else { 127 return true; 128 } 129 130 if (j == je) return false; 131 132 while (i != ie) { 133 if (i->start > j->start) { 134 std::swap(i, j); 135 std::swap(ie, je); 136 } 137 138 if (i->end > j->start) 139 return true; 140 ++i; 141 } 142 143 return false; 144} 145 146bool LiveInterval::overlaps(const LiveInterval &Other, 147 const CoalescerPair &CP, 148 const SlotIndexes &Indexes) const { 149 assert(!empty() && "empty interval"); 150 if (Other.empty()) 151 return false; 152 153 // Use binary searches to find initial positions. 154 const_iterator I = find(Other.beginIndex()); 155 const_iterator IE = end(); 156 if (I == IE) 157 return false; 158 const_iterator J = Other.find(I->start); 159 const_iterator JE = Other.end(); 160 if (J == JE) 161 return false; 162 163 for (;;) { 164 // J has just been advanced to satisfy: 165 assert(J->end >= I->start); 166 // Check for an overlap. 167 if (J->start < I->end) { 168 // I and J are overlapping. Find the later start. 169 SlotIndex Def = std::max(I->start, J->start); 170 // Allow the overlap if Def is a coalescable copy. 171 if (Def.isBlock() || 172 !CP.isCoalescable(Indexes.getInstructionFromIndex(Def))) 173 return true; 174 } 175 // Advance the iterator that ends first to check for more overlaps. 176 if (J->end > I->end) { 177 std::swap(I, J); 178 std::swap(IE, JE); 179 } 180 // Advance J until J->end >= I->start. 181 do 182 if (++J == JE) 183 return false; 184 while (J->end < I->start); 185 } 186} 187 188/// overlaps - Return true if the live interval overlaps a range specified 189/// by [Start, End). 190bool LiveInterval::overlaps(SlotIndex Start, SlotIndex End) const { 191 assert(Start < End && "Invalid range"); 192 const_iterator I = std::lower_bound(begin(), end(), End); 193 return I != begin() && (--I)->end > Start; 194} 195 196 197/// ValNo is dead, remove it. If it is the largest value number, just nuke it 198/// (and any other deleted values neighboring it), otherwise mark it as ~1U so 199/// it can be nuked later. 200void LiveInterval::markValNoForDeletion(VNInfo *ValNo) { 201 if (ValNo->id == getNumValNums()-1) { 202 do { 203 valnos.pop_back(); 204 } while (!valnos.empty() && valnos.back()->isUnused()); 205 } else { 206 ValNo->markUnused(); 207 } 208} 209 210/// RenumberValues - Renumber all values in order of appearance and delete the 211/// remaining unused values. 212void LiveInterval::RenumberValues(LiveIntervals &lis) { 213 SmallPtrSet<VNInfo*, 8> Seen; 214 valnos.clear(); 215 for (const_iterator I = begin(), E = end(); I != E; ++I) { 216 VNInfo *VNI = I->valno; 217 if (!Seen.insert(VNI)) 218 continue; 219 assert(!VNI->isUnused() && "Unused valno used by live range"); 220 VNI->id = (unsigned)valnos.size(); 221 valnos.push_back(VNI); 222 } 223} 224 225/// extendIntervalEndTo - This method is used when we want to extend the range 226/// specified by I to end at the specified endpoint. To do this, we should 227/// merge and eliminate all ranges that this will overlap with. The iterator is 228/// not invalidated. 229void LiveInterval::extendIntervalEndTo(Ranges::iterator I, SlotIndex NewEnd) { 230 assert(I != ranges.end() && "Not a valid interval!"); 231 VNInfo *ValNo = I->valno; 232 233 // Search for the first interval that we can't merge with. 234 Ranges::iterator MergeTo = llvm::next(I); 235 for (; MergeTo != ranges.end() && NewEnd >= MergeTo->end; ++MergeTo) { 236 assert(MergeTo->valno == ValNo && "Cannot merge with differing values!"); 237 } 238 239 // If NewEnd was in the middle of an interval, make sure to get its endpoint. 240 I->end = std::max(NewEnd, prior(MergeTo)->end); 241 242 // If the newly formed range now touches the range after it and if they have 243 // the same value number, merge the two ranges into one range. 244 if (MergeTo != ranges.end() && MergeTo->start <= I->end && 245 MergeTo->valno == ValNo) { 246 I->end = MergeTo->end; 247 ++MergeTo; 248 } 249 250 // Erase any dead ranges. 251 ranges.erase(llvm::next(I), MergeTo); 252} 253 254 255/// extendIntervalStartTo - This method is used when we want to extend the range 256/// specified by I to start at the specified endpoint. To do this, we should 257/// merge and eliminate all ranges that this will overlap with. 258LiveInterval::Ranges::iterator 259LiveInterval::extendIntervalStartTo(Ranges::iterator I, SlotIndex NewStart) { 260 assert(I != ranges.end() && "Not a valid interval!"); 261 VNInfo *ValNo = I->valno; 262 263 // Search for the first interval that we can't merge with. 264 Ranges::iterator MergeTo = I; 265 do { 266 if (MergeTo == ranges.begin()) { 267 I->start = NewStart; 268 ranges.erase(MergeTo, I); 269 return I; 270 } 271 assert(MergeTo->valno == ValNo && "Cannot merge with differing values!"); 272 --MergeTo; 273 } while (NewStart <= MergeTo->start); 274 275 // If we start in the middle of another interval, just delete a range and 276 // extend that interval. 277 if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) { 278 MergeTo->end = I->end; 279 } else { 280 // Otherwise, extend the interval right after. 281 ++MergeTo; 282 MergeTo->start = NewStart; 283 MergeTo->end = I->end; 284 } 285 286 ranges.erase(llvm::next(MergeTo), llvm::next(I)); 287 return MergeTo; 288} 289 290LiveInterval::iterator 291LiveInterval::addRangeFrom(LiveRange LR, iterator From) { 292 SlotIndex Start = LR.start, End = LR.end; 293 iterator it = std::upper_bound(From, ranges.end(), Start); 294 295 // If the inserted interval starts in the middle or right at the end of 296 // another interval, just extend that interval to contain the range of LR. 297 if (it != ranges.begin()) { 298 iterator B = prior(it); 299 if (LR.valno == B->valno) { 300 if (B->start <= Start && B->end >= Start) { 301 extendIntervalEndTo(B, End); 302 return B; 303 } 304 } else { 305 // Check to make sure that we are not overlapping two live ranges with 306 // different valno's. 307 assert(B->end <= Start && 308 "Cannot overlap two LiveRanges with differing ValID's" 309 " (did you def the same reg twice in a MachineInstr?)"); 310 } 311 } 312 313 // Otherwise, if this range ends in the middle of, or right next to, another 314 // interval, merge it into that interval. 315 if (it != ranges.end()) { 316 if (LR.valno == it->valno) { 317 if (it->start <= End) { 318 it = extendIntervalStartTo(it, Start); 319 320 // If LR is a complete superset of an interval, we may need to grow its 321 // endpoint as well. 322 if (End > it->end) 323 extendIntervalEndTo(it, End); 324 return it; 325 } 326 } else { 327 // Check to make sure that we are not overlapping two live ranges with 328 // different valno's. 329 assert(it->start >= End && 330 "Cannot overlap two LiveRanges with differing ValID's"); 331 } 332 } 333 334 // Otherwise, this is just a new range that doesn't interact with anything. 335 // Insert it. 336 return ranges.insert(it, LR); 337} 338 339/// extendInBlock - If this interval is live before Kill in the basic 340/// block that starts at StartIdx, extend it to be live up to Kill and return 341/// the value. If there is no live range before Kill, return NULL. 342VNInfo *LiveInterval::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) { 343 if (empty()) 344 return 0; 345 iterator I = std::upper_bound(begin(), end(), Kill.getPrevSlot()); 346 if (I == begin()) 347 return 0; 348 --I; 349 if (I->end <= StartIdx) 350 return 0; 351 if (I->end < Kill) 352 extendIntervalEndTo(I, Kill); 353 return I->valno; 354} 355 356/// removeRange - Remove the specified range from this interval. Note that 357/// the range must be in a single LiveRange in its entirety. 358void LiveInterval::removeRange(SlotIndex Start, SlotIndex End, 359 bool RemoveDeadValNo) { 360 // Find the LiveRange containing this span. 361 Ranges::iterator I = find(Start); 362 assert(I != ranges.end() && "Range is not in interval!"); 363 assert(I->containsRange(Start, End) && "Range is not entirely in interval!"); 364 365 // If the span we are removing is at the start of the LiveRange, adjust it. 366 VNInfo *ValNo = I->valno; 367 if (I->start == Start) { 368 if (I->end == End) { 369 if (RemoveDeadValNo) { 370 // Check if val# is dead. 371 bool isDead = true; 372 for (const_iterator II = begin(), EE = end(); II != EE; ++II) 373 if (II != I && II->valno == ValNo) { 374 isDead = false; 375 break; 376 } 377 if (isDead) { 378 // Now that ValNo is dead, remove it. 379 markValNoForDeletion(ValNo); 380 } 381 } 382 383 ranges.erase(I); // Removed the whole LiveRange. 384 } else 385 I->start = End; 386 return; 387 } 388 389 // Otherwise if the span we are removing is at the end of the LiveRange, 390 // adjust the other way. 391 if (I->end == End) { 392 I->end = Start; 393 return; 394 } 395 396 // Otherwise, we are splitting the LiveRange into two pieces. 397 SlotIndex OldEnd = I->end; 398 I->end = Start; // Trim the old interval. 399 400 // Insert the new one. 401 ranges.insert(llvm::next(I), LiveRange(End, OldEnd, ValNo)); 402} 403 404/// removeValNo - Remove all the ranges defined by the specified value#. 405/// Also remove the value# from value# list. 406void LiveInterval::removeValNo(VNInfo *ValNo) { 407 if (empty()) return; 408 Ranges::iterator I = ranges.end(); 409 Ranges::iterator E = ranges.begin(); 410 do { 411 --I; 412 if (I->valno == ValNo) 413 ranges.erase(I); 414 } while (I != E); 415 // Now that ValNo is dead, remove it. 416 markValNoForDeletion(ValNo); 417} 418 419/// join - Join two live intervals (this, and other) together. This applies 420/// mappings to the value numbers in the LHS/RHS intervals as specified. If 421/// the intervals are not joinable, this aborts. 422void LiveInterval::join(LiveInterval &Other, 423 const int *LHSValNoAssignments, 424 const int *RHSValNoAssignments, 425 SmallVector<VNInfo*, 16> &NewVNInfo, 426 MachineRegisterInfo *MRI) { 427 verify(); 428 429 // Determine if any of our live range values are mapped. This is uncommon, so 430 // we want to avoid the interval scan if not. 431 bool MustMapCurValNos = false; 432 unsigned NumVals = getNumValNums(); 433 unsigned NumNewVals = NewVNInfo.size(); 434 for (unsigned i = 0; i != NumVals; ++i) { 435 unsigned LHSValID = LHSValNoAssignments[i]; 436 if (i != LHSValID || 437 (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) { 438 MustMapCurValNos = true; 439 break; 440 } 441 } 442 443 // If we have to apply a mapping to our base interval assignment, rewrite it 444 // now. 445 if (MustMapCurValNos) { 446 // Map the first live range. 447 448 iterator OutIt = begin(); 449 OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]]; 450 for (iterator I = next(OutIt), E = end(); I != E; ++I) { 451 VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]]; 452 assert(nextValNo != 0 && "Huh?"); 453 454 // If this live range has the same value # as its immediate predecessor, 455 // and if they are neighbors, remove one LiveRange. This happens when we 456 // have [0,4:0)[4,7:1) and map 0/1 onto the same value #. 457 if (OutIt->valno == nextValNo && OutIt->end == I->start) { 458 OutIt->end = I->end; 459 } else { 460 // Didn't merge. Move OutIt to the next interval, 461 ++OutIt; 462 OutIt->valno = nextValNo; 463 if (OutIt != I) { 464 OutIt->start = I->start; 465 OutIt->end = I->end; 466 } 467 } 468 } 469 // If we merge some live ranges, chop off the end. 470 ++OutIt; 471 ranges.erase(OutIt, end()); 472 } 473 474 // Remember assignements because val# ids are changing. 475 SmallVector<unsigned, 16> OtherAssignments; 476 for (iterator I = Other.begin(), E = Other.end(); I != E; ++I) 477 OtherAssignments.push_back(RHSValNoAssignments[I->valno->id]); 478 479 // Update val# info. Renumber them and make sure they all belong to this 480 // LiveInterval now. Also remove dead val#'s. 481 unsigned NumValNos = 0; 482 for (unsigned i = 0; i < NumNewVals; ++i) { 483 VNInfo *VNI = NewVNInfo[i]; 484 if (VNI) { 485 if (NumValNos >= NumVals) 486 valnos.push_back(VNI); 487 else 488 valnos[NumValNos] = VNI; 489 VNI->id = NumValNos++; // Renumber val#. 490 } 491 } 492 if (NumNewVals < NumVals) 493 valnos.resize(NumNewVals); // shrinkify 494 495 // Okay, now insert the RHS live ranges into the LHS. 496 unsigned RangeNo = 0; 497 for (iterator I = Other.begin(), E = Other.end(); I != E; ++I, ++RangeNo) { 498 // Map the valno in the other live range to the current live range. 499 I->valno = NewVNInfo[OtherAssignments[RangeNo]]; 500 assert(I->valno && "Adding a dead range?"); 501 } 502 mergeIntervalRanges(Other); 503 504 verify(); 505} 506 507/// \brief Helper function for merging in another LiveInterval's ranges. 508/// 509/// This is a helper routine implementing an efficient merge of another 510/// LiveIntervals ranges into the current interval. 511/// 512/// \param LHSValNo If non-NULL, set as the new value number for every range 513/// from RHS which is merged into the LHS. 514/// \param RHSValNo If non-NULL, then only ranges in RHS whose original value 515/// number maches this value number will be merged into LHS. 516void LiveInterval::mergeIntervalRanges(const LiveInterval &RHS, 517 VNInfo *LHSValNo, 518 const VNInfo *RHSValNo) { 519 if (RHS.empty()) 520 return; 521 522 // Ensure we're starting with a valid range. Note that we don't verify RHS 523 // because it may have had its value numbers adjusted in preparation for 524 // merging. 525 verify(); 526 527 // The strategy for merging these efficiently is as follows: 528 // 529 // 1) Find the beginning of the impacted ranges in the LHS. 530 // 2) Create a new, merged sub-squence of ranges merging from the position in 531 // #1 until either LHS or RHS is exhausted. Any part of LHS between RHS 532 // entries being merged will be copied into this new range. 533 // 3) Replace the relevant section in LHS with these newly merged ranges. 534 // 4) Append any remaning ranges from RHS if LHS is exhausted in #2. 535 // 536 // We don't follow the typical in-place merge strategy for sorted ranges of 537 // appending the new ranges to the back and then using std::inplace_merge 538 // because one step of the merge can both mutate the original elements and 539 // remove elements from the original. Essentially, because the merge includes 540 // collapsing overlapping ranges, a more complex approach is required. 541 542 // We do an initial binary search to optimize for a common pattern: a large 543 // LHS, and a very small RHS. 544 const_iterator RI = RHS.begin(), RE = RHS.end(); 545 iterator LE = end(), LI = std::upper_bound(begin(), LE, *RI); 546 547 // Merge into NewRanges until one of the ranges is exhausted. 548 SmallVector<LiveRange, 4> NewRanges; 549 550 // Keep track of where to begin the replacement. 551 iterator ReplaceI = LI; 552 553 // If there are preceding ranges in the LHS, put the last one into NewRanges 554 // so we can optionally extend it. Adjust the replacement point accordingly. 555 if (LI != begin()) { 556 ReplaceI = llvm::prior(LI); 557 NewRanges.push_back(*ReplaceI); 558 } 559 560 // Now loop over the mergable portions of both LHS and RHS, merging into 561 // NewRanges. 562 while (LI != LE && RI != RE) { 563 // Skip incoming ranges with the wrong value. 564 if (RHSValNo && RI->valno != RHSValNo) { 565 ++RI; 566 continue; 567 } 568 569 // Select the first range. We pick the earliest start point, and then the 570 // largest range. 571 LiveRange R = *LI; 572 if (*RI < R) { 573 R = *RI; 574 ++RI; 575 if (LHSValNo) 576 R.valno = LHSValNo; 577 } else { 578 ++LI; 579 } 580 581 if (NewRanges.empty()) { 582 NewRanges.push_back(R); 583 continue; 584 } 585 586 LiveRange &LastR = NewRanges.back(); 587 if (R.valno == LastR.valno) { 588 // Try to merge this range into the last one. 589 if (R.start <= LastR.end) { 590 LastR.end = std::max(LastR.end, R.end); 591 continue; 592 } 593 } else { 594 // We can't merge ranges across a value number. 595 assert(R.start >= LastR.end && 596 "Cannot overlap two LiveRanges with differing ValID's"); 597 } 598 599 // If all else fails, just append the range. 600 NewRanges.push_back(R); 601 } 602 assert(RI == RE || LI == LE); 603 604 // Check for being able to merge into the trailing sequence of ranges on the LHS. 605 if (!NewRanges.empty()) 606 for (; LI != LE && (LI->valno == NewRanges.back().valno && 607 LI->start <= NewRanges.back().end); 608 ++LI) 609 NewRanges.back().end = std::max(NewRanges.back().end, LI->end); 610 611 // Replace the ranges in the LHS with the newly merged ones. It would be 612 // really nice if there were a move-supporting 'replace' directly in 613 // SmallVector, but as there is not, we pay the price of copies to avoid 614 // wasted memory allocations. 615 SmallVectorImpl<LiveRange>::iterator NRI = NewRanges.begin(), 616 NRE = NewRanges.end(); 617 for (; ReplaceI != LI && NRI != NRE; ++ReplaceI, ++NRI) 618 *ReplaceI = *NRI; 619 if (NRI == NRE) 620 ranges.erase(ReplaceI, LI); 621 else 622 ranges.insert(LI, NRI, NRE); 623 624 // And finally insert any trailing end of RHS (if we have one). 625 for (; RI != RE; ++RI) { 626 LiveRange R = *RI; 627 if (LHSValNo) 628 R.valno = LHSValNo; 629 if (!ranges.empty() && 630 ranges.back().valno == R.valno && R.start <= ranges.back().end) 631 ranges.back().end = std::max(ranges.back().end, R.end); 632 else 633 ranges.push_back(R); 634 } 635 636 // Ensure we finished with a valid new sequence of ranges. 637 verify(); 638} 639 640/// MergeRangesInAsValue - Merge all of the intervals in RHS into this live 641/// interval as the specified value number. The LiveRanges in RHS are 642/// allowed to overlap with LiveRanges in the current interval, but only if 643/// the overlapping LiveRanges have the specified value number. 644void LiveInterval::MergeRangesInAsValue(const LiveInterval &RHS, 645 VNInfo *LHSValNo) { 646 mergeIntervalRanges(RHS, LHSValNo); 647} 648 649/// MergeValueInAsValue - Merge all of the live ranges of a specific val# 650/// in RHS into this live interval as the specified value number. 651/// The LiveRanges in RHS are allowed to overlap with LiveRanges in the 652/// current interval, it will replace the value numbers of the overlaped 653/// live ranges with the specified value number. 654void LiveInterval::MergeValueInAsValue(const LiveInterval &RHS, 655 const VNInfo *RHSValNo, 656 VNInfo *LHSValNo) { 657 mergeIntervalRanges(RHS, LHSValNo, RHSValNo); 658} 659 660/// MergeValueNumberInto - This method is called when two value nubmers 661/// are found to be equivalent. This eliminates V1, replacing all 662/// LiveRanges with the V1 value number with the V2 value number. This can 663/// cause merging of V1/V2 values numbers and compaction of the value space. 664VNInfo* LiveInterval::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) { 665 assert(V1 != V2 && "Identical value#'s are always equivalent!"); 666 667 // This code actually merges the (numerically) larger value number into the 668 // smaller value number, which is likely to allow us to compactify the value 669 // space. The only thing we have to be careful of is to preserve the 670 // instruction that defines the result value. 671 672 // Make sure V2 is smaller than V1. 673 if (V1->id < V2->id) { 674 V1->copyFrom(*V2); 675 std::swap(V1, V2); 676 } 677 678 // Merge V1 live ranges into V2. 679 for (iterator I = begin(); I != end(); ) { 680 iterator LR = I++; 681 if (LR->valno != V1) continue; // Not a V1 LiveRange. 682 683 // Okay, we found a V1 live range. If it had a previous, touching, V2 live 684 // range, extend it. 685 if (LR != begin()) { 686 iterator Prev = LR-1; 687 if (Prev->valno == V2 && Prev->end == LR->start) { 688 Prev->end = LR->end; 689 690 // Erase this live-range. 691 ranges.erase(LR); 692 I = Prev+1; 693 LR = Prev; 694 } 695 } 696 697 // Okay, now we have a V1 or V2 live range that is maximally merged forward. 698 // Ensure that it is a V2 live-range. 699 LR->valno = V2; 700 701 // If we can merge it into later V2 live ranges, do so now. We ignore any 702 // following V1 live ranges, as they will be merged in subsequent iterations 703 // of the loop. 704 if (I != end()) { 705 if (I->start == LR->end && I->valno == V2) { 706 LR->end = I->end; 707 ranges.erase(I); 708 I = LR+1; 709 } 710 } 711 } 712 713 // Now that V1 is dead, remove it. 714 markValNoForDeletion(V1); 715 716 return V2; 717} 718 719void LiveInterval::Copy(const LiveInterval &RHS, 720 MachineRegisterInfo *MRI, 721 VNInfo::Allocator &VNInfoAllocator) { 722 ranges.clear(); 723 valnos.clear(); 724 std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(RHS.reg); 725 MRI->setRegAllocationHint(reg, Hint.first, Hint.second); 726 727 weight = RHS.weight; 728 for (unsigned i = 0, e = RHS.getNumValNums(); i != e; ++i) { 729 const VNInfo *VNI = RHS.getValNumInfo(i); 730 createValueCopy(VNI, VNInfoAllocator); 731 } 732 for (unsigned i = 0, e = RHS.ranges.size(); i != e; ++i) { 733 const LiveRange &LR = RHS.ranges[i]; 734 addRange(LiveRange(LR.start, LR.end, getValNumInfo(LR.valno->id))); 735 } 736 737 verify(); 738} 739 740unsigned LiveInterval::getSize() const { 741 unsigned Sum = 0; 742 for (const_iterator I = begin(), E = end(); I != E; ++I) 743 Sum += I->start.distance(I->end); 744 return Sum; 745} 746 747raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange &LR) { 748 return os << '[' << LR.start << ',' << LR.end << ':' << LR.valno->id << ")"; 749} 750 751void LiveRange::dump() const { 752 dbgs() << *this << "\n"; 753} 754 755void LiveInterval::print(raw_ostream &OS) const { 756 if (empty()) 757 OS << "EMPTY"; 758 else { 759 for (LiveInterval::Ranges::const_iterator I = ranges.begin(), 760 E = ranges.end(); I != E; ++I) { 761 OS << *I; 762 assert(I->valno == getValNumInfo(I->valno->id) && "Bad VNInfo"); 763 } 764 } 765 766 // Print value number info. 767 if (getNumValNums()) { 768 OS << " "; 769 unsigned vnum = 0; 770 for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e; 771 ++i, ++vnum) { 772 const VNInfo *vni = *i; 773 if (vnum) OS << " "; 774 OS << vnum << "@"; 775 if (vni->isUnused()) { 776 OS << "x"; 777 } else { 778 OS << vni->def; 779 if (vni->isPHIDef()) 780 OS << "-phi"; 781 } 782 } 783 } 784} 785 786void LiveInterval::dump() const { 787 dbgs() << *this << "\n"; 788} 789 790#ifndef NDEBUG 791void LiveInterval::verify() const { 792 for (const_iterator I = begin(), E = end(); I != E; ++I) { 793 assert(I->start.isValid()); 794 assert(I->end.isValid()); 795 assert(I->start < I->end); 796 assert(I->valno != 0); 797 assert(I->valno == valnos[I->valno->id]); 798 if (llvm::next(I) != E) { 799 assert(I->end <= llvm::next(I)->start); 800 if (I->end == llvm::next(I)->start) 801 assert(I->valno != llvm::next(I)->valno); 802 } 803 } 804} 805#endif 806 807 808void LiveRange::print(raw_ostream &os) const { 809 os << *this; 810} 811 812unsigned ConnectedVNInfoEqClasses::Classify(const LiveInterval *LI) { 813 // Create initial equivalence classes. 814 EqClass.clear(); 815 EqClass.grow(LI->getNumValNums()); 816 817 const VNInfo *used = 0, *unused = 0; 818 819 // Determine connections. 820 for (LiveInterval::const_vni_iterator I = LI->vni_begin(), E = LI->vni_end(); 821 I != E; ++I) { 822 const VNInfo *VNI = *I; 823 // Group all unused values into one class. 824 if (VNI->isUnused()) { 825 if (unused) 826 EqClass.join(unused->id, VNI->id); 827 unused = VNI; 828 continue; 829 } 830 used = VNI; 831 if (VNI->isPHIDef()) { 832 const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 833 assert(MBB && "Phi-def has no defining MBB"); 834 // Connect to values live out of predecessors. 835 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), 836 PE = MBB->pred_end(); PI != PE; ++PI) 837 if (const VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI))) 838 EqClass.join(VNI->id, PVNI->id); 839 } else { 840 // Normal value defined by an instruction. Check for two-addr redef. 841 // FIXME: This could be coincidental. Should we really check for a tied 842 // operand constraint? 843 // Note that VNI->def may be a use slot for an early clobber def. 844 if (const VNInfo *UVNI = LI->getVNInfoBefore(VNI->def)) 845 EqClass.join(VNI->id, UVNI->id); 846 } 847 } 848 849 // Lump all the unused values in with the last used value. 850 if (used && unused) 851 EqClass.join(used->id, unused->id); 852 853 EqClass.compress(); 854 return EqClass.getNumClasses(); 855} 856 857void ConnectedVNInfoEqClasses::Distribute(LiveInterval *LIV[], 858 MachineRegisterInfo &MRI) { 859 assert(LIV[0] && "LIV[0] must be set"); 860 LiveInterval &LI = *LIV[0]; 861 862 // Rewrite instructions. 863 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg), 864 RE = MRI.reg_end(); RI != RE;) { 865 MachineOperand &MO = RI.getOperand(); 866 MachineInstr *MI = MO.getParent(); 867 ++RI; 868 // DBG_VALUE instructions should have been eliminated earlier. 869 LiveRangeQuery LRQ(LI, LIS.getInstructionIndex(MI)); 870 const VNInfo *VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined(); 871 // In the case of an <undef> use that isn't tied to any def, VNI will be 872 // NULL. If the use is tied to a def, VNI will be the defined value. 873 if (!VNI) 874 continue; 875 MO.setReg(LIV[getEqClass(VNI)]->reg); 876 } 877 878 // Move runs to new intervals. 879 LiveInterval::iterator J = LI.begin(), E = LI.end(); 880 while (J != E && EqClass[J->valno->id] == 0) 881 ++J; 882 for (LiveInterval::iterator I = J; I != E; ++I) { 883 if (unsigned eq = EqClass[I->valno->id]) { 884 assert((LIV[eq]->empty() || LIV[eq]->expiredAt(I->start)) && 885 "New intervals should be empty"); 886 LIV[eq]->ranges.push_back(*I); 887 } else 888 *J++ = *I; 889 } 890 LI.ranges.erase(J, E); 891 892 // Transfer VNInfos to their new owners and renumber them. 893 unsigned j = 0, e = LI.getNumValNums(); 894 while (j != e && EqClass[j] == 0) 895 ++j; 896 for (unsigned i = j; i != e; ++i) { 897 VNInfo *VNI = LI.getValNumInfo(i); 898 if (unsigned eq = EqClass[i]) { 899 VNI->id = LIV[eq]->getNumValNums(); 900 LIV[eq]->valnos.push_back(VNI); 901 } else { 902 VNI->id = j; 903 LI.valnos[j++] = VNI; 904 } 905 } 906 LI.valnos.resize(j); 907} 908