LiveInterval.cpp revision e42561ad0c98b132515db89f2994c96d93e9587b
1//===-- LiveInterval.cpp - Live Interval Representation -------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the LiveRange and LiveInterval classes. Given some 11// numbering of each the machine instructions an interval [i, j) is said to be a 12// live interval for register v if there is no instruction with number j' > j 13// such that v is live at j' and there is no instruction with number i' < i such 14// that v is live at i'. In this implementation intervals can have holes, 15// i.e. an interval might look like [1,20), [50,65), [1000,1001). Each 16// individual range is represented as an instance of LiveRange, and the whole 17// interval is represented as an instance of LiveInterval. 18// 19//===----------------------------------------------------------------------===// 20 21#include "llvm/CodeGen/LiveInterval.h" 22#include "llvm/CodeGen/LiveIntervalAnalysis.h" 23#include "llvm/CodeGen/MachineRegisterInfo.h" 24#include "llvm/ADT/DenseMap.h" 25#include "llvm/ADT/SmallSet.h" 26#include "llvm/ADT/STLExtras.h" 27#include "llvm/Support/Debug.h" 28#include "llvm/Support/raw_ostream.h" 29#include "llvm/Target/TargetRegisterInfo.h" 30#include "RegisterCoalescer.h" 31#include <algorithm> 32using namespace llvm; 33 34LiveInterval::iterator LiveInterval::find(SlotIndex Pos) { 35 // This algorithm is basically std::upper_bound. 36 // Unfortunately, std::upper_bound cannot be used with mixed types until we 37 // adopt C++0x. Many libraries can do it, but not all. 38 if (empty() || Pos >= endIndex()) 39 return end(); 40 iterator I = begin(); 41 size_t Len = ranges.size(); 42 do { 43 size_t Mid = Len >> 1; 44 if (Pos < I[Mid].end) 45 Len = Mid; 46 else 47 I += Mid + 1, Len -= Mid + 1; 48 } while (Len); 49 return I; 50} 51 52VNInfo *LiveInterval::createDeadDef(SlotIndex Def, 53 VNInfo::Allocator &VNInfoAllocator) { 54 assert(!Def.isDead() && "Cannot define a value at the dead slot"); 55 iterator I = find(Def); 56 if (I == end()) { 57 VNInfo *VNI = getNextValue(Def, VNInfoAllocator); 58 ranges.push_back(LiveRange(Def, Def.getDeadSlot(), VNI)); 59 return VNI; 60 } 61 if (SlotIndex::isSameInstr(Def, I->start)) { 62 assert(I->valno->def == I->start && "Inconsistent existing value def"); 63 64 // It is possible to have both normal and early-clobber defs of the same 65 // register on an instruction. It doesn't make a lot of sense, but it is 66 // possible to specify in inline assembly. 67 // 68 // Just convert everything to early-clobber. 69 Def = std::min(Def, I->start); 70 if (Def != I->start) 71 I->start = I->valno->def = Def; 72 return I->valno; 73 } 74 assert(SlotIndex::isEarlierInstr(Def, I->start) && "Already live at def"); 75 VNInfo *VNI = getNextValue(Def, VNInfoAllocator); 76 ranges.insert(I, LiveRange(Def, Def.getDeadSlot(), VNI)); 77 return VNI; 78} 79 80// overlaps - Return true if the intersection of the two live intervals is 81// not empty. 82// 83// An example for overlaps(): 84// 85// 0: A = ... 86// 4: B = ... 87// 8: C = A + B ;; last use of A 88// 89// The live intervals should look like: 90// 91// A = [3, 11) 92// B = [7, x) 93// C = [11, y) 94// 95// A->overlaps(C) should return false since we want to be able to join 96// A and C. 97// 98bool LiveInterval::overlapsFrom(const LiveInterval& other, 99 const_iterator StartPos) const { 100 assert(!empty() && "empty interval"); 101 const_iterator i = begin(); 102 const_iterator ie = end(); 103 const_iterator j = StartPos; 104 const_iterator je = other.end(); 105 106 assert((StartPos->start <= i->start || StartPos == other.begin()) && 107 StartPos != other.end() && "Bogus start position hint!"); 108 109 if (i->start < j->start) { 110 i = std::upper_bound(i, ie, j->start); 111 if (i != ranges.begin()) --i; 112 } else if (j->start < i->start) { 113 ++StartPos; 114 if (StartPos != other.end() && StartPos->start <= i->start) { 115 assert(StartPos < other.end() && i < end()); 116 j = std::upper_bound(j, je, i->start); 117 if (j != other.ranges.begin()) --j; 118 } 119 } else { 120 return true; 121 } 122 123 if (j == je) return false; 124 125 while (i != ie) { 126 if (i->start > j->start) { 127 std::swap(i, j); 128 std::swap(ie, je); 129 } 130 131 if (i->end > j->start) 132 return true; 133 ++i; 134 } 135 136 return false; 137} 138 139bool LiveInterval::overlaps(const LiveInterval &Other, 140 const CoalescerPair &CP, 141 const SlotIndexes &Indexes) const { 142 assert(!empty() && "empty interval"); 143 if (Other.empty()) 144 return false; 145 146 // Use binary searches to find initial positions. 147 const_iterator I = find(Other.beginIndex()); 148 const_iterator IE = end(); 149 if (I == IE) 150 return false; 151 const_iterator J = Other.find(I->start); 152 const_iterator JE = Other.end(); 153 if (J == JE) 154 return false; 155 156 for (;;) { 157 // J has just been advanced to satisfy: 158 assert(J->end >= I->start); 159 // Check for an overlap. 160 if (J->start < I->end) { 161 // I and J are overlapping. Find the later start. 162 SlotIndex Def = std::max(I->start, J->start); 163 // Allow the overlap if Def is a coalescable copy. 164 if (Def.isBlock() || 165 !CP.isCoalescable(Indexes.getInstructionFromIndex(Def))) 166 return true; 167 } 168 // Advance the iterator that ends first to check for more overlaps. 169 if (J->end > I->end) { 170 std::swap(I, J); 171 std::swap(IE, JE); 172 } 173 // Advance J until J->end >= I->start. 174 do 175 if (++J == JE) 176 return false; 177 while (J->end < I->start); 178 } 179} 180 181/// overlaps - Return true if the live interval overlaps a range specified 182/// by [Start, End). 183bool LiveInterval::overlaps(SlotIndex Start, SlotIndex End) const { 184 assert(Start < End && "Invalid range"); 185 const_iterator I = std::lower_bound(begin(), end(), End); 186 return I != begin() && (--I)->end > Start; 187} 188 189 190/// ValNo is dead, remove it. If it is the largest value number, just nuke it 191/// (and any other deleted values neighboring it), otherwise mark it as ~1U so 192/// it can be nuked later. 193void LiveInterval::markValNoForDeletion(VNInfo *ValNo) { 194 if (ValNo->id == getNumValNums()-1) { 195 do { 196 valnos.pop_back(); 197 } while (!valnos.empty() && valnos.back()->isUnused()); 198 } else { 199 ValNo->markUnused(); 200 } 201} 202 203/// RenumberValues - Renumber all values in order of appearance and delete the 204/// remaining unused values. 205void LiveInterval::RenumberValues(LiveIntervals &lis) { 206 SmallPtrSet<VNInfo*, 8> Seen; 207 valnos.clear(); 208 for (const_iterator I = begin(), E = end(); I != E; ++I) { 209 VNInfo *VNI = I->valno; 210 if (!Seen.insert(VNI)) 211 continue; 212 assert(!VNI->isUnused() && "Unused valno used by live range"); 213 VNI->id = (unsigned)valnos.size(); 214 valnos.push_back(VNI); 215 } 216} 217 218/// extendIntervalEndTo - This method is used when we want to extend the range 219/// specified by I to end at the specified endpoint. To do this, we should 220/// merge and eliminate all ranges that this will overlap with. The iterator is 221/// not invalidated. 222void LiveInterval::extendIntervalEndTo(Ranges::iterator I, SlotIndex NewEnd) { 223 assert(I != ranges.end() && "Not a valid interval!"); 224 VNInfo *ValNo = I->valno; 225 226 // Search for the first interval that we can't merge with. 227 Ranges::iterator MergeTo = llvm::next(I); 228 for (; MergeTo != ranges.end() && NewEnd >= MergeTo->end; ++MergeTo) { 229 assert(MergeTo->valno == ValNo && "Cannot merge with differing values!"); 230 } 231 232 // If NewEnd was in the middle of an interval, make sure to get its endpoint. 233 I->end = std::max(NewEnd, prior(MergeTo)->end); 234 235 // If the newly formed range now touches the range after it and if they have 236 // the same value number, merge the two ranges into one range. 237 if (MergeTo != ranges.end() && MergeTo->start <= I->end && 238 MergeTo->valno == ValNo) { 239 I->end = MergeTo->end; 240 ++MergeTo; 241 } 242 243 // Erase any dead ranges. 244 ranges.erase(llvm::next(I), MergeTo); 245} 246 247 248/// extendIntervalStartTo - This method is used when we want to extend the range 249/// specified by I to start at the specified endpoint. To do this, we should 250/// merge and eliminate all ranges that this will overlap with. 251LiveInterval::Ranges::iterator 252LiveInterval::extendIntervalStartTo(Ranges::iterator I, SlotIndex NewStart) { 253 assert(I != ranges.end() && "Not a valid interval!"); 254 VNInfo *ValNo = I->valno; 255 256 // Search for the first interval that we can't merge with. 257 Ranges::iterator MergeTo = I; 258 do { 259 if (MergeTo == ranges.begin()) { 260 I->start = NewStart; 261 ranges.erase(MergeTo, I); 262 return I; 263 } 264 assert(MergeTo->valno == ValNo && "Cannot merge with differing values!"); 265 --MergeTo; 266 } while (NewStart <= MergeTo->start); 267 268 // If we start in the middle of another interval, just delete a range and 269 // extend that interval. 270 if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) { 271 MergeTo->end = I->end; 272 } else { 273 // Otherwise, extend the interval right after. 274 ++MergeTo; 275 MergeTo->start = NewStart; 276 MergeTo->end = I->end; 277 } 278 279 ranges.erase(llvm::next(MergeTo), llvm::next(I)); 280 return MergeTo; 281} 282 283LiveInterval::iterator 284LiveInterval::addRangeFrom(LiveRange LR, iterator From) { 285 SlotIndex Start = LR.start, End = LR.end; 286 iterator it = std::upper_bound(From, ranges.end(), Start); 287 288 // If the inserted interval starts in the middle or right at the end of 289 // another interval, just extend that interval to contain the range of LR. 290 if (it != ranges.begin()) { 291 iterator B = prior(it); 292 if (LR.valno == B->valno) { 293 if (B->start <= Start && B->end >= Start) { 294 extendIntervalEndTo(B, End); 295 return B; 296 } 297 } else { 298 // Check to make sure that we are not overlapping two live ranges with 299 // different valno's. 300 assert(B->end <= Start && 301 "Cannot overlap two LiveRanges with differing ValID's" 302 " (did you def the same reg twice in a MachineInstr?)"); 303 } 304 } 305 306 // Otherwise, if this range ends in the middle of, or right next to, another 307 // interval, merge it into that interval. 308 if (it != ranges.end()) { 309 if (LR.valno == it->valno) { 310 if (it->start <= End) { 311 it = extendIntervalStartTo(it, Start); 312 313 // If LR is a complete superset of an interval, we may need to grow its 314 // endpoint as well. 315 if (End > it->end) 316 extendIntervalEndTo(it, End); 317 return it; 318 } 319 } else { 320 // Check to make sure that we are not overlapping two live ranges with 321 // different valno's. 322 assert(it->start >= End && 323 "Cannot overlap two LiveRanges with differing ValID's"); 324 } 325 } 326 327 // Otherwise, this is just a new range that doesn't interact with anything. 328 // Insert it. 329 return ranges.insert(it, LR); 330} 331 332/// extendInBlock - If this interval is live before Kill in the basic 333/// block that starts at StartIdx, extend it to be live up to Kill and return 334/// the value. If there is no live range before Kill, return NULL. 335VNInfo *LiveInterval::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) { 336 if (empty()) 337 return 0; 338 iterator I = std::upper_bound(begin(), end(), Kill.getPrevSlot()); 339 if (I == begin()) 340 return 0; 341 --I; 342 if (I->end <= StartIdx) 343 return 0; 344 if (I->end < Kill) 345 extendIntervalEndTo(I, Kill); 346 return I->valno; 347} 348 349/// removeRange - Remove the specified range from this interval. Note that 350/// the range must be in a single LiveRange in its entirety. 351void LiveInterval::removeRange(SlotIndex Start, SlotIndex End, 352 bool RemoveDeadValNo) { 353 // Find the LiveRange containing this span. 354 Ranges::iterator I = find(Start); 355 assert(I != ranges.end() && "Range is not in interval!"); 356 assert(I->containsRange(Start, End) && "Range is not entirely in interval!"); 357 358 // If the span we are removing is at the start of the LiveRange, adjust it. 359 VNInfo *ValNo = I->valno; 360 if (I->start == Start) { 361 if (I->end == End) { 362 if (RemoveDeadValNo) { 363 // Check if val# is dead. 364 bool isDead = true; 365 for (const_iterator II = begin(), EE = end(); II != EE; ++II) 366 if (II != I && II->valno == ValNo) { 367 isDead = false; 368 break; 369 } 370 if (isDead) { 371 // Now that ValNo is dead, remove it. 372 markValNoForDeletion(ValNo); 373 } 374 } 375 376 ranges.erase(I); // Removed the whole LiveRange. 377 } else 378 I->start = End; 379 return; 380 } 381 382 // Otherwise if the span we are removing is at the end of the LiveRange, 383 // adjust the other way. 384 if (I->end == End) { 385 I->end = Start; 386 return; 387 } 388 389 // Otherwise, we are splitting the LiveRange into two pieces. 390 SlotIndex OldEnd = I->end; 391 I->end = Start; // Trim the old interval. 392 393 // Insert the new one. 394 ranges.insert(llvm::next(I), LiveRange(End, OldEnd, ValNo)); 395} 396 397/// removeValNo - Remove all the ranges defined by the specified value#. 398/// Also remove the value# from value# list. 399void LiveInterval::removeValNo(VNInfo *ValNo) { 400 if (empty()) return; 401 Ranges::iterator I = ranges.end(); 402 Ranges::iterator E = ranges.begin(); 403 do { 404 --I; 405 if (I->valno == ValNo) 406 ranges.erase(I); 407 } while (I != E); 408 // Now that ValNo is dead, remove it. 409 markValNoForDeletion(ValNo); 410} 411 412/// join - Join two live intervals (this, and other) together. This applies 413/// mappings to the value numbers in the LHS/RHS intervals as specified. If 414/// the intervals are not joinable, this aborts. 415void LiveInterval::join(LiveInterval &Other, 416 const int *LHSValNoAssignments, 417 const int *RHSValNoAssignments, 418 SmallVector<VNInfo*, 16> &NewVNInfo, 419 MachineRegisterInfo *MRI) { 420 verify(); 421 422 // Determine if any of our live range values are mapped. This is uncommon, so 423 // we want to avoid the interval scan if not. 424 bool MustMapCurValNos = false; 425 unsigned NumVals = getNumValNums(); 426 unsigned NumNewVals = NewVNInfo.size(); 427 for (unsigned i = 0; i != NumVals; ++i) { 428 unsigned LHSValID = LHSValNoAssignments[i]; 429 if (i != LHSValID || 430 (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) { 431 MustMapCurValNos = true; 432 break; 433 } 434 } 435 436 // If we have to apply a mapping to our base interval assignment, rewrite it 437 // now. 438 if (MustMapCurValNos && !empty()) { 439 // Map the first live range. 440 441 iterator OutIt = begin(); 442 OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]]; 443 for (iterator I = next(OutIt), E = end(); I != E; ++I) { 444 VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]]; 445 assert(nextValNo != 0 && "Huh?"); 446 447 // If this live range has the same value # as its immediate predecessor, 448 // and if they are neighbors, remove one LiveRange. This happens when we 449 // have [0,4:0)[4,7:1) and map 0/1 onto the same value #. 450 if (OutIt->valno == nextValNo && OutIt->end == I->start) { 451 OutIt->end = I->end; 452 } else { 453 // Didn't merge. Move OutIt to the next interval, 454 ++OutIt; 455 OutIt->valno = nextValNo; 456 if (OutIt != I) { 457 OutIt->start = I->start; 458 OutIt->end = I->end; 459 } 460 } 461 } 462 // If we merge some live ranges, chop off the end. 463 ++OutIt; 464 ranges.erase(OutIt, end()); 465 } 466 467 // Remember assignements because val# ids are changing. 468 SmallVector<unsigned, 16> OtherAssignments; 469 for (iterator I = Other.begin(), E = Other.end(); I != E; ++I) 470 OtherAssignments.push_back(RHSValNoAssignments[I->valno->id]); 471 472 // Update val# info. Renumber them and make sure they all belong to this 473 // LiveInterval now. Also remove dead val#'s. 474 unsigned NumValNos = 0; 475 for (unsigned i = 0; i < NumNewVals; ++i) { 476 VNInfo *VNI = NewVNInfo[i]; 477 if (VNI) { 478 if (NumValNos >= NumVals) 479 valnos.push_back(VNI); 480 else 481 valnos[NumValNos] = VNI; 482 VNI->id = NumValNos++; // Renumber val#. 483 } 484 } 485 if (NumNewVals < NumVals) 486 valnos.resize(NumNewVals); // shrinkify 487 488 // Okay, now insert the RHS live ranges into the LHS. 489 unsigned RangeNo = 0; 490 for (iterator I = Other.begin(), E = Other.end(); I != E; ++I, ++RangeNo) { 491 // Map the valno in the other live range to the current live range. 492 I->valno = NewVNInfo[OtherAssignments[RangeNo]]; 493 assert(I->valno && "Adding a dead range?"); 494 } 495 mergeIntervalRanges(Other); 496 497 verify(); 498} 499 500/// \brief Helper function for merging in another LiveInterval's ranges. 501/// 502/// This is a helper routine implementing an efficient merge of another 503/// LiveIntervals ranges into the current interval. 504/// 505/// \param LHSValNo If non-NULL, set as the new value number for every range 506/// from RHS which is merged into the LHS. 507/// \param RHSValNo If non-NULL, then only ranges in RHS whose original value 508/// number maches this value number will be merged into LHS. 509void LiveInterval::mergeIntervalRanges(const LiveInterval &RHS, 510 VNInfo *LHSValNo, 511 const VNInfo *RHSValNo) { 512 if (RHS.empty()) 513 return; 514 515 // Ensure we're starting with a valid range. Note that we don't verify RHS 516 // because it may have had its value numbers adjusted in preparation for 517 // merging. 518 verify(); 519 520 // The strategy for merging these efficiently is as follows: 521 // 522 // 1) Find the beginning of the impacted ranges in the LHS. 523 // 2) Create a new, merged sub-squence of ranges merging from the position in 524 // #1 until either LHS or RHS is exhausted. Any part of LHS between RHS 525 // entries being merged will be copied into this new range. 526 // 3) Replace the relevant section in LHS with these newly merged ranges. 527 // 4) Append any remaning ranges from RHS if LHS is exhausted in #2. 528 // 529 // We don't follow the typical in-place merge strategy for sorted ranges of 530 // appending the new ranges to the back and then using std::inplace_merge 531 // because one step of the merge can both mutate the original elements and 532 // remove elements from the original. Essentially, because the merge includes 533 // collapsing overlapping ranges, a more complex approach is required. 534 535 // We do an initial binary search to optimize for a common pattern: a large 536 // LHS, and a very small RHS. 537 const_iterator RI = RHS.begin(), RE = RHS.end(); 538 iterator LE = end(), LI = std::upper_bound(begin(), LE, *RI); 539 540 // Merge into NewRanges until one of the ranges is exhausted. 541 SmallVector<LiveRange, 4> NewRanges; 542 543 // Keep track of where to begin the replacement. 544 iterator ReplaceI = LI; 545 546 // If there are preceding ranges in the LHS, put the last one into NewRanges 547 // so we can optionally extend it. Adjust the replacement point accordingly. 548 if (LI != begin()) { 549 ReplaceI = llvm::prior(LI); 550 NewRanges.push_back(*ReplaceI); 551 } 552 553 // Now loop over the mergable portions of both LHS and RHS, merging into 554 // NewRanges. 555 while (LI != LE && RI != RE) { 556 // Skip incoming ranges with the wrong value. 557 if (RHSValNo && RI->valno != RHSValNo) { 558 ++RI; 559 continue; 560 } 561 562 // Select the first range. We pick the earliest start point, and then the 563 // largest range. 564 LiveRange R = *LI; 565 if (*RI < R) { 566 R = *RI; 567 ++RI; 568 if (LHSValNo) 569 R.valno = LHSValNo; 570 } else { 571 ++LI; 572 } 573 574 if (NewRanges.empty()) { 575 NewRanges.push_back(R); 576 continue; 577 } 578 579 LiveRange &LastR = NewRanges.back(); 580 if (R.valno == LastR.valno) { 581 // Try to merge this range into the last one. 582 if (R.start <= LastR.end) { 583 LastR.end = std::max(LastR.end, R.end); 584 continue; 585 } 586 } else { 587 // We can't merge ranges across a value number. 588 assert(R.start >= LastR.end && 589 "Cannot overlap two LiveRanges with differing ValID's"); 590 } 591 592 // If all else fails, just append the range. 593 NewRanges.push_back(R); 594 } 595 assert(RI == RE || LI == LE); 596 597 // Check for being able to merge into the trailing sequence of ranges on the LHS. 598 if (!NewRanges.empty()) 599 for (; LI != LE && (LI->valno == NewRanges.back().valno && 600 LI->start <= NewRanges.back().end); 601 ++LI) 602 NewRanges.back().end = std::max(NewRanges.back().end, LI->end); 603 604 // Replace the ranges in the LHS with the newly merged ones. It would be 605 // really nice if there were a move-supporting 'replace' directly in 606 // SmallVector, but as there is not, we pay the price of copies to avoid 607 // wasted memory allocations. 608 SmallVectorImpl<LiveRange>::iterator NRI = NewRanges.begin(), 609 NRE = NewRanges.end(); 610 for (; ReplaceI != LI && NRI != NRE; ++ReplaceI, ++NRI) 611 *ReplaceI = *NRI; 612 if (NRI == NRE) 613 ranges.erase(ReplaceI, LI); 614 else 615 ranges.insert(LI, NRI, NRE); 616 617 // And finally insert any trailing end of RHS (if we have one). 618 for (; RI != RE; ++RI) { 619 LiveRange R = *RI; 620 if (LHSValNo) 621 R.valno = LHSValNo; 622 if (!ranges.empty() && 623 ranges.back().valno == R.valno && R.start <= ranges.back().end) 624 ranges.back().end = std::max(ranges.back().end, R.end); 625 else 626 ranges.push_back(R); 627 } 628 629 // Ensure we finished with a valid new sequence of ranges. 630 verify(); 631} 632 633/// MergeRangesInAsValue - Merge all of the intervals in RHS into this live 634/// interval as the specified value number. The LiveRanges in RHS are 635/// allowed to overlap with LiveRanges in the current interval, but only if 636/// the overlapping LiveRanges have the specified value number. 637void LiveInterval::MergeRangesInAsValue(const LiveInterval &RHS, 638 VNInfo *LHSValNo) { 639 mergeIntervalRanges(RHS, LHSValNo); 640} 641 642/// MergeValueInAsValue - Merge all of the live ranges of a specific val# 643/// in RHS into this live interval as the specified value number. 644/// The LiveRanges in RHS are allowed to overlap with LiveRanges in the 645/// current interval, it will replace the value numbers of the overlaped 646/// live ranges with the specified value number. 647void LiveInterval::MergeValueInAsValue(const LiveInterval &RHS, 648 const VNInfo *RHSValNo, 649 VNInfo *LHSValNo) { 650 mergeIntervalRanges(RHS, LHSValNo, RHSValNo); 651} 652 653/// MergeValueNumberInto - This method is called when two value nubmers 654/// are found to be equivalent. This eliminates V1, replacing all 655/// LiveRanges with the V1 value number with the V2 value number. This can 656/// cause merging of V1/V2 values numbers and compaction of the value space. 657VNInfo* LiveInterval::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) { 658 assert(V1 != V2 && "Identical value#'s are always equivalent!"); 659 660 // This code actually merges the (numerically) larger value number into the 661 // smaller value number, which is likely to allow us to compactify the value 662 // space. The only thing we have to be careful of is to preserve the 663 // instruction that defines the result value. 664 665 // Make sure V2 is smaller than V1. 666 if (V1->id < V2->id) { 667 V1->copyFrom(*V2); 668 std::swap(V1, V2); 669 } 670 671 // Merge V1 live ranges into V2. 672 for (iterator I = begin(); I != end(); ) { 673 iterator LR = I++; 674 if (LR->valno != V1) continue; // Not a V1 LiveRange. 675 676 // Okay, we found a V1 live range. If it had a previous, touching, V2 live 677 // range, extend it. 678 if (LR != begin()) { 679 iterator Prev = LR-1; 680 if (Prev->valno == V2 && Prev->end == LR->start) { 681 Prev->end = LR->end; 682 683 // Erase this live-range. 684 ranges.erase(LR); 685 I = Prev+1; 686 LR = Prev; 687 } 688 } 689 690 // Okay, now we have a V1 or V2 live range that is maximally merged forward. 691 // Ensure that it is a V2 live-range. 692 LR->valno = V2; 693 694 // If we can merge it into later V2 live ranges, do so now. We ignore any 695 // following V1 live ranges, as they will be merged in subsequent iterations 696 // of the loop. 697 if (I != end()) { 698 if (I->start == LR->end && I->valno == V2) { 699 LR->end = I->end; 700 ranges.erase(I); 701 I = LR+1; 702 } 703 } 704 } 705 706 // Now that V1 is dead, remove it. 707 markValNoForDeletion(V1); 708 709 return V2; 710} 711 712unsigned LiveInterval::getSize() const { 713 unsigned Sum = 0; 714 for (const_iterator I = begin(), E = end(); I != E; ++I) 715 Sum += I->start.distance(I->end); 716 return Sum; 717} 718 719raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange &LR) { 720 return os << '[' << LR.start << ',' << LR.end << ':' << LR.valno->id << ")"; 721} 722 723#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 724void LiveRange::dump() const { 725 dbgs() << *this << "\n"; 726} 727#endif 728 729void LiveInterval::print(raw_ostream &OS) const { 730 if (empty()) 731 OS << "EMPTY"; 732 else { 733 for (LiveInterval::Ranges::const_iterator I = ranges.begin(), 734 E = ranges.end(); I != E; ++I) { 735 OS << *I; 736 assert(I->valno == getValNumInfo(I->valno->id) && "Bad VNInfo"); 737 } 738 } 739 740 // Print value number info. 741 if (getNumValNums()) { 742 OS << " "; 743 unsigned vnum = 0; 744 for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e; 745 ++i, ++vnum) { 746 const VNInfo *vni = *i; 747 if (vnum) OS << " "; 748 OS << vnum << "@"; 749 if (vni->isUnused()) { 750 OS << "x"; 751 } else { 752 OS << vni->def; 753 if (vni->isPHIDef()) 754 OS << "-phi"; 755 } 756 } 757 } 758} 759 760#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 761void LiveInterval::dump() const { 762 dbgs() << *this << "\n"; 763} 764#endif 765 766#ifndef NDEBUG 767void LiveInterval::verify() const { 768 for (const_iterator I = begin(), E = end(); I != E; ++I) { 769 assert(I->start.isValid()); 770 assert(I->end.isValid()); 771 assert(I->start < I->end); 772 assert(I->valno != 0); 773 assert(I->valno == valnos[I->valno->id]); 774 if (llvm::next(I) != E) { 775 assert(I->end <= llvm::next(I)->start); 776 if (I->end == llvm::next(I)->start) 777 assert(I->valno != llvm::next(I)->valno); 778 } 779 } 780} 781#endif 782 783 784void LiveRange::print(raw_ostream &os) const { 785 os << *this; 786} 787 788unsigned ConnectedVNInfoEqClasses::Classify(const LiveInterval *LI) { 789 // Create initial equivalence classes. 790 EqClass.clear(); 791 EqClass.grow(LI->getNumValNums()); 792 793 const VNInfo *used = 0, *unused = 0; 794 795 // Determine connections. 796 for (LiveInterval::const_vni_iterator I = LI->vni_begin(), E = LI->vni_end(); 797 I != E; ++I) { 798 const VNInfo *VNI = *I; 799 // Group all unused values into one class. 800 if (VNI->isUnused()) { 801 if (unused) 802 EqClass.join(unused->id, VNI->id); 803 unused = VNI; 804 continue; 805 } 806 used = VNI; 807 if (VNI->isPHIDef()) { 808 const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 809 assert(MBB && "Phi-def has no defining MBB"); 810 // Connect to values live out of predecessors. 811 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), 812 PE = MBB->pred_end(); PI != PE; ++PI) 813 if (const VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI))) 814 EqClass.join(VNI->id, PVNI->id); 815 } else { 816 // Normal value defined by an instruction. Check for two-addr redef. 817 // FIXME: This could be coincidental. Should we really check for a tied 818 // operand constraint? 819 // Note that VNI->def may be a use slot for an early clobber def. 820 if (const VNInfo *UVNI = LI->getVNInfoBefore(VNI->def)) 821 EqClass.join(VNI->id, UVNI->id); 822 } 823 } 824 825 // Lump all the unused values in with the last used value. 826 if (used && unused) 827 EqClass.join(used->id, unused->id); 828 829 EqClass.compress(); 830 return EqClass.getNumClasses(); 831} 832 833void ConnectedVNInfoEqClasses::Distribute(LiveInterval *LIV[], 834 MachineRegisterInfo &MRI) { 835 assert(LIV[0] && "LIV[0] must be set"); 836 LiveInterval &LI = *LIV[0]; 837 838 // Rewrite instructions. 839 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg), 840 RE = MRI.reg_end(); RI != RE;) { 841 MachineOperand &MO = RI.getOperand(); 842 MachineInstr *MI = MO.getParent(); 843 ++RI; 844 // DBG_VALUE instructions should have been eliminated earlier. 845 LiveRangeQuery LRQ(LI, LIS.getInstructionIndex(MI)); 846 const VNInfo *VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined(); 847 // In the case of an <undef> use that isn't tied to any def, VNI will be 848 // NULL. If the use is tied to a def, VNI will be the defined value. 849 if (!VNI) 850 continue; 851 MO.setReg(LIV[getEqClass(VNI)]->reg); 852 } 853 854 // Move runs to new intervals. 855 LiveInterval::iterator J = LI.begin(), E = LI.end(); 856 while (J != E && EqClass[J->valno->id] == 0) 857 ++J; 858 for (LiveInterval::iterator I = J; I != E; ++I) { 859 if (unsigned eq = EqClass[I->valno->id]) { 860 assert((LIV[eq]->empty() || LIV[eq]->expiredAt(I->start)) && 861 "New intervals should be empty"); 862 LIV[eq]->ranges.push_back(*I); 863 } else 864 *J++ = *I; 865 } 866 LI.ranges.erase(J, E); 867 868 // Transfer VNInfos to their new owners and renumber them. 869 unsigned j = 0, e = LI.getNumValNums(); 870 while (j != e && EqClass[j] == 0) 871 ++j; 872 for (unsigned i = j; i != e; ++i) { 873 VNInfo *VNI = LI.getValNumInfo(i); 874 if (unsigned eq = EqClass[i]) { 875 VNI->id = LIV[eq]->getNumValNums(); 876 LIV[eq]->valnos.push_back(VNI); 877 } else { 878 VNI->id = j; 879 LI.valnos[j++] = VNI; 880 } 881 } 882 LI.valnos.resize(j); 883} 884