RegAllocGreedy.cpp revision eda0fe8d58b0aaff5f18e7f13edfda3022384e70
1//===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the RAGreedy function pass for register allocation in
11// optimized builds.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "AllocationOrder.h"
17#include "InterferenceCache.h"
18#include "LiveRangeEdit.h"
19#include "RegAllocBase.h"
20#include "Spiller.h"
21#include "SpillPlacement.h"
22#include "SplitKit.h"
23#include "VirtRegMap.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/Analysis/AliasAnalysis.h"
26#include "llvm/Function.h"
27#include "llvm/PassAnalysisSupport.h"
28#include "llvm/CodeGen/CalcSpillWeights.h"
29#include "llvm/CodeGen/EdgeBundles.h"
30#include "llvm/CodeGen/LiveIntervalAnalysis.h"
31#include "llvm/CodeGen/LiveStackAnalysis.h"
32#include "llvm/CodeGen/MachineDominators.h"
33#include "llvm/CodeGen/MachineFunctionPass.h"
34#include "llvm/CodeGen/MachineLoopInfo.h"
35#include "llvm/CodeGen/MachineLoopRanges.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/Passes.h"
38#include "llvm/CodeGen/RegAllocRegistry.h"
39#include "llvm/CodeGen/RegisterCoalescer.h"
40#include "llvm/Target/TargetOptions.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/raw_ostream.h"
44#include "llvm/Support/Timer.h"
45
46#include <queue>
47
48using namespace llvm;
49
50STATISTIC(NumGlobalSplits, "Number of split global live ranges");
51STATISTIC(NumLocalSplits,  "Number of split local live ranges");
52STATISTIC(NumEvicted,      "Number of interferences evicted");
53
54static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
55                                       createGreedyRegisterAllocator);
56
57namespace {
58class RAGreedy : public MachineFunctionPass,
59                 public RegAllocBase,
60                 private LiveRangeEdit::Delegate {
61
62  // context
63  MachineFunction *MF;
64  BitVector ReservedRegs;
65
66  // analyses
67  SlotIndexes *Indexes;
68  LiveStacks *LS;
69  MachineDominatorTree *DomTree;
70  MachineLoopInfo *Loops;
71  MachineLoopRanges *LoopRanges;
72  EdgeBundles *Bundles;
73  SpillPlacement *SpillPlacer;
74
75  // state
76  std::auto_ptr<Spiller> SpillerInstance;
77  std::priority_queue<std::pair<unsigned, unsigned> > Queue;
78
79  // Live ranges pass through a number of stages as we try to allocate them.
80  // Some of the stages may also create new live ranges:
81  //
82  // - Region splitting.
83  // - Per-block splitting.
84  // - Local splitting.
85  // - Spilling.
86  //
87  // Ranges produced by one of the stages skip the previous stages when they are
88  // dequeued. This improves performance because we can skip interference checks
89  // that are unlikely to give any results. It also guarantees that the live
90  // range splitting algorithm terminates, something that is otherwise hard to
91  // ensure.
92  enum LiveRangeStage {
93    RS_New,      ///< Never seen before.
94    RS_First,    ///< First time in the queue.
95    RS_Second,   ///< Second time in the queue.
96    RS_Region,   ///< Produced by region splitting.
97    RS_Block,    ///< Produced by per-block splitting.
98    RS_Local,    ///< Produced by local splitting.
99    RS_Spill     ///< Produced by spilling.
100  };
101
102  IndexedMap<unsigned char, VirtReg2IndexFunctor> LRStage;
103
104  LiveRangeStage getStage(const LiveInterval &VirtReg) const {
105    return LiveRangeStage(LRStage[VirtReg.reg]);
106  }
107
108  template<typename Iterator>
109  void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
110    LRStage.resize(MRI->getNumVirtRegs());
111    for (;Begin != End; ++Begin) {
112      unsigned Reg = (*Begin)->reg;
113      if (LRStage[Reg] == RS_New)
114        LRStage[Reg] = NewStage;
115    }
116  }
117
118  // splitting state.
119  std::auto_ptr<SplitAnalysis> SA;
120  std::auto_ptr<SplitEditor> SE;
121
122  /// Cached per-block interference maps
123  InterferenceCache IntfCache;
124
125  /// All basic blocks where the current register is live.
126  SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
127
128  /// Global live range splitting candidate info.
129  struct GlobalSplitCandidate {
130    unsigned PhysReg;
131    BitVector LiveBundles;
132  };
133
134  /// Candidate info for for each PhysReg in AllocationOrder.
135  /// This vector never shrinks, but grows to the size of the largest register
136  /// class.
137  SmallVector<GlobalSplitCandidate, 32> GlobalCand;
138
139  /// For every instruction in SA->UseSlots, store the previous non-copy
140  /// instruction.
141  SmallVector<SlotIndex, 8> PrevSlot;
142
143public:
144  RAGreedy();
145
146  /// Return the pass name.
147  virtual const char* getPassName() const {
148    return "Greedy Register Allocator";
149  }
150
151  /// RAGreedy analysis usage.
152  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
153  virtual void releaseMemory();
154  virtual Spiller &spiller() { return *SpillerInstance; }
155  virtual void enqueue(LiveInterval *LI);
156  virtual LiveInterval *dequeue();
157  virtual unsigned selectOrSplit(LiveInterval&,
158                                 SmallVectorImpl<LiveInterval*>&);
159
160  /// Perform register allocation.
161  virtual bool runOnMachineFunction(MachineFunction &mf);
162
163  static char ID;
164
165private:
166  void LRE_WillEraseInstruction(MachineInstr*);
167  bool LRE_CanEraseVirtReg(unsigned);
168  void LRE_WillShrinkVirtReg(unsigned);
169  void LRE_DidCloneVirtReg(unsigned, unsigned);
170
171  float calcSplitConstraints(unsigned);
172  float calcGlobalSplitCost(const BitVector&);
173  void splitAroundRegion(LiveInterval&, unsigned, const BitVector&,
174                         SmallVectorImpl<LiveInterval*>&);
175  void calcGapWeights(unsigned, SmallVectorImpl<float>&);
176  SlotIndex getPrevMappedIndex(const MachineInstr*);
177  void calcPrevSlots();
178  unsigned nextSplitPoint(unsigned);
179  bool canEvictInterference(LiveInterval&, unsigned, float&);
180
181  unsigned tryEvict(LiveInterval&, AllocationOrder&,
182                    SmallVectorImpl<LiveInterval*>&);
183  unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
184                          SmallVectorImpl<LiveInterval*>&);
185  unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
186    SmallVectorImpl<LiveInterval*>&);
187  unsigned trySplit(LiveInterval&, AllocationOrder&,
188                    SmallVectorImpl<LiveInterval*>&);
189};
190} // end anonymous namespace
191
192char RAGreedy::ID = 0;
193
194FunctionPass* llvm::createGreedyRegisterAllocator() {
195  return new RAGreedy();
196}
197
198RAGreedy::RAGreedy(): MachineFunctionPass(ID), LRStage(RS_New) {
199  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
200  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
201  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
202  initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
203  initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry());
204  initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
205  initializeLiveStacksPass(*PassRegistry::getPassRegistry());
206  initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
207  initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
208  initializeMachineLoopRangesPass(*PassRegistry::getPassRegistry());
209  initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
210  initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
211  initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
212}
213
214void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
215  AU.setPreservesCFG();
216  AU.addRequired<AliasAnalysis>();
217  AU.addPreserved<AliasAnalysis>();
218  AU.addRequired<LiveIntervals>();
219  AU.addRequired<SlotIndexes>();
220  AU.addPreserved<SlotIndexes>();
221  if (StrongPHIElim)
222    AU.addRequiredID(StrongPHIEliminationID);
223  AU.addRequiredTransitive<RegisterCoalescer>();
224  AU.addRequired<CalculateSpillWeights>();
225  AU.addRequired<LiveStacks>();
226  AU.addPreserved<LiveStacks>();
227  AU.addRequired<MachineDominatorTree>();
228  AU.addPreserved<MachineDominatorTree>();
229  AU.addRequired<MachineLoopInfo>();
230  AU.addPreserved<MachineLoopInfo>();
231  AU.addRequired<MachineLoopRanges>();
232  AU.addPreserved<MachineLoopRanges>();
233  AU.addRequired<VirtRegMap>();
234  AU.addPreserved<VirtRegMap>();
235  AU.addRequired<EdgeBundles>();
236  AU.addRequired<SpillPlacement>();
237  MachineFunctionPass::getAnalysisUsage(AU);
238}
239
240
241//===----------------------------------------------------------------------===//
242//                     LiveRangeEdit delegate methods
243//===----------------------------------------------------------------------===//
244
245void RAGreedy::LRE_WillEraseInstruction(MachineInstr *MI) {
246  // LRE itself will remove from SlotIndexes and parent basic block.
247  VRM->RemoveMachineInstrFromMaps(MI);
248}
249
250bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
251  if (unsigned PhysReg = VRM->getPhys(VirtReg)) {
252    unassign(LIS->getInterval(VirtReg), PhysReg);
253    return true;
254  }
255  // Unassigned virtreg is probably in the priority queue.
256  // RegAllocBase will erase it after dequeueing.
257  return false;
258}
259
260void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
261  unsigned PhysReg = VRM->getPhys(VirtReg);
262  if (!PhysReg)
263    return;
264
265  // Register is assigned, put it back on the queue for reassignment.
266  LiveInterval &LI = LIS->getInterval(VirtReg);
267  unassign(LI, PhysReg);
268  enqueue(&LI);
269}
270
271void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
272  // LRE may clone a virtual register because dead code elimination causes it to
273  // be split into connected components. Ensure that the new register gets the
274  // same stage as the parent.
275  LRStage.grow(New);
276  LRStage[New] = LRStage[Old];
277}
278
279void RAGreedy::releaseMemory() {
280  SpillerInstance.reset(0);
281  LRStage.clear();
282  RegAllocBase::releaseMemory();
283}
284
285void RAGreedy::enqueue(LiveInterval *LI) {
286  // Prioritize live ranges by size, assigning larger ranges first.
287  // The queue holds (size, reg) pairs.
288  const unsigned Size = LI->getSize();
289  const unsigned Reg = LI->reg;
290  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
291         "Can only enqueue virtual registers");
292  unsigned Prio;
293
294  LRStage.grow(Reg);
295  if (LRStage[Reg] == RS_New)
296    LRStage[Reg] = RS_First;
297
298  if (LRStage[Reg] == RS_Second)
299    // Unsplit ranges that couldn't be allocated immediately are deferred until
300    // everything else has been allocated. Long ranges are allocated last so
301    // they are split against realistic interference.
302    Prio = (1u << 31) - Size;
303  else {
304    // Everything else is allocated in long->short order. Long ranges that don't
305    // fit should be spilled ASAP so they don't create interference.
306    Prio = (1u << 31) + Size;
307
308    // Boost ranges that have a physical register hint.
309    if (TargetRegisterInfo::isPhysicalRegister(VRM->getRegAllocPref(Reg)))
310      Prio |= (1u << 30);
311  }
312
313  Queue.push(std::make_pair(Prio, Reg));
314}
315
316LiveInterval *RAGreedy::dequeue() {
317  if (Queue.empty())
318    return 0;
319  LiveInterval *LI = &LIS->getInterval(Queue.top().second);
320  Queue.pop();
321  return LI;
322}
323
324//===----------------------------------------------------------------------===//
325//                         Interference eviction
326//===----------------------------------------------------------------------===//
327
328/// canEvict - Return true if all interferences between VirtReg and PhysReg can
329/// be evicted. Set maxWeight to the maximal spill weight of an interference.
330bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
331                                    float &MaxWeight) {
332  float Weight = 0;
333  for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
334    LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
335    // If there is 10 or more interferences, chances are one is smaller.
336    if (Q.collectInterferingVRegs(10) >= 10)
337      return false;
338
339    // Check if any interfering live range is heavier than VirtReg.
340    for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) {
341      LiveInterval *Intf = Q.interferingVRegs()[i];
342      if (TargetRegisterInfo::isPhysicalRegister(Intf->reg))
343        return false;
344      if (Intf->weight >= VirtReg.weight)
345        return false;
346      Weight = std::max(Weight, Intf->weight);
347    }
348  }
349  MaxWeight = Weight;
350  return true;
351}
352
353/// tryEvict - Try to evict all interferences for a physreg.
354/// @param  VirtReg Currently unassigned virtual register.
355/// @param  Order   Physregs to try.
356/// @return         Physreg to assign VirtReg, or 0.
357unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
358                            AllocationOrder &Order,
359                            SmallVectorImpl<LiveInterval*> &NewVRegs){
360  NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
361
362  // Keep track of the lightest single interference seen so far.
363  float BestWeight = 0;
364  unsigned BestPhys = 0;
365
366  Order.rewind();
367  while (unsigned PhysReg = Order.next()) {
368    float Weight = 0;
369    if (!canEvictInterference(VirtReg, PhysReg, Weight))
370      continue;
371
372    // This is an eviction candidate.
373    DEBUG(dbgs() << "max " << PrintReg(PhysReg, TRI) << " interference = "
374                 << Weight << '\n');
375    if (BestPhys && Weight >= BestWeight)
376      continue;
377
378    // Best so far.
379    BestPhys = PhysReg;
380    BestWeight = Weight;
381    // Stop if the hint can be used.
382    if (Order.isHint(PhysReg))
383      break;
384  }
385
386  if (!BestPhys)
387    return 0;
388
389  DEBUG(dbgs() << "evicting " << PrintReg(BestPhys, TRI) << " interference\n");
390  for (const unsigned *AliasI = TRI->getOverlaps(BestPhys); *AliasI; ++AliasI) {
391    LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
392    assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
393    for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) {
394      LiveInterval *Intf = Q.interferingVRegs()[i];
395      unassign(*Intf, VRM->getPhys(Intf->reg));
396      ++NumEvicted;
397      NewVRegs.push_back(Intf);
398    }
399  }
400  return BestPhys;
401}
402
403
404//===----------------------------------------------------------------------===//
405//                              Region Splitting
406//===----------------------------------------------------------------------===//
407
408/// calcSplitConstraints - Fill out the SplitConstraints vector based on the
409/// interference pattern in Physreg and its aliases. Return the static cost of
410/// this split, assuming that all preferences in SplitConstraints are met.
411float RAGreedy::calcSplitConstraints(unsigned PhysReg) {
412  InterferenceCache::Cursor Intf(IntfCache, PhysReg);
413
414  // Reset interference dependent info.
415  SplitConstraints.resize(SA->LiveBlocks.size());
416  float StaticCost = 0;
417  for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) {
418    SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i];
419    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
420
421    BC.Number = BI.MBB->getNumber();
422    Intf.moveToBlock(BC.Number);
423    BC.Entry = (BI.Uses && BI.LiveIn) ?
424      SpillPlacement::PrefReg : SpillPlacement::DontCare;
425    BC.Exit = (BI.Uses && BI.LiveOut) ?
426      SpillPlacement::PrefReg : SpillPlacement::DontCare;
427
428    if (!Intf.hasInterference())
429      continue;
430
431    // Number of spill code instructions to insert.
432    unsigned Ins = 0;
433
434    // Interference for the live-in value.
435    if (BI.LiveIn) {
436      if (Intf.first() <= BI.Start)
437        BC.Entry = SpillPlacement::MustSpill, Ins += BI.Uses;
438      else if (!BI.Uses)
439        BC.Entry = SpillPlacement::PrefSpill;
440      else if (Intf.first() < BI.FirstUse)
441        BC.Entry = SpillPlacement::PrefSpill, ++Ins;
442      else if (Intf.first() < (BI.LiveThrough ? BI.LastUse : BI.Kill))
443        ++Ins;
444    }
445
446    // Interference for the live-out value.
447    if (BI.LiveOut) {
448      if (Intf.last() >= BI.LastSplitPoint)
449        BC.Exit = SpillPlacement::MustSpill, Ins += BI.Uses;
450      else if (!BI.Uses)
451        BC.Exit = SpillPlacement::PrefSpill;
452      else if (Intf.last() > BI.LastUse)
453        BC.Exit = SpillPlacement::PrefSpill, ++Ins;
454      else if (Intf.last() > (BI.LiveThrough ? BI.FirstUse : BI.Def))
455        ++Ins;
456    }
457
458    // Accumulate the total frequency of inserted spill code.
459    if (Ins)
460      StaticCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
461  }
462  return StaticCost;
463}
464
465
466/// calcGlobalSplitCost - Return the global split cost of following the split
467/// pattern in LiveBundles. This cost should be added to the local cost of the
468/// interference pattern in SplitConstraints.
469///
470float RAGreedy::calcGlobalSplitCost(const BitVector &LiveBundles) {
471  float GlobalCost = 0;
472  for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) {
473    SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i];
474    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
475    bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, 0)];
476    bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
477    unsigned Ins = 0;
478
479    if (!BI.Uses)
480      Ins += RegIn != RegOut;
481    else {
482      if (BI.LiveIn)
483        Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
484      if (BI.LiveOut)
485        Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
486    }
487    if (Ins)
488      GlobalCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
489  }
490  return GlobalCost;
491}
492
493/// splitAroundRegion - Split VirtReg around the region determined by
494/// LiveBundles. Make an effort to avoid interference from PhysReg.
495///
496/// The 'register' interval is going to contain as many uses as possible while
497/// avoiding interference. The 'stack' interval is the complement constructed by
498/// SplitEditor. It will contain the rest.
499///
500void RAGreedy::splitAroundRegion(LiveInterval &VirtReg, unsigned PhysReg,
501                                 const BitVector &LiveBundles,
502                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
503  DEBUG({
504    dbgs() << "Splitting around region for " << PrintReg(PhysReg, TRI)
505           << " with bundles";
506    for (int i = LiveBundles.find_first(); i>=0; i = LiveBundles.find_next(i))
507      dbgs() << " EB#" << i;
508    dbgs() << ".\n";
509  });
510
511  InterferenceCache::Cursor Intf(IntfCache, PhysReg);
512  LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
513  SE->reset(LREdit);
514
515  // Create the main cross-block interval.
516  SE->openIntv();
517
518  // First add all defs that are live out of a block.
519  for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) {
520    SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i];
521    bool RegIn  = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)];
522    bool RegOut = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)];
523
524    // Should the register be live out?
525    if (!BI.LiveOut || !RegOut)
526      continue;
527
528    Intf.moveToBlock(BI.MBB->getNumber());
529    DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " -> EB#"
530                 << Bundles->getBundle(BI.MBB->getNumber(), 1)
531                 << " [" << BI.Start << ';' << BI.LastSplitPoint << '-'
532                 << BI.Stop << ") intf [" << Intf.first() << ';' << Intf.last()
533                 << ')');
534
535    // The interference interval should either be invalid or overlap MBB.
536    assert((!Intf.hasInterference() || Intf.first() < BI.Stop)
537           && "Bad interference");
538    assert((!Intf.hasInterference() || Intf.last() > BI.Start)
539           && "Bad interference");
540
541    // Check interference leaving the block.
542    if (!Intf.hasInterference()) {
543      // Block is interference-free.
544      DEBUG(dbgs() << ", no interference");
545      if (!BI.Uses) {
546        assert(BI.LiveThrough && "No uses, but not live through block?");
547        // Block is live-through without interference.
548        DEBUG(dbgs() << ", no uses"
549                     << (RegIn ? ", live-through.\n" : ", stack in.\n"));
550        if (!RegIn)
551          SE->enterIntvAtEnd(*BI.MBB);
552        continue;
553      }
554      if (!BI.LiveThrough) {
555        DEBUG(dbgs() << ", not live-through.\n");
556        SE->useIntv(SE->enterIntvBefore(BI.Def), BI.Stop);
557        continue;
558      }
559      if (!RegIn) {
560        // Block is live-through, but entry bundle is on the stack.
561        // Reload just before the first use.
562        DEBUG(dbgs() << ", not live-in, enter before first use.\n");
563        SE->useIntv(SE->enterIntvBefore(BI.FirstUse), BI.Stop);
564        continue;
565      }
566      DEBUG(dbgs() << ", live-through.\n");
567      continue;
568    }
569
570    // Block has interference.
571    DEBUG(dbgs() << ", interference to " << Intf.last());
572
573    if (!BI.LiveThrough && Intf.last() <= BI.Def) {
574      // The interference doesn't reach the outgoing segment.
575      DEBUG(dbgs() << " doesn't affect def from " << BI.Def << '\n');
576      SE->useIntv(BI.Def, BI.Stop);
577      continue;
578    }
579
580
581    if (!BI.Uses) {
582      // No uses in block, avoid interference by reloading as late as possible.
583      DEBUG(dbgs() << ", no uses.\n");
584      SlotIndex SegStart = SE->enterIntvAtEnd(*BI.MBB);
585      assert(SegStart >= Intf.last() && "Couldn't avoid interference");
586      continue;
587    }
588
589    if (Intf.last().getBoundaryIndex() < BI.LastUse) {
590      // There are interference-free uses at the end of the block.
591      // Find the first use that can get the live-out register.
592      SmallVectorImpl<SlotIndex>::const_iterator UI =
593        std::lower_bound(SA->UseSlots.begin(), SA->UseSlots.end(),
594                         Intf.last().getBoundaryIndex());
595      assert(UI != SA->UseSlots.end() && "Couldn't find last use");
596      SlotIndex Use = *UI;
597      assert(Use <= BI.LastUse && "Couldn't find last use");
598      // Only attempt a split befroe the last split point.
599      if (Use.getBaseIndex() <= BI.LastSplitPoint) {
600        DEBUG(dbgs() << ", free use at " << Use << ".\n");
601        SlotIndex SegStart = SE->enterIntvBefore(Use);
602        assert(SegStart >= Intf.last() && "Couldn't avoid interference");
603        assert(SegStart < BI.LastSplitPoint && "Impossible split point");
604        SE->useIntv(SegStart, BI.Stop);
605        continue;
606      }
607    }
608
609    // Interference is after the last use.
610    DEBUG(dbgs() << " after last use.\n");
611    SlotIndex SegStart = SE->enterIntvAtEnd(*BI.MBB);
612    assert(SegStart >= Intf.last() && "Couldn't avoid interference");
613  }
614
615  // Now all defs leading to live bundles are handled, do everything else.
616  for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) {
617    SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i];
618    bool RegIn  = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)];
619    bool RegOut = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)];
620
621    // Is the register live-in?
622    if (!BI.LiveIn || !RegIn)
623      continue;
624
625    // We have an incoming register. Check for interference.
626    Intf.moveToBlock(BI.MBB->getNumber());
627    DEBUG(dbgs() << "EB#" << Bundles->getBundle(BI.MBB->getNumber(), 0)
628                 << " -> BB#" << BI.MBB->getNumber() << " [" << BI.Start << ';'
629                 << BI.LastSplitPoint << '-' << BI.Stop << ')');
630
631    // Check interference entering the block.
632    if (!Intf.hasInterference()) {
633      // Block is interference-free.
634      DEBUG(dbgs() << ", no interference");
635      if (!BI.Uses) {
636        assert(BI.LiveThrough && "No uses, but not live through block?");
637        // Block is live-through without interference.
638        if (RegOut) {
639          DEBUG(dbgs() << ", no uses, live-through.\n");
640          SE->useIntv(BI.Start, BI.Stop);
641        } else {
642          DEBUG(dbgs() << ", no uses, stack-out.\n");
643          SE->leaveIntvAtTop(*BI.MBB);
644        }
645        continue;
646      }
647      if (!BI.LiveThrough) {
648        DEBUG(dbgs() << ", killed in block.\n");
649        SE->useIntv(BI.Start, SE->leaveIntvAfter(BI.Kill));
650        continue;
651      }
652      if (!RegOut) {
653        // Block is live-through, but exit bundle is on the stack.
654        // Spill immediately after the last use.
655        if (BI.LastUse < BI.LastSplitPoint) {
656          DEBUG(dbgs() << ", uses, stack-out.\n");
657          SE->useIntv(BI.Start, SE->leaveIntvAfter(BI.LastUse));
658          continue;
659        }
660        // The last use is after the last split point, it is probably an
661        // indirect jump.
662        DEBUG(dbgs() << ", uses at " << BI.LastUse << " after split point "
663                     << BI.LastSplitPoint << ", stack-out.\n");
664        SlotIndex SegEnd = SE->leaveIntvBefore(BI.LastSplitPoint);
665        SE->useIntv(BI.Start, SegEnd);
666        // Run a double interval from the split to the last use.
667        // This makes it possible to spill the complement without affecting the
668        // indirect branch.
669        SE->overlapIntv(SegEnd, BI.LastUse);
670        continue;
671      }
672      // Register is live-through.
673      DEBUG(dbgs() << ", uses, live-through.\n");
674      SE->useIntv(BI.Start, BI.Stop);
675      continue;
676    }
677
678    // Block has interference.
679    DEBUG(dbgs() << ", interference from " << Intf.first());
680
681    if (!BI.LiveThrough && Intf.first() >= BI.Kill) {
682      // The interference doesn't reach the outgoing segment.
683      DEBUG(dbgs() << " doesn't affect kill at " << BI.Kill << '\n');
684      SE->useIntv(BI.Start, BI.Kill);
685      continue;
686    }
687
688    if (!BI.Uses) {
689      // No uses in block, avoid interference by spilling as soon as possible.
690      DEBUG(dbgs() << ", no uses.\n");
691      SlotIndex SegEnd = SE->leaveIntvAtTop(*BI.MBB);
692      assert(SegEnd <= Intf.first() && "Couldn't avoid interference");
693      continue;
694    }
695    if (Intf.first().getBaseIndex() > BI.FirstUse) {
696      // There are interference-free uses at the beginning of the block.
697      // Find the last use that can get the register.
698      SmallVectorImpl<SlotIndex>::const_iterator UI =
699        std::lower_bound(SA->UseSlots.begin(), SA->UseSlots.end(),
700                         Intf.first().getBaseIndex());
701      assert(UI != SA->UseSlots.begin() && "Couldn't find first use");
702      SlotIndex Use = (--UI)->getBoundaryIndex();
703      DEBUG(dbgs() << ", free use at " << *UI << ".\n");
704      SlotIndex SegEnd = SE->leaveIntvAfter(Use);
705      assert(SegEnd <= Intf.first() && "Couldn't avoid interference");
706      SE->useIntv(BI.Start, SegEnd);
707      continue;
708    }
709
710    // Interference is before the first use.
711    DEBUG(dbgs() << " before first use.\n");
712    SlotIndex SegEnd = SE->leaveIntvAtTop(*BI.MBB);
713    assert(SegEnd <= Intf.first() && "Couldn't avoid interference");
714  }
715
716  SE->closeIntv();
717
718  // FIXME: Should we be more aggressive about splitting the stack region into
719  // per-block segments? The current approach allows the stack region to
720  // separate into connected components. Some components may be allocatable.
721  SE->finish();
722  ++NumGlobalSplits;
723
724  if (VerifyEnabled)
725    MF->verify(this, "After splitting live range around region");
726}
727
728unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
729                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
730  BitVector LiveBundles, BestBundles;
731  float BestCost = 0;
732  unsigned BestReg = 0;
733
734  Order.rewind();
735  for (unsigned Cand = 0; unsigned PhysReg = Order.next(); ++Cand) {
736    if (GlobalCand.size() <= Cand)
737      GlobalCand.resize(Cand+1);
738    GlobalCand[Cand].PhysReg = PhysReg;
739
740    float Cost = calcSplitConstraints(PhysReg);
741    DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = " << Cost);
742    if (BestReg && Cost >= BestCost) {
743      DEBUG(dbgs() << " higher.\n");
744      continue;
745    }
746
747    SpillPlacer->placeSpills(SplitConstraints, LiveBundles);
748    // No live bundles, defer to splitSingleBlocks().
749    if (!LiveBundles.any()) {
750      DEBUG(dbgs() << " no bundles.\n");
751      continue;
752    }
753
754    Cost += calcGlobalSplitCost(LiveBundles);
755    DEBUG({
756      dbgs() << ", total = " << Cost << " with bundles";
757      for (int i = LiveBundles.find_first(); i>=0; i = LiveBundles.find_next(i))
758        dbgs() << " EB#" << i;
759      dbgs() << ".\n";
760    });
761    if (!BestReg || Cost < BestCost) {
762      BestReg = PhysReg;
763      BestCost = 0.98f * Cost; // Prevent rounding effects.
764      BestBundles.swap(LiveBundles);
765    }
766  }
767
768  if (!BestReg)
769    return 0;
770
771  splitAroundRegion(VirtReg, BestReg, BestBundles, NewVRegs);
772  setStage(NewVRegs.begin(), NewVRegs.end(), RS_Region);
773  return 0;
774}
775
776
777//===----------------------------------------------------------------------===//
778//                             Local Splitting
779//===----------------------------------------------------------------------===//
780
781
782/// calcGapWeights - Compute the maximum spill weight that needs to be evicted
783/// in order to use PhysReg between two entries in SA->UseSlots.
784///
785/// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
786///
787void RAGreedy::calcGapWeights(unsigned PhysReg,
788                              SmallVectorImpl<float> &GapWeight) {
789  assert(SA->LiveBlocks.size() == 1 && "Not a local interval");
790  const SplitAnalysis::BlockInfo &BI = SA->LiveBlocks.front();
791  const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
792  const unsigned NumGaps = Uses.size()-1;
793
794  // Start and end points for the interference check.
795  SlotIndex StartIdx = BI.LiveIn ? BI.FirstUse.getBaseIndex() : BI.FirstUse;
796  SlotIndex StopIdx = BI.LiveOut ? BI.LastUse.getBoundaryIndex() : BI.LastUse;
797
798  GapWeight.assign(NumGaps, 0.0f);
799
800  // Add interference from each overlapping register.
801  for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) {
802    if (!query(const_cast<LiveInterval&>(SA->getParent()), *AI)
803           .checkInterference())
804      continue;
805
806    // We know that VirtReg is a continuous interval from FirstUse to LastUse,
807    // so we don't need InterferenceQuery.
808    //
809    // Interference that overlaps an instruction is counted in both gaps
810    // surrounding the instruction. The exception is interference before
811    // StartIdx and after StopIdx.
812    //
813    LiveIntervalUnion::SegmentIter IntI = PhysReg2LiveUnion[*AI].find(StartIdx);
814    for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
815      // Skip the gaps before IntI.
816      while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
817        if (++Gap == NumGaps)
818          break;
819      if (Gap == NumGaps)
820        break;
821
822      // Update the gaps covered by IntI.
823      const float weight = IntI.value()->weight;
824      for (; Gap != NumGaps; ++Gap) {
825        GapWeight[Gap] = std::max(GapWeight[Gap], weight);
826        if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
827          break;
828      }
829      if (Gap == NumGaps)
830        break;
831    }
832  }
833}
834
835/// getPrevMappedIndex - Return the slot index of the last non-copy instruction
836/// before MI that has a slot index. If MI is the first mapped instruction in
837/// its block, return the block start index instead.
838///
839SlotIndex RAGreedy::getPrevMappedIndex(const MachineInstr *MI) {
840  assert(MI && "Missing MachineInstr");
841  const MachineBasicBlock *MBB = MI->getParent();
842  MachineBasicBlock::const_iterator B = MBB->begin(), I = MI;
843  while (I != B)
844    if (!(--I)->isDebugValue() && !I->isCopy())
845      return Indexes->getInstructionIndex(I);
846  return Indexes->getMBBStartIdx(MBB);
847}
848
849/// calcPrevSlots - Fill in the PrevSlot array with the index of the previous
850/// real non-copy instruction for each instruction in SA->UseSlots.
851///
852void RAGreedy::calcPrevSlots() {
853  const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
854  PrevSlot.clear();
855  PrevSlot.reserve(Uses.size());
856  for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
857    const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]);
858    PrevSlot.push_back(getPrevMappedIndex(MI).getDefIndex());
859  }
860}
861
862/// nextSplitPoint - Find the next index into SA->UseSlots > i such that it may
863/// be beneficial to split before UseSlots[i].
864///
865/// 0 is always a valid split point
866unsigned RAGreedy::nextSplitPoint(unsigned i) {
867  const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
868  const unsigned Size = Uses.size();
869  assert(i != Size && "No split points after the end");
870  // Allow split before i when Uses[i] is not adjacent to the previous use.
871  while (++i != Size && PrevSlot[i].getBaseIndex() <= Uses[i-1].getBaseIndex())
872    ;
873  return i;
874}
875
876/// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
877/// basic block.
878///
879unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
880                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
881  assert(SA->LiveBlocks.size() == 1 && "Not a local interval");
882  const SplitAnalysis::BlockInfo &BI = SA->LiveBlocks.front();
883
884  // Note that it is possible to have an interval that is live-in or live-out
885  // while only covering a single block - A phi-def can use undef values from
886  // predecessors, and the block could be a single-block loop.
887  // We don't bother doing anything clever about such a case, we simply assume
888  // that the interval is continuous from FirstUse to LastUse. We should make
889  // sure that we don't do anything illegal to such an interval, though.
890
891  const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
892  if (Uses.size() <= 2)
893    return 0;
894  const unsigned NumGaps = Uses.size()-1;
895
896  DEBUG({
897    dbgs() << "tryLocalSplit: ";
898    for (unsigned i = 0, e = Uses.size(); i != e; ++i)
899      dbgs() << ' ' << SA->UseSlots[i];
900    dbgs() << '\n';
901  });
902
903  // For every use, find the previous mapped non-copy instruction.
904  // We use this to detect valid split points, and to estimate new interval
905  // sizes.
906  calcPrevSlots();
907
908  unsigned BestBefore = NumGaps;
909  unsigned BestAfter = 0;
910  float BestDiff = 0;
911
912  const float blockFreq = SpillPlacer->getBlockFrequency(BI.MBB->getNumber());
913  SmallVector<float, 8> GapWeight;
914
915  Order.rewind();
916  while (unsigned PhysReg = Order.next()) {
917    // Keep track of the largest spill weight that would need to be evicted in
918    // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
919    calcGapWeights(PhysReg, GapWeight);
920
921    // Try to find the best sequence of gaps to close.
922    // The new spill weight must be larger than any gap interference.
923
924    // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
925    unsigned SplitBefore = 0, SplitAfter = nextSplitPoint(1) - 1;
926
927    // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
928    // It is the spill weight that needs to be evicted.
929    float MaxGap = GapWeight[0];
930    for (unsigned i = 1; i != SplitAfter; ++i)
931      MaxGap = std::max(MaxGap, GapWeight[i]);
932
933    for (;;) {
934      // Live before/after split?
935      const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
936      const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
937
938      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
939                   << Uses[SplitBefore] << '-' << Uses[SplitAfter]
940                   << " i=" << MaxGap);
941
942      // Stop before the interval gets so big we wouldn't be making progress.
943      if (!LiveBefore && !LiveAfter) {
944        DEBUG(dbgs() << " all\n");
945        break;
946      }
947      // Should the interval be extended or shrunk?
948      bool Shrink = true;
949      if (MaxGap < HUGE_VALF) {
950        // Estimate the new spill weight.
951        //
952        // Each instruction reads and writes the register, except the first
953        // instr doesn't read when !FirstLive, and the last instr doesn't write
954        // when !LastLive.
955        //
956        // We will be inserting copies before and after, so the total number of
957        // reads and writes is 2 * EstUses.
958        //
959        const unsigned EstUses = 2*(SplitAfter - SplitBefore) +
960                                 2*(LiveBefore + LiveAfter);
961
962        // Try to guess the size of the new interval. This should be trivial,
963        // but the slot index of an inserted copy can be a lot smaller than the
964        // instruction it is inserted before if there are many dead indexes
965        // between them.
966        //
967        // We measure the distance from the instruction before SplitBefore to
968        // get a conservative estimate.
969        //
970        // The final distance can still be different if inserting copies
971        // triggers a slot index renumbering.
972        //
973        const float EstWeight = normalizeSpillWeight(blockFreq * EstUses,
974                              PrevSlot[SplitBefore].distance(Uses[SplitAfter]));
975        // Would this split be possible to allocate?
976        // Never allocate all gaps, we wouldn't be making progress.
977        float Diff = EstWeight - MaxGap;
978        DEBUG(dbgs() << " w=" << EstWeight << " d=" << Diff);
979        if (Diff > 0) {
980          Shrink = false;
981          if (Diff > BestDiff) {
982            DEBUG(dbgs() << " (best)");
983            BestDiff = Diff;
984            BestBefore = SplitBefore;
985            BestAfter = SplitAfter;
986          }
987        }
988      }
989
990      // Try to shrink.
991      if (Shrink) {
992        SplitBefore = nextSplitPoint(SplitBefore);
993        if (SplitBefore < SplitAfter) {
994          DEBUG(dbgs() << " shrink\n");
995          // Recompute the max when necessary.
996          if (GapWeight[SplitBefore - 1] >= MaxGap) {
997            MaxGap = GapWeight[SplitBefore];
998            for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
999              MaxGap = std::max(MaxGap, GapWeight[i]);
1000          }
1001          continue;
1002        }
1003        MaxGap = 0;
1004      }
1005
1006      // Try to extend the interval.
1007      if (SplitAfter >= NumGaps) {
1008        DEBUG(dbgs() << " end\n");
1009        break;
1010      }
1011
1012      DEBUG(dbgs() << " extend\n");
1013      for (unsigned e = nextSplitPoint(SplitAfter + 1) - 1;
1014           SplitAfter != e; ++SplitAfter)
1015        MaxGap = std::max(MaxGap, GapWeight[SplitAfter]);
1016          continue;
1017    }
1018  }
1019
1020  // Didn't find any candidates?
1021  if (BestBefore == NumGaps)
1022    return 0;
1023
1024  DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
1025               << '-' << Uses[BestAfter] << ", " << BestDiff
1026               << ", " << (BestAfter - BestBefore + 1) << " instrs\n");
1027
1028  LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
1029  SE->reset(LREdit);
1030
1031  SE->openIntv();
1032  SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1033  SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
1034  SE->useIntv(SegStart, SegStop);
1035  SE->closeIntv();
1036  SE->finish();
1037  setStage(NewVRegs.begin(), NewVRegs.end(), RS_Local);
1038  ++NumLocalSplits;
1039
1040  return 0;
1041}
1042
1043//===----------------------------------------------------------------------===//
1044//                          Live Range Splitting
1045//===----------------------------------------------------------------------===//
1046
1047/// trySplit - Try to split VirtReg or one of its interferences, making it
1048/// assignable.
1049/// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
1050unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
1051                            SmallVectorImpl<LiveInterval*>&NewVRegs) {
1052  // Local intervals are handled separately.
1053  if (LIS->intervalIsInOneMBB(VirtReg)) {
1054    NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
1055    SA->analyze(&VirtReg);
1056    return tryLocalSplit(VirtReg, Order, NewVRegs);
1057  }
1058
1059  NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
1060
1061  // Don't iterate global splitting.
1062  // Move straight to spilling if this range was produced by a global split.
1063  LiveRangeStage Stage = getStage(VirtReg);
1064  if (Stage >= RS_Block)
1065    return 0;
1066
1067  SA->analyze(&VirtReg);
1068
1069  // First try to split around a region spanning multiple blocks.
1070  if (Stage < RS_Region) {
1071    unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1072    if (PhysReg || !NewVRegs.empty())
1073      return PhysReg;
1074  }
1075
1076  // Then isolate blocks with multiple uses.
1077  if (Stage < RS_Block) {
1078    SplitAnalysis::BlockPtrSet Blocks;
1079    if (SA->getMultiUseBlocks(Blocks)) {
1080      LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
1081      SE->reset(LREdit);
1082      SE->splitSingleBlocks(Blocks);
1083      setStage(NewVRegs.begin(), NewVRegs.end(), RS_Block);
1084      if (VerifyEnabled)
1085        MF->verify(this, "After splitting live range around basic blocks");
1086    }
1087  }
1088
1089  // Don't assign any physregs.
1090  return 0;
1091}
1092
1093
1094//===----------------------------------------------------------------------===//
1095//                            Main Entry Point
1096//===----------------------------------------------------------------------===//
1097
1098unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
1099                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
1100  // First try assigning a free register.
1101  AllocationOrder Order(VirtReg.reg, *VRM, ReservedRegs);
1102  while (unsigned PhysReg = Order.next()) {
1103    if (!checkPhysRegInterference(VirtReg, PhysReg))
1104      return PhysReg;
1105  }
1106
1107  if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs))
1108    return PhysReg;
1109
1110  assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
1111
1112  // The first time we see a live range, don't try to split or spill.
1113  // Wait until the second time, when all smaller ranges have been allocated.
1114  // This gives a better picture of the interference to split around.
1115  LiveRangeStage Stage = getStage(VirtReg);
1116  if (Stage == RS_First) {
1117    LRStage[VirtReg.reg] = RS_Second;
1118    DEBUG(dbgs() << "wait for second round\n");
1119    NewVRegs.push_back(&VirtReg);
1120    return 0;
1121  }
1122
1123  assert(Stage < RS_Spill && "Cannot allocate after spilling");
1124
1125  // Try splitting VirtReg or interferences.
1126  unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
1127  if (PhysReg || !NewVRegs.empty())
1128    return PhysReg;
1129
1130  // Finally spill VirtReg itself.
1131  NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
1132  LiveRangeEdit LRE(VirtReg, NewVRegs, this);
1133  spiller().spill(LRE);
1134  setStage(NewVRegs.begin(), NewVRegs.end(), RS_Spill);
1135
1136  if (VerifyEnabled)
1137    MF->verify(this, "After spilling");
1138
1139  // The live virtual register requesting allocation was spilled, so tell
1140  // the caller not to allocate anything during this round.
1141  return 0;
1142}
1143
1144bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
1145  DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
1146               << "********** Function: "
1147               << ((Value*)mf.getFunction())->getName() << '\n');
1148
1149  MF = &mf;
1150  if (VerifyEnabled)
1151    MF->verify(this, "Before greedy register allocator");
1152
1153  RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
1154  Indexes = &getAnalysis<SlotIndexes>();
1155  DomTree = &getAnalysis<MachineDominatorTree>();
1156  ReservedRegs = TRI->getReservedRegs(*MF);
1157  SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
1158  Loops = &getAnalysis<MachineLoopInfo>();
1159  LoopRanges = &getAnalysis<MachineLoopRanges>();
1160  Bundles = &getAnalysis<EdgeBundles>();
1161  SpillPlacer = &getAnalysis<SpillPlacement>();
1162
1163  SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
1164  SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree));
1165  LRStage.clear();
1166  LRStage.resize(MRI->getNumVirtRegs());
1167  IntfCache.init(MF, &PhysReg2LiveUnion[0], Indexes, TRI);
1168
1169  allocatePhysRegs();
1170  addMBBLiveIns(MF);
1171  LIS->addKillFlags();
1172
1173  // Run rewriter
1174  {
1175    NamedRegionTimer T("Rewriter", TimerGroupName, TimePassesIsEnabled);
1176    VRM->rewrite(Indexes);
1177  }
1178
1179  // The pass output is in VirtRegMap. Release all the transient data.
1180  releaseMemory();
1181
1182  return true;
1183}
1184