LegalizeDAG.cpp revision 3574eca1b02600bac4e625297f4ecf745f4c4f32
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CallingConv.h"
15#include "llvm/Constants.h"
16#include "llvm/DebugInfo.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/LLVMContext.h"
19#include "llvm/CodeGen/Analysis.h"
20#include "llvm/CodeGen/MachineFunction.h"
21#include "llvm/CodeGen/MachineJumpTableInfo.h"
22#include "llvm/CodeGen/SelectionDAG.h"
23#include "llvm/Target/TargetFrameLowering.h"
24#include "llvm/Target/TargetLowering.h"
25#include "llvm/DataLayout.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Support/raw_ostream.h"
31#include "llvm/ADT/DenseMap.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/SmallPtrSet.h"
34using namespace llvm;
35
36//===----------------------------------------------------------------------===//
37/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
38/// hacks on it until the target machine can handle it.  This involves
39/// eliminating value sizes the machine cannot handle (promoting small sizes to
40/// large sizes or splitting up large values into small values) as well as
41/// eliminating operations the machine cannot handle.
42///
43/// This code also does a small amount of optimization and recognition of idioms
44/// as part of its processing.  For example, if a target does not support a
45/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
46/// will attempt merge setcc and brc instructions into brcc's.
47///
48namespace {
49class SelectionDAGLegalize : public SelectionDAG::DAGUpdateListener {
50  const TargetMachine &TM;
51  const TargetLowering &TLI;
52  SelectionDAG &DAG;
53
54  /// LegalizePosition - The iterator for walking through the node list.
55  SelectionDAG::allnodes_iterator LegalizePosition;
56
57  /// LegalizedNodes - The set of nodes which have already been legalized.
58  SmallPtrSet<SDNode *, 16> LegalizedNodes;
59
60  // Libcall insertion helpers.
61
62public:
63  explicit SelectionDAGLegalize(SelectionDAG &DAG);
64
65  void LegalizeDAG();
66
67private:
68  /// LegalizeOp - Legalizes the given operation.
69  void LegalizeOp(SDNode *Node);
70
71  SDValue OptimizeFloatStore(StoreSDNode *ST);
72
73  void LegalizeLoadOps(SDNode *Node);
74  void LegalizeStoreOps(SDNode *Node);
75
76  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
77  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
78  /// is necessary to spill the vector being inserted into to memory, perform
79  /// the insert there, and then read the result back.
80  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
81                                         SDValue Idx, DebugLoc dl);
82  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
83                                  SDValue Idx, DebugLoc dl);
84
85  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
86  /// performs the same shuffe in terms of order or result bytes, but on a type
87  /// whose vector element type is narrower than the original shuffle type.
88  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
89  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
90                                     SDValue N1, SDValue N2,
91                                     ArrayRef<int> Mask) const;
92
93  void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
94                             DebugLoc dl);
95
96  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
97  SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops,
98                        unsigned NumOps, bool isSigned, DebugLoc dl);
99
100  std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
101                                                 SDNode *Node, bool isSigned);
102  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
103                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
104                          RTLIB::Libcall Call_PPCF128);
105  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
106                           RTLIB::Libcall Call_I8,
107                           RTLIB::Libcall Call_I16,
108                           RTLIB::Libcall Call_I32,
109                           RTLIB::Libcall Call_I64,
110                           RTLIB::Libcall Call_I128);
111  void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
112
113  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl);
114  SDValue ExpandBUILD_VECTOR(SDNode *Node);
115  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
116  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
117                                SmallVectorImpl<SDValue> &Results);
118  SDValue ExpandFCOPYSIGN(SDNode *Node);
119  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
120                               DebugLoc dl);
121  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
122                                DebugLoc dl);
123  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
124                                DebugLoc dl);
125
126  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
127  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
128
129  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
130  SDValue ExpandInsertToVectorThroughStack(SDValue Op);
131  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
132
133  SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP);
134
135  std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
136
137  void ExpandNode(SDNode *Node);
138  void PromoteNode(SDNode *Node);
139
140  void ForgetNode(SDNode *N) {
141    LegalizedNodes.erase(N);
142    if (LegalizePosition == SelectionDAG::allnodes_iterator(N))
143      ++LegalizePosition;
144  }
145
146public:
147  // DAGUpdateListener implementation.
148  virtual void NodeDeleted(SDNode *N, SDNode *E) {
149    ForgetNode(N);
150  }
151  virtual void NodeUpdated(SDNode *N) {}
152
153  // Node replacement helpers
154  void ReplacedNode(SDNode *N) {
155    if (N->use_empty()) {
156      DAG.RemoveDeadNode(N);
157    } else {
158      ForgetNode(N);
159    }
160  }
161  void ReplaceNode(SDNode *Old, SDNode *New) {
162    DAG.ReplaceAllUsesWith(Old, New);
163    ReplacedNode(Old);
164  }
165  void ReplaceNode(SDValue Old, SDValue New) {
166    DAG.ReplaceAllUsesWith(Old, New);
167    ReplacedNode(Old.getNode());
168  }
169  void ReplaceNode(SDNode *Old, const SDValue *New) {
170    DAG.ReplaceAllUsesWith(Old, New);
171    ReplacedNode(Old);
172  }
173};
174}
175
176/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
177/// performs the same shuffe in terms of order or result bytes, but on a type
178/// whose vector element type is narrower than the original shuffle type.
179/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
180SDValue
181SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT,  DebugLoc dl,
182                                                 SDValue N1, SDValue N2,
183                                                 ArrayRef<int> Mask) const {
184  unsigned NumMaskElts = VT.getVectorNumElements();
185  unsigned NumDestElts = NVT.getVectorNumElements();
186  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
187
188  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
189
190  if (NumEltsGrowth == 1)
191    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
192
193  SmallVector<int, 8> NewMask;
194  for (unsigned i = 0; i != NumMaskElts; ++i) {
195    int Idx = Mask[i];
196    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
197      if (Idx < 0)
198        NewMask.push_back(-1);
199      else
200        NewMask.push_back(Idx * NumEltsGrowth + j);
201    }
202  }
203  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
204  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
205  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
206}
207
208SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag)
209  : SelectionDAG::DAGUpdateListener(dag),
210    TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
211    DAG(dag) {
212}
213
214void SelectionDAGLegalize::LegalizeDAG() {
215  DAG.AssignTopologicalOrder();
216
217  // Visit all the nodes. We start in topological order, so that we see
218  // nodes with their original operands intact. Legalization can produce
219  // new nodes which may themselves need to be legalized. Iterate until all
220  // nodes have been legalized.
221  for (;;) {
222    bool AnyLegalized = false;
223    for (LegalizePosition = DAG.allnodes_end();
224         LegalizePosition != DAG.allnodes_begin(); ) {
225      --LegalizePosition;
226
227      SDNode *N = LegalizePosition;
228      if (LegalizedNodes.insert(N)) {
229        AnyLegalized = true;
230        LegalizeOp(N);
231      }
232    }
233    if (!AnyLegalized)
234      break;
235
236  }
237
238  // Remove dead nodes now.
239  DAG.RemoveDeadNodes();
240}
241
242/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
243/// a load from the constant pool.
244SDValue
245SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
246  bool Extend = false;
247  DebugLoc dl = CFP->getDebugLoc();
248
249  // If a FP immediate is precise when represented as a float and if the
250  // target can do an extending load from float to double, we put it into
251  // the constant pool as a float, even if it's is statically typed as a
252  // double.  This shrinks FP constants and canonicalizes them for targets where
253  // an FP extending load is the same cost as a normal load (such as on the x87
254  // fp stack or PPC FP unit).
255  EVT VT = CFP->getValueType(0);
256  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
257  if (!UseCP) {
258    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
259    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
260                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
261  }
262
263  EVT OrigVT = VT;
264  EVT SVT = VT;
265  while (SVT != MVT::f32) {
266    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
267    if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) &&
268        // Only do this if the target has a native EXTLOAD instruction from
269        // smaller type.
270        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
271        TLI.ShouldShrinkFPConstant(OrigVT)) {
272      Type *SType = SVT.getTypeForEVT(*DAG.getContext());
273      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
274      VT = SVT;
275      Extend = true;
276    }
277  }
278
279  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
280  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
281  if (Extend) {
282    SDValue Result =
283      DAG.getExtLoad(ISD::EXTLOAD, dl, OrigVT,
284                     DAG.getEntryNode(),
285                     CPIdx, MachinePointerInfo::getConstantPool(),
286                     VT, false, false, Alignment);
287    return Result;
288  }
289  SDValue Result =
290    DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
291                MachinePointerInfo::getConstantPool(), false, false, false,
292                Alignment);
293  return Result;
294}
295
296/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
297static void ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
298                                 const TargetLowering &TLI,
299                                 SelectionDAGLegalize *DAGLegalize) {
300  assert(ST->getAddressingMode() == ISD::UNINDEXED &&
301         "unaligned indexed stores not implemented!");
302  SDValue Chain = ST->getChain();
303  SDValue Ptr = ST->getBasePtr();
304  SDValue Val = ST->getValue();
305  EVT VT = Val.getValueType();
306  int Alignment = ST->getAlignment();
307  DebugLoc dl = ST->getDebugLoc();
308  if (ST->getMemoryVT().isFloatingPoint() ||
309      ST->getMemoryVT().isVector()) {
310    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
311    if (TLI.isTypeLegal(intVT)) {
312      // Expand to a bitconvert of the value to the integer type of the
313      // same size, then a (misaligned) int store.
314      // FIXME: Does not handle truncating floating point stores!
315      SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
316      Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
317                           ST->isVolatile(), ST->isNonTemporal(), Alignment);
318      DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
319      return;
320    }
321    // Do a (aligned) store to a stack slot, then copy from the stack slot
322    // to the final destination using (unaligned) integer loads and stores.
323    EVT StoredVT = ST->getMemoryVT();
324    EVT RegVT =
325      TLI.getRegisterType(*DAG.getContext(),
326                          EVT::getIntegerVT(*DAG.getContext(),
327                                            StoredVT.getSizeInBits()));
328    unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
329    unsigned RegBytes = RegVT.getSizeInBits() / 8;
330    unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
331
332    // Make sure the stack slot is also aligned for the register type.
333    SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
334
335    // Perform the original store, only redirected to the stack slot.
336    SDValue Store = DAG.getTruncStore(Chain, dl,
337                                      Val, StackPtr, MachinePointerInfo(),
338                                      StoredVT, false, false, 0);
339    SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
340    SmallVector<SDValue, 8> Stores;
341    unsigned Offset = 0;
342
343    // Do all but one copies using the full register width.
344    for (unsigned i = 1; i < NumRegs; i++) {
345      // Load one integer register's worth from the stack slot.
346      SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr,
347                                 MachinePointerInfo(),
348                                 false, false, false, 0);
349      // Store it to the final location.  Remember the store.
350      Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
351                                  ST->getPointerInfo().getWithOffset(Offset),
352                                    ST->isVolatile(), ST->isNonTemporal(),
353                                    MinAlign(ST->getAlignment(), Offset)));
354      // Increment the pointers.
355      Offset += RegBytes;
356      StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
357                             Increment);
358      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
359    }
360
361    // The last store may be partial.  Do a truncating store.  On big-endian
362    // machines this requires an extending load from the stack slot to ensure
363    // that the bits are in the right place.
364    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
365                                  8 * (StoredBytes - Offset));
366
367    // Load from the stack slot.
368    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
369                                  MachinePointerInfo(),
370                                  MemVT, false, false, 0);
371
372    Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
373                                       ST->getPointerInfo()
374                                         .getWithOffset(Offset),
375                                       MemVT, ST->isVolatile(),
376                                       ST->isNonTemporal(),
377                                       MinAlign(ST->getAlignment(), Offset)));
378    // The order of the stores doesn't matter - say it with a TokenFactor.
379    SDValue Result =
380      DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
381                  Stores.size());
382    DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
383    return;
384  }
385  assert(ST->getMemoryVT().isInteger() &&
386         !ST->getMemoryVT().isVector() &&
387         "Unaligned store of unknown type.");
388  // Get the half-size VT
389  EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
390  int NumBits = NewStoredVT.getSizeInBits();
391  int IncrementSize = NumBits / 8;
392
393  // Divide the stored value in two parts.
394  SDValue ShiftAmount = DAG.getConstant(NumBits,
395                                      TLI.getShiftAmountTy(Val.getValueType()));
396  SDValue Lo = Val;
397  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
398
399  // Store the two parts
400  SDValue Store1, Store2;
401  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
402                             ST->getPointerInfo(), NewStoredVT,
403                             ST->isVolatile(), ST->isNonTemporal(), Alignment);
404  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
405                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
406  Alignment = MinAlign(Alignment, IncrementSize);
407  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
408                             ST->getPointerInfo().getWithOffset(IncrementSize),
409                             NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
410                             Alignment);
411
412  SDValue Result =
413    DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
414  DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
415}
416
417/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
418static void
419ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
420                    const TargetLowering &TLI,
421                    SDValue &ValResult, SDValue &ChainResult) {
422  assert(LD->getAddressingMode() == ISD::UNINDEXED &&
423         "unaligned indexed loads not implemented!");
424  SDValue Chain = LD->getChain();
425  SDValue Ptr = LD->getBasePtr();
426  EVT VT = LD->getValueType(0);
427  EVT LoadedVT = LD->getMemoryVT();
428  DebugLoc dl = LD->getDebugLoc();
429  if (VT.isFloatingPoint() || VT.isVector()) {
430    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
431    if (TLI.isTypeLegal(intVT) && TLI.isTypeLegal(LoadedVT)) {
432      // Expand to a (misaligned) integer load of the same size,
433      // then bitconvert to floating point or vector.
434      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getPointerInfo(),
435                                    LD->isVolatile(),
436                                    LD->isNonTemporal(),
437                                    LD->isInvariant(), LD->getAlignment());
438      SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
439      if (LoadedVT != VT)
440        Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
441                             ISD::ANY_EXTEND, dl, VT, Result);
442
443      ValResult = Result;
444      ChainResult = Chain;
445      return;
446    }
447
448    // Copy the value to a (aligned) stack slot using (unaligned) integer
449    // loads and stores, then do a (aligned) load from the stack slot.
450    EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
451    unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
452    unsigned RegBytes = RegVT.getSizeInBits() / 8;
453    unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
454
455    // Make sure the stack slot is also aligned for the register type.
456    SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
457
458    SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
459    SmallVector<SDValue, 8> Stores;
460    SDValue StackPtr = StackBase;
461    unsigned Offset = 0;
462
463    // Do all but one copies using the full register width.
464    for (unsigned i = 1; i < NumRegs; i++) {
465      // Load one integer register's worth from the original location.
466      SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr,
467                                 LD->getPointerInfo().getWithOffset(Offset),
468                                 LD->isVolatile(), LD->isNonTemporal(),
469                                 LD->isInvariant(),
470                                 MinAlign(LD->getAlignment(), Offset));
471      // Follow the load with a store to the stack slot.  Remember the store.
472      Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
473                                    MachinePointerInfo(), false, false, 0));
474      // Increment the pointers.
475      Offset += RegBytes;
476      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
477      StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
478                             Increment);
479    }
480
481    // The last copy may be partial.  Do an extending load.
482    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
483                                  8 * (LoadedBytes - Offset));
484    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
485                                  LD->getPointerInfo().getWithOffset(Offset),
486                                  MemVT, LD->isVolatile(),
487                                  LD->isNonTemporal(),
488                                  MinAlign(LD->getAlignment(), Offset));
489    // Follow the load with a store to the stack slot.  Remember the store.
490    // On big-endian machines this requires a truncating store to ensure
491    // that the bits end up in the right place.
492    Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
493                                       MachinePointerInfo(), MemVT,
494                                       false, false, 0));
495
496    // The order of the stores doesn't matter - say it with a TokenFactor.
497    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
498                             Stores.size());
499
500    // Finally, perform the original load only redirected to the stack slot.
501    Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
502                          MachinePointerInfo(), LoadedVT, false, false, 0);
503
504    // Callers expect a MERGE_VALUES node.
505    ValResult = Load;
506    ChainResult = TF;
507    return;
508  }
509  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
510         "Unaligned load of unsupported type.");
511
512  // Compute the new VT that is half the size of the old one.  This is an
513  // integer MVT.
514  unsigned NumBits = LoadedVT.getSizeInBits();
515  EVT NewLoadedVT;
516  NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
517  NumBits >>= 1;
518
519  unsigned Alignment = LD->getAlignment();
520  unsigned IncrementSize = NumBits / 8;
521  ISD::LoadExtType HiExtType = LD->getExtensionType();
522
523  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
524  if (HiExtType == ISD::NON_EXTLOAD)
525    HiExtType = ISD::ZEXTLOAD;
526
527  // Load the value in two parts
528  SDValue Lo, Hi;
529  if (TLI.isLittleEndian()) {
530    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
531                        NewLoadedVT, LD->isVolatile(),
532                        LD->isNonTemporal(), Alignment);
533    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
534                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
535    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
536                        LD->getPointerInfo().getWithOffset(IncrementSize),
537                        NewLoadedVT, LD->isVolatile(),
538                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
539  } else {
540    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
541                        NewLoadedVT, LD->isVolatile(),
542                        LD->isNonTemporal(), Alignment);
543    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
544                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
545    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
546                        LD->getPointerInfo().getWithOffset(IncrementSize),
547                        NewLoadedVT, LD->isVolatile(),
548                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
549  }
550
551  // aggregate the two parts
552  SDValue ShiftAmount = DAG.getConstant(NumBits,
553                                       TLI.getShiftAmountTy(Hi.getValueType()));
554  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
555  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
556
557  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
558                             Hi.getValue(1));
559
560  ValResult = Result;
561  ChainResult = TF;
562}
563
564/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
565/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
566/// is necessary to spill the vector being inserted into to memory, perform
567/// the insert there, and then read the result back.
568SDValue SelectionDAGLegalize::
569PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
570                               DebugLoc dl) {
571  SDValue Tmp1 = Vec;
572  SDValue Tmp2 = Val;
573  SDValue Tmp3 = Idx;
574
575  // If the target doesn't support this, we have to spill the input vector
576  // to a temporary stack slot, update the element, then reload it.  This is
577  // badness.  We could also load the value into a vector register (either
578  // with a "move to register" or "extload into register" instruction, then
579  // permute it into place, if the idx is a constant and if the idx is
580  // supported by the target.
581  EVT VT    = Tmp1.getValueType();
582  EVT EltVT = VT.getVectorElementType();
583  EVT IdxVT = Tmp3.getValueType();
584  EVT PtrVT = TLI.getPointerTy();
585  SDValue StackPtr = DAG.CreateStackTemporary(VT);
586
587  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
588
589  // Store the vector.
590  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
591                            MachinePointerInfo::getFixedStack(SPFI),
592                            false, false, 0);
593
594  // Truncate or zero extend offset to target pointer type.
595  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
596  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
597  // Add the offset to the index.
598  unsigned EltSize = EltVT.getSizeInBits()/8;
599  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
600  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
601  // Store the scalar value.
602  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT,
603                         false, false, 0);
604  // Load the updated vector.
605  return DAG.getLoad(VT, dl, Ch, StackPtr,
606                     MachinePointerInfo::getFixedStack(SPFI), false, false,
607                     false, 0);
608}
609
610
611SDValue SelectionDAGLegalize::
612ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
613  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
614    // SCALAR_TO_VECTOR requires that the type of the value being inserted
615    // match the element type of the vector being created, except for
616    // integers in which case the inserted value can be over width.
617    EVT EltVT = Vec.getValueType().getVectorElementType();
618    if (Val.getValueType() == EltVT ||
619        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
620      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
621                                  Vec.getValueType(), Val);
622
623      unsigned NumElts = Vec.getValueType().getVectorNumElements();
624      // We generate a shuffle of InVec and ScVec, so the shuffle mask
625      // should be 0,1,2,3,4,5... with the appropriate element replaced with
626      // elt 0 of the RHS.
627      SmallVector<int, 8> ShufOps;
628      for (unsigned i = 0; i != NumElts; ++i)
629        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
630
631      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
632                                  &ShufOps[0]);
633    }
634  }
635  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
636}
637
638SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
639  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
640  // FIXME: We shouldn't do this for TargetConstantFP's.
641  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
642  // to phase ordering between legalized code and the dag combiner.  This
643  // probably means that we need to integrate dag combiner and legalizer
644  // together.
645  // We generally can't do this one for long doubles.
646  SDValue Chain = ST->getChain();
647  SDValue Ptr = ST->getBasePtr();
648  unsigned Alignment = ST->getAlignment();
649  bool isVolatile = ST->isVolatile();
650  bool isNonTemporal = ST->isNonTemporal();
651  DebugLoc dl = ST->getDebugLoc();
652  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
653    if (CFP->getValueType(0) == MVT::f32 &&
654        TLI.isTypeLegal(MVT::i32)) {
655      SDValue Con = DAG.getConstant(CFP->getValueAPF().
656                                      bitcastToAPInt().zextOrTrunc(32),
657                              MVT::i32);
658      return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
659                          isVolatile, isNonTemporal, Alignment);
660    }
661
662    if (CFP->getValueType(0) == MVT::f64) {
663      // If this target supports 64-bit registers, do a single 64-bit store.
664      if (TLI.isTypeLegal(MVT::i64)) {
665        SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
666                                  zextOrTrunc(64), MVT::i64);
667        return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
668                            isVolatile, isNonTemporal, Alignment);
669      }
670
671      if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
672        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
673        // stores.  If the target supports neither 32- nor 64-bits, this
674        // xform is certainly not worth it.
675        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
676        SDValue Lo = DAG.getConstant(IntVal.trunc(32), MVT::i32);
677        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
678        if (TLI.isBigEndian()) std::swap(Lo, Hi);
679
680        Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), isVolatile,
681                          isNonTemporal, Alignment);
682        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
683                            DAG.getIntPtrConstant(4));
684        Hi = DAG.getStore(Chain, dl, Hi, Ptr,
685                          ST->getPointerInfo().getWithOffset(4),
686                          isVolatile, isNonTemporal, MinAlign(Alignment, 4U));
687
688        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
689      }
690    }
691  }
692  return SDValue(0, 0);
693}
694
695void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
696    StoreSDNode *ST = cast<StoreSDNode>(Node);
697    SDValue Chain = ST->getChain();
698    SDValue Ptr = ST->getBasePtr();
699    DebugLoc dl = Node->getDebugLoc();
700
701    unsigned Alignment = ST->getAlignment();
702    bool isVolatile = ST->isVolatile();
703    bool isNonTemporal = ST->isNonTemporal();
704
705    if (!ST->isTruncatingStore()) {
706      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
707        ReplaceNode(ST, OptStore);
708        return;
709      }
710
711      {
712        SDValue Value = ST->getValue();
713        EVT VT = Value.getValueType();
714        switch (TLI.getOperationAction(ISD::STORE, VT)) {
715        default: llvm_unreachable("This action is not supported yet!");
716        case TargetLowering::Legal:
717          // If this is an unaligned store and the target doesn't support it,
718          // expand it.
719          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
720            Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
721            unsigned ABIAlignment= TLI.getDataLayout()->getABITypeAlignment(Ty);
722            if (ST->getAlignment() < ABIAlignment)
723              ExpandUnalignedStore(cast<StoreSDNode>(Node),
724                                   DAG, TLI, this);
725          }
726          break;
727        case TargetLowering::Custom: {
728          SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
729          if (Res.getNode())
730            ReplaceNode(SDValue(Node, 0), Res);
731          return;
732        }
733        case TargetLowering::Promote: {
734          assert(VT.isVector() && "Unknown legal promote case!");
735          Value = DAG.getNode(ISD::BITCAST, dl,
736                             TLI.getTypeToPromoteTo(ISD::STORE, VT), Value);
737          SDValue Result =
738            DAG.getStore(Chain, dl, Value, Ptr,
739                         ST->getPointerInfo(), isVolatile,
740                         isNonTemporal, Alignment);
741          ReplaceNode(SDValue(Node, 0), Result);
742          break;
743        }
744        }
745        return;
746      }
747    } else {
748      SDValue Value = ST->getValue();
749
750      EVT StVT = ST->getMemoryVT();
751      unsigned StWidth = StVT.getSizeInBits();
752
753      if (StWidth != StVT.getStoreSizeInBits()) {
754        // Promote to a byte-sized store with upper bits zero if not
755        // storing an integral number of bytes.  For example, promote
756        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
757        EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
758                                    StVT.getStoreSizeInBits());
759        Value = DAG.getZeroExtendInReg(Value, dl, StVT);
760        SDValue Result =
761          DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
762                            NVT, isVolatile, isNonTemporal, Alignment);
763        ReplaceNode(SDValue(Node, 0), Result);
764      } else if (StWidth & (StWidth - 1)) {
765        // If not storing a power-of-2 number of bits, expand as two stores.
766        assert(!StVT.isVector() && "Unsupported truncstore!");
767        unsigned RoundWidth = 1 << Log2_32(StWidth);
768        assert(RoundWidth < StWidth);
769        unsigned ExtraWidth = StWidth - RoundWidth;
770        assert(ExtraWidth < RoundWidth);
771        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
772               "Store size not an integral number of bytes!");
773        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
774        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
775        SDValue Lo, Hi;
776        unsigned IncrementSize;
777
778        if (TLI.isLittleEndian()) {
779          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
780          // Store the bottom RoundWidth bits.
781          Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
782                                 RoundVT,
783                                 isVolatile, isNonTemporal, Alignment);
784
785          // Store the remaining ExtraWidth bits.
786          IncrementSize = RoundWidth / 8;
787          Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
788                             DAG.getIntPtrConstant(IncrementSize));
789          Hi = DAG.getNode(ISD::SRL, dl, Value.getValueType(), Value,
790                           DAG.getConstant(RoundWidth,
791                                    TLI.getShiftAmountTy(Value.getValueType())));
792          Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr,
793                             ST->getPointerInfo().getWithOffset(IncrementSize),
794                                 ExtraVT, isVolatile, isNonTemporal,
795                                 MinAlign(Alignment, IncrementSize));
796        } else {
797          // Big endian - avoid unaligned stores.
798          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
799          // Store the top RoundWidth bits.
800          Hi = DAG.getNode(ISD::SRL, dl, Value.getValueType(), Value,
801                           DAG.getConstant(ExtraWidth,
802                                    TLI.getShiftAmountTy(Value.getValueType())));
803          Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(),
804                                 RoundVT, isVolatile, isNonTemporal, Alignment);
805
806          // Store the remaining ExtraWidth bits.
807          IncrementSize = RoundWidth / 8;
808          Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
809                             DAG.getIntPtrConstant(IncrementSize));
810          Lo = DAG.getTruncStore(Chain, dl, Value, Ptr,
811                              ST->getPointerInfo().getWithOffset(IncrementSize),
812                                 ExtraVT, isVolatile, isNonTemporal,
813                                 MinAlign(Alignment, IncrementSize));
814        }
815
816        // The order of the stores doesn't matter.
817        SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
818        ReplaceNode(SDValue(Node, 0), Result);
819      } else {
820        switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
821        default: llvm_unreachable("This action is not supported yet!");
822        case TargetLowering::Legal:
823          // If this is an unaligned store and the target doesn't support it,
824          // expand it.
825          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
826            Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
827            unsigned ABIAlignment= TLI.getDataLayout()->getABITypeAlignment(Ty);
828            if (ST->getAlignment() < ABIAlignment)
829              ExpandUnalignedStore(cast<StoreSDNode>(Node), DAG, TLI, this);
830          }
831          break;
832        case TargetLowering::Custom: {
833          SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
834          if (Res.getNode())
835            ReplaceNode(SDValue(Node, 0), Res);
836          return;
837        }
838        case TargetLowering::Expand:
839          assert(!StVT.isVector() &&
840                 "Vector Stores are handled in LegalizeVectorOps");
841
842          // TRUNCSTORE:i16 i32 -> STORE i16
843          assert(TLI.isTypeLegal(StVT) &&
844                 "Do not know how to expand this store!");
845          Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value);
846          SDValue Result =
847            DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
848                         isVolatile, isNonTemporal, Alignment);
849          ReplaceNode(SDValue(Node, 0), Result);
850          break;
851        }
852      }
853    }
854}
855
856void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
857  LoadSDNode *LD = cast<LoadSDNode>(Node);
858  SDValue Chain = LD->getChain();  // The chain.
859  SDValue Ptr = LD->getBasePtr();  // The base pointer.
860  SDValue Value;                   // The value returned by the load op.
861  DebugLoc dl = Node->getDebugLoc();
862
863  ISD::LoadExtType ExtType = LD->getExtensionType();
864  if (ExtType == ISD::NON_EXTLOAD) {
865    EVT VT = Node->getValueType(0);
866    SDValue RVal = SDValue(Node, 0);
867    SDValue RChain = SDValue(Node, 1);
868
869    switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
870    default: llvm_unreachable("This action is not supported yet!");
871    case TargetLowering::Legal:
872      // If this is an unaligned load and the target doesn't support it,
873      // expand it.
874      if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
875        Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
876        unsigned ABIAlignment =
877          TLI.getDataLayout()->getABITypeAlignment(Ty);
878        if (LD->getAlignment() < ABIAlignment){
879          ExpandUnalignedLoad(cast<LoadSDNode>(Node), DAG, TLI, RVal, RChain);
880        }
881      }
882      break;
883    case TargetLowering::Custom: {
884      SDValue Res = TLI.LowerOperation(RVal, DAG);
885      if (Res.getNode()) {
886        RVal = Res;
887        RChain = Res.getValue(1);
888      }
889      break;
890    }
891    case TargetLowering::Promote: {
892      // Only promote a load of vector type to another.
893      assert(VT.isVector() && "Cannot promote this load!");
894      // Change base type to a different vector type.
895      EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
896
897      SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getPointerInfo(),
898                         LD->isVolatile(), LD->isNonTemporal(),
899                         LD->isInvariant(), LD->getAlignment());
900      RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res);
901      RChain = Res.getValue(1);
902      break;
903    }
904    }
905    if (RChain.getNode() != Node) {
906      assert(RVal.getNode() != Node && "Load must be completely replaced");
907      DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal);
908      DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain);
909      ReplacedNode(Node);
910    }
911    return;
912  }
913
914  EVT SrcVT = LD->getMemoryVT();
915  unsigned SrcWidth = SrcVT.getSizeInBits();
916  unsigned Alignment = LD->getAlignment();
917  bool isVolatile = LD->isVolatile();
918  bool isNonTemporal = LD->isNonTemporal();
919
920  if (SrcWidth != SrcVT.getStoreSizeInBits() &&
921      // Some targets pretend to have an i1 loading operation, and actually
922      // load an i8.  This trick is correct for ZEXTLOAD because the top 7
923      // bits are guaranteed to be zero; it helps the optimizers understand
924      // that these bits are zero.  It is also useful for EXTLOAD, since it
925      // tells the optimizers that those bits are undefined.  It would be
926      // nice to have an effective generic way of getting these benefits...
927      // Until such a way is found, don't insist on promoting i1 here.
928      (SrcVT != MVT::i1 ||
929       TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
930    // Promote to a byte-sized load if not loading an integral number of
931    // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
932    unsigned NewWidth = SrcVT.getStoreSizeInBits();
933    EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
934    SDValue Ch;
935
936    // The extra bits are guaranteed to be zero, since we stored them that
937    // way.  A zext load from NVT thus automatically gives zext from SrcVT.
938
939    ISD::LoadExtType NewExtType =
940      ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
941
942    SDValue Result =
943      DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
944                     Chain, Ptr, LD->getPointerInfo(),
945                     NVT, isVolatile, isNonTemporal, Alignment);
946
947    Ch = Result.getValue(1); // The chain.
948
949    if (ExtType == ISD::SEXTLOAD)
950      // Having the top bits zero doesn't help when sign extending.
951      Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
952                           Result.getValueType(),
953                           Result, DAG.getValueType(SrcVT));
954    else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
955      // All the top bits are guaranteed to be zero - inform the optimizers.
956      Result = DAG.getNode(ISD::AssertZext, dl,
957                           Result.getValueType(), Result,
958                           DAG.getValueType(SrcVT));
959
960    Value = Result;
961    Chain = Ch;
962  } else if (SrcWidth & (SrcWidth - 1)) {
963    // If not loading a power-of-2 number of bits, expand as two loads.
964    assert(!SrcVT.isVector() && "Unsupported extload!");
965    unsigned RoundWidth = 1 << Log2_32(SrcWidth);
966    assert(RoundWidth < SrcWidth);
967    unsigned ExtraWidth = SrcWidth - RoundWidth;
968    assert(ExtraWidth < RoundWidth);
969    assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
970           "Load size not an integral number of bytes!");
971    EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
972    EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
973    SDValue Lo, Hi, Ch;
974    unsigned IncrementSize;
975
976    if (TLI.isLittleEndian()) {
977      // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
978      // Load the bottom RoundWidth bits.
979      Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0),
980                          Chain, Ptr,
981                          LD->getPointerInfo(), RoundVT, isVolatile,
982                          isNonTemporal, Alignment);
983
984      // Load the remaining ExtraWidth bits.
985      IncrementSize = RoundWidth / 8;
986      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
987                         DAG.getIntPtrConstant(IncrementSize));
988      Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
989                          LD->getPointerInfo().getWithOffset(IncrementSize),
990                          ExtraVT, isVolatile, isNonTemporal,
991                          MinAlign(Alignment, IncrementSize));
992
993      // Build a factor node to remember that this load is independent of
994      // the other one.
995      Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
996                       Hi.getValue(1));
997
998      // Move the top bits to the right place.
999      Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1000                       DAG.getConstant(RoundWidth,
1001                                       TLI.getShiftAmountTy(Hi.getValueType())));
1002
1003      // Join the hi and lo parts.
1004      Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1005    } else {
1006      // Big endian - avoid unaligned loads.
1007      // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1008      // Load the top RoundWidth bits.
1009      Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
1010                          LD->getPointerInfo(), RoundVT, isVolatile,
1011                          isNonTemporal, Alignment);
1012
1013      // Load the remaining ExtraWidth bits.
1014      IncrementSize = RoundWidth / 8;
1015      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1016                         DAG.getIntPtrConstant(IncrementSize));
1017      Lo = DAG.getExtLoad(ISD::ZEXTLOAD,
1018                          dl, Node->getValueType(0), Chain, Ptr,
1019                          LD->getPointerInfo().getWithOffset(IncrementSize),
1020                          ExtraVT, isVolatile, isNonTemporal,
1021                          MinAlign(Alignment, IncrementSize));
1022
1023      // Build a factor node to remember that this load is independent of
1024      // the other one.
1025      Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1026                       Hi.getValue(1));
1027
1028      // Move the top bits to the right place.
1029      Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1030                       DAG.getConstant(ExtraWidth,
1031                                       TLI.getShiftAmountTy(Hi.getValueType())));
1032
1033      // Join the hi and lo parts.
1034      Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1035    }
1036
1037    Chain = Ch;
1038  } else {
1039    bool isCustom = false;
1040    switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1041    default: llvm_unreachable("This action is not supported yet!");
1042    case TargetLowering::Custom:
1043             isCustom = true;
1044             // FALLTHROUGH
1045    case TargetLowering::Legal: {
1046             Value = SDValue(Node, 0);
1047             Chain = SDValue(Node, 1);
1048
1049             if (isCustom) {
1050               SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
1051               if (Res.getNode()) {
1052                 Value = Res;
1053                 Chain = Res.getValue(1);
1054               }
1055             } else {
1056               // If this is an unaligned load and the target doesn't support it,
1057               // expand it.
1058               if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1059                 Type *Ty =
1060                   LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1061                 unsigned ABIAlignment =
1062                   TLI.getDataLayout()->getABITypeAlignment(Ty);
1063                 if (LD->getAlignment() < ABIAlignment){
1064                   ExpandUnalignedLoad(cast<LoadSDNode>(Node),
1065                                       DAG, TLI, Value, Chain);
1066                 }
1067               }
1068             }
1069             break;
1070    }
1071    case TargetLowering::Expand:
1072             if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT) && TLI.isTypeLegal(SrcVT)) {
1073               SDValue Load = DAG.getLoad(SrcVT, dl, Chain, Ptr,
1074                                          LD->getPointerInfo(),
1075                                          LD->isVolatile(), LD->isNonTemporal(),
1076                                          LD->isInvariant(), LD->getAlignment());
1077               unsigned ExtendOp;
1078               switch (ExtType) {
1079               case ISD::EXTLOAD:
1080                 ExtendOp = (SrcVT.isFloatingPoint() ?
1081                             ISD::FP_EXTEND : ISD::ANY_EXTEND);
1082                 break;
1083               case ISD::SEXTLOAD: ExtendOp = ISD::SIGN_EXTEND; break;
1084               case ISD::ZEXTLOAD: ExtendOp = ISD::ZERO_EXTEND; break;
1085               default: llvm_unreachable("Unexpected extend load type!");
1086               }
1087               Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
1088               Chain = Load.getValue(1);
1089               break;
1090             }
1091
1092             assert(!SrcVT.isVector() &&
1093                    "Vector Loads are handled in LegalizeVectorOps");
1094
1095             // FIXME: This does not work for vectors on most targets.  Sign- and
1096             // zero-extend operations are currently folded into extending loads,
1097             // whether they are legal or not, and then we end up here without any
1098             // support for legalizing them.
1099             assert(ExtType != ISD::EXTLOAD &&
1100                    "EXTLOAD should always be supported!");
1101             // Turn the unsupported load into an EXTLOAD followed by an explicit
1102             // zero/sign extend inreg.
1103             SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1104                                             Chain, Ptr, LD->getPointerInfo(), SrcVT,
1105                                             LD->isVolatile(), LD->isNonTemporal(),
1106                                             LD->getAlignment());
1107             SDValue ValRes;
1108             if (ExtType == ISD::SEXTLOAD)
1109               ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1110                                    Result.getValueType(),
1111                                    Result, DAG.getValueType(SrcVT));
1112             else
1113               ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType());
1114             Value = ValRes;
1115             Chain = Result.getValue(1);
1116             break;
1117    }
1118  }
1119
1120  // Since loads produce two values, make sure to remember that we legalized
1121  // both of them.
1122  if (Chain.getNode() != Node) {
1123    assert(Value.getNode() != Node && "Load must be completely replaced");
1124    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value);
1125    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
1126    ReplacedNode(Node);
1127  }
1128}
1129
1130/// LegalizeOp - Return a legal replacement for the given operation, with
1131/// all legal operands.
1132void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
1133  if (Node->getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
1134    return;
1135
1136  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1137    assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
1138             TargetLowering::TypeLegal &&
1139           "Unexpected illegal type!");
1140
1141  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
1142    assert((TLI.getTypeAction(*DAG.getContext(),
1143                              Node->getOperand(i).getValueType()) ==
1144              TargetLowering::TypeLegal ||
1145            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
1146           "Unexpected illegal type!");
1147
1148  // Figure out the correct action; the way to query this varies by opcode
1149  TargetLowering::LegalizeAction Action = TargetLowering::Legal;
1150  bool SimpleFinishLegalizing = true;
1151  switch (Node->getOpcode()) {
1152  case ISD::INTRINSIC_W_CHAIN:
1153  case ISD::INTRINSIC_WO_CHAIN:
1154  case ISD::INTRINSIC_VOID:
1155  case ISD::STACKSAVE:
1156    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
1157    break;
1158  case ISD::VAARG:
1159    Action = TLI.getOperationAction(Node->getOpcode(),
1160                                    Node->getValueType(0));
1161    if (Action != TargetLowering::Promote)
1162      Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
1163    break;
1164  case ISD::SINT_TO_FP:
1165  case ISD::UINT_TO_FP:
1166  case ISD::EXTRACT_VECTOR_ELT:
1167    Action = TLI.getOperationAction(Node->getOpcode(),
1168                                    Node->getOperand(0).getValueType());
1169    break;
1170  case ISD::FP_ROUND_INREG:
1171  case ISD::SIGN_EXTEND_INREG: {
1172    EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
1173    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
1174    break;
1175  }
1176  case ISD::ATOMIC_STORE: {
1177    Action = TLI.getOperationAction(Node->getOpcode(),
1178                                    Node->getOperand(2).getValueType());
1179    break;
1180  }
1181  case ISD::SELECT_CC:
1182  case ISD::SETCC:
1183  case ISD::BR_CC: {
1184    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
1185                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
1186    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
1187    EVT OpVT = Node->getOperand(CompareOperand).getValueType();
1188    ISD::CondCode CCCode =
1189        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
1190    Action = TLI.getCondCodeAction(CCCode, OpVT);
1191    if (Action == TargetLowering::Legal) {
1192      if (Node->getOpcode() == ISD::SELECT_CC)
1193        Action = TLI.getOperationAction(Node->getOpcode(),
1194                                        Node->getValueType(0));
1195      else
1196        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
1197    }
1198    break;
1199  }
1200  case ISD::LOAD:
1201  case ISD::STORE:
1202    // FIXME: Model these properly.  LOAD and STORE are complicated, and
1203    // STORE expects the unlegalized operand in some cases.
1204    SimpleFinishLegalizing = false;
1205    break;
1206  case ISD::CALLSEQ_START:
1207  case ISD::CALLSEQ_END:
1208    // FIXME: This shouldn't be necessary.  These nodes have special properties
1209    // dealing with the recursive nature of legalization.  Removing this
1210    // special case should be done as part of making LegalizeDAG non-recursive.
1211    SimpleFinishLegalizing = false;
1212    break;
1213  case ISD::EXTRACT_ELEMENT:
1214  case ISD::FLT_ROUNDS_:
1215  case ISD::SADDO:
1216  case ISD::SSUBO:
1217  case ISD::UADDO:
1218  case ISD::USUBO:
1219  case ISD::SMULO:
1220  case ISD::UMULO:
1221  case ISD::FPOWI:
1222  case ISD::MERGE_VALUES:
1223  case ISD::EH_RETURN:
1224  case ISD::FRAME_TO_ARGS_OFFSET:
1225  case ISD::EH_SJLJ_SETJMP:
1226  case ISD::EH_SJLJ_LONGJMP:
1227    // These operations lie about being legal: when they claim to be legal,
1228    // they should actually be expanded.
1229    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1230    if (Action == TargetLowering::Legal)
1231      Action = TargetLowering::Expand;
1232    break;
1233  case ISD::INIT_TRAMPOLINE:
1234  case ISD::ADJUST_TRAMPOLINE:
1235  case ISD::FRAMEADDR:
1236  case ISD::RETURNADDR:
1237    // These operations lie about being legal: when they claim to be legal,
1238    // they should actually be custom-lowered.
1239    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1240    if (Action == TargetLowering::Legal)
1241      Action = TargetLowering::Custom;
1242    break;
1243  default:
1244    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
1245      Action = TargetLowering::Legal;
1246    } else {
1247      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1248    }
1249    break;
1250  }
1251
1252  if (SimpleFinishLegalizing) {
1253    SDNode *NewNode = Node;
1254    switch (Node->getOpcode()) {
1255    default: break;
1256    case ISD::SHL:
1257    case ISD::SRL:
1258    case ISD::SRA:
1259    case ISD::ROTL:
1260    case ISD::ROTR:
1261      // Legalizing shifts/rotates requires adjusting the shift amount
1262      // to the appropriate width.
1263      if (!Node->getOperand(1).getValueType().isVector()) {
1264        SDValue SAO =
1265          DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(),
1266                                    Node->getOperand(1));
1267        HandleSDNode Handle(SAO);
1268        LegalizeOp(SAO.getNode());
1269        NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0),
1270                                         Handle.getValue());
1271      }
1272      break;
1273    case ISD::SRL_PARTS:
1274    case ISD::SRA_PARTS:
1275    case ISD::SHL_PARTS:
1276      // Legalizing shifts/rotates requires adjusting the shift amount
1277      // to the appropriate width.
1278      if (!Node->getOperand(2).getValueType().isVector()) {
1279        SDValue SAO =
1280          DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(),
1281                                    Node->getOperand(2));
1282        HandleSDNode Handle(SAO);
1283        LegalizeOp(SAO.getNode());
1284        NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0),
1285                                         Node->getOperand(1),
1286                                         Handle.getValue());
1287      }
1288      break;
1289    }
1290
1291    if (NewNode != Node) {
1292      DAG.ReplaceAllUsesWith(Node, NewNode);
1293      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1294        DAG.TransferDbgValues(SDValue(Node, i), SDValue(NewNode, i));
1295      ReplacedNode(Node);
1296      Node = NewNode;
1297    }
1298    switch (Action) {
1299    case TargetLowering::Legal:
1300      return;
1301    case TargetLowering::Custom: {
1302      // FIXME: The handling for custom lowering with multiple results is
1303      // a complete mess.
1304      SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
1305      if (Res.getNode()) {
1306        SmallVector<SDValue, 8> ResultVals;
1307        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
1308          if (e == 1)
1309            ResultVals.push_back(Res);
1310          else
1311            ResultVals.push_back(Res.getValue(i));
1312        }
1313        if (Res.getNode() != Node || Res.getResNo() != 0) {
1314          DAG.ReplaceAllUsesWith(Node, ResultVals.data());
1315          for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1316            DAG.TransferDbgValues(SDValue(Node, i), ResultVals[i]);
1317          ReplacedNode(Node);
1318        }
1319        return;
1320      }
1321    }
1322      // FALL THROUGH
1323    case TargetLowering::Expand:
1324      ExpandNode(Node);
1325      return;
1326    case TargetLowering::Promote:
1327      PromoteNode(Node);
1328      return;
1329    }
1330  }
1331
1332  switch (Node->getOpcode()) {
1333  default:
1334#ifndef NDEBUG
1335    dbgs() << "NODE: ";
1336    Node->dump( &DAG);
1337    dbgs() << "\n";
1338#endif
1339    llvm_unreachable("Do not know how to legalize this operator!");
1340
1341  case ISD::CALLSEQ_START:
1342  case ISD::CALLSEQ_END:
1343    break;
1344  case ISD::LOAD: {
1345    return LegalizeLoadOps(Node);
1346  }
1347  case ISD::STORE: {
1348    return LegalizeStoreOps(Node);
1349  }
1350  }
1351}
1352
1353SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1354  SDValue Vec = Op.getOperand(0);
1355  SDValue Idx = Op.getOperand(1);
1356  DebugLoc dl = Op.getDebugLoc();
1357  // Store the value to a temporary stack slot, then LOAD the returned part.
1358  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1359  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1360                            MachinePointerInfo(), false, false, 0);
1361
1362  // Add the offset to the index.
1363  unsigned EltSize =
1364      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1365  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1366                    DAG.getConstant(EltSize, Idx.getValueType()));
1367
1368  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1369    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1370  else
1371    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1372
1373  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1374
1375  if (Op.getValueType().isVector())
1376    return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,MachinePointerInfo(),
1377                       false, false, false, 0);
1378  return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1379                        MachinePointerInfo(),
1380                        Vec.getValueType().getVectorElementType(),
1381                        false, false, 0);
1382}
1383
1384SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
1385  assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
1386
1387  SDValue Vec  = Op.getOperand(0);
1388  SDValue Part = Op.getOperand(1);
1389  SDValue Idx  = Op.getOperand(2);
1390  DebugLoc dl  = Op.getDebugLoc();
1391
1392  // Store the value to a temporary stack slot, then LOAD the returned part.
1393
1394  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1395  int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1396  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1397
1398  // First store the whole vector.
1399  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo,
1400                            false, false, 0);
1401
1402  // Then store the inserted part.
1403
1404  // Add the offset to the index.
1405  unsigned EltSize =
1406      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1407
1408  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1409                    DAG.getConstant(EltSize, Idx.getValueType()));
1410
1411  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1412    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1413  else
1414    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1415
1416  SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx,
1417                                    StackPtr);
1418
1419  // Store the subvector.
1420  Ch = DAG.getStore(DAG.getEntryNode(), dl, Part, SubStackPtr,
1421                    MachinePointerInfo(), false, false, 0);
1422
1423  // Finally, load the updated vector.
1424  return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo,
1425                     false, false, false, 0);
1426}
1427
1428SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1429  // We can't handle this case efficiently.  Allocate a sufficiently
1430  // aligned object on the stack, store each element into it, then load
1431  // the result as a vector.
1432  // Create the stack frame object.
1433  EVT VT = Node->getValueType(0);
1434  EVT EltVT = VT.getVectorElementType();
1435  DebugLoc dl = Node->getDebugLoc();
1436  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1437  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1438  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1439
1440  // Emit a store of each element to the stack slot.
1441  SmallVector<SDValue, 8> Stores;
1442  unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1443  // Store (in the right endianness) the elements to memory.
1444  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1445    // Ignore undef elements.
1446    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1447
1448    unsigned Offset = TypeByteSize*i;
1449
1450    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1451    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1452
1453    // If the destination vector element type is narrower than the source
1454    // element type, only store the bits necessary.
1455    if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1456      Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1457                                         Node->getOperand(i), Idx,
1458                                         PtrInfo.getWithOffset(Offset),
1459                                         EltVT, false, false, 0));
1460    } else
1461      Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1462                                    Node->getOperand(i), Idx,
1463                                    PtrInfo.getWithOffset(Offset),
1464                                    false, false, 0));
1465  }
1466
1467  SDValue StoreChain;
1468  if (!Stores.empty())    // Not all undef elements?
1469    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1470                             &Stores[0], Stores.size());
1471  else
1472    StoreChain = DAG.getEntryNode();
1473
1474  // Result is a load from the stack slot.
1475  return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo,
1476                     false, false, false, 0);
1477}
1478
1479SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1480  DebugLoc dl = Node->getDebugLoc();
1481  SDValue Tmp1 = Node->getOperand(0);
1482  SDValue Tmp2 = Node->getOperand(1);
1483
1484  // Get the sign bit of the RHS.  First obtain a value that has the same
1485  // sign as the sign bit, i.e. negative if and only if the sign bit is 1.
1486  SDValue SignBit;
1487  EVT FloatVT = Tmp2.getValueType();
1488  EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits());
1489  if (TLI.isTypeLegal(IVT)) {
1490    // Convert to an integer with the same sign bit.
1491    SignBit = DAG.getNode(ISD::BITCAST, dl, IVT, Tmp2);
1492  } else {
1493    // Store the float to memory, then load the sign part out as an integer.
1494    MVT LoadTy = TLI.getPointerTy();
1495    // First create a temporary that is aligned for both the load and store.
1496    SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1497    // Then store the float to it.
1498    SDValue Ch =
1499      DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, MachinePointerInfo(),
1500                   false, false, 0);
1501    if (TLI.isBigEndian()) {
1502      assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1503      // Load out a legal integer with the same sign bit as the float.
1504      SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, MachinePointerInfo(),
1505                            false, false, false, 0);
1506    } else { // Little endian
1507      SDValue LoadPtr = StackPtr;
1508      // The float may be wider than the integer we are going to load.  Advance
1509      // the pointer so that the loaded integer will contain the sign bit.
1510      unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits();
1511      unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8;
1512      LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(),
1513                            LoadPtr, DAG.getIntPtrConstant(ByteOffset));
1514      // Load a legal integer containing the sign bit.
1515      SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(),
1516                            false, false, false, 0);
1517      // Move the sign bit to the top bit of the loaded integer.
1518      unsigned BitShift = LoadTy.getSizeInBits() -
1519        (FloatVT.getSizeInBits() - 8 * ByteOffset);
1520      assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?");
1521      if (BitShift)
1522        SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit,
1523                              DAG.getConstant(BitShift,
1524                                 TLI.getShiftAmountTy(SignBit.getValueType())));
1525    }
1526  }
1527  // Now get the sign bit proper, by seeing whether the value is negative.
1528  SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1529                         SignBit, DAG.getConstant(0, SignBit.getValueType()),
1530                         ISD::SETLT);
1531  // Get the absolute value of the result.
1532  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1533  // Select between the nabs and abs value based on the sign bit of
1534  // the input.
1535  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1536                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1537                     AbsVal);
1538}
1539
1540void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1541                                           SmallVectorImpl<SDValue> &Results) {
1542  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1543  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1544          " not tell us which reg is the stack pointer!");
1545  DebugLoc dl = Node->getDebugLoc();
1546  EVT VT = Node->getValueType(0);
1547  SDValue Tmp1 = SDValue(Node, 0);
1548  SDValue Tmp2 = SDValue(Node, 1);
1549  SDValue Tmp3 = Node->getOperand(2);
1550  SDValue Chain = Tmp1.getOperand(0);
1551
1552  // Chain the dynamic stack allocation so that it doesn't modify the stack
1553  // pointer when other instructions are using the stack.
1554  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1555
1556  SDValue Size  = Tmp2.getOperand(1);
1557  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1558  Chain = SP.getValue(1);
1559  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1560  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
1561  if (Align > StackAlign)
1562    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1563                      DAG.getConstant(-(uint64_t)Align, VT));
1564  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1565  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1566
1567  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1568                            DAG.getIntPtrConstant(0, true), SDValue());
1569
1570  Results.push_back(Tmp1);
1571  Results.push_back(Tmp2);
1572}
1573
1574/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1575/// condition code CC on the current target. This routine expands SETCC with
1576/// illegal condition code into AND / OR of multiple SETCC values.
1577void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1578                                                 SDValue &LHS, SDValue &RHS,
1579                                                 SDValue &CC,
1580                                                 DebugLoc dl) {
1581  EVT OpVT = LHS.getValueType();
1582  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1583  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1584  default: llvm_unreachable("Unknown condition code action!");
1585  case TargetLowering::Legal:
1586    // Nothing to do.
1587    break;
1588  case TargetLowering::Expand: {
1589    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1590    unsigned Opc = 0;
1591    switch (CCCode) {
1592    default: llvm_unreachable("Don't know how to expand this condition!");
1593    case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1594    case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1595    case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1596    case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1597    case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1598    case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1599    case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1600    case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1601    case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1602    case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1603    case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1604    case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1605    // FIXME: Implement more expansions.
1606    }
1607
1608    SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1609    SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1610    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1611    RHS = SDValue();
1612    CC  = SDValue();
1613    break;
1614  }
1615  }
1616}
1617
1618/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1619/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1620/// a load from the stack slot to DestVT, extending it if needed.
1621/// The resultant code need not be legal.
1622SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1623                                               EVT SlotVT,
1624                                               EVT DestVT,
1625                                               DebugLoc dl) {
1626  // Create the stack frame object.
1627  unsigned SrcAlign =
1628    TLI.getDataLayout()->getPrefTypeAlignment(SrcOp.getValueType().
1629                                              getTypeForEVT(*DAG.getContext()));
1630  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1631
1632  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1633  int SPFI = StackPtrFI->getIndex();
1634  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(SPFI);
1635
1636  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1637  unsigned SlotSize = SlotVT.getSizeInBits();
1638  unsigned DestSize = DestVT.getSizeInBits();
1639  Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1640  unsigned DestAlign = TLI.getDataLayout()->getPrefTypeAlignment(DestType);
1641
1642  // Emit a store to the stack slot.  Use a truncstore if the input value is
1643  // later than DestVT.
1644  SDValue Store;
1645
1646  if (SrcSize > SlotSize)
1647    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1648                              PtrInfo, SlotVT, false, false, SrcAlign);
1649  else {
1650    assert(SrcSize == SlotSize && "Invalid store");
1651    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1652                         PtrInfo, false, false, SrcAlign);
1653  }
1654
1655  // Result is a load from the stack slot.
1656  if (SlotSize == DestSize)
1657    return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo,
1658                       false, false, false, DestAlign);
1659
1660  assert(SlotSize < DestSize && "Unknown extension!");
1661  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr,
1662                        PtrInfo, SlotVT, false, false, DestAlign);
1663}
1664
1665SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1666  DebugLoc dl = Node->getDebugLoc();
1667  // Create a vector sized/aligned stack slot, store the value to element #0,
1668  // then load the whole vector back out.
1669  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1670
1671  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1672  int SPFI = StackPtrFI->getIndex();
1673
1674  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1675                                 StackPtr,
1676                                 MachinePointerInfo::getFixedStack(SPFI),
1677                                 Node->getValueType(0).getVectorElementType(),
1678                                 false, false, 0);
1679  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1680                     MachinePointerInfo::getFixedStack(SPFI),
1681                     false, false, false, 0);
1682}
1683
1684
1685/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1686/// support the operation, but do support the resultant vector type.
1687SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1688  unsigned NumElems = Node->getNumOperands();
1689  SDValue Value1, Value2;
1690  DebugLoc dl = Node->getDebugLoc();
1691  EVT VT = Node->getValueType(0);
1692  EVT OpVT = Node->getOperand(0).getValueType();
1693  EVT EltVT = VT.getVectorElementType();
1694
1695  // If the only non-undef value is the low element, turn this into a
1696  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1697  bool isOnlyLowElement = true;
1698  bool MoreThanTwoValues = false;
1699  bool isConstant = true;
1700  for (unsigned i = 0; i < NumElems; ++i) {
1701    SDValue V = Node->getOperand(i);
1702    if (V.getOpcode() == ISD::UNDEF)
1703      continue;
1704    if (i > 0)
1705      isOnlyLowElement = false;
1706    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1707      isConstant = false;
1708
1709    if (!Value1.getNode()) {
1710      Value1 = V;
1711    } else if (!Value2.getNode()) {
1712      if (V != Value1)
1713        Value2 = V;
1714    } else if (V != Value1 && V != Value2) {
1715      MoreThanTwoValues = true;
1716    }
1717  }
1718
1719  if (!Value1.getNode())
1720    return DAG.getUNDEF(VT);
1721
1722  if (isOnlyLowElement)
1723    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1724
1725  // If all elements are constants, create a load from the constant pool.
1726  if (isConstant) {
1727    SmallVector<Constant*, 16> CV;
1728    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1729      if (ConstantFPSDNode *V =
1730          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1731        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1732      } else if (ConstantSDNode *V =
1733                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1734        if (OpVT==EltVT)
1735          CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1736        else {
1737          // If OpVT and EltVT don't match, EltVT is not legal and the
1738          // element values have been promoted/truncated earlier.  Undo this;
1739          // we don't want a v16i8 to become a v16i32 for example.
1740          const ConstantInt *CI = V->getConstantIntValue();
1741          CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1742                                        CI->getZExtValue()));
1743        }
1744      } else {
1745        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1746        Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1747        CV.push_back(UndefValue::get(OpNTy));
1748      }
1749    }
1750    Constant *CP = ConstantVector::get(CV);
1751    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1752    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1753    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1754                       MachinePointerInfo::getConstantPool(),
1755                       false, false, false, Alignment);
1756  }
1757
1758  if (!MoreThanTwoValues) {
1759    SmallVector<int, 8> ShuffleVec(NumElems, -1);
1760    for (unsigned i = 0; i < NumElems; ++i) {
1761      SDValue V = Node->getOperand(i);
1762      if (V.getOpcode() == ISD::UNDEF)
1763        continue;
1764      ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1765    }
1766    if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1767      // Get the splatted value into the low element of a vector register.
1768      SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1769      SDValue Vec2;
1770      if (Value2.getNode())
1771        Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1772      else
1773        Vec2 = DAG.getUNDEF(VT);
1774
1775      // Return shuffle(LowValVec, undef, <0,0,0,0>)
1776      return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1777    }
1778  }
1779
1780  // Otherwise, we can't handle this case efficiently.
1781  return ExpandVectorBuildThroughStack(Node);
1782}
1783
1784// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
1785// does not fit into a register, return the lo part and set the hi part to the
1786// by-reg argument.  If it does fit into a single register, return the result
1787// and leave the Hi part unset.
1788SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1789                                            bool isSigned) {
1790  TargetLowering::ArgListTy Args;
1791  TargetLowering::ArgListEntry Entry;
1792  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1793    EVT ArgVT = Node->getOperand(i).getValueType();
1794    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1795    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1796    Entry.isSExt = isSigned;
1797    Entry.isZExt = !isSigned;
1798    Args.push_back(Entry);
1799  }
1800  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1801                                         TLI.getPointerTy());
1802
1803  Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1804
1805  // By default, the input chain to this libcall is the entry node of the
1806  // function. If the libcall is going to be emitted as a tail call then
1807  // TLI.isUsedByReturnOnly will change it to the right chain if the return
1808  // node which is being folded has a non-entry input chain.
1809  SDValue InChain = DAG.getEntryNode();
1810
1811  // isTailCall may be true since the callee does not reference caller stack
1812  // frame. Check if it's in the right position.
1813  SDValue TCChain = InChain;
1814  bool isTailCall = isInTailCallPosition(DAG, Node, TCChain, TLI);
1815  if (isTailCall)
1816    InChain = TCChain;
1817
1818  TargetLowering::
1819  CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false,
1820                    0, TLI.getLibcallCallingConv(LC), isTailCall,
1821                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1822                    Callee, Args, DAG, Node->getDebugLoc());
1823  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
1824
1825
1826  if (!CallInfo.second.getNode())
1827    // It's a tailcall, return the chain (which is the DAG root).
1828    return DAG.getRoot();
1829
1830  return CallInfo.first;
1831}
1832
1833/// ExpandLibCall - Generate a libcall taking the given operands as arguments
1834/// and returning a result of type RetVT.
1835SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT,
1836                                            const SDValue *Ops, unsigned NumOps,
1837                                            bool isSigned, DebugLoc dl) {
1838  TargetLowering::ArgListTy Args;
1839  Args.reserve(NumOps);
1840
1841  TargetLowering::ArgListEntry Entry;
1842  for (unsigned i = 0; i != NumOps; ++i) {
1843    Entry.Node = Ops[i];
1844    Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
1845    Entry.isSExt = isSigned;
1846    Entry.isZExt = !isSigned;
1847    Args.push_back(Entry);
1848  }
1849  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1850                                         TLI.getPointerTy());
1851
1852  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
1853  TargetLowering::
1854  CallLoweringInfo CLI(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
1855                       false, 0, TLI.getLibcallCallingConv(LC),
1856                       /*isTailCall=*/false,
1857                  /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1858                  Callee, Args, DAG, dl);
1859  std::pair<SDValue,SDValue> CallInfo = TLI.LowerCallTo(CLI);
1860
1861  return CallInfo.first;
1862}
1863
1864// ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
1865// ExpandLibCall except that the first operand is the in-chain.
1866std::pair<SDValue, SDValue>
1867SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
1868                                         SDNode *Node,
1869                                         bool isSigned) {
1870  SDValue InChain = Node->getOperand(0);
1871
1872  TargetLowering::ArgListTy Args;
1873  TargetLowering::ArgListEntry Entry;
1874  for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
1875    EVT ArgVT = Node->getOperand(i).getValueType();
1876    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1877    Entry.Node = Node->getOperand(i);
1878    Entry.Ty = ArgTy;
1879    Entry.isSExt = isSigned;
1880    Entry.isZExt = !isSigned;
1881    Args.push_back(Entry);
1882  }
1883  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1884                                         TLI.getPointerTy());
1885
1886  Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1887  TargetLowering::
1888  CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false,
1889                    0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
1890                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1891                    Callee, Args, DAG, Node->getDebugLoc());
1892  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
1893
1894  return CallInfo;
1895}
1896
1897SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
1898                                              RTLIB::Libcall Call_F32,
1899                                              RTLIB::Libcall Call_F64,
1900                                              RTLIB::Libcall Call_F80,
1901                                              RTLIB::Libcall Call_PPCF128) {
1902  RTLIB::Libcall LC;
1903  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1904  default: llvm_unreachable("Unexpected request for libcall!");
1905  case MVT::f32: LC = Call_F32; break;
1906  case MVT::f64: LC = Call_F64; break;
1907  case MVT::f80: LC = Call_F80; break;
1908  case MVT::ppcf128: LC = Call_PPCF128; break;
1909  }
1910  return ExpandLibCall(LC, Node, false);
1911}
1912
1913SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
1914                                               RTLIB::Libcall Call_I8,
1915                                               RTLIB::Libcall Call_I16,
1916                                               RTLIB::Libcall Call_I32,
1917                                               RTLIB::Libcall Call_I64,
1918                                               RTLIB::Libcall Call_I128) {
1919  RTLIB::Libcall LC;
1920  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1921  default: llvm_unreachable("Unexpected request for libcall!");
1922  case MVT::i8:   LC = Call_I8; break;
1923  case MVT::i16:  LC = Call_I16; break;
1924  case MVT::i32:  LC = Call_I32; break;
1925  case MVT::i64:  LC = Call_I64; break;
1926  case MVT::i128: LC = Call_I128; break;
1927  }
1928  return ExpandLibCall(LC, Node, isSigned);
1929}
1930
1931/// isDivRemLibcallAvailable - Return true if divmod libcall is available.
1932static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
1933                                     const TargetLowering &TLI) {
1934  RTLIB::Libcall LC;
1935  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1936  default: llvm_unreachable("Unexpected request for libcall!");
1937  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
1938  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
1939  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
1940  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
1941  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
1942  }
1943
1944  return TLI.getLibcallName(LC) != 0;
1945}
1946
1947/// useDivRem - Only issue divrem libcall if both quotient and remainder are
1948/// needed.
1949static bool useDivRem(SDNode *Node, bool isSigned, bool isDIV) {
1950  // The other use might have been replaced with a divrem already.
1951  unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
1952  unsigned OtherOpcode = 0;
1953  if (isSigned)
1954    OtherOpcode = isDIV ? ISD::SREM : ISD::SDIV;
1955  else
1956    OtherOpcode = isDIV ? ISD::UREM : ISD::UDIV;
1957
1958  SDValue Op0 = Node->getOperand(0);
1959  SDValue Op1 = Node->getOperand(1);
1960  for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
1961         UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
1962    SDNode *User = *UI;
1963    if (User == Node)
1964      continue;
1965    if ((User->getOpcode() == OtherOpcode || User->getOpcode() == DivRemOpc) &&
1966        User->getOperand(0) == Op0 &&
1967        User->getOperand(1) == Op1)
1968      return true;
1969  }
1970  return false;
1971}
1972
1973/// ExpandDivRemLibCall - Issue libcalls to __{u}divmod to compute div / rem
1974/// pairs.
1975void
1976SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
1977                                          SmallVectorImpl<SDValue> &Results) {
1978  unsigned Opcode = Node->getOpcode();
1979  bool isSigned = Opcode == ISD::SDIVREM;
1980
1981  RTLIB::Libcall LC;
1982  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1983  default: llvm_unreachable("Unexpected request for libcall!");
1984  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
1985  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
1986  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
1987  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
1988  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
1989  }
1990
1991  // The input chain to this libcall is the entry node of the function.
1992  // Legalizing the call will automatically add the previous call to the
1993  // dependence.
1994  SDValue InChain = DAG.getEntryNode();
1995
1996  EVT RetVT = Node->getValueType(0);
1997  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
1998
1999  TargetLowering::ArgListTy Args;
2000  TargetLowering::ArgListEntry Entry;
2001  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
2002    EVT ArgVT = Node->getOperand(i).getValueType();
2003    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2004    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
2005    Entry.isSExt = isSigned;
2006    Entry.isZExt = !isSigned;
2007    Args.push_back(Entry);
2008  }
2009
2010  // Also pass the return address of the remainder.
2011  SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
2012  Entry.Node = FIPtr;
2013  Entry.Ty = RetTy->getPointerTo();
2014  Entry.isSExt = isSigned;
2015  Entry.isZExt = !isSigned;
2016  Args.push_back(Entry);
2017
2018  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2019                                         TLI.getPointerTy());
2020
2021  DebugLoc dl = Node->getDebugLoc();
2022  TargetLowering::
2023  CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false,
2024                    0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
2025                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2026                    Callee, Args, DAG, dl);
2027  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2028
2029  // Remainder is loaded back from the stack frame.
2030  SDValue Rem = DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr,
2031                            MachinePointerInfo(), false, false, false, 0);
2032  Results.push_back(CallInfo.first);
2033  Results.push_back(Rem);
2034}
2035
2036/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
2037/// INT_TO_FP operation of the specified operand when the target requests that
2038/// we expand it.  At this point, we know that the result and operand types are
2039/// legal for the target.
2040SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
2041                                                   SDValue Op0,
2042                                                   EVT DestVT,
2043                                                   DebugLoc dl) {
2044  if (Op0.getValueType() == MVT::i32 && TLI.isTypeLegal(MVT::f64)) {
2045    // simple 32-bit [signed|unsigned] integer to float/double expansion
2046
2047    // Get the stack frame index of a 8 byte buffer.
2048    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2049
2050    // word offset constant for Hi/Lo address computation
2051    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
2052    // set up Hi and Lo (into buffer) address based on endian
2053    SDValue Hi = StackSlot;
2054    SDValue Lo = DAG.getNode(ISD::ADD, dl,
2055                             TLI.getPointerTy(), StackSlot, WordOff);
2056    if (TLI.isLittleEndian())
2057      std::swap(Hi, Lo);
2058
2059    // if signed map to unsigned space
2060    SDValue Op0Mapped;
2061    if (isSigned) {
2062      // constant used to invert sign bit (signed to unsigned mapping)
2063      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
2064      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2065    } else {
2066      Op0Mapped = Op0;
2067    }
2068    // store the lo of the constructed double - based on integer input
2069    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
2070                                  Op0Mapped, Lo, MachinePointerInfo(),
2071                                  false, false, 0);
2072    // initial hi portion of constructed double
2073    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
2074    // store the hi of the constructed double - biased exponent
2075    SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi,
2076                                  MachinePointerInfo(),
2077                                  false, false, 0);
2078    // load the constructed double
2079    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot,
2080                               MachinePointerInfo(), false, false, false, 0);
2081    // FP constant to bias correct the final result
2082    SDValue Bias = DAG.getConstantFP(isSigned ?
2083                                     BitsToDouble(0x4330000080000000ULL) :
2084                                     BitsToDouble(0x4330000000000000ULL),
2085                                     MVT::f64);
2086    // subtract the bias
2087    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2088    // final result
2089    SDValue Result;
2090    // handle final rounding
2091    if (DestVT == MVT::f64) {
2092      // do nothing
2093      Result = Sub;
2094    } else if (DestVT.bitsLT(MVT::f64)) {
2095      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2096                           DAG.getIntPtrConstant(0));
2097    } else if (DestVT.bitsGT(MVT::f64)) {
2098      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2099    }
2100    return Result;
2101  }
2102  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2103  // Code below here assumes !isSigned without checking again.
2104
2105  // Implementation of unsigned i64 to f64 following the algorithm in
2106  // __floatundidf in compiler_rt. This implementation has the advantage
2107  // of performing rounding correctly, both in the default rounding mode
2108  // and in all alternate rounding modes.
2109  // TODO: Generalize this for use with other types.
2110  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
2111    SDValue TwoP52 =
2112      DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64);
2113    SDValue TwoP84PlusTwoP52 =
2114      DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64);
2115    SDValue TwoP84 =
2116      DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64);
2117
2118    SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
2119    SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
2120                             DAG.getConstant(32, MVT::i64));
2121    SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
2122    SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
2123    SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr);
2124    SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr);
2125    SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt,
2126                                TwoP84PlusTwoP52);
2127    return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
2128  }
2129
2130  // Implementation of unsigned i64 to f32.
2131  // TODO: Generalize this for use with other types.
2132  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) {
2133    // For unsigned conversions, convert them to signed conversions using the
2134    // algorithm from the x86_64 __floatundidf in compiler_rt.
2135    if (!isSigned) {
2136      SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0);
2137
2138      SDValue ShiftConst =
2139          DAG.getConstant(1, TLI.getShiftAmountTy(Op0.getValueType()));
2140      SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst);
2141      SDValue AndConst = DAG.getConstant(1, MVT::i64);
2142      SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst);
2143      SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr);
2144
2145      SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or);
2146      SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt);
2147
2148      // TODO: This really should be implemented using a branch rather than a
2149      // select.  We happen to get lucky and machinesink does the right
2150      // thing most of the time.  This would be a good candidate for a
2151      //pseudo-op, or, even better, for whole-function isel.
2152      SDValue SignBitTest = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2153        Op0, DAG.getConstant(0, MVT::i64), ISD::SETLT);
2154      return DAG.getNode(ISD::SELECT, dl, MVT::f32, SignBitTest, Slow, Fast);
2155    }
2156
2157    // Otherwise, implement the fully general conversion.
2158
2159    SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2160         DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64));
2161    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And,
2162         DAG.getConstant(UINT64_C(0x800), MVT::i64));
2163    SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2164         DAG.getConstant(UINT64_C(0x7ff), MVT::i64));
2165    SDValue Ne = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2166                   And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE);
2167    SDValue Sel = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ne, Or, Op0);
2168    SDValue Ge = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2169                   Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64),
2170                   ISD::SETUGE);
2171    SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0);
2172    EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType());
2173
2174    SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2,
2175                             DAG.getConstant(32, SHVT));
2176    SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh);
2177    SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc);
2178    SDValue TwoP32 =
2179      DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64);
2180    SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt);
2181    SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2);
2182    SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo);
2183    SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2);
2184    return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd,
2185                       DAG.getIntPtrConstant(0));
2186  }
2187
2188  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2189
2190  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
2191                                 Op0, DAG.getConstant(0, Op0.getValueType()),
2192                                 ISD::SETLT);
2193  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2194  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2195                                    SignSet, Four, Zero);
2196
2197  // If the sign bit of the integer is set, the large number will be treated
2198  // as a negative number.  To counteract this, the dynamic code adds an
2199  // offset depending on the data type.
2200  uint64_t FF;
2201  switch (Op0.getValueType().getSimpleVT().SimpleTy) {
2202  default: llvm_unreachable("Unsupported integer type!");
2203  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2204  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2205  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2206  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2207  }
2208  if (TLI.isLittleEndian()) FF <<= 32;
2209  Constant *FudgeFactor = ConstantInt::get(
2210                                       Type::getInt64Ty(*DAG.getContext()), FF);
2211
2212  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2213  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2214  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2215  Alignment = std::min(Alignment, 4u);
2216  SDValue FudgeInReg;
2217  if (DestVT == MVT::f32)
2218    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2219                             MachinePointerInfo::getConstantPool(),
2220                             false, false, false, Alignment);
2221  else {
2222    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2223                                  DAG.getEntryNode(), CPIdx,
2224                                  MachinePointerInfo::getConstantPool(),
2225                                  MVT::f32, false, false, Alignment);
2226    HandleSDNode Handle(Load);
2227    LegalizeOp(Load.getNode());
2228    FudgeInReg = Handle.getValue();
2229  }
2230
2231  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2232}
2233
2234/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2235/// *INT_TO_FP operation of the specified operand when the target requests that
2236/// we promote it.  At this point, we know that the result and operand types are
2237/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2238/// operation that takes a larger input.
2239SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2240                                                    EVT DestVT,
2241                                                    bool isSigned,
2242                                                    DebugLoc dl) {
2243  // First step, figure out the appropriate *INT_TO_FP operation to use.
2244  EVT NewInTy = LegalOp.getValueType();
2245
2246  unsigned OpToUse = 0;
2247
2248  // Scan for the appropriate larger type to use.
2249  while (1) {
2250    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2251    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2252
2253    // If the target supports SINT_TO_FP of this type, use it.
2254    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2255      OpToUse = ISD::SINT_TO_FP;
2256      break;
2257    }
2258    if (isSigned) continue;
2259
2260    // If the target supports UINT_TO_FP of this type, use it.
2261    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2262      OpToUse = ISD::UINT_TO_FP;
2263      break;
2264    }
2265
2266    // Otherwise, try a larger type.
2267  }
2268
2269  // Okay, we found the operation and type to use.  Zero extend our input to the
2270  // desired type then run the operation on it.
2271  return DAG.getNode(OpToUse, dl, DestVT,
2272                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2273                                 dl, NewInTy, LegalOp));
2274}
2275
2276/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2277/// FP_TO_*INT operation of the specified operand when the target requests that
2278/// we promote it.  At this point, we know that the result and operand types are
2279/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2280/// operation that returns a larger result.
2281SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2282                                                    EVT DestVT,
2283                                                    bool isSigned,
2284                                                    DebugLoc dl) {
2285  // First step, figure out the appropriate FP_TO*INT operation to use.
2286  EVT NewOutTy = DestVT;
2287
2288  unsigned OpToUse = 0;
2289
2290  // Scan for the appropriate larger type to use.
2291  while (1) {
2292    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2293    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2294
2295    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2296      OpToUse = ISD::FP_TO_SINT;
2297      break;
2298    }
2299
2300    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2301      OpToUse = ISD::FP_TO_UINT;
2302      break;
2303    }
2304
2305    // Otherwise, try a larger type.
2306  }
2307
2308
2309  // Okay, we found the operation and type to use.
2310  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2311
2312  // Truncate the result of the extended FP_TO_*INT operation to the desired
2313  // size.
2314  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2315}
2316
2317/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2318///
2319SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2320  EVT VT = Op.getValueType();
2321  EVT SHVT = TLI.getShiftAmountTy(VT);
2322  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2323  switch (VT.getSimpleVT().SimpleTy) {
2324  default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2325  case MVT::i16:
2326    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2327    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2328    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2329  case MVT::i32:
2330    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2331    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2332    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2333    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2334    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2335    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2336    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2337    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2338    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2339  case MVT::i64:
2340    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2341    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2342    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2343    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2344    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2345    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2346    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2347    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2348    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2349    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2350    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2351    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2352    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2353    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2354    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2355    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2356    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2357    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2358    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2359    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2360    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2361  }
2362}
2363
2364/// SplatByte - Distribute ByteVal over NumBits bits.
2365// FIXME: Move this helper to a common place.
2366static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) {
2367  APInt Val = APInt(NumBits, ByteVal);
2368  unsigned Shift = 8;
2369  for (unsigned i = NumBits; i > 8; i >>= 1) {
2370    Val = (Val << Shift) | Val;
2371    Shift <<= 1;
2372  }
2373  return Val;
2374}
2375
2376/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2377///
2378SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2379                                             DebugLoc dl) {
2380  switch (Opc) {
2381  default: llvm_unreachable("Cannot expand this yet!");
2382  case ISD::CTPOP: {
2383    EVT VT = Op.getValueType();
2384    EVT ShVT = TLI.getShiftAmountTy(VT);
2385    unsigned Len = VT.getSizeInBits();
2386
2387    assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 &&
2388           "CTPOP not implemented for this type.");
2389
2390    // This is the "best" algorithm from
2391    // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
2392
2393    SDValue Mask55 = DAG.getConstant(SplatByte(Len, 0x55), VT);
2394    SDValue Mask33 = DAG.getConstant(SplatByte(Len, 0x33), VT);
2395    SDValue Mask0F = DAG.getConstant(SplatByte(Len, 0x0F), VT);
2396    SDValue Mask01 = DAG.getConstant(SplatByte(Len, 0x01), VT);
2397
2398    // v = v - ((v >> 1) & 0x55555555...)
2399    Op = DAG.getNode(ISD::SUB, dl, VT, Op,
2400                     DAG.getNode(ISD::AND, dl, VT,
2401                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2402                                             DAG.getConstant(1, ShVT)),
2403                                 Mask55));
2404    // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
2405    Op = DAG.getNode(ISD::ADD, dl, VT,
2406                     DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
2407                     DAG.getNode(ISD::AND, dl, VT,
2408                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2409                                             DAG.getConstant(2, ShVT)),
2410                                 Mask33));
2411    // v = (v + (v >> 4)) & 0x0F0F0F0F...
2412    Op = DAG.getNode(ISD::AND, dl, VT,
2413                     DAG.getNode(ISD::ADD, dl, VT, Op,
2414                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2415                                             DAG.getConstant(4, ShVT))),
2416                     Mask0F);
2417    // v = (v * 0x01010101...) >> (Len - 8)
2418    Op = DAG.getNode(ISD::SRL, dl, VT,
2419                     DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
2420                     DAG.getConstant(Len - 8, ShVT));
2421
2422    return Op;
2423  }
2424  case ISD::CTLZ_ZERO_UNDEF:
2425    // This trivially expands to CTLZ.
2426    return DAG.getNode(ISD::CTLZ, dl, Op.getValueType(), Op);
2427  case ISD::CTLZ: {
2428    // for now, we do this:
2429    // x = x | (x >> 1);
2430    // x = x | (x >> 2);
2431    // ...
2432    // x = x | (x >>16);
2433    // x = x | (x >>32); // for 64-bit input
2434    // return popcount(~x);
2435    //
2436    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2437    EVT VT = Op.getValueType();
2438    EVT ShVT = TLI.getShiftAmountTy(VT);
2439    unsigned len = VT.getSizeInBits();
2440    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2441      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2442      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2443                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2444    }
2445    Op = DAG.getNOT(dl, Op, VT);
2446    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2447  }
2448  case ISD::CTTZ_ZERO_UNDEF:
2449    // This trivially expands to CTTZ.
2450    return DAG.getNode(ISD::CTTZ, dl, Op.getValueType(), Op);
2451  case ISD::CTTZ: {
2452    // for now, we use: { return popcount(~x & (x - 1)); }
2453    // unless the target has ctlz but not ctpop, in which case we use:
2454    // { return 32 - nlz(~x & (x-1)); }
2455    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2456    EVT VT = Op.getValueType();
2457    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2458                               DAG.getNOT(dl, Op, VT),
2459                               DAG.getNode(ISD::SUB, dl, VT, Op,
2460                                           DAG.getConstant(1, VT)));
2461    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2462    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2463        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2464      return DAG.getNode(ISD::SUB, dl, VT,
2465                         DAG.getConstant(VT.getSizeInBits(), VT),
2466                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2467    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2468  }
2469  }
2470}
2471
2472std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) {
2473  unsigned Opc = Node->getOpcode();
2474  MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
2475  RTLIB::Libcall LC;
2476
2477  switch (Opc) {
2478  default:
2479    llvm_unreachable("Unhandled atomic intrinsic Expand!");
2480  case ISD::ATOMIC_SWAP:
2481    switch (VT.SimpleTy) {
2482    default: llvm_unreachable("Unexpected value type for atomic!");
2483    case MVT::i8:  LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break;
2484    case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
2485    case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
2486    case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
2487    }
2488    break;
2489  case ISD::ATOMIC_CMP_SWAP:
2490    switch (VT.SimpleTy) {
2491    default: llvm_unreachable("Unexpected value type for atomic!");
2492    case MVT::i8:  LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break;
2493    case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
2494    case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
2495    case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
2496    }
2497    break;
2498  case ISD::ATOMIC_LOAD_ADD:
2499    switch (VT.SimpleTy) {
2500    default: llvm_unreachable("Unexpected value type for atomic!");
2501    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_ADD_1; break;
2502    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
2503    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
2504    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
2505    }
2506    break;
2507  case ISD::ATOMIC_LOAD_SUB:
2508    switch (VT.SimpleTy) {
2509    default: llvm_unreachable("Unexpected value type for atomic!");
2510    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_SUB_1; break;
2511    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
2512    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
2513    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
2514    }
2515    break;
2516  case ISD::ATOMIC_LOAD_AND:
2517    switch (VT.SimpleTy) {
2518    default: llvm_unreachable("Unexpected value type for atomic!");
2519    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_AND_1; break;
2520    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
2521    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
2522    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
2523    }
2524    break;
2525  case ISD::ATOMIC_LOAD_OR:
2526    switch (VT.SimpleTy) {
2527    default: llvm_unreachable("Unexpected value type for atomic!");
2528    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_OR_1; break;
2529    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
2530    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
2531    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
2532    }
2533    break;
2534  case ISD::ATOMIC_LOAD_XOR:
2535    switch (VT.SimpleTy) {
2536    default: llvm_unreachable("Unexpected value type for atomic!");
2537    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_XOR_1; break;
2538    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
2539    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
2540    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
2541    }
2542    break;
2543  case ISD::ATOMIC_LOAD_NAND:
2544    switch (VT.SimpleTy) {
2545    default: llvm_unreachable("Unexpected value type for atomic!");
2546    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_NAND_1; break;
2547    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
2548    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
2549    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
2550    }
2551    break;
2552  }
2553
2554  return ExpandChainLibCall(LC, Node, false);
2555}
2556
2557void SelectionDAGLegalize::ExpandNode(SDNode *Node) {
2558  SmallVector<SDValue, 8> Results;
2559  DebugLoc dl = Node->getDebugLoc();
2560  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2561  switch (Node->getOpcode()) {
2562  case ISD::CTPOP:
2563  case ISD::CTLZ:
2564  case ISD::CTLZ_ZERO_UNDEF:
2565  case ISD::CTTZ:
2566  case ISD::CTTZ_ZERO_UNDEF:
2567    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2568    Results.push_back(Tmp1);
2569    break;
2570  case ISD::BSWAP:
2571    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2572    break;
2573  case ISD::FRAMEADDR:
2574  case ISD::RETURNADDR:
2575  case ISD::FRAME_TO_ARGS_OFFSET:
2576    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2577    break;
2578  case ISD::FLT_ROUNDS_:
2579    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2580    break;
2581  case ISD::EH_RETURN:
2582  case ISD::EH_LABEL:
2583  case ISD::PREFETCH:
2584  case ISD::VAEND:
2585  case ISD::EH_SJLJ_LONGJMP:
2586    // If the target didn't expand these, there's nothing to do, so just
2587    // preserve the chain and be done.
2588    Results.push_back(Node->getOperand(0));
2589    break;
2590  case ISD::EH_SJLJ_SETJMP:
2591    // If the target didn't expand this, just return 'zero' and preserve the
2592    // chain.
2593    Results.push_back(DAG.getConstant(0, MVT::i32));
2594    Results.push_back(Node->getOperand(0));
2595    break;
2596  case ISD::ATOMIC_FENCE:
2597  case ISD::MEMBARRIER: {
2598    // If the target didn't lower this, lower it to '__sync_synchronize()' call
2599    // FIXME: handle "fence singlethread" more efficiently.
2600    TargetLowering::ArgListTy Args;
2601    TargetLowering::
2602    CallLoweringInfo CLI(Node->getOperand(0),
2603                         Type::getVoidTy(*DAG.getContext()),
2604                      false, false, false, false, 0, CallingConv::C,
2605                      /*isTailCall=*/false,
2606                      /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2607                      DAG.getExternalSymbol("__sync_synchronize",
2608                                            TLI.getPointerTy()),
2609                      Args, DAG, dl);
2610    std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
2611
2612    Results.push_back(CallResult.second);
2613    break;
2614  }
2615  case ISD::ATOMIC_LOAD: {
2616    // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
2617    SDValue Zero = DAG.getConstant(0, Node->getValueType(0));
2618    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
2619                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
2620                                 Node->getOperand(0),
2621                                 Node->getOperand(1), Zero, Zero,
2622                                 cast<AtomicSDNode>(Node)->getMemOperand(),
2623                                 cast<AtomicSDNode>(Node)->getOrdering(),
2624                                 cast<AtomicSDNode>(Node)->getSynchScope());
2625    Results.push_back(Swap.getValue(0));
2626    Results.push_back(Swap.getValue(1));
2627    break;
2628  }
2629  case ISD::ATOMIC_STORE: {
2630    // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
2631    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
2632                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
2633                                 Node->getOperand(0),
2634                                 Node->getOperand(1), Node->getOperand(2),
2635                                 cast<AtomicSDNode>(Node)->getMemOperand(),
2636                                 cast<AtomicSDNode>(Node)->getOrdering(),
2637                                 cast<AtomicSDNode>(Node)->getSynchScope());
2638    Results.push_back(Swap.getValue(1));
2639    break;
2640  }
2641  // By default, atomic intrinsics are marked Legal and lowered. Targets
2642  // which don't support them directly, however, may want libcalls, in which
2643  // case they mark them Expand, and we get here.
2644  case ISD::ATOMIC_SWAP:
2645  case ISD::ATOMIC_LOAD_ADD:
2646  case ISD::ATOMIC_LOAD_SUB:
2647  case ISD::ATOMIC_LOAD_AND:
2648  case ISD::ATOMIC_LOAD_OR:
2649  case ISD::ATOMIC_LOAD_XOR:
2650  case ISD::ATOMIC_LOAD_NAND:
2651  case ISD::ATOMIC_LOAD_MIN:
2652  case ISD::ATOMIC_LOAD_MAX:
2653  case ISD::ATOMIC_LOAD_UMIN:
2654  case ISD::ATOMIC_LOAD_UMAX:
2655  case ISD::ATOMIC_CMP_SWAP: {
2656    std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node);
2657    Results.push_back(Tmp.first);
2658    Results.push_back(Tmp.second);
2659    break;
2660  }
2661  case ISD::DYNAMIC_STACKALLOC:
2662    ExpandDYNAMIC_STACKALLOC(Node, Results);
2663    break;
2664  case ISD::MERGE_VALUES:
2665    for (unsigned i = 0; i < Node->getNumValues(); i++)
2666      Results.push_back(Node->getOperand(i));
2667    break;
2668  case ISD::UNDEF: {
2669    EVT VT = Node->getValueType(0);
2670    if (VT.isInteger())
2671      Results.push_back(DAG.getConstant(0, VT));
2672    else {
2673      assert(VT.isFloatingPoint() && "Unknown value type!");
2674      Results.push_back(DAG.getConstantFP(0, VT));
2675    }
2676    break;
2677  }
2678  case ISD::TRAP: {
2679    // If this operation is not supported, lower it to 'abort()' call
2680    TargetLowering::ArgListTy Args;
2681    TargetLowering::
2682    CallLoweringInfo CLI(Node->getOperand(0),
2683                         Type::getVoidTy(*DAG.getContext()),
2684                      false, false, false, false, 0, CallingConv::C,
2685                      /*isTailCall=*/false,
2686                      /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2687                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2688                      Args, DAG, dl);
2689    std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
2690
2691    Results.push_back(CallResult.second);
2692    break;
2693  }
2694  case ISD::FP_ROUND:
2695  case ISD::BITCAST:
2696    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2697                            Node->getValueType(0), dl);
2698    Results.push_back(Tmp1);
2699    break;
2700  case ISD::FP_EXTEND:
2701    Tmp1 = EmitStackConvert(Node->getOperand(0),
2702                            Node->getOperand(0).getValueType(),
2703                            Node->getValueType(0), dl);
2704    Results.push_back(Tmp1);
2705    break;
2706  case ISD::SIGN_EXTEND_INREG: {
2707    // NOTE: we could fall back on load/store here too for targets without
2708    // SAR.  However, it is doubtful that any exist.
2709    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2710    EVT VT = Node->getValueType(0);
2711    EVT ShiftAmountTy = TLI.getShiftAmountTy(VT);
2712    if (VT.isVector())
2713      ShiftAmountTy = VT;
2714    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
2715                        ExtraVT.getScalarType().getSizeInBits();
2716    SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy);
2717    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2718                       Node->getOperand(0), ShiftCst);
2719    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2720    Results.push_back(Tmp1);
2721    break;
2722  }
2723  case ISD::FP_ROUND_INREG: {
2724    // The only way we can lower this is to turn it into a TRUNCSTORE,
2725    // EXTLOAD pair, targeting a temporary location (a stack slot).
2726
2727    // NOTE: there is a choice here between constantly creating new stack
2728    // slots and always reusing the same one.  We currently always create
2729    // new ones, as reuse may inhibit scheduling.
2730    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2731    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2732                            Node->getValueType(0), dl);
2733    Results.push_back(Tmp1);
2734    break;
2735  }
2736  case ISD::SINT_TO_FP:
2737  case ISD::UINT_TO_FP:
2738    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2739                                Node->getOperand(0), Node->getValueType(0), dl);
2740    Results.push_back(Tmp1);
2741    break;
2742  case ISD::FP_TO_UINT: {
2743    SDValue True, False;
2744    EVT VT =  Node->getOperand(0).getValueType();
2745    EVT NVT = Node->getValueType(0);
2746    APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
2747    APInt x = APInt::getSignBit(NVT.getSizeInBits());
2748    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2749    Tmp1 = DAG.getConstantFP(apf, VT);
2750    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2751                        Node->getOperand(0),
2752                        Tmp1, ISD::SETLT);
2753    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2754    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2755                        DAG.getNode(ISD::FSUB, dl, VT,
2756                                    Node->getOperand(0), Tmp1));
2757    False = DAG.getNode(ISD::XOR, dl, NVT, False,
2758                        DAG.getConstant(x, NVT));
2759    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2760    Results.push_back(Tmp1);
2761    break;
2762  }
2763  case ISD::VAARG: {
2764    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2765    EVT VT = Node->getValueType(0);
2766    Tmp1 = Node->getOperand(0);
2767    Tmp2 = Node->getOperand(1);
2768    unsigned Align = Node->getConstantOperandVal(3);
2769
2770    SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2,
2771                                     MachinePointerInfo(V),
2772                                     false, false, false, 0);
2773    SDValue VAList = VAListLoad;
2774
2775    if (Align > TLI.getMinStackArgumentAlignment()) {
2776      assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
2777
2778      VAList = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2779                           DAG.getConstant(Align - 1,
2780                                           TLI.getPointerTy()));
2781
2782      VAList = DAG.getNode(ISD::AND, dl, TLI.getPointerTy(), VAList,
2783                           DAG.getConstant(-(int64_t)Align,
2784                                           TLI.getPointerTy()));
2785    }
2786
2787    // Increment the pointer, VAList, to the next vaarg
2788    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2789                       DAG.getConstant(TLI.getDataLayout()->
2790                          getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
2791                                       TLI.getPointerTy()));
2792    // Store the incremented VAList to the legalized pointer
2793    Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2,
2794                        MachinePointerInfo(V), false, false, 0);
2795    // Load the actual argument out of the pointer VAList
2796    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, MachinePointerInfo(),
2797                                  false, false, false, 0));
2798    Results.push_back(Results[0].getValue(1));
2799    break;
2800  }
2801  case ISD::VACOPY: {
2802    // This defaults to loading a pointer from the input and storing it to the
2803    // output, returning the chain.
2804    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2805    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2806    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2807                       Node->getOperand(2), MachinePointerInfo(VS),
2808                       false, false, false, 0);
2809    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2810                        MachinePointerInfo(VD), false, false, 0);
2811    Results.push_back(Tmp1);
2812    break;
2813  }
2814  case ISD::EXTRACT_VECTOR_ELT:
2815    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2816      // This must be an access of the only element.  Return it.
2817      Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
2818                         Node->getOperand(0));
2819    else
2820      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2821    Results.push_back(Tmp1);
2822    break;
2823  case ISD::EXTRACT_SUBVECTOR:
2824    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2825    break;
2826  case ISD::INSERT_SUBVECTOR:
2827    Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
2828    break;
2829  case ISD::CONCAT_VECTORS: {
2830    Results.push_back(ExpandVectorBuildThroughStack(Node));
2831    break;
2832  }
2833  case ISD::SCALAR_TO_VECTOR:
2834    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2835    break;
2836  case ISD::INSERT_VECTOR_ELT:
2837    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2838                                              Node->getOperand(1),
2839                                              Node->getOperand(2), dl));
2840    break;
2841  case ISD::VECTOR_SHUFFLE: {
2842    SmallVector<int, 32> NewMask;
2843    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
2844
2845    EVT VT = Node->getValueType(0);
2846    EVT EltVT = VT.getVectorElementType();
2847    SDValue Op0 = Node->getOperand(0);
2848    SDValue Op1 = Node->getOperand(1);
2849    if (!TLI.isTypeLegal(EltVT)) {
2850
2851      EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
2852
2853      // BUILD_VECTOR operands are allowed to be wider than the element type.
2854      // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept it
2855      if (NewEltVT.bitsLT(EltVT)) {
2856
2857        // Convert shuffle node.
2858        // If original node was v4i64 and the new EltVT is i32,
2859        // cast operands to v8i32 and re-build the mask.
2860
2861        // Calculate new VT, the size of the new VT should be equal to original.
2862        EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltVT,
2863                                      VT.getSizeInBits()/NewEltVT.getSizeInBits());
2864        assert(NewVT.bitsEq(VT));
2865
2866        // cast operands to new VT
2867        Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0);
2868        Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1);
2869
2870        // Convert the shuffle mask
2871        unsigned int factor = NewVT.getVectorNumElements()/VT.getVectorNumElements();
2872
2873        // EltVT gets smaller
2874        assert(factor > 0);
2875
2876        for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
2877          if (Mask[i] < 0) {
2878            for (unsigned fi = 0; fi < factor; ++fi)
2879              NewMask.push_back(Mask[i]);
2880          }
2881          else {
2882            for (unsigned fi = 0; fi < factor; ++fi)
2883              NewMask.push_back(Mask[i]*factor+fi);
2884          }
2885        }
2886        Mask = NewMask;
2887        VT = NewVT;
2888      }
2889      EltVT = NewEltVT;
2890    }
2891    unsigned NumElems = VT.getVectorNumElements();
2892    SmallVector<SDValue, 16> Ops;
2893    for (unsigned i = 0; i != NumElems; ++i) {
2894      if (Mask[i] < 0) {
2895        Ops.push_back(DAG.getUNDEF(EltVT));
2896        continue;
2897      }
2898      unsigned Idx = Mask[i];
2899      if (Idx < NumElems)
2900        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2901                                  Op0,
2902                                  DAG.getIntPtrConstant(Idx)));
2903      else
2904        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2905                                  Op1,
2906                                  DAG.getIntPtrConstant(Idx - NumElems)));
2907    }
2908
2909    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
2910    // We may have changed the BUILD_VECTOR type. Cast it back to the Node type.
2911    Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1);
2912    Results.push_back(Tmp1);
2913    break;
2914  }
2915  case ISD::EXTRACT_ELEMENT: {
2916    EVT OpTy = Node->getOperand(0).getValueType();
2917    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2918      // 1 -> Hi
2919      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2920                         DAG.getConstant(OpTy.getSizeInBits()/2,
2921                    TLI.getShiftAmountTy(Node->getOperand(0).getValueType())));
2922      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2923    } else {
2924      // 0 -> Lo
2925      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2926                         Node->getOperand(0));
2927    }
2928    Results.push_back(Tmp1);
2929    break;
2930  }
2931  case ISD::STACKSAVE:
2932    // Expand to CopyFromReg if the target set
2933    // StackPointerRegisterToSaveRestore.
2934    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2935      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2936                                           Node->getValueType(0)));
2937      Results.push_back(Results[0].getValue(1));
2938    } else {
2939      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2940      Results.push_back(Node->getOperand(0));
2941    }
2942    break;
2943  case ISD::STACKRESTORE:
2944    // Expand to CopyToReg if the target set
2945    // StackPointerRegisterToSaveRestore.
2946    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2947      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
2948                                         Node->getOperand(1)));
2949    } else {
2950      Results.push_back(Node->getOperand(0));
2951    }
2952    break;
2953  case ISD::FCOPYSIGN:
2954    Results.push_back(ExpandFCOPYSIGN(Node));
2955    break;
2956  case ISD::FNEG:
2957    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
2958    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
2959    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
2960                       Node->getOperand(0));
2961    Results.push_back(Tmp1);
2962    break;
2963  case ISD::FABS: {
2964    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
2965    EVT VT = Node->getValueType(0);
2966    Tmp1 = Node->getOperand(0);
2967    Tmp2 = DAG.getConstantFP(0.0, VT);
2968    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2969                        Tmp1, Tmp2, ISD::SETUGT);
2970    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
2971    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
2972    Results.push_back(Tmp1);
2973    break;
2974  }
2975  case ISD::FSQRT:
2976    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
2977                                      RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
2978    break;
2979  case ISD::FSIN:
2980    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
2981                                      RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
2982    break;
2983  case ISD::FCOS:
2984    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
2985                                      RTLIB::COS_F80, RTLIB::COS_PPCF128));
2986    break;
2987  case ISD::FLOG:
2988    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
2989                                      RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
2990    break;
2991  case ISD::FLOG2:
2992    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
2993                                      RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
2994    break;
2995  case ISD::FLOG10:
2996    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
2997                                      RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
2998    break;
2999  case ISD::FEXP:
3000    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
3001                                      RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
3002    break;
3003  case ISD::FEXP2:
3004    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
3005                                      RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
3006    break;
3007  case ISD::FTRUNC:
3008    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
3009                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
3010    break;
3011  case ISD::FFLOOR:
3012    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
3013                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
3014    break;
3015  case ISD::FCEIL:
3016    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
3017                                      RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
3018    break;
3019  case ISD::FRINT:
3020    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
3021                                      RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
3022    break;
3023  case ISD::FNEARBYINT:
3024    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
3025                                      RTLIB::NEARBYINT_F64,
3026                                      RTLIB::NEARBYINT_F80,
3027                                      RTLIB::NEARBYINT_PPCF128));
3028    break;
3029  case ISD::FPOWI:
3030    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
3031                                      RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
3032    break;
3033  case ISD::FPOW:
3034    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
3035                                      RTLIB::POW_F80, RTLIB::POW_PPCF128));
3036    break;
3037  case ISD::FDIV:
3038    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
3039                                      RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
3040    break;
3041  case ISD::FREM:
3042    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
3043                                      RTLIB::REM_F80, RTLIB::REM_PPCF128));
3044    break;
3045  case ISD::FMA:
3046    Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
3047                                      RTLIB::FMA_F80, RTLIB::FMA_PPCF128));
3048    break;
3049  case ISD::FP16_TO_FP32:
3050    Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
3051    break;
3052  case ISD::FP32_TO_FP16:
3053    Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false));
3054    break;
3055  case ISD::ConstantFP: {
3056    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
3057    // Check to see if this FP immediate is already legal.
3058    // If this is a legal constant, turn it into a TargetConstantFP node.
3059    if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
3060      Results.push_back(ExpandConstantFP(CFP, true));
3061    break;
3062  }
3063  case ISD::EHSELECTION: {
3064    unsigned Reg = TLI.getExceptionSelectorRegister();
3065    assert(Reg && "Can't expand to unknown register!");
3066    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
3067                                         Node->getValueType(0)));
3068    Results.push_back(Results[0].getValue(1));
3069    break;
3070  }
3071  case ISD::EXCEPTIONADDR: {
3072    unsigned Reg = TLI.getExceptionPointerRegister();
3073    assert(Reg && "Can't expand to unknown register!");
3074    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
3075                                         Node->getValueType(0)));
3076    Results.push_back(Results[0].getValue(1));
3077    break;
3078  }
3079  case ISD::FSUB: {
3080    EVT VT = Node->getValueType(0);
3081    assert(TLI.isOperationLegalOrCustom(ISD::FADD, VT) &&
3082           TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
3083           "Don't know how to expand this FP subtraction!");
3084    Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1));
3085    Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1);
3086    Results.push_back(Tmp1);
3087    break;
3088  }
3089  case ISD::SUB: {
3090    EVT VT = Node->getValueType(0);
3091    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
3092           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
3093           "Don't know how to expand this subtraction!");
3094    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
3095               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
3096    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, VT));
3097    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
3098    break;
3099  }
3100  case ISD::UREM:
3101  case ISD::SREM: {
3102    EVT VT = Node->getValueType(0);
3103    SDVTList VTs = DAG.getVTList(VT, VT);
3104    bool isSigned = Node->getOpcode() == ISD::SREM;
3105    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
3106    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3107    Tmp2 = Node->getOperand(0);
3108    Tmp3 = Node->getOperand(1);
3109    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
3110        (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
3111         useDivRem(Node, isSigned, false))) {
3112      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
3113    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
3114      // X % Y -> X-X/Y*Y
3115      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
3116      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
3117      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
3118    } else if (isSigned)
3119      Tmp1 = ExpandIntLibCall(Node, true,
3120                              RTLIB::SREM_I8,
3121                              RTLIB::SREM_I16, RTLIB::SREM_I32,
3122                              RTLIB::SREM_I64, RTLIB::SREM_I128);
3123    else
3124      Tmp1 = ExpandIntLibCall(Node, false,
3125                              RTLIB::UREM_I8,
3126                              RTLIB::UREM_I16, RTLIB::UREM_I32,
3127                              RTLIB::UREM_I64, RTLIB::UREM_I128);
3128    Results.push_back(Tmp1);
3129    break;
3130  }
3131  case ISD::UDIV:
3132  case ISD::SDIV: {
3133    bool isSigned = Node->getOpcode() == ISD::SDIV;
3134    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3135    EVT VT = Node->getValueType(0);
3136    SDVTList VTs = DAG.getVTList(VT, VT);
3137    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
3138        (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
3139         useDivRem(Node, isSigned, true)))
3140      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3141                         Node->getOperand(1));
3142    else if (isSigned)
3143      Tmp1 = ExpandIntLibCall(Node, true,
3144                              RTLIB::SDIV_I8,
3145                              RTLIB::SDIV_I16, RTLIB::SDIV_I32,
3146                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
3147    else
3148      Tmp1 = ExpandIntLibCall(Node, false,
3149                              RTLIB::UDIV_I8,
3150                              RTLIB::UDIV_I16, RTLIB::UDIV_I32,
3151                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
3152    Results.push_back(Tmp1);
3153    break;
3154  }
3155  case ISD::MULHU:
3156  case ISD::MULHS: {
3157    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
3158                                                              ISD::SMUL_LOHI;
3159    EVT VT = Node->getValueType(0);
3160    SDVTList VTs = DAG.getVTList(VT, VT);
3161    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
3162           "If this wasn't legal, it shouldn't have been created!");
3163    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3164                       Node->getOperand(1));
3165    Results.push_back(Tmp1.getValue(1));
3166    break;
3167  }
3168  case ISD::SDIVREM:
3169  case ISD::UDIVREM:
3170    // Expand into divrem libcall
3171    ExpandDivRemLibCall(Node, Results);
3172    break;
3173  case ISD::MUL: {
3174    EVT VT = Node->getValueType(0);
3175    SDVTList VTs = DAG.getVTList(VT, VT);
3176    // See if multiply or divide can be lowered using two-result operations.
3177    // We just need the low half of the multiply; try both the signed
3178    // and unsigned forms. If the target supports both SMUL_LOHI and
3179    // UMUL_LOHI, form a preference by checking which forms of plain
3180    // MULH it supports.
3181    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3182    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3183    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3184    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3185    unsigned OpToUse = 0;
3186    if (HasSMUL_LOHI && !HasMULHS) {
3187      OpToUse = ISD::SMUL_LOHI;
3188    } else if (HasUMUL_LOHI && !HasMULHU) {
3189      OpToUse = ISD::UMUL_LOHI;
3190    } else if (HasSMUL_LOHI) {
3191      OpToUse = ISD::SMUL_LOHI;
3192    } else if (HasUMUL_LOHI) {
3193      OpToUse = ISD::UMUL_LOHI;
3194    }
3195    if (OpToUse) {
3196      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3197                                    Node->getOperand(1)));
3198      break;
3199    }
3200    Tmp1 = ExpandIntLibCall(Node, false,
3201                            RTLIB::MUL_I8,
3202                            RTLIB::MUL_I16, RTLIB::MUL_I32,
3203                            RTLIB::MUL_I64, RTLIB::MUL_I128);
3204    Results.push_back(Tmp1);
3205    break;
3206  }
3207  case ISD::SADDO:
3208  case ISD::SSUBO: {
3209    SDValue LHS = Node->getOperand(0);
3210    SDValue RHS = Node->getOperand(1);
3211    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
3212                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3213                              LHS, RHS);
3214    Results.push_back(Sum);
3215    EVT OType = Node->getValueType(1);
3216
3217    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
3218
3219    //   LHSSign -> LHS >= 0
3220    //   RHSSign -> RHS >= 0
3221    //   SumSign -> Sum >= 0
3222    //
3223    //   Add:
3224    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
3225    //   Sub:
3226    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
3227    //
3228    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
3229    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
3230    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
3231                                      Node->getOpcode() == ISD::SADDO ?
3232                                      ISD::SETEQ : ISD::SETNE);
3233
3234    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
3235    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
3236
3237    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
3238    Results.push_back(Cmp);
3239    break;
3240  }
3241  case ISD::UADDO:
3242  case ISD::USUBO: {
3243    SDValue LHS = Node->getOperand(0);
3244    SDValue RHS = Node->getOperand(1);
3245    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
3246                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3247                              LHS, RHS);
3248    Results.push_back(Sum);
3249    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
3250                                   Node->getOpcode () == ISD::UADDO ?
3251                                   ISD::SETULT : ISD::SETUGT));
3252    break;
3253  }
3254  case ISD::UMULO:
3255  case ISD::SMULO: {
3256    EVT VT = Node->getValueType(0);
3257    EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
3258    SDValue LHS = Node->getOperand(0);
3259    SDValue RHS = Node->getOperand(1);
3260    SDValue BottomHalf;
3261    SDValue TopHalf;
3262    static const unsigned Ops[2][3] =
3263        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
3264          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
3265    bool isSigned = Node->getOpcode() == ISD::SMULO;
3266    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
3267      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
3268      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
3269    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
3270      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
3271                               RHS);
3272      TopHalf = BottomHalf.getValue(1);
3273    } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(),
3274                                                 VT.getSizeInBits() * 2))) {
3275      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
3276      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
3277      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
3278      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3279                               DAG.getIntPtrConstant(0));
3280      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3281                            DAG.getIntPtrConstant(1));
3282    } else {
3283      // We can fall back to a libcall with an illegal type for the MUL if we
3284      // have a libcall big enough.
3285      // Also, we can fall back to a division in some cases, but that's a big
3286      // performance hit in the general case.
3287      RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
3288      if (WideVT == MVT::i16)
3289        LC = RTLIB::MUL_I16;
3290      else if (WideVT == MVT::i32)
3291        LC = RTLIB::MUL_I32;
3292      else if (WideVT == MVT::i64)
3293        LC = RTLIB::MUL_I64;
3294      else if (WideVT == MVT::i128)
3295        LC = RTLIB::MUL_I128;
3296      assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
3297
3298      // The high part is obtained by SRA'ing all but one of the bits of low
3299      // part.
3300      unsigned LoSize = VT.getSizeInBits();
3301      SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, RHS,
3302                                DAG.getConstant(LoSize-1, TLI.getPointerTy()));
3303      SDValue HiRHS = DAG.getNode(ISD::SRA, dl, VT, LHS,
3304                                DAG.getConstant(LoSize-1, TLI.getPointerTy()));
3305
3306      // Here we're passing the 2 arguments explicitly as 4 arguments that are
3307      // pre-lowered to the correct types. This all depends upon WideVT not
3308      // being a legal type for the architecture and thus has to be split to
3309      // two arguments.
3310      SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
3311      SDValue Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl);
3312      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3313                               DAG.getIntPtrConstant(0));
3314      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3315                            DAG.getIntPtrConstant(1));
3316      // Ret is a node with an illegal type. Because such things are not
3317      // generally permitted during this phase of legalization, delete the
3318      // node. The above EXTRACT_ELEMENT nodes should have been folded.
3319      DAG.DeleteNode(Ret.getNode());
3320    }
3321
3322    if (isSigned) {
3323      Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1,
3324                             TLI.getShiftAmountTy(BottomHalf.getValueType()));
3325      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
3326      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
3327                             ISD::SETNE);
3328    } else {
3329      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
3330                             DAG.getConstant(0, VT), ISD::SETNE);
3331    }
3332    Results.push_back(BottomHalf);
3333    Results.push_back(TopHalf);
3334    break;
3335  }
3336  case ISD::BUILD_PAIR: {
3337    EVT PairTy = Node->getValueType(0);
3338    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3339    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3340    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
3341                       DAG.getConstant(PairTy.getSizeInBits()/2,
3342                                       TLI.getShiftAmountTy(PairTy)));
3343    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3344    break;
3345  }
3346  case ISD::SELECT:
3347    Tmp1 = Node->getOperand(0);
3348    Tmp2 = Node->getOperand(1);
3349    Tmp3 = Node->getOperand(2);
3350    if (Tmp1.getOpcode() == ISD::SETCC) {
3351      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3352                             Tmp2, Tmp3,
3353                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3354    } else {
3355      Tmp1 = DAG.getSelectCC(dl, Tmp1,
3356                             DAG.getConstant(0, Tmp1.getValueType()),
3357                             Tmp2, Tmp3, ISD::SETNE);
3358    }
3359    Results.push_back(Tmp1);
3360    break;
3361  case ISD::BR_JT: {
3362    SDValue Chain = Node->getOperand(0);
3363    SDValue Table = Node->getOperand(1);
3364    SDValue Index = Node->getOperand(2);
3365
3366    EVT PTy = TLI.getPointerTy();
3367
3368    const DataLayout &TD = *TLI.getDataLayout();
3369    unsigned EntrySize =
3370      DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3371
3372    Index = DAG.getNode(ISD::MUL, dl, PTy,
3373                        Index, DAG.getConstant(EntrySize, PTy));
3374    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3375
3376    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3377    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3378                                MachinePointerInfo::getJumpTable(), MemVT,
3379                                false, false, 0);
3380    Addr = LD;
3381    if (TM.getRelocationModel() == Reloc::PIC_) {
3382      // For PIC, the sequence is:
3383      // BRIND(load(Jumptable + index) + RelocBase)
3384      // RelocBase can be JumpTable, GOT or some sort of global base.
3385      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3386                          TLI.getPICJumpTableRelocBase(Table, DAG));
3387    }
3388    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
3389    Results.push_back(Tmp1);
3390    break;
3391  }
3392  case ISD::BRCOND:
3393    // Expand brcond's setcc into its constituent parts and create a BR_CC
3394    // Node.
3395    Tmp1 = Node->getOperand(0);
3396    Tmp2 = Node->getOperand(1);
3397    if (Tmp2.getOpcode() == ISD::SETCC) {
3398      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3399                         Tmp1, Tmp2.getOperand(2),
3400                         Tmp2.getOperand(0), Tmp2.getOperand(1),
3401                         Node->getOperand(2));
3402    } else {
3403      // We test only the i1 bit.  Skip the AND if UNDEF.
3404      Tmp3 = (Tmp2.getOpcode() == ISD::UNDEF) ? Tmp2 :
3405        DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
3406                    DAG.getConstant(1, Tmp2.getValueType()));
3407      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3408                         DAG.getCondCode(ISD::SETNE), Tmp3,
3409                         DAG.getConstant(0, Tmp3.getValueType()),
3410                         Node->getOperand(2));
3411    }
3412    Results.push_back(Tmp1);
3413    break;
3414  case ISD::SETCC: {
3415    Tmp1 = Node->getOperand(0);
3416    Tmp2 = Node->getOperand(1);
3417    Tmp3 = Node->getOperand(2);
3418    LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
3419
3420    // If we expanded the SETCC into an AND/OR, return the new node
3421    if (Tmp2.getNode() == 0) {
3422      Results.push_back(Tmp1);
3423      break;
3424    }
3425
3426    // Otherwise, SETCC for the given comparison type must be completely
3427    // illegal; expand it into a SELECT_CC.
3428    EVT VT = Node->getValueType(0);
3429    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3430                       DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
3431    Results.push_back(Tmp1);
3432    break;
3433  }
3434  case ISD::SELECT_CC: {
3435    Tmp1 = Node->getOperand(0);   // LHS
3436    Tmp2 = Node->getOperand(1);   // RHS
3437    Tmp3 = Node->getOperand(2);   // True
3438    Tmp4 = Node->getOperand(3);   // False
3439    SDValue CC = Node->getOperand(4);
3440
3441    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
3442                          Tmp1, Tmp2, CC, dl);
3443
3444    assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
3445    Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
3446    CC = DAG.getCondCode(ISD::SETNE);
3447    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
3448                       Tmp3, Tmp4, CC);
3449    Results.push_back(Tmp1);
3450    break;
3451  }
3452  case ISD::BR_CC: {
3453    Tmp1 = Node->getOperand(0);              // Chain
3454    Tmp2 = Node->getOperand(2);              // LHS
3455    Tmp3 = Node->getOperand(3);              // RHS
3456    Tmp4 = Node->getOperand(1);              // CC
3457
3458    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
3459                          Tmp2, Tmp3, Tmp4, dl);
3460
3461    assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
3462    Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
3463    Tmp4 = DAG.getCondCode(ISD::SETNE);
3464    Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
3465                       Tmp3, Node->getOperand(4));
3466    Results.push_back(Tmp1);
3467    break;
3468  }
3469  case ISD::BUILD_VECTOR:
3470    Results.push_back(ExpandBUILD_VECTOR(Node));
3471    break;
3472  case ISD::SRA:
3473  case ISD::SRL:
3474  case ISD::SHL: {
3475    // Scalarize vector SRA/SRL/SHL.
3476    EVT VT = Node->getValueType(0);
3477    assert(VT.isVector() && "Unable to legalize non-vector shift");
3478    assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal");
3479    unsigned NumElem = VT.getVectorNumElements();
3480
3481    SmallVector<SDValue, 8> Scalars;
3482    for (unsigned Idx = 0; Idx < NumElem; Idx++) {
3483      SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3484                               VT.getScalarType(),
3485                               Node->getOperand(0), DAG.getIntPtrConstant(Idx));
3486      SDValue Sh = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3487                               VT.getScalarType(),
3488                               Node->getOperand(1), DAG.getIntPtrConstant(Idx));
3489      Scalars.push_back(DAG.getNode(Node->getOpcode(), dl,
3490                                    VT.getScalarType(), Ex, Sh));
3491    }
3492    SDValue Result =
3493      DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0),
3494                  &Scalars[0], Scalars.size());
3495    ReplaceNode(SDValue(Node, 0), Result);
3496    break;
3497  }
3498  case ISD::GLOBAL_OFFSET_TABLE:
3499  case ISD::GlobalAddress:
3500  case ISD::GlobalTLSAddress:
3501  case ISD::ExternalSymbol:
3502  case ISD::ConstantPool:
3503  case ISD::JumpTable:
3504  case ISD::INTRINSIC_W_CHAIN:
3505  case ISD::INTRINSIC_WO_CHAIN:
3506  case ISD::INTRINSIC_VOID:
3507    // FIXME: Custom lowering for these operations shouldn't return null!
3508    break;
3509  }
3510
3511  // Replace the original node with the legalized result.
3512  if (!Results.empty())
3513    ReplaceNode(Node, Results.data());
3514}
3515
3516void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
3517  SmallVector<SDValue, 8> Results;
3518  EVT OVT = Node->getValueType(0);
3519  if (Node->getOpcode() == ISD::UINT_TO_FP ||
3520      Node->getOpcode() == ISD::SINT_TO_FP ||
3521      Node->getOpcode() == ISD::SETCC) {
3522    OVT = Node->getOperand(0).getValueType();
3523  }
3524  EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
3525  DebugLoc dl = Node->getDebugLoc();
3526  SDValue Tmp1, Tmp2, Tmp3;
3527  switch (Node->getOpcode()) {
3528  case ISD::CTTZ:
3529  case ISD::CTTZ_ZERO_UNDEF:
3530  case ISD::CTLZ:
3531  case ISD::CTLZ_ZERO_UNDEF:
3532  case ISD::CTPOP:
3533    // Zero extend the argument.
3534    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3535    // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is
3536    // already the correct result.
3537    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3538    if (Node->getOpcode() == ISD::CTTZ) {
3539      // FIXME: This should set a bit in the zero extended value instead.
3540      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
3541                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
3542                          ISD::SETEQ);
3543      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
3544                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
3545    } else if (Node->getOpcode() == ISD::CTLZ ||
3546               Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) {
3547      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
3548      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
3549                          DAG.getConstant(NVT.getSizeInBits() -
3550                                          OVT.getSizeInBits(), NVT));
3551    }
3552    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
3553    break;
3554  case ISD::BSWAP: {
3555    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3556    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3557    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3558    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3559                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy(NVT)));
3560    Results.push_back(Tmp1);
3561    break;
3562  }
3563  case ISD::FP_TO_UINT:
3564  case ISD::FP_TO_SINT:
3565    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3566                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
3567    Results.push_back(Tmp1);
3568    break;
3569  case ISD::UINT_TO_FP:
3570  case ISD::SINT_TO_FP:
3571    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3572                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
3573    Results.push_back(Tmp1);
3574    break;
3575  case ISD::VAARG: {
3576    SDValue Chain = Node->getOperand(0); // Get the chain.
3577    SDValue Ptr = Node->getOperand(1); // Get the pointer.
3578
3579    unsigned TruncOp;
3580    if (OVT.isVector()) {
3581      TruncOp = ISD::BITCAST;
3582    } else {
3583      assert(OVT.isInteger()
3584        && "VAARG promotion is supported only for vectors or integer types");
3585      TruncOp = ISD::TRUNCATE;
3586    }
3587
3588    // Perform the larger operation, then convert back
3589    Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2),
3590             Node->getConstantOperandVal(3));
3591    Chain = Tmp1.getValue(1);
3592
3593    Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1);
3594
3595    // Modified the chain result - switch anything that used the old chain to
3596    // use the new one.
3597    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2);
3598    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
3599    ReplacedNode(Node);
3600    break;
3601  }
3602  case ISD::AND:
3603  case ISD::OR:
3604  case ISD::XOR: {
3605    unsigned ExtOp, TruncOp;
3606    if (OVT.isVector()) {
3607      ExtOp   = ISD::BITCAST;
3608      TruncOp = ISD::BITCAST;
3609    } else {
3610      assert(OVT.isInteger() && "Cannot promote logic operation");
3611      ExtOp   = ISD::ANY_EXTEND;
3612      TruncOp = ISD::TRUNCATE;
3613    }
3614    // Promote each of the values to the new type.
3615    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3616    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3617    // Perform the larger operation, then convert back
3618    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3619    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3620    break;
3621  }
3622  case ISD::SELECT: {
3623    unsigned ExtOp, TruncOp;
3624    if (Node->getValueType(0).isVector()) {
3625      ExtOp   = ISD::BITCAST;
3626      TruncOp = ISD::BITCAST;
3627    } else if (Node->getValueType(0).isInteger()) {
3628      ExtOp   = ISD::ANY_EXTEND;
3629      TruncOp = ISD::TRUNCATE;
3630    } else {
3631      ExtOp   = ISD::FP_EXTEND;
3632      TruncOp = ISD::FP_ROUND;
3633    }
3634    Tmp1 = Node->getOperand(0);
3635    // Promote each of the values to the new type.
3636    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3637    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3638    // Perform the larger operation, then round down.
3639    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3640    if (TruncOp != ISD::FP_ROUND)
3641      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3642    else
3643      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3644                         DAG.getIntPtrConstant(0));
3645    Results.push_back(Tmp1);
3646    break;
3647  }
3648  case ISD::VECTOR_SHUFFLE: {
3649    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
3650
3651    // Cast the two input vectors.
3652    Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
3653    Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
3654
3655    // Convert the shuffle mask to the right # elements.
3656    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3657    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
3658    Results.push_back(Tmp1);
3659    break;
3660  }
3661  case ISD::SETCC: {
3662    unsigned ExtOp = ISD::FP_EXTEND;
3663    if (NVT.isInteger()) {
3664      ISD::CondCode CCCode =
3665        cast<CondCodeSDNode>(Node->getOperand(2))->get();
3666      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3667    }
3668    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3669    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3670    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3671                                  Tmp1, Tmp2, Node->getOperand(2)));
3672    break;
3673  }
3674  case ISD::FDIV:
3675  case ISD::FREM:
3676  case ISD::FPOW: {
3677    Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
3678    Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
3679    Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3680    Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
3681                                  Tmp3, DAG.getIntPtrConstant(0)));
3682    break;
3683  }
3684  case ISD::FLOG2:
3685  case ISD::FEXP2:
3686  case ISD::FLOG:
3687  case ISD::FEXP: {
3688    Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
3689    Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3690    Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
3691                                  Tmp2, DAG.getIntPtrConstant(0)));
3692    break;
3693  }
3694  }
3695
3696  // Replace the original node with the legalized result.
3697  if (!Results.empty())
3698    ReplaceNode(Node, Results.data());
3699}
3700
3701// SelectionDAG::Legalize - This is the entry point for the file.
3702//
3703void SelectionDAG::Legalize() {
3704  /// run - This is the main entry point to this class.
3705  ///
3706  SelectionDAGLegalize(*this).LegalizeDAG();
3707}
3708