LegalizeDAG.cpp revision 3574eca1b02600bac4e625297f4ecf745f4c4f32
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the SelectionDAG::Legalize method. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CallingConv.h" 15#include "llvm/Constants.h" 16#include "llvm/DebugInfo.h" 17#include "llvm/DerivedTypes.h" 18#include "llvm/LLVMContext.h" 19#include "llvm/CodeGen/Analysis.h" 20#include "llvm/CodeGen/MachineFunction.h" 21#include "llvm/CodeGen/MachineJumpTableInfo.h" 22#include "llvm/CodeGen/SelectionDAG.h" 23#include "llvm/Target/TargetFrameLowering.h" 24#include "llvm/Target/TargetLowering.h" 25#include "llvm/DataLayout.h" 26#include "llvm/Target/TargetMachine.h" 27#include "llvm/Support/Debug.h" 28#include "llvm/Support/ErrorHandling.h" 29#include "llvm/Support/MathExtras.h" 30#include "llvm/Support/raw_ostream.h" 31#include "llvm/ADT/DenseMap.h" 32#include "llvm/ADT/SmallVector.h" 33#include "llvm/ADT/SmallPtrSet.h" 34using namespace llvm; 35 36//===----------------------------------------------------------------------===// 37/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and 38/// hacks on it until the target machine can handle it. This involves 39/// eliminating value sizes the machine cannot handle (promoting small sizes to 40/// large sizes or splitting up large values into small values) as well as 41/// eliminating operations the machine cannot handle. 42/// 43/// This code also does a small amount of optimization and recognition of idioms 44/// as part of its processing. For example, if a target does not support a 45/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 46/// will attempt merge setcc and brc instructions into brcc's. 47/// 48namespace { 49class SelectionDAGLegalize : public SelectionDAG::DAGUpdateListener { 50 const TargetMachine &TM; 51 const TargetLowering &TLI; 52 SelectionDAG &DAG; 53 54 /// LegalizePosition - The iterator for walking through the node list. 55 SelectionDAG::allnodes_iterator LegalizePosition; 56 57 /// LegalizedNodes - The set of nodes which have already been legalized. 58 SmallPtrSet<SDNode *, 16> LegalizedNodes; 59 60 // Libcall insertion helpers. 61 62public: 63 explicit SelectionDAGLegalize(SelectionDAG &DAG); 64 65 void LegalizeDAG(); 66 67private: 68 /// LegalizeOp - Legalizes the given operation. 69 void LegalizeOp(SDNode *Node); 70 71 SDValue OptimizeFloatStore(StoreSDNode *ST); 72 73 void LegalizeLoadOps(SDNode *Node); 74 void LegalizeStoreOps(SDNode *Node); 75 76 /// PerformInsertVectorEltInMemory - Some target cannot handle a variable 77 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 78 /// is necessary to spill the vector being inserted into to memory, perform 79 /// the insert there, and then read the result back. 80 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, 81 SDValue Idx, DebugLoc dl); 82 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 83 SDValue Idx, DebugLoc dl); 84 85 /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which 86 /// performs the same shuffe in terms of order or result bytes, but on a type 87 /// whose vector element type is narrower than the original shuffle type. 88 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 89 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl, 90 SDValue N1, SDValue N2, 91 ArrayRef<int> Mask) const; 92 93 void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, 94 DebugLoc dl); 95 96 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 97 SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops, 98 unsigned NumOps, bool isSigned, DebugLoc dl); 99 100 std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC, 101 SDNode *Node, bool isSigned); 102 SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 103 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 104 RTLIB::Libcall Call_PPCF128); 105 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, 106 RTLIB::Libcall Call_I8, 107 RTLIB::Libcall Call_I16, 108 RTLIB::Libcall Call_I32, 109 RTLIB::Libcall Call_I64, 110 RTLIB::Libcall Call_I128); 111 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 112 113 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl); 114 SDValue ExpandBUILD_VECTOR(SDNode *Node); 115 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 116 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 117 SmallVectorImpl<SDValue> &Results); 118 SDValue ExpandFCOPYSIGN(SDNode *Node); 119 SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT, 120 DebugLoc dl); 121 SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned, 122 DebugLoc dl); 123 SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned, 124 DebugLoc dl); 125 126 SDValue ExpandBSWAP(SDValue Op, DebugLoc dl); 127 SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl); 128 129 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 130 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 131 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 132 133 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); 134 135 std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node); 136 137 void ExpandNode(SDNode *Node); 138 void PromoteNode(SDNode *Node); 139 140 void ForgetNode(SDNode *N) { 141 LegalizedNodes.erase(N); 142 if (LegalizePosition == SelectionDAG::allnodes_iterator(N)) 143 ++LegalizePosition; 144 } 145 146public: 147 // DAGUpdateListener implementation. 148 virtual void NodeDeleted(SDNode *N, SDNode *E) { 149 ForgetNode(N); 150 } 151 virtual void NodeUpdated(SDNode *N) {} 152 153 // Node replacement helpers 154 void ReplacedNode(SDNode *N) { 155 if (N->use_empty()) { 156 DAG.RemoveDeadNode(N); 157 } else { 158 ForgetNode(N); 159 } 160 } 161 void ReplaceNode(SDNode *Old, SDNode *New) { 162 DAG.ReplaceAllUsesWith(Old, New); 163 ReplacedNode(Old); 164 } 165 void ReplaceNode(SDValue Old, SDValue New) { 166 DAG.ReplaceAllUsesWith(Old, New); 167 ReplacedNode(Old.getNode()); 168 } 169 void ReplaceNode(SDNode *Old, const SDValue *New) { 170 DAG.ReplaceAllUsesWith(Old, New); 171 ReplacedNode(Old); 172 } 173}; 174} 175 176/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which 177/// performs the same shuffe in terms of order or result bytes, but on a type 178/// whose vector element type is narrower than the original shuffle type. 179/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 180SDValue 181SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl, 182 SDValue N1, SDValue N2, 183 ArrayRef<int> Mask) const { 184 unsigned NumMaskElts = VT.getVectorNumElements(); 185 unsigned NumDestElts = NVT.getVectorNumElements(); 186 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 187 188 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 189 190 if (NumEltsGrowth == 1) 191 return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]); 192 193 SmallVector<int, 8> NewMask; 194 for (unsigned i = 0; i != NumMaskElts; ++i) { 195 int Idx = Mask[i]; 196 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 197 if (Idx < 0) 198 NewMask.push_back(-1); 199 else 200 NewMask.push_back(Idx * NumEltsGrowth + j); 201 } 202 } 203 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 204 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 205 return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]); 206} 207 208SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag) 209 : SelectionDAG::DAGUpdateListener(dag), 210 TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()), 211 DAG(dag) { 212} 213 214void SelectionDAGLegalize::LegalizeDAG() { 215 DAG.AssignTopologicalOrder(); 216 217 // Visit all the nodes. We start in topological order, so that we see 218 // nodes with their original operands intact. Legalization can produce 219 // new nodes which may themselves need to be legalized. Iterate until all 220 // nodes have been legalized. 221 for (;;) { 222 bool AnyLegalized = false; 223 for (LegalizePosition = DAG.allnodes_end(); 224 LegalizePosition != DAG.allnodes_begin(); ) { 225 --LegalizePosition; 226 227 SDNode *N = LegalizePosition; 228 if (LegalizedNodes.insert(N)) { 229 AnyLegalized = true; 230 LegalizeOp(N); 231 } 232 } 233 if (!AnyLegalized) 234 break; 235 236 } 237 238 // Remove dead nodes now. 239 DAG.RemoveDeadNodes(); 240} 241 242/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or 243/// a load from the constant pool. 244SDValue 245SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { 246 bool Extend = false; 247 DebugLoc dl = CFP->getDebugLoc(); 248 249 // If a FP immediate is precise when represented as a float and if the 250 // target can do an extending load from float to double, we put it into 251 // the constant pool as a float, even if it's is statically typed as a 252 // double. This shrinks FP constants and canonicalizes them for targets where 253 // an FP extending load is the same cost as a normal load (such as on the x87 254 // fp stack or PPC FP unit). 255 EVT VT = CFP->getValueType(0); 256 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 257 if (!UseCP) { 258 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 259 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), 260 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 261 } 262 263 EVT OrigVT = VT; 264 EVT SVT = VT; 265 while (SVT != MVT::f32) { 266 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 267 if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) && 268 // Only do this if the target has a native EXTLOAD instruction from 269 // smaller type. 270 TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) && 271 TLI.ShouldShrinkFPConstant(OrigVT)) { 272 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 273 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 274 VT = SVT; 275 Extend = true; 276 } 277 } 278 279 SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy()); 280 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 281 if (Extend) { 282 SDValue Result = 283 DAG.getExtLoad(ISD::EXTLOAD, dl, OrigVT, 284 DAG.getEntryNode(), 285 CPIdx, MachinePointerInfo::getConstantPool(), 286 VT, false, false, Alignment); 287 return Result; 288 } 289 SDValue Result = 290 DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx, 291 MachinePointerInfo::getConstantPool(), false, false, false, 292 Alignment); 293 return Result; 294} 295 296/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores. 297static void ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG, 298 const TargetLowering &TLI, 299 SelectionDAGLegalize *DAGLegalize) { 300 assert(ST->getAddressingMode() == ISD::UNINDEXED && 301 "unaligned indexed stores not implemented!"); 302 SDValue Chain = ST->getChain(); 303 SDValue Ptr = ST->getBasePtr(); 304 SDValue Val = ST->getValue(); 305 EVT VT = Val.getValueType(); 306 int Alignment = ST->getAlignment(); 307 DebugLoc dl = ST->getDebugLoc(); 308 if (ST->getMemoryVT().isFloatingPoint() || 309 ST->getMemoryVT().isVector()) { 310 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 311 if (TLI.isTypeLegal(intVT)) { 312 // Expand to a bitconvert of the value to the integer type of the 313 // same size, then a (misaligned) int store. 314 // FIXME: Does not handle truncating floating point stores! 315 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 316 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 317 ST->isVolatile(), ST->isNonTemporal(), Alignment); 318 DAGLegalize->ReplaceNode(SDValue(ST, 0), Result); 319 return; 320 } 321 // Do a (aligned) store to a stack slot, then copy from the stack slot 322 // to the final destination using (unaligned) integer loads and stores. 323 EVT StoredVT = ST->getMemoryVT(); 324 EVT RegVT = 325 TLI.getRegisterType(*DAG.getContext(), 326 EVT::getIntegerVT(*DAG.getContext(), 327 StoredVT.getSizeInBits())); 328 unsigned StoredBytes = StoredVT.getSizeInBits() / 8; 329 unsigned RegBytes = RegVT.getSizeInBits() / 8; 330 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 331 332 // Make sure the stack slot is also aligned for the register type. 333 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); 334 335 // Perform the original store, only redirected to the stack slot. 336 SDValue Store = DAG.getTruncStore(Chain, dl, 337 Val, StackPtr, MachinePointerInfo(), 338 StoredVT, false, false, 0); 339 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy()); 340 SmallVector<SDValue, 8> Stores; 341 unsigned Offset = 0; 342 343 // Do all but one copies using the full register width. 344 for (unsigned i = 1; i < NumRegs; i++) { 345 // Load one integer register's worth from the stack slot. 346 SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, 347 MachinePointerInfo(), 348 false, false, false, 0); 349 // Store it to the final location. Remember the store. 350 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 351 ST->getPointerInfo().getWithOffset(Offset), 352 ST->isVolatile(), ST->isNonTemporal(), 353 MinAlign(ST->getAlignment(), Offset))); 354 // Increment the pointers. 355 Offset += RegBytes; 356 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, 357 Increment); 358 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 359 } 360 361 // The last store may be partial. Do a truncating store. On big-endian 362 // machines this requires an extending load from the stack slot to ensure 363 // that the bits are in the right place. 364 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 365 8 * (StoredBytes - Offset)); 366 367 // Load from the stack slot. 368 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 369 MachinePointerInfo(), 370 MemVT, false, false, 0); 371 372 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 373 ST->getPointerInfo() 374 .getWithOffset(Offset), 375 MemVT, ST->isVolatile(), 376 ST->isNonTemporal(), 377 MinAlign(ST->getAlignment(), Offset))); 378 // The order of the stores doesn't matter - say it with a TokenFactor. 379 SDValue Result = 380 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0], 381 Stores.size()); 382 DAGLegalize->ReplaceNode(SDValue(ST, 0), Result); 383 return; 384 } 385 assert(ST->getMemoryVT().isInteger() && 386 !ST->getMemoryVT().isVector() && 387 "Unaligned store of unknown type."); 388 // Get the half-size VT 389 EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); 390 int NumBits = NewStoredVT.getSizeInBits(); 391 int IncrementSize = NumBits / 8; 392 393 // Divide the stored value in two parts. 394 SDValue ShiftAmount = DAG.getConstant(NumBits, 395 TLI.getShiftAmountTy(Val.getValueType())); 396 SDValue Lo = Val; 397 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 398 399 // Store the two parts 400 SDValue Store1, Store2; 401 Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr, 402 ST->getPointerInfo(), NewStoredVT, 403 ST->isVolatile(), ST->isNonTemporal(), Alignment); 404 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 405 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 406 Alignment = MinAlign(Alignment, IncrementSize); 407 Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr, 408 ST->getPointerInfo().getWithOffset(IncrementSize), 409 NewStoredVT, ST->isVolatile(), ST->isNonTemporal(), 410 Alignment); 411 412 SDValue Result = 413 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 414 DAGLegalize->ReplaceNode(SDValue(ST, 0), Result); 415} 416 417/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads. 418static void 419ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG, 420 const TargetLowering &TLI, 421 SDValue &ValResult, SDValue &ChainResult) { 422 assert(LD->getAddressingMode() == ISD::UNINDEXED && 423 "unaligned indexed loads not implemented!"); 424 SDValue Chain = LD->getChain(); 425 SDValue Ptr = LD->getBasePtr(); 426 EVT VT = LD->getValueType(0); 427 EVT LoadedVT = LD->getMemoryVT(); 428 DebugLoc dl = LD->getDebugLoc(); 429 if (VT.isFloatingPoint() || VT.isVector()) { 430 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 431 if (TLI.isTypeLegal(intVT) && TLI.isTypeLegal(LoadedVT)) { 432 // Expand to a (misaligned) integer load of the same size, 433 // then bitconvert to floating point or vector. 434 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getPointerInfo(), 435 LD->isVolatile(), 436 LD->isNonTemporal(), 437 LD->isInvariant(), LD->getAlignment()); 438 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 439 if (LoadedVT != VT) 440 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 441 ISD::ANY_EXTEND, dl, VT, Result); 442 443 ValResult = Result; 444 ChainResult = Chain; 445 return; 446 } 447 448 // Copy the value to a (aligned) stack slot using (unaligned) integer 449 // loads and stores, then do a (aligned) load from the stack slot. 450 EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT); 451 unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8; 452 unsigned RegBytes = RegVT.getSizeInBits() / 8; 453 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 454 455 // Make sure the stack slot is also aligned for the register type. 456 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 457 458 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy()); 459 SmallVector<SDValue, 8> Stores; 460 SDValue StackPtr = StackBase; 461 unsigned Offset = 0; 462 463 // Do all but one copies using the full register width. 464 for (unsigned i = 1; i < NumRegs; i++) { 465 // Load one integer register's worth from the original location. 466 SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, 467 LD->getPointerInfo().getWithOffset(Offset), 468 LD->isVolatile(), LD->isNonTemporal(), 469 LD->isInvariant(), 470 MinAlign(LD->getAlignment(), Offset)); 471 // Follow the load with a store to the stack slot. Remember the store. 472 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr, 473 MachinePointerInfo(), false, false, 0)); 474 // Increment the pointers. 475 Offset += RegBytes; 476 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 477 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, 478 Increment); 479 } 480 481 // The last copy may be partial. Do an extending load. 482 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 483 8 * (LoadedBytes - Offset)); 484 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 485 LD->getPointerInfo().getWithOffset(Offset), 486 MemVT, LD->isVolatile(), 487 LD->isNonTemporal(), 488 MinAlign(LD->getAlignment(), Offset)); 489 // Follow the load with a store to the stack slot. Remember the store. 490 // On big-endian machines this requires a truncating store to ensure 491 // that the bits end up in the right place. 492 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr, 493 MachinePointerInfo(), MemVT, 494 false, false, 0)); 495 496 // The order of the stores doesn't matter - say it with a TokenFactor. 497 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0], 498 Stores.size()); 499 500 // Finally, perform the original load only redirected to the stack slot. 501 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 502 MachinePointerInfo(), LoadedVT, false, false, 0); 503 504 // Callers expect a MERGE_VALUES node. 505 ValResult = Load; 506 ChainResult = TF; 507 return; 508 } 509 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 510 "Unaligned load of unsupported type."); 511 512 // Compute the new VT that is half the size of the old one. This is an 513 // integer MVT. 514 unsigned NumBits = LoadedVT.getSizeInBits(); 515 EVT NewLoadedVT; 516 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 517 NumBits >>= 1; 518 519 unsigned Alignment = LD->getAlignment(); 520 unsigned IncrementSize = NumBits / 8; 521 ISD::LoadExtType HiExtType = LD->getExtensionType(); 522 523 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 524 if (HiExtType == ISD::NON_EXTLOAD) 525 HiExtType = ISD::ZEXTLOAD; 526 527 // Load the value in two parts 528 SDValue Lo, Hi; 529 if (TLI.isLittleEndian()) { 530 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 531 NewLoadedVT, LD->isVolatile(), 532 LD->isNonTemporal(), Alignment); 533 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 534 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 535 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 536 LD->getPointerInfo().getWithOffset(IncrementSize), 537 NewLoadedVT, LD->isVolatile(), 538 LD->isNonTemporal(), MinAlign(Alignment,IncrementSize)); 539 } else { 540 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 541 NewLoadedVT, LD->isVolatile(), 542 LD->isNonTemporal(), Alignment); 543 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 544 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 545 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 546 LD->getPointerInfo().getWithOffset(IncrementSize), 547 NewLoadedVT, LD->isVolatile(), 548 LD->isNonTemporal(), MinAlign(Alignment,IncrementSize)); 549 } 550 551 // aggregate the two parts 552 SDValue ShiftAmount = DAG.getConstant(NumBits, 553 TLI.getShiftAmountTy(Hi.getValueType())); 554 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 555 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 556 557 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 558 Hi.getValue(1)); 559 560 ValResult = Result; 561 ChainResult = TF; 562} 563 564/// PerformInsertVectorEltInMemory - Some target cannot handle a variable 565/// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 566/// is necessary to spill the vector being inserted into to memory, perform 567/// the insert there, and then read the result back. 568SDValue SelectionDAGLegalize:: 569PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 570 DebugLoc dl) { 571 SDValue Tmp1 = Vec; 572 SDValue Tmp2 = Val; 573 SDValue Tmp3 = Idx; 574 575 // If the target doesn't support this, we have to spill the input vector 576 // to a temporary stack slot, update the element, then reload it. This is 577 // badness. We could also load the value into a vector register (either 578 // with a "move to register" or "extload into register" instruction, then 579 // permute it into place, if the idx is a constant and if the idx is 580 // supported by the target. 581 EVT VT = Tmp1.getValueType(); 582 EVT EltVT = VT.getVectorElementType(); 583 EVT IdxVT = Tmp3.getValueType(); 584 EVT PtrVT = TLI.getPointerTy(); 585 SDValue StackPtr = DAG.CreateStackTemporary(VT); 586 587 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 588 589 // Store the vector. 590 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr, 591 MachinePointerInfo::getFixedStack(SPFI), 592 false, false, 0); 593 594 // Truncate or zero extend offset to target pointer type. 595 unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND; 596 Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3); 597 // Add the offset to the index. 598 unsigned EltSize = EltVT.getSizeInBits()/8; 599 Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT)); 600 SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr); 601 // Store the scalar value. 602 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT, 603 false, false, 0); 604 // Load the updated vector. 605 return DAG.getLoad(VT, dl, Ch, StackPtr, 606 MachinePointerInfo::getFixedStack(SPFI), false, false, 607 false, 0); 608} 609 610 611SDValue SelectionDAGLegalize:: 612ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) { 613 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 614 // SCALAR_TO_VECTOR requires that the type of the value being inserted 615 // match the element type of the vector being created, except for 616 // integers in which case the inserted value can be over width. 617 EVT EltVT = Vec.getValueType().getVectorElementType(); 618 if (Val.getValueType() == EltVT || 619 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 620 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 621 Vec.getValueType(), Val); 622 623 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 624 // We generate a shuffle of InVec and ScVec, so the shuffle mask 625 // should be 0,1,2,3,4,5... with the appropriate element replaced with 626 // elt 0 of the RHS. 627 SmallVector<int, 8> ShufOps; 628 for (unsigned i = 0; i != NumElts; ++i) 629 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 630 631 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, 632 &ShufOps[0]); 633 } 634 } 635 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 636} 637 638SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 639 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 640 // FIXME: We shouldn't do this for TargetConstantFP's. 641 // FIXME: move this to the DAG Combiner! Note that we can't regress due 642 // to phase ordering between legalized code and the dag combiner. This 643 // probably means that we need to integrate dag combiner and legalizer 644 // together. 645 // We generally can't do this one for long doubles. 646 SDValue Chain = ST->getChain(); 647 SDValue Ptr = ST->getBasePtr(); 648 unsigned Alignment = ST->getAlignment(); 649 bool isVolatile = ST->isVolatile(); 650 bool isNonTemporal = ST->isNonTemporal(); 651 DebugLoc dl = ST->getDebugLoc(); 652 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 653 if (CFP->getValueType(0) == MVT::f32 && 654 TLI.isTypeLegal(MVT::i32)) { 655 SDValue Con = DAG.getConstant(CFP->getValueAPF(). 656 bitcastToAPInt().zextOrTrunc(32), 657 MVT::i32); 658 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 659 isVolatile, isNonTemporal, Alignment); 660 } 661 662 if (CFP->getValueType(0) == MVT::f64) { 663 // If this target supports 64-bit registers, do a single 64-bit store. 664 if (TLI.isTypeLegal(MVT::i64)) { 665 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 666 zextOrTrunc(64), MVT::i64); 667 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 668 isVolatile, isNonTemporal, Alignment); 669 } 670 671 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 672 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 673 // stores. If the target supports neither 32- nor 64-bits, this 674 // xform is certainly not worth it. 675 const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt(); 676 SDValue Lo = DAG.getConstant(IntVal.trunc(32), MVT::i32); 677 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32); 678 if (TLI.isBigEndian()) std::swap(Lo, Hi); 679 680 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), isVolatile, 681 isNonTemporal, Alignment); 682 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 683 DAG.getIntPtrConstant(4)); 684 Hi = DAG.getStore(Chain, dl, Hi, Ptr, 685 ST->getPointerInfo().getWithOffset(4), 686 isVolatile, isNonTemporal, MinAlign(Alignment, 4U)); 687 688 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 689 } 690 } 691 } 692 return SDValue(0, 0); 693} 694 695void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { 696 StoreSDNode *ST = cast<StoreSDNode>(Node); 697 SDValue Chain = ST->getChain(); 698 SDValue Ptr = ST->getBasePtr(); 699 DebugLoc dl = Node->getDebugLoc(); 700 701 unsigned Alignment = ST->getAlignment(); 702 bool isVolatile = ST->isVolatile(); 703 bool isNonTemporal = ST->isNonTemporal(); 704 705 if (!ST->isTruncatingStore()) { 706 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 707 ReplaceNode(ST, OptStore); 708 return; 709 } 710 711 { 712 SDValue Value = ST->getValue(); 713 EVT VT = Value.getValueType(); 714 switch (TLI.getOperationAction(ISD::STORE, VT)) { 715 default: llvm_unreachable("This action is not supported yet!"); 716 case TargetLowering::Legal: 717 // If this is an unaligned store and the target doesn't support it, 718 // expand it. 719 if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) { 720 Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext()); 721 unsigned ABIAlignment= TLI.getDataLayout()->getABITypeAlignment(Ty); 722 if (ST->getAlignment() < ABIAlignment) 723 ExpandUnalignedStore(cast<StoreSDNode>(Node), 724 DAG, TLI, this); 725 } 726 break; 727 case TargetLowering::Custom: { 728 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 729 if (Res.getNode()) 730 ReplaceNode(SDValue(Node, 0), Res); 731 return; 732 } 733 case TargetLowering::Promote: { 734 assert(VT.isVector() && "Unknown legal promote case!"); 735 Value = DAG.getNode(ISD::BITCAST, dl, 736 TLI.getTypeToPromoteTo(ISD::STORE, VT), Value); 737 SDValue Result = 738 DAG.getStore(Chain, dl, Value, Ptr, 739 ST->getPointerInfo(), isVolatile, 740 isNonTemporal, Alignment); 741 ReplaceNode(SDValue(Node, 0), Result); 742 break; 743 } 744 } 745 return; 746 } 747 } else { 748 SDValue Value = ST->getValue(); 749 750 EVT StVT = ST->getMemoryVT(); 751 unsigned StWidth = StVT.getSizeInBits(); 752 753 if (StWidth != StVT.getStoreSizeInBits()) { 754 // Promote to a byte-sized store with upper bits zero if not 755 // storing an integral number of bytes. For example, promote 756 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 757 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), 758 StVT.getStoreSizeInBits()); 759 Value = DAG.getZeroExtendInReg(Value, dl, StVT); 760 SDValue Result = 761 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 762 NVT, isVolatile, isNonTemporal, Alignment); 763 ReplaceNode(SDValue(Node, 0), Result); 764 } else if (StWidth & (StWidth - 1)) { 765 // If not storing a power-of-2 number of bits, expand as two stores. 766 assert(!StVT.isVector() && "Unsupported truncstore!"); 767 unsigned RoundWidth = 1 << Log2_32(StWidth); 768 assert(RoundWidth < StWidth); 769 unsigned ExtraWidth = StWidth - RoundWidth; 770 assert(ExtraWidth < RoundWidth); 771 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 772 "Store size not an integral number of bytes!"); 773 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 774 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 775 SDValue Lo, Hi; 776 unsigned IncrementSize; 777 778 if (TLI.isLittleEndian()) { 779 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 780 // Store the bottom RoundWidth bits. 781 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 782 RoundVT, 783 isVolatile, isNonTemporal, Alignment); 784 785 // Store the remaining ExtraWidth bits. 786 IncrementSize = RoundWidth / 8; 787 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 788 DAG.getIntPtrConstant(IncrementSize)); 789 Hi = DAG.getNode(ISD::SRL, dl, Value.getValueType(), Value, 790 DAG.getConstant(RoundWidth, 791 TLI.getShiftAmountTy(Value.getValueType()))); 792 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, 793 ST->getPointerInfo().getWithOffset(IncrementSize), 794 ExtraVT, isVolatile, isNonTemporal, 795 MinAlign(Alignment, IncrementSize)); 796 } else { 797 // Big endian - avoid unaligned stores. 798 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 799 // Store the top RoundWidth bits. 800 Hi = DAG.getNode(ISD::SRL, dl, Value.getValueType(), Value, 801 DAG.getConstant(ExtraWidth, 802 TLI.getShiftAmountTy(Value.getValueType()))); 803 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), 804 RoundVT, isVolatile, isNonTemporal, Alignment); 805 806 // Store the remaining ExtraWidth bits. 807 IncrementSize = RoundWidth / 8; 808 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 809 DAG.getIntPtrConstant(IncrementSize)); 810 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, 811 ST->getPointerInfo().getWithOffset(IncrementSize), 812 ExtraVT, isVolatile, isNonTemporal, 813 MinAlign(Alignment, IncrementSize)); 814 } 815 816 // The order of the stores doesn't matter. 817 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 818 ReplaceNode(SDValue(Node, 0), Result); 819 } else { 820 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 821 default: llvm_unreachable("This action is not supported yet!"); 822 case TargetLowering::Legal: 823 // If this is an unaligned store and the target doesn't support it, 824 // expand it. 825 if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) { 826 Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext()); 827 unsigned ABIAlignment= TLI.getDataLayout()->getABITypeAlignment(Ty); 828 if (ST->getAlignment() < ABIAlignment) 829 ExpandUnalignedStore(cast<StoreSDNode>(Node), DAG, TLI, this); 830 } 831 break; 832 case TargetLowering::Custom: { 833 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 834 if (Res.getNode()) 835 ReplaceNode(SDValue(Node, 0), Res); 836 return; 837 } 838 case TargetLowering::Expand: 839 assert(!StVT.isVector() && 840 "Vector Stores are handled in LegalizeVectorOps"); 841 842 // TRUNCSTORE:i16 i32 -> STORE i16 843 assert(TLI.isTypeLegal(StVT) && 844 "Do not know how to expand this store!"); 845 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); 846 SDValue Result = 847 DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 848 isVolatile, isNonTemporal, Alignment); 849 ReplaceNode(SDValue(Node, 0), Result); 850 break; 851 } 852 } 853 } 854} 855 856void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { 857 LoadSDNode *LD = cast<LoadSDNode>(Node); 858 SDValue Chain = LD->getChain(); // The chain. 859 SDValue Ptr = LD->getBasePtr(); // The base pointer. 860 SDValue Value; // The value returned by the load op. 861 DebugLoc dl = Node->getDebugLoc(); 862 863 ISD::LoadExtType ExtType = LD->getExtensionType(); 864 if (ExtType == ISD::NON_EXTLOAD) { 865 EVT VT = Node->getValueType(0); 866 SDValue RVal = SDValue(Node, 0); 867 SDValue RChain = SDValue(Node, 1); 868 869 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 870 default: llvm_unreachable("This action is not supported yet!"); 871 case TargetLowering::Legal: 872 // If this is an unaligned load and the target doesn't support it, 873 // expand it. 874 if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) { 875 Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext()); 876 unsigned ABIAlignment = 877 TLI.getDataLayout()->getABITypeAlignment(Ty); 878 if (LD->getAlignment() < ABIAlignment){ 879 ExpandUnalignedLoad(cast<LoadSDNode>(Node), DAG, TLI, RVal, RChain); 880 } 881 } 882 break; 883 case TargetLowering::Custom: { 884 SDValue Res = TLI.LowerOperation(RVal, DAG); 885 if (Res.getNode()) { 886 RVal = Res; 887 RChain = Res.getValue(1); 888 } 889 break; 890 } 891 case TargetLowering::Promote: { 892 // Only promote a load of vector type to another. 893 assert(VT.isVector() && "Cannot promote this load!"); 894 // Change base type to a different vector type. 895 EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 896 897 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getPointerInfo(), 898 LD->isVolatile(), LD->isNonTemporal(), 899 LD->isInvariant(), LD->getAlignment()); 900 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); 901 RChain = Res.getValue(1); 902 break; 903 } 904 } 905 if (RChain.getNode() != Node) { 906 assert(RVal.getNode() != Node && "Load must be completely replaced"); 907 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); 908 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); 909 ReplacedNode(Node); 910 } 911 return; 912 } 913 914 EVT SrcVT = LD->getMemoryVT(); 915 unsigned SrcWidth = SrcVT.getSizeInBits(); 916 unsigned Alignment = LD->getAlignment(); 917 bool isVolatile = LD->isVolatile(); 918 bool isNonTemporal = LD->isNonTemporal(); 919 920 if (SrcWidth != SrcVT.getStoreSizeInBits() && 921 // Some targets pretend to have an i1 loading operation, and actually 922 // load an i8. This trick is correct for ZEXTLOAD because the top 7 923 // bits are guaranteed to be zero; it helps the optimizers understand 924 // that these bits are zero. It is also useful for EXTLOAD, since it 925 // tells the optimizers that those bits are undefined. It would be 926 // nice to have an effective generic way of getting these benefits... 927 // Until such a way is found, don't insist on promoting i1 here. 928 (SrcVT != MVT::i1 || 929 TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) { 930 // Promote to a byte-sized load if not loading an integral number of 931 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 932 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 933 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 934 SDValue Ch; 935 936 // The extra bits are guaranteed to be zero, since we stored them that 937 // way. A zext load from NVT thus automatically gives zext from SrcVT. 938 939 ISD::LoadExtType NewExtType = 940 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 941 942 SDValue Result = 943 DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), 944 Chain, Ptr, LD->getPointerInfo(), 945 NVT, isVolatile, isNonTemporal, Alignment); 946 947 Ch = Result.getValue(1); // The chain. 948 949 if (ExtType == ISD::SEXTLOAD) 950 // Having the top bits zero doesn't help when sign extending. 951 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 952 Result.getValueType(), 953 Result, DAG.getValueType(SrcVT)); 954 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 955 // All the top bits are guaranteed to be zero - inform the optimizers. 956 Result = DAG.getNode(ISD::AssertZext, dl, 957 Result.getValueType(), Result, 958 DAG.getValueType(SrcVT)); 959 960 Value = Result; 961 Chain = Ch; 962 } else if (SrcWidth & (SrcWidth - 1)) { 963 // If not loading a power-of-2 number of bits, expand as two loads. 964 assert(!SrcVT.isVector() && "Unsupported extload!"); 965 unsigned RoundWidth = 1 << Log2_32(SrcWidth); 966 assert(RoundWidth < SrcWidth); 967 unsigned ExtraWidth = SrcWidth - RoundWidth; 968 assert(ExtraWidth < RoundWidth); 969 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 970 "Load size not an integral number of bytes!"); 971 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 972 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 973 SDValue Lo, Hi, Ch; 974 unsigned IncrementSize; 975 976 if (TLI.isLittleEndian()) { 977 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 978 // Load the bottom RoundWidth bits. 979 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), 980 Chain, Ptr, 981 LD->getPointerInfo(), RoundVT, isVolatile, 982 isNonTemporal, Alignment); 983 984 // Load the remaining ExtraWidth bits. 985 IncrementSize = RoundWidth / 8; 986 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 987 DAG.getIntPtrConstant(IncrementSize)); 988 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 989 LD->getPointerInfo().getWithOffset(IncrementSize), 990 ExtraVT, isVolatile, isNonTemporal, 991 MinAlign(Alignment, IncrementSize)); 992 993 // Build a factor node to remember that this load is independent of 994 // the other one. 995 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 996 Hi.getValue(1)); 997 998 // Move the top bits to the right place. 999 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi, 1000 DAG.getConstant(RoundWidth, 1001 TLI.getShiftAmountTy(Hi.getValueType()))); 1002 1003 // Join the hi and lo parts. 1004 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 1005 } else { 1006 // Big endian - avoid unaligned loads. 1007 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 1008 // Load the top RoundWidth bits. 1009 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 1010 LD->getPointerInfo(), RoundVT, isVolatile, 1011 isNonTemporal, Alignment); 1012 1013 // Load the remaining ExtraWidth bits. 1014 IncrementSize = RoundWidth / 8; 1015 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 1016 DAG.getIntPtrConstant(IncrementSize)); 1017 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, 1018 dl, Node->getValueType(0), Chain, Ptr, 1019 LD->getPointerInfo().getWithOffset(IncrementSize), 1020 ExtraVT, isVolatile, isNonTemporal, 1021 MinAlign(Alignment, IncrementSize)); 1022 1023 // Build a factor node to remember that this load is independent of 1024 // the other one. 1025 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 1026 Hi.getValue(1)); 1027 1028 // Move the top bits to the right place. 1029 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi, 1030 DAG.getConstant(ExtraWidth, 1031 TLI.getShiftAmountTy(Hi.getValueType()))); 1032 1033 // Join the hi and lo parts. 1034 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 1035 } 1036 1037 Chain = Ch; 1038 } else { 1039 bool isCustom = false; 1040 switch (TLI.getLoadExtAction(ExtType, SrcVT)) { 1041 default: llvm_unreachable("This action is not supported yet!"); 1042 case TargetLowering::Custom: 1043 isCustom = true; 1044 // FALLTHROUGH 1045 case TargetLowering::Legal: { 1046 Value = SDValue(Node, 0); 1047 Chain = SDValue(Node, 1); 1048 1049 if (isCustom) { 1050 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 1051 if (Res.getNode()) { 1052 Value = Res; 1053 Chain = Res.getValue(1); 1054 } 1055 } else { 1056 // If this is an unaligned load and the target doesn't support it, 1057 // expand it. 1058 if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) { 1059 Type *Ty = 1060 LD->getMemoryVT().getTypeForEVT(*DAG.getContext()); 1061 unsigned ABIAlignment = 1062 TLI.getDataLayout()->getABITypeAlignment(Ty); 1063 if (LD->getAlignment() < ABIAlignment){ 1064 ExpandUnalignedLoad(cast<LoadSDNode>(Node), 1065 DAG, TLI, Value, Chain); 1066 } 1067 } 1068 } 1069 break; 1070 } 1071 case TargetLowering::Expand: 1072 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT) && TLI.isTypeLegal(SrcVT)) { 1073 SDValue Load = DAG.getLoad(SrcVT, dl, Chain, Ptr, 1074 LD->getPointerInfo(), 1075 LD->isVolatile(), LD->isNonTemporal(), 1076 LD->isInvariant(), LD->getAlignment()); 1077 unsigned ExtendOp; 1078 switch (ExtType) { 1079 case ISD::EXTLOAD: 1080 ExtendOp = (SrcVT.isFloatingPoint() ? 1081 ISD::FP_EXTEND : ISD::ANY_EXTEND); 1082 break; 1083 case ISD::SEXTLOAD: ExtendOp = ISD::SIGN_EXTEND; break; 1084 case ISD::ZEXTLOAD: ExtendOp = ISD::ZERO_EXTEND; break; 1085 default: llvm_unreachable("Unexpected extend load type!"); 1086 } 1087 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 1088 Chain = Load.getValue(1); 1089 break; 1090 } 1091 1092 assert(!SrcVT.isVector() && 1093 "Vector Loads are handled in LegalizeVectorOps"); 1094 1095 // FIXME: This does not work for vectors on most targets. Sign- and 1096 // zero-extend operations are currently folded into extending loads, 1097 // whether they are legal or not, and then we end up here without any 1098 // support for legalizing them. 1099 assert(ExtType != ISD::EXTLOAD && 1100 "EXTLOAD should always be supported!"); 1101 // Turn the unsupported load into an EXTLOAD followed by an explicit 1102 // zero/sign extend inreg. 1103 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0), 1104 Chain, Ptr, LD->getPointerInfo(), SrcVT, 1105 LD->isVolatile(), LD->isNonTemporal(), 1106 LD->getAlignment()); 1107 SDValue ValRes; 1108 if (ExtType == ISD::SEXTLOAD) 1109 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 1110 Result.getValueType(), 1111 Result, DAG.getValueType(SrcVT)); 1112 else 1113 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType()); 1114 Value = ValRes; 1115 Chain = Result.getValue(1); 1116 break; 1117 } 1118 } 1119 1120 // Since loads produce two values, make sure to remember that we legalized 1121 // both of them. 1122 if (Chain.getNode() != Node) { 1123 assert(Value.getNode() != Node && "Load must be completely replaced"); 1124 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); 1125 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 1126 ReplacedNode(Node); 1127 } 1128} 1129 1130/// LegalizeOp - Return a legal replacement for the given operation, with 1131/// all legal operands. 1132void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { 1133 if (Node->getOpcode() == ISD::TargetConstant) // Allow illegal target nodes. 1134 return; 1135 1136 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 1137 assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 1138 TargetLowering::TypeLegal && 1139 "Unexpected illegal type!"); 1140 1141 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 1142 assert((TLI.getTypeAction(*DAG.getContext(), 1143 Node->getOperand(i).getValueType()) == 1144 TargetLowering::TypeLegal || 1145 Node->getOperand(i).getOpcode() == ISD::TargetConstant) && 1146 "Unexpected illegal type!"); 1147 1148 // Figure out the correct action; the way to query this varies by opcode 1149 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 1150 bool SimpleFinishLegalizing = true; 1151 switch (Node->getOpcode()) { 1152 case ISD::INTRINSIC_W_CHAIN: 1153 case ISD::INTRINSIC_WO_CHAIN: 1154 case ISD::INTRINSIC_VOID: 1155 case ISD::STACKSAVE: 1156 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 1157 break; 1158 case ISD::VAARG: 1159 Action = TLI.getOperationAction(Node->getOpcode(), 1160 Node->getValueType(0)); 1161 if (Action != TargetLowering::Promote) 1162 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 1163 break; 1164 case ISD::SINT_TO_FP: 1165 case ISD::UINT_TO_FP: 1166 case ISD::EXTRACT_VECTOR_ELT: 1167 Action = TLI.getOperationAction(Node->getOpcode(), 1168 Node->getOperand(0).getValueType()); 1169 break; 1170 case ISD::FP_ROUND_INREG: 1171 case ISD::SIGN_EXTEND_INREG: { 1172 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 1173 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 1174 break; 1175 } 1176 case ISD::ATOMIC_STORE: { 1177 Action = TLI.getOperationAction(Node->getOpcode(), 1178 Node->getOperand(2).getValueType()); 1179 break; 1180 } 1181 case ISD::SELECT_CC: 1182 case ISD::SETCC: 1183 case ISD::BR_CC: { 1184 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : 1185 Node->getOpcode() == ISD::SETCC ? 2 : 1; 1186 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0; 1187 EVT OpVT = Node->getOperand(CompareOperand).getValueType(); 1188 ISD::CondCode CCCode = 1189 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 1190 Action = TLI.getCondCodeAction(CCCode, OpVT); 1191 if (Action == TargetLowering::Legal) { 1192 if (Node->getOpcode() == ISD::SELECT_CC) 1193 Action = TLI.getOperationAction(Node->getOpcode(), 1194 Node->getValueType(0)); 1195 else 1196 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 1197 } 1198 break; 1199 } 1200 case ISD::LOAD: 1201 case ISD::STORE: 1202 // FIXME: Model these properly. LOAD and STORE are complicated, and 1203 // STORE expects the unlegalized operand in some cases. 1204 SimpleFinishLegalizing = false; 1205 break; 1206 case ISD::CALLSEQ_START: 1207 case ISD::CALLSEQ_END: 1208 // FIXME: This shouldn't be necessary. These nodes have special properties 1209 // dealing with the recursive nature of legalization. Removing this 1210 // special case should be done as part of making LegalizeDAG non-recursive. 1211 SimpleFinishLegalizing = false; 1212 break; 1213 case ISD::EXTRACT_ELEMENT: 1214 case ISD::FLT_ROUNDS_: 1215 case ISD::SADDO: 1216 case ISD::SSUBO: 1217 case ISD::UADDO: 1218 case ISD::USUBO: 1219 case ISD::SMULO: 1220 case ISD::UMULO: 1221 case ISD::FPOWI: 1222 case ISD::MERGE_VALUES: 1223 case ISD::EH_RETURN: 1224 case ISD::FRAME_TO_ARGS_OFFSET: 1225 case ISD::EH_SJLJ_SETJMP: 1226 case ISD::EH_SJLJ_LONGJMP: 1227 // These operations lie about being legal: when they claim to be legal, 1228 // they should actually be expanded. 1229 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1230 if (Action == TargetLowering::Legal) 1231 Action = TargetLowering::Expand; 1232 break; 1233 case ISD::INIT_TRAMPOLINE: 1234 case ISD::ADJUST_TRAMPOLINE: 1235 case ISD::FRAMEADDR: 1236 case ISD::RETURNADDR: 1237 // These operations lie about being legal: when they claim to be legal, 1238 // they should actually be custom-lowered. 1239 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1240 if (Action == TargetLowering::Legal) 1241 Action = TargetLowering::Custom; 1242 break; 1243 default: 1244 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 1245 Action = TargetLowering::Legal; 1246 } else { 1247 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1248 } 1249 break; 1250 } 1251 1252 if (SimpleFinishLegalizing) { 1253 SDNode *NewNode = Node; 1254 switch (Node->getOpcode()) { 1255 default: break; 1256 case ISD::SHL: 1257 case ISD::SRL: 1258 case ISD::SRA: 1259 case ISD::ROTL: 1260 case ISD::ROTR: 1261 // Legalizing shifts/rotates requires adjusting the shift amount 1262 // to the appropriate width. 1263 if (!Node->getOperand(1).getValueType().isVector()) { 1264 SDValue SAO = 1265 DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(), 1266 Node->getOperand(1)); 1267 HandleSDNode Handle(SAO); 1268 LegalizeOp(SAO.getNode()); 1269 NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0), 1270 Handle.getValue()); 1271 } 1272 break; 1273 case ISD::SRL_PARTS: 1274 case ISD::SRA_PARTS: 1275 case ISD::SHL_PARTS: 1276 // Legalizing shifts/rotates requires adjusting the shift amount 1277 // to the appropriate width. 1278 if (!Node->getOperand(2).getValueType().isVector()) { 1279 SDValue SAO = 1280 DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(), 1281 Node->getOperand(2)); 1282 HandleSDNode Handle(SAO); 1283 LegalizeOp(SAO.getNode()); 1284 NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0), 1285 Node->getOperand(1), 1286 Handle.getValue()); 1287 } 1288 break; 1289 } 1290 1291 if (NewNode != Node) { 1292 DAG.ReplaceAllUsesWith(Node, NewNode); 1293 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 1294 DAG.TransferDbgValues(SDValue(Node, i), SDValue(NewNode, i)); 1295 ReplacedNode(Node); 1296 Node = NewNode; 1297 } 1298 switch (Action) { 1299 case TargetLowering::Legal: 1300 return; 1301 case TargetLowering::Custom: { 1302 // FIXME: The handling for custom lowering with multiple results is 1303 // a complete mess. 1304 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 1305 if (Res.getNode()) { 1306 SmallVector<SDValue, 8> ResultVals; 1307 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { 1308 if (e == 1) 1309 ResultVals.push_back(Res); 1310 else 1311 ResultVals.push_back(Res.getValue(i)); 1312 } 1313 if (Res.getNode() != Node || Res.getResNo() != 0) { 1314 DAG.ReplaceAllUsesWith(Node, ResultVals.data()); 1315 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 1316 DAG.TransferDbgValues(SDValue(Node, i), ResultVals[i]); 1317 ReplacedNode(Node); 1318 } 1319 return; 1320 } 1321 } 1322 // FALL THROUGH 1323 case TargetLowering::Expand: 1324 ExpandNode(Node); 1325 return; 1326 case TargetLowering::Promote: 1327 PromoteNode(Node); 1328 return; 1329 } 1330 } 1331 1332 switch (Node->getOpcode()) { 1333 default: 1334#ifndef NDEBUG 1335 dbgs() << "NODE: "; 1336 Node->dump( &DAG); 1337 dbgs() << "\n"; 1338#endif 1339 llvm_unreachable("Do not know how to legalize this operator!"); 1340 1341 case ISD::CALLSEQ_START: 1342 case ISD::CALLSEQ_END: 1343 break; 1344 case ISD::LOAD: { 1345 return LegalizeLoadOps(Node); 1346 } 1347 case ISD::STORE: { 1348 return LegalizeStoreOps(Node); 1349 } 1350 } 1351} 1352 1353SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1354 SDValue Vec = Op.getOperand(0); 1355 SDValue Idx = Op.getOperand(1); 1356 DebugLoc dl = Op.getDebugLoc(); 1357 // Store the value to a temporary stack slot, then LOAD the returned part. 1358 SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); 1359 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, 1360 MachinePointerInfo(), false, false, 0); 1361 1362 // Add the offset to the index. 1363 unsigned EltSize = 1364 Vec.getValueType().getVectorElementType().getSizeInBits()/8; 1365 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx, 1366 DAG.getConstant(EltSize, Idx.getValueType())); 1367 1368 if (Idx.getValueType().bitsGT(TLI.getPointerTy())) 1369 Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx); 1370 else 1371 Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx); 1372 1373 StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr); 1374 1375 if (Op.getValueType().isVector()) 1376 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,MachinePointerInfo(), 1377 false, false, false, 0); 1378 return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, 1379 MachinePointerInfo(), 1380 Vec.getValueType().getVectorElementType(), 1381 false, false, 0); 1382} 1383 1384SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1385 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1386 1387 SDValue Vec = Op.getOperand(0); 1388 SDValue Part = Op.getOperand(1); 1389 SDValue Idx = Op.getOperand(2); 1390 DebugLoc dl = Op.getDebugLoc(); 1391 1392 // Store the value to a temporary stack slot, then LOAD the returned part. 1393 1394 SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); 1395 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1396 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI); 1397 1398 // First store the whole vector. 1399 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo, 1400 false, false, 0); 1401 1402 // Then store the inserted part. 1403 1404 // Add the offset to the index. 1405 unsigned EltSize = 1406 Vec.getValueType().getVectorElementType().getSizeInBits()/8; 1407 1408 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx, 1409 DAG.getConstant(EltSize, Idx.getValueType())); 1410 1411 if (Idx.getValueType().bitsGT(TLI.getPointerTy())) 1412 Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx); 1413 else 1414 Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx); 1415 1416 SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, 1417 StackPtr); 1418 1419 // Store the subvector. 1420 Ch = DAG.getStore(DAG.getEntryNode(), dl, Part, SubStackPtr, 1421 MachinePointerInfo(), false, false, 0); 1422 1423 // Finally, load the updated vector. 1424 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo, 1425 false, false, false, 0); 1426} 1427 1428SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1429 // We can't handle this case efficiently. Allocate a sufficiently 1430 // aligned object on the stack, store each element into it, then load 1431 // the result as a vector. 1432 // Create the stack frame object. 1433 EVT VT = Node->getValueType(0); 1434 EVT EltVT = VT.getVectorElementType(); 1435 DebugLoc dl = Node->getDebugLoc(); 1436 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1437 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1438 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI); 1439 1440 // Emit a store of each element to the stack slot. 1441 SmallVector<SDValue, 8> Stores; 1442 unsigned TypeByteSize = EltVT.getSizeInBits() / 8; 1443 // Store (in the right endianness) the elements to memory. 1444 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1445 // Ignore undef elements. 1446 if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue; 1447 1448 unsigned Offset = TypeByteSize*i; 1449 1450 SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType()); 1451 Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx); 1452 1453 // If the destination vector element type is narrower than the source 1454 // element type, only store the bits necessary. 1455 if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) { 1456 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1457 Node->getOperand(i), Idx, 1458 PtrInfo.getWithOffset(Offset), 1459 EltVT, false, false, 0)); 1460 } else 1461 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, 1462 Node->getOperand(i), Idx, 1463 PtrInfo.getWithOffset(Offset), 1464 false, false, 0)); 1465 } 1466 1467 SDValue StoreChain; 1468 if (!Stores.empty()) // Not all undef elements? 1469 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 1470 &Stores[0], Stores.size()); 1471 else 1472 StoreChain = DAG.getEntryNode(); 1473 1474 // Result is a load from the stack slot. 1475 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo, 1476 false, false, false, 0); 1477} 1478 1479SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) { 1480 DebugLoc dl = Node->getDebugLoc(); 1481 SDValue Tmp1 = Node->getOperand(0); 1482 SDValue Tmp2 = Node->getOperand(1); 1483 1484 // Get the sign bit of the RHS. First obtain a value that has the same 1485 // sign as the sign bit, i.e. negative if and only if the sign bit is 1. 1486 SDValue SignBit; 1487 EVT FloatVT = Tmp2.getValueType(); 1488 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits()); 1489 if (TLI.isTypeLegal(IVT)) { 1490 // Convert to an integer with the same sign bit. 1491 SignBit = DAG.getNode(ISD::BITCAST, dl, IVT, Tmp2); 1492 } else { 1493 // Store the float to memory, then load the sign part out as an integer. 1494 MVT LoadTy = TLI.getPointerTy(); 1495 // First create a temporary that is aligned for both the load and store. 1496 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1497 // Then store the float to it. 1498 SDValue Ch = 1499 DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, MachinePointerInfo(), 1500 false, false, 0); 1501 if (TLI.isBigEndian()) { 1502 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1503 // Load out a legal integer with the same sign bit as the float. 1504 SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, MachinePointerInfo(), 1505 false, false, false, 0); 1506 } else { // Little endian 1507 SDValue LoadPtr = StackPtr; 1508 // The float may be wider than the integer we are going to load. Advance 1509 // the pointer so that the loaded integer will contain the sign bit. 1510 unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits(); 1511 unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8; 1512 LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(), 1513 LoadPtr, DAG.getIntPtrConstant(ByteOffset)); 1514 // Load a legal integer containing the sign bit. 1515 SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(), 1516 false, false, false, 0); 1517 // Move the sign bit to the top bit of the loaded integer. 1518 unsigned BitShift = LoadTy.getSizeInBits() - 1519 (FloatVT.getSizeInBits() - 8 * ByteOffset); 1520 assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?"); 1521 if (BitShift) 1522 SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit, 1523 DAG.getConstant(BitShift, 1524 TLI.getShiftAmountTy(SignBit.getValueType()))); 1525 } 1526 } 1527 // Now get the sign bit proper, by seeing whether the value is negative. 1528 SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()), 1529 SignBit, DAG.getConstant(0, SignBit.getValueType()), 1530 ISD::SETLT); 1531 // Get the absolute value of the result. 1532 SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1); 1533 // Select between the nabs and abs value based on the sign bit of 1534 // the input. 1535 return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit, 1536 DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal), 1537 AbsVal); 1538} 1539 1540void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1541 SmallVectorImpl<SDValue> &Results) { 1542 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1543 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1544 " not tell us which reg is the stack pointer!"); 1545 DebugLoc dl = Node->getDebugLoc(); 1546 EVT VT = Node->getValueType(0); 1547 SDValue Tmp1 = SDValue(Node, 0); 1548 SDValue Tmp2 = SDValue(Node, 1); 1549 SDValue Tmp3 = Node->getOperand(2); 1550 SDValue Chain = Tmp1.getOperand(0); 1551 1552 // Chain the dynamic stack allocation so that it doesn't modify the stack 1553 // pointer when other instructions are using the stack. 1554 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true)); 1555 1556 SDValue Size = Tmp2.getOperand(1); 1557 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1558 Chain = SP.getValue(1); 1559 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); 1560 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 1561 if (Align > StackAlign) 1562 SP = DAG.getNode(ISD::AND, dl, VT, SP, 1563 DAG.getConstant(-(uint64_t)Align, VT)); 1564 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value 1565 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1566 1567 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true), 1568 DAG.getIntPtrConstant(0, true), SDValue()); 1569 1570 Results.push_back(Tmp1); 1571 Results.push_back(Tmp2); 1572} 1573 1574/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and 1575/// condition code CC on the current target. This routine expands SETCC with 1576/// illegal condition code into AND / OR of multiple SETCC values. 1577void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT, 1578 SDValue &LHS, SDValue &RHS, 1579 SDValue &CC, 1580 DebugLoc dl) { 1581 EVT OpVT = LHS.getValueType(); 1582 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 1583 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 1584 default: llvm_unreachable("Unknown condition code action!"); 1585 case TargetLowering::Legal: 1586 // Nothing to do. 1587 break; 1588 case TargetLowering::Expand: { 1589 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 1590 unsigned Opc = 0; 1591 switch (CCCode) { 1592 default: llvm_unreachable("Don't know how to expand this condition!"); 1593 case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO; Opc = ISD::AND; break; 1594 case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO; Opc = ISD::AND; break; 1595 case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO; Opc = ISD::AND; break; 1596 case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO; Opc = ISD::AND; break; 1597 case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO; Opc = ISD::AND; break; 1598 case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO; Opc = ISD::AND; break; 1599 case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR; break; 1600 case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR; break; 1601 case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR; break; 1602 case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR; break; 1603 case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR; break; 1604 case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR; break; 1605 // FIXME: Implement more expansions. 1606 } 1607 1608 SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1); 1609 SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2); 1610 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 1611 RHS = SDValue(); 1612 CC = SDValue(); 1613 break; 1614 } 1615 } 1616} 1617 1618/// EmitStackConvert - Emit a store/load combination to the stack. This stores 1619/// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1620/// a load from the stack slot to DestVT, extending it if needed. 1621/// The resultant code need not be legal. 1622SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, 1623 EVT SlotVT, 1624 EVT DestVT, 1625 DebugLoc dl) { 1626 // Create the stack frame object. 1627 unsigned SrcAlign = 1628 TLI.getDataLayout()->getPrefTypeAlignment(SrcOp.getValueType(). 1629 getTypeForEVT(*DAG.getContext())); 1630 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); 1631 1632 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 1633 int SPFI = StackPtrFI->getIndex(); 1634 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(SPFI); 1635 1636 unsigned SrcSize = SrcOp.getValueType().getSizeInBits(); 1637 unsigned SlotSize = SlotVT.getSizeInBits(); 1638 unsigned DestSize = DestVT.getSizeInBits(); 1639 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 1640 unsigned DestAlign = TLI.getDataLayout()->getPrefTypeAlignment(DestType); 1641 1642 // Emit a store to the stack slot. Use a truncstore if the input value is 1643 // later than DestVT. 1644 SDValue Store; 1645 1646 if (SrcSize > SlotSize) 1647 Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, 1648 PtrInfo, SlotVT, false, false, SrcAlign); 1649 else { 1650 assert(SrcSize == SlotSize && "Invalid store"); 1651 Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, 1652 PtrInfo, false, false, SrcAlign); 1653 } 1654 1655 // Result is a load from the stack slot. 1656 if (SlotSize == DestSize) 1657 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, 1658 false, false, false, DestAlign); 1659 1660 assert(SlotSize < DestSize && "Unknown extension!"); 1661 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, 1662 PtrInfo, SlotVT, false, false, DestAlign); 1663} 1664 1665SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 1666 DebugLoc dl = Node->getDebugLoc(); 1667 // Create a vector sized/aligned stack slot, store the value to element #0, 1668 // then load the whole vector back out. 1669 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 1670 1671 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 1672 int SPFI = StackPtrFI->getIndex(); 1673 1674 SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0), 1675 StackPtr, 1676 MachinePointerInfo::getFixedStack(SPFI), 1677 Node->getValueType(0).getVectorElementType(), 1678 false, false, 0); 1679 return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr, 1680 MachinePointerInfo::getFixedStack(SPFI), 1681 false, false, false, 0); 1682} 1683 1684 1685/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't 1686/// support the operation, but do support the resultant vector type. 1687SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 1688 unsigned NumElems = Node->getNumOperands(); 1689 SDValue Value1, Value2; 1690 DebugLoc dl = Node->getDebugLoc(); 1691 EVT VT = Node->getValueType(0); 1692 EVT OpVT = Node->getOperand(0).getValueType(); 1693 EVT EltVT = VT.getVectorElementType(); 1694 1695 // If the only non-undef value is the low element, turn this into a 1696 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 1697 bool isOnlyLowElement = true; 1698 bool MoreThanTwoValues = false; 1699 bool isConstant = true; 1700 for (unsigned i = 0; i < NumElems; ++i) { 1701 SDValue V = Node->getOperand(i); 1702 if (V.getOpcode() == ISD::UNDEF) 1703 continue; 1704 if (i > 0) 1705 isOnlyLowElement = false; 1706 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 1707 isConstant = false; 1708 1709 if (!Value1.getNode()) { 1710 Value1 = V; 1711 } else if (!Value2.getNode()) { 1712 if (V != Value1) 1713 Value2 = V; 1714 } else if (V != Value1 && V != Value2) { 1715 MoreThanTwoValues = true; 1716 } 1717 } 1718 1719 if (!Value1.getNode()) 1720 return DAG.getUNDEF(VT); 1721 1722 if (isOnlyLowElement) 1723 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 1724 1725 // If all elements are constants, create a load from the constant pool. 1726 if (isConstant) { 1727 SmallVector<Constant*, 16> CV; 1728 for (unsigned i = 0, e = NumElems; i != e; ++i) { 1729 if (ConstantFPSDNode *V = 1730 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 1731 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 1732 } else if (ConstantSDNode *V = 1733 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 1734 if (OpVT==EltVT) 1735 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 1736 else { 1737 // If OpVT and EltVT don't match, EltVT is not legal and the 1738 // element values have been promoted/truncated earlier. Undo this; 1739 // we don't want a v16i8 to become a v16i32 for example. 1740 const ConstantInt *CI = V->getConstantIntValue(); 1741 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 1742 CI->getZExtValue())); 1743 } 1744 } else { 1745 assert(Node->getOperand(i).getOpcode() == ISD::UNDEF); 1746 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 1747 CV.push_back(UndefValue::get(OpNTy)); 1748 } 1749 } 1750 Constant *CP = ConstantVector::get(CV); 1751 SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy()); 1752 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 1753 return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, 1754 MachinePointerInfo::getConstantPool(), 1755 false, false, false, Alignment); 1756 } 1757 1758 if (!MoreThanTwoValues) { 1759 SmallVector<int, 8> ShuffleVec(NumElems, -1); 1760 for (unsigned i = 0; i < NumElems; ++i) { 1761 SDValue V = Node->getOperand(i); 1762 if (V.getOpcode() == ISD::UNDEF) 1763 continue; 1764 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 1765 } 1766 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 1767 // Get the splatted value into the low element of a vector register. 1768 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 1769 SDValue Vec2; 1770 if (Value2.getNode()) 1771 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 1772 else 1773 Vec2 = DAG.getUNDEF(VT); 1774 1775 // Return shuffle(LowValVec, undef, <0,0,0,0>) 1776 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data()); 1777 } 1778 } 1779 1780 // Otherwise, we can't handle this case efficiently. 1781 return ExpandVectorBuildThroughStack(Node); 1782} 1783 1784// ExpandLibCall - Expand a node into a call to a libcall. If the result value 1785// does not fit into a register, return the lo part and set the hi part to the 1786// by-reg argument. If it does fit into a single register, return the result 1787// and leave the Hi part unset. 1788SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 1789 bool isSigned) { 1790 TargetLowering::ArgListTy Args; 1791 TargetLowering::ArgListEntry Entry; 1792 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1793 EVT ArgVT = Node->getOperand(i).getValueType(); 1794 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 1795 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; 1796 Entry.isSExt = isSigned; 1797 Entry.isZExt = !isSigned; 1798 Args.push_back(Entry); 1799 } 1800 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 1801 TLI.getPointerTy()); 1802 1803 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); 1804 1805 // By default, the input chain to this libcall is the entry node of the 1806 // function. If the libcall is going to be emitted as a tail call then 1807 // TLI.isUsedByReturnOnly will change it to the right chain if the return 1808 // node which is being folded has a non-entry input chain. 1809 SDValue InChain = DAG.getEntryNode(); 1810 1811 // isTailCall may be true since the callee does not reference caller stack 1812 // frame. Check if it's in the right position. 1813 SDValue TCChain = InChain; 1814 bool isTailCall = isInTailCallPosition(DAG, Node, TCChain, TLI); 1815 if (isTailCall) 1816 InChain = TCChain; 1817 1818 TargetLowering:: 1819 CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false, 1820 0, TLI.getLibcallCallingConv(LC), isTailCall, 1821 /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, 1822 Callee, Args, DAG, Node->getDebugLoc()); 1823 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 1824 1825 1826 if (!CallInfo.second.getNode()) 1827 // It's a tailcall, return the chain (which is the DAG root). 1828 return DAG.getRoot(); 1829 1830 return CallInfo.first; 1831} 1832 1833/// ExpandLibCall - Generate a libcall taking the given operands as arguments 1834/// and returning a result of type RetVT. 1835SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, 1836 const SDValue *Ops, unsigned NumOps, 1837 bool isSigned, DebugLoc dl) { 1838 TargetLowering::ArgListTy Args; 1839 Args.reserve(NumOps); 1840 1841 TargetLowering::ArgListEntry Entry; 1842 for (unsigned i = 0; i != NumOps; ++i) { 1843 Entry.Node = Ops[i]; 1844 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 1845 Entry.isSExt = isSigned; 1846 Entry.isZExt = !isSigned; 1847 Args.push_back(Entry); 1848 } 1849 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 1850 TLI.getPointerTy()); 1851 1852 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 1853 TargetLowering:: 1854 CallLoweringInfo CLI(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false, 1855 false, 0, TLI.getLibcallCallingConv(LC), 1856 /*isTailCall=*/false, 1857 /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, 1858 Callee, Args, DAG, dl); 1859 std::pair<SDValue,SDValue> CallInfo = TLI.LowerCallTo(CLI); 1860 1861 return CallInfo.first; 1862} 1863 1864// ExpandChainLibCall - Expand a node into a call to a libcall. Similar to 1865// ExpandLibCall except that the first operand is the in-chain. 1866std::pair<SDValue, SDValue> 1867SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC, 1868 SDNode *Node, 1869 bool isSigned) { 1870 SDValue InChain = Node->getOperand(0); 1871 1872 TargetLowering::ArgListTy Args; 1873 TargetLowering::ArgListEntry Entry; 1874 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) { 1875 EVT ArgVT = Node->getOperand(i).getValueType(); 1876 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 1877 Entry.Node = Node->getOperand(i); 1878 Entry.Ty = ArgTy; 1879 Entry.isSExt = isSigned; 1880 Entry.isZExt = !isSigned; 1881 Args.push_back(Entry); 1882 } 1883 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 1884 TLI.getPointerTy()); 1885 1886 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); 1887 TargetLowering:: 1888 CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false, 1889 0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false, 1890 /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, 1891 Callee, Args, DAG, Node->getDebugLoc()); 1892 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 1893 1894 return CallInfo; 1895} 1896 1897SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 1898 RTLIB::Libcall Call_F32, 1899 RTLIB::Libcall Call_F64, 1900 RTLIB::Libcall Call_F80, 1901 RTLIB::Libcall Call_PPCF128) { 1902 RTLIB::Libcall LC; 1903 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 1904 default: llvm_unreachable("Unexpected request for libcall!"); 1905 case MVT::f32: LC = Call_F32; break; 1906 case MVT::f64: LC = Call_F64; break; 1907 case MVT::f80: LC = Call_F80; break; 1908 case MVT::ppcf128: LC = Call_PPCF128; break; 1909 } 1910 return ExpandLibCall(LC, Node, false); 1911} 1912 1913SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, 1914 RTLIB::Libcall Call_I8, 1915 RTLIB::Libcall Call_I16, 1916 RTLIB::Libcall Call_I32, 1917 RTLIB::Libcall Call_I64, 1918 RTLIB::Libcall Call_I128) { 1919 RTLIB::Libcall LC; 1920 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 1921 default: llvm_unreachable("Unexpected request for libcall!"); 1922 case MVT::i8: LC = Call_I8; break; 1923 case MVT::i16: LC = Call_I16; break; 1924 case MVT::i32: LC = Call_I32; break; 1925 case MVT::i64: LC = Call_I64; break; 1926 case MVT::i128: LC = Call_I128; break; 1927 } 1928 return ExpandLibCall(LC, Node, isSigned); 1929} 1930 1931/// isDivRemLibcallAvailable - Return true if divmod libcall is available. 1932static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned, 1933 const TargetLowering &TLI) { 1934 RTLIB::Libcall LC; 1935 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 1936 default: llvm_unreachable("Unexpected request for libcall!"); 1937 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 1938 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 1939 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 1940 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 1941 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 1942 } 1943 1944 return TLI.getLibcallName(LC) != 0; 1945} 1946 1947/// useDivRem - Only issue divrem libcall if both quotient and remainder are 1948/// needed. 1949static bool useDivRem(SDNode *Node, bool isSigned, bool isDIV) { 1950 // The other use might have been replaced with a divrem already. 1951 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 1952 unsigned OtherOpcode = 0; 1953 if (isSigned) 1954 OtherOpcode = isDIV ? ISD::SREM : ISD::SDIV; 1955 else 1956 OtherOpcode = isDIV ? ISD::UREM : ISD::UDIV; 1957 1958 SDValue Op0 = Node->getOperand(0); 1959 SDValue Op1 = Node->getOperand(1); 1960 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 1961 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 1962 SDNode *User = *UI; 1963 if (User == Node) 1964 continue; 1965 if ((User->getOpcode() == OtherOpcode || User->getOpcode() == DivRemOpc) && 1966 User->getOperand(0) == Op0 && 1967 User->getOperand(1) == Op1) 1968 return true; 1969 } 1970 return false; 1971} 1972 1973/// ExpandDivRemLibCall - Issue libcalls to __{u}divmod to compute div / rem 1974/// pairs. 1975void 1976SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 1977 SmallVectorImpl<SDValue> &Results) { 1978 unsigned Opcode = Node->getOpcode(); 1979 bool isSigned = Opcode == ISD::SDIVREM; 1980 1981 RTLIB::Libcall LC; 1982 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 1983 default: llvm_unreachable("Unexpected request for libcall!"); 1984 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 1985 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 1986 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 1987 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 1988 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 1989 } 1990 1991 // The input chain to this libcall is the entry node of the function. 1992 // Legalizing the call will automatically add the previous call to the 1993 // dependence. 1994 SDValue InChain = DAG.getEntryNode(); 1995 1996 EVT RetVT = Node->getValueType(0); 1997 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 1998 1999 TargetLowering::ArgListTy Args; 2000 TargetLowering::ArgListEntry Entry; 2001 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 2002 EVT ArgVT = Node->getOperand(i).getValueType(); 2003 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2004 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; 2005 Entry.isSExt = isSigned; 2006 Entry.isZExt = !isSigned; 2007 Args.push_back(Entry); 2008 } 2009 2010 // Also pass the return address of the remainder. 2011 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 2012 Entry.Node = FIPtr; 2013 Entry.Ty = RetTy->getPointerTo(); 2014 Entry.isSExt = isSigned; 2015 Entry.isZExt = !isSigned; 2016 Args.push_back(Entry); 2017 2018 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2019 TLI.getPointerTy()); 2020 2021 DebugLoc dl = Node->getDebugLoc(); 2022 TargetLowering:: 2023 CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false, 2024 0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false, 2025 /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, 2026 Callee, Args, DAG, dl); 2027 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2028 2029 // Remainder is loaded back from the stack frame. 2030 SDValue Rem = DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, 2031 MachinePointerInfo(), false, false, false, 0); 2032 Results.push_back(CallInfo.first); 2033 Results.push_back(Rem); 2034} 2035 2036/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a 2037/// INT_TO_FP operation of the specified operand when the target requests that 2038/// we expand it. At this point, we know that the result and operand types are 2039/// legal for the target. 2040SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, 2041 SDValue Op0, 2042 EVT DestVT, 2043 DebugLoc dl) { 2044 if (Op0.getValueType() == MVT::i32 && TLI.isTypeLegal(MVT::f64)) { 2045 // simple 32-bit [signed|unsigned] integer to float/double expansion 2046 2047 // Get the stack frame index of a 8 byte buffer. 2048 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2049 2050 // word offset constant for Hi/Lo address computation 2051 SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy()); 2052 // set up Hi and Lo (into buffer) address based on endian 2053 SDValue Hi = StackSlot; 2054 SDValue Lo = DAG.getNode(ISD::ADD, dl, 2055 TLI.getPointerTy(), StackSlot, WordOff); 2056 if (TLI.isLittleEndian()) 2057 std::swap(Hi, Lo); 2058 2059 // if signed map to unsigned space 2060 SDValue Op0Mapped; 2061 if (isSigned) { 2062 // constant used to invert sign bit (signed to unsigned mapping) 2063 SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32); 2064 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit); 2065 } else { 2066 Op0Mapped = Op0; 2067 } 2068 // store the lo of the constructed double - based on integer input 2069 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, 2070 Op0Mapped, Lo, MachinePointerInfo(), 2071 false, false, 0); 2072 // initial hi portion of constructed double 2073 SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32); 2074 // store the hi of the constructed double - biased exponent 2075 SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi, 2076 MachinePointerInfo(), 2077 false, false, 0); 2078 // load the constructed double 2079 SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, 2080 MachinePointerInfo(), false, false, false, 0); 2081 // FP constant to bias correct the final result 2082 SDValue Bias = DAG.getConstantFP(isSigned ? 2083 BitsToDouble(0x4330000080000000ULL) : 2084 BitsToDouble(0x4330000000000000ULL), 2085 MVT::f64); 2086 // subtract the bias 2087 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2088 // final result 2089 SDValue Result; 2090 // handle final rounding 2091 if (DestVT == MVT::f64) { 2092 // do nothing 2093 Result = Sub; 2094 } else if (DestVT.bitsLT(MVT::f64)) { 2095 Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub, 2096 DAG.getIntPtrConstant(0)); 2097 } else if (DestVT.bitsGT(MVT::f64)) { 2098 Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub); 2099 } 2100 return Result; 2101 } 2102 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 2103 // Code below here assumes !isSigned without checking again. 2104 2105 // Implementation of unsigned i64 to f64 following the algorithm in 2106 // __floatundidf in compiler_rt. This implementation has the advantage 2107 // of performing rounding correctly, both in the default rounding mode 2108 // and in all alternate rounding modes. 2109 // TODO: Generalize this for use with other types. 2110 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) { 2111 SDValue TwoP52 = 2112 DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64); 2113 SDValue TwoP84PlusTwoP52 = 2114 DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64); 2115 SDValue TwoP84 = 2116 DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64); 2117 2118 SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32); 2119 SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, 2120 DAG.getConstant(32, MVT::i64)); 2121 SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52); 2122 SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84); 2123 SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr); 2124 SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr); 2125 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt, 2126 TwoP84PlusTwoP52); 2127 return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub); 2128 } 2129 2130 // Implementation of unsigned i64 to f32. 2131 // TODO: Generalize this for use with other types. 2132 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) { 2133 // For unsigned conversions, convert them to signed conversions using the 2134 // algorithm from the x86_64 __floatundidf in compiler_rt. 2135 if (!isSigned) { 2136 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0); 2137 2138 SDValue ShiftConst = 2139 DAG.getConstant(1, TLI.getShiftAmountTy(Op0.getValueType())); 2140 SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst); 2141 SDValue AndConst = DAG.getConstant(1, MVT::i64); 2142 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst); 2143 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr); 2144 2145 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or); 2146 SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt); 2147 2148 // TODO: This really should be implemented using a branch rather than a 2149 // select. We happen to get lucky and machinesink does the right 2150 // thing most of the time. This would be a good candidate for a 2151 //pseudo-op, or, even better, for whole-function isel. 2152 SDValue SignBitTest = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64), 2153 Op0, DAG.getConstant(0, MVT::i64), ISD::SETLT); 2154 return DAG.getNode(ISD::SELECT, dl, MVT::f32, SignBitTest, Slow, Fast); 2155 } 2156 2157 // Otherwise, implement the fully general conversion. 2158 2159 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, 2160 DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64)); 2161 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, 2162 DAG.getConstant(UINT64_C(0x800), MVT::i64)); 2163 SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, 2164 DAG.getConstant(UINT64_C(0x7ff), MVT::i64)); 2165 SDValue Ne = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64), 2166 And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE); 2167 SDValue Sel = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ne, Or, Op0); 2168 SDValue Ge = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64), 2169 Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64), 2170 ISD::SETUGE); 2171 SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0); 2172 EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType()); 2173 2174 SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2, 2175 DAG.getConstant(32, SHVT)); 2176 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh); 2177 SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc); 2178 SDValue TwoP32 = 2179 DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64); 2180 SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt); 2181 SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2); 2182 SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo); 2183 SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2); 2184 return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd, 2185 DAG.getIntPtrConstant(0)); 2186 } 2187 2188 SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2189 2190 SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()), 2191 Op0, DAG.getConstant(0, Op0.getValueType()), 2192 ISD::SETLT); 2193 SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); 2194 SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), 2195 SignSet, Four, Zero); 2196 2197 // If the sign bit of the integer is set, the large number will be treated 2198 // as a negative number. To counteract this, the dynamic code adds an 2199 // offset depending on the data type. 2200 uint64_t FF; 2201 switch (Op0.getValueType().getSimpleVT().SimpleTy) { 2202 default: llvm_unreachable("Unsupported integer type!"); 2203 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2204 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2205 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2206 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2207 } 2208 if (TLI.isLittleEndian()) FF <<= 32; 2209 Constant *FudgeFactor = ConstantInt::get( 2210 Type::getInt64Ty(*DAG.getContext()), FF); 2211 2212 SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); 2213 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 2214 CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset); 2215 Alignment = std::min(Alignment, 4u); 2216 SDValue FudgeInReg; 2217 if (DestVT == MVT::f32) 2218 FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2219 MachinePointerInfo::getConstantPool(), 2220 false, false, false, Alignment); 2221 else { 2222 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, 2223 DAG.getEntryNode(), CPIdx, 2224 MachinePointerInfo::getConstantPool(), 2225 MVT::f32, false, false, Alignment); 2226 HandleSDNode Handle(Load); 2227 LegalizeOp(Load.getNode()); 2228 FudgeInReg = Handle.getValue(); 2229 } 2230 2231 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2232} 2233 2234/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a 2235/// *INT_TO_FP operation of the specified operand when the target requests that 2236/// we promote it. At this point, we know that the result and operand types are 2237/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2238/// operation that takes a larger input. 2239SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, 2240 EVT DestVT, 2241 bool isSigned, 2242 DebugLoc dl) { 2243 // First step, figure out the appropriate *INT_TO_FP operation to use. 2244 EVT NewInTy = LegalOp.getValueType(); 2245 2246 unsigned OpToUse = 0; 2247 2248 // Scan for the appropriate larger type to use. 2249 while (1) { 2250 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2251 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2252 2253 // If the target supports SINT_TO_FP of this type, use it. 2254 if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) { 2255 OpToUse = ISD::SINT_TO_FP; 2256 break; 2257 } 2258 if (isSigned) continue; 2259 2260 // If the target supports UINT_TO_FP of this type, use it. 2261 if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) { 2262 OpToUse = ISD::UINT_TO_FP; 2263 break; 2264 } 2265 2266 // Otherwise, try a larger type. 2267 } 2268 2269 // Okay, we found the operation and type to use. Zero extend our input to the 2270 // desired type then run the operation on it. 2271 return DAG.getNode(OpToUse, dl, DestVT, 2272 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2273 dl, NewInTy, LegalOp)); 2274} 2275 2276/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a 2277/// FP_TO_*INT operation of the specified operand when the target requests that 2278/// we promote it. At this point, we know that the result and operand types are 2279/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2280/// operation that returns a larger result. 2281SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, 2282 EVT DestVT, 2283 bool isSigned, 2284 DebugLoc dl) { 2285 // First step, figure out the appropriate FP_TO*INT operation to use. 2286 EVT NewOutTy = DestVT; 2287 2288 unsigned OpToUse = 0; 2289 2290 // Scan for the appropriate larger type to use. 2291 while (1) { 2292 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2293 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2294 2295 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) { 2296 OpToUse = ISD::FP_TO_SINT; 2297 break; 2298 } 2299 2300 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) { 2301 OpToUse = ISD::FP_TO_UINT; 2302 break; 2303 } 2304 2305 // Otherwise, try a larger type. 2306 } 2307 2308 2309 // Okay, we found the operation and type to use. 2310 SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2311 2312 // Truncate the result of the extended FP_TO_*INT operation to the desired 2313 // size. 2314 return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2315} 2316 2317/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation. 2318/// 2319SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) { 2320 EVT VT = Op.getValueType(); 2321 EVT SHVT = TLI.getShiftAmountTy(VT); 2322 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 2323 switch (VT.getSimpleVT().SimpleTy) { 2324 default: llvm_unreachable("Unhandled Expand type in BSWAP!"); 2325 case MVT::i16: 2326 Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2327 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2328 return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); 2329 case MVT::i32: 2330 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2331 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2332 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2333 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2334 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT)); 2335 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT)); 2336 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2337 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2338 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2339 case MVT::i64: 2340 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT)); 2341 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT)); 2342 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2343 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2344 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2345 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2346 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT)); 2347 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT)); 2348 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT)); 2349 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT)); 2350 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT)); 2351 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT)); 2352 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT)); 2353 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT)); 2354 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 2355 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 2356 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2357 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2358 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 2359 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2360 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 2361 } 2362} 2363 2364/// SplatByte - Distribute ByteVal over NumBits bits. 2365// FIXME: Move this helper to a common place. 2366static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) { 2367 APInt Val = APInt(NumBits, ByteVal); 2368 unsigned Shift = 8; 2369 for (unsigned i = NumBits; i > 8; i >>= 1) { 2370 Val = (Val << Shift) | Val; 2371 Shift <<= 1; 2372 } 2373 return Val; 2374} 2375 2376/// ExpandBitCount - Expand the specified bitcount instruction into operations. 2377/// 2378SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op, 2379 DebugLoc dl) { 2380 switch (Opc) { 2381 default: llvm_unreachable("Cannot expand this yet!"); 2382 case ISD::CTPOP: { 2383 EVT VT = Op.getValueType(); 2384 EVT ShVT = TLI.getShiftAmountTy(VT); 2385 unsigned Len = VT.getSizeInBits(); 2386 2387 assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 && 2388 "CTPOP not implemented for this type."); 2389 2390 // This is the "best" algorithm from 2391 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 2392 2393 SDValue Mask55 = DAG.getConstant(SplatByte(Len, 0x55), VT); 2394 SDValue Mask33 = DAG.getConstant(SplatByte(Len, 0x33), VT); 2395 SDValue Mask0F = DAG.getConstant(SplatByte(Len, 0x0F), VT); 2396 SDValue Mask01 = DAG.getConstant(SplatByte(Len, 0x01), VT); 2397 2398 // v = v - ((v >> 1) & 0x55555555...) 2399 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 2400 DAG.getNode(ISD::AND, dl, VT, 2401 DAG.getNode(ISD::SRL, dl, VT, Op, 2402 DAG.getConstant(1, ShVT)), 2403 Mask55)); 2404 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 2405 Op = DAG.getNode(ISD::ADD, dl, VT, 2406 DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 2407 DAG.getNode(ISD::AND, dl, VT, 2408 DAG.getNode(ISD::SRL, dl, VT, Op, 2409 DAG.getConstant(2, ShVT)), 2410 Mask33)); 2411 // v = (v + (v >> 4)) & 0x0F0F0F0F... 2412 Op = DAG.getNode(ISD::AND, dl, VT, 2413 DAG.getNode(ISD::ADD, dl, VT, Op, 2414 DAG.getNode(ISD::SRL, dl, VT, Op, 2415 DAG.getConstant(4, ShVT))), 2416 Mask0F); 2417 // v = (v * 0x01010101...) >> (Len - 8) 2418 Op = DAG.getNode(ISD::SRL, dl, VT, 2419 DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 2420 DAG.getConstant(Len - 8, ShVT)); 2421 2422 return Op; 2423 } 2424 case ISD::CTLZ_ZERO_UNDEF: 2425 // This trivially expands to CTLZ. 2426 return DAG.getNode(ISD::CTLZ, dl, Op.getValueType(), Op); 2427 case ISD::CTLZ: { 2428 // for now, we do this: 2429 // x = x | (x >> 1); 2430 // x = x | (x >> 2); 2431 // ... 2432 // x = x | (x >>16); 2433 // x = x | (x >>32); // for 64-bit input 2434 // return popcount(~x); 2435 // 2436 // but see also: http://www.hackersdelight.org/HDcode/nlz.cc 2437 EVT VT = Op.getValueType(); 2438 EVT ShVT = TLI.getShiftAmountTy(VT); 2439 unsigned len = VT.getSizeInBits(); 2440 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 2441 SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT); 2442 Op = DAG.getNode(ISD::OR, dl, VT, Op, 2443 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3)); 2444 } 2445 Op = DAG.getNOT(dl, Op, VT); 2446 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 2447 } 2448 case ISD::CTTZ_ZERO_UNDEF: 2449 // This trivially expands to CTTZ. 2450 return DAG.getNode(ISD::CTTZ, dl, Op.getValueType(), Op); 2451 case ISD::CTTZ: { 2452 // for now, we use: { return popcount(~x & (x - 1)); } 2453 // unless the target has ctlz but not ctpop, in which case we use: 2454 // { return 32 - nlz(~x & (x-1)); } 2455 // see also http://www.hackersdelight.org/HDcode/ntz.cc 2456 EVT VT = Op.getValueType(); 2457 SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT, 2458 DAG.getNOT(dl, Op, VT), 2459 DAG.getNode(ISD::SUB, dl, VT, Op, 2460 DAG.getConstant(1, VT))); 2461 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 2462 if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) && 2463 TLI.isOperationLegalOrCustom(ISD::CTLZ, VT)) 2464 return DAG.getNode(ISD::SUB, dl, VT, 2465 DAG.getConstant(VT.getSizeInBits(), VT), 2466 DAG.getNode(ISD::CTLZ, dl, VT, Tmp3)); 2467 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3); 2468 } 2469 } 2470} 2471 2472std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) { 2473 unsigned Opc = Node->getOpcode(); 2474 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 2475 RTLIB::Libcall LC; 2476 2477 switch (Opc) { 2478 default: 2479 llvm_unreachable("Unhandled atomic intrinsic Expand!"); 2480 case ISD::ATOMIC_SWAP: 2481 switch (VT.SimpleTy) { 2482 default: llvm_unreachable("Unexpected value type for atomic!"); 2483 case MVT::i8: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break; 2484 case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break; 2485 case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break; 2486 case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break; 2487 } 2488 break; 2489 case ISD::ATOMIC_CMP_SWAP: 2490 switch (VT.SimpleTy) { 2491 default: llvm_unreachable("Unexpected value type for atomic!"); 2492 case MVT::i8: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break; 2493 case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break; 2494 case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break; 2495 case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break; 2496 } 2497 break; 2498 case ISD::ATOMIC_LOAD_ADD: 2499 switch (VT.SimpleTy) { 2500 default: llvm_unreachable("Unexpected value type for atomic!"); 2501 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_ADD_1; break; 2502 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break; 2503 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break; 2504 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break; 2505 } 2506 break; 2507 case ISD::ATOMIC_LOAD_SUB: 2508 switch (VT.SimpleTy) { 2509 default: llvm_unreachable("Unexpected value type for atomic!"); 2510 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_SUB_1; break; 2511 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break; 2512 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break; 2513 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break; 2514 } 2515 break; 2516 case ISD::ATOMIC_LOAD_AND: 2517 switch (VT.SimpleTy) { 2518 default: llvm_unreachable("Unexpected value type for atomic!"); 2519 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_AND_1; break; 2520 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break; 2521 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break; 2522 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break; 2523 } 2524 break; 2525 case ISD::ATOMIC_LOAD_OR: 2526 switch (VT.SimpleTy) { 2527 default: llvm_unreachable("Unexpected value type for atomic!"); 2528 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_OR_1; break; 2529 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break; 2530 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break; 2531 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break; 2532 } 2533 break; 2534 case ISD::ATOMIC_LOAD_XOR: 2535 switch (VT.SimpleTy) { 2536 default: llvm_unreachable("Unexpected value type for atomic!"); 2537 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_XOR_1; break; 2538 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break; 2539 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break; 2540 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break; 2541 } 2542 break; 2543 case ISD::ATOMIC_LOAD_NAND: 2544 switch (VT.SimpleTy) { 2545 default: llvm_unreachable("Unexpected value type for atomic!"); 2546 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_NAND_1; break; 2547 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break; 2548 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break; 2549 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break; 2550 } 2551 break; 2552 } 2553 2554 return ExpandChainLibCall(LC, Node, false); 2555} 2556 2557void SelectionDAGLegalize::ExpandNode(SDNode *Node) { 2558 SmallVector<SDValue, 8> Results; 2559 DebugLoc dl = Node->getDebugLoc(); 2560 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2561 switch (Node->getOpcode()) { 2562 case ISD::CTPOP: 2563 case ISD::CTLZ: 2564 case ISD::CTLZ_ZERO_UNDEF: 2565 case ISD::CTTZ: 2566 case ISD::CTTZ_ZERO_UNDEF: 2567 Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl); 2568 Results.push_back(Tmp1); 2569 break; 2570 case ISD::BSWAP: 2571 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl)); 2572 break; 2573 case ISD::FRAMEADDR: 2574 case ISD::RETURNADDR: 2575 case ISD::FRAME_TO_ARGS_OFFSET: 2576 Results.push_back(DAG.getConstant(0, Node->getValueType(0))); 2577 break; 2578 case ISD::FLT_ROUNDS_: 2579 Results.push_back(DAG.getConstant(1, Node->getValueType(0))); 2580 break; 2581 case ISD::EH_RETURN: 2582 case ISD::EH_LABEL: 2583 case ISD::PREFETCH: 2584 case ISD::VAEND: 2585 case ISD::EH_SJLJ_LONGJMP: 2586 // If the target didn't expand these, there's nothing to do, so just 2587 // preserve the chain and be done. 2588 Results.push_back(Node->getOperand(0)); 2589 break; 2590 case ISD::EH_SJLJ_SETJMP: 2591 // If the target didn't expand this, just return 'zero' and preserve the 2592 // chain. 2593 Results.push_back(DAG.getConstant(0, MVT::i32)); 2594 Results.push_back(Node->getOperand(0)); 2595 break; 2596 case ISD::ATOMIC_FENCE: 2597 case ISD::MEMBARRIER: { 2598 // If the target didn't lower this, lower it to '__sync_synchronize()' call 2599 // FIXME: handle "fence singlethread" more efficiently. 2600 TargetLowering::ArgListTy Args; 2601 TargetLowering:: 2602 CallLoweringInfo CLI(Node->getOperand(0), 2603 Type::getVoidTy(*DAG.getContext()), 2604 false, false, false, false, 0, CallingConv::C, 2605 /*isTailCall=*/false, 2606 /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, 2607 DAG.getExternalSymbol("__sync_synchronize", 2608 TLI.getPointerTy()), 2609 Args, DAG, dl); 2610 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 2611 2612 Results.push_back(CallResult.second); 2613 break; 2614 } 2615 case ISD::ATOMIC_LOAD: { 2616 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. 2617 SDValue Zero = DAG.getConstant(0, Node->getValueType(0)); 2618 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, 2619 cast<AtomicSDNode>(Node)->getMemoryVT(), 2620 Node->getOperand(0), 2621 Node->getOperand(1), Zero, Zero, 2622 cast<AtomicSDNode>(Node)->getMemOperand(), 2623 cast<AtomicSDNode>(Node)->getOrdering(), 2624 cast<AtomicSDNode>(Node)->getSynchScope()); 2625 Results.push_back(Swap.getValue(0)); 2626 Results.push_back(Swap.getValue(1)); 2627 break; 2628 } 2629 case ISD::ATOMIC_STORE: { 2630 // There is no libcall for atomic store; fake it with ATOMIC_SWAP. 2631 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, 2632 cast<AtomicSDNode>(Node)->getMemoryVT(), 2633 Node->getOperand(0), 2634 Node->getOperand(1), Node->getOperand(2), 2635 cast<AtomicSDNode>(Node)->getMemOperand(), 2636 cast<AtomicSDNode>(Node)->getOrdering(), 2637 cast<AtomicSDNode>(Node)->getSynchScope()); 2638 Results.push_back(Swap.getValue(1)); 2639 break; 2640 } 2641 // By default, atomic intrinsics are marked Legal and lowered. Targets 2642 // which don't support them directly, however, may want libcalls, in which 2643 // case they mark them Expand, and we get here. 2644 case ISD::ATOMIC_SWAP: 2645 case ISD::ATOMIC_LOAD_ADD: 2646 case ISD::ATOMIC_LOAD_SUB: 2647 case ISD::ATOMIC_LOAD_AND: 2648 case ISD::ATOMIC_LOAD_OR: 2649 case ISD::ATOMIC_LOAD_XOR: 2650 case ISD::ATOMIC_LOAD_NAND: 2651 case ISD::ATOMIC_LOAD_MIN: 2652 case ISD::ATOMIC_LOAD_MAX: 2653 case ISD::ATOMIC_LOAD_UMIN: 2654 case ISD::ATOMIC_LOAD_UMAX: 2655 case ISD::ATOMIC_CMP_SWAP: { 2656 std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node); 2657 Results.push_back(Tmp.first); 2658 Results.push_back(Tmp.second); 2659 break; 2660 } 2661 case ISD::DYNAMIC_STACKALLOC: 2662 ExpandDYNAMIC_STACKALLOC(Node, Results); 2663 break; 2664 case ISD::MERGE_VALUES: 2665 for (unsigned i = 0; i < Node->getNumValues(); i++) 2666 Results.push_back(Node->getOperand(i)); 2667 break; 2668 case ISD::UNDEF: { 2669 EVT VT = Node->getValueType(0); 2670 if (VT.isInteger()) 2671 Results.push_back(DAG.getConstant(0, VT)); 2672 else { 2673 assert(VT.isFloatingPoint() && "Unknown value type!"); 2674 Results.push_back(DAG.getConstantFP(0, VT)); 2675 } 2676 break; 2677 } 2678 case ISD::TRAP: { 2679 // If this operation is not supported, lower it to 'abort()' call 2680 TargetLowering::ArgListTy Args; 2681 TargetLowering:: 2682 CallLoweringInfo CLI(Node->getOperand(0), 2683 Type::getVoidTy(*DAG.getContext()), 2684 false, false, false, false, 0, CallingConv::C, 2685 /*isTailCall=*/false, 2686 /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, 2687 DAG.getExternalSymbol("abort", TLI.getPointerTy()), 2688 Args, DAG, dl); 2689 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 2690 2691 Results.push_back(CallResult.second); 2692 break; 2693 } 2694 case ISD::FP_ROUND: 2695 case ISD::BITCAST: 2696 Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 2697 Node->getValueType(0), dl); 2698 Results.push_back(Tmp1); 2699 break; 2700 case ISD::FP_EXTEND: 2701 Tmp1 = EmitStackConvert(Node->getOperand(0), 2702 Node->getOperand(0).getValueType(), 2703 Node->getValueType(0), dl); 2704 Results.push_back(Tmp1); 2705 break; 2706 case ISD::SIGN_EXTEND_INREG: { 2707 // NOTE: we could fall back on load/store here too for targets without 2708 // SAR. However, it is doubtful that any exist. 2709 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2710 EVT VT = Node->getValueType(0); 2711 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT); 2712 if (VT.isVector()) 2713 ShiftAmountTy = VT; 2714 unsigned BitsDiff = VT.getScalarType().getSizeInBits() - 2715 ExtraVT.getScalarType().getSizeInBits(); 2716 SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy); 2717 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 2718 Node->getOperand(0), ShiftCst); 2719 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 2720 Results.push_back(Tmp1); 2721 break; 2722 } 2723 case ISD::FP_ROUND_INREG: { 2724 // The only way we can lower this is to turn it into a TRUNCSTORE, 2725 // EXTLOAD pair, targeting a temporary location (a stack slot). 2726 2727 // NOTE: there is a choice here between constantly creating new stack 2728 // slots and always reusing the same one. We currently always create 2729 // new ones, as reuse may inhibit scheduling. 2730 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2731 Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT, 2732 Node->getValueType(0), dl); 2733 Results.push_back(Tmp1); 2734 break; 2735 } 2736 case ISD::SINT_TO_FP: 2737 case ISD::UINT_TO_FP: 2738 Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP, 2739 Node->getOperand(0), Node->getValueType(0), dl); 2740 Results.push_back(Tmp1); 2741 break; 2742 case ISD::FP_TO_UINT: { 2743 SDValue True, False; 2744 EVT VT = Node->getOperand(0).getValueType(); 2745 EVT NVT = Node->getValueType(0); 2746 APFloat apf(APInt::getNullValue(VT.getSizeInBits())); 2747 APInt x = APInt::getSignBit(NVT.getSizeInBits()); 2748 (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven); 2749 Tmp1 = DAG.getConstantFP(apf, VT); 2750 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), 2751 Node->getOperand(0), 2752 Tmp1, ISD::SETLT); 2753 True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0)); 2754 False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, 2755 DAG.getNode(ISD::FSUB, dl, VT, 2756 Node->getOperand(0), Tmp1)); 2757 False = DAG.getNode(ISD::XOR, dl, NVT, False, 2758 DAG.getConstant(x, NVT)); 2759 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False); 2760 Results.push_back(Tmp1); 2761 break; 2762 } 2763 case ISD::VAARG: { 2764 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2765 EVT VT = Node->getValueType(0); 2766 Tmp1 = Node->getOperand(0); 2767 Tmp2 = Node->getOperand(1); 2768 unsigned Align = Node->getConstantOperandVal(3); 2769 2770 SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, 2771 MachinePointerInfo(V), 2772 false, false, false, 0); 2773 SDValue VAList = VAListLoad; 2774 2775 if (Align > TLI.getMinStackArgumentAlignment()) { 2776 assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); 2777 2778 VAList = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList, 2779 DAG.getConstant(Align - 1, 2780 TLI.getPointerTy())); 2781 2782 VAList = DAG.getNode(ISD::AND, dl, TLI.getPointerTy(), VAList, 2783 DAG.getConstant(-(int64_t)Align, 2784 TLI.getPointerTy())); 2785 } 2786 2787 // Increment the pointer, VAList, to the next vaarg 2788 Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList, 2789 DAG.getConstant(TLI.getDataLayout()-> 2790 getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())), 2791 TLI.getPointerTy())); 2792 // Store the incremented VAList to the legalized pointer 2793 Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2, 2794 MachinePointerInfo(V), false, false, 0); 2795 // Load the actual argument out of the pointer VAList 2796 Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, MachinePointerInfo(), 2797 false, false, false, 0)); 2798 Results.push_back(Results[0].getValue(1)); 2799 break; 2800 } 2801 case ISD::VACOPY: { 2802 // This defaults to loading a pointer from the input and storing it to the 2803 // output, returning the chain. 2804 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2805 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2806 Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0), 2807 Node->getOperand(2), MachinePointerInfo(VS), 2808 false, false, false, 0); 2809 Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2810 MachinePointerInfo(VD), false, false, 0); 2811 Results.push_back(Tmp1); 2812 break; 2813 } 2814 case ISD::EXTRACT_VECTOR_ELT: 2815 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) 2816 // This must be an access of the only element. Return it. 2817 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 2818 Node->getOperand(0)); 2819 else 2820 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 2821 Results.push_back(Tmp1); 2822 break; 2823 case ISD::EXTRACT_SUBVECTOR: 2824 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 2825 break; 2826 case ISD::INSERT_SUBVECTOR: 2827 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 2828 break; 2829 case ISD::CONCAT_VECTORS: { 2830 Results.push_back(ExpandVectorBuildThroughStack(Node)); 2831 break; 2832 } 2833 case ISD::SCALAR_TO_VECTOR: 2834 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 2835 break; 2836 case ISD::INSERT_VECTOR_ELT: 2837 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 2838 Node->getOperand(1), 2839 Node->getOperand(2), dl)); 2840 break; 2841 case ISD::VECTOR_SHUFFLE: { 2842 SmallVector<int, 32> NewMask; 2843 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 2844 2845 EVT VT = Node->getValueType(0); 2846 EVT EltVT = VT.getVectorElementType(); 2847 SDValue Op0 = Node->getOperand(0); 2848 SDValue Op1 = Node->getOperand(1); 2849 if (!TLI.isTypeLegal(EltVT)) { 2850 2851 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 2852 2853 // BUILD_VECTOR operands are allowed to be wider than the element type. 2854 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept it 2855 if (NewEltVT.bitsLT(EltVT)) { 2856 2857 // Convert shuffle node. 2858 // If original node was v4i64 and the new EltVT is i32, 2859 // cast operands to v8i32 and re-build the mask. 2860 2861 // Calculate new VT, the size of the new VT should be equal to original. 2862 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltVT, 2863 VT.getSizeInBits()/NewEltVT.getSizeInBits()); 2864 assert(NewVT.bitsEq(VT)); 2865 2866 // cast operands to new VT 2867 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); 2868 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); 2869 2870 // Convert the shuffle mask 2871 unsigned int factor = NewVT.getVectorNumElements()/VT.getVectorNumElements(); 2872 2873 // EltVT gets smaller 2874 assert(factor > 0); 2875 2876 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 2877 if (Mask[i] < 0) { 2878 for (unsigned fi = 0; fi < factor; ++fi) 2879 NewMask.push_back(Mask[i]); 2880 } 2881 else { 2882 for (unsigned fi = 0; fi < factor; ++fi) 2883 NewMask.push_back(Mask[i]*factor+fi); 2884 } 2885 } 2886 Mask = NewMask; 2887 VT = NewVT; 2888 } 2889 EltVT = NewEltVT; 2890 } 2891 unsigned NumElems = VT.getVectorNumElements(); 2892 SmallVector<SDValue, 16> Ops; 2893 for (unsigned i = 0; i != NumElems; ++i) { 2894 if (Mask[i] < 0) { 2895 Ops.push_back(DAG.getUNDEF(EltVT)); 2896 continue; 2897 } 2898 unsigned Idx = Mask[i]; 2899 if (Idx < NumElems) 2900 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, 2901 Op0, 2902 DAG.getIntPtrConstant(Idx))); 2903 else 2904 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, 2905 Op1, 2906 DAG.getIntPtrConstant(Idx - NumElems))); 2907 } 2908 2909 Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size()); 2910 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. 2911 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); 2912 Results.push_back(Tmp1); 2913 break; 2914 } 2915 case ISD::EXTRACT_ELEMENT: { 2916 EVT OpTy = Node->getOperand(0).getValueType(); 2917 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 2918 // 1 -> Hi 2919 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 2920 DAG.getConstant(OpTy.getSizeInBits()/2, 2921 TLI.getShiftAmountTy(Node->getOperand(0).getValueType()))); 2922 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 2923 } else { 2924 // 0 -> Lo 2925 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 2926 Node->getOperand(0)); 2927 } 2928 Results.push_back(Tmp1); 2929 break; 2930 } 2931 case ISD::STACKSAVE: 2932 // Expand to CopyFromReg if the target set 2933 // StackPointerRegisterToSaveRestore. 2934 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 2935 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 2936 Node->getValueType(0))); 2937 Results.push_back(Results[0].getValue(1)); 2938 } else { 2939 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 2940 Results.push_back(Node->getOperand(0)); 2941 } 2942 break; 2943 case ISD::STACKRESTORE: 2944 // Expand to CopyToReg if the target set 2945 // StackPointerRegisterToSaveRestore. 2946 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 2947 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 2948 Node->getOperand(1))); 2949 } else { 2950 Results.push_back(Node->getOperand(0)); 2951 } 2952 break; 2953 case ISD::FCOPYSIGN: 2954 Results.push_back(ExpandFCOPYSIGN(Node)); 2955 break; 2956 case ISD::FNEG: 2957 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 2958 Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0)); 2959 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1, 2960 Node->getOperand(0)); 2961 Results.push_back(Tmp1); 2962 break; 2963 case ISD::FABS: { 2964 // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X). 2965 EVT VT = Node->getValueType(0); 2966 Tmp1 = Node->getOperand(0); 2967 Tmp2 = DAG.getConstantFP(0.0, VT); 2968 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()), 2969 Tmp1, Tmp2, ISD::SETUGT); 2970 Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1); 2971 Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3); 2972 Results.push_back(Tmp1); 2973 break; 2974 } 2975 case ISD::FSQRT: 2976 Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 2977 RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128)); 2978 break; 2979 case ISD::FSIN: 2980 Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 2981 RTLIB::SIN_F80, RTLIB::SIN_PPCF128)); 2982 break; 2983 case ISD::FCOS: 2984 Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 2985 RTLIB::COS_F80, RTLIB::COS_PPCF128)); 2986 break; 2987 case ISD::FLOG: 2988 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, 2989 RTLIB::LOG_F80, RTLIB::LOG_PPCF128)); 2990 break; 2991 case ISD::FLOG2: 2992 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, 2993 RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128)); 2994 break; 2995 case ISD::FLOG10: 2996 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, 2997 RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128)); 2998 break; 2999 case ISD::FEXP: 3000 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, 3001 RTLIB::EXP_F80, RTLIB::EXP_PPCF128)); 3002 break; 3003 case ISD::FEXP2: 3004 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, 3005 RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128)); 3006 break; 3007 case ISD::FTRUNC: 3008 Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 3009 RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128)); 3010 break; 3011 case ISD::FFLOOR: 3012 Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 3013 RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128)); 3014 break; 3015 case ISD::FCEIL: 3016 Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 3017 RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128)); 3018 break; 3019 case ISD::FRINT: 3020 Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 3021 RTLIB::RINT_F80, RTLIB::RINT_PPCF128)); 3022 break; 3023 case ISD::FNEARBYINT: 3024 Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 3025 RTLIB::NEARBYINT_F64, 3026 RTLIB::NEARBYINT_F80, 3027 RTLIB::NEARBYINT_PPCF128)); 3028 break; 3029 case ISD::FPOWI: 3030 Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64, 3031 RTLIB::POWI_F80, RTLIB::POWI_PPCF128)); 3032 break; 3033 case ISD::FPOW: 3034 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, 3035 RTLIB::POW_F80, RTLIB::POW_PPCF128)); 3036 break; 3037 case ISD::FDIV: 3038 Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 3039 RTLIB::DIV_F80, RTLIB::DIV_PPCF128)); 3040 break; 3041 case ISD::FREM: 3042 Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 3043 RTLIB::REM_F80, RTLIB::REM_PPCF128)); 3044 break; 3045 case ISD::FMA: 3046 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 3047 RTLIB::FMA_F80, RTLIB::FMA_PPCF128)); 3048 break; 3049 case ISD::FP16_TO_FP32: 3050 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); 3051 break; 3052 case ISD::FP32_TO_FP16: 3053 Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false)); 3054 break; 3055 case ISD::ConstantFP: { 3056 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 3057 // Check to see if this FP immediate is already legal. 3058 // If this is a legal constant, turn it into a TargetConstantFP node. 3059 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0))) 3060 Results.push_back(ExpandConstantFP(CFP, true)); 3061 break; 3062 } 3063 case ISD::EHSELECTION: { 3064 unsigned Reg = TLI.getExceptionSelectorRegister(); 3065 assert(Reg && "Can't expand to unknown register!"); 3066 Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg, 3067 Node->getValueType(0))); 3068 Results.push_back(Results[0].getValue(1)); 3069 break; 3070 } 3071 case ISD::EXCEPTIONADDR: { 3072 unsigned Reg = TLI.getExceptionPointerRegister(); 3073 assert(Reg && "Can't expand to unknown register!"); 3074 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg, 3075 Node->getValueType(0))); 3076 Results.push_back(Results[0].getValue(1)); 3077 break; 3078 } 3079 case ISD::FSUB: { 3080 EVT VT = Node->getValueType(0); 3081 assert(TLI.isOperationLegalOrCustom(ISD::FADD, VT) && 3082 TLI.isOperationLegalOrCustom(ISD::FNEG, VT) && 3083 "Don't know how to expand this FP subtraction!"); 3084 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); 3085 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1); 3086 Results.push_back(Tmp1); 3087 break; 3088 } 3089 case ISD::SUB: { 3090 EVT VT = Node->getValueType(0); 3091 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3092 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 3093 "Don't know how to expand this subtraction!"); 3094 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1), 3095 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT)); 3096 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, VT)); 3097 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 3098 break; 3099 } 3100 case ISD::UREM: 3101 case ISD::SREM: { 3102 EVT VT = Node->getValueType(0); 3103 SDVTList VTs = DAG.getVTList(VT, VT); 3104 bool isSigned = Node->getOpcode() == ISD::SREM; 3105 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 3106 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3107 Tmp2 = Node->getOperand(0); 3108 Tmp3 = Node->getOperand(1); 3109 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) || 3110 (isDivRemLibcallAvailable(Node, isSigned, TLI) && 3111 useDivRem(Node, isSigned, false))) { 3112 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1); 3113 } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) { 3114 // X % Y -> X-X/Y*Y 3115 Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3); 3116 Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3); 3117 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1); 3118 } else if (isSigned) 3119 Tmp1 = ExpandIntLibCall(Node, true, 3120 RTLIB::SREM_I8, 3121 RTLIB::SREM_I16, RTLIB::SREM_I32, 3122 RTLIB::SREM_I64, RTLIB::SREM_I128); 3123 else 3124 Tmp1 = ExpandIntLibCall(Node, false, 3125 RTLIB::UREM_I8, 3126 RTLIB::UREM_I16, RTLIB::UREM_I32, 3127 RTLIB::UREM_I64, RTLIB::UREM_I128); 3128 Results.push_back(Tmp1); 3129 break; 3130 } 3131 case ISD::UDIV: 3132 case ISD::SDIV: { 3133 bool isSigned = Node->getOpcode() == ISD::SDIV; 3134 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3135 EVT VT = Node->getValueType(0); 3136 SDVTList VTs = DAG.getVTList(VT, VT); 3137 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) || 3138 (isDivRemLibcallAvailable(Node, isSigned, TLI) && 3139 useDivRem(Node, isSigned, true))) 3140 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3141 Node->getOperand(1)); 3142 else if (isSigned) 3143 Tmp1 = ExpandIntLibCall(Node, true, 3144 RTLIB::SDIV_I8, 3145 RTLIB::SDIV_I16, RTLIB::SDIV_I32, 3146 RTLIB::SDIV_I64, RTLIB::SDIV_I128); 3147 else 3148 Tmp1 = ExpandIntLibCall(Node, false, 3149 RTLIB::UDIV_I8, 3150 RTLIB::UDIV_I16, RTLIB::UDIV_I32, 3151 RTLIB::UDIV_I64, RTLIB::UDIV_I128); 3152 Results.push_back(Tmp1); 3153 break; 3154 } 3155 case ISD::MULHU: 3156 case ISD::MULHS: { 3157 unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : 3158 ISD::SMUL_LOHI; 3159 EVT VT = Node->getValueType(0); 3160 SDVTList VTs = DAG.getVTList(VT, VT); 3161 assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) && 3162 "If this wasn't legal, it shouldn't have been created!"); 3163 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3164 Node->getOperand(1)); 3165 Results.push_back(Tmp1.getValue(1)); 3166 break; 3167 } 3168 case ISD::SDIVREM: 3169 case ISD::UDIVREM: 3170 // Expand into divrem libcall 3171 ExpandDivRemLibCall(Node, Results); 3172 break; 3173 case ISD::MUL: { 3174 EVT VT = Node->getValueType(0); 3175 SDVTList VTs = DAG.getVTList(VT, VT); 3176 // See if multiply or divide can be lowered using two-result operations. 3177 // We just need the low half of the multiply; try both the signed 3178 // and unsigned forms. If the target supports both SMUL_LOHI and 3179 // UMUL_LOHI, form a preference by checking which forms of plain 3180 // MULH it supports. 3181 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3182 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3183 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3184 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3185 unsigned OpToUse = 0; 3186 if (HasSMUL_LOHI && !HasMULHS) { 3187 OpToUse = ISD::SMUL_LOHI; 3188 } else if (HasUMUL_LOHI && !HasMULHU) { 3189 OpToUse = ISD::UMUL_LOHI; 3190 } else if (HasSMUL_LOHI) { 3191 OpToUse = ISD::SMUL_LOHI; 3192 } else if (HasUMUL_LOHI) { 3193 OpToUse = ISD::UMUL_LOHI; 3194 } 3195 if (OpToUse) { 3196 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3197 Node->getOperand(1))); 3198 break; 3199 } 3200 Tmp1 = ExpandIntLibCall(Node, false, 3201 RTLIB::MUL_I8, 3202 RTLIB::MUL_I16, RTLIB::MUL_I32, 3203 RTLIB::MUL_I64, RTLIB::MUL_I128); 3204 Results.push_back(Tmp1); 3205 break; 3206 } 3207 case ISD::SADDO: 3208 case ISD::SSUBO: { 3209 SDValue LHS = Node->getOperand(0); 3210 SDValue RHS = Node->getOperand(1); 3211 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ? 3212 ISD::ADD : ISD::SUB, dl, LHS.getValueType(), 3213 LHS, RHS); 3214 Results.push_back(Sum); 3215 EVT OType = Node->getValueType(1); 3216 3217 SDValue Zero = DAG.getConstant(0, LHS.getValueType()); 3218 3219 // LHSSign -> LHS >= 0 3220 // RHSSign -> RHS >= 0 3221 // SumSign -> Sum >= 0 3222 // 3223 // Add: 3224 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) 3225 // Sub: 3226 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) 3227 // 3228 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE); 3229 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE); 3230 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign, 3231 Node->getOpcode() == ISD::SADDO ? 3232 ISD::SETEQ : ISD::SETNE); 3233 3234 SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE); 3235 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE); 3236 3237 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE); 3238 Results.push_back(Cmp); 3239 break; 3240 } 3241 case ISD::UADDO: 3242 case ISD::USUBO: { 3243 SDValue LHS = Node->getOperand(0); 3244 SDValue RHS = Node->getOperand(1); 3245 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ? 3246 ISD::ADD : ISD::SUB, dl, LHS.getValueType(), 3247 LHS, RHS); 3248 Results.push_back(Sum); 3249 Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS, 3250 Node->getOpcode () == ISD::UADDO ? 3251 ISD::SETULT : ISD::SETUGT)); 3252 break; 3253 } 3254 case ISD::UMULO: 3255 case ISD::SMULO: { 3256 EVT VT = Node->getValueType(0); 3257 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2); 3258 SDValue LHS = Node->getOperand(0); 3259 SDValue RHS = Node->getOperand(1); 3260 SDValue BottomHalf; 3261 SDValue TopHalf; 3262 static const unsigned Ops[2][3] = 3263 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 3264 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 3265 bool isSigned = Node->getOpcode() == ISD::SMULO; 3266 if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 3267 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 3268 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 3269 } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 3270 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 3271 RHS); 3272 TopHalf = BottomHalf.getValue(1); 3273 } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(), 3274 VT.getSizeInBits() * 2))) { 3275 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 3276 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 3277 Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 3278 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, 3279 DAG.getIntPtrConstant(0)); 3280 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, 3281 DAG.getIntPtrConstant(1)); 3282 } else { 3283 // We can fall back to a libcall with an illegal type for the MUL if we 3284 // have a libcall big enough. 3285 // Also, we can fall back to a division in some cases, but that's a big 3286 // performance hit in the general case. 3287 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3288 if (WideVT == MVT::i16) 3289 LC = RTLIB::MUL_I16; 3290 else if (WideVT == MVT::i32) 3291 LC = RTLIB::MUL_I32; 3292 else if (WideVT == MVT::i64) 3293 LC = RTLIB::MUL_I64; 3294 else if (WideVT == MVT::i128) 3295 LC = RTLIB::MUL_I128; 3296 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 3297 3298 // The high part is obtained by SRA'ing all but one of the bits of low 3299 // part. 3300 unsigned LoSize = VT.getSizeInBits(); 3301 SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, RHS, 3302 DAG.getConstant(LoSize-1, TLI.getPointerTy())); 3303 SDValue HiRHS = DAG.getNode(ISD::SRA, dl, VT, LHS, 3304 DAG.getConstant(LoSize-1, TLI.getPointerTy())); 3305 3306 // Here we're passing the 2 arguments explicitly as 4 arguments that are 3307 // pre-lowered to the correct types. This all depends upon WideVT not 3308 // being a legal type for the architecture and thus has to be split to 3309 // two arguments. 3310 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 3311 SDValue Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl); 3312 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret, 3313 DAG.getIntPtrConstant(0)); 3314 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret, 3315 DAG.getIntPtrConstant(1)); 3316 // Ret is a node with an illegal type. Because such things are not 3317 // generally permitted during this phase of legalization, delete the 3318 // node. The above EXTRACT_ELEMENT nodes should have been folded. 3319 DAG.DeleteNode(Ret.getNode()); 3320 } 3321 3322 if (isSigned) { 3323 Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, 3324 TLI.getShiftAmountTy(BottomHalf.getValueType())); 3325 Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1); 3326 TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1, 3327 ISD::SETNE); 3328 } else { 3329 TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, 3330 DAG.getConstant(0, VT), ISD::SETNE); 3331 } 3332 Results.push_back(BottomHalf); 3333 Results.push_back(TopHalf); 3334 break; 3335 } 3336 case ISD::BUILD_PAIR: { 3337 EVT PairTy = Node->getValueType(0); 3338 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 3339 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 3340 Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2, 3341 DAG.getConstant(PairTy.getSizeInBits()/2, 3342 TLI.getShiftAmountTy(PairTy))); 3343 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 3344 break; 3345 } 3346 case ISD::SELECT: 3347 Tmp1 = Node->getOperand(0); 3348 Tmp2 = Node->getOperand(1); 3349 Tmp3 = Node->getOperand(2); 3350 if (Tmp1.getOpcode() == ISD::SETCC) { 3351 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3352 Tmp2, Tmp3, 3353 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3354 } else { 3355 Tmp1 = DAG.getSelectCC(dl, Tmp1, 3356 DAG.getConstant(0, Tmp1.getValueType()), 3357 Tmp2, Tmp3, ISD::SETNE); 3358 } 3359 Results.push_back(Tmp1); 3360 break; 3361 case ISD::BR_JT: { 3362 SDValue Chain = Node->getOperand(0); 3363 SDValue Table = Node->getOperand(1); 3364 SDValue Index = Node->getOperand(2); 3365 3366 EVT PTy = TLI.getPointerTy(); 3367 3368 const DataLayout &TD = *TLI.getDataLayout(); 3369 unsigned EntrySize = 3370 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 3371 3372 Index = DAG.getNode(ISD::MUL, dl, PTy, 3373 Index, DAG.getConstant(EntrySize, PTy)); 3374 SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table); 3375 3376 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 3377 SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr, 3378 MachinePointerInfo::getJumpTable(), MemVT, 3379 false, false, 0); 3380 Addr = LD; 3381 if (TM.getRelocationModel() == Reloc::PIC_) { 3382 // For PIC, the sequence is: 3383 // BRIND(load(Jumptable + index) + RelocBase) 3384 // RelocBase can be JumpTable, GOT or some sort of global base. 3385 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 3386 TLI.getPICJumpTableRelocBase(Table, DAG)); 3387 } 3388 Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr); 3389 Results.push_back(Tmp1); 3390 break; 3391 } 3392 case ISD::BRCOND: 3393 // Expand brcond's setcc into its constituent parts and create a BR_CC 3394 // Node. 3395 Tmp1 = Node->getOperand(0); 3396 Tmp2 = Node->getOperand(1); 3397 if (Tmp2.getOpcode() == ISD::SETCC) { 3398 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, 3399 Tmp1, Tmp2.getOperand(2), 3400 Tmp2.getOperand(0), Tmp2.getOperand(1), 3401 Node->getOperand(2)); 3402 } else { 3403 // We test only the i1 bit. Skip the AND if UNDEF. 3404 Tmp3 = (Tmp2.getOpcode() == ISD::UNDEF) ? Tmp2 : 3405 DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 3406 DAG.getConstant(1, Tmp2.getValueType())); 3407 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 3408 DAG.getCondCode(ISD::SETNE), Tmp3, 3409 DAG.getConstant(0, Tmp3.getValueType()), 3410 Node->getOperand(2)); 3411 } 3412 Results.push_back(Tmp1); 3413 break; 3414 case ISD::SETCC: { 3415 Tmp1 = Node->getOperand(0); 3416 Tmp2 = Node->getOperand(1); 3417 Tmp3 = Node->getOperand(2); 3418 LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl); 3419 3420 // If we expanded the SETCC into an AND/OR, return the new node 3421 if (Tmp2.getNode() == 0) { 3422 Results.push_back(Tmp1); 3423 break; 3424 } 3425 3426 // Otherwise, SETCC for the given comparison type must be completely 3427 // illegal; expand it into a SELECT_CC. 3428 EVT VT = Node->getValueType(0); 3429 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3430 DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3); 3431 Results.push_back(Tmp1); 3432 break; 3433 } 3434 case ISD::SELECT_CC: { 3435 Tmp1 = Node->getOperand(0); // LHS 3436 Tmp2 = Node->getOperand(1); // RHS 3437 Tmp3 = Node->getOperand(2); // True 3438 Tmp4 = Node->getOperand(3); // False 3439 SDValue CC = Node->getOperand(4); 3440 3441 LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()), 3442 Tmp1, Tmp2, CC, dl); 3443 3444 assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!"); 3445 Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); 3446 CC = DAG.getCondCode(ISD::SETNE); 3447 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2, 3448 Tmp3, Tmp4, CC); 3449 Results.push_back(Tmp1); 3450 break; 3451 } 3452 case ISD::BR_CC: { 3453 Tmp1 = Node->getOperand(0); // Chain 3454 Tmp2 = Node->getOperand(2); // LHS 3455 Tmp3 = Node->getOperand(3); // RHS 3456 Tmp4 = Node->getOperand(1); // CC 3457 3458 LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()), 3459 Tmp2, Tmp3, Tmp4, dl); 3460 3461 assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!"); 3462 Tmp3 = DAG.getConstant(0, Tmp2.getValueType()); 3463 Tmp4 = DAG.getCondCode(ISD::SETNE); 3464 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2, 3465 Tmp3, Node->getOperand(4)); 3466 Results.push_back(Tmp1); 3467 break; 3468 } 3469 case ISD::BUILD_VECTOR: 3470 Results.push_back(ExpandBUILD_VECTOR(Node)); 3471 break; 3472 case ISD::SRA: 3473 case ISD::SRL: 3474 case ISD::SHL: { 3475 // Scalarize vector SRA/SRL/SHL. 3476 EVT VT = Node->getValueType(0); 3477 assert(VT.isVector() && "Unable to legalize non-vector shift"); 3478 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); 3479 unsigned NumElem = VT.getVectorNumElements(); 3480 3481 SmallVector<SDValue, 8> Scalars; 3482 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 3483 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 3484 VT.getScalarType(), 3485 Node->getOperand(0), DAG.getIntPtrConstant(Idx)); 3486 SDValue Sh = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 3487 VT.getScalarType(), 3488 Node->getOperand(1), DAG.getIntPtrConstant(Idx)); 3489 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, 3490 VT.getScalarType(), Ex, Sh)); 3491 } 3492 SDValue Result = 3493 DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0), 3494 &Scalars[0], Scalars.size()); 3495 ReplaceNode(SDValue(Node, 0), Result); 3496 break; 3497 } 3498 case ISD::GLOBAL_OFFSET_TABLE: 3499 case ISD::GlobalAddress: 3500 case ISD::GlobalTLSAddress: 3501 case ISD::ExternalSymbol: 3502 case ISD::ConstantPool: 3503 case ISD::JumpTable: 3504 case ISD::INTRINSIC_W_CHAIN: 3505 case ISD::INTRINSIC_WO_CHAIN: 3506 case ISD::INTRINSIC_VOID: 3507 // FIXME: Custom lowering for these operations shouldn't return null! 3508 break; 3509 } 3510 3511 // Replace the original node with the legalized result. 3512 if (!Results.empty()) 3513 ReplaceNode(Node, Results.data()); 3514} 3515 3516void SelectionDAGLegalize::PromoteNode(SDNode *Node) { 3517 SmallVector<SDValue, 8> Results; 3518 EVT OVT = Node->getValueType(0); 3519 if (Node->getOpcode() == ISD::UINT_TO_FP || 3520 Node->getOpcode() == ISD::SINT_TO_FP || 3521 Node->getOpcode() == ISD::SETCC) { 3522 OVT = Node->getOperand(0).getValueType(); 3523 } 3524 EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3525 DebugLoc dl = Node->getDebugLoc(); 3526 SDValue Tmp1, Tmp2, Tmp3; 3527 switch (Node->getOpcode()) { 3528 case ISD::CTTZ: 3529 case ISD::CTTZ_ZERO_UNDEF: 3530 case ISD::CTLZ: 3531 case ISD::CTLZ_ZERO_UNDEF: 3532 case ISD::CTPOP: 3533 // Zero extend the argument. 3534 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 3535 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is 3536 // already the correct result. 3537 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 3538 if (Node->getOpcode() == ISD::CTTZ) { 3539 // FIXME: This should set a bit in the zero extended value instead. 3540 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), 3541 Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT), 3542 ISD::SETEQ); 3543 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, 3544 DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1); 3545 } else if (Node->getOpcode() == ISD::CTLZ || 3546 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { 3547 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 3548 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 3549 DAG.getConstant(NVT.getSizeInBits() - 3550 OVT.getSizeInBits(), NVT)); 3551 } 3552 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 3553 break; 3554 case ISD::BSWAP: { 3555 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 3556 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 3557 Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1); 3558 Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1, 3559 DAG.getConstant(DiffBits, TLI.getShiftAmountTy(NVT))); 3560 Results.push_back(Tmp1); 3561 break; 3562 } 3563 case ISD::FP_TO_UINT: 3564 case ISD::FP_TO_SINT: 3565 Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0), 3566 Node->getOpcode() == ISD::FP_TO_SINT, dl); 3567 Results.push_back(Tmp1); 3568 break; 3569 case ISD::UINT_TO_FP: 3570 case ISD::SINT_TO_FP: 3571 Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0), 3572 Node->getOpcode() == ISD::SINT_TO_FP, dl); 3573 Results.push_back(Tmp1); 3574 break; 3575 case ISD::VAARG: { 3576 SDValue Chain = Node->getOperand(0); // Get the chain. 3577 SDValue Ptr = Node->getOperand(1); // Get the pointer. 3578 3579 unsigned TruncOp; 3580 if (OVT.isVector()) { 3581 TruncOp = ISD::BITCAST; 3582 } else { 3583 assert(OVT.isInteger() 3584 && "VAARG promotion is supported only for vectors or integer types"); 3585 TruncOp = ISD::TRUNCATE; 3586 } 3587 3588 // Perform the larger operation, then convert back 3589 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), 3590 Node->getConstantOperandVal(3)); 3591 Chain = Tmp1.getValue(1); 3592 3593 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); 3594 3595 // Modified the chain result - switch anything that used the old chain to 3596 // use the new one. 3597 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); 3598 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 3599 ReplacedNode(Node); 3600 break; 3601 } 3602 case ISD::AND: 3603 case ISD::OR: 3604 case ISD::XOR: { 3605 unsigned ExtOp, TruncOp; 3606 if (OVT.isVector()) { 3607 ExtOp = ISD::BITCAST; 3608 TruncOp = ISD::BITCAST; 3609 } else { 3610 assert(OVT.isInteger() && "Cannot promote logic operation"); 3611 ExtOp = ISD::ANY_EXTEND; 3612 TruncOp = ISD::TRUNCATE; 3613 } 3614 // Promote each of the values to the new type. 3615 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 3616 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 3617 // Perform the larger operation, then convert back 3618 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 3619 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 3620 break; 3621 } 3622 case ISD::SELECT: { 3623 unsigned ExtOp, TruncOp; 3624 if (Node->getValueType(0).isVector()) { 3625 ExtOp = ISD::BITCAST; 3626 TruncOp = ISD::BITCAST; 3627 } else if (Node->getValueType(0).isInteger()) { 3628 ExtOp = ISD::ANY_EXTEND; 3629 TruncOp = ISD::TRUNCATE; 3630 } else { 3631 ExtOp = ISD::FP_EXTEND; 3632 TruncOp = ISD::FP_ROUND; 3633 } 3634 Tmp1 = Node->getOperand(0); 3635 // Promote each of the values to the new type. 3636 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 3637 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 3638 // Perform the larger operation, then round down. 3639 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3); 3640 if (TruncOp != ISD::FP_ROUND) 3641 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 3642 else 3643 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 3644 DAG.getIntPtrConstant(0)); 3645 Results.push_back(Tmp1); 3646 break; 3647 } 3648 case ISD::VECTOR_SHUFFLE: { 3649 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 3650 3651 // Cast the two input vectors. 3652 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 3653 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 3654 3655 // Convert the shuffle mask to the right # elements. 3656 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 3657 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 3658 Results.push_back(Tmp1); 3659 break; 3660 } 3661 case ISD::SETCC: { 3662 unsigned ExtOp = ISD::FP_EXTEND; 3663 if (NVT.isInteger()) { 3664 ISD::CondCode CCCode = 3665 cast<CondCodeSDNode>(Node->getOperand(2))->get(); 3666 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 3667 } 3668 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 3669 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 3670 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 3671 Tmp1, Tmp2, Node->getOperand(2))); 3672 break; 3673 } 3674 case ISD::FDIV: 3675 case ISD::FREM: 3676 case ISD::FPOW: { 3677 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 3678 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 3679 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 3680 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 3681 Tmp3, DAG.getIntPtrConstant(0))); 3682 break; 3683 } 3684 case ISD::FLOG2: 3685 case ISD::FEXP2: 3686 case ISD::FLOG: 3687 case ISD::FEXP: { 3688 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 3689 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 3690 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 3691 Tmp2, DAG.getIntPtrConstant(0))); 3692 break; 3693 } 3694 } 3695 3696 // Replace the original node with the legalized result. 3697 if (!Results.empty()) 3698 ReplaceNode(Node, Results.data()); 3699} 3700 3701// SelectionDAG::Legalize - This is the entry point for the file. 3702// 3703void SelectionDAG::Legalize() { 3704 /// run - This is the main entry point to this class. 3705 /// 3706 SelectionDAGLegalize(*this).LegalizeDAG(); 3707} 3708