LegalizeDAG.cpp revision 3d43b3f6d7e1d3516052f20bf2d14727ebddb8ff
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the SelectionDAG::Legalize method. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/SelectionDAG.h" 15#include "llvm/CodeGen/MachineFunction.h" 16#include "llvm/CodeGen/MachineFrameInfo.h" 17#include "llvm/CodeGen/MachineJumpTableInfo.h" 18#include "llvm/CodeGen/MachineModuleInfo.h" 19#include "llvm/CodeGen/DwarfWriter.h" 20#include "llvm/Analysis/DebugInfo.h" 21#include "llvm/CodeGen/PseudoSourceValue.h" 22#include "llvm/Target/TargetFrameInfo.h" 23#include "llvm/Target/TargetLowering.h" 24#include "llvm/Target/TargetData.h" 25#include "llvm/Target/TargetMachine.h" 26#include "llvm/Target/TargetOptions.h" 27#include "llvm/Target/TargetSubtarget.h" 28#include "llvm/CallingConv.h" 29#include "llvm/Constants.h" 30#include "llvm/DerivedTypes.h" 31#include "llvm/Function.h" 32#include "llvm/GlobalVariable.h" 33#include "llvm/Support/CommandLine.h" 34#include "llvm/Support/Compiler.h" 35#include "llvm/Support/MathExtras.h" 36#include "llvm/ADT/DenseMap.h" 37#include "llvm/ADT/SmallVector.h" 38#include "llvm/ADT/SmallPtrSet.h" 39#include <map> 40using namespace llvm; 41 42//===----------------------------------------------------------------------===// 43/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and 44/// hacks on it until the target machine can handle it. This involves 45/// eliminating value sizes the machine cannot handle (promoting small sizes to 46/// large sizes or splitting up large values into small values) as well as 47/// eliminating operations the machine cannot handle. 48/// 49/// This code also does a small amount of optimization and recognition of idioms 50/// as part of its processing. For example, if a target does not support a 51/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 52/// will attempt merge setcc and brc instructions into brcc's. 53/// 54namespace { 55class VISIBILITY_HIDDEN SelectionDAGLegalize { 56 TargetLowering &TLI; 57 SelectionDAG &DAG; 58 CodeGenOpt::Level OptLevel; 59 bool TypesNeedLegalizing; 60 61 // Libcall insertion helpers. 62 63 /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been 64 /// legalized. We use this to ensure that calls are properly serialized 65 /// against each other, including inserted libcalls. 66 SDValue LastCALLSEQ_END; 67 68 /// IsLegalizingCall - This member is used *only* for purposes of providing 69 /// helpful assertions that a libcall isn't created while another call is 70 /// being legalized (which could lead to non-serialized call sequences). 71 bool IsLegalizingCall; 72 73 /// IsLegalizingCallArguments - This member is used only for the purpose 74 /// of providing assert to check for LegalizeTypes because legalizing an 75 /// operation might introduce call nodes that might need type legalization. 76 bool IsLegalizingCallArgs; 77 78 enum LegalizeAction { 79 Legal, // The target natively supports this operation. 80 Promote, // This operation should be executed in a larger type. 81 Expand // Try to expand this to other ops, otherwise use a libcall. 82 }; 83 84 /// ValueTypeActions - This is a bitvector that contains two bits for each 85 /// value type, where the two bits correspond to the LegalizeAction enum. 86 /// This can be queried with "getTypeAction(VT)". 87 TargetLowering::ValueTypeActionImpl ValueTypeActions; 88 89 /// LegalizedNodes - For nodes that are of legal width, and that have more 90 /// than one use, this map indicates what regularized operand to use. This 91 /// allows us to avoid legalizing the same thing more than once. 92 DenseMap<SDValue, SDValue> LegalizedNodes; 93 94 /// PromotedNodes - For nodes that are below legal width, and that have more 95 /// than one use, this map indicates what promoted value to use. This allows 96 /// us to avoid promoting the same thing more than once. 97 DenseMap<SDValue, SDValue> PromotedNodes; 98 99 /// ExpandedNodes - For nodes that need to be expanded this map indicates 100 /// which operands are the expanded version of the input. This allows 101 /// us to avoid expanding the same node more than once. 102 DenseMap<SDValue, std::pair<SDValue, SDValue> > ExpandedNodes; 103 104 /// SplitNodes - For vector nodes that need to be split, this map indicates 105 /// which operands are the split version of the input. This allows us 106 /// to avoid splitting the same node more than once. 107 std::map<SDValue, std::pair<SDValue, SDValue> > SplitNodes; 108 109 /// ScalarizedNodes - For nodes that need to be converted from vector types to 110 /// scalar types, this contains the mapping of ones we have already 111 /// processed to the result. 112 std::map<SDValue, SDValue> ScalarizedNodes; 113 114 /// WidenNodes - For nodes that need to be widened from one vector type to 115 /// another, this contains the mapping of those that we have already widen. 116 /// This allows us to avoid widening more than once. 117 std::map<SDValue, SDValue> WidenNodes; 118 119 void AddLegalizedOperand(SDValue From, SDValue To) { 120 LegalizedNodes.insert(std::make_pair(From, To)); 121 // If someone requests legalization of the new node, return itself. 122 if (From != To) 123 LegalizedNodes.insert(std::make_pair(To, To)); 124 } 125 void AddPromotedOperand(SDValue From, SDValue To) { 126 bool isNew = PromotedNodes.insert(std::make_pair(From, To)).second; 127 assert(isNew && "Got into the map somehow?"); 128 isNew = isNew; 129 // If someone requests legalization of the new node, return itself. 130 LegalizedNodes.insert(std::make_pair(To, To)); 131 } 132 void AddWidenedOperand(SDValue From, SDValue To) { 133 bool isNew = WidenNodes.insert(std::make_pair(From, To)).second; 134 assert(isNew && "Got into the map somehow?"); 135 isNew = isNew; 136 // If someone requests legalization of the new node, return itself. 137 LegalizedNodes.insert(std::make_pair(To, To)); 138 } 139 140public: 141 explicit SelectionDAGLegalize(SelectionDAG &DAG, bool TypesNeedLegalizing, 142 CodeGenOpt::Level ol); 143 144 /// getTypeAction - Return how we should legalize values of this type, either 145 /// it is already legal or we need to expand it into multiple registers of 146 /// smaller integer type, or we need to promote it to a larger type. 147 LegalizeAction getTypeAction(MVT VT) const { 148 return (LegalizeAction)ValueTypeActions.getTypeAction(VT); 149 } 150 151 /// isTypeLegal - Return true if this type is legal on this target. 152 /// 153 bool isTypeLegal(MVT VT) const { 154 return getTypeAction(VT) == Legal; 155 } 156 157 void LegalizeDAG(); 158 159private: 160 /// HandleOp - Legalize, Promote, or Expand the specified operand as 161 /// appropriate for its type. 162 void HandleOp(SDValue Op); 163 164 /// LegalizeOp - We know that the specified value has a legal type. 165 /// Recursively ensure that the operands have legal types, then return the 166 /// result. 167 SDValue LegalizeOp(SDValue O); 168 169 /// UnrollVectorOp - We know that the given vector has a legal type, however 170 /// the operation it performs is not legal and is an operation that we have 171 /// no way of lowering. "Unroll" the vector, splitting out the scalars and 172 /// operating on each element individually. 173 SDValue UnrollVectorOp(SDValue O); 174 175 /// PerformInsertVectorEltInMemory - Some target cannot handle a variable 176 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 177 /// is necessary to spill the vector being inserted into to memory, perform 178 /// the insert there, and then read the result back. 179 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, 180 SDValue Idx, DebugLoc dl); 181 182 /// PromoteOp - Given an operation that produces a value in an invalid type, 183 /// promote it to compute the value into a larger type. The produced value 184 /// will have the correct bits for the low portion of the register, but no 185 /// guarantee is made about the top bits: it may be zero, sign-extended, or 186 /// garbage. 187 SDValue PromoteOp(SDValue O); 188 189 /// ExpandOp - Expand the specified SDValue into its two component pieces 190 /// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, 191 /// the LegalizedNodes map is filled in for any results that are not expanded, 192 /// the ExpandedNodes map is filled in for any results that are expanded, and 193 /// the Lo/Hi values are returned. This applies to integer types and Vector 194 /// types. 195 void ExpandOp(SDValue O, SDValue &Lo, SDValue &Hi); 196 197 /// WidenVectorOp - Widen a vector operation to a wider type given by WidenVT 198 /// (e.g., v3i32 to v4i32). The produced value will have the correct value 199 /// for the existing elements but no guarantee is made about the new elements 200 /// at the end of the vector: it may be zero, ones, or garbage. This is useful 201 /// when we have an instruction operating on an illegal vector type and we 202 /// want to widen it to do the computation on a legal wider vector type. 203 SDValue WidenVectorOp(SDValue Op, MVT WidenVT); 204 205 /// SplitVectorOp - Given an operand of vector type, break it down into 206 /// two smaller values. 207 void SplitVectorOp(SDValue O, SDValue &Lo, SDValue &Hi); 208 209 /// ScalarizeVectorOp - Given an operand of single-element vector type 210 /// (e.g. v1f32), convert it into the equivalent operation that returns a 211 /// scalar (e.g. f32) value. 212 SDValue ScalarizeVectorOp(SDValue O); 213 214 /// Useful 16 element vector type that is used to pass operands for widening. 215 typedef SmallVector<SDValue, 16> SDValueVector; 216 217 /// LoadWidenVectorOp - Load a vector for a wider type. Returns true if 218 /// the LdChain contains a single load and false if it contains a token 219 /// factor for multiple loads. It takes 220 /// Result: location to return the result 221 /// LdChain: location to return the load chain 222 /// Op: load operation to widen 223 /// NVT: widen vector result type we want for the load 224 bool LoadWidenVectorOp(SDValue& Result, SDValue& LdChain, 225 SDValue Op, MVT NVT); 226 227 /// Helper genWidenVectorLoads - Helper function to generate a set of 228 /// loads to load a vector with a resulting wider type. It takes 229 /// LdChain: list of chains for the load we have generated 230 /// Chain: incoming chain for the ld vector 231 /// BasePtr: base pointer to load from 232 /// SV: memory disambiguation source value 233 /// SVOffset: memory disambiugation offset 234 /// Alignment: alignment of the memory 235 /// isVolatile: volatile load 236 /// LdWidth: width of memory that we want to load 237 /// ResType: the wider result result type for the resulting loaded vector 238 SDValue genWidenVectorLoads(SDValueVector& LdChain, SDValue Chain, 239 SDValue BasePtr, const Value *SV, 240 int SVOffset, unsigned Alignment, 241 bool isVolatile, unsigned LdWidth, 242 MVT ResType, DebugLoc dl); 243 244 /// StoreWidenVectorOp - Stores a widen vector into non widen memory 245 /// location. It takes 246 /// ST: store node that we want to replace 247 /// Chain: incoming store chain 248 /// BasePtr: base address of where we want to store into 249 SDValue StoreWidenVectorOp(StoreSDNode *ST, SDValue Chain, 250 SDValue BasePtr); 251 252 /// Helper genWidenVectorStores - Helper function to generate a set of 253 /// stores to store a widen vector into non widen memory 254 // It takes 255 // StChain: list of chains for the stores we have generated 256 // Chain: incoming chain for the ld vector 257 // BasePtr: base pointer to load from 258 // SV: memory disambiguation source value 259 // SVOffset: memory disambiugation offset 260 // Alignment: alignment of the memory 261 // isVolatile: volatile lod 262 // ValOp: value to store 263 // StWidth: width of memory that we want to store 264 void genWidenVectorStores(SDValueVector& StChain, SDValue Chain, 265 SDValue BasePtr, const Value *SV, 266 int SVOffset, unsigned Alignment, 267 bool isVolatile, SDValue ValOp, 268 unsigned StWidth, DebugLoc dl); 269 270 /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which 271 /// performs the same shuffe in terms of order or result bytes, but on a type 272 /// whose vector element type is narrower than the original shuffle type. 273 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 274 SDValue ShuffleWithNarrowerEltType(MVT NVT, MVT VT, DebugLoc dl, 275 SDValue N1, SDValue N2, 276 SmallVectorImpl<int> &Mask) const; 277 278 bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, 279 SmallPtrSet<SDNode*, 32> &NodesLeadingTo); 280 281 void LegalizeSetCCOperands(SDValue &LHS, SDValue &RHS, SDValue &CC, 282 DebugLoc dl); 283 void LegalizeSetCCCondCode(MVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, 284 DebugLoc dl); 285 void LegalizeSetCC(MVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, 286 DebugLoc dl) { 287 LegalizeSetCCOperands(LHS, RHS, CC, dl); 288 LegalizeSetCCCondCode(VT, LHS, RHS, CC, dl); 289 } 290 291 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned, 292 SDValue &Hi); 293 SDValue ExpandIntToFP(bool isSigned, MVT DestTy, SDValue Source, DebugLoc dl); 294 295 SDValue EmitStackConvert(SDValue SrcOp, MVT SlotVT, MVT DestVT, DebugLoc dl); 296 SDValue ExpandBUILD_VECTOR(SDNode *Node); 297 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 298 SDValue LegalizeINT_TO_FP(SDValue Result, bool isSigned, MVT DestTy, 299 SDValue Op, DebugLoc dl); 300 SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, MVT DestVT, 301 DebugLoc dl); 302 SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, MVT DestVT, bool isSigned, 303 DebugLoc dl); 304 SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, MVT DestVT, bool isSigned, 305 DebugLoc dl); 306 307 SDValue ExpandBSWAP(SDValue Op, DebugLoc dl); 308 SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl); 309 bool ExpandShift(unsigned Opc, SDValue Op, SDValue Amt, 310 SDValue &Lo, SDValue &Hi, DebugLoc dl); 311 void ExpandShiftParts(unsigned NodeOp, SDValue Op, SDValue Amt, 312 SDValue &Lo, SDValue &Hi, DebugLoc dl); 313 314 SDValue ExpandEXTRACT_SUBVECTOR(SDValue Op); 315 SDValue ExpandEXTRACT_VECTOR_ELT(SDValue Op); 316 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 317}; 318} 319 320/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which 321/// performs the same shuffe in terms of order or result bytes, but on a type 322/// whose vector element type is narrower than the original shuffle type. 323/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 324SDValue 325SelectionDAGLegalize::ShuffleWithNarrowerEltType(MVT NVT, MVT VT, DebugLoc dl, 326 SDValue N1, SDValue N2, 327 SmallVectorImpl<int> &Mask) const { 328 MVT EltVT = NVT.getVectorElementType(); 329 unsigned NumMaskElts = VT.getVectorNumElements(); 330 unsigned NumDestElts = NVT.getVectorNumElements(); 331 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 332 333 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 334 335 if (NumEltsGrowth == 1) 336 return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]); 337 338 SmallVector<int, 8> NewMask; 339 for (unsigned i = 0; i != NumMaskElts; ++i) { 340 int Idx = Mask[i]; 341 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 342 if (Idx < 0) 343 NewMask.push_back(-1); 344 else 345 NewMask.push_back(Idx * NumEltsGrowth + j); 346 } 347 } 348 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 349 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 350 return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]); 351} 352 353SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag, 354 bool types, CodeGenOpt::Level ol) 355 : TLI(dag.getTargetLoweringInfo()), DAG(dag), OptLevel(ol), 356 TypesNeedLegalizing(types), ValueTypeActions(TLI.getValueTypeActions()) { 357 assert(MVT::LAST_VALUETYPE <= 32 && 358 "Too many value types for ValueTypeActions to hold!"); 359} 360 361void SelectionDAGLegalize::LegalizeDAG() { 362 LastCALLSEQ_END = DAG.getEntryNode(); 363 IsLegalizingCall = false; 364 IsLegalizingCallArgs = false; 365 366 // The legalize process is inherently a bottom-up recursive process (users 367 // legalize their uses before themselves). Given infinite stack space, we 368 // could just start legalizing on the root and traverse the whole graph. In 369 // practice however, this causes us to run out of stack space on large basic 370 // blocks. To avoid this problem, compute an ordering of the nodes where each 371 // node is only legalized after all of its operands are legalized. 372 DAG.AssignTopologicalOrder(); 373 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 374 E = prior(DAG.allnodes_end()); I != next(E); ++I) 375 HandleOp(SDValue(I, 0)); 376 377 // Finally, it's possible the root changed. Get the new root. 378 SDValue OldRoot = DAG.getRoot(); 379 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 380 DAG.setRoot(LegalizedNodes[OldRoot]); 381 382 ExpandedNodes.clear(); 383 LegalizedNodes.clear(); 384 PromotedNodes.clear(); 385 SplitNodes.clear(); 386 ScalarizedNodes.clear(); 387 WidenNodes.clear(); 388 389 // Remove dead nodes now. 390 DAG.RemoveDeadNodes(); 391} 392 393 394/// FindCallEndFromCallStart - Given a chained node that is part of a call 395/// sequence, find the CALLSEQ_END node that terminates the call sequence. 396static SDNode *FindCallEndFromCallStart(SDNode *Node) { 397 if (Node->getOpcode() == ISD::CALLSEQ_END) 398 return Node; 399 if (Node->use_empty()) 400 return 0; // No CallSeqEnd 401 402 // The chain is usually at the end. 403 SDValue TheChain(Node, Node->getNumValues()-1); 404 if (TheChain.getValueType() != MVT::Other) { 405 // Sometimes it's at the beginning. 406 TheChain = SDValue(Node, 0); 407 if (TheChain.getValueType() != MVT::Other) { 408 // Otherwise, hunt for it. 409 for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i) 410 if (Node->getValueType(i) == MVT::Other) { 411 TheChain = SDValue(Node, i); 412 break; 413 } 414 415 // Otherwise, we walked into a node without a chain. 416 if (TheChain.getValueType() != MVT::Other) 417 return 0; 418 } 419 } 420 421 for (SDNode::use_iterator UI = Node->use_begin(), 422 E = Node->use_end(); UI != E; ++UI) { 423 424 // Make sure to only follow users of our token chain. 425 SDNode *User = *UI; 426 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) 427 if (User->getOperand(i) == TheChain) 428 if (SDNode *Result = FindCallEndFromCallStart(User)) 429 return Result; 430 } 431 return 0; 432} 433 434/// FindCallStartFromCallEnd - Given a chained node that is part of a call 435/// sequence, find the CALLSEQ_START node that initiates the call sequence. 436static SDNode *FindCallStartFromCallEnd(SDNode *Node) { 437 assert(Node && "Didn't find callseq_start for a call??"); 438 if (Node->getOpcode() == ISD::CALLSEQ_START) return Node; 439 440 assert(Node->getOperand(0).getValueType() == MVT::Other && 441 "Node doesn't have a token chain argument!"); 442 return FindCallStartFromCallEnd(Node->getOperand(0).getNode()); 443} 444 445/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to 446/// see if any uses can reach Dest. If no dest operands can get to dest, 447/// legalize them, legalize ourself, and return false, otherwise, return true. 448/// 449/// Keep track of the nodes we fine that actually do lead to Dest in 450/// NodesLeadingTo. This avoids retraversing them exponential number of times. 451/// 452bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, 453 SmallPtrSet<SDNode*, 32> &NodesLeadingTo) { 454 if (N == Dest) return true; // N certainly leads to Dest :) 455 456 // If we've already processed this node and it does lead to Dest, there is no 457 // need to reprocess it. 458 if (NodesLeadingTo.count(N)) return true; 459 460 // If the first result of this node has been already legalized, then it cannot 461 // reach N. 462 switch (getTypeAction(N->getValueType(0))) { 463 case Legal: 464 if (LegalizedNodes.count(SDValue(N, 0))) return false; 465 break; 466 case Promote: 467 if (PromotedNodes.count(SDValue(N, 0))) return false; 468 break; 469 case Expand: 470 if (ExpandedNodes.count(SDValue(N, 0))) return false; 471 break; 472 } 473 474 // Okay, this node has not already been legalized. Check and legalize all 475 // operands. If none lead to Dest, then we can legalize this node. 476 bool OperandsLeadToDest = false; 477 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 478 OperandsLeadToDest |= // If an operand leads to Dest, so do we. 479 LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest, NodesLeadingTo); 480 481 if (OperandsLeadToDest) { 482 NodesLeadingTo.insert(N); 483 return true; 484 } 485 486 // Okay, this node looks safe, legalize it and return false. 487 HandleOp(SDValue(N, 0)); 488 return false; 489} 490 491/// HandleOp - Legalize, Promote, Widen, or Expand the specified operand as 492/// appropriate for its type. 493void SelectionDAGLegalize::HandleOp(SDValue Op) { 494 MVT VT = Op.getValueType(); 495 // If the type legalizer was run then we should never see any illegal result 496 // types here except for target constants (the type legalizer does not touch 497 // those) or for build vector used as a mask for a vector shuffle. 498 assert((TypesNeedLegalizing || getTypeAction(VT) == Legal || 499 IsLegalizingCallArgs || Op.getOpcode() == ISD::TargetConstant) && 500 "Illegal type introduced after type legalization?"); 501 switch (getTypeAction(VT)) { 502 default: assert(0 && "Bad type action!"); 503 case Legal: (void)LegalizeOp(Op); break; 504 case Promote: 505 if (!VT.isVector()) { 506 (void)PromoteOp(Op); 507 break; 508 } 509 else { 510 // See if we can widen otherwise use Expand to either scalarize or split 511 MVT WidenVT = TLI.getWidenVectorType(VT); 512 if (WidenVT != MVT::Other) { 513 (void) WidenVectorOp(Op, WidenVT); 514 break; 515 } 516 // else fall thru to expand since we can't widen the vector 517 } 518 case Expand: 519 if (!VT.isVector()) { 520 // If this is an illegal scalar, expand it into its two component 521 // pieces. 522 SDValue X, Y; 523 if (Op.getOpcode() == ISD::TargetConstant) 524 break; // Allow illegal target nodes. 525 ExpandOp(Op, X, Y); 526 } else if (VT.getVectorNumElements() == 1) { 527 // If this is an illegal single element vector, convert it to a 528 // scalar operation. 529 (void)ScalarizeVectorOp(Op); 530 } else { 531 // This is an illegal multiple element vector. 532 // Split it in half and legalize both parts. 533 SDValue X, Y; 534 SplitVectorOp(Op, X, Y); 535 } 536 break; 537 } 538} 539 540/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or 541/// a load from the constant pool. 542static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP, 543 SelectionDAG &DAG, const TargetLowering &TLI) { 544 bool Extend = false; 545 DebugLoc dl = CFP->getDebugLoc(); 546 547 // If a FP immediate is precise when represented as a float and if the 548 // target can do an extending load from float to double, we put it into 549 // the constant pool as a float, even if it's is statically typed as a 550 // double. This shrinks FP constants and canonicalizes them for targets where 551 // an FP extending load is the same cost as a normal load (such as on the x87 552 // fp stack or PPC FP unit). 553 MVT VT = CFP->getValueType(0); 554 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 555 if (!UseCP) { 556 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 557 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), 558 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 559 } 560 561 MVT OrigVT = VT; 562 MVT SVT = VT; 563 while (SVT != MVT::f32) { 564 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT() - 1); 565 if (CFP->isValueValidForType(SVT, CFP->getValueAPF()) && 566 // Only do this if the target has a native EXTLOAD instruction from 567 // smaller type. 568 TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) && 569 TLI.ShouldShrinkFPConstant(OrigVT)) { 570 const Type *SType = SVT.getTypeForMVT(); 571 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 572 VT = SVT; 573 Extend = true; 574 } 575 } 576 577 SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy()); 578 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 579 if (Extend) 580 return DAG.getExtLoad(ISD::EXTLOAD, dl, 581 OrigVT, DAG.getEntryNode(), 582 CPIdx, PseudoSourceValue::getConstantPool(), 583 0, VT, false, Alignment); 584 return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx, 585 PseudoSourceValue::getConstantPool(), 0, false, Alignment); 586} 587 588 589/// ExpandFCOPYSIGNToBitwiseOps - Expands fcopysign to a series of bitwise 590/// operations. 591static 592SDValue ExpandFCOPYSIGNToBitwiseOps(SDNode *Node, MVT NVT, 593 SelectionDAG &DAG, 594 const TargetLowering &TLI) { 595 DebugLoc dl = Node->getDebugLoc(); 596 MVT VT = Node->getValueType(0); 597 MVT SrcVT = Node->getOperand(1).getValueType(); 598 assert((SrcVT == MVT::f32 || SrcVT == MVT::f64) && 599 "fcopysign expansion only supported for f32 and f64"); 600 MVT SrcNVT = (SrcVT == MVT::f64) ? MVT::i64 : MVT::i32; 601 602 // First get the sign bit of second operand. 603 SDValue Mask1 = (SrcVT == MVT::f64) 604 ? DAG.getConstantFP(BitsToDouble(1ULL << 63), SrcVT) 605 : DAG.getConstantFP(BitsToFloat(1U << 31), SrcVT); 606 Mask1 = DAG.getNode(ISD::BIT_CONVERT, dl, SrcNVT, Mask1); 607 SDValue SignBit= DAG.getNode(ISD::BIT_CONVERT, dl, SrcNVT, 608 Node->getOperand(1)); 609 SignBit = DAG.getNode(ISD::AND, dl, SrcNVT, SignBit, Mask1); 610 // Shift right or sign-extend it if the two operands have different types. 611 int SizeDiff = SrcNVT.getSizeInBits() - NVT.getSizeInBits(); 612 if (SizeDiff > 0) { 613 SignBit = DAG.getNode(ISD::SRL, dl, SrcNVT, SignBit, 614 DAG.getConstant(SizeDiff, TLI.getShiftAmountTy())); 615 SignBit = DAG.getNode(ISD::TRUNCATE, dl, NVT, SignBit); 616 } else if (SizeDiff < 0) { 617 SignBit = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, SignBit); 618 SignBit = DAG.getNode(ISD::SHL, dl, NVT, SignBit, 619 DAG.getConstant(-SizeDiff, TLI.getShiftAmountTy())); 620 } 621 622 // Clear the sign bit of first operand. 623 SDValue Mask2 = (VT == MVT::f64) 624 ? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT) 625 : DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT); 626 Mask2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Mask2); 627 SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0)); 628 Result = DAG.getNode(ISD::AND, dl, NVT, Result, Mask2); 629 630 // Or the value with the sign bit. 631 Result = DAG.getNode(ISD::OR, dl, NVT, Result, SignBit); 632 return Result; 633} 634 635/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores. 636static 637SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG, 638 const TargetLowering &TLI) { 639 SDValue Chain = ST->getChain(); 640 SDValue Ptr = ST->getBasePtr(); 641 SDValue Val = ST->getValue(); 642 MVT VT = Val.getValueType(); 643 int Alignment = ST->getAlignment(); 644 int SVOffset = ST->getSrcValueOffset(); 645 DebugLoc dl = ST->getDebugLoc(); 646 if (ST->getMemoryVT().isFloatingPoint() || 647 ST->getMemoryVT().isVector()) { 648 MVT intVT = MVT::getIntegerVT(VT.getSizeInBits()); 649 if (TLI.isTypeLegal(intVT)) { 650 // Expand to a bitconvert of the value to the integer type of the 651 // same size, then a (misaligned) int store. 652 // FIXME: Does not handle truncating floating point stores! 653 SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val); 654 return DAG.getStore(Chain, dl, Result, Ptr, ST->getSrcValue(), 655 SVOffset, ST->isVolatile(), Alignment); 656 } else { 657 // Do a (aligned) store to a stack slot, then copy from the stack slot 658 // to the final destination using (unaligned) integer loads and stores. 659 MVT StoredVT = ST->getMemoryVT(); 660 MVT RegVT = 661 TLI.getRegisterType(MVT::getIntegerVT(StoredVT.getSizeInBits())); 662 unsigned StoredBytes = StoredVT.getSizeInBits() / 8; 663 unsigned RegBytes = RegVT.getSizeInBits() / 8; 664 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 665 666 // Make sure the stack slot is also aligned for the register type. 667 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); 668 669 // Perform the original store, only redirected to the stack slot. 670 SDValue Store = DAG.getTruncStore(Chain, dl, 671 Val, StackPtr, NULL, 0, StoredVT); 672 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy()); 673 SmallVector<SDValue, 8> Stores; 674 unsigned Offset = 0; 675 676 // Do all but one copies using the full register width. 677 for (unsigned i = 1; i < NumRegs; i++) { 678 // Load one integer register's worth from the stack slot. 679 SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, NULL, 0); 680 // Store it to the final location. Remember the store. 681 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 682 ST->getSrcValue(), SVOffset + Offset, 683 ST->isVolatile(), 684 MinAlign(ST->getAlignment(), Offset))); 685 // Increment the pointers. 686 Offset += RegBytes; 687 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, 688 Increment); 689 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 690 } 691 692 // The last store may be partial. Do a truncating store. On big-endian 693 // machines this requires an extending load from the stack slot to ensure 694 // that the bits are in the right place. 695 MVT MemVT = MVT::getIntegerVT(8 * (StoredBytes - Offset)); 696 697 // Load from the stack slot. 698 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 699 NULL, 0, MemVT); 700 701 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 702 ST->getSrcValue(), SVOffset + Offset, 703 MemVT, ST->isVolatile(), 704 MinAlign(ST->getAlignment(), Offset))); 705 // The order of the stores doesn't matter - say it with a TokenFactor. 706 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0], 707 Stores.size()); 708 } 709 } 710 assert(ST->getMemoryVT().isInteger() && 711 !ST->getMemoryVT().isVector() && 712 "Unaligned store of unknown type."); 713 // Get the half-size VT 714 MVT NewStoredVT = 715 (MVT::SimpleValueType)(ST->getMemoryVT().getSimpleVT() - 1); 716 int NumBits = NewStoredVT.getSizeInBits(); 717 int IncrementSize = NumBits / 8; 718 719 // Divide the stored value in two parts. 720 SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy()); 721 SDValue Lo = Val; 722 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 723 724 // Store the two parts 725 SDValue Store1, Store2; 726 Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr, 727 ST->getSrcValue(), SVOffset, NewStoredVT, 728 ST->isVolatile(), Alignment); 729 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 730 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 731 Alignment = MinAlign(Alignment, IncrementSize); 732 Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr, 733 ST->getSrcValue(), SVOffset + IncrementSize, 734 NewStoredVT, ST->isVolatile(), Alignment); 735 736 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 737} 738 739/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads. 740static 741SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG, 742 const TargetLowering &TLI) { 743 int SVOffset = LD->getSrcValueOffset(); 744 SDValue Chain = LD->getChain(); 745 SDValue Ptr = LD->getBasePtr(); 746 MVT VT = LD->getValueType(0); 747 MVT LoadedVT = LD->getMemoryVT(); 748 DebugLoc dl = LD->getDebugLoc(); 749 if (VT.isFloatingPoint() || VT.isVector()) { 750 MVT intVT = MVT::getIntegerVT(LoadedVT.getSizeInBits()); 751 if (TLI.isTypeLegal(intVT)) { 752 // Expand to a (misaligned) integer load of the same size, 753 // then bitconvert to floating point or vector. 754 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getSrcValue(), 755 SVOffset, LD->isVolatile(), 756 LD->getAlignment()); 757 SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad); 758 if (VT.isFloatingPoint() && LoadedVT != VT) 759 Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result); 760 761 SDValue Ops[] = { Result, Chain }; 762 return DAG.getMergeValues(Ops, 2, dl); 763 } else { 764 // Copy the value to a (aligned) stack slot using (unaligned) integer 765 // loads and stores, then do a (aligned) load from the stack slot. 766 MVT RegVT = TLI.getRegisterType(intVT); 767 unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8; 768 unsigned RegBytes = RegVT.getSizeInBits() / 8; 769 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 770 771 // Make sure the stack slot is also aligned for the register type. 772 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 773 774 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy()); 775 SmallVector<SDValue, 8> Stores; 776 SDValue StackPtr = StackBase; 777 unsigned Offset = 0; 778 779 // Do all but one copies using the full register width. 780 for (unsigned i = 1; i < NumRegs; i++) { 781 // Load one integer register's worth from the original location. 782 SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, LD->getSrcValue(), 783 SVOffset + Offset, LD->isVolatile(), 784 MinAlign(LD->getAlignment(), Offset)); 785 // Follow the load with a store to the stack slot. Remember the store. 786 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr, 787 NULL, 0)); 788 // Increment the pointers. 789 Offset += RegBytes; 790 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 791 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, 792 Increment); 793 } 794 795 // The last copy may be partial. Do an extending load. 796 MVT MemVT = MVT::getIntegerVT(8 * (LoadedBytes - Offset)); 797 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 798 LD->getSrcValue(), SVOffset + Offset, 799 MemVT, LD->isVolatile(), 800 MinAlign(LD->getAlignment(), Offset)); 801 // Follow the load with a store to the stack slot. Remember the store. 802 // On big-endian machines this requires a truncating store to ensure 803 // that the bits end up in the right place. 804 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr, 805 NULL, 0, MemVT)); 806 807 // The order of the stores doesn't matter - say it with a TokenFactor. 808 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0], 809 Stores.size()); 810 811 // Finally, perform the original load only redirected to the stack slot. 812 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 813 NULL, 0, LoadedVT); 814 815 // Callers expect a MERGE_VALUES node. 816 SDValue Ops[] = { Load, TF }; 817 return DAG.getMergeValues(Ops, 2, dl); 818 } 819 } 820 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 821 "Unaligned load of unsupported type."); 822 823 // Compute the new VT that is half the size of the old one. This is an 824 // integer MVT. 825 unsigned NumBits = LoadedVT.getSizeInBits(); 826 MVT NewLoadedVT; 827 NewLoadedVT = MVT::getIntegerVT(NumBits/2); 828 NumBits >>= 1; 829 830 unsigned Alignment = LD->getAlignment(); 831 unsigned IncrementSize = NumBits / 8; 832 ISD::LoadExtType HiExtType = LD->getExtensionType(); 833 834 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 835 if (HiExtType == ISD::NON_EXTLOAD) 836 HiExtType = ISD::ZEXTLOAD; 837 838 // Load the value in two parts 839 SDValue Lo, Hi; 840 if (TLI.isLittleEndian()) { 841 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(), 842 SVOffset, NewLoadedVT, LD->isVolatile(), Alignment); 843 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 844 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 845 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(), 846 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(), 847 MinAlign(Alignment, IncrementSize)); 848 } else { 849 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(), 850 SVOffset, NewLoadedVT, LD->isVolatile(), Alignment); 851 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 852 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 853 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(), 854 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(), 855 MinAlign(Alignment, IncrementSize)); 856 } 857 858 // aggregate the two parts 859 SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy()); 860 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 861 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 862 863 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 864 Hi.getValue(1)); 865 866 SDValue Ops[] = { Result, TF }; 867 return DAG.getMergeValues(Ops, 2, dl); 868} 869 870/// UnrollVectorOp - We know that the given vector has a legal type, however 871/// the operation it performs is not legal and is an operation that we have 872/// no way of lowering. "Unroll" the vector, splitting out the scalars and 873/// operating on each element individually. 874SDValue SelectionDAGLegalize::UnrollVectorOp(SDValue Op) { 875 MVT VT = Op.getValueType(); 876 assert(isTypeLegal(VT) && 877 "Caller should expand or promote operands that are not legal!"); 878 assert(Op.getNode()->getNumValues() == 1 && 879 "Can't unroll a vector with multiple results!"); 880 unsigned NE = VT.getVectorNumElements(); 881 MVT EltVT = VT.getVectorElementType(); 882 DebugLoc dl = Op.getDebugLoc(); 883 884 SmallVector<SDValue, 8> Scalars; 885 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 886 for (unsigned i = 0; i != NE; ++i) { 887 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 888 SDValue Operand = Op.getOperand(j); 889 MVT OperandVT = Operand.getValueType(); 890 if (OperandVT.isVector()) { 891 // A vector operand; extract a single element. 892 MVT OperandEltVT = OperandVT.getVectorElementType(); 893 Operands[j] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 894 OperandEltVT, 895 Operand, 896 DAG.getConstant(i, MVT::i32)); 897 } else { 898 // A scalar operand; just use it as is. 899 Operands[j] = Operand; 900 } 901 } 902 903 switch (Op.getOpcode()) { 904 default: 905 Scalars.push_back(DAG.getNode(Op.getOpcode(), dl, EltVT, 906 &Operands[0], Operands.size())); 907 break; 908 case ISD::SHL: 909 case ISD::SRA: 910 case ISD::SRL: 911 case ISD::ROTL: 912 case ISD::ROTR: 913 Scalars.push_back(DAG.getNode(Op.getOpcode(), dl, EltVT, Operands[0], 914 DAG.getShiftAmountOperand(Operands[1]))); 915 break; 916 } 917 } 918 919 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Scalars[0], Scalars.size()); 920} 921 922/// GetFPLibCall - Return the right libcall for the given floating point type. 923static RTLIB::Libcall GetFPLibCall(MVT VT, 924 RTLIB::Libcall Call_F32, 925 RTLIB::Libcall Call_F64, 926 RTLIB::Libcall Call_F80, 927 RTLIB::Libcall Call_PPCF128) { 928 return 929 VT == MVT::f32 ? Call_F32 : 930 VT == MVT::f64 ? Call_F64 : 931 VT == MVT::f80 ? Call_F80 : 932 VT == MVT::ppcf128 ? Call_PPCF128 : 933 RTLIB::UNKNOWN_LIBCALL; 934} 935 936/// PerformInsertVectorEltInMemory - Some target cannot handle a variable 937/// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 938/// is necessary to spill the vector being inserted into to memory, perform 939/// the insert there, and then read the result back. 940SDValue SelectionDAGLegalize:: 941PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 942 DebugLoc dl) { 943 SDValue Tmp1 = Vec; 944 SDValue Tmp2 = Val; 945 SDValue Tmp3 = Idx; 946 947 // If the target doesn't support this, we have to spill the input vector 948 // to a temporary stack slot, update the element, then reload it. This is 949 // badness. We could also load the value into a vector register (either 950 // with a "move to register" or "extload into register" instruction, then 951 // permute it into place, if the idx is a constant and if the idx is 952 // supported by the target. 953 MVT VT = Tmp1.getValueType(); 954 MVT EltVT = VT.getVectorElementType(); 955 MVT IdxVT = Tmp3.getValueType(); 956 MVT PtrVT = TLI.getPointerTy(); 957 SDValue StackPtr = DAG.CreateStackTemporary(VT); 958 959 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 960 961 // Store the vector. 962 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr, 963 PseudoSourceValue::getFixedStack(SPFI), 0); 964 965 // Truncate or zero extend offset to target pointer type. 966 unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND; 967 Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3); 968 // Add the offset to the index. 969 unsigned EltSize = EltVT.getSizeInBits()/8; 970 Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT)); 971 SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr); 972 // Store the scalar value. 973 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, 974 PseudoSourceValue::getFixedStack(SPFI), 0, EltVT); 975 // Load the updated vector. 976 return DAG.getLoad(VT, dl, Ch, StackPtr, 977 PseudoSourceValue::getFixedStack(SPFI), 0); 978} 979 980 981/// LegalizeOp - We know that the specified value has a legal type, and 982/// that its operands are legal. Now ensure that the operation itself 983/// is legal, recursively ensuring that the operands' operations remain 984/// legal. 985SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) { 986 if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes. 987 return Op; 988 989 assert(isTypeLegal(Op.getValueType()) && 990 "Caller should expand or promote operands that are not legal!"); 991 SDNode *Node = Op.getNode(); 992 DebugLoc dl = Node->getDebugLoc(); 993 994 // If this operation defines any values that cannot be represented in a 995 // register on this target, make sure to expand or promote them. 996 if (Node->getNumValues() > 1) { 997 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 998 if (getTypeAction(Node->getValueType(i)) != Legal) { 999 HandleOp(Op.getValue(i)); 1000 assert(LegalizedNodes.count(Op) && 1001 "Handling didn't add legal operands!"); 1002 return LegalizedNodes[Op]; 1003 } 1004 } 1005 1006 // Note that LegalizeOp may be reentered even from single-use nodes, which 1007 // means that we always must cache transformed nodes. 1008 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 1009 if (I != LegalizedNodes.end()) return I->second; 1010 1011 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 1012 SDValue Result = Op; 1013 bool isCustom = false; 1014 1015 switch (Node->getOpcode()) { 1016 case ISD::FrameIndex: 1017 case ISD::EntryToken: 1018 case ISD::Register: 1019 case ISD::BasicBlock: 1020 case ISD::TargetFrameIndex: 1021 case ISD::TargetJumpTable: 1022 case ISD::TargetConstant: 1023 case ISD::TargetConstantFP: 1024 case ISD::TargetConstantPool: 1025 case ISD::TargetGlobalAddress: 1026 case ISD::TargetGlobalTLSAddress: 1027 case ISD::TargetExternalSymbol: 1028 case ISD::VALUETYPE: 1029 case ISD::SRCVALUE: 1030 case ISD::MEMOPERAND: 1031 case ISD::CONDCODE: 1032 case ISD::ARG_FLAGS: 1033 // Primitives must all be legal. 1034 assert(TLI.isOperationLegal(Node->getOpcode(), Node->getValueType(0)) && 1035 "This must be legal!"); 1036 break; 1037 default: 1038 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 1039 // If this is a target node, legalize it by legalizing the operands then 1040 // passing it through. 1041 SmallVector<SDValue, 8> Ops; 1042 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 1043 Ops.push_back(LegalizeOp(Node->getOperand(i))); 1044 1045 Result = DAG.UpdateNodeOperands(Result.getValue(0), Ops.data(), Ops.size()); 1046 1047 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 1048 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 1049 return Result.getValue(Op.getResNo()); 1050 } 1051 // Otherwise this is an unhandled builtin node. splat. 1052#ifndef NDEBUG 1053 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 1054#endif 1055 assert(0 && "Do not know how to legalize this operator!"); 1056 abort(); 1057 case ISD::GLOBAL_OFFSET_TABLE: 1058 case ISD::GlobalAddress: 1059 case ISD::GlobalTLSAddress: 1060 case ISD::ExternalSymbol: 1061 case ISD::ConstantPool: 1062 case ISD::JumpTable: // Nothing to do. 1063 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 1064 default: assert(0 && "This action is not supported yet!"); 1065 case TargetLowering::Custom: 1066 Tmp1 = TLI.LowerOperation(Op, DAG); 1067 if (Tmp1.getNode()) Result = Tmp1; 1068 // FALLTHROUGH if the target doesn't want to lower this op after all. 1069 case TargetLowering::Legal: 1070 break; 1071 } 1072 break; 1073 case ISD::FRAMEADDR: 1074 case ISD::RETURNADDR: 1075 // The only option for these nodes is to custom lower them. If the target 1076 // does not custom lower them, then return zero. 1077 Tmp1 = TLI.LowerOperation(Op, DAG); 1078 if (Tmp1.getNode()) 1079 Result = Tmp1; 1080 else 1081 Result = DAG.getConstant(0, TLI.getPointerTy()); 1082 break; 1083 case ISD::FRAME_TO_ARGS_OFFSET: { 1084 MVT VT = Node->getValueType(0); 1085 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1086 default: assert(0 && "This action is not supported yet!"); 1087 case TargetLowering::Custom: 1088 Result = TLI.LowerOperation(Op, DAG); 1089 if (Result.getNode()) break; 1090 // Fall Thru 1091 case TargetLowering::Legal: 1092 Result = DAG.getConstant(0, VT); 1093 break; 1094 } 1095 } 1096 break; 1097 case ISD::EXCEPTIONADDR: { 1098 Tmp1 = LegalizeOp(Node->getOperand(0)); 1099 MVT VT = Node->getValueType(0); 1100 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1101 default: assert(0 && "This action is not supported yet!"); 1102 case TargetLowering::Expand: { 1103 unsigned Reg = TLI.getExceptionAddressRegister(); 1104 Result = DAG.getCopyFromReg(Tmp1, dl, Reg, VT); 1105 } 1106 break; 1107 case TargetLowering::Custom: 1108 Result = TLI.LowerOperation(Op, DAG); 1109 if (Result.getNode()) break; 1110 // Fall Thru 1111 case TargetLowering::Legal: { 1112 SDValue Ops[] = { DAG.getConstant(0, VT), Tmp1 }; 1113 Result = DAG.getMergeValues(Ops, 2, dl); 1114 break; 1115 } 1116 } 1117 } 1118 if (Result.getNode()->getNumValues() == 1) break; 1119 1120 assert(Result.getNode()->getNumValues() == 2 && 1121 "Cannot return more than two values!"); 1122 1123 // Since we produced two values, make sure to remember that we 1124 // legalized both of them. 1125 Tmp1 = LegalizeOp(Result); 1126 Tmp2 = LegalizeOp(Result.getValue(1)); 1127 AddLegalizedOperand(Op.getValue(0), Tmp1); 1128 AddLegalizedOperand(Op.getValue(1), Tmp2); 1129 return Op.getResNo() ? Tmp2 : Tmp1; 1130 case ISD::EHSELECTION: { 1131 Tmp1 = LegalizeOp(Node->getOperand(0)); 1132 Tmp2 = LegalizeOp(Node->getOperand(1)); 1133 MVT VT = Node->getValueType(0); 1134 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1135 default: assert(0 && "This action is not supported yet!"); 1136 case TargetLowering::Expand: { 1137 unsigned Reg = TLI.getExceptionSelectorRegister(); 1138 Result = DAG.getCopyFromReg(Tmp2, dl, Reg, VT); 1139 } 1140 break; 1141 case TargetLowering::Custom: 1142 Result = TLI.LowerOperation(Op, DAG); 1143 if (Result.getNode()) break; 1144 // Fall Thru 1145 case TargetLowering::Legal: { 1146 SDValue Ops[] = { DAG.getConstant(0, VT), Tmp2 }; 1147 Result = DAG.getMergeValues(Ops, 2, dl); 1148 break; 1149 } 1150 } 1151 } 1152 if (Result.getNode()->getNumValues() == 1) break; 1153 1154 assert(Result.getNode()->getNumValues() == 2 && 1155 "Cannot return more than two values!"); 1156 1157 // Since we produced two values, make sure to remember that we 1158 // legalized both of them. 1159 Tmp1 = LegalizeOp(Result); 1160 Tmp2 = LegalizeOp(Result.getValue(1)); 1161 AddLegalizedOperand(Op.getValue(0), Tmp1); 1162 AddLegalizedOperand(Op.getValue(1), Tmp2); 1163 return Op.getResNo() ? Tmp2 : Tmp1; 1164 case ISD::EH_RETURN: { 1165 MVT VT = Node->getValueType(0); 1166 // The only "good" option for this node is to custom lower it. 1167 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1168 default: assert(0 && "This action is not supported at all!"); 1169 case TargetLowering::Custom: 1170 Result = TLI.LowerOperation(Op, DAG); 1171 if (Result.getNode()) break; 1172 // Fall Thru 1173 case TargetLowering::Legal: 1174 // Target does not know, how to lower this, lower to noop 1175 Result = LegalizeOp(Node->getOperand(0)); 1176 break; 1177 } 1178 } 1179 break; 1180 case ISD::AssertSext: 1181 case ISD::AssertZext: 1182 Tmp1 = LegalizeOp(Node->getOperand(0)); 1183 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 1184 break; 1185 case ISD::MERGE_VALUES: 1186 // Legalize eliminates MERGE_VALUES nodes. 1187 Result = Node->getOperand(Op.getResNo()); 1188 break; 1189 case ISD::CopyFromReg: 1190 Tmp1 = LegalizeOp(Node->getOperand(0)); 1191 Result = Op.getValue(0); 1192 if (Node->getNumValues() == 2) { 1193 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 1194 } else { 1195 assert(Node->getNumValues() == 3 && "Invalid copyfromreg!"); 1196 if (Node->getNumOperands() == 3) { 1197 Tmp2 = LegalizeOp(Node->getOperand(2)); 1198 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2); 1199 } else { 1200 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 1201 } 1202 AddLegalizedOperand(Op.getValue(2), Result.getValue(2)); 1203 } 1204 // Since CopyFromReg produces two values, make sure to remember that we 1205 // legalized both of them. 1206 AddLegalizedOperand(Op.getValue(0), Result); 1207 AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); 1208 return Result.getValue(Op.getResNo()); 1209 case ISD::UNDEF: { 1210 MVT VT = Op.getValueType(); 1211 switch (TLI.getOperationAction(ISD::UNDEF, VT)) { 1212 default: assert(0 && "This action is not supported yet!"); 1213 case TargetLowering::Expand: 1214 if (VT.isInteger()) 1215 Result = DAG.getConstant(0, VT); 1216 else if (VT.isFloatingPoint()) 1217 Result = DAG.getConstantFP(APFloat(APInt(VT.getSizeInBits(), 0)), 1218 VT); 1219 else 1220 assert(0 && "Unknown value type!"); 1221 break; 1222 case TargetLowering::Legal: 1223 break; 1224 } 1225 break; 1226 } 1227 1228 case ISD::INTRINSIC_W_CHAIN: 1229 case ISD::INTRINSIC_WO_CHAIN: 1230 case ISD::INTRINSIC_VOID: { 1231 SmallVector<SDValue, 8> Ops; 1232 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 1233 Ops.push_back(LegalizeOp(Node->getOperand(i))); 1234 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1235 1236 // Allow the target to custom lower its intrinsics if it wants to. 1237 if (TLI.getOperationAction(Node->getOpcode(), MVT::Other) == 1238 TargetLowering::Custom) { 1239 Tmp3 = TLI.LowerOperation(Result, DAG); 1240 if (Tmp3.getNode()) Result = Tmp3; 1241 } 1242 1243 if (Result.getNode()->getNumValues() == 1) break; 1244 1245 // Must have return value and chain result. 1246 assert(Result.getNode()->getNumValues() == 2 && 1247 "Cannot return more than two values!"); 1248 1249 // Since loads produce two values, make sure to remember that we 1250 // legalized both of them. 1251 AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); 1252 AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); 1253 return Result.getValue(Op.getResNo()); 1254 } 1255 1256 case ISD::DBG_STOPPOINT: 1257 assert(Node->getNumOperands() == 1 && "Invalid DBG_STOPPOINT node!"); 1258 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the input chain. 1259 1260 switch (TLI.getOperationAction(ISD::DBG_STOPPOINT, MVT::Other)) { 1261 case TargetLowering::Promote: 1262 default: assert(0 && "This action is not supported yet!"); 1263 case TargetLowering::Expand: { 1264 DwarfWriter *DW = DAG.getDwarfWriter(); 1265 bool useDEBUG_LOC = TLI.isOperationLegalOrCustom(ISD::DEBUG_LOC, 1266 MVT::Other); 1267 bool useLABEL = TLI.isOperationLegalOrCustom(ISD::DBG_LABEL, MVT::Other); 1268 1269 const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(Node); 1270 GlobalVariable *CU_GV = cast<GlobalVariable>(DSP->getCompileUnit()); 1271 if (DW && (useDEBUG_LOC || useLABEL) && !CU_GV->isDeclaration()) { 1272 DICompileUnit CU(cast<GlobalVariable>(DSP->getCompileUnit())); 1273 1274 unsigned Line = DSP->getLine(); 1275 unsigned Col = DSP->getColumn(); 1276 1277 if (OptLevel == CodeGenOpt::None) { 1278 // A bit self-referential to have DebugLoc on Debug_Loc nodes, but it 1279 // won't hurt anything. 1280 if (useDEBUG_LOC) { 1281 SDValue Ops[] = { Tmp1, DAG.getConstant(Line, MVT::i32), 1282 DAG.getConstant(Col, MVT::i32), 1283 DAG.getSrcValue(CU.getGV()) }; 1284 Result = DAG.getNode(ISD::DEBUG_LOC, dl, MVT::Other, Ops, 4); 1285 } else { 1286 unsigned ID = DW->RecordSourceLine(Line, Col, CU); 1287 Result = DAG.getLabel(ISD::DBG_LABEL, dl, Tmp1, ID); 1288 } 1289 } else { 1290 Result = Tmp1; // chain 1291 } 1292 } else { 1293 Result = Tmp1; // chain 1294 } 1295 break; 1296 } 1297 case TargetLowering::Custom: 1298 Result = TLI.LowerOperation(Op, DAG); 1299 if (Result.getNode()) 1300 break; 1301 case TargetLowering::Legal: { 1302 LegalizeAction Action = getTypeAction(Node->getOperand(1).getValueType()); 1303 if (Action == Legal && Tmp1 == Node->getOperand(0)) 1304 break; 1305 1306 SmallVector<SDValue, 8> Ops; 1307 Ops.push_back(Tmp1); 1308 if (Action == Legal) { 1309 Ops.push_back(Node->getOperand(1)); // line # must be legal. 1310 Ops.push_back(Node->getOperand(2)); // col # must be legal. 1311 } else { 1312 // Otherwise promote them. 1313 Ops.push_back(PromoteOp(Node->getOperand(1))); 1314 Ops.push_back(PromoteOp(Node->getOperand(2))); 1315 } 1316 Ops.push_back(Node->getOperand(3)); // filename must be legal. 1317 Ops.push_back(Node->getOperand(4)); // working dir # must be legal. 1318 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1319 break; 1320 } 1321 } 1322 break; 1323 1324 case ISD::DECLARE: 1325 assert(Node->getNumOperands() == 3 && "Invalid DECLARE node!"); 1326 switch (TLI.getOperationAction(ISD::DECLARE, MVT::Other)) { 1327 default: assert(0 && "This action is not supported yet!"); 1328 case TargetLowering::Legal: 1329 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1330 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the address. 1331 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the variable. 1332 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1333 break; 1334 case TargetLowering::Expand: 1335 Result = LegalizeOp(Node->getOperand(0)); 1336 break; 1337 } 1338 break; 1339 1340 case ISD::DEBUG_LOC: 1341 assert(Node->getNumOperands() == 4 && "Invalid DEBUG_LOC node!"); 1342 switch (TLI.getOperationAction(ISD::DEBUG_LOC, MVT::Other)) { 1343 default: assert(0 && "This action is not supported yet!"); 1344 case TargetLowering::Legal: { 1345 LegalizeAction Action = getTypeAction(Node->getOperand(1).getValueType()); 1346 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1347 if (Action == Legal && Tmp1 == Node->getOperand(0)) 1348 break; 1349 if (Action == Legal) { 1350 Tmp2 = Node->getOperand(1); 1351 Tmp3 = Node->getOperand(2); 1352 Tmp4 = Node->getOperand(3); 1353 } else { 1354 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the line #. 1355 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the col #. 1356 Tmp4 = LegalizeOp(Node->getOperand(3)); // Legalize the source file id. 1357 } 1358 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4); 1359 break; 1360 } 1361 } 1362 break; 1363 1364 case ISD::DBG_LABEL: 1365 case ISD::EH_LABEL: 1366 assert(Node->getNumOperands() == 1 && "Invalid LABEL node!"); 1367 switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) { 1368 default: assert(0 && "This action is not supported yet!"); 1369 case TargetLowering::Legal: 1370 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1371 Result = DAG.UpdateNodeOperands(Result, Tmp1); 1372 break; 1373 case TargetLowering::Expand: 1374 Result = LegalizeOp(Node->getOperand(0)); 1375 break; 1376 } 1377 break; 1378 1379 case ISD::PREFETCH: 1380 assert(Node->getNumOperands() == 4 && "Invalid Prefetch node!"); 1381 switch (TLI.getOperationAction(ISD::PREFETCH, MVT::Other)) { 1382 default: assert(0 && "This action is not supported yet!"); 1383 case TargetLowering::Legal: 1384 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1385 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the address. 1386 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the rw specifier. 1387 Tmp4 = LegalizeOp(Node->getOperand(3)); // Legalize locality specifier. 1388 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4); 1389 break; 1390 case TargetLowering::Expand: 1391 // It's a noop. 1392 Result = LegalizeOp(Node->getOperand(0)); 1393 break; 1394 } 1395 break; 1396 1397 case ISD::MEMBARRIER: { 1398 assert(Node->getNumOperands() == 6 && "Invalid MemBarrier node!"); 1399 switch (TLI.getOperationAction(ISD::MEMBARRIER, MVT::Other)) { 1400 default: assert(0 && "This action is not supported yet!"); 1401 case TargetLowering::Legal: { 1402 SDValue Ops[6]; 1403 Ops[0] = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1404 for (int x = 1; x < 6; ++x) { 1405 Ops[x] = Node->getOperand(x); 1406 if (!isTypeLegal(Ops[x].getValueType())) 1407 Ops[x] = PromoteOp(Ops[x]); 1408 } 1409 Result = DAG.UpdateNodeOperands(Result, &Ops[0], 6); 1410 break; 1411 } 1412 case TargetLowering::Expand: 1413 //There is no libgcc call for this op 1414 Result = Node->getOperand(0); // Noop 1415 break; 1416 } 1417 break; 1418 } 1419 1420 case ISD::ATOMIC_CMP_SWAP: { 1421 unsigned int num_operands = 4; 1422 assert(Node->getNumOperands() == num_operands && "Invalid Atomic node!"); 1423 SDValue Ops[4]; 1424 for (unsigned int x = 0; x < num_operands; ++x) 1425 Ops[x] = LegalizeOp(Node->getOperand(x)); 1426 Result = DAG.UpdateNodeOperands(Result, &Ops[0], num_operands); 1427 1428 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 1429 default: assert(0 && "This action is not supported yet!"); 1430 case TargetLowering::Custom: 1431 Result = TLI.LowerOperation(Result, DAG); 1432 break; 1433 case TargetLowering::Legal: 1434 break; 1435 } 1436 AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); 1437 AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); 1438 return Result.getValue(Op.getResNo()); 1439 } 1440 case ISD::ATOMIC_LOAD_ADD: 1441 case ISD::ATOMIC_LOAD_SUB: 1442 case ISD::ATOMIC_LOAD_AND: 1443 case ISD::ATOMIC_LOAD_OR: 1444 case ISD::ATOMIC_LOAD_XOR: 1445 case ISD::ATOMIC_LOAD_NAND: 1446 case ISD::ATOMIC_LOAD_MIN: 1447 case ISD::ATOMIC_LOAD_MAX: 1448 case ISD::ATOMIC_LOAD_UMIN: 1449 case ISD::ATOMIC_LOAD_UMAX: 1450 case ISD::ATOMIC_SWAP: { 1451 unsigned int num_operands = 3; 1452 assert(Node->getNumOperands() == num_operands && "Invalid Atomic node!"); 1453 SDValue Ops[3]; 1454 for (unsigned int x = 0; x < num_operands; ++x) 1455 Ops[x] = LegalizeOp(Node->getOperand(x)); 1456 Result = DAG.UpdateNodeOperands(Result, &Ops[0], num_operands); 1457 1458 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 1459 default: assert(0 && "This action is not supported yet!"); 1460 case TargetLowering::Custom: 1461 Result = TLI.LowerOperation(Result, DAG); 1462 break; 1463 case TargetLowering::Legal: 1464 break; 1465 } 1466 AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); 1467 AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); 1468 return Result.getValue(Op.getResNo()); 1469 } 1470 case ISD::Constant: { 1471 ConstantSDNode *CN = cast<ConstantSDNode>(Node); 1472 unsigned opAction = 1473 TLI.getOperationAction(ISD::Constant, CN->getValueType(0)); 1474 1475 // We know we don't need to expand constants here, constants only have one 1476 // value and we check that it is fine above. 1477 1478 if (opAction == TargetLowering::Custom) { 1479 Tmp1 = TLI.LowerOperation(Result, DAG); 1480 if (Tmp1.getNode()) 1481 Result = Tmp1; 1482 } 1483 break; 1484 } 1485 case ISD::ConstantFP: { 1486 // Spill FP immediates to the constant pool if the target cannot directly 1487 // codegen them. Targets often have some immediate values that can be 1488 // efficiently generated into an FP register without a load. We explicitly 1489 // leave these constants as ConstantFP nodes for the target to deal with. 1490 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 1491 1492 switch (TLI.getOperationAction(ISD::ConstantFP, CFP->getValueType(0))) { 1493 default: assert(0 && "This action is not supported yet!"); 1494 case TargetLowering::Legal: 1495 break; 1496 case TargetLowering::Custom: 1497 Tmp3 = TLI.LowerOperation(Result, DAG); 1498 if (Tmp3.getNode()) { 1499 Result = Tmp3; 1500 break; 1501 } 1502 // FALLTHROUGH 1503 case TargetLowering::Expand: { 1504 // Check to see if this FP immediate is already legal. 1505 bool isLegal = false; 1506 for (TargetLowering::legal_fpimm_iterator I = TLI.legal_fpimm_begin(), 1507 E = TLI.legal_fpimm_end(); I != E; ++I) { 1508 if (CFP->isExactlyValue(*I)) { 1509 isLegal = true; 1510 break; 1511 } 1512 } 1513 // If this is a legal constant, turn it into a TargetConstantFP node. 1514 if (isLegal) 1515 break; 1516 Result = ExpandConstantFP(CFP, true, DAG, TLI); 1517 } 1518 } 1519 break; 1520 } 1521 case ISD::TokenFactor: 1522 if (Node->getNumOperands() == 2) { 1523 Tmp1 = LegalizeOp(Node->getOperand(0)); 1524 Tmp2 = LegalizeOp(Node->getOperand(1)); 1525 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1526 } else if (Node->getNumOperands() == 3) { 1527 Tmp1 = LegalizeOp(Node->getOperand(0)); 1528 Tmp2 = LegalizeOp(Node->getOperand(1)); 1529 Tmp3 = LegalizeOp(Node->getOperand(2)); 1530 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1531 } else { 1532 SmallVector<SDValue, 8> Ops; 1533 // Legalize the operands. 1534 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 1535 Ops.push_back(LegalizeOp(Node->getOperand(i))); 1536 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1537 } 1538 break; 1539 1540 case ISD::FORMAL_ARGUMENTS: 1541 case ISD::CALL: 1542 // The only option for this is to custom lower it. 1543 Tmp3 = TLI.LowerOperation(Result.getValue(0), DAG); 1544 assert(Tmp3.getNode() && "Target didn't custom lower this node!"); 1545 // A call within a calling sequence must be legalized to something 1546 // other than the normal CALLSEQ_END. Violating this gets Legalize 1547 // into an infinite loop. 1548 assert ((!IsLegalizingCall || 1549 Node->getOpcode() != ISD::CALL || 1550 Tmp3.getNode()->getOpcode() != ISD::CALLSEQ_END) && 1551 "Nested CALLSEQ_START..CALLSEQ_END not supported."); 1552 1553 // The number of incoming and outgoing values should match; unless the final 1554 // outgoing value is a flag. 1555 assert((Tmp3.getNode()->getNumValues() == Result.getNode()->getNumValues() || 1556 (Tmp3.getNode()->getNumValues() == Result.getNode()->getNumValues() + 1 && 1557 Tmp3.getNode()->getValueType(Tmp3.getNode()->getNumValues() - 1) == 1558 MVT::Flag)) && 1559 "Lowering call/formal_arguments produced unexpected # results!"); 1560 1561 // Since CALL/FORMAL_ARGUMENTS nodes produce multiple values, make sure to 1562 // remember that we legalized all of them, so it doesn't get relegalized. 1563 for (unsigned i = 0, e = Tmp3.getNode()->getNumValues(); i != e; ++i) { 1564 if (Tmp3.getNode()->getValueType(i) == MVT::Flag) 1565 continue; 1566 Tmp1 = LegalizeOp(Tmp3.getValue(i)); 1567 if (Op.getResNo() == i) 1568 Tmp2 = Tmp1; 1569 AddLegalizedOperand(SDValue(Node, i), Tmp1); 1570 } 1571 return Tmp2; 1572 case ISD::BUILD_VECTOR: 1573 switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) { 1574 default: assert(0 && "This action is not supported yet!"); 1575 case TargetLowering::Custom: 1576 Tmp3 = TLI.LowerOperation(Result, DAG); 1577 if (Tmp3.getNode()) { 1578 Result = Tmp3; 1579 break; 1580 } 1581 // FALLTHROUGH 1582 case TargetLowering::Expand: 1583 Result = ExpandBUILD_VECTOR(Result.getNode()); 1584 break; 1585 } 1586 break; 1587 case ISD::INSERT_VECTOR_ELT: 1588 Tmp1 = LegalizeOp(Node->getOperand(0)); // InVec 1589 Tmp3 = LegalizeOp(Node->getOperand(2)); // InEltNo 1590 1591 // The type of the value to insert may not be legal, even though the vector 1592 // type is legal. Legalize/Promote accordingly. We do not handle Expand 1593 // here. 1594 switch (getTypeAction(Node->getOperand(1).getValueType())) { 1595 default: assert(0 && "Cannot expand insert element operand"); 1596 case Legal: Tmp2 = LegalizeOp(Node->getOperand(1)); break; 1597 case Promote: Tmp2 = PromoteOp(Node->getOperand(1)); break; 1598 case Expand: 1599 // FIXME: An alternative would be to check to see if the target is not 1600 // going to custom lower this operation, we could bitcast to half elt 1601 // width and perform two inserts at that width, if that is legal. 1602 Tmp2 = Node->getOperand(1); 1603 break; 1604 } 1605 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1606 1607 switch (TLI.getOperationAction(ISD::INSERT_VECTOR_ELT, 1608 Node->getValueType(0))) { 1609 default: assert(0 && "This action is not supported yet!"); 1610 case TargetLowering::Legal: 1611 break; 1612 case TargetLowering::Custom: 1613 Tmp4 = TLI.LowerOperation(Result, DAG); 1614 if (Tmp4.getNode()) { 1615 Result = Tmp4; 1616 break; 1617 } 1618 // FALLTHROUGH 1619 case TargetLowering::Promote: 1620 // Fall thru for vector case 1621 case TargetLowering::Expand: { 1622 // If the insert index is a constant, codegen this as a scalar_to_vector, 1623 // then a shuffle that inserts it into the right position in the vector. 1624 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Tmp3)) { 1625 // SCALAR_TO_VECTOR requires that the type of the value being inserted 1626 // match the element type of the vector being created, except for 1627 // integers in which case the inserted value can be over width. 1628 MVT EltVT = Op.getValueType().getVectorElementType(); 1629 if (Tmp2.getValueType() == EltVT || 1630 (EltVT.isInteger() && Tmp2.getValueType().bitsGE(EltVT))) { 1631 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 1632 Tmp1.getValueType(), Tmp2); 1633 1634 unsigned NumElts = Tmp1.getValueType().getVectorNumElements(); 1635 // We generate a shuffle of InVec and ScVec, so the shuffle mask 1636 // should be 0,1,2,3,4,5... with the appropriate element replaced with 1637 // elt 0 of the RHS. 1638 SmallVector<int, 8> ShufOps; 1639 for (unsigned i = 0; i != NumElts; ++i) 1640 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 1641 1642 Result = DAG.getVectorShuffle(Tmp1.getValueType(), dl, Tmp1, ScVec, 1643 &ShufOps[0]); 1644 Result = LegalizeOp(Result); 1645 break; 1646 } 1647 } 1648 Result = PerformInsertVectorEltInMemory(Tmp1, Tmp2, Tmp3, dl); 1649 break; 1650 } 1651 } 1652 break; 1653 case ISD::SCALAR_TO_VECTOR: 1654 if (!TLI.isTypeLegal(Node->getOperand(0).getValueType())) { 1655 Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node)); 1656 break; 1657 } 1658 1659 Tmp1 = LegalizeOp(Node->getOperand(0)); // InVal 1660 Result = DAG.UpdateNodeOperands(Result, Tmp1); 1661 switch (TLI.getOperationAction(ISD::SCALAR_TO_VECTOR, 1662 Node->getValueType(0))) { 1663 default: assert(0 && "This action is not supported yet!"); 1664 case TargetLowering::Legal: 1665 break; 1666 case TargetLowering::Custom: 1667 Tmp3 = TLI.LowerOperation(Result, DAG); 1668 if (Tmp3.getNode()) { 1669 Result = Tmp3; 1670 break; 1671 } 1672 // FALLTHROUGH 1673 case TargetLowering::Expand: 1674 Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node)); 1675 break; 1676 } 1677 break; 1678 case ISD::VECTOR_SHUFFLE: { 1679 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the input vectors, 1680 Tmp2 = LegalizeOp(Node->getOperand(1)); // but not the shuffle mask. 1681 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1682 MVT VT = Result.getValueType(); 1683 1684 // Copy the Mask to a local SmallVector for use with isShuffleMaskLegal. 1685 SmallVector<int, 8> Mask; 1686 cast<ShuffleVectorSDNode>(Result)->getMask(Mask); 1687 1688 // Allow targets to custom lower the SHUFFLEs they support. 1689 switch (TLI.getOperationAction(ISD::VECTOR_SHUFFLE, VT)) { 1690 default: assert(0 && "Unknown operation action!"); 1691 case TargetLowering::Legal: 1692 assert(TLI.isShuffleMaskLegal(Mask, VT) && 1693 "vector shuffle should not be created if not legal!"); 1694 break; 1695 case TargetLowering::Custom: 1696 Tmp3 = TLI.LowerOperation(Result, DAG); 1697 if (Tmp3.getNode()) { 1698 Result = Tmp3; 1699 break; 1700 } 1701 // FALLTHROUGH 1702 case TargetLowering::Expand: { 1703 MVT EltVT = VT.getVectorElementType(); 1704 unsigned NumElems = VT.getVectorNumElements(); 1705 SmallVector<SDValue, 8> Ops; 1706 for (unsigned i = 0; i != NumElems; ++i) { 1707 if (Mask[i] < 0) { 1708 Ops.push_back(DAG.getUNDEF(EltVT)); 1709 continue; 1710 } 1711 unsigned Idx = Mask[i]; 1712 if (Idx < NumElems) 1713 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Tmp1, 1714 DAG.getIntPtrConstant(Idx))); 1715 else 1716 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Tmp2, 1717 DAG.getIntPtrConstant(Idx - NumElems))); 1718 } 1719 Result = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size()); 1720 break; 1721 } 1722 case TargetLowering::Promote: { 1723 // Change base type to a different vector type. 1724 MVT OVT = Node->getValueType(0); 1725 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 1726 1727 // Cast the two input vectors. 1728 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Tmp1); 1729 Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Tmp2); 1730 1731 // Convert the shuffle mask to the right # elements. 1732 Result = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 1733 Result = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Result); 1734 break; 1735 } 1736 } 1737 break; 1738 } 1739 case ISD::EXTRACT_VECTOR_ELT: 1740 Tmp1 = Node->getOperand(0); 1741 Tmp2 = LegalizeOp(Node->getOperand(1)); 1742 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1743 Result = ExpandEXTRACT_VECTOR_ELT(Result); 1744 break; 1745 1746 case ISD::EXTRACT_SUBVECTOR: 1747 Tmp1 = Node->getOperand(0); 1748 Tmp2 = LegalizeOp(Node->getOperand(1)); 1749 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1750 switch (TLI.getOperationAction(ISD::EXTRACT_SUBVECTOR, 1751 Node->getValueType(0))) { 1752 default: assert(0 && "Unknown operation action!"); 1753 case TargetLowering::Legal: 1754 break; 1755 case TargetLowering::Custom: 1756 Tmp3 = TLI.LowerOperation(Result, DAG); 1757 if (Tmp3.getNode()) { 1758 Result = Tmp3; 1759 break; 1760 } 1761 // FALLTHROUGH 1762 case TargetLowering::Expand: { 1763 Result = ExpandExtractFromVectorThroughStack(Result); 1764 break; 1765 } 1766 } 1767 break; 1768 1769 case ISD::CONCAT_VECTORS: { 1770 // Legalize the operands. 1771 SmallVector<SDValue, 8> Ops; 1772 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 1773 Ops.push_back(LegalizeOp(Node->getOperand(i))); 1774 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1775 1776 switch (TLI.getOperationAction(ISD::CONCAT_VECTORS, 1777 Node->getValueType(0))) { 1778 default: assert(0 && "Unknown operation action!"); 1779 case TargetLowering::Legal: 1780 break; 1781 case TargetLowering::Custom: 1782 Tmp3 = TLI.LowerOperation(Result, DAG); 1783 if (Tmp3.getNode()) { 1784 Result = Tmp3; 1785 break; 1786 } 1787 // FALLTHROUGH 1788 case TargetLowering::Expand: { 1789 // Use extract/insert/build vector for now. We might try to be 1790 // more clever later. 1791 MVT PtrVT = TLI.getPointerTy(); 1792 SmallVector<SDValue, 8> Ops; 1793 unsigned NumOperands = Node->getNumOperands(); 1794 for (unsigned i=0; i < NumOperands; ++i) { 1795 SDValue SubOp = Node->getOperand(i); 1796 MVT VVT = SubOp.getNode()->getValueType(0); 1797 MVT EltVT = VVT.getVectorElementType(); 1798 unsigned NumSubElem = VVT.getVectorNumElements(); 1799 for (unsigned j=0; j < NumSubElem; ++j) { 1800 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SubOp, 1801 DAG.getConstant(j, PtrVT))); 1802 } 1803 } 1804 return LegalizeOp(DAG.getNode(ISD::BUILD_VECTOR, dl, 1805 Node->getValueType(0), 1806 &Ops[0], Ops.size())); 1807 } 1808 } 1809 break; 1810 } 1811 1812 case ISD::CALLSEQ_START: { 1813 SDNode *CallEnd = FindCallEndFromCallStart(Node); 1814 1815 // Recursively Legalize all of the inputs of the call end that do not lead 1816 // to this call start. This ensures that any libcalls that need be inserted 1817 // are inserted *before* the CALLSEQ_START. 1818 IsLegalizingCallArgs = true; 1819 {SmallPtrSet<SDNode*, 32> NodesLeadingTo; 1820 for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i) 1821 LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node, 1822 NodesLeadingTo); 1823 } 1824 IsLegalizingCallArgs = false; 1825 1826 // Now that we legalized all of the inputs (which may have inserted 1827 // libcalls) create the new CALLSEQ_START node. 1828 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1829 1830 // Merge in the last call, to ensure that this call start after the last 1831 // call ended. 1832 if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) { 1833 Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 1834 Tmp1, LastCALLSEQ_END); 1835 Tmp1 = LegalizeOp(Tmp1); 1836 } 1837 1838 // Do not try to legalize the target-specific arguments (#1+). 1839 if (Tmp1 != Node->getOperand(0)) { 1840 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end()); 1841 Ops[0] = Tmp1; 1842 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1843 } 1844 1845 // Remember that the CALLSEQ_START is legalized. 1846 AddLegalizedOperand(Op.getValue(0), Result); 1847 if (Node->getNumValues() == 2) // If this has a flag result, remember it. 1848 AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); 1849 1850 // Now that the callseq_start and all of the non-call nodes above this call 1851 // sequence have been legalized, legalize the call itself. During this 1852 // process, no libcalls can/will be inserted, guaranteeing that no calls 1853 // can overlap. 1854 assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!"); 1855 // Note that we are selecting this call! 1856 LastCALLSEQ_END = SDValue(CallEnd, 0); 1857 IsLegalizingCall = true; 1858 1859 // Legalize the call, starting from the CALLSEQ_END. 1860 LegalizeOp(LastCALLSEQ_END); 1861 assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!"); 1862 return Result; 1863 } 1864 case ISD::CALLSEQ_END: 1865 // If the CALLSEQ_START node hasn't been legalized first, legalize it. This 1866 // will cause this node to be legalized as well as handling libcalls right. 1867 if (LastCALLSEQ_END.getNode() != Node) { 1868 LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0)); 1869 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 1870 assert(I != LegalizedNodes.end() && 1871 "Legalizing the call start should have legalized this node!"); 1872 return I->second; 1873 } 1874 1875 // Otherwise, the call start has been legalized and everything is going 1876 // according to plan. Just legalize ourselves normally here. 1877 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1878 // Do not try to legalize the target-specific arguments (#1+), except for 1879 // an optional flag input. 1880 if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){ 1881 if (Tmp1 != Node->getOperand(0)) { 1882 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end()); 1883 Ops[0] = Tmp1; 1884 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1885 } 1886 } else { 1887 Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1)); 1888 if (Tmp1 != Node->getOperand(0) || 1889 Tmp2 != Node->getOperand(Node->getNumOperands()-1)) { 1890 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end()); 1891 Ops[0] = Tmp1; 1892 Ops.back() = Tmp2; 1893 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1894 } 1895 } 1896 assert(IsLegalizingCall && "Call sequence imbalance between start/end?"); 1897 // This finishes up call legalization. 1898 IsLegalizingCall = false; 1899 1900 // If the CALLSEQ_END node has a flag, remember that we legalized it. 1901 AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); 1902 if (Node->getNumValues() == 2) 1903 AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); 1904 return Result.getValue(Op.getResNo()); 1905 case ISD::DYNAMIC_STACKALLOC: { 1906 MVT VT = Node->getValueType(0); 1907 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1908 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the size. 1909 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the alignment. 1910 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1911 1912 Tmp1 = Result.getValue(0); 1913 Tmp2 = Result.getValue(1); 1914 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1915 default: assert(0 && "This action is not supported yet!"); 1916 case TargetLowering::Expand: { 1917 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1918 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1919 " not tell us which reg is the stack pointer!"); 1920 SDValue Chain = Tmp1.getOperand(0); 1921 1922 // Chain the dynamic stack allocation so that it doesn't modify the stack 1923 // pointer when other instructions are using the stack. 1924 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true)); 1925 1926 SDValue Size = Tmp2.getOperand(1); 1927 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1928 Chain = SP.getValue(1); 1929 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); 1930 unsigned StackAlign = 1931 TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); 1932 if (Align > StackAlign) 1933 SP = DAG.getNode(ISD::AND, dl, VT, SP, 1934 DAG.getConstant(-(uint64_t)Align, VT)); 1935 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value 1936 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1937 1938 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true), 1939 DAG.getIntPtrConstant(0, true), SDValue()); 1940 1941 Tmp1 = LegalizeOp(Tmp1); 1942 Tmp2 = LegalizeOp(Tmp2); 1943 break; 1944 } 1945 case TargetLowering::Custom: 1946 Tmp3 = TLI.LowerOperation(Tmp1, DAG); 1947 if (Tmp3.getNode()) { 1948 Tmp1 = LegalizeOp(Tmp3); 1949 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 1950 } 1951 break; 1952 case TargetLowering::Legal: 1953 break; 1954 } 1955 // Since this op produce two values, make sure to remember that we 1956 // legalized both of them. 1957 AddLegalizedOperand(SDValue(Node, 0), Tmp1); 1958 AddLegalizedOperand(SDValue(Node, 1), Tmp2); 1959 return Op.getResNo() ? Tmp2 : Tmp1; 1960 } 1961 case ISD::INLINEASM: { 1962 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end()); 1963 bool Changed = false; 1964 // Legalize all of the operands of the inline asm, in case they are nodes 1965 // that need to be expanded or something. Note we skip the asm string and 1966 // all of the TargetConstant flags. 1967 SDValue Op = LegalizeOp(Ops[0]); 1968 Changed = Op != Ops[0]; 1969 Ops[0] = Op; 1970 1971 bool HasInFlag = Ops.back().getValueType() == MVT::Flag; 1972 for (unsigned i = 2, e = Ops.size()-HasInFlag; i < e; ) { 1973 unsigned NumVals = InlineAsm:: 1974 getNumOperandRegisters(cast<ConstantSDNode>(Ops[i])->getZExtValue()); 1975 for (++i; NumVals; ++i, --NumVals) { 1976 SDValue Op = LegalizeOp(Ops[i]); 1977 if (Op != Ops[i]) { 1978 Changed = true; 1979 Ops[i] = Op; 1980 } 1981 } 1982 } 1983 1984 if (HasInFlag) { 1985 Op = LegalizeOp(Ops.back()); 1986 Changed |= Op != Ops.back(); 1987 Ops.back() = Op; 1988 } 1989 1990 if (Changed) 1991 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1992 1993 // INLINE asm returns a chain and flag, make sure to add both to the map. 1994 AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); 1995 AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); 1996 return Result.getValue(Op.getResNo()); 1997 } 1998 case ISD::BR: 1999 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2000 // Ensure that libcalls are emitted before a branch. 2001 Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1, LastCALLSEQ_END); 2002 Tmp1 = LegalizeOp(Tmp1); 2003 LastCALLSEQ_END = DAG.getEntryNode(); 2004 2005 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 2006 break; 2007 case ISD::BRIND: 2008 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2009 // Ensure that libcalls are emitted before a branch. 2010 Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1, LastCALLSEQ_END); 2011 Tmp1 = LegalizeOp(Tmp1); 2012 LastCALLSEQ_END = DAG.getEntryNode(); 2013 2014 switch (getTypeAction(Node->getOperand(1).getValueType())) { 2015 default: assert(0 && "Indirect target must be legal type (pointer)!"); 2016 case Legal: 2017 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition. 2018 break; 2019 } 2020 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 2021 break; 2022 case ISD::BR_JT: 2023 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2024 // Ensure that libcalls are emitted before a branch. 2025 Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1, LastCALLSEQ_END); 2026 Tmp1 = LegalizeOp(Tmp1); 2027 LastCALLSEQ_END = DAG.getEntryNode(); 2028 2029 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the jumptable node. 2030 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 2031 2032 switch (TLI.getOperationAction(ISD::BR_JT, MVT::Other)) { 2033 default: assert(0 && "This action is not supported yet!"); 2034 case TargetLowering::Legal: break; 2035 case TargetLowering::Custom: 2036 Tmp1 = TLI.LowerOperation(Result, DAG); 2037 if (Tmp1.getNode()) Result = Tmp1; 2038 break; 2039 case TargetLowering::Expand: { 2040 SDValue Chain = Result.getOperand(0); 2041 SDValue Table = Result.getOperand(1); 2042 SDValue Index = Result.getOperand(2); 2043 2044 MVT PTy = TLI.getPointerTy(); 2045 MachineFunction &MF = DAG.getMachineFunction(); 2046 unsigned EntrySize = MF.getJumpTableInfo()->getEntrySize(); 2047 Index= DAG.getNode(ISD::MUL, dl, PTy, 2048 Index, DAG.getConstant(EntrySize, PTy)); 2049 SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table); 2050 2051 MVT MemVT = MVT::getIntegerVT(EntrySize * 8); 2052 SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr, 2053 PseudoSourceValue::getJumpTable(), 0, MemVT); 2054 Addr = LD; 2055 if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) { 2056 // For PIC, the sequence is: 2057 // BRIND(load(Jumptable + index) + RelocBase) 2058 // RelocBase can be JumpTable, GOT or some sort of global base. 2059 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 2060 TLI.getPICJumpTableRelocBase(Table, DAG)); 2061 } 2062 Result = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr); 2063 } 2064 } 2065 break; 2066 case ISD::BRCOND: 2067 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2068 // Ensure that libcalls are emitted before a return. 2069 Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1, LastCALLSEQ_END); 2070 Tmp1 = LegalizeOp(Tmp1); 2071 LastCALLSEQ_END = DAG.getEntryNode(); 2072 2073 switch (getTypeAction(Node->getOperand(1).getValueType())) { 2074 case Expand: assert(0 && "It's impossible to expand bools"); 2075 case Legal: 2076 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition. 2077 break; 2078 case Promote: { 2079 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the condition. 2080 2081 // The top bits of the promoted condition are not necessarily zero, ensure 2082 // that the value is properly zero extended. 2083 unsigned BitWidth = Tmp2.getValueSizeInBits(); 2084 if (!DAG.MaskedValueIsZero(Tmp2, 2085 APInt::getHighBitsSet(BitWidth, BitWidth-1))) 2086 Tmp2 = DAG.getZeroExtendInReg(Tmp2, dl, MVT::i1); 2087 break; 2088 } 2089 } 2090 2091 // Basic block destination (Op#2) is always legal. 2092 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 2093 2094 switch (TLI.getOperationAction(ISD::BRCOND, MVT::Other)) { 2095 default: assert(0 && "This action is not supported yet!"); 2096 case TargetLowering::Legal: break; 2097 case TargetLowering::Custom: 2098 Tmp1 = TLI.LowerOperation(Result, DAG); 2099 if (Tmp1.getNode()) Result = Tmp1; 2100 break; 2101 case TargetLowering::Expand: 2102 // Expand brcond's setcc into its constituent parts and create a BR_CC 2103 // Node. 2104 if (Tmp2.getOpcode() == ISD::SETCC) { 2105 Result = DAG.getNode(ISD::BR_CC, dl, MVT::Other, 2106 Tmp1, Tmp2.getOperand(2), 2107 Tmp2.getOperand(0), Tmp2.getOperand(1), 2108 Node->getOperand(2)); 2109 } else { 2110 Result = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 2111 DAG.getCondCode(ISD::SETNE), Tmp2, 2112 DAG.getConstant(0, Tmp2.getValueType()), 2113 Node->getOperand(2)); 2114 } 2115 break; 2116 } 2117 break; 2118 case ISD::BR_CC: 2119 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2120 // Ensure that libcalls are emitted before a branch. 2121 Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1, LastCALLSEQ_END); 2122 Tmp1 = LegalizeOp(Tmp1); 2123 Tmp2 = Node->getOperand(2); // LHS 2124 Tmp3 = Node->getOperand(3); // RHS 2125 Tmp4 = Node->getOperand(1); // CC 2126 2127 LegalizeSetCC(TLI.getSetCCResultType(Tmp2.getValueType()), 2128 Tmp2, Tmp3, Tmp4, dl); 2129 LastCALLSEQ_END = DAG.getEntryNode(); 2130 2131 // If we didn't get both a LHS and RHS back from LegalizeSetCC, 2132 // the LHS is a legal SETCC itself. In this case, we need to compare 2133 // the result against zero to select between true and false values. 2134 if (Tmp3.getNode() == 0) { 2135 Tmp3 = DAG.getConstant(0, Tmp2.getValueType()); 2136 Tmp4 = DAG.getCondCode(ISD::SETNE); 2137 } 2138 2139 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp4, Tmp2, Tmp3, 2140 Node->getOperand(4)); 2141 2142 switch (TLI.getOperationAction(ISD::BR_CC, Tmp3.getValueType())) { 2143 default: assert(0 && "Unexpected action for BR_CC!"); 2144 case TargetLowering::Legal: break; 2145 case TargetLowering::Custom: 2146 Tmp4 = TLI.LowerOperation(Result, DAG); 2147 if (Tmp4.getNode()) Result = Tmp4; 2148 break; 2149 } 2150 break; 2151 case ISD::LOAD: { 2152 LoadSDNode *LD = cast<LoadSDNode>(Node); 2153 Tmp1 = LegalizeOp(LD->getChain()); // Legalize the chain. 2154 Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer. 2155 2156 ISD::LoadExtType ExtType = LD->getExtensionType(); 2157 if (ExtType == ISD::NON_EXTLOAD) { 2158 MVT VT = Node->getValueType(0); 2159 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset()); 2160 Tmp3 = Result.getValue(0); 2161 Tmp4 = Result.getValue(1); 2162 2163 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 2164 default: assert(0 && "This action is not supported yet!"); 2165 case TargetLowering::Legal: 2166 // If this is an unaligned load and the target doesn't support it, 2167 // expand it. 2168 if (!TLI.allowsUnalignedMemoryAccesses()) { 2169 unsigned ABIAlignment = TLI.getTargetData()-> 2170 getABITypeAlignment(LD->getMemoryVT().getTypeForMVT()); 2171 if (LD->getAlignment() < ABIAlignment){ 2172 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), DAG, 2173 TLI); 2174 Tmp3 = Result.getOperand(0); 2175 Tmp4 = Result.getOperand(1); 2176 Tmp3 = LegalizeOp(Tmp3); 2177 Tmp4 = LegalizeOp(Tmp4); 2178 } 2179 } 2180 break; 2181 case TargetLowering::Custom: 2182 Tmp1 = TLI.LowerOperation(Tmp3, DAG); 2183 if (Tmp1.getNode()) { 2184 Tmp3 = LegalizeOp(Tmp1); 2185 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 2186 } 2187 break; 2188 case TargetLowering::Promote: { 2189 // Only promote a load of vector type to another. 2190 assert(VT.isVector() && "Cannot promote this load!"); 2191 // Change base type to a different vector type. 2192 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 2193 2194 Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getSrcValue(), 2195 LD->getSrcValueOffset(), 2196 LD->isVolatile(), LD->getAlignment()); 2197 Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1)); 2198 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 2199 break; 2200 } 2201 } 2202 // Since loads produce two values, make sure to remember that we 2203 // legalized both of them. 2204 AddLegalizedOperand(SDValue(Node, 0), Tmp3); 2205 AddLegalizedOperand(SDValue(Node, 1), Tmp4); 2206 return Op.getResNo() ? Tmp4 : Tmp3; 2207 } else { 2208 MVT SrcVT = LD->getMemoryVT(); 2209 unsigned SrcWidth = SrcVT.getSizeInBits(); 2210 int SVOffset = LD->getSrcValueOffset(); 2211 unsigned Alignment = LD->getAlignment(); 2212 bool isVolatile = LD->isVolatile(); 2213 2214 if (SrcWidth != SrcVT.getStoreSizeInBits() && 2215 // Some targets pretend to have an i1 loading operation, and actually 2216 // load an i8. This trick is correct for ZEXTLOAD because the top 7 2217 // bits are guaranteed to be zero; it helps the optimizers understand 2218 // that these bits are zero. It is also useful for EXTLOAD, since it 2219 // tells the optimizers that those bits are undefined. It would be 2220 // nice to have an effective generic way of getting these benefits... 2221 // Until such a way is found, don't insist on promoting i1 here. 2222 (SrcVT != MVT::i1 || 2223 TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) { 2224 // Promote to a byte-sized load if not loading an integral number of 2225 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 2226 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 2227 MVT NVT = MVT::getIntegerVT(NewWidth); 2228 SDValue Ch; 2229 2230 // The extra bits are guaranteed to be zero, since we stored them that 2231 // way. A zext load from NVT thus automatically gives zext from SrcVT. 2232 2233 ISD::LoadExtType NewExtType = 2234 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 2235 2236 Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), 2237 Tmp1, Tmp2, LD->getSrcValue(), SVOffset, 2238 NVT, isVolatile, Alignment); 2239 2240 Ch = Result.getValue(1); // The chain. 2241 2242 if (ExtType == ISD::SEXTLOAD) 2243 // Having the top bits zero doesn't help when sign extending. 2244 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 2245 Result.getValueType(), 2246 Result, DAG.getValueType(SrcVT)); 2247 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 2248 // All the top bits are guaranteed to be zero - inform the optimizers. 2249 Result = DAG.getNode(ISD::AssertZext, dl, 2250 Result.getValueType(), Result, 2251 DAG.getValueType(SrcVT)); 2252 2253 Tmp1 = LegalizeOp(Result); 2254 Tmp2 = LegalizeOp(Ch); 2255 } else if (SrcWidth & (SrcWidth - 1)) { 2256 // If not loading a power-of-2 number of bits, expand as two loads. 2257 assert(SrcVT.isExtended() && !SrcVT.isVector() && 2258 "Unsupported extload!"); 2259 unsigned RoundWidth = 1 << Log2_32(SrcWidth); 2260 assert(RoundWidth < SrcWidth); 2261 unsigned ExtraWidth = SrcWidth - RoundWidth; 2262 assert(ExtraWidth < RoundWidth); 2263 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 2264 "Load size not an integral number of bytes!"); 2265 MVT RoundVT = MVT::getIntegerVT(RoundWidth); 2266 MVT ExtraVT = MVT::getIntegerVT(ExtraWidth); 2267 SDValue Lo, Hi, Ch; 2268 unsigned IncrementSize; 2269 2270 if (TLI.isLittleEndian()) { 2271 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 2272 // Load the bottom RoundWidth bits. 2273 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, 2274 Node->getValueType(0), Tmp1, Tmp2, 2275 LD->getSrcValue(), SVOffset, RoundVT, isVolatile, 2276 Alignment); 2277 2278 // Load the remaining ExtraWidth bits. 2279 IncrementSize = RoundWidth / 8; 2280 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 2281 DAG.getIntPtrConstant(IncrementSize)); 2282 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2, 2283 LD->getSrcValue(), SVOffset + IncrementSize, 2284 ExtraVT, isVolatile, 2285 MinAlign(Alignment, IncrementSize)); 2286 2287 // Build a factor node to remember that this load is independent of the 2288 // other one. 2289 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 2290 Hi.getValue(1)); 2291 2292 // Move the top bits to the right place. 2293 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi, 2294 DAG.getConstant(RoundWidth, TLI.getShiftAmountTy())); 2295 2296 // Join the hi and lo parts. 2297 Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 2298 } else { 2299 // Big endian - avoid unaligned loads. 2300 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 2301 // Load the top RoundWidth bits. 2302 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2, 2303 LD->getSrcValue(), SVOffset, RoundVT, isVolatile, 2304 Alignment); 2305 2306 // Load the remaining ExtraWidth bits. 2307 IncrementSize = RoundWidth / 8; 2308 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 2309 DAG.getIntPtrConstant(IncrementSize)); 2310 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, 2311 Node->getValueType(0), Tmp1, Tmp2, 2312 LD->getSrcValue(), SVOffset + IncrementSize, 2313 ExtraVT, isVolatile, 2314 MinAlign(Alignment, IncrementSize)); 2315 2316 // Build a factor node to remember that this load is independent of the 2317 // other one. 2318 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 2319 Hi.getValue(1)); 2320 2321 // Move the top bits to the right place. 2322 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi, 2323 DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy())); 2324 2325 // Join the hi and lo parts. 2326 Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 2327 } 2328 2329 Tmp1 = LegalizeOp(Result); 2330 Tmp2 = LegalizeOp(Ch); 2331 } else { 2332 switch (TLI.getLoadExtAction(ExtType, SrcVT)) { 2333 default: assert(0 && "This action is not supported yet!"); 2334 case TargetLowering::Custom: 2335 isCustom = true; 2336 // FALLTHROUGH 2337 case TargetLowering::Legal: 2338 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset()); 2339 Tmp1 = Result.getValue(0); 2340 Tmp2 = Result.getValue(1); 2341 2342 if (isCustom) { 2343 Tmp3 = TLI.LowerOperation(Result, DAG); 2344 if (Tmp3.getNode()) { 2345 Tmp1 = LegalizeOp(Tmp3); 2346 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 2347 } 2348 } else { 2349 // If this is an unaligned load and the target doesn't support it, 2350 // expand it. 2351 if (!TLI.allowsUnalignedMemoryAccesses()) { 2352 unsigned ABIAlignment = TLI.getTargetData()-> 2353 getABITypeAlignment(LD->getMemoryVT().getTypeForMVT()); 2354 if (LD->getAlignment() < ABIAlignment){ 2355 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), DAG, 2356 TLI); 2357 Tmp1 = Result.getOperand(0); 2358 Tmp2 = Result.getOperand(1); 2359 Tmp1 = LegalizeOp(Tmp1); 2360 Tmp2 = LegalizeOp(Tmp2); 2361 } 2362 } 2363 } 2364 break; 2365 case TargetLowering::Expand: 2366 // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND 2367 if (SrcVT == MVT::f32 && Node->getValueType(0) == MVT::f64) { 2368 SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, LD->getSrcValue(), 2369 LD->getSrcValueOffset(), 2370 LD->isVolatile(), LD->getAlignment()); 2371 Result = DAG.getNode(ISD::FP_EXTEND, dl, 2372 Node->getValueType(0), Load); 2373 Tmp1 = LegalizeOp(Result); // Relegalize new nodes. 2374 Tmp2 = LegalizeOp(Load.getValue(1)); 2375 break; 2376 } 2377 assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!"); 2378 // Turn the unsupported load into an EXTLOAD followed by an explicit 2379 // zero/sign extend inreg. 2380 Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0), 2381 Tmp1, Tmp2, LD->getSrcValue(), 2382 LD->getSrcValueOffset(), SrcVT, 2383 LD->isVolatile(), LD->getAlignment()); 2384 SDValue ValRes; 2385 if (ExtType == ISD::SEXTLOAD) 2386 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 2387 Result.getValueType(), 2388 Result, DAG.getValueType(SrcVT)); 2389 else 2390 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT); 2391 Tmp1 = LegalizeOp(ValRes); // Relegalize new nodes. 2392 Tmp2 = LegalizeOp(Result.getValue(1)); // Relegalize new nodes. 2393 break; 2394 } 2395 } 2396 2397 // Since loads produce two values, make sure to remember that we legalized 2398 // both of them. 2399 AddLegalizedOperand(SDValue(Node, 0), Tmp1); 2400 AddLegalizedOperand(SDValue(Node, 1), Tmp2); 2401 return Op.getResNo() ? Tmp2 : Tmp1; 2402 } 2403 } 2404 case ISD::EXTRACT_ELEMENT: { 2405 MVT OpTy = Node->getOperand(0).getValueType(); 2406 switch (getTypeAction(OpTy)) { 2407 default: assert(0 && "EXTRACT_ELEMENT action for type unimplemented!"); 2408 case Legal: 2409 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 2410 // 1 -> Hi 2411 Result = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 2412 DAG.getConstant(OpTy.getSizeInBits()/2, 2413 TLI.getShiftAmountTy())); 2414 Result = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Result); 2415 } else { 2416 // 0 -> Lo 2417 Result = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 2418 Node->getOperand(0)); 2419 } 2420 break; 2421 case Expand: 2422 // Get both the low and high parts. 2423 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 2424 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) 2425 Result = Tmp2; // 1 -> Hi 2426 else 2427 Result = Tmp1; // 0 -> Lo 2428 break; 2429 } 2430 break; 2431 } 2432 2433 case ISD::CopyToReg: 2434 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2435 2436 assert(isTypeLegal(Node->getOperand(2).getValueType()) && 2437 "Register type must be legal!"); 2438 // Legalize the incoming value (must be a legal type). 2439 Tmp2 = LegalizeOp(Node->getOperand(2)); 2440 if (Node->getNumValues() == 1) { 2441 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2); 2442 } else { 2443 assert(Node->getNumValues() == 2 && "Unknown CopyToReg"); 2444 if (Node->getNumOperands() == 4) { 2445 Tmp3 = LegalizeOp(Node->getOperand(3)); 2446 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2, 2447 Tmp3); 2448 } else { 2449 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2); 2450 } 2451 2452 // Since this produces two values, make sure to remember that we legalized 2453 // both of them. 2454 AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); 2455 AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); 2456 return Result; 2457 } 2458 break; 2459 2460 case ISD::RET: 2461 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2462 2463 // Ensure that libcalls are emitted before a return. 2464 Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1, LastCALLSEQ_END); 2465 Tmp1 = LegalizeOp(Tmp1); 2466 LastCALLSEQ_END = DAG.getEntryNode(); 2467 2468 switch (Node->getNumOperands()) { 2469 case 3: // ret val 2470 Tmp2 = Node->getOperand(1); 2471 Tmp3 = Node->getOperand(2); // Signness 2472 switch (getTypeAction(Tmp2.getValueType())) { 2473 case Legal: 2474 Result = DAG.UpdateNodeOperands(Result, Tmp1, LegalizeOp(Tmp2), Tmp3); 2475 break; 2476 case Expand: 2477 if (!Tmp2.getValueType().isVector()) { 2478 SDValue Lo, Hi; 2479 ExpandOp(Tmp2, Lo, Hi); 2480 2481 // Big endian systems want the hi reg first. 2482 if (TLI.isBigEndian()) 2483 std::swap(Lo, Hi); 2484 2485 if (Hi.getNode()) 2486 Result = DAG.getNode(ISD::RET, dl, MVT::Other, 2487 Tmp1, Lo, Tmp3, Hi, Tmp3); 2488 else 2489 Result = DAG.getNode(ISD::RET, dl, MVT::Other, Tmp1, Lo, Tmp3); 2490 Result = LegalizeOp(Result); 2491 } else { 2492 SDNode *InVal = Tmp2.getNode(); 2493 int InIx = Tmp2.getResNo(); 2494 unsigned NumElems = InVal->getValueType(InIx).getVectorNumElements(); 2495 MVT EVT = InVal->getValueType(InIx).getVectorElementType(); 2496 2497 // Figure out if there is a simple type corresponding to this Vector 2498 // type. If so, convert to the vector type. 2499 MVT TVT = MVT::getVectorVT(EVT, NumElems); 2500 if (TLI.isTypeLegal(TVT)) { 2501 // Turn this into a return of the vector type. 2502 Tmp2 = LegalizeOp(Tmp2); 2503 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2504 } else if (NumElems == 1) { 2505 // Turn this into a return of the scalar type. 2506 Tmp2 = ScalarizeVectorOp(Tmp2); 2507 Tmp2 = LegalizeOp(Tmp2); 2508 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2509 2510 // FIXME: Returns of gcc generic vectors smaller than a legal type 2511 // should be returned in integer registers! 2512 2513 // The scalarized value type may not be legal, e.g. it might require 2514 // promotion or expansion. Relegalize the return. 2515 Result = LegalizeOp(Result); 2516 } else { 2517 // FIXME: Returns of gcc generic vectors larger than a legal vector 2518 // type should be returned by reference! 2519 SDValue Lo, Hi; 2520 SplitVectorOp(Tmp2, Lo, Hi); 2521 Result = DAG.getNode(ISD::RET, dl, MVT::Other, 2522 Tmp1, Lo, Tmp3, Hi, Tmp3); 2523 Result = LegalizeOp(Result); 2524 } 2525 } 2526 break; 2527 case Promote: 2528 Tmp2 = PromoteOp(Node->getOperand(1)); 2529 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2530 Result = LegalizeOp(Result); 2531 break; 2532 } 2533 break; 2534 case 1: // ret void 2535 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2536 break; 2537 default: { // ret <values> 2538 SmallVector<SDValue, 8> NewValues; 2539 NewValues.push_back(Tmp1); 2540 for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2) 2541 switch (getTypeAction(Node->getOperand(i).getValueType())) { 2542 case Legal: 2543 NewValues.push_back(LegalizeOp(Node->getOperand(i))); 2544 NewValues.push_back(Node->getOperand(i+1)); 2545 break; 2546 case Expand: { 2547 SDValue Lo, Hi; 2548 assert(!Node->getOperand(i).getValueType().isExtended() && 2549 "FIXME: TODO: implement returning non-legal vector types!"); 2550 ExpandOp(Node->getOperand(i), Lo, Hi); 2551 NewValues.push_back(Lo); 2552 NewValues.push_back(Node->getOperand(i+1)); 2553 if (Hi.getNode()) { 2554 NewValues.push_back(Hi); 2555 NewValues.push_back(Node->getOperand(i+1)); 2556 } 2557 break; 2558 } 2559 case Promote: 2560 assert(0 && "Can't promote multiple return value yet!"); 2561 } 2562 2563 if (NewValues.size() == Node->getNumOperands()) 2564 Result = DAG.UpdateNodeOperands(Result, &NewValues[0],NewValues.size()); 2565 else 2566 Result = DAG.getNode(ISD::RET, dl, MVT::Other, 2567 &NewValues[0], NewValues.size()); 2568 break; 2569 } 2570 } 2571 2572 if (Result.getOpcode() == ISD::RET) { 2573 switch (TLI.getOperationAction(Result.getOpcode(), MVT::Other)) { 2574 default: assert(0 && "This action is not supported yet!"); 2575 case TargetLowering::Legal: break; 2576 case TargetLowering::Custom: 2577 Tmp1 = TLI.LowerOperation(Result, DAG); 2578 if (Tmp1.getNode()) Result = Tmp1; 2579 break; 2580 } 2581 } 2582 break; 2583 case ISD::STORE: { 2584 StoreSDNode *ST = cast<StoreSDNode>(Node); 2585 Tmp1 = LegalizeOp(ST->getChain()); // Legalize the chain. 2586 Tmp2 = LegalizeOp(ST->getBasePtr()); // Legalize the pointer. 2587 int SVOffset = ST->getSrcValueOffset(); 2588 unsigned Alignment = ST->getAlignment(); 2589 bool isVolatile = ST->isVolatile(); 2590 2591 if (!ST->isTruncatingStore()) { 2592 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 2593 // FIXME: We shouldn't do this for TargetConstantFP's. 2594 // FIXME: move this to the DAG Combiner! Note that we can't regress due 2595 // to phase ordering between legalized code and the dag combiner. This 2596 // probably means that we need to integrate dag combiner and legalizer 2597 // together. 2598 // We generally can't do this one for long doubles. 2599 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 2600 if (CFP->getValueType(0) == MVT::f32 && 2601 getTypeAction(MVT::i32) == Legal) { 2602 Tmp3 = DAG.getConstant(CFP->getValueAPF(). 2603 bitcastToAPInt().zextOrTrunc(32), 2604 MVT::i32); 2605 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), 2606 SVOffset, isVolatile, Alignment); 2607 break; 2608 } else if (CFP->getValueType(0) == MVT::f64) { 2609 // If this target supports 64-bit registers, do a single 64-bit store. 2610 if (getTypeAction(MVT::i64) == Legal) { 2611 Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 2612 zextOrTrunc(64), MVT::i64); 2613 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), 2614 SVOffset, isVolatile, Alignment); 2615 break; 2616 } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) { 2617 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 2618 // stores. If the target supports neither 32- nor 64-bits, this 2619 // xform is certainly not worth it. 2620 const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt(); 2621 SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32); 2622 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32); 2623 if (TLI.isBigEndian()) std::swap(Lo, Hi); 2624 2625 Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(), 2626 SVOffset, isVolatile, Alignment); 2627 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 2628 DAG.getIntPtrConstant(4)); 2629 Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), SVOffset+4, 2630 isVolatile, MinAlign(Alignment, 4U)); 2631 2632 Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 2633 break; 2634 } 2635 } 2636 } 2637 2638 switch (getTypeAction(ST->getMemoryVT())) { 2639 case Legal: { 2640 Tmp3 = LegalizeOp(ST->getValue()); 2641 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2, 2642 ST->getOffset()); 2643 2644 MVT VT = Tmp3.getValueType(); 2645 switch (TLI.getOperationAction(ISD::STORE, VT)) { 2646 default: assert(0 && "This action is not supported yet!"); 2647 case TargetLowering::Legal: 2648 // If this is an unaligned store and the target doesn't support it, 2649 // expand it. 2650 if (!TLI.allowsUnalignedMemoryAccesses()) { 2651 unsigned ABIAlignment = TLI.getTargetData()-> 2652 getABITypeAlignment(ST->getMemoryVT().getTypeForMVT()); 2653 if (ST->getAlignment() < ABIAlignment) 2654 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG, 2655 TLI); 2656 } 2657 break; 2658 case TargetLowering::Custom: 2659 Tmp1 = TLI.LowerOperation(Result, DAG); 2660 if (Tmp1.getNode()) Result = Tmp1; 2661 break; 2662 case TargetLowering::Promote: 2663 assert(VT.isVector() && "Unknown legal promote case!"); 2664 Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl, 2665 TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3); 2666 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, 2667 ST->getSrcValue(), SVOffset, isVolatile, 2668 Alignment); 2669 break; 2670 } 2671 break; 2672 } 2673 case Promote: 2674 if (!ST->getMemoryVT().isVector()) { 2675 // Truncate the value and store the result. 2676 Tmp3 = PromoteOp(ST->getValue()); 2677 Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), 2678 SVOffset, ST->getMemoryVT(), 2679 isVolatile, Alignment); 2680 break; 2681 } 2682 // Fall thru to expand for vector 2683 case Expand: { 2684 unsigned IncrementSize = 0; 2685 SDValue Lo, Hi; 2686 2687 // If this is a vector type, then we have to calculate the increment as 2688 // the product of the element size in bytes, and the number of elements 2689 // in the high half of the vector. 2690 if (ST->getValue().getValueType().isVector()) { 2691 SDNode *InVal = ST->getValue().getNode(); 2692 int InIx = ST->getValue().getResNo(); 2693 MVT InVT = InVal->getValueType(InIx); 2694 unsigned NumElems = InVT.getVectorNumElements(); 2695 MVT EVT = InVT.getVectorElementType(); 2696 2697 // Figure out if there is a simple type corresponding to this Vector 2698 // type. If so, convert to the vector type. 2699 MVT TVT = MVT::getVectorVT(EVT, NumElems); 2700 if (TLI.isTypeLegal(TVT)) { 2701 // Turn this into a normal store of the vector type. 2702 Tmp3 = LegalizeOp(ST->getValue()); 2703 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), 2704 SVOffset, isVolatile, Alignment); 2705 Result = LegalizeOp(Result); 2706 break; 2707 } else if (NumElems == 1) { 2708 // Turn this into a normal store of the scalar type. 2709 Tmp3 = ScalarizeVectorOp(ST->getValue()); 2710 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), 2711 SVOffset, isVolatile, Alignment); 2712 // The scalarized value type may not be legal, e.g. it might require 2713 // promotion or expansion. Relegalize the scalar store. 2714 Result = LegalizeOp(Result); 2715 break; 2716 } else { 2717 // Check if we have widen this node with another value 2718 std::map<SDValue, SDValue>::iterator I = 2719 WidenNodes.find(ST->getValue()); 2720 if (I != WidenNodes.end()) { 2721 Result = StoreWidenVectorOp(ST, Tmp1, Tmp2); 2722 break; 2723 } 2724 else { 2725 SplitVectorOp(ST->getValue(), Lo, Hi); 2726 IncrementSize = Lo.getNode()->getValueType(0).getVectorNumElements() * 2727 EVT.getSizeInBits()/8; 2728 } 2729 } 2730 } else { 2731 ExpandOp(ST->getValue(), Lo, Hi); 2732 IncrementSize = Hi.getNode() ? Hi.getValueType().getSizeInBits()/8 : 0; 2733 2734 if (Hi.getNode() && TLI.isBigEndian()) 2735 std::swap(Lo, Hi); 2736 } 2737 2738 Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(), 2739 SVOffset, isVolatile, Alignment); 2740 2741 if (Hi.getNode() == NULL) { 2742 // Must be int <-> float one-to-one expansion. 2743 Result = Lo; 2744 break; 2745 } 2746 2747 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 2748 DAG.getIntPtrConstant(IncrementSize)); 2749 assert(isTypeLegal(Tmp2.getValueType()) && 2750 "Pointers must be legal!"); 2751 SVOffset += IncrementSize; 2752 Alignment = MinAlign(Alignment, IncrementSize); 2753 Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), 2754 SVOffset, isVolatile, Alignment); 2755 Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 2756 break; 2757 } // case Expand 2758 } 2759 } else { 2760 switch (getTypeAction(ST->getValue().getValueType())) { 2761 case Legal: 2762 Tmp3 = LegalizeOp(ST->getValue()); 2763 break; 2764 case Promote: 2765 if (!ST->getValue().getValueType().isVector()) { 2766 // We can promote the value, the truncstore will still take care of it. 2767 Tmp3 = PromoteOp(ST->getValue()); 2768 break; 2769 } 2770 // Vector case falls through to expand 2771 case Expand: 2772 // Just store the low part. This may become a non-trunc store, so make 2773 // sure to use getTruncStore, not UpdateNodeOperands below. 2774 ExpandOp(ST->getValue(), Tmp3, Tmp4); 2775 return DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), 2776 SVOffset, MVT::i8, isVolatile, Alignment); 2777 } 2778 2779 MVT StVT = ST->getMemoryVT(); 2780 unsigned StWidth = StVT.getSizeInBits(); 2781 2782 if (StWidth != StVT.getStoreSizeInBits()) { 2783 // Promote to a byte-sized store with upper bits zero if not 2784 // storing an integral number of bytes. For example, promote 2785 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 2786 MVT NVT = MVT::getIntegerVT(StVT.getStoreSizeInBits()); 2787 Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT); 2788 Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), 2789 SVOffset, NVT, isVolatile, Alignment); 2790 } else if (StWidth & (StWidth - 1)) { 2791 // If not storing a power-of-2 number of bits, expand as two stores. 2792 assert(StVT.isExtended() && !StVT.isVector() && 2793 "Unsupported truncstore!"); 2794 unsigned RoundWidth = 1 << Log2_32(StWidth); 2795 assert(RoundWidth < StWidth); 2796 unsigned ExtraWidth = StWidth - RoundWidth; 2797 assert(ExtraWidth < RoundWidth); 2798 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 2799 "Store size not an integral number of bytes!"); 2800 MVT RoundVT = MVT::getIntegerVT(RoundWidth); 2801 MVT ExtraVT = MVT::getIntegerVT(ExtraWidth); 2802 SDValue Lo, Hi; 2803 unsigned IncrementSize; 2804 2805 if (TLI.isLittleEndian()) { 2806 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 2807 // Store the bottom RoundWidth bits. 2808 Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), 2809 SVOffset, RoundVT, 2810 isVolatile, Alignment); 2811 2812 // Store the remaining ExtraWidth bits. 2813 IncrementSize = RoundWidth / 8; 2814 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 2815 DAG.getIntPtrConstant(IncrementSize)); 2816 Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3, 2817 DAG.getConstant(RoundWidth, TLI.getShiftAmountTy())); 2818 Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), 2819 SVOffset + IncrementSize, ExtraVT, isVolatile, 2820 MinAlign(Alignment, IncrementSize)); 2821 } else { 2822 // Big endian - avoid unaligned stores. 2823 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 2824 // Store the top RoundWidth bits. 2825 Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3, 2826 DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy())); 2827 Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), 2828 SVOffset, RoundVT, isVolatile, Alignment); 2829 2830 // Store the remaining ExtraWidth bits. 2831 IncrementSize = RoundWidth / 8; 2832 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 2833 DAG.getIntPtrConstant(IncrementSize)); 2834 Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), 2835 SVOffset + IncrementSize, ExtraVT, isVolatile, 2836 MinAlign(Alignment, IncrementSize)); 2837 } 2838 2839 // The order of the stores doesn't matter. 2840 Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 2841 } else { 2842 if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() || 2843 Tmp2 != ST->getBasePtr()) 2844 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2, 2845 ST->getOffset()); 2846 2847 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 2848 default: assert(0 && "This action is not supported yet!"); 2849 case TargetLowering::Legal: 2850 // If this is an unaligned store and the target doesn't support it, 2851 // expand it. 2852 if (!TLI.allowsUnalignedMemoryAccesses()) { 2853 unsigned ABIAlignment = TLI.getTargetData()-> 2854 getABITypeAlignment(ST->getMemoryVT().getTypeForMVT()); 2855 if (ST->getAlignment() < ABIAlignment) 2856 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG, 2857 TLI); 2858 } 2859 break; 2860 case TargetLowering::Custom: 2861 Result = TLI.LowerOperation(Result, DAG); 2862 break; 2863 case Expand: 2864 // TRUNCSTORE:i16 i32 -> STORE i16 2865 assert(isTypeLegal(StVT) && "Do not know how to expand this store!"); 2866 Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3); 2867 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), 2868 SVOffset, isVolatile, Alignment); 2869 break; 2870 } 2871 } 2872 } 2873 break; 2874 } 2875 case ISD::PCMARKER: 2876 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2877 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 2878 break; 2879 case ISD::STACKSAVE: 2880 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2881 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2882 Tmp1 = Result.getValue(0); 2883 Tmp2 = Result.getValue(1); 2884 2885 switch (TLI.getOperationAction(ISD::STACKSAVE, MVT::Other)) { 2886 default: assert(0 && "This action is not supported yet!"); 2887 case TargetLowering::Legal: break; 2888 case TargetLowering::Custom: 2889 Tmp3 = TLI.LowerOperation(Result, DAG); 2890 if (Tmp3.getNode()) { 2891 Tmp1 = LegalizeOp(Tmp3); 2892 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 2893 } 2894 break; 2895 case TargetLowering::Expand: 2896 // Expand to CopyFromReg if the target set 2897 // StackPointerRegisterToSaveRestore. 2898 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 2899 Tmp1 = DAG.getCopyFromReg(Result.getOperand(0), dl, SP, 2900 Node->getValueType(0)); 2901 Tmp2 = Tmp1.getValue(1); 2902 } else { 2903 Tmp1 = DAG.getUNDEF(Node->getValueType(0)); 2904 Tmp2 = Node->getOperand(0); 2905 } 2906 break; 2907 } 2908 2909 // Since stacksave produce two values, make sure to remember that we 2910 // legalized both of them. 2911 AddLegalizedOperand(SDValue(Node, 0), Tmp1); 2912 AddLegalizedOperand(SDValue(Node, 1), Tmp2); 2913 return Op.getResNo() ? Tmp2 : Tmp1; 2914 2915 case ISD::STACKRESTORE: 2916 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2917 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 2918 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 2919 2920 switch (TLI.getOperationAction(ISD::STACKRESTORE, MVT::Other)) { 2921 default: assert(0 && "This action is not supported yet!"); 2922 case TargetLowering::Legal: break; 2923 case TargetLowering::Custom: 2924 Tmp1 = TLI.LowerOperation(Result, DAG); 2925 if (Tmp1.getNode()) Result = Tmp1; 2926 break; 2927 case TargetLowering::Expand: 2928 // Expand to CopyToReg if the target set 2929 // StackPointerRegisterToSaveRestore. 2930 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 2931 Result = DAG.getCopyToReg(Tmp1, dl, SP, Tmp2); 2932 } else { 2933 Result = Tmp1; 2934 } 2935 break; 2936 } 2937 break; 2938 2939 case ISD::READCYCLECOUNTER: 2940 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain 2941 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2942 switch (TLI.getOperationAction(ISD::READCYCLECOUNTER, 2943 Node->getValueType(0))) { 2944 default: assert(0 && "This action is not supported yet!"); 2945 case TargetLowering::Legal: 2946 Tmp1 = Result.getValue(0); 2947 Tmp2 = Result.getValue(1); 2948 break; 2949 case TargetLowering::Custom: 2950 Result = TLI.LowerOperation(Result, DAG); 2951 Tmp1 = LegalizeOp(Result.getValue(0)); 2952 Tmp2 = LegalizeOp(Result.getValue(1)); 2953 break; 2954 } 2955 2956 // Since rdcc produce two values, make sure to remember that we legalized 2957 // both of them. 2958 AddLegalizedOperand(SDValue(Node, 0), Tmp1); 2959 AddLegalizedOperand(SDValue(Node, 1), Tmp2); 2960 return Result; 2961 2962 case ISD::SELECT: 2963 switch (getTypeAction(Node->getOperand(0).getValueType())) { 2964 case Expand: assert(0 && "It's impossible to expand bools"); 2965 case Legal: 2966 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the condition. 2967 break; 2968 case Promote: { 2969 assert(!Node->getOperand(0).getValueType().isVector() && "not possible"); 2970 Tmp1 = PromoteOp(Node->getOperand(0)); // Promote the condition. 2971 // Make sure the condition is either zero or one. 2972 unsigned BitWidth = Tmp1.getValueSizeInBits(); 2973 if (!DAG.MaskedValueIsZero(Tmp1, 2974 APInt::getHighBitsSet(BitWidth, BitWidth-1))) 2975 Tmp1 = DAG.getZeroExtendInReg(Tmp1, dl, MVT::i1); 2976 break; 2977 } 2978 } 2979 Tmp2 = LegalizeOp(Node->getOperand(1)); // TrueVal 2980 Tmp3 = LegalizeOp(Node->getOperand(2)); // FalseVal 2981 2982 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2983 2984 switch (TLI.getOperationAction(ISD::SELECT, Tmp2.getValueType())) { 2985 default: assert(0 && "This action is not supported yet!"); 2986 case TargetLowering::Legal: break; 2987 case TargetLowering::Custom: { 2988 Tmp1 = TLI.LowerOperation(Result, DAG); 2989 if (Tmp1.getNode()) Result = Tmp1; 2990 break; 2991 } 2992 case TargetLowering::Expand: 2993 if (Tmp1.getOpcode() == ISD::SETCC) { 2994 Result = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 2995 Tmp2, Tmp3, 2996 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 2997 } else { 2998 Result = DAG.getSelectCC(dl, Tmp1, 2999 DAG.getConstant(0, Tmp1.getValueType()), 3000 Tmp2, Tmp3, ISD::SETNE); 3001 } 3002 break; 3003 case TargetLowering::Promote: { 3004 MVT NVT = 3005 TLI.getTypeToPromoteTo(ISD::SELECT, Tmp2.getValueType()); 3006 unsigned ExtOp, TruncOp; 3007 if (Tmp2.getValueType().isVector()) { 3008 ExtOp = ISD::BIT_CONVERT; 3009 TruncOp = ISD::BIT_CONVERT; 3010 } else if (Tmp2.getValueType().isInteger()) { 3011 ExtOp = ISD::ANY_EXTEND; 3012 TruncOp = ISD::TRUNCATE; 3013 } else { 3014 ExtOp = ISD::FP_EXTEND; 3015 TruncOp = ISD::FP_ROUND; 3016 } 3017 // Promote each of the values to the new type. 3018 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Tmp2); 3019 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Tmp3); 3020 // Perform the larger operation, then round down. 3021 Result = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3); 3022 if (TruncOp != ISD::FP_ROUND) 3023 Result = DAG.getNode(TruncOp, dl, Node->getValueType(0), Result); 3024 else 3025 Result = DAG.getNode(TruncOp, dl, Node->getValueType(0), Result, 3026 DAG.getIntPtrConstant(0)); 3027 break; 3028 } 3029 } 3030 break; 3031 case ISD::SELECT_CC: { 3032 Tmp1 = Node->getOperand(0); // LHS 3033 Tmp2 = Node->getOperand(1); // RHS 3034 Tmp3 = LegalizeOp(Node->getOperand(2)); // True 3035 Tmp4 = LegalizeOp(Node->getOperand(3)); // False 3036 SDValue CC = Node->getOperand(4); 3037 3038 LegalizeSetCC(TLI.getSetCCResultType(Tmp1.getValueType()), 3039 Tmp1, Tmp2, CC, dl); 3040 3041 // If we didn't get both a LHS and RHS back from LegalizeSetCC, 3042 // the LHS is a legal SETCC itself. In this case, we need to compare 3043 // the result against zero to select between true and false values. 3044 if (Tmp2.getNode() == 0) { 3045 Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); 3046 CC = DAG.getCondCode(ISD::SETNE); 3047 } 3048 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4, CC); 3049 3050 // Everything is legal, see if we should expand this op or something. 3051 switch (TLI.getOperationAction(ISD::SELECT_CC, Tmp3.getValueType())) { 3052 default: assert(0 && "This action is not supported yet!"); 3053 case TargetLowering::Legal: break; 3054 case TargetLowering::Custom: 3055 Tmp1 = TLI.LowerOperation(Result, DAG); 3056 if (Tmp1.getNode()) Result = Tmp1; 3057 break; 3058 } 3059 break; 3060 } 3061 case ISD::SETCC: 3062 Tmp1 = Node->getOperand(0); 3063 Tmp2 = Node->getOperand(1); 3064 Tmp3 = Node->getOperand(2); 3065 LegalizeSetCC(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl); 3066 3067 // If we had to Expand the SetCC operands into a SELECT node, then it may 3068 // not always be possible to return a true LHS & RHS. In this case, just 3069 // return the value we legalized, returned in the LHS 3070 if (Tmp2.getNode() == 0) { 3071 Result = Tmp1; 3072 break; 3073 } 3074 3075 switch (TLI.getOperationAction(ISD::SETCC, Tmp1.getValueType())) { 3076 default: assert(0 && "Cannot handle this action for SETCC yet!"); 3077 case TargetLowering::Custom: 3078 isCustom = true; 3079 // FALLTHROUGH. 3080 case TargetLowering::Legal: 3081 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 3082 if (isCustom) { 3083 Tmp4 = TLI.LowerOperation(Result, DAG); 3084 if (Tmp4.getNode()) Result = Tmp4; 3085 } 3086 break; 3087 case TargetLowering::Promote: { 3088 // First step, figure out the appropriate operation to use. 3089 // Allow SETCC to not be supported for all legal data types 3090 // Mostly this targets FP 3091 MVT NewInTy = Node->getOperand(0).getValueType(); 3092 MVT OldVT = NewInTy; OldVT = OldVT; 3093 3094 // Scan for the appropriate larger type to use. 3095 while (1) { 3096 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT()+1); 3097 3098 assert(NewInTy.isInteger() == OldVT.isInteger() && 3099 "Fell off of the edge of the integer world"); 3100 assert(NewInTy.isFloatingPoint() == OldVT.isFloatingPoint() && 3101 "Fell off of the edge of the floating point world"); 3102 3103 // If the target supports SETCC of this type, use it. 3104 if (TLI.isOperationLegalOrCustom(ISD::SETCC, NewInTy)) 3105 break; 3106 } 3107 if (NewInTy.isInteger()) 3108 assert(0 && "Cannot promote Legal Integer SETCC yet"); 3109 else { 3110 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NewInTy, Tmp1); 3111 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NewInTy, Tmp2); 3112 } 3113 Tmp1 = LegalizeOp(Tmp1); 3114 Tmp2 = LegalizeOp(Tmp2); 3115 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 3116 Result = LegalizeOp(Result); 3117 break; 3118 } 3119 case TargetLowering::Expand: 3120 // Expand a setcc node into a select_cc of the same condition, lhs, and 3121 // rhs that selects between const 1 (true) and const 0 (false). 3122 MVT VT = Node->getValueType(0); 3123 Result = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3124 DAG.getConstant(1, VT), DAG.getConstant(0, VT), 3125 Tmp3); 3126 break; 3127 } 3128 break; 3129 case ISD::VSETCC: { 3130 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3131 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 3132 SDValue CC = Node->getOperand(2); 3133 3134 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, CC); 3135 3136 // Everything is legal, see if we should expand this op or something. 3137 switch (TLI.getOperationAction(ISD::VSETCC, Tmp1.getValueType())) { 3138 default: assert(0 && "This action is not supported yet!"); 3139 case TargetLowering::Legal: break; 3140 case TargetLowering::Custom: 3141 Tmp1 = TLI.LowerOperation(Result, DAG); 3142 if (Tmp1.getNode()) Result = Tmp1; 3143 break; 3144 case TargetLowering::Expand: { 3145 // Unroll into a nasty set of scalar code for now. 3146 MVT VT = Node->getValueType(0); 3147 unsigned NumElems = VT.getVectorNumElements(); 3148 MVT EltVT = VT.getVectorElementType(); 3149 MVT TmpEltVT = Tmp1.getValueType().getVectorElementType(); 3150 SmallVector<SDValue, 8> Ops(NumElems); 3151 for (unsigned i = 0; i < NumElems; ++i) { 3152 SDValue In1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, 3153 Tmp1, DAG.getIntPtrConstant(i)); 3154 Ops[i] = DAG.getNode(ISD::SETCC, dl, TLI.getSetCCResultType(TmpEltVT), 3155 In1, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 3156 TmpEltVT, Tmp2, 3157 DAG.getIntPtrConstant(i)), 3158 CC); 3159 Ops[i] = DAG.getNode(ISD::SELECT, dl, EltVT, Ops[i], 3160 DAG.getConstant(APInt::getAllOnesValue 3161 (EltVT.getSizeInBits()), EltVT), 3162 DAG.getConstant(0, EltVT)); 3163 } 3164 Result = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], NumElems); 3165 break; 3166 } 3167 } 3168 break; 3169 } 3170 3171 case ISD::SHL_PARTS: 3172 case ISD::SRA_PARTS: 3173 case ISD::SRL_PARTS: { 3174 SmallVector<SDValue, 8> Ops; 3175 bool Changed = false; 3176 unsigned N = Node->getNumOperands(); 3177 for (unsigned i = 0; i + 1 < N; ++i) { 3178 Ops.push_back(LegalizeOp(Node->getOperand(i))); 3179 Changed |= Ops.back() != Node->getOperand(i); 3180 } 3181 Ops.push_back(LegalizeOp(DAG.getShiftAmountOperand(Node->getOperand(N-1)))); 3182 Changed |= Ops.back() != Node->getOperand(N-1); 3183 if (Changed) 3184 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 3185 3186 switch (TLI.getOperationAction(Node->getOpcode(), 3187 Node->getValueType(0))) { 3188 default: assert(0 && "This action is not supported yet!"); 3189 case TargetLowering::Legal: break; 3190 case TargetLowering::Custom: 3191 Tmp1 = TLI.LowerOperation(Result, DAG); 3192 if (Tmp1.getNode()) { 3193 SDValue Tmp2, RetVal(0, 0); 3194 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { 3195 Tmp2 = LegalizeOp(Tmp1.getValue(i)); 3196 AddLegalizedOperand(SDValue(Node, i), Tmp2); 3197 if (i == Op.getResNo()) 3198 RetVal = Tmp2; 3199 } 3200 assert(RetVal.getNode() && "Illegal result number"); 3201 return RetVal; 3202 } 3203 break; 3204 } 3205 3206 // Since these produce multiple values, make sure to remember that we 3207 // legalized all of them. 3208 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 3209 AddLegalizedOperand(SDValue(Node, i), Result.getValue(i)); 3210 return Result.getValue(Op.getResNo()); 3211 } 3212 3213 // Binary operators 3214 case ISD::ADD: 3215 case ISD::SUB: 3216 case ISD::MUL: 3217 case ISD::MULHS: 3218 case ISD::MULHU: 3219 case ISD::UDIV: 3220 case ISD::SDIV: 3221 case ISD::AND: 3222 case ISD::OR: 3223 case ISD::XOR: 3224 case ISD::SHL: 3225 case ISD::SRL: 3226 case ISD::SRA: 3227 case ISD::FADD: 3228 case ISD::FSUB: 3229 case ISD::FMUL: 3230 case ISD::FDIV: 3231 case ISD::FPOW: 3232 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3233 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 3234 3235 if ((Node->getOpcode() == ISD::SHL || 3236 Node->getOpcode() == ISD::SRL || 3237 Node->getOpcode() == ISD::SRA) && 3238 !Node->getValueType(0).isVector()) 3239 Tmp2 = DAG.getShiftAmountOperand(Tmp2); 3240 3241 switch (getTypeAction(Tmp2.getValueType())) { 3242 case Expand: assert(0 && "Not possible"); 3243 case Legal: 3244 Tmp2 = LegalizeOp(Tmp2); // Legalize the RHS. 3245 break; 3246 case Promote: 3247 Tmp2 = PromoteOp(Tmp2); // Promote the RHS. 3248 break; 3249 } 3250 3251 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3252 3253 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3254 default: assert(0 && "BinOp legalize operation not supported"); 3255 case TargetLowering::Legal: break; 3256 case TargetLowering::Custom: 3257 Tmp1 = TLI.LowerOperation(Result, DAG); 3258 if (Tmp1.getNode()) { 3259 Result = Tmp1; 3260 break; 3261 } 3262 // Fall through if the custom lower can't deal with the operation 3263 case TargetLowering::Expand: { 3264 MVT VT = Op.getValueType(); 3265 3266 // See if multiply or divide can be lowered using two-result operations. 3267 SDVTList VTs = DAG.getVTList(VT, VT); 3268 if (Node->getOpcode() == ISD::MUL) { 3269 // We just need the low half of the multiply; try both the signed 3270 // and unsigned forms. If the target supports both SMUL_LOHI and 3271 // UMUL_LOHI, form a preference by checking which forms of plain 3272 // MULH it supports. 3273 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3274 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3275 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3276 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3277 unsigned OpToUse = 0; 3278 if (HasSMUL_LOHI && !HasMULHS) { 3279 OpToUse = ISD::SMUL_LOHI; 3280 } else if (HasUMUL_LOHI && !HasMULHU) { 3281 OpToUse = ISD::UMUL_LOHI; 3282 } else if (HasSMUL_LOHI) { 3283 OpToUse = ISD::SMUL_LOHI; 3284 } else if (HasUMUL_LOHI) { 3285 OpToUse = ISD::UMUL_LOHI; 3286 } 3287 if (OpToUse) { 3288 Result = DAG.getNode(OpToUse, dl, VTs, Tmp1, Tmp2); 3289 break; 3290 } 3291 } 3292 if (Node->getOpcode() == ISD::MULHS && 3293 TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 3294 Result = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, 3295 VTs, Tmp1, Tmp2).getNode(), 3296 1); 3297 break; 3298 } 3299 if (Node->getOpcode() == ISD::MULHU && 3300 TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 3301 Result = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, 3302 VTs, Tmp1, Tmp2).getNode(), 3303 1); 3304 break; 3305 } 3306 if (Node->getOpcode() == ISD::SDIV && 3307 TLI.isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 3308 Result = DAG.getNode(ISD::SDIVREM, dl, VTs, Tmp1, Tmp2); 3309 break; 3310 } 3311 if (Node->getOpcode() == ISD::UDIV && 3312 TLI.isOperationLegalOrCustom(ISD::UDIVREM, VT)) { 3313 Result = DAG.getNode(ISD::UDIVREM, dl, VTs, Tmp1, Tmp2); 3314 break; 3315 } 3316 if (Node->getOpcode() == ISD::SUB && 3317 TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3318 TLI.isOperationLegalOrCustom(ISD::XOR, VT)) { 3319 Tmp2 = DAG.getNode(ISD::XOR, dl, VT, Tmp2, 3320 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT)); 3321 Tmp2 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT)); 3322 Result = DAG.getNode(ISD::ADD, dl, VT, Tmp1, Tmp2); 3323 break; 3324 } 3325 3326 // Check to see if we have a libcall for this operator. 3327 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3328 bool isSigned = false; 3329 switch (Node->getOpcode()) { 3330 case ISD::UDIV: 3331 case ISD::SDIV: 3332 isSigned = Node->getOpcode() == ISD::SDIV; 3333 if (VT == MVT::i16) 3334 LC = (isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16); 3335 else if (VT == MVT::i32) 3336 LC = (isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32); 3337 else if (VT == MVT::i64) 3338 LC = (isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64); 3339 else if (VT == MVT::i128) 3340 LC = (isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128); 3341 break; 3342 case ISD::MUL: 3343 if (VT == MVT::i16) 3344 LC = RTLIB::MUL_I16; 3345 else if (VT == MVT::i32) 3346 LC = RTLIB::MUL_I32; 3347 else if (VT == MVT::i64) 3348 LC = RTLIB::MUL_I64; 3349 else if (VT == MVT::i128) 3350 LC = RTLIB::MUL_I128; 3351 break; 3352 case ISD::FPOW: 3353 LC = GetFPLibCall(VT, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, 3354 RTLIB::POW_PPCF128); 3355 break; 3356 case ISD::FDIV: 3357 LC = GetFPLibCall(VT, RTLIB::DIV_F32, RTLIB::DIV_F64, RTLIB::DIV_F80, 3358 RTLIB::DIV_PPCF128); 3359 break; 3360 default: break; 3361 } 3362 if (LC != RTLIB::UNKNOWN_LIBCALL) { 3363 SDValue Dummy; 3364 Result = ExpandLibCall(LC, Node, isSigned, Dummy); 3365 break; 3366 } 3367 3368 assert(Node->getValueType(0).isVector() && 3369 "Cannot expand this binary operator!"); 3370 // Expand the operation into a bunch of nasty scalar code. 3371 Result = LegalizeOp(UnrollVectorOp(Op)); 3372 break; 3373 } 3374 case TargetLowering::Promote: { 3375 switch (Node->getOpcode()) { 3376 default: assert(0 && "Do not know how to promote this BinOp!"); 3377 case ISD::AND: 3378 case ISD::OR: 3379 case ISD::XOR: { 3380 MVT OVT = Node->getValueType(0); 3381 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3382 assert(OVT.isVector() && "Cannot promote this BinOp!"); 3383 // Bit convert each of the values to the new type. 3384 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Tmp1); 3385 Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Tmp2); 3386 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 3387 // Bit convert the result back the original type. 3388 Result = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Result); 3389 break; 3390 } 3391 } 3392 } 3393 } 3394 break; 3395 3396 case ISD::SMUL_LOHI: 3397 case ISD::UMUL_LOHI: 3398 case ISD::SDIVREM: 3399 case ISD::UDIVREM: 3400 // These nodes will only be produced by target-specific lowering, so 3401 // they shouldn't be here if they aren't legal. 3402 assert(TLI.isOperationLegal(Node->getOpcode(), Node->getValueType(0)) && 3403 "This must be legal!"); 3404 3405 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3406 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 3407 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3408 break; 3409 3410 case ISD::FCOPYSIGN: // FCOPYSIGN does not require LHS/RHS to match type! 3411 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3412 switch (getTypeAction(Node->getOperand(1).getValueType())) { 3413 case Expand: assert(0 && "Not possible"); 3414 case Legal: 3415 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the RHS. 3416 break; 3417 case Promote: 3418 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the RHS. 3419 break; 3420 } 3421 3422 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3423 3424 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3425 default: assert(0 && "Operation not supported"); 3426 case TargetLowering::Custom: 3427 Tmp1 = TLI.LowerOperation(Result, DAG); 3428 if (Tmp1.getNode()) Result = Tmp1; 3429 break; 3430 case TargetLowering::Legal: break; 3431 case TargetLowering::Expand: { 3432 // If this target supports fabs/fneg natively and select is cheap, 3433 // do this efficiently. 3434 if (!TLI.isSelectExpensive() && 3435 TLI.getOperationAction(ISD::FABS, Tmp1.getValueType()) == 3436 TargetLowering::Legal && 3437 TLI.getOperationAction(ISD::FNEG, Tmp1.getValueType()) == 3438 TargetLowering::Legal) { 3439 // Get the sign bit of the RHS. 3440 MVT IVT = 3441 Tmp2.getValueType() == MVT::f32 ? MVT::i32 : MVT::i64; 3442 SDValue SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2); 3443 SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(IVT), 3444 SignBit, DAG.getConstant(0, IVT), ISD::SETLT); 3445 // Get the absolute value of the result. 3446 SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1); 3447 // Select between the nabs and abs value based on the sign bit of 3448 // the input. 3449 Result = DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit, 3450 DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), 3451 AbsVal), 3452 AbsVal); 3453 Result = LegalizeOp(Result); 3454 break; 3455 } 3456 3457 // Otherwise, do bitwise ops! 3458 MVT NVT = 3459 Node->getValueType(0) == MVT::f32 ? MVT::i32 : MVT::i64; 3460 Result = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI); 3461 Result = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0), Result); 3462 Result = LegalizeOp(Result); 3463 break; 3464 } 3465 } 3466 break; 3467 3468 case ISD::ADDC: 3469 case ISD::SUBC: 3470 Tmp1 = LegalizeOp(Node->getOperand(0)); 3471 Tmp2 = LegalizeOp(Node->getOperand(1)); 3472 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3473 Tmp3 = Result.getValue(0); 3474 Tmp4 = Result.getValue(1); 3475 3476 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3477 default: assert(0 && "This action is not supported yet!"); 3478 case TargetLowering::Legal: 3479 break; 3480 case TargetLowering::Custom: 3481 Tmp1 = TLI.LowerOperation(Tmp3, DAG); 3482 if (Tmp1.getNode() != NULL) { 3483 Tmp3 = LegalizeOp(Tmp1); 3484 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 3485 } 3486 break; 3487 } 3488 // Since this produces two values, make sure to remember that we legalized 3489 // both of them. 3490 AddLegalizedOperand(SDValue(Node, 0), Tmp3); 3491 AddLegalizedOperand(SDValue(Node, 1), Tmp4); 3492 return Op.getResNo() ? Tmp4 : Tmp3; 3493 3494 case ISD::ADDE: 3495 case ISD::SUBE: 3496 Tmp1 = LegalizeOp(Node->getOperand(0)); 3497 Tmp2 = LegalizeOp(Node->getOperand(1)); 3498 Tmp3 = LegalizeOp(Node->getOperand(2)); 3499 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 3500 Tmp3 = Result.getValue(0); 3501 Tmp4 = Result.getValue(1); 3502 3503 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3504 default: assert(0 && "This action is not supported yet!"); 3505 case TargetLowering::Legal: 3506 break; 3507 case TargetLowering::Custom: 3508 Tmp1 = TLI.LowerOperation(Tmp3, DAG); 3509 if (Tmp1.getNode() != NULL) { 3510 Tmp3 = LegalizeOp(Tmp1); 3511 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 3512 } 3513 break; 3514 } 3515 // Since this produces two values, make sure to remember that we legalized 3516 // both of them. 3517 AddLegalizedOperand(SDValue(Node, 0), Tmp3); 3518 AddLegalizedOperand(SDValue(Node, 1), Tmp4); 3519 return Op.getResNo() ? Tmp4 : Tmp3; 3520 3521 case ISD::BUILD_PAIR: { 3522 MVT PairTy = Node->getValueType(0); 3523 // TODO: handle the case where the Lo and Hi operands are not of legal type 3524 Tmp1 = LegalizeOp(Node->getOperand(0)); // Lo 3525 Tmp2 = LegalizeOp(Node->getOperand(1)); // Hi 3526 switch (TLI.getOperationAction(ISD::BUILD_PAIR, PairTy)) { 3527 case TargetLowering::Promote: 3528 case TargetLowering::Custom: 3529 assert(0 && "Cannot promote/custom this yet!"); 3530 case TargetLowering::Legal: 3531 if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1)) 3532 Result = DAG.getNode(ISD::BUILD_PAIR, dl, PairTy, Tmp1, Tmp2); 3533 break; 3534 case TargetLowering::Expand: 3535 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Tmp1); 3536 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Tmp2); 3537 Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2, 3538 DAG.getConstant(PairTy.getSizeInBits()/2, 3539 TLI.getShiftAmountTy())); 3540 Result = DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2); 3541 break; 3542 } 3543 break; 3544 } 3545 3546 case ISD::UREM: 3547 case ISD::SREM: 3548 case ISD::FREM: 3549 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3550 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 3551 3552 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3553 case TargetLowering::Promote: assert(0 && "Cannot promote this yet!"); 3554 case TargetLowering::Custom: 3555 isCustom = true; 3556 // FALLTHROUGH 3557 case TargetLowering::Legal: 3558 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3559 if (isCustom) { 3560 Tmp1 = TLI.LowerOperation(Result, DAG); 3561 if (Tmp1.getNode()) Result = Tmp1; 3562 } 3563 break; 3564 case TargetLowering::Expand: { 3565 unsigned DivOpc= (Node->getOpcode() == ISD::UREM) ? ISD::UDIV : ISD::SDIV; 3566 bool isSigned = DivOpc == ISD::SDIV; 3567 MVT VT = Node->getValueType(0); 3568 3569 // See if remainder can be lowered using two-result operations. 3570 SDVTList VTs = DAG.getVTList(VT, VT); 3571 if (Node->getOpcode() == ISD::SREM && 3572 TLI.isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 3573 Result = SDValue(DAG.getNode(ISD::SDIVREM, dl, 3574 VTs, Tmp1, Tmp2).getNode(), 1); 3575 break; 3576 } 3577 if (Node->getOpcode() == ISD::UREM && 3578 TLI.isOperationLegalOrCustom(ISD::UDIVREM, VT)) { 3579 Result = SDValue(DAG.getNode(ISD::UDIVREM, dl, 3580 VTs, Tmp1, Tmp2).getNode(), 1); 3581 break; 3582 } 3583 3584 if (VT.isInteger() && 3585 TLI.getOperationAction(DivOpc, VT) == TargetLowering::Legal) { 3586 // X % Y -> X-X/Y*Y 3587 Result = DAG.getNode(DivOpc, dl, VT, Tmp1, Tmp2); 3588 Result = DAG.getNode(ISD::MUL, dl, VT, Result, Tmp2); 3589 Result = DAG.getNode(ISD::SUB, dl, VT, Tmp1, Result); 3590 break; 3591 } 3592 3593 // Check to see if we have a libcall for this operator. 3594 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3595 switch (Node->getOpcode()) { 3596 default: break; 3597 case ISD::UREM: 3598 case ISD::SREM: 3599 if (VT == MVT::i16) 3600 LC = (isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16); 3601 else if (VT == MVT::i32) 3602 LC = (isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32); 3603 else if (VT == MVT::i64) 3604 LC = (isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64); 3605 else if (VT == MVT::i128) 3606 LC = (isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128); 3607 break; 3608 case ISD::FREM: 3609 // Floating point mod -> fmod libcall. 3610 LC = GetFPLibCall(VT, RTLIB::REM_F32, RTLIB::REM_F64, 3611 RTLIB::REM_F80, RTLIB::REM_PPCF128); 3612 break; 3613 } 3614 3615 if (LC != RTLIB::UNKNOWN_LIBCALL) { 3616 SDValue Dummy; 3617 Result = ExpandLibCall(LC, Node, isSigned, Dummy); 3618 break; 3619 } 3620 3621 assert(VT.isVector() && 3622 "Cannot expand this binary operator!"); 3623 // Expand the operation into a bunch of nasty scalar code. 3624 Result = LegalizeOp(UnrollVectorOp(Op)); 3625 break; 3626 } 3627 } 3628 break; 3629 case ISD::VAARG: { 3630 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3631 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 3632 3633 MVT VT = Node->getValueType(0); 3634 switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) { 3635 default: assert(0 && "This action is not supported yet!"); 3636 case TargetLowering::Custom: 3637 isCustom = true; 3638 // FALLTHROUGH 3639 case TargetLowering::Legal: 3640 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 3641 Result = Result.getValue(0); 3642 Tmp1 = Result.getValue(1); 3643 3644 if (isCustom) { 3645 Tmp2 = TLI.LowerOperation(Result, DAG); 3646 if (Tmp2.getNode()) { 3647 Result = LegalizeOp(Tmp2); 3648 Tmp1 = LegalizeOp(Tmp2.getValue(1)); 3649 } 3650 } 3651 break; 3652 case TargetLowering::Expand: { 3653 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3654 SDValue VAList = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0); 3655 // Increment the pointer, VAList, to the next vaarg 3656 Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList, 3657 DAG.getConstant(TLI.getTargetData()-> 3658 getTypeAllocSize(VT.getTypeForMVT()), 3659 TLI.getPointerTy())); 3660 // Store the incremented VAList to the legalized pointer 3661 Tmp3 = DAG.getStore(VAList.getValue(1), dl, Tmp3, Tmp2, V, 0); 3662 // Load the actual argument out of the pointer VAList 3663 Result = DAG.getLoad(VT, dl, Tmp3, VAList, NULL, 0); 3664 Tmp1 = LegalizeOp(Result.getValue(1)); 3665 Result = LegalizeOp(Result); 3666 break; 3667 } 3668 } 3669 // Since VAARG produces two values, make sure to remember that we 3670 // legalized both of them. 3671 AddLegalizedOperand(SDValue(Node, 0), Result); 3672 AddLegalizedOperand(SDValue(Node, 1), Tmp1); 3673 return Op.getResNo() ? Tmp1 : Result; 3674 } 3675 3676 case ISD::VACOPY: 3677 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3678 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the dest pointer. 3679 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the source pointer. 3680 3681 switch (TLI.getOperationAction(ISD::VACOPY, MVT::Other)) { 3682 default: assert(0 && "This action is not supported yet!"); 3683 case TargetLowering::Custom: 3684 isCustom = true; 3685 // FALLTHROUGH 3686 case TargetLowering::Legal: 3687 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, 3688 Node->getOperand(3), Node->getOperand(4)); 3689 if (isCustom) { 3690 Tmp1 = TLI.LowerOperation(Result, DAG); 3691 if (Tmp1.getNode()) Result = Tmp1; 3692 } 3693 break; 3694 case TargetLowering::Expand: 3695 // This defaults to loading a pointer from the input and storing it to the 3696 // output, returning the chain. 3697 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 3698 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 3699 Tmp4 = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp3, VS, 0); 3700 Result = DAG.getStore(Tmp4.getValue(1), dl, Tmp4, Tmp2, VD, 0); 3701 break; 3702 } 3703 break; 3704 3705 case ISD::VAEND: 3706 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3707 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 3708 3709 switch (TLI.getOperationAction(ISD::VAEND, MVT::Other)) { 3710 default: assert(0 && "This action is not supported yet!"); 3711 case TargetLowering::Custom: 3712 isCustom = true; 3713 // FALLTHROUGH 3714 case TargetLowering::Legal: 3715 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 3716 if (isCustom) { 3717 Tmp1 = TLI.LowerOperation(Tmp1, DAG); 3718 if (Tmp1.getNode()) Result = Tmp1; 3719 } 3720 break; 3721 case TargetLowering::Expand: 3722 Result = Tmp1; // Default to a no-op, return the chain 3723 break; 3724 } 3725 break; 3726 3727 case ISD::VASTART: 3728 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3729 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 3730 3731 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 3732 3733 switch (TLI.getOperationAction(ISD::VASTART, MVT::Other)) { 3734 default: assert(0 && "This action is not supported yet!"); 3735 case TargetLowering::Legal: break; 3736 case TargetLowering::Custom: 3737 Tmp1 = TLI.LowerOperation(Result, DAG); 3738 if (Tmp1.getNode()) Result = Tmp1; 3739 break; 3740 } 3741 break; 3742 3743 case ISD::ROTL: 3744 case ISD::ROTR: 3745 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3746 Tmp2 = LegalizeOp(DAG.getShiftAmountOperand(Node->getOperand(1))); // RHS 3747 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3748 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3749 default: 3750 assert(0 && "ROTL/ROTR legalize operation not supported"); 3751 break; 3752 case TargetLowering::Legal: 3753 break; 3754 case TargetLowering::Custom: 3755 Tmp1 = TLI.LowerOperation(Result, DAG); 3756 if (Tmp1.getNode()) Result = Tmp1; 3757 break; 3758 case TargetLowering::Promote: 3759 assert(0 && "Do not know how to promote ROTL/ROTR"); 3760 break; 3761 case TargetLowering::Expand: 3762 assert(0 && "Do not know how to expand ROTL/ROTR"); 3763 break; 3764 } 3765 break; 3766 3767 case ISD::BSWAP: 3768 Tmp1 = LegalizeOp(Node->getOperand(0)); // Op 3769 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3770 case TargetLowering::Custom: 3771 assert(0 && "Cannot custom legalize this yet!"); 3772 case TargetLowering::Legal: 3773 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3774 break; 3775 case TargetLowering::Promote: { 3776 MVT OVT = Tmp1.getValueType(); 3777 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3778 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 3779 3780 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Tmp1); 3781 Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1); 3782 Result = DAG.getNode(ISD::SRL, dl, NVT, Tmp1, 3783 DAG.getConstant(DiffBits, TLI.getShiftAmountTy())); 3784 break; 3785 } 3786 case TargetLowering::Expand: 3787 Result = ExpandBSWAP(Tmp1, dl); 3788 break; 3789 } 3790 break; 3791 3792 case ISD::CTPOP: 3793 case ISD::CTTZ: 3794 case ISD::CTLZ: 3795 Tmp1 = LegalizeOp(Node->getOperand(0)); // Op 3796 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3797 case TargetLowering::Custom: 3798 case TargetLowering::Legal: 3799 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3800 if (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)) == 3801 TargetLowering::Custom) { 3802 Tmp1 = TLI.LowerOperation(Result, DAG); 3803 if (Tmp1.getNode()) { 3804 Result = Tmp1; 3805 } 3806 } 3807 break; 3808 case TargetLowering::Promote: { 3809 MVT OVT = Tmp1.getValueType(); 3810 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3811 3812 // Zero extend the argument. 3813 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Tmp1); 3814 // Perform the larger operation, then subtract if needed. 3815 Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Tmp1); 3816 switch (Node->getOpcode()) { 3817 case ISD::CTPOP: 3818 Result = Tmp1; 3819 break; 3820 case ISD::CTTZ: 3821 //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) 3822 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()), 3823 Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT), 3824 ISD::SETEQ); 3825 Result = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, 3826 DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1); 3827 break; 3828 case ISD::CTLZ: 3829 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 3830 Result = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 3831 DAG.getConstant(NVT.getSizeInBits() - 3832 OVT.getSizeInBits(), NVT)); 3833 break; 3834 } 3835 break; 3836 } 3837 case TargetLowering::Expand: 3838 Result = ExpandBitCount(Node->getOpcode(), Tmp1, dl); 3839 break; 3840 } 3841 break; 3842 3843 // Unary operators 3844 case ISD::FABS: 3845 case ISD::FNEG: 3846 case ISD::FSQRT: 3847 case ISD::FSIN: 3848 case ISD::FCOS: 3849 case ISD::FLOG: 3850 case ISD::FLOG2: 3851 case ISD::FLOG10: 3852 case ISD::FEXP: 3853 case ISD::FEXP2: 3854 case ISD::FTRUNC: 3855 case ISD::FFLOOR: 3856 case ISD::FCEIL: 3857 case ISD::FRINT: 3858 case ISD::FNEARBYINT: 3859 Tmp1 = LegalizeOp(Node->getOperand(0)); 3860 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3861 case TargetLowering::Promote: 3862 case TargetLowering::Custom: 3863 isCustom = true; 3864 // FALLTHROUGH 3865 case TargetLowering::Legal: 3866 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3867 if (isCustom) { 3868 Tmp1 = TLI.LowerOperation(Result, DAG); 3869 if (Tmp1.getNode()) Result = Tmp1; 3870 } 3871 break; 3872 case TargetLowering::Expand: 3873 switch (Node->getOpcode()) { 3874 default: assert(0 && "Unreachable!"); 3875 case ISD::FNEG: 3876 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 3877 Tmp2 = DAG.getConstantFP(-0.0, Node->getValueType(0)); 3878 Result = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp2, Tmp1); 3879 break; 3880 case ISD::FABS: { 3881 // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X). 3882 MVT VT = Node->getValueType(0); 3883 Tmp2 = DAG.getConstantFP(0.0, VT); 3884 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()), 3885 Tmp1, Tmp2, ISD::SETUGT); 3886 Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1); 3887 Result = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3); 3888 break; 3889 } 3890 case ISD::FSQRT: 3891 case ISD::FSIN: 3892 case ISD::FCOS: 3893 case ISD::FLOG: 3894 case ISD::FLOG2: 3895 case ISD::FLOG10: 3896 case ISD::FEXP: 3897 case ISD::FEXP2: 3898 case ISD::FTRUNC: 3899 case ISD::FFLOOR: 3900 case ISD::FCEIL: 3901 case ISD::FRINT: 3902 case ISD::FNEARBYINT: { 3903 MVT VT = Node->getValueType(0); 3904 3905 // Expand unsupported unary vector operators by unrolling them. 3906 if (VT.isVector()) { 3907 Result = LegalizeOp(UnrollVectorOp(Op)); 3908 break; 3909 } 3910 3911 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3912 switch(Node->getOpcode()) { 3913 case ISD::FSQRT: 3914 LC = GetFPLibCall(VT, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 3915 RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128); 3916 break; 3917 case ISD::FSIN: 3918 LC = GetFPLibCall(VT, RTLIB::SIN_F32, RTLIB::SIN_F64, 3919 RTLIB::SIN_F80, RTLIB::SIN_PPCF128); 3920 break; 3921 case ISD::FCOS: 3922 LC = GetFPLibCall(VT, RTLIB::COS_F32, RTLIB::COS_F64, 3923 RTLIB::COS_F80, RTLIB::COS_PPCF128); 3924 break; 3925 case ISD::FLOG: 3926 LC = GetFPLibCall(VT, RTLIB::LOG_F32, RTLIB::LOG_F64, 3927 RTLIB::LOG_F80, RTLIB::LOG_PPCF128); 3928 break; 3929 case ISD::FLOG2: 3930 LC = GetFPLibCall(VT, RTLIB::LOG2_F32, RTLIB::LOG2_F64, 3931 RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128); 3932 break; 3933 case ISD::FLOG10: 3934 LC = GetFPLibCall(VT, RTLIB::LOG10_F32, RTLIB::LOG10_F64, 3935 RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128); 3936 break; 3937 case ISD::FEXP: 3938 LC = GetFPLibCall(VT, RTLIB::EXP_F32, RTLIB::EXP_F64, 3939 RTLIB::EXP_F80, RTLIB::EXP_PPCF128); 3940 break; 3941 case ISD::FEXP2: 3942 LC = GetFPLibCall(VT, RTLIB::EXP2_F32, RTLIB::EXP2_F64, 3943 RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128); 3944 break; 3945 case ISD::FTRUNC: 3946 LC = GetFPLibCall(VT, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 3947 RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128); 3948 break; 3949 case ISD::FFLOOR: 3950 LC = GetFPLibCall(VT, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 3951 RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128); 3952 break; 3953 case ISD::FCEIL: 3954 LC = GetFPLibCall(VT, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 3955 RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128); 3956 break; 3957 case ISD::FRINT: 3958 LC = GetFPLibCall(VT, RTLIB::RINT_F32, RTLIB::RINT_F64, 3959 RTLIB::RINT_F80, RTLIB::RINT_PPCF128); 3960 break; 3961 case ISD::FNEARBYINT: 3962 LC = GetFPLibCall(VT, RTLIB::NEARBYINT_F32, RTLIB::NEARBYINT_F64, 3963 RTLIB::NEARBYINT_F80, RTLIB::NEARBYINT_PPCF128); 3964 break; 3965 break; 3966 default: assert(0 && "Unreachable!"); 3967 } 3968 SDValue Dummy; 3969 Result = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Dummy); 3970 break; 3971 } 3972 } 3973 break; 3974 } 3975 break; 3976 case ISD::FPOWI: { 3977 MVT VT = Node->getValueType(0); 3978 3979 // Expand unsupported unary vector operators by unrolling them. 3980 if (VT.isVector()) { 3981 Result = LegalizeOp(UnrollVectorOp(Op)); 3982 break; 3983 } 3984 3985 // We always lower FPOWI into a libcall. No target support for it yet. 3986 RTLIB::Libcall LC = GetFPLibCall(VT, RTLIB::POWI_F32, RTLIB::POWI_F64, 3987 RTLIB::POWI_F80, RTLIB::POWI_PPCF128); 3988 SDValue Dummy; 3989 Result = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Dummy); 3990 break; 3991 } 3992 case ISD::BIT_CONVERT: 3993 if (!isTypeLegal(Node->getOperand(0).getValueType())) { 3994 Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 3995 Node->getValueType(0), dl); 3996 } else if (Op.getOperand(0).getValueType().isVector()) { 3997 // The input has to be a vector type, we have to either scalarize it, pack 3998 // it, or convert it based on whether the input vector type is legal. 3999 SDNode *InVal = Node->getOperand(0).getNode(); 4000 int InIx = Node->getOperand(0).getResNo(); 4001 unsigned NumElems = InVal->getValueType(InIx).getVectorNumElements(); 4002 MVT EVT = InVal->getValueType(InIx).getVectorElementType(); 4003 4004 // Figure out if there is a simple type corresponding to this Vector 4005 // type. If so, convert to the vector type. 4006 MVT TVT = MVT::getVectorVT(EVT, NumElems); 4007 if (TLI.isTypeLegal(TVT)) { 4008 // Turn this into a bit convert of the vector input. 4009 Tmp1 = LegalizeOp(Node->getOperand(0)); 4010 Result = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0), Tmp1); 4011 break; 4012 } else if (NumElems == 1) { 4013 // Turn this into a bit convert of the scalar input. 4014 Result = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0), 4015 ScalarizeVectorOp(Node->getOperand(0))); 4016 break; 4017 } else { 4018 // FIXME: UNIMP! Store then reload 4019 assert(0 && "Cast from unsupported vector type not implemented yet!"); 4020 } 4021 } else { 4022 switch (TLI.getOperationAction(ISD::BIT_CONVERT, 4023 Node->getOperand(0).getValueType())) { 4024 default: assert(0 && "Unknown operation action!"); 4025 case TargetLowering::Expand: 4026 Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 4027 Node->getValueType(0), dl); 4028 break; 4029 case TargetLowering::Legal: 4030 Tmp1 = LegalizeOp(Node->getOperand(0)); 4031 Result = DAG.UpdateNodeOperands(Result, Tmp1); 4032 break; 4033 } 4034 } 4035 break; 4036 case ISD::CONVERT_RNDSAT: { 4037 ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(Node)->getCvtCode(); 4038 switch (CvtCode) { 4039 default: assert(0 && "Unknown cvt code!"); 4040 case ISD::CVT_SF: 4041 case ISD::CVT_UF: 4042 case ISD::CVT_FF: 4043 break; 4044 case ISD::CVT_FS: 4045 case ISD::CVT_FU: 4046 case ISD::CVT_SS: 4047 case ISD::CVT_SU: 4048 case ISD::CVT_US: 4049 case ISD::CVT_UU: { 4050 SDValue DTyOp = Node->getOperand(1); 4051 SDValue STyOp = Node->getOperand(2); 4052 SDValue RndOp = Node->getOperand(3); 4053 SDValue SatOp = Node->getOperand(4); 4054 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4055 case Expand: assert(0 && "Shouldn't need to expand other operators here!"); 4056 case Legal: 4057 Tmp1 = LegalizeOp(Node->getOperand(0)); 4058 Result = DAG.UpdateNodeOperands(Result, Tmp1, DTyOp, STyOp, 4059 RndOp, SatOp); 4060 if (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)) == 4061 TargetLowering::Custom) { 4062 Tmp1 = TLI.LowerOperation(Result, DAG); 4063 if (Tmp1.getNode()) Result = Tmp1; 4064 } 4065 break; 4066 case Promote: 4067 Result = PromoteOp(Node->getOperand(0)); 4068 // For FP, make Op1 a i32 4069 4070 Result = DAG.getConvertRndSat(Op.getValueType(), dl, Result, 4071 DTyOp, STyOp, RndOp, SatOp, CvtCode); 4072 break; 4073 } 4074 break; 4075 } 4076 } // end switch CvtCode 4077 break; 4078 } 4079 // Conversion operators. The source and destination have different types. 4080 case ISD::SINT_TO_FP: 4081 case ISD::UINT_TO_FP: { 4082 bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP; 4083 Result = LegalizeINT_TO_FP(Result, isSigned, 4084 Node->getValueType(0), Node->getOperand(0), dl); 4085 break; 4086 } 4087 case ISD::TRUNCATE: 4088 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4089 case Legal: 4090 Tmp1 = LegalizeOp(Node->getOperand(0)); 4091 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 4092 default: assert(0 && "Unknown TRUNCATE legalization operation action!"); 4093 case TargetLowering::Custom: 4094 isCustom = true; 4095 // FALLTHROUGH 4096 case TargetLowering::Legal: 4097 Result = DAG.UpdateNodeOperands(Result, Tmp1); 4098 if (isCustom) { 4099 Tmp1 = TLI.LowerOperation(Result, DAG); 4100 if (Tmp1.getNode()) Result = Tmp1; 4101 } 4102 break; 4103 case TargetLowering::Expand: 4104 assert(Result.getValueType().isVector() && "must be vector type"); 4105 // Unroll the truncate. We should do better. 4106 Result = LegalizeOp(UnrollVectorOp(Result)); 4107 } 4108 break; 4109 case Expand: 4110 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 4111 4112 // Since the result is legal, we should just be able to truncate the low 4113 // part of the source. 4114 Result = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 4115 break; 4116 case Promote: 4117 Result = PromoteOp(Node->getOperand(0)); 4118 Result = DAG.getNode(ISD::TRUNCATE, dl, Op.getValueType(), Result); 4119 break; 4120 } 4121 break; 4122 4123 case ISD::FP_TO_SINT: 4124 case ISD::FP_TO_UINT: 4125 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4126 case Legal: 4127 Tmp1 = LegalizeOp(Node->getOperand(0)); 4128 4129 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))){ 4130 default: assert(0 && "Unknown operation action!"); 4131 case TargetLowering::Custom: 4132 isCustom = true; 4133 // FALLTHROUGH 4134 case TargetLowering::Legal: 4135 Result = DAG.UpdateNodeOperands(Result, Tmp1); 4136 if (isCustom) { 4137 Tmp1 = TLI.LowerOperation(Result, DAG); 4138 if (Tmp1.getNode()) Result = Tmp1; 4139 } 4140 break; 4141 case TargetLowering::Promote: 4142 Result = PromoteLegalFP_TO_INT(Tmp1, Node->getValueType(0), 4143 Node->getOpcode() == ISD::FP_TO_SINT, 4144 dl); 4145 break; 4146 case TargetLowering::Expand: 4147 if (Node->getOpcode() == ISD::FP_TO_UINT) { 4148 SDValue True, False; 4149 MVT VT = Node->getOperand(0).getValueType(); 4150 MVT NVT = Node->getValueType(0); 4151 const uint64_t zero[] = {0, 0}; 4152 APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero)); 4153 APInt x = APInt::getSignBit(NVT.getSizeInBits()); 4154 (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven); 4155 Tmp2 = DAG.getConstantFP(apf, VT); 4156 Tmp3 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), 4157 Node->getOperand(0), 4158 Tmp2, ISD::SETLT); 4159 True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0)); 4160 False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, 4161 DAG.getNode(ISD::FSUB, dl, VT, 4162 Node->getOperand(0), Tmp2)); 4163 False = DAG.getNode(ISD::XOR, dl, NVT, False, 4164 DAG.getConstant(x, NVT)); 4165 Result = DAG.getNode(ISD::SELECT, dl, NVT, Tmp3, True, False); 4166 break; 4167 } else { 4168 assert(0 && "Do not know how to expand FP_TO_SINT yet!"); 4169 } 4170 break; 4171 } 4172 break; 4173 case Expand: { 4174 MVT VT = Op.getValueType(); 4175 MVT OVT = Node->getOperand(0).getValueType(); 4176 // Convert ppcf128 to i32 4177 if (OVT == MVT::ppcf128 && VT == MVT::i32) { 4178 if (Node->getOpcode() == ISD::FP_TO_SINT) { 4179 Result = DAG.getNode(ISD::FP_ROUND_INREG, dl, MVT::ppcf128, 4180 Node->getOperand(0), DAG.getValueType(MVT::f64)); 4181 Result = DAG.getNode(ISD::FP_ROUND, dl, MVT::f64, Result, 4182 DAG.getIntPtrConstant(1)); 4183 Result = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Result); 4184 } else { 4185 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 4186 APFloat apf = APFloat(APInt(128, 2, TwoE31)); 4187 Tmp2 = DAG.getConstantFP(apf, OVT); 4188 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 4189 // FIXME: generated code sucks. 4190 Result = DAG.getNode(ISD::SELECT_CC, dl, VT, Node->getOperand(0), 4191 Tmp2, 4192 DAG.getNode(ISD::ADD, dl, MVT::i32, 4193 DAG.getNode(ISD::FP_TO_SINT, dl, VT, 4194 DAG.getNode(ISD::FSUB, dl, OVT, 4195 Node->getOperand(0), Tmp2)), 4196 DAG.getConstant(0x80000000, MVT::i32)), 4197 DAG.getNode(ISD::FP_TO_SINT, dl, VT, 4198 Node->getOperand(0)), 4199 DAG.getCondCode(ISD::SETGE)); 4200 } 4201 break; 4202 } 4203 // Convert f32 / f64 to i32 / i64 / i128. 4204 RTLIB::Libcall LC = (Node->getOpcode() == ISD::FP_TO_SINT) ? 4205 RTLIB::getFPTOSINT(OVT, VT) : RTLIB::getFPTOUINT(OVT, VT); 4206 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpectd fp-to-int conversion!"); 4207 SDValue Dummy; 4208 Result = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Dummy); 4209 break; 4210 } 4211 case Promote: 4212 Tmp1 = PromoteOp(Node->getOperand(0)); 4213 Result = DAG.UpdateNodeOperands(Result, LegalizeOp(Tmp1)); 4214 Result = LegalizeOp(Result); 4215 break; 4216 } 4217 break; 4218 4219 case ISD::FP_EXTEND: { 4220 MVT DstVT = Op.getValueType(); 4221 MVT SrcVT = Op.getOperand(0).getValueType(); 4222 if (TLI.getConvertAction(SrcVT, DstVT) == TargetLowering::Expand) { 4223 // The only other way we can lower this is to turn it into a STORE, 4224 // LOAD pair, targetting a temporary location (a stack slot). 4225 Result = EmitStackConvert(Node->getOperand(0), SrcVT, DstVT, dl); 4226 break; 4227 } 4228 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4229 case Expand: assert(0 && "Shouldn't need to expand other operators here!"); 4230 case Legal: 4231 Tmp1 = LegalizeOp(Node->getOperand(0)); 4232 Result = DAG.UpdateNodeOperands(Result, Tmp1); 4233 break; 4234 case Promote: 4235 Tmp1 = PromoteOp(Node->getOperand(0)); 4236 Result = DAG.getNode(ISD::FP_EXTEND, dl, Op.getValueType(), Tmp1); 4237 break; 4238 } 4239 break; 4240 } 4241 case ISD::FP_ROUND: { 4242 MVT DstVT = Op.getValueType(); 4243 MVT SrcVT = Op.getOperand(0).getValueType(); 4244 if (TLI.getConvertAction(SrcVT, DstVT) == TargetLowering::Expand) { 4245 if (SrcVT == MVT::ppcf128) { 4246 SDValue Lo; 4247 ExpandOp(Node->getOperand(0), Lo, Result); 4248 // Round it the rest of the way (e.g. to f32) if needed. 4249 if (DstVT!=MVT::f64) 4250 Result = DAG.getNode(ISD::FP_ROUND, dl, 4251 DstVT, Result, Op.getOperand(1)); 4252 break; 4253 } 4254 // The only other way we can lower this is to turn it into a STORE, 4255 // LOAD pair, targetting a temporary location (a stack slot). 4256 Result = EmitStackConvert(Node->getOperand(0), DstVT, DstVT, dl); 4257 break; 4258 } 4259 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4260 case Expand: assert(0 && "Shouldn't need to expand other operators here!"); 4261 case Legal: 4262 Tmp1 = LegalizeOp(Node->getOperand(0)); 4263 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 4264 break; 4265 case Promote: 4266 Tmp1 = PromoteOp(Node->getOperand(0)); 4267 Result = DAG.getNode(ISD::FP_ROUND, dl, Op.getValueType(), Tmp1, 4268 Node->getOperand(1)); 4269 break; 4270 } 4271 break; 4272 } 4273 case ISD::ANY_EXTEND: 4274 case ISD::ZERO_EXTEND: 4275 case ISD::SIGN_EXTEND: 4276 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4277 case Expand: assert(0 && "Shouldn't need to expand other operators here!"); 4278 case Legal: 4279 Tmp1 = LegalizeOp(Node->getOperand(0)); 4280 Result = DAG.UpdateNodeOperands(Result, Tmp1); 4281 if (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)) == 4282 TargetLowering::Custom) { 4283 Tmp1 = TLI.LowerOperation(Result, DAG); 4284 if (Tmp1.getNode()) Result = Tmp1; 4285 } 4286 break; 4287 case Promote: 4288 switch (Node->getOpcode()) { 4289 case ISD::ANY_EXTEND: 4290 Tmp1 = PromoteOp(Node->getOperand(0)); 4291 Result = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), Tmp1); 4292 break; 4293 case ISD::ZERO_EXTEND: 4294 Result = PromoteOp(Node->getOperand(0)); 4295 Result = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), Result); 4296 Result = DAG.getZeroExtendInReg(Result, dl, 4297 Node->getOperand(0).getValueType()); 4298 break; 4299 case ISD::SIGN_EXTEND: 4300 Result = PromoteOp(Node->getOperand(0)); 4301 Result = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), Result); 4302 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Result.getValueType(), 4303 Result, 4304 DAG.getValueType(Node->getOperand(0).getValueType())); 4305 break; 4306 } 4307 } 4308 break; 4309 case ISD::FP_ROUND_INREG: 4310 case ISD::SIGN_EXTEND_INREG: { 4311 Tmp1 = LegalizeOp(Node->getOperand(0)); 4312 MVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 4313 4314 // If this operation is not supported, convert it to a shl/shr or load/store 4315 // pair. 4316 switch (TLI.getOperationAction(Node->getOpcode(), ExtraVT)) { 4317 default: assert(0 && "This action not supported for this op yet!"); 4318 case TargetLowering::Legal: 4319 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 4320 break; 4321 case TargetLowering::Expand: 4322 // If this is an integer extend and shifts are supported, do that. 4323 if (Node->getOpcode() == ISD::SIGN_EXTEND_INREG) { 4324 // NOTE: we could fall back on load/store here too for targets without 4325 // SAR. However, it is doubtful that any exist. 4326 unsigned BitsDiff = Node->getValueType(0).getSizeInBits() - 4327 ExtraVT.getSizeInBits(); 4328 SDValue ShiftCst = DAG.getConstant(BitsDiff, TLI.getShiftAmountTy()); 4329 Result = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 4330 Node->getOperand(0), ShiftCst); 4331 Result = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), 4332 Result, ShiftCst); 4333 } else if (Node->getOpcode() == ISD::FP_ROUND_INREG) { 4334 // The only way we can lower this is to turn it into a TRUNCSTORE, 4335 // EXTLOAD pair, targetting a temporary location (a stack slot). 4336 4337 // NOTE: there is a choice here between constantly creating new stack 4338 // slots and always reusing the same one. We currently always create 4339 // new ones, as reuse may inhibit scheduling. 4340 Result = EmitStackConvert(Node->getOperand(0), ExtraVT, 4341 Node->getValueType(0), dl); 4342 } else { 4343 assert(0 && "Unknown op"); 4344 } 4345 break; 4346 } 4347 break; 4348 } 4349 case ISD::TRAMPOLINE: { 4350 SDValue Ops[6]; 4351 for (unsigned i = 0; i != 6; ++i) 4352 Ops[i] = LegalizeOp(Node->getOperand(i)); 4353 Result = DAG.UpdateNodeOperands(Result, Ops, 6); 4354 // The only option for this node is to custom lower it. 4355 Result = TLI.LowerOperation(Result, DAG); 4356 assert(Result.getNode() && "Should always custom lower!"); 4357 4358 // Since trampoline produces two values, make sure to remember that we 4359 // legalized both of them. 4360 Tmp1 = LegalizeOp(Result.getValue(1)); 4361 Result = LegalizeOp(Result); 4362 AddLegalizedOperand(SDValue(Node, 0), Result); 4363 AddLegalizedOperand(SDValue(Node, 1), Tmp1); 4364 return Op.getResNo() ? Tmp1 : Result; 4365 } 4366 case ISD::FLT_ROUNDS_: { 4367 MVT VT = Node->getValueType(0); 4368 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 4369 default: assert(0 && "This action not supported for this op yet!"); 4370 case TargetLowering::Custom: 4371 Result = TLI.LowerOperation(Op, DAG); 4372 if (Result.getNode()) break; 4373 // Fall Thru 4374 case TargetLowering::Legal: 4375 // If this operation is not supported, lower it to constant 1 4376 Result = DAG.getConstant(1, VT); 4377 break; 4378 } 4379 break; 4380 } 4381 case ISD::TRAP: { 4382 MVT VT = Node->getValueType(0); 4383 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 4384 default: assert(0 && "This action not supported for this op yet!"); 4385 case TargetLowering::Legal: 4386 Tmp1 = LegalizeOp(Node->getOperand(0)); 4387 Result = DAG.UpdateNodeOperands(Result, Tmp1); 4388 break; 4389 case TargetLowering::Custom: 4390 Result = TLI.LowerOperation(Op, DAG); 4391 if (Result.getNode()) break; 4392 // Fall Thru 4393 case TargetLowering::Expand: 4394 // If this operation is not supported, lower it to 'abort()' call 4395 Tmp1 = LegalizeOp(Node->getOperand(0)); 4396 TargetLowering::ArgListTy Args; 4397 std::pair<SDValue, SDValue> CallResult = 4398 TLI.LowerCallTo(Tmp1, Type::VoidTy, 4399 false, false, false, false, CallingConv::C, false, 4400 DAG.getExternalSymbol("abort", TLI.getPointerTy()), 4401 Args, DAG, dl); 4402 Result = CallResult.second; 4403 break; 4404 } 4405 break; 4406 } 4407 4408 case ISD::SADDO: 4409 case ISD::SSUBO: { 4410 MVT VT = Node->getValueType(0); 4411 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 4412 default: assert(0 && "This action not supported for this op yet!"); 4413 case TargetLowering::Custom: 4414 Result = TLI.LowerOperation(Op, DAG); 4415 if (Result.getNode()) break; 4416 // FALLTHROUGH 4417 case TargetLowering::Legal: { 4418 SDValue LHS = LegalizeOp(Node->getOperand(0)); 4419 SDValue RHS = LegalizeOp(Node->getOperand(1)); 4420 4421 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ? 4422 ISD::ADD : ISD::SUB, dl, LHS.getValueType(), 4423 LHS, RHS); 4424 MVT OType = Node->getValueType(1); 4425 4426 SDValue Zero = DAG.getConstant(0, LHS.getValueType()); 4427 4428 // LHSSign -> LHS >= 0 4429 // RHSSign -> RHS >= 0 4430 // SumSign -> Sum >= 0 4431 // 4432 // Add: 4433 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) 4434 // Sub: 4435 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) 4436 // 4437 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE); 4438 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE); 4439 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign, 4440 Node->getOpcode() == ISD::SADDO ? 4441 ISD::SETEQ : ISD::SETNE); 4442 4443 SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE); 4444 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE); 4445 4446 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE); 4447 4448 MVT ValueVTs[] = { LHS.getValueType(), OType }; 4449 SDValue Ops[] = { Sum, Cmp }; 4450 4451 Result = DAG.getNode(ISD::MERGE_VALUES, dl, 4452 DAG.getVTList(&ValueVTs[0], 2), 4453 &Ops[0], 2); 4454 SDNode *RNode = Result.getNode(); 4455 DAG.ReplaceAllUsesWith(Node, RNode); 4456 break; 4457 } 4458 } 4459 4460 break; 4461 } 4462 case ISD::UADDO: 4463 case ISD::USUBO: { 4464 MVT VT = Node->getValueType(0); 4465 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 4466 default: assert(0 && "This action not supported for this op yet!"); 4467 case TargetLowering::Custom: 4468 Result = TLI.LowerOperation(Op, DAG); 4469 if (Result.getNode()) break; 4470 // FALLTHROUGH 4471 case TargetLowering::Legal: { 4472 SDValue LHS = LegalizeOp(Node->getOperand(0)); 4473 SDValue RHS = LegalizeOp(Node->getOperand(1)); 4474 4475 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ? 4476 ISD::ADD : ISD::SUB, dl, LHS.getValueType(), 4477 LHS, RHS); 4478 MVT OType = Node->getValueType(1); 4479 SDValue Cmp = DAG.getSetCC(dl, OType, Sum, LHS, 4480 Node->getOpcode () == ISD::UADDO ? 4481 ISD::SETULT : ISD::SETUGT); 4482 4483 MVT ValueVTs[] = { LHS.getValueType(), OType }; 4484 SDValue Ops[] = { Sum, Cmp }; 4485 4486 Result = DAG.getNode(ISD::MERGE_VALUES, dl, 4487 DAG.getVTList(&ValueVTs[0], 2), 4488 &Ops[0], 2); 4489 SDNode *RNode = Result.getNode(); 4490 DAG.ReplaceAllUsesWith(Node, RNode); 4491 break; 4492 } 4493 } 4494 4495 break; 4496 } 4497 case ISD::SMULO: 4498 case ISD::UMULO: { 4499 MVT VT = Node->getValueType(0); 4500 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 4501 default: assert(0 && "This action is not supported at all!"); 4502 case TargetLowering::Custom: 4503 Result = TLI.LowerOperation(Op, DAG); 4504 if (Result.getNode()) break; 4505 // Fall Thru 4506 case TargetLowering::Legal: 4507 // FIXME: According to Hacker's Delight, this can be implemented in 4508 // target independent lowering, but it would be inefficient, since it 4509 // requires a division + a branch. 4510 assert(0 && "Target independent lowering is not supported for SMULO/UMULO!"); 4511 break; 4512 } 4513 break; 4514 } 4515 4516 } 4517 4518 assert(Result.getValueType() == Op.getValueType() && 4519 "Bad legalization!"); 4520 4521 // Make sure that the generated code is itself legal. 4522 if (Result != Op) 4523 Result = LegalizeOp(Result); 4524 4525 // Note that LegalizeOp may be reentered even from single-use nodes, which 4526 // means that we always must cache transformed nodes. 4527 AddLegalizedOperand(Op, Result); 4528 return Result; 4529} 4530 4531/// PromoteOp - Given an operation that produces a value in an invalid type, 4532/// promote it to compute the value into a larger type. The produced value will 4533/// have the correct bits for the low portion of the register, but no guarantee 4534/// is made about the top bits: it may be zero, sign-extended, or garbage. 4535SDValue SelectionDAGLegalize::PromoteOp(SDValue Op) { 4536 MVT VT = Op.getValueType(); 4537 MVT NVT = TLI.getTypeToTransformTo(VT); 4538 assert(getTypeAction(VT) == Promote && 4539 "Caller should expand or legalize operands that are not promotable!"); 4540 assert(NVT.bitsGT(VT) && NVT.isInteger() == VT.isInteger() && 4541 "Cannot promote to smaller type!"); 4542 4543 SDValue Tmp1, Tmp2, Tmp3; 4544 SDValue Result; 4545 SDNode *Node = Op.getNode(); 4546 DebugLoc dl = Node->getDebugLoc(); 4547 4548 DenseMap<SDValue, SDValue>::iterator I = PromotedNodes.find(Op); 4549 if (I != PromotedNodes.end()) return I->second; 4550 4551 switch (Node->getOpcode()) { 4552 case ISD::CopyFromReg: 4553 assert(0 && "CopyFromReg must be legal!"); 4554 default: 4555#ifndef NDEBUG 4556 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 4557#endif 4558 assert(0 && "Do not know how to promote this operator!"); 4559 abort(); 4560 case ISD::UNDEF: 4561 Result = DAG.getUNDEF(NVT); 4562 break; 4563 case ISD::Constant: 4564 if (VT != MVT::i1) 4565 Result = DAG.getNode(ISD::SIGN_EXTEND, dl, NVT, Op); 4566 else 4567 Result = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Op); 4568 assert(isa<ConstantSDNode>(Result) && "Didn't constant fold zext?"); 4569 break; 4570 case ISD::ConstantFP: 4571 Result = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op); 4572 assert(isa<ConstantFPSDNode>(Result) && "Didn't constant fold fp_extend?"); 4573 break; 4574 4575 case ISD::SETCC: { 4576 MVT VT0 = Node->getOperand(0).getValueType(); 4577 assert(isTypeLegal(TLI.getSetCCResultType(VT0)) 4578 && "SetCC type is not legal??"); 4579 Result = DAG.getNode(ISD::SETCC, dl, TLI.getSetCCResultType(VT0), 4580 Node->getOperand(0), Node->getOperand(1), 4581 Node->getOperand(2)); 4582 break; 4583 } 4584 case ISD::TRUNCATE: 4585 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4586 case Legal: 4587 Result = LegalizeOp(Node->getOperand(0)); 4588 assert(Result.getValueType().bitsGE(NVT) && 4589 "This truncation doesn't make sense!"); 4590 if (Result.getValueType().bitsGT(NVT)) // Truncate to NVT instead of VT 4591 Result = DAG.getNode(ISD::TRUNCATE, dl, NVT, Result); 4592 break; 4593 case Promote: 4594 // The truncation is not required, because we don't guarantee anything 4595 // about high bits anyway. 4596 Result = PromoteOp(Node->getOperand(0)); 4597 break; 4598 case Expand: 4599 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 4600 // Truncate the low part of the expanded value to the result type 4601 Result = DAG.getNode(ISD::TRUNCATE, dl, NVT, Tmp1); 4602 } 4603 break; 4604 case ISD::SIGN_EXTEND: 4605 case ISD::ZERO_EXTEND: 4606 case ISD::ANY_EXTEND: 4607 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4608 case Expand: assert(0 && "BUG: Smaller reg should have been promoted!"); 4609 case Legal: 4610 // Input is legal? Just do extend all the way to the larger type. 4611 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Node->getOperand(0)); 4612 break; 4613 case Promote: 4614 // Promote the reg if it's smaller. 4615 Result = PromoteOp(Node->getOperand(0)); 4616 // The high bits are not guaranteed to be anything. Insert an extend. 4617 if (Node->getOpcode() == ISD::SIGN_EXTEND) 4618 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Result, 4619 DAG.getValueType(Node->getOperand(0).getValueType())); 4620 else if (Node->getOpcode() == ISD::ZERO_EXTEND) 4621 Result = DAG.getZeroExtendInReg(Result, dl, 4622 Node->getOperand(0).getValueType()); 4623 break; 4624 } 4625 break; 4626 case ISD::CONVERT_RNDSAT: { 4627 ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(Node)->getCvtCode(); 4628 assert ((CvtCode == ISD::CVT_SS || CvtCode == ISD::CVT_SU || 4629 CvtCode == ISD::CVT_US || CvtCode == ISD::CVT_UU || 4630 CvtCode == ISD::CVT_SF || CvtCode == ISD::CVT_UF) && 4631 "can only promote integers"); 4632 Result = DAG.getConvertRndSat(NVT, dl, Node->getOperand(0), 4633 Node->getOperand(1), Node->getOperand(2), 4634 Node->getOperand(3), Node->getOperand(4), 4635 CvtCode); 4636 break; 4637 4638 } 4639 case ISD::BIT_CONVERT: 4640 Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 4641 Node->getValueType(0), dl); 4642 Result = PromoteOp(Result); 4643 break; 4644 4645 case ISD::FP_EXTEND: 4646 assert(0 && "Case not implemented. Dynamically dead with 2 FP types!"); 4647 case ISD::FP_ROUND: 4648 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4649 case Expand: assert(0 && "BUG: Cannot expand FP regs!"); 4650 case Promote: assert(0 && "Unreachable with 2 FP types!"); 4651 case Legal: 4652 if (Node->getConstantOperandVal(1) == 0) { 4653 // Input is legal? Do an FP_ROUND_INREG. 4654 Result = DAG.getNode(ISD::FP_ROUND_INREG, dl, NVT, Node->getOperand(0), 4655 DAG.getValueType(VT)); 4656 } else { 4657 // Just remove the truncate, it isn't affecting the value. 4658 Result = DAG.getNode(ISD::FP_ROUND, dl, NVT, Node->getOperand(0), 4659 Node->getOperand(1)); 4660 } 4661 break; 4662 } 4663 break; 4664 case ISD::SINT_TO_FP: 4665 case ISD::UINT_TO_FP: 4666 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4667 case Legal: 4668 // No extra round required here. 4669 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Node->getOperand(0)); 4670 break; 4671 4672 case Promote: 4673 Result = PromoteOp(Node->getOperand(0)); 4674 if (Node->getOpcode() == ISD::SINT_TO_FP) 4675 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Result.getValueType(), 4676 Result, 4677 DAG.getValueType(Node->getOperand(0).getValueType())); 4678 else 4679 Result = DAG.getZeroExtendInReg(Result, dl, 4680 Node->getOperand(0).getValueType()); 4681 // No extra round required here. 4682 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Result); 4683 break; 4684 case Expand: 4685 Result = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, NVT, 4686 Node->getOperand(0), dl); 4687 // Round if we cannot tolerate excess precision. 4688 if (NoExcessFPPrecision) 4689 Result = DAG.getNode(ISD::FP_ROUND_INREG, dl, NVT, Result, 4690 DAG.getValueType(VT)); 4691 break; 4692 } 4693 break; 4694 4695 case ISD::SIGN_EXTEND_INREG: 4696 Result = PromoteOp(Node->getOperand(0)); 4697 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Result, 4698 Node->getOperand(1)); 4699 break; 4700 case ISD::FP_TO_SINT: 4701 case ISD::FP_TO_UINT: 4702 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4703 case Legal: 4704 case Expand: 4705 Tmp1 = Node->getOperand(0); 4706 break; 4707 case Promote: 4708 // The input result is prerounded, so we don't have to do anything 4709 // special. 4710 Tmp1 = PromoteOp(Node->getOperand(0)); 4711 break; 4712 } 4713 // If we're promoting a UINT to a larger size, check to see if the new node 4714 // will be legal. If it isn't, check to see if FP_TO_SINT is legal, since 4715 // we can use that instead. This allows us to generate better code for 4716 // FP_TO_UINT for small destination sizes on targets where FP_TO_UINT is not 4717 // legal, such as PowerPC. 4718 if (Node->getOpcode() == ISD::FP_TO_UINT && 4719 !TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NVT) && 4720 (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT) || 4721 TLI.getOperationAction(ISD::FP_TO_SINT, NVT)==TargetLowering::Custom)){ 4722 Result = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Tmp1); 4723 } else { 4724 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4725 } 4726 break; 4727 4728 case ISD::FABS: 4729 case ISD::FNEG: 4730 Tmp1 = PromoteOp(Node->getOperand(0)); 4731 assert(Tmp1.getValueType() == NVT); 4732 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4733 // NOTE: we do not have to do any extra rounding here for 4734 // NoExcessFPPrecision, because we know the input will have the appropriate 4735 // precision, and these operations don't modify precision at all. 4736 break; 4737 4738 case ISD::FLOG: 4739 case ISD::FLOG2: 4740 case ISD::FLOG10: 4741 case ISD::FEXP: 4742 case ISD::FEXP2: 4743 case ISD::FSQRT: 4744 case ISD::FSIN: 4745 case ISD::FCOS: 4746 case ISD::FTRUNC: 4747 case ISD::FFLOOR: 4748 case ISD::FCEIL: 4749 case ISD::FRINT: 4750 case ISD::FNEARBYINT: 4751 Tmp1 = PromoteOp(Node->getOperand(0)); 4752 assert(Tmp1.getValueType() == NVT); 4753 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4754 if (NoExcessFPPrecision) 4755 Result = DAG.getNode(ISD::FP_ROUND_INREG, dl, NVT, Result, 4756 DAG.getValueType(VT)); 4757 break; 4758 4759 case ISD::FPOW: 4760 case ISD::FPOWI: { 4761 // Promote f32 pow(i) to f64 pow(i). Note that this could insert a libcall 4762 // directly as well, which may be better. 4763 Tmp1 = PromoteOp(Node->getOperand(0)); 4764 Tmp2 = Node->getOperand(1); 4765 if (Node->getOpcode() == ISD::FPOW) 4766 Tmp2 = PromoteOp(Tmp2); 4767 assert(Tmp1.getValueType() == NVT); 4768 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4769 if (NoExcessFPPrecision) 4770 Result = DAG.getNode(ISD::FP_ROUND_INREG, dl, NVT, Result, 4771 DAG.getValueType(VT)); 4772 break; 4773 } 4774 4775 case ISD::ATOMIC_CMP_SWAP: { 4776 AtomicSDNode* AtomNode = cast<AtomicSDNode>(Node); 4777 Tmp2 = PromoteOp(Node->getOperand(2)); 4778 Tmp3 = PromoteOp(Node->getOperand(3)); 4779 Result = DAG.getAtomic(Node->getOpcode(), dl, AtomNode->getMemoryVT(), 4780 AtomNode->getChain(), 4781 AtomNode->getBasePtr(), Tmp2, Tmp3, 4782 AtomNode->getSrcValue(), 4783 AtomNode->getAlignment()); 4784 // Remember that we legalized the chain. 4785 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 4786 break; 4787 } 4788 case ISD::ATOMIC_LOAD_ADD: 4789 case ISD::ATOMIC_LOAD_SUB: 4790 case ISD::ATOMIC_LOAD_AND: 4791 case ISD::ATOMIC_LOAD_OR: 4792 case ISD::ATOMIC_LOAD_XOR: 4793 case ISD::ATOMIC_LOAD_NAND: 4794 case ISD::ATOMIC_LOAD_MIN: 4795 case ISD::ATOMIC_LOAD_MAX: 4796 case ISD::ATOMIC_LOAD_UMIN: 4797 case ISD::ATOMIC_LOAD_UMAX: 4798 case ISD::ATOMIC_SWAP: { 4799 AtomicSDNode* AtomNode = cast<AtomicSDNode>(Node); 4800 Tmp2 = PromoteOp(Node->getOperand(2)); 4801 Result = DAG.getAtomic(Node->getOpcode(), dl, AtomNode->getMemoryVT(), 4802 AtomNode->getChain(), 4803 AtomNode->getBasePtr(), Tmp2, 4804 AtomNode->getSrcValue(), 4805 AtomNode->getAlignment()); 4806 // Remember that we legalized the chain. 4807 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 4808 break; 4809 } 4810 4811 case ISD::AND: 4812 case ISD::OR: 4813 case ISD::XOR: 4814 case ISD::ADD: 4815 case ISD::SUB: 4816 case ISD::MUL: 4817 // The input may have strange things in the top bits of the registers, but 4818 // these operations don't care. They may have weird bits going out, but 4819 // that too is okay if they are integer operations. 4820 Tmp1 = PromoteOp(Node->getOperand(0)); 4821 Tmp2 = PromoteOp(Node->getOperand(1)); 4822 assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT); 4823 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4824 break; 4825 case ISD::FADD: 4826 case ISD::FSUB: 4827 case ISD::FMUL: 4828 Tmp1 = PromoteOp(Node->getOperand(0)); 4829 Tmp2 = PromoteOp(Node->getOperand(1)); 4830 assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT); 4831 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4832 4833 // Floating point operations will give excess precision that we may not be 4834 // able to tolerate. If we DO allow excess precision, just leave it, 4835 // otherwise excise it. 4836 // FIXME: Why would we need to round FP ops more than integer ones? 4837 // Is Round(Add(Add(A,B),C)) != Round(Add(Round(Add(A,B)), C)) 4838 if (NoExcessFPPrecision) 4839 Result = DAG.getNode(ISD::FP_ROUND_INREG, dl, NVT, Result, 4840 DAG.getValueType(VT)); 4841 break; 4842 4843 case ISD::SDIV: 4844 case ISD::SREM: 4845 // These operators require that their input be sign extended. 4846 Tmp1 = PromoteOp(Node->getOperand(0)); 4847 Tmp2 = PromoteOp(Node->getOperand(1)); 4848 if (NVT.isInteger()) { 4849 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Tmp1, 4850 DAG.getValueType(VT)); 4851 Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Tmp2, 4852 DAG.getValueType(VT)); 4853 } 4854 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4855 4856 // Perform FP_ROUND: this is probably overly pessimistic. 4857 if (NVT.isFloatingPoint() && NoExcessFPPrecision) 4858 Result = DAG.getNode(ISD::FP_ROUND_INREG, dl, NVT, Result, 4859 DAG.getValueType(VT)); 4860 break; 4861 case ISD::FDIV: 4862 case ISD::FREM: 4863 case ISD::FCOPYSIGN: 4864 // These operators require that their input be fp extended. 4865 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4866 case Expand: assert(0 && "not implemented"); 4867 case Legal: Tmp1 = LegalizeOp(Node->getOperand(0)); break; 4868 case Promote: Tmp1 = PromoteOp(Node->getOperand(0)); break; 4869 } 4870 switch (getTypeAction(Node->getOperand(1).getValueType())) { 4871 case Expand: assert(0 && "not implemented"); 4872 case Legal: Tmp2 = LegalizeOp(Node->getOperand(1)); break; 4873 case Promote: Tmp2 = PromoteOp(Node->getOperand(1)); break; 4874 } 4875 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4876 4877 // Perform FP_ROUND: this is probably overly pessimistic. 4878 if (NoExcessFPPrecision && Node->getOpcode() != ISD::FCOPYSIGN) 4879 Result = DAG.getNode(ISD::FP_ROUND_INREG, dl, NVT, Result, 4880 DAG.getValueType(VT)); 4881 break; 4882 4883 case ISD::UDIV: 4884 case ISD::UREM: 4885 // These operators require that their input be zero extended. 4886 Tmp1 = PromoteOp(Node->getOperand(0)); 4887 Tmp2 = PromoteOp(Node->getOperand(1)); 4888 assert(NVT.isInteger() && "Operators don't apply to FP!"); 4889 Tmp1 = DAG.getZeroExtendInReg(Tmp1, dl, VT); 4890 Tmp2 = DAG.getZeroExtendInReg(Tmp2, dl, VT); 4891 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4892 break; 4893 4894 case ISD::SHL: 4895 Tmp1 = PromoteOp(Node->getOperand(0)); 4896 Result = DAG.getNode(ISD::SHL, dl, NVT, Tmp1, Node->getOperand(1)); 4897 break; 4898 case ISD::SRA: 4899 // The input value must be properly sign extended. 4900 Tmp1 = PromoteOp(Node->getOperand(0)); 4901 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Tmp1, 4902 DAG.getValueType(VT)); 4903 Result = DAG.getNode(ISD::SRA, dl, NVT, Tmp1, Node->getOperand(1)); 4904 break; 4905 case ISD::SRL: 4906 // The input value must be properly zero extended. 4907 Tmp1 = PromoteOp(Node->getOperand(0)); 4908 Tmp1 = DAG.getZeroExtendInReg(Tmp1, dl, VT); 4909 Result = DAG.getNode(ISD::SRL, dl, NVT, Tmp1, Node->getOperand(1)); 4910 break; 4911 4912 case ISD::VAARG: 4913 Tmp1 = Node->getOperand(0); // Get the chain. 4914 Tmp2 = Node->getOperand(1); // Get the pointer. 4915 if (TLI.getOperationAction(ISD::VAARG, VT) == TargetLowering::Custom) { 4916 Tmp3 = DAG.getVAArg(VT, dl, Tmp1, Tmp2, Node->getOperand(2)); 4917 Result = TLI.LowerOperation(Tmp3, DAG); 4918 } else { 4919 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 4920 SDValue VAList = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0); 4921 // Increment the pointer, VAList, to the next vaarg 4922 Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList, 4923 DAG.getConstant(VT.getSizeInBits()/8, 4924 TLI.getPointerTy())); 4925 // Store the incremented VAList to the legalized pointer 4926 Tmp3 = DAG.getStore(VAList.getValue(1), dl, Tmp3, Tmp2, V, 0); 4927 // Load the actual argument out of the pointer VAList 4928 Result = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Tmp3, VAList, NULL, 0, VT); 4929 } 4930 // Remember that we legalized the chain. 4931 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 4932 break; 4933 4934 case ISD::LOAD: { 4935 LoadSDNode *LD = cast<LoadSDNode>(Node); 4936 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(Node) 4937 ? ISD::EXTLOAD : LD->getExtensionType(); 4938 Result = DAG.getExtLoad(ExtType, dl, NVT, 4939 LD->getChain(), LD->getBasePtr(), 4940 LD->getSrcValue(), LD->getSrcValueOffset(), 4941 LD->getMemoryVT(), 4942 LD->isVolatile(), 4943 LD->getAlignment()); 4944 // Remember that we legalized the chain. 4945 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 4946 break; 4947 } 4948 case ISD::SELECT: { 4949 Tmp2 = PromoteOp(Node->getOperand(1)); // Legalize the op0 4950 Tmp3 = PromoteOp(Node->getOperand(2)); // Legalize the op1 4951 4952 MVT VT2 = Tmp2.getValueType(); 4953 assert(VT2 == Tmp3.getValueType() 4954 && "PromoteOp SELECT: Operands 2 and 3 ValueTypes don't match"); 4955 // Ensure that the resulting node is at least the same size as the operands' 4956 // value types, because we cannot assume that TLI.getSetCCValueType() is 4957 // constant. 4958 Result = DAG.getNode(ISD::SELECT, dl, VT2, Node->getOperand(0), Tmp2, Tmp3); 4959 break; 4960 } 4961 case ISD::SELECT_CC: 4962 Tmp2 = PromoteOp(Node->getOperand(2)); // True 4963 Tmp3 = PromoteOp(Node->getOperand(3)); // False 4964 Result = DAG.getNode(ISD::SELECT_CC, dl, NVT, Node->getOperand(0), 4965 Node->getOperand(1), Tmp2, Tmp3, Node->getOperand(4)); 4966 break; 4967 case ISD::BSWAP: 4968 Tmp1 = Node->getOperand(0); 4969 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Tmp1); 4970 Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1); 4971 Result = DAG.getNode(ISD::SRL, dl, NVT, Tmp1, 4972 DAG.getConstant(NVT.getSizeInBits() - 4973 VT.getSizeInBits(), 4974 TLI.getShiftAmountTy())); 4975 break; 4976 case ISD::CTPOP: 4977 case ISD::CTTZ: 4978 case ISD::CTLZ: 4979 // Zero extend the argument 4980 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4981 // Perform the larger operation, then subtract if needed. 4982 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4983 switch(Node->getOpcode()) { 4984 case ISD::CTPOP: 4985 Result = Tmp1; 4986 break; 4987 case ISD::CTTZ: 4988 // if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) 4989 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()), Tmp1, 4990 DAG.getConstant(NVT.getSizeInBits(), NVT), 4991 ISD::SETEQ); 4992 Result = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, 4993 DAG.getConstant(VT.getSizeInBits(), NVT), Tmp1); 4994 break; 4995 case ISD::CTLZ: 4996 //Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4997 Result = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 4998 DAG.getConstant(NVT.getSizeInBits() - 4999 VT.getSizeInBits(), NVT)); 5000 break; 5001 } 5002 break; 5003 case ISD::EXTRACT_SUBVECTOR: 5004 Result = PromoteOp(ExpandEXTRACT_SUBVECTOR(Op)); 5005 break; 5006 case ISD::EXTRACT_VECTOR_ELT: 5007 Result = PromoteOp(ExpandEXTRACT_VECTOR_ELT(Op)); 5008 break; 5009 } 5010 5011 assert(Result.getNode() && "Didn't set a result!"); 5012 5013 // Make sure the result is itself legal. 5014 Result = LegalizeOp(Result); 5015 5016 // Remember that we promoted this! 5017 AddPromotedOperand(Op, Result); 5018 return Result; 5019} 5020 5021/// ExpandEXTRACT_VECTOR_ELT - Expand an EXTRACT_VECTOR_ELT operation into 5022/// a legal EXTRACT_VECTOR_ELT operation, scalar code, or memory traffic, 5023/// based on the vector type. The return type of this matches the element type 5024/// of the vector, which may not be legal for the target. 5025SDValue SelectionDAGLegalize::ExpandEXTRACT_VECTOR_ELT(SDValue Op) { 5026 // We know that operand #0 is the Vec vector. If the index is a constant 5027 // or if the invec is a supported hardware type, we can use it. Otherwise, 5028 // lower to a store then an indexed load. 5029 SDValue Vec = Op.getOperand(0); 5030 SDValue Idx = Op.getOperand(1); 5031 DebugLoc dl = Op.getDebugLoc(); 5032 5033 MVT TVT = Vec.getValueType(); 5034 unsigned NumElems = TVT.getVectorNumElements(); 5035 5036 switch (TLI.getOperationAction(ISD::EXTRACT_VECTOR_ELT, TVT)) { 5037 default: assert(0 && "This action is not supported yet!"); 5038 case TargetLowering::Custom: { 5039 Vec = LegalizeOp(Vec); 5040 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 5041 SDValue Tmp3 = TLI.LowerOperation(Op, DAG); 5042 if (Tmp3.getNode()) 5043 return Tmp3; 5044 break; 5045 } 5046 case TargetLowering::Legal: 5047 if (isTypeLegal(TVT)) { 5048 Vec = LegalizeOp(Vec); 5049 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 5050 return Op; 5051 } 5052 break; 5053 case TargetLowering::Promote: 5054 assert(TVT.isVector() && "not vector type"); 5055 // fall thru to expand since vectors are by default are promote 5056 case TargetLowering::Expand: 5057 break; 5058 } 5059 5060 if (NumElems == 1) { 5061 // This must be an access of the only element. Return it. 5062 Op = ScalarizeVectorOp(Vec); 5063 } else if (!TLI.isTypeLegal(TVT) && isa<ConstantSDNode>(Idx)) { 5064 unsigned NumLoElts = 1 << Log2_32(NumElems-1); 5065 ConstantSDNode *CIdx = cast<ConstantSDNode>(Idx); 5066 SDValue Lo, Hi; 5067 SplitVectorOp(Vec, Lo, Hi); 5068 if (CIdx->getZExtValue() < NumLoElts) { 5069 Vec = Lo; 5070 } else { 5071 Vec = Hi; 5072 Idx = DAG.getConstant(CIdx->getZExtValue() - NumLoElts, 5073 Idx.getValueType()); 5074 } 5075 5076 // It's now an extract from the appropriate high or low part. Recurse. 5077 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 5078 Op = ExpandEXTRACT_VECTOR_ELT(Op); 5079 } else { 5080 Op = ExpandExtractFromVectorThroughStack(Op); 5081 } 5082 return Op; 5083} 5084 5085SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 5086 SDValue Vec = Op.getOperand(0); 5087 SDValue Idx = Op.getOperand(1); 5088 DebugLoc dl = Op.getDebugLoc(); 5089 // Store the value to a temporary stack slot, then LOAD the returned part. 5090 SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); 5091 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0); 5092 5093 // Add the offset to the index. 5094 unsigned EltSize = Op.getValueType().getSizeInBits()/8; 5095 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx, 5096 DAG.getConstant(EltSize, Idx.getValueType())); 5097 5098 if (Idx.getValueType().bitsGT(TLI.getPointerTy())) 5099 Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx); 5100 else 5101 Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx); 5102 5103 StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr); 5104 5105 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, NULL, 0); 5106} 5107 5108/// ExpandEXTRACT_SUBVECTOR - Expand a EXTRACT_SUBVECTOR operation. For now 5109/// we assume the operation can be split if it is not already legal. 5110SDValue SelectionDAGLegalize::ExpandEXTRACT_SUBVECTOR(SDValue Op) { 5111 // We know that operand #0 is the Vec vector. For now we assume the index 5112 // is a constant and that the extracted result is a supported hardware type. 5113 SDValue Vec = Op.getOperand(0); 5114 SDValue Idx = LegalizeOp(Op.getOperand(1)); 5115 5116 unsigned NumElems = Vec.getValueType().getVectorNumElements(); 5117 5118 if (NumElems == Op.getValueType().getVectorNumElements()) { 5119 // This must be an access of the desired vector length. Return it. 5120 return Vec; 5121 } 5122 5123 ConstantSDNode *CIdx = cast<ConstantSDNode>(Idx); 5124 SDValue Lo, Hi; 5125 SplitVectorOp(Vec, Lo, Hi); 5126 if (CIdx->getZExtValue() < NumElems/2) { 5127 Vec = Lo; 5128 } else { 5129 Vec = Hi; 5130 Idx = DAG.getConstant(CIdx->getZExtValue() - NumElems/2, 5131 Idx.getValueType()); 5132 } 5133 5134 // It's now an extract from the appropriate high or low part. Recurse. 5135 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 5136 return ExpandEXTRACT_SUBVECTOR(Op); 5137} 5138 5139/// LegalizeSetCCOperands - Attempts to create a legal LHS and RHS for a SETCC 5140/// with condition CC on the current target. This usually involves legalizing 5141/// or promoting the arguments. In the case where LHS and RHS must be expanded, 5142/// there may be no choice but to create a new SetCC node to represent the 5143/// legalized value of setcc lhs, rhs. In this case, the value is returned in 5144/// LHS, and the SDValue returned in RHS has a nil SDNode value. 5145void SelectionDAGLegalize::LegalizeSetCCOperands(SDValue &LHS, 5146 SDValue &RHS, 5147 SDValue &CC, 5148 DebugLoc dl) { 5149 SDValue Tmp1, Tmp2, Tmp3, Result; 5150 5151 switch (getTypeAction(LHS.getValueType())) { 5152 case Legal: 5153 Tmp1 = LegalizeOp(LHS); // LHS 5154 Tmp2 = LegalizeOp(RHS); // RHS 5155 break; 5156 case Promote: 5157 Tmp1 = PromoteOp(LHS); // LHS 5158 Tmp2 = PromoteOp(RHS); // RHS 5159 5160 // If this is an FP compare, the operands have already been extended. 5161 if (LHS.getValueType().isInteger()) { 5162 MVT VT = LHS.getValueType(); 5163 MVT NVT = TLI.getTypeToTransformTo(VT); 5164 5165 // Otherwise, we have to insert explicit sign or zero extends. Note 5166 // that we could insert sign extends for ALL conditions, but zero extend 5167 // is cheaper on many machines (an AND instead of two shifts), so prefer 5168 // it. 5169 switch (cast<CondCodeSDNode>(CC)->get()) { 5170 default: assert(0 && "Unknown integer comparison!"); 5171 case ISD::SETEQ: 5172 case ISD::SETNE: 5173 case ISD::SETUGE: 5174 case ISD::SETUGT: 5175 case ISD::SETULE: 5176 case ISD::SETULT: 5177 // ALL of these operations will work if we either sign or zero extend 5178 // the operands (including the unsigned comparisons!). Zero extend is 5179 // usually a simpler/cheaper operation, so prefer it. 5180 Tmp1 = DAG.getZeroExtendInReg(Tmp1, dl, VT); 5181 Tmp2 = DAG.getZeroExtendInReg(Tmp2, dl, VT); 5182 break; 5183 case ISD::SETGE: 5184 case ISD::SETGT: 5185 case ISD::SETLT: 5186 case ISD::SETLE: 5187 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Tmp1, 5188 DAG.getValueType(VT)); 5189 Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Tmp2, 5190 DAG.getValueType(VT)); 5191 Tmp1 = LegalizeOp(Tmp1); // Relegalize new nodes. 5192 Tmp2 = LegalizeOp(Tmp2); // Relegalize new nodes. 5193 break; 5194 } 5195 } 5196 break; 5197 case Expand: { 5198 MVT VT = LHS.getValueType(); 5199 if (VT == MVT::f32 || VT == MVT::f64) { 5200 // Expand into one or more soft-fp libcall(s). 5201 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 5202 switch (cast<CondCodeSDNode>(CC)->get()) { 5203 case ISD::SETEQ: 5204 case ISD::SETOEQ: 5205 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64; 5206 break; 5207 case ISD::SETNE: 5208 case ISD::SETUNE: 5209 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : RTLIB::UNE_F64; 5210 break; 5211 case ISD::SETGE: 5212 case ISD::SETOGE: 5213 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64; 5214 break; 5215 case ISD::SETLT: 5216 case ISD::SETOLT: 5217 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 5218 break; 5219 case ISD::SETLE: 5220 case ISD::SETOLE: 5221 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64; 5222 break; 5223 case ISD::SETGT: 5224 case ISD::SETOGT: 5225 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64; 5226 break; 5227 case ISD::SETUO: 5228 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64; 5229 break; 5230 case ISD::SETO: 5231 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : RTLIB::O_F64; 5232 break; 5233 default: 5234 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64; 5235 switch (cast<CondCodeSDNode>(CC)->get()) { 5236 case ISD::SETONE: 5237 // SETONE = SETOLT | SETOGT 5238 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 5239 // Fallthrough 5240 case ISD::SETUGT: 5241 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64; 5242 break; 5243 case ISD::SETUGE: 5244 LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64; 5245 break; 5246 case ISD::SETULT: 5247 LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 5248 break; 5249 case ISD::SETULE: 5250 LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64; 5251 break; 5252 case ISD::SETUEQ: 5253 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64; 5254 break; 5255 default: assert(0 && "Unsupported FP setcc!"); 5256 } 5257 } 5258 5259 SDValue Dummy; 5260 SDValue Ops[2] = { LHS, RHS }; 5261 Tmp1 = ExpandLibCall(LC1, DAG.getMergeValues(Ops, 2, dl).getNode(), 5262 false /*sign irrelevant*/, Dummy); 5263 Tmp2 = DAG.getConstant(0, MVT::i32); 5264 CC = DAG.getCondCode(TLI.getCmpLibcallCC(LC1)); 5265 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 5266 Tmp1 = DAG.getNode(ISD::SETCC, dl, 5267 TLI.getSetCCResultType(Tmp1.getValueType()), 5268 Tmp1, Tmp2, CC); 5269 LHS = ExpandLibCall(LC2, DAG.getMergeValues(Ops, 2, dl).getNode(), 5270 false /*sign irrelevant*/, Dummy); 5271 Tmp2 = DAG.getNode(ISD::SETCC, dl, 5272 TLI.getSetCCResultType(LHS.getValueType()), LHS, 5273 Tmp2, DAG.getCondCode(TLI.getCmpLibcallCC(LC2))); 5274 Tmp1 = DAG.getNode(ISD::OR, dl, Tmp1.getValueType(), Tmp1, Tmp2); 5275 Tmp2 = SDValue(); 5276 } 5277 LHS = LegalizeOp(Tmp1); 5278 RHS = Tmp2; 5279 return; 5280 } 5281 5282 SDValue LHSLo, LHSHi, RHSLo, RHSHi; 5283 ExpandOp(LHS, LHSLo, LHSHi); 5284 ExpandOp(RHS, RHSLo, RHSHi); 5285 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 5286 5287 if (VT==MVT::ppcf128) { 5288 // FIXME: This generated code sucks. We want to generate 5289 // FCMPU crN, hi1, hi2 5290 // BNE crN, L: 5291 // FCMPU crN, lo1, lo2 5292 // The following can be improved, but not that much. 5293 Tmp1 = DAG.getSetCC(dl, TLI.getSetCCResultType(LHSHi.getValueType()), 5294 LHSHi, RHSHi, ISD::SETOEQ); 5295 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(LHSLo.getValueType()), 5296 LHSLo, RHSLo, CCCode); 5297 Tmp3 = DAG.getNode(ISD::AND, dl, Tmp1.getValueType(), Tmp1, Tmp2); 5298 Tmp1 = DAG.getSetCC(dl, TLI.getSetCCResultType(LHSHi.getValueType()), 5299 LHSHi, RHSHi, ISD::SETUNE); 5300 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(LHSHi.getValueType()), 5301 LHSHi, RHSHi, CCCode); 5302 Tmp1 = DAG.getNode(ISD::AND, dl, Tmp1.getValueType(), Tmp1, Tmp2); 5303 Tmp1 = DAG.getNode(ISD::OR, dl, Tmp1.getValueType(), Tmp1, Tmp3); 5304 Tmp2 = SDValue(); 5305 break; 5306 } 5307 5308 switch (CCCode) { 5309 case ISD::SETEQ: 5310 case ISD::SETNE: 5311 if (RHSLo == RHSHi) 5312 if (ConstantSDNode *RHSCST = dyn_cast<ConstantSDNode>(RHSLo)) 5313 if (RHSCST->isAllOnesValue()) { 5314 // Comparison to -1. 5315 Tmp1 = DAG.getNode(ISD::AND, dl,LHSLo.getValueType(), LHSLo, LHSHi); 5316 Tmp2 = RHSLo; 5317 break; 5318 } 5319 5320 Tmp1 = DAG.getNode(ISD::XOR, dl, LHSLo.getValueType(), LHSLo, RHSLo); 5321 Tmp2 = DAG.getNode(ISD::XOR, dl, LHSLo.getValueType(), LHSHi, RHSHi); 5322 Tmp1 = DAG.getNode(ISD::OR, dl, Tmp1.getValueType(), Tmp1, Tmp2); 5323 Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); 5324 break; 5325 default: 5326 // If this is a comparison of the sign bit, just look at the top part. 5327 // X > -1, x < 0 5328 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(RHS)) 5329 if ((cast<CondCodeSDNode>(CC)->get() == ISD::SETLT && 5330 CST->isNullValue()) || // X < 0 5331 (cast<CondCodeSDNode>(CC)->get() == ISD::SETGT && 5332 CST->isAllOnesValue())) { // X > -1 5333 Tmp1 = LHSHi; 5334 Tmp2 = RHSHi; 5335 break; 5336 } 5337 5338 // FIXME: This generated code sucks. 5339 ISD::CondCode LowCC; 5340 switch (CCCode) { 5341 default: assert(0 && "Unknown integer setcc!"); 5342 case ISD::SETLT: 5343 case ISD::SETULT: LowCC = ISD::SETULT; break; 5344 case ISD::SETGT: 5345 case ISD::SETUGT: LowCC = ISD::SETUGT; break; 5346 case ISD::SETLE: 5347 case ISD::SETULE: LowCC = ISD::SETULE; break; 5348 case ISD::SETGE: 5349 case ISD::SETUGE: LowCC = ISD::SETUGE; break; 5350 } 5351 5352 // Tmp1 = lo(op1) < lo(op2) // Always unsigned comparison 5353 // Tmp2 = hi(op1) < hi(op2) // Signedness depends on operands 5354 // dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2; 5355 5356 // NOTE: on targets without efficient SELECT of bools, we can always use 5357 // this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3) 5358 TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, false, true, NULL); 5359 Tmp1 = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSLo.getValueType()), 5360 LHSLo, RHSLo, LowCC, false, DagCombineInfo, dl); 5361 if (!Tmp1.getNode()) 5362 Tmp1 = DAG.getSetCC(dl, TLI.getSetCCResultType(LHSLo.getValueType()), 5363 LHSLo, RHSLo, LowCC); 5364 Tmp2 = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSHi.getValueType()), 5365 LHSHi, RHSHi, CCCode, false, DagCombineInfo, dl); 5366 if (!Tmp2.getNode()) 5367 Tmp2 = DAG.getNode(ISD::SETCC, dl, 5368 TLI.getSetCCResultType(LHSHi.getValueType()), 5369 LHSHi, RHSHi, CC); 5370 5371 ConstantSDNode *Tmp1C = dyn_cast<ConstantSDNode>(Tmp1.getNode()); 5372 ConstantSDNode *Tmp2C = dyn_cast<ConstantSDNode>(Tmp2.getNode()); 5373 if ((Tmp1C && Tmp1C->isNullValue()) || 5374 (Tmp2C && Tmp2C->isNullValue() && 5375 (CCCode == ISD::SETLE || CCCode == ISD::SETGE || 5376 CCCode == ISD::SETUGE || CCCode == ISD::SETULE)) || 5377 (Tmp2C && Tmp2C->getAPIntValue() == 1 && 5378 (CCCode == ISD::SETLT || CCCode == ISD::SETGT || 5379 CCCode == ISD::SETUGT || CCCode == ISD::SETULT))) { 5380 // low part is known false, returns high part. 5381 // For LE / GE, if high part is known false, ignore the low part. 5382 // For LT / GT, if high part is known true, ignore the low part. 5383 Tmp1 = Tmp2; 5384 Tmp2 = SDValue(); 5385 } else { 5386 Result = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSHi.getValueType()), 5387 LHSHi, RHSHi, ISD::SETEQ, false, 5388 DagCombineInfo, dl); 5389 if (!Result.getNode()) 5390 Result=DAG.getSetCC(dl, TLI.getSetCCResultType(LHSHi.getValueType()), 5391 LHSHi, RHSHi, ISD::SETEQ); 5392 Result = LegalizeOp(DAG.getNode(ISD::SELECT, dl, Tmp1.getValueType(), 5393 Result, Tmp1, Tmp2)); 5394 Tmp1 = Result; 5395 Tmp2 = SDValue(); 5396 } 5397 } 5398 } 5399 } 5400 LHS = Tmp1; 5401 RHS = Tmp2; 5402} 5403 5404/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and 5405/// condition code CC on the current target. This routine assumes LHS and rHS 5406/// have already been legalized by LegalizeSetCCOperands. It expands SETCC with 5407/// illegal condition code into AND / OR of multiple SETCC values. 5408void SelectionDAGLegalize::LegalizeSetCCCondCode(MVT VT, 5409 SDValue &LHS, SDValue &RHS, 5410 SDValue &CC, 5411 DebugLoc dl) { 5412 MVT OpVT = LHS.getValueType(); 5413 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 5414 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 5415 default: assert(0 && "Unknown condition code action!"); 5416 case TargetLowering::Legal: 5417 // Nothing to do. 5418 break; 5419 case TargetLowering::Expand: { 5420 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 5421 unsigned Opc = 0; 5422 switch (CCCode) { 5423 default: assert(0 && "Don't know how to expand this condition!"); abort(); 5424 case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO; Opc = ISD::AND; break; 5425 case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO; Opc = ISD::AND; break; 5426 case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO; Opc = ISD::AND; break; 5427 case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO; Opc = ISD::AND; break; 5428 case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO; Opc = ISD::AND; break; 5429 case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO; Opc = ISD::AND; break; 5430 case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR; break; 5431 case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR; break; 5432 case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR; break; 5433 case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR; break; 5434 case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR; break; 5435 case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR; break; 5436 // FIXME: Implement more expansions. 5437 } 5438 5439 SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1); 5440 SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2); 5441 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 5442 RHS = SDValue(); 5443 CC = SDValue(); 5444 break; 5445 } 5446 } 5447} 5448 5449/// EmitStackConvert - Emit a store/load combination to the stack. This stores 5450/// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 5451/// a load from the stack slot to DestVT, extending it if needed. 5452/// The resultant code need not be legal. 5453SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, 5454 MVT SlotVT, 5455 MVT DestVT, 5456 DebugLoc dl) { 5457 // Create the stack frame object. 5458 unsigned SrcAlign = 5459 TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType(). 5460 getTypeForMVT()); 5461 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); 5462 5463 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 5464 int SPFI = StackPtrFI->getIndex(); 5465 const Value *SV = PseudoSourceValue::getFixedStack(SPFI); 5466 5467 unsigned SrcSize = SrcOp.getValueType().getSizeInBits(); 5468 unsigned SlotSize = SlotVT.getSizeInBits(); 5469 unsigned DestSize = DestVT.getSizeInBits(); 5470 unsigned DestAlign = 5471 TLI.getTargetData()->getPrefTypeAlignment(DestVT.getTypeForMVT()); 5472 5473 // Emit a store to the stack slot. Use a truncstore if the input value is 5474 // later than DestVT. 5475 SDValue Store; 5476 5477 if (SrcSize > SlotSize) 5478 Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, 5479 SV, 0, SlotVT, false, SrcAlign); 5480 else { 5481 assert(SrcSize == SlotSize && "Invalid store"); 5482 Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, 5483 SV, 0, false, SrcAlign); 5484 } 5485 5486 // Result is a load from the stack slot. 5487 if (SlotSize == DestSize) 5488 return DAG.getLoad(DestVT, dl, Store, FIPtr, SV, 0, false, DestAlign); 5489 5490 assert(SlotSize < DestSize && "Unknown extension!"); 5491 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, SV, 0, SlotVT, 5492 false, DestAlign); 5493} 5494 5495SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 5496 DebugLoc dl = Node->getDebugLoc(); 5497 // Create a vector sized/aligned stack slot, store the value to element #0, 5498 // then load the whole vector back out. 5499 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 5500 5501 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 5502 int SPFI = StackPtrFI->getIndex(); 5503 5504 SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0), 5505 StackPtr, 5506 PseudoSourceValue::getFixedStack(SPFI), 0, 5507 Node->getValueType(0).getVectorElementType()); 5508 return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr, 5509 PseudoSourceValue::getFixedStack(SPFI), 0); 5510} 5511 5512 5513/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't 5514/// support the operation, but do support the resultant vector type. 5515SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 5516 unsigned NumElems = Node->getNumOperands(); 5517 SDValue SplatValue = Node->getOperand(0); 5518 DebugLoc dl = Node->getDebugLoc(); 5519 MVT VT = Node->getValueType(0); 5520 MVT OpVT = SplatValue.getValueType(); 5521 MVT EltVT = VT.getVectorElementType(); 5522 5523 // If the only non-undef value is the low element, turn this into a 5524 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 5525 bool isOnlyLowElement = true; 5526 5527 // FIXME: it would be far nicer to change this into map<SDValue,uint64_t> 5528 // and use a bitmask instead of a list of elements. 5529 // FIXME: this doesn't treat <0, u, 0, u> for example, as a splat. 5530 std::map<SDValue, std::vector<unsigned> > Values; 5531 Values[SplatValue].push_back(0); 5532 bool isConstant = true; 5533 if (!isa<ConstantFPSDNode>(SplatValue) && !isa<ConstantSDNode>(SplatValue) && 5534 SplatValue.getOpcode() != ISD::UNDEF) 5535 isConstant = false; 5536 5537 for (unsigned i = 1; i < NumElems; ++i) { 5538 SDValue V = Node->getOperand(i); 5539 Values[V].push_back(i); 5540 if (V.getOpcode() != ISD::UNDEF) 5541 isOnlyLowElement = false; 5542 if (SplatValue != V) 5543 SplatValue = SDValue(0, 0); 5544 5545 // If this isn't a constant element or an undef, we can't use a constant 5546 // pool load. 5547 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V) && 5548 V.getOpcode() != ISD::UNDEF) 5549 isConstant = false; 5550 } 5551 5552 if (isOnlyLowElement) { 5553 // If the low element is an undef too, then this whole things is an undef. 5554 if (Node->getOperand(0).getOpcode() == ISD::UNDEF) 5555 return DAG.getUNDEF(VT); 5556 // Otherwise, turn this into a scalar_to_vector node. 5557 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 5558 } 5559 5560 // If all elements are constants, create a load from the constant pool. 5561 if (isConstant) { 5562 std::vector<Constant*> CV; 5563 for (unsigned i = 0, e = NumElems; i != e; ++i) { 5564 if (ConstantFPSDNode *V = 5565 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 5566 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 5567 } else if (ConstantSDNode *V = 5568 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 5569 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 5570 } else { 5571 assert(Node->getOperand(i).getOpcode() == ISD::UNDEF); 5572 const Type *OpNTy = OpVT.getTypeForMVT(); 5573 CV.push_back(UndefValue::get(OpNTy)); 5574 } 5575 } 5576 Constant *CP = ConstantVector::get(CV); 5577 SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy()); 5578 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 5579 return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, 5580 PseudoSourceValue::getConstantPool(), 0, 5581 false, Alignment); 5582 } 5583 5584 if (SplatValue.getNode()) { // Splat of one value? 5585 // Build the shuffle constant vector: <0, 0, 0, 0> 5586 SmallVector<int, 8> ZeroVec(NumElems, 0); 5587 5588 // If the target supports VECTOR_SHUFFLE and this shuffle mask, use it. 5589 if (TLI.isShuffleMaskLegal(ZeroVec, Node->getValueType(0))) { 5590 // Get the splatted value into the low element of a vector register. 5591 SDValue LowValVec = 5592 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, SplatValue); 5593 5594 // Return shuffle(LowValVec, undef, <0,0,0,0>) 5595 return DAG.getVectorShuffle(VT, dl, LowValVec, DAG.getUNDEF(VT), 5596 &ZeroVec[0]); 5597 } 5598 } 5599 5600 // If there are only two unique elements, we may be able to turn this into a 5601 // vector shuffle. 5602 if (Values.size() == 2) { 5603 // Get the two values in deterministic order. 5604 SDValue Val1 = Node->getOperand(1); 5605 SDValue Val2; 5606 std::map<SDValue, std::vector<unsigned> >::iterator MI = Values.begin(); 5607 if (MI->first != Val1) 5608 Val2 = MI->first; 5609 else 5610 Val2 = (++MI)->first; 5611 5612 // If Val1 is an undef, make sure it ends up as Val2, to ensure that our 5613 // vector shuffle has the undef vector on the RHS. 5614 if (Val1.getOpcode() == ISD::UNDEF) 5615 std::swap(Val1, Val2); 5616 5617 // Build the shuffle constant vector: e.g. <0, 4, 0, 4> 5618 SmallVector<int, 8> ShuffleMask(NumElems, -1); 5619 5620 // Set elements of the shuffle mask for Val1. 5621 std::vector<unsigned> &Val1Elts = Values[Val1]; 5622 for (unsigned i = 0, e = Val1Elts.size(); i != e; ++i) 5623 ShuffleMask[Val1Elts[i]] = 0; 5624 5625 // Set elements of the shuffle mask for Val2. 5626 std::vector<unsigned> &Val2Elts = Values[Val2]; 5627 for (unsigned i = 0, e = Val2Elts.size(); i != e; ++i) 5628 if (Val2.getOpcode() != ISD::UNDEF) 5629 ShuffleMask[Val2Elts[i]] = NumElems; 5630 5631 // If the target supports SCALAR_TO_VECTOR and this shuffle mask, use it. 5632 if (TLI.isOperationLegalOrCustom(ISD::SCALAR_TO_VECTOR, VT) && 5633 TLI.isShuffleMaskLegal(ShuffleMask, VT)) { 5634 Val1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Val1); 5635 Val2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Val2); 5636 return DAG.getVectorShuffle(VT, dl, Val1, Val2, &ShuffleMask[0]); 5637 } 5638 } 5639 5640 // Otherwise, we can't handle this case efficiently. Allocate a sufficiently 5641 // aligned object on the stack, store each element into it, then load 5642 // the result as a vector. 5643 // Create the stack frame object. 5644 SDValue FIPtr = DAG.CreateStackTemporary(VT); 5645 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 5646 const Value *SV = PseudoSourceValue::getFixedStack(FI); 5647 5648 // Emit a store of each element to the stack slot. 5649 SmallVector<SDValue, 8> Stores; 5650 unsigned TypeByteSize = OpVT.getSizeInBits() / 8; 5651 // Store (in the right endianness) the elements to memory. 5652 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 5653 // Ignore undef elements. 5654 if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue; 5655 5656 unsigned Offset = TypeByteSize*i; 5657 5658 SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType()); 5659 Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx); 5660 5661 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), 5662 Idx, SV, Offset)); 5663 } 5664 5665 SDValue StoreChain; 5666 if (!Stores.empty()) // Not all undef elements? 5667 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 5668 &Stores[0], Stores.size()); 5669 else 5670 StoreChain = DAG.getEntryNode(); 5671 5672 // Result is a load from the stack slot. 5673 return DAG.getLoad(VT, dl, StoreChain, FIPtr, SV, 0); 5674} 5675 5676void SelectionDAGLegalize::ExpandShiftParts(unsigned NodeOp, 5677 SDValue Op, SDValue Amt, 5678 SDValue &Lo, SDValue &Hi, 5679 DebugLoc dl) { 5680 // Expand the subcomponents. 5681 SDValue LHSL, LHSH; 5682 ExpandOp(Op, LHSL, LHSH); 5683 5684 SDValue Ops[] = { LHSL, LHSH, Amt }; 5685 MVT VT = LHSL.getValueType(); 5686 Lo = DAG.getNode(NodeOp, dl, DAG.getVTList(VT, VT), Ops, 3); 5687 Hi = Lo.getValue(1); 5688} 5689 5690 5691/// ExpandShift - Try to find a clever way to expand this shift operation out to 5692/// smaller elements. If we can't find a way that is more efficient than a 5693/// libcall on this target, return false. Otherwise, return true with the 5694/// low-parts expanded into Lo and Hi. 5695bool SelectionDAGLegalize::ExpandShift(unsigned Opc, SDValue Op, SDValue Amt, 5696 SDValue &Lo, SDValue &Hi, 5697 DebugLoc dl) { 5698 assert((Opc == ISD::SHL || Opc == ISD::SRA || Opc == ISD::SRL) && 5699 "This is not a shift!"); 5700 5701 MVT NVT = TLI.getTypeToTransformTo(Op.getValueType()); 5702 SDValue ShAmt = LegalizeOp(Amt); 5703 MVT ShTy = ShAmt.getValueType(); 5704 unsigned ShBits = ShTy.getSizeInBits(); 5705 unsigned VTBits = Op.getValueType().getSizeInBits(); 5706 unsigned NVTBits = NVT.getSizeInBits(); 5707 5708 // Handle the case when Amt is an immediate. 5709 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Amt.getNode())) { 5710 unsigned Cst = CN->getZExtValue(); 5711 // Expand the incoming operand to be shifted, so that we have its parts 5712 SDValue InL, InH; 5713 ExpandOp(Op, InL, InH); 5714 switch(Opc) { 5715 case ISD::SHL: 5716 if (Cst > VTBits) { 5717 Lo = DAG.getConstant(0, NVT); 5718 Hi = DAG.getConstant(0, NVT); 5719 } else if (Cst > NVTBits) { 5720 Lo = DAG.getConstant(0, NVT); 5721 Hi = DAG.getNode(ISD::SHL, dl, 5722 NVT, InL, DAG.getConstant(Cst-NVTBits, ShTy)); 5723 } else if (Cst == NVTBits) { 5724 Lo = DAG.getConstant(0, NVT); 5725 Hi = InL; 5726 } else { 5727 Lo = DAG.getNode(ISD::SHL, dl, NVT, InL, DAG.getConstant(Cst, ShTy)); 5728 Hi = DAG.getNode(ISD::OR, dl, NVT, 5729 DAG.getNode(ISD::SHL, dl, NVT, InH, DAG.getConstant(Cst, ShTy)), 5730 DAG.getNode(ISD::SRL, dl, NVT, InL, 5731 DAG.getConstant(NVTBits-Cst, ShTy))); 5732 } 5733 return true; 5734 case ISD::SRL: 5735 if (Cst > VTBits) { 5736 Lo = DAG.getConstant(0, NVT); 5737 Hi = DAG.getConstant(0, NVT); 5738 } else if (Cst > NVTBits) { 5739 Lo = DAG.getNode(ISD::SRL, dl, NVT, 5740 InH, DAG.getConstant(Cst-NVTBits, ShTy)); 5741 Hi = DAG.getConstant(0, NVT); 5742 } else if (Cst == NVTBits) { 5743 Lo = InH; 5744 Hi = DAG.getConstant(0, NVT); 5745 } else { 5746 Lo = DAG.getNode(ISD::OR, dl, NVT, 5747 DAG.getNode(ISD::SRL, dl, NVT, InL, DAG.getConstant(Cst, ShTy)), 5748 DAG.getNode(ISD::SHL, dl, NVT, InH, 5749 DAG.getConstant(NVTBits-Cst, ShTy))); 5750 Hi = DAG.getNode(ISD::SRL, dl, NVT, InH, DAG.getConstant(Cst, ShTy)); 5751 } 5752 return true; 5753 case ISD::SRA: 5754 if (Cst > VTBits) { 5755 Hi = Lo = DAG.getNode(ISD::SRA, dl, NVT, InH, 5756 DAG.getConstant(NVTBits-1, ShTy)); 5757 } else if (Cst > NVTBits) { 5758 Lo = DAG.getNode(ISD::SRA, dl, NVT, InH, 5759 DAG.getConstant(Cst-NVTBits, ShTy)); 5760 Hi = DAG.getNode(ISD::SRA, dl, NVT, InH, 5761 DAG.getConstant(NVTBits-1, ShTy)); 5762 } else if (Cst == NVTBits) { 5763 Lo = InH; 5764 Hi = DAG.getNode(ISD::SRA, dl, NVT, InH, 5765 DAG.getConstant(NVTBits-1, ShTy)); 5766 } else { 5767 Lo = DAG.getNode(ISD::OR, dl, NVT, 5768 DAG.getNode(ISD::SRL, dl, NVT, InL, DAG.getConstant(Cst, ShTy)), 5769 DAG.getNode(ISD::SHL, dl, 5770 NVT, InH, DAG.getConstant(NVTBits-Cst, ShTy))); 5771 Hi = DAG.getNode(ISD::SRA, dl, NVT, InH, DAG.getConstant(Cst, ShTy)); 5772 } 5773 return true; 5774 } 5775 } 5776 5777 // Okay, the shift amount isn't constant. However, if we can tell that it is 5778 // >= 32 or < 32, we can still simplify it, without knowing the actual value. 5779 APInt Mask = APInt::getHighBitsSet(ShBits, ShBits - Log2_32(NVTBits)); 5780 APInt KnownZero, KnownOne; 5781 DAG.ComputeMaskedBits(Amt, Mask, KnownZero, KnownOne); 5782 5783 // If we know that if any of the high bits of the shift amount are one, then 5784 // we can do this as a couple of simple shifts. 5785 if (KnownOne.intersects(Mask)) { 5786 // Mask out the high bit, which we know is set. 5787 Amt = DAG.getNode(ISD::AND, dl, Amt.getValueType(), Amt, 5788 DAG.getConstant(~Mask, Amt.getValueType())); 5789 5790 // Expand the incoming operand to be shifted, so that we have its parts 5791 SDValue InL, InH; 5792 ExpandOp(Op, InL, InH); 5793 switch(Opc) { 5794 case ISD::SHL: 5795 Lo = DAG.getConstant(0, NVT); // Low part is zero. 5796 Hi = DAG.getNode(ISD::SHL, dl, NVT, InL, Amt); // High part from Lo part. 5797 return true; 5798 case ISD::SRL: 5799 Hi = DAG.getConstant(0, NVT); // Hi part is zero. 5800 Lo = DAG.getNode(ISD::SRL, dl, NVT, InH, Amt); // Lo part from Hi part. 5801 return true; 5802 case ISD::SRA: 5803 Hi = DAG.getNode(ISD::SRA, dl, NVT, InH, // Sign extend high part. 5804 DAG.getConstant(NVTBits-1, Amt.getValueType())); 5805 Lo = DAG.getNode(ISD::SRA, dl, NVT, InH, Amt); // Lo part from Hi part. 5806 return true; 5807 } 5808 } 5809 5810 // If we know that the high bits of the shift amount are all zero, then we can 5811 // do this as a couple of simple shifts. 5812 if ((KnownZero & Mask) == Mask) { 5813 // Compute 32-amt. 5814 SDValue Amt2 = DAG.getNode(ISD::SUB, dl, Amt.getValueType(), 5815 DAG.getConstant(NVTBits, Amt.getValueType()), 5816 Amt); 5817 5818 // Expand the incoming operand to be shifted, so that we have its parts 5819 SDValue InL, InH; 5820 ExpandOp(Op, InL, InH); 5821 switch(Opc) { 5822 case ISD::SHL: 5823 Lo = DAG.getNode(ISD::SHL, dl, NVT, InL, Amt); 5824 Hi = DAG.getNode(ISD::OR, dl, NVT, 5825 DAG.getNode(ISD::SHL, dl, NVT, InH, Amt), 5826 DAG.getNode(ISD::SRL, dl, NVT, InL, Amt2)); 5827 return true; 5828 case ISD::SRL: 5829 Hi = DAG.getNode(ISD::SRL, dl, NVT, InH, Amt); 5830 Lo = DAG.getNode(ISD::OR, dl, NVT, 5831 DAG.getNode(ISD::SRL, dl, NVT, InL, Amt), 5832 DAG.getNode(ISD::SHL, dl, NVT, InH, Amt2)); 5833 return true; 5834 case ISD::SRA: 5835 Hi = DAG.getNode(ISD::SRA, dl, NVT, InH, Amt); 5836 Lo = DAG.getNode(ISD::OR, dl, NVT, 5837 DAG.getNode(ISD::SRL, dl, NVT, InL, Amt), 5838 DAG.getNode(ISD::SHL, dl, NVT, InH, Amt2)); 5839 return true; 5840 } 5841 } 5842 5843 return false; 5844} 5845 5846 5847// ExpandLibCall - Expand a node into a call to a libcall. If the result value 5848// does not fit into a register, return the lo part and set the hi part to the 5849// by-reg argument. If it does fit into a single register, return the result 5850// and leave the Hi part unset. 5851SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 5852 bool isSigned, SDValue &Hi) { 5853 assert(!IsLegalizingCall && "Cannot overlap legalization of calls!"); 5854 // The input chain to this libcall is the entry node of the function. 5855 // Legalizing the call will automatically add the previous call to the 5856 // dependence. 5857 SDValue InChain = DAG.getEntryNode(); 5858 5859 TargetLowering::ArgListTy Args; 5860 TargetLowering::ArgListEntry Entry; 5861 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 5862 MVT ArgVT = Node->getOperand(i).getValueType(); 5863 const Type *ArgTy = ArgVT.getTypeForMVT(); 5864 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; 5865 Entry.isSExt = isSigned; 5866 Entry.isZExt = !isSigned; 5867 Args.push_back(Entry); 5868 } 5869 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 5870 TLI.getPointerTy()); 5871 5872 // Splice the libcall in wherever FindInputOutputChains tells us to. 5873 const Type *RetTy = Node->getValueType(0).getTypeForMVT(); 5874 std::pair<SDValue, SDValue> CallInfo = 5875 TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false, 5876 CallingConv::C, false, Callee, Args, DAG, 5877 Node->getDebugLoc()); 5878 5879 // Legalize the call sequence, starting with the chain. This will advance 5880 // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that 5881 // was added by LowerCallTo (guaranteeing proper serialization of calls). 5882 LegalizeOp(CallInfo.second); 5883 SDValue Result; 5884 switch (getTypeAction(CallInfo.first.getValueType())) { 5885 default: assert(0 && "Unknown thing"); 5886 case Legal: 5887 Result = CallInfo.first; 5888 break; 5889 case Expand: 5890 ExpandOp(CallInfo.first, Result, Hi); 5891 break; 5892 } 5893 return Result; 5894} 5895 5896/// LegalizeINT_TO_FP - Legalize a [US]INT_TO_FP operation. 5897/// 5898SDValue SelectionDAGLegalize:: 5899LegalizeINT_TO_FP(SDValue Result, bool isSigned, MVT DestTy, SDValue Op, 5900 DebugLoc dl) { 5901 bool isCustom = false; 5902 SDValue Tmp1; 5903 switch (getTypeAction(Op.getValueType())) { 5904 case Legal: 5905 switch (TLI.getOperationAction(isSigned ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 5906 Op.getValueType())) { 5907 default: assert(0 && "Unknown operation action!"); 5908 case TargetLowering::Custom: 5909 isCustom = true; 5910 // FALLTHROUGH 5911 case TargetLowering::Legal: 5912 Tmp1 = LegalizeOp(Op); 5913 if (Result.getNode()) 5914 Result = DAG.UpdateNodeOperands(Result, Tmp1); 5915 else 5916 Result = DAG.getNode(isSigned ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, dl, 5917 DestTy, Tmp1); 5918 if (isCustom) { 5919 Tmp1 = TLI.LowerOperation(Result, DAG); 5920 if (Tmp1.getNode()) Result = Tmp1; 5921 } 5922 break; 5923 case TargetLowering::Expand: 5924 Result = ExpandLegalINT_TO_FP(isSigned, LegalizeOp(Op), DestTy, dl); 5925 break; 5926 case TargetLowering::Promote: 5927 Result = PromoteLegalINT_TO_FP(LegalizeOp(Op), DestTy, isSigned, dl); 5928 break; 5929 } 5930 break; 5931 case Expand: 5932 Result = ExpandIntToFP(isSigned, DestTy, Op, dl) ; 5933 break; 5934 case Promote: 5935 Tmp1 = PromoteOp(Op); 5936 if (isSigned) { 5937 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Tmp1.getValueType(), 5938 Tmp1, DAG.getValueType(Op.getValueType())); 5939 } else { 5940 Tmp1 = DAG.getZeroExtendInReg(Tmp1, dl, Op.getValueType()); 5941 } 5942 if (Result.getNode()) 5943 Result = DAG.UpdateNodeOperands(Result, Tmp1); 5944 else 5945 Result = DAG.getNode(isSigned ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, dl, 5946 DestTy, Tmp1); 5947 Result = LegalizeOp(Result); // The 'op' is not necessarily legal! 5948 break; 5949 } 5950 return Result; 5951} 5952 5953/// ExpandIntToFP - Expand a [US]INT_TO_FP operation. 5954/// 5955SDValue SelectionDAGLegalize:: 5956ExpandIntToFP(bool isSigned, MVT DestTy, SDValue Source, DebugLoc dl) { 5957 MVT SourceVT = Source.getValueType(); 5958 bool ExpandSource = getTypeAction(SourceVT) == Expand; 5959 5960 // Expand unsupported int-to-fp vector casts by unrolling them. 5961 if (DestTy.isVector()) { 5962 if (!ExpandSource) 5963 return LegalizeOp(UnrollVectorOp(Source)); 5964 MVT DestEltTy = DestTy.getVectorElementType(); 5965 if (DestTy.getVectorNumElements() == 1) { 5966 SDValue Scalar = ScalarizeVectorOp(Source); 5967 SDValue Result = LegalizeINT_TO_FP(SDValue(), isSigned, 5968 DestEltTy, Scalar, dl); 5969 return DAG.getNode(ISD::BUILD_VECTOR, dl, DestTy, Result); 5970 } 5971 SDValue Lo, Hi; 5972 SplitVectorOp(Source, Lo, Hi); 5973 MVT SplitDestTy = MVT::getVectorVT(DestEltTy, 5974 DestTy.getVectorNumElements() / 2); 5975 SDValue LoResult = LegalizeINT_TO_FP(SDValue(), isSigned, SplitDestTy, 5976 Lo, dl); 5977 SDValue HiResult = LegalizeINT_TO_FP(SDValue(), isSigned, SplitDestTy, 5978 Hi, dl); 5979 return LegalizeOp(DAG.getNode(ISD::CONCAT_VECTORS, dl, DestTy, LoResult, 5980 HiResult)); 5981 } 5982 5983 // Special case for i32 source to take advantage of UINTTOFP_I32_F32, etc. 5984 if (!isSigned && SourceVT != MVT::i32) { 5985 // The integer value loaded will be incorrectly if the 'sign bit' of the 5986 // incoming integer is set. To handle this, we dynamically test to see if 5987 // it is set, and, if so, add a fudge factor. 5988 SDValue Hi; 5989 if (ExpandSource) { 5990 SDValue Lo; 5991 ExpandOp(Source, Lo, Hi); 5992 Source = DAG.getNode(ISD::BUILD_PAIR, dl, SourceVT, Lo, Hi); 5993 } else { 5994 // The comparison for the sign bit will use the entire operand. 5995 Hi = Source; 5996 } 5997 5998 // Check to see if the target has a custom way to lower this. If so, use 5999 // it. (Note we've already expanded the operand in this case.) 6000 switch (TLI.getOperationAction(ISD::UINT_TO_FP, SourceVT)) { 6001 default: assert(0 && "This action not implemented for this operation!"); 6002 case TargetLowering::Legal: 6003 case TargetLowering::Expand: 6004 break; // This case is handled below. 6005 case TargetLowering::Custom: { 6006 SDValue NV = TLI.LowerOperation(DAG.getNode(ISD::UINT_TO_FP, dl, DestTy, 6007 Source), DAG); 6008 if (NV.getNode()) 6009 return LegalizeOp(NV); 6010 break; // The target decided this was legal after all 6011 } 6012 } 6013 6014 // If this is unsigned, and not supported, first perform the conversion to 6015 // signed, then adjust the result if the sign bit is set. 6016 SDValue SignedConv = ExpandIntToFP(true, DestTy, Source, dl); 6017 6018 SDValue SignSet = DAG.getSetCC(dl, 6019 TLI.getSetCCResultType(Hi.getValueType()), 6020 Hi, DAG.getConstant(0, Hi.getValueType()), 6021 ISD::SETLT); 6022 SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); 6023 SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), 6024 SignSet, Four, Zero); 6025 uint64_t FF = 0x5f800000ULL; 6026 if (TLI.isLittleEndian()) FF <<= 32; 6027 Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF); 6028 6029 SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); 6030 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 6031 CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset); 6032 Alignment = std::min(Alignment, 4u); 6033 SDValue FudgeInReg; 6034 if (DestTy == MVT::f32) 6035 FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx, 6036 PseudoSourceValue::getConstantPool(), 0, 6037 false, Alignment); 6038 else if (DestTy.bitsGT(MVT::f32)) 6039 // FIXME: Avoid the extend by construction the right constantpool? 6040 FudgeInReg = DAG.getExtLoad(ISD::EXTLOAD, dl, DestTy, DAG.getEntryNode(), 6041 CPIdx, 6042 PseudoSourceValue::getConstantPool(), 0, 6043 MVT::f32, false, Alignment); 6044 else 6045 assert(0 && "Unexpected conversion"); 6046 6047 MVT SCVT = SignedConv.getValueType(); 6048 if (SCVT != DestTy) { 6049 // Destination type needs to be expanded as well. The FADD now we are 6050 // constructing will be expanded into a libcall. 6051 if (SCVT.getSizeInBits() != DestTy.getSizeInBits()) { 6052 assert(SCVT.getSizeInBits() * 2 == DestTy.getSizeInBits()); 6053 SignedConv = DAG.getNode(ISD::BUILD_PAIR, dl, DestTy, 6054 SignedConv, SignedConv.getValue(1)); 6055 } 6056 SignedConv = DAG.getNode(ISD::BIT_CONVERT, dl, DestTy, SignedConv); 6057 } 6058 return DAG.getNode(ISD::FADD, dl, DestTy, SignedConv, FudgeInReg); 6059 } 6060 6061 // Check to see if the target has a custom way to lower this. If so, use it. 6062 switch (TLI.getOperationAction(ISD::SINT_TO_FP, SourceVT)) { 6063 default: assert(0 && "This action not implemented for this operation!"); 6064 case TargetLowering::Legal: 6065 case TargetLowering::Expand: 6066 break; // This case is handled below. 6067 case TargetLowering::Custom: { 6068 SDValue NV = TLI.LowerOperation(DAG.getNode(ISD::SINT_TO_FP, dl, DestTy, 6069 Source), DAG); 6070 if (NV.getNode()) 6071 return LegalizeOp(NV); 6072 break; // The target decided this was legal after all 6073 } 6074 } 6075 6076 // Expand the source, then glue it back together for the call. We must expand 6077 // the source in case it is shared (this pass of legalize must traverse it). 6078 if (ExpandSource) { 6079 SDValue SrcLo, SrcHi; 6080 ExpandOp(Source, SrcLo, SrcHi); 6081 Source = DAG.getNode(ISD::BUILD_PAIR, dl, SourceVT, SrcLo, SrcHi); 6082 } 6083 6084 RTLIB::Libcall LC = isSigned ? 6085 RTLIB::getSINTTOFP(SourceVT, DestTy) : 6086 RTLIB::getUINTTOFP(SourceVT, DestTy); 6087 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unknown int value type"); 6088 6089 Source = DAG.getNode(ISD::SINT_TO_FP, dl, DestTy, Source); 6090 SDValue HiPart; 6091 SDValue Result = ExpandLibCall(LC, Source.getNode(), isSigned, HiPart); 6092 if (Result.getValueType() != DestTy && HiPart.getNode()) 6093 Result = DAG.getNode(ISD::BUILD_PAIR, dl, DestTy, Result, HiPart); 6094 return Result; 6095} 6096 6097/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a 6098/// INT_TO_FP operation of the specified operand when the target requests that 6099/// we expand it. At this point, we know that the result and operand types are 6100/// legal for the target. 6101SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, 6102 SDValue Op0, 6103 MVT DestVT, 6104 DebugLoc dl) { 6105 if (Op0.getValueType() == MVT::i32) { 6106 // simple 32-bit [signed|unsigned] integer to float/double expansion 6107 6108 // Get the stack frame index of a 8 byte buffer. 6109 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 6110 6111 // word offset constant for Hi/Lo address computation 6112 SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy()); 6113 // set up Hi and Lo (into buffer) address based on endian 6114 SDValue Hi = StackSlot; 6115 SDValue Lo = DAG.getNode(ISD::ADD, dl, 6116 TLI.getPointerTy(), StackSlot, WordOff); 6117 if (TLI.isLittleEndian()) 6118 std::swap(Hi, Lo); 6119 6120 // if signed map to unsigned space 6121 SDValue Op0Mapped; 6122 if (isSigned) { 6123 // constant used to invert sign bit (signed to unsigned mapping) 6124 SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32); 6125 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit); 6126 } else { 6127 Op0Mapped = Op0; 6128 } 6129 // store the lo of the constructed double - based on integer input 6130 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, 6131 Op0Mapped, Lo, NULL, 0); 6132 // initial hi portion of constructed double 6133 SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32); 6134 // store the hi of the constructed double - biased exponent 6135 SDValue Store2=DAG.getStore(Store1, dl, InitialHi, Hi, NULL, 0); 6136 // load the constructed double 6137 SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, NULL, 0); 6138 // FP constant to bias correct the final result 6139 SDValue Bias = DAG.getConstantFP(isSigned ? 6140 BitsToDouble(0x4330000080000000ULL) : 6141 BitsToDouble(0x4330000000000000ULL), 6142 MVT::f64); 6143 // subtract the bias 6144 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 6145 // final result 6146 SDValue Result; 6147 // handle final rounding 6148 if (DestVT == MVT::f64) { 6149 // do nothing 6150 Result = Sub; 6151 } else if (DestVT.bitsLT(MVT::f64)) { 6152 Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub, 6153 DAG.getIntPtrConstant(0)); 6154 } else if (DestVT.bitsGT(MVT::f64)) { 6155 Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub); 6156 } 6157 return Result; 6158 } 6159 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 6160 SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 6161 6162 SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()), 6163 Op0, DAG.getConstant(0, Op0.getValueType()), 6164 ISD::SETLT); 6165 SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); 6166 SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), 6167 SignSet, Four, Zero); 6168 6169 // If the sign bit of the integer is set, the large number will be treated 6170 // as a negative number. To counteract this, the dynamic code adds an 6171 // offset depending on the data type. 6172 uint64_t FF; 6173 switch (Op0.getValueType().getSimpleVT()) { 6174 default: assert(0 && "Unsupported integer type!"); 6175 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 6176 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 6177 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 6178 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 6179 } 6180 if (TLI.isLittleEndian()) FF <<= 32; 6181 Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF); 6182 6183 SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); 6184 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 6185 CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset); 6186 Alignment = std::min(Alignment, 4u); 6187 SDValue FudgeInReg; 6188 if (DestVT == MVT::f32) 6189 FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx, 6190 PseudoSourceValue::getConstantPool(), 0, 6191 false, Alignment); 6192 else { 6193 FudgeInReg = 6194 LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, 6195 DAG.getEntryNode(), CPIdx, 6196 PseudoSourceValue::getConstantPool(), 0, 6197 MVT::f32, false, Alignment)); 6198 } 6199 6200 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 6201} 6202 6203/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a 6204/// *INT_TO_FP operation of the specified operand when the target requests that 6205/// we promote it. At this point, we know that the result and operand types are 6206/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 6207/// operation that takes a larger input. 6208SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, 6209 MVT DestVT, 6210 bool isSigned, 6211 DebugLoc dl) { 6212 // First step, figure out the appropriate *INT_TO_FP operation to use. 6213 MVT NewInTy = LegalOp.getValueType(); 6214 6215 unsigned OpToUse = 0; 6216 6217 // Scan for the appropriate larger type to use. 6218 while (1) { 6219 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT()+1); 6220 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 6221 6222 // If the target supports SINT_TO_FP of this type, use it. 6223 switch (TLI.getOperationAction(ISD::SINT_TO_FP, NewInTy)) { 6224 default: break; 6225 case TargetLowering::Legal: 6226 if (!TLI.isTypeLegal(NewInTy)) 6227 break; // Can't use this datatype. 6228 // FALL THROUGH. 6229 case TargetLowering::Custom: 6230 OpToUse = ISD::SINT_TO_FP; 6231 break; 6232 } 6233 if (OpToUse) break; 6234 if (isSigned) continue; 6235 6236 // If the target supports UINT_TO_FP of this type, use it. 6237 switch (TLI.getOperationAction(ISD::UINT_TO_FP, NewInTy)) { 6238 default: break; 6239 case TargetLowering::Legal: 6240 if (!TLI.isTypeLegal(NewInTy)) 6241 break; // Can't use this datatype. 6242 // FALL THROUGH. 6243 case TargetLowering::Custom: 6244 OpToUse = ISD::UINT_TO_FP; 6245 break; 6246 } 6247 if (OpToUse) break; 6248 6249 // Otherwise, try a larger type. 6250 } 6251 6252 // Okay, we found the operation and type to use. Zero extend our input to the 6253 // desired type then run the operation on it. 6254 return DAG.getNode(OpToUse, dl, DestVT, 6255 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 6256 dl, NewInTy, LegalOp)); 6257} 6258 6259/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a 6260/// FP_TO_*INT operation of the specified operand when the target requests that 6261/// we promote it. At this point, we know that the result and operand types are 6262/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 6263/// operation that returns a larger result. 6264SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, 6265 MVT DestVT, 6266 bool isSigned, 6267 DebugLoc dl) { 6268 // First step, figure out the appropriate FP_TO*INT operation to use. 6269 MVT NewOutTy = DestVT; 6270 6271 unsigned OpToUse = 0; 6272 6273 // Scan for the appropriate larger type to use. 6274 while (1) { 6275 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT()+1); 6276 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 6277 6278 // If the target supports FP_TO_SINT returning this type, use it. 6279 switch (TLI.getOperationAction(ISD::FP_TO_SINT, NewOutTy)) { 6280 default: break; 6281 case TargetLowering::Legal: 6282 if (!TLI.isTypeLegal(NewOutTy)) 6283 break; // Can't use this datatype. 6284 // FALL THROUGH. 6285 case TargetLowering::Custom: 6286 OpToUse = ISD::FP_TO_SINT; 6287 break; 6288 } 6289 if (OpToUse) break; 6290 6291 // If the target supports FP_TO_UINT of this type, use it. 6292 switch (TLI.getOperationAction(ISD::FP_TO_UINT, NewOutTy)) { 6293 default: break; 6294 case TargetLowering::Legal: 6295 if (!TLI.isTypeLegal(NewOutTy)) 6296 break; // Can't use this datatype. 6297 // FALL THROUGH. 6298 case TargetLowering::Custom: 6299 OpToUse = ISD::FP_TO_UINT; 6300 break; 6301 } 6302 if (OpToUse) break; 6303 6304 // Otherwise, try a larger type. 6305 } 6306 6307 6308 // Okay, we found the operation and type to use. 6309 SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 6310 6311 // If the operation produces an invalid type, it must be custom lowered. Use 6312 // the target lowering hooks to expand it. Just keep the low part of the 6313 // expanded operation, we know that we're truncating anyway. 6314 if (getTypeAction(NewOutTy) == Expand) { 6315 SmallVector<SDValue, 2> Results; 6316 TLI.ReplaceNodeResults(Operation.getNode(), Results, DAG); 6317 assert(Results.size() == 1 && "Incorrect FP_TO_XINT lowering!"); 6318 Operation = Results[0]; 6319 } 6320 6321 // Truncate the result of the extended FP_TO_*INT operation to the desired 6322 // size. 6323 return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 6324} 6325 6326/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation. 6327/// 6328SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) { 6329 MVT VT = Op.getValueType(); 6330 MVT SHVT = TLI.getShiftAmountTy(); 6331 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 6332 switch (VT.getSimpleVT()) { 6333 default: assert(0 && "Unhandled Expand type in BSWAP!"); abort(); 6334 case MVT::i16: 6335 Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); 6336 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); 6337 return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); 6338 case MVT::i32: 6339 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT)); 6340 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); 6341 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); 6342 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT)); 6343 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT)); 6344 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT)); 6345 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 6346 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 6347 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 6348 case MVT::i64: 6349 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT)); 6350 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT)); 6351 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT)); 6352 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); 6353 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); 6354 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT)); 6355 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT)); 6356 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT)); 6357 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT)); 6358 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT)); 6359 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT)); 6360 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT)); 6361 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT)); 6362 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT)); 6363 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 6364 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 6365 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 6366 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 6367 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 6368 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 6369 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 6370 } 6371} 6372 6373/// ExpandBitCount - Expand the specified bitcount instruction into operations. 6374/// 6375SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op, 6376 DebugLoc dl) { 6377 switch (Opc) { 6378 default: assert(0 && "Cannot expand this yet!"); 6379 case ISD::CTPOP: { 6380 static const uint64_t mask[6] = { 6381 0x5555555555555555ULL, 0x3333333333333333ULL, 6382 0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL, 6383 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL 6384 }; 6385 MVT VT = Op.getValueType(); 6386 MVT ShVT = TLI.getShiftAmountTy(); 6387 unsigned len = VT.getSizeInBits(); 6388 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 6389 //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8]) 6390 unsigned EltSize = VT.isVector() ? 6391 VT.getVectorElementType().getSizeInBits() : len; 6392 SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT); 6393 SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT); 6394 Op = DAG.getNode(ISD::ADD, dl, VT, 6395 DAG.getNode(ISD::AND, dl, VT, Op, Tmp2), 6396 DAG.getNode(ISD::AND, dl, VT, 6397 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3), 6398 Tmp2)); 6399 } 6400 return Op; 6401 } 6402 case ISD::CTLZ: { 6403 // for now, we do this: 6404 // x = x | (x >> 1); 6405 // x = x | (x >> 2); 6406 // ... 6407 // x = x | (x >>16); 6408 // x = x | (x >>32); // for 64-bit input 6409 // return popcount(~x); 6410 // 6411 // but see also: http://www.hackersdelight.org/HDcode/nlz.cc 6412 MVT VT = Op.getValueType(); 6413 MVT ShVT = TLI.getShiftAmountTy(); 6414 unsigned len = VT.getSizeInBits(); 6415 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 6416 SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT); 6417 Op = DAG.getNode(ISD::OR, dl, VT, Op, 6418 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3)); 6419 } 6420 Op = DAG.getNOT(dl, Op, VT); 6421 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 6422 } 6423 case ISD::CTTZ: { 6424 // for now, we use: { return popcount(~x & (x - 1)); } 6425 // unless the target has ctlz but not ctpop, in which case we use: 6426 // { return 32 - nlz(~x & (x-1)); } 6427 // see also http://www.hackersdelight.org/HDcode/ntz.cc 6428 MVT VT = Op.getValueType(); 6429 SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT, 6430 DAG.getNOT(dl, Op, VT), 6431 DAG.getNode(ISD::SUB, dl, VT, Op, 6432 DAG.getConstant(1, VT))); 6433 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 6434 if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) && 6435 TLI.isOperationLegalOrCustom(ISD::CTLZ, VT)) 6436 return DAG.getNode(ISD::SUB, dl, VT, 6437 DAG.getConstant(VT.getSizeInBits(), VT), 6438 DAG.getNode(ISD::CTLZ, dl, VT, Tmp3)); 6439 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3); 6440 } 6441 } 6442} 6443 6444/// ExpandOp - Expand the specified SDValue into its two component pieces 6445/// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, the 6446/// LegalizedNodes map is filled in for any results that are not expanded, the 6447/// ExpandedNodes map is filled in for any results that are expanded, and the 6448/// Lo/Hi values are returned. 6449void SelectionDAGLegalize::ExpandOp(SDValue Op, SDValue &Lo, SDValue &Hi){ 6450 MVT VT = Op.getValueType(); 6451 MVT NVT = TLI.getTypeToTransformTo(VT); 6452 SDNode *Node = Op.getNode(); 6453 DebugLoc dl = Node->getDebugLoc(); 6454 assert(getTypeAction(VT) == Expand && "Not an expanded type!"); 6455 assert(((NVT.isInteger() && NVT.bitsLT(VT)) || VT.isFloatingPoint() || 6456 VT.isVector()) && "Cannot expand to FP value or to larger int value!"); 6457 6458 // See if we already expanded it. 6459 DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator I 6460 = ExpandedNodes.find(Op); 6461 if (I != ExpandedNodes.end()) { 6462 Lo = I->second.first; 6463 Hi = I->second.second; 6464 return; 6465 } 6466 6467 switch (Node->getOpcode()) { 6468 case ISD::CopyFromReg: 6469 assert(0 && "CopyFromReg must be legal!"); 6470 case ISD::FP_ROUND_INREG: 6471 if (VT == MVT::ppcf128 && 6472 TLI.getOperationAction(ISD::FP_ROUND_INREG, VT) == 6473 TargetLowering::Custom) { 6474 SDValue SrcLo, SrcHi, Src; 6475 ExpandOp(Op.getOperand(0), SrcLo, SrcHi); 6476 Src = DAG.getNode(ISD::BUILD_PAIR, dl, VT, SrcLo, SrcHi); 6477 SDValue Result = 6478 TLI.LowerOperation(DAG.getNode(ISD::FP_ROUND_INREG, dl, VT, Src, 6479 Op.getOperand(1)), DAG); 6480 assert(Result.getNode()->getOpcode() == ISD::BUILD_PAIR); 6481 Lo = Result.getNode()->getOperand(0); 6482 Hi = Result.getNode()->getOperand(1); 6483 break; 6484 } 6485 // fall through 6486 default: 6487#ifndef NDEBUG 6488 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 6489#endif 6490 assert(0 && "Do not know how to expand this operator!"); 6491 abort(); 6492 case ISD::EXTRACT_ELEMENT: 6493 ExpandOp(Node->getOperand(0), Lo, Hi); 6494 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) 6495 return ExpandOp(Hi, Lo, Hi); 6496 return ExpandOp(Lo, Lo, Hi); 6497 case ISD::EXTRACT_VECTOR_ELT: 6498 // ExpandEXTRACT_VECTOR_ELT tolerates invalid result types. 6499 Lo = ExpandEXTRACT_VECTOR_ELT(Op); 6500 return ExpandOp(Lo, Lo, Hi); 6501 case ISD::UNDEF: 6502 Lo = DAG.getUNDEF(NVT); 6503 Hi = DAG.getUNDEF(NVT); 6504 break; 6505 case ISD::Constant: { 6506 unsigned NVTBits = NVT.getSizeInBits(); 6507 const APInt &Cst = cast<ConstantSDNode>(Node)->getAPIntValue(); 6508 Lo = DAG.getConstant(APInt(Cst).trunc(NVTBits), NVT); 6509 Hi = DAG.getConstant(Cst.lshr(NVTBits).trunc(NVTBits), NVT); 6510 break; 6511 } 6512 case ISD::ConstantFP: { 6513 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 6514 if (CFP->getValueType(0) == MVT::ppcf128) { 6515 APInt api = CFP->getValueAPF().bitcastToAPInt(); 6516 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &api.getRawData()[1])), 6517 MVT::f64); 6518 Hi = DAG.getConstantFP(APFloat(APInt(64, 1, &api.getRawData()[0])), 6519 MVT::f64); 6520 break; 6521 } 6522 Lo = ExpandConstantFP(CFP, false, DAG, TLI); 6523 if (getTypeAction(Lo.getValueType()) == Expand) 6524 ExpandOp(Lo, Lo, Hi); 6525 break; 6526 } 6527 case ISD::BUILD_PAIR: 6528 // Return the operands. 6529 Lo = Node->getOperand(0); 6530 Hi = Node->getOperand(1); 6531 break; 6532 6533 case ISD::MERGE_VALUES: 6534 if (Node->getNumValues() == 1) { 6535 ExpandOp(Op.getOperand(0), Lo, Hi); 6536 break; 6537 } 6538 // FIXME: For now only expand i64,chain = MERGE_VALUES (x, y) 6539 assert(Op.getResNo() == 0 && Node->getNumValues() == 2 && 6540 Op.getValue(1).getValueType() == MVT::Other && 6541 "unhandled MERGE_VALUES"); 6542 ExpandOp(Op.getOperand(0), Lo, Hi); 6543 // Remember that we legalized the chain. 6544 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Op.getOperand(1))); 6545 break; 6546 6547 case ISD::SIGN_EXTEND_INREG: 6548 ExpandOp(Node->getOperand(0), Lo, Hi); 6549 // sext_inreg the low part if needed. 6550 Lo = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Lo, Node->getOperand(1)); 6551 6552 // The high part gets the sign extension from the lo-part. This handles 6553 // things like sextinreg V:i64 from i8. 6554 Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo, 6555 DAG.getConstant(NVT.getSizeInBits()-1, 6556 TLI.getShiftAmountTy())); 6557 break; 6558 6559 case ISD::BSWAP: { 6560 ExpandOp(Node->getOperand(0), Lo, Hi); 6561 SDValue TempLo = DAG.getNode(ISD::BSWAP, dl, NVT, Hi); 6562 Hi = DAG.getNode(ISD::BSWAP, dl, NVT, Lo); 6563 Lo = TempLo; 6564 break; 6565 } 6566 6567 case ISD::CTPOP: 6568 ExpandOp(Node->getOperand(0), Lo, Hi); 6569 Lo = DAG.getNode(ISD::ADD, dl, NVT, // ctpop(HL) -> ctpop(H)+ctpop(L) 6570 DAG.getNode(ISD::CTPOP, dl, NVT, Lo), 6571 DAG.getNode(ISD::CTPOP, dl, NVT, Hi)); 6572 Hi = DAG.getConstant(0, NVT); 6573 break; 6574 6575 case ISD::CTLZ: { 6576 // ctlz (HL) -> ctlz(H) != 32 ? ctlz(H) : (ctlz(L)+32) 6577 ExpandOp(Node->getOperand(0), Lo, Hi); 6578 SDValue BitsC = DAG.getConstant(NVT.getSizeInBits(), NVT); 6579 SDValue HLZ = DAG.getNode(ISD::CTLZ, dl, NVT, Hi); 6580 SDValue TopNotZero = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), HLZ, 6581 BitsC, ISD::SETNE); 6582 SDValue LowPart = DAG.getNode(ISD::CTLZ, dl, NVT, Lo); 6583 LowPart = DAG.getNode(ISD::ADD, dl, NVT, LowPart, BitsC); 6584 6585 Lo = DAG.getNode(ISD::SELECT, dl, NVT, TopNotZero, HLZ, LowPart); 6586 Hi = DAG.getConstant(0, NVT); 6587 break; 6588 } 6589 6590 case ISD::CTTZ: { 6591 // cttz (HL) -> cttz(L) != 32 ? cttz(L) : (cttz(H)+32) 6592 ExpandOp(Node->getOperand(0), Lo, Hi); 6593 SDValue BitsC = DAG.getConstant(NVT.getSizeInBits(), NVT); 6594 SDValue LTZ = DAG.getNode(ISD::CTTZ, dl, NVT, Lo); 6595 SDValue BotNotZero = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), LTZ, 6596 BitsC, ISD::SETNE); 6597 SDValue HiPart = DAG.getNode(ISD::CTTZ, dl, NVT, Hi); 6598 HiPart = DAG.getNode(ISD::ADD, dl, NVT, HiPart, BitsC); 6599 6600 Lo = DAG.getNode(ISD::SELECT, dl, NVT, BotNotZero, LTZ, HiPart); 6601 Hi = DAG.getConstant(0, NVT); 6602 break; 6603 } 6604 6605 case ISD::VAARG: { 6606 SDValue Ch = Node->getOperand(0); // Legalize the chain. 6607 SDValue Ptr = Node->getOperand(1); // Legalize the pointer. 6608 Lo = DAG.getVAArg(NVT, dl, Ch, Ptr, Node->getOperand(2)); 6609 Hi = DAG.getVAArg(NVT, dl, Lo.getValue(1), Ptr, Node->getOperand(2)); 6610 6611 // Remember that we legalized the chain. 6612 Hi = LegalizeOp(Hi); 6613 AddLegalizedOperand(Op.getValue(1), Hi.getValue(1)); 6614 if (TLI.isBigEndian()) 6615 std::swap(Lo, Hi); 6616 break; 6617 } 6618 6619 case ISD::LOAD: { 6620 LoadSDNode *LD = cast<LoadSDNode>(Node); 6621 SDValue Ch = LD->getChain(); // Legalize the chain. 6622 SDValue Ptr = LD->getBasePtr(); // Legalize the pointer. 6623 ISD::LoadExtType ExtType = LD->getExtensionType(); 6624 const Value *SV = LD->getSrcValue(); 6625 int SVOffset = LD->getSrcValueOffset(); 6626 unsigned Alignment = LD->getAlignment(); 6627 bool isVolatile = LD->isVolatile(); 6628 6629 if (ExtType == ISD::NON_EXTLOAD) { 6630 Lo = DAG.getLoad(NVT, dl, Ch, Ptr, SV, SVOffset, 6631 isVolatile, Alignment); 6632 if (VT == MVT::f32 || VT == MVT::f64) { 6633 // f32->i32 or f64->i64 one to one expansion. 6634 // Remember that we legalized the chain. 6635 AddLegalizedOperand(SDValue(Node, 1), LegalizeOp(Lo.getValue(1))); 6636 // Recursively expand the new load. 6637 if (getTypeAction(NVT) == Expand) 6638 ExpandOp(Lo, Lo, Hi); 6639 break; 6640 } 6641 6642 // Increment the pointer to the other half. 6643 unsigned IncrementSize = Lo.getValueType().getSizeInBits()/8; 6644 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 6645 DAG.getIntPtrConstant(IncrementSize)); 6646 SVOffset += IncrementSize; 6647 Alignment = MinAlign(Alignment, IncrementSize); 6648 Hi = DAG.getLoad(NVT, dl, Ch, Ptr, SV, SVOffset, 6649 isVolatile, Alignment); 6650 6651 // Build a factor node to remember that this load is independent of the 6652 // other one. 6653 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 6654 Hi.getValue(1)); 6655 6656 // Remember that we legalized the chain. 6657 AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF)); 6658 if (TLI.isBigEndian()) 6659 std::swap(Lo, Hi); 6660 } else { 6661 MVT EVT = LD->getMemoryVT(); 6662 6663 if ((VT == MVT::f64 && EVT == MVT::f32) || 6664 (VT == MVT::ppcf128 && (EVT==MVT::f64 || EVT==MVT::f32))) { 6665 // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND 6666 SDValue Load = DAG.getLoad(EVT, dl, Ch, Ptr, SV, 6667 SVOffset, isVolatile, Alignment); 6668 // Remember that we legalized the chain. 6669 AddLegalizedOperand(SDValue(Node, 1), LegalizeOp(Load.getValue(1))); 6670 ExpandOp(DAG.getNode(ISD::FP_EXTEND, dl, VT, Load), Lo, Hi); 6671 break; 6672 } 6673 6674 if (EVT == NVT) 6675 Lo = DAG.getLoad(NVT, dl, Ch, Ptr, SV, 6676 SVOffset, isVolatile, Alignment); 6677 else 6678 Lo = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr, SV, 6679 SVOffset, EVT, isVolatile, 6680 Alignment); 6681 6682 // Remember that we legalized the chain. 6683 AddLegalizedOperand(SDValue(Node, 1), LegalizeOp(Lo.getValue(1))); 6684 6685 if (ExtType == ISD::SEXTLOAD) { 6686 // The high part is obtained by SRA'ing all but one of the bits of the 6687 // lo part. 6688 unsigned LoSize = Lo.getValueType().getSizeInBits(); 6689 Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo, 6690 DAG.getConstant(LoSize-1, TLI.getShiftAmountTy())); 6691 } else if (ExtType == ISD::ZEXTLOAD) { 6692 // The high part is just a zero. 6693 Hi = DAG.getConstant(0, NVT); 6694 } else /* if (ExtType == ISD::EXTLOAD) */ { 6695 // The high part is undefined. 6696 Hi = DAG.getUNDEF(NVT); 6697 } 6698 } 6699 break; 6700 } 6701 case ISD::AND: 6702 case ISD::OR: 6703 case ISD::XOR: { // Simple logical operators -> two trivial pieces. 6704 SDValue LL, LH, RL, RH; 6705 ExpandOp(Node->getOperand(0), LL, LH); 6706 ExpandOp(Node->getOperand(1), RL, RH); 6707 Lo = DAG.getNode(Node->getOpcode(), dl, NVT, LL, RL); 6708 Hi = DAG.getNode(Node->getOpcode(), dl, NVT, LH, RH); 6709 break; 6710 } 6711 case ISD::SELECT: { 6712 SDValue LL, LH, RL, RH; 6713 ExpandOp(Node->getOperand(1), LL, LH); 6714 ExpandOp(Node->getOperand(2), RL, RH); 6715 if (getTypeAction(NVT) == Expand) 6716 NVT = TLI.getTypeToExpandTo(NVT); 6717 Lo = DAG.getNode(ISD::SELECT, dl, NVT, Node->getOperand(0), LL, RL); 6718 if (VT != MVT::f32) 6719 Hi = DAG.getNode(ISD::SELECT, dl, NVT, Node->getOperand(0), LH, RH); 6720 break; 6721 } 6722 case ISD::SELECT_CC: { 6723 SDValue TL, TH, FL, FH; 6724 ExpandOp(Node->getOperand(2), TL, TH); 6725 ExpandOp(Node->getOperand(3), FL, FH); 6726 if (getTypeAction(NVT) == Expand) 6727 NVT = TLI.getTypeToExpandTo(NVT); 6728 Lo = DAG.getNode(ISD::SELECT_CC, dl, NVT, Node->getOperand(0), 6729 Node->getOperand(1), TL, FL, Node->getOperand(4)); 6730 if (VT != MVT::f32) 6731 Hi = DAG.getNode(ISD::SELECT_CC, dl, NVT, Node->getOperand(0), 6732 Node->getOperand(1), TH, FH, Node->getOperand(4)); 6733 break; 6734 } 6735 case ISD::ANY_EXTEND: 6736 // The low part is any extension of the input (which degenerates to a copy). 6737 Lo = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0)); 6738 // The high part is undefined. 6739 Hi = DAG.getUNDEF(NVT); 6740 break; 6741 case ISD::SIGN_EXTEND: { 6742 // The low part is just a sign extension of the input (which degenerates to 6743 // a copy). 6744 Lo = DAG.getNode(ISD::SIGN_EXTEND, dl, NVT, Node->getOperand(0)); 6745 6746 // The high part is obtained by SRA'ing all but one of the bits of the lo 6747 // part. 6748 unsigned LoSize = Lo.getValueType().getSizeInBits(); 6749 Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo, 6750 DAG.getConstant(LoSize-1, TLI.getShiftAmountTy())); 6751 break; 6752 } 6753 case ISD::ZERO_EXTEND: 6754 // The low part is just a zero extension of the input (which degenerates to 6755 // a copy). 6756 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 6757 6758 // The high part is just a zero. 6759 Hi = DAG.getConstant(0, NVT); 6760 break; 6761 6762 case ISD::TRUNCATE: { 6763 // The input value must be larger than this value. Expand *it*. 6764 SDValue NewLo; 6765 ExpandOp(Node->getOperand(0), NewLo, Hi); 6766 6767 // The low part is now either the right size, or it is closer. If not the 6768 // right size, make an illegal truncate so we recursively expand it. 6769 if (NewLo.getValueType() != Node->getValueType(0)) 6770 NewLo = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), NewLo); 6771 ExpandOp(NewLo, Lo, Hi); 6772 break; 6773 } 6774 6775 case ISD::BIT_CONVERT: { 6776 SDValue Tmp; 6777 if (TLI.getOperationAction(ISD::BIT_CONVERT, VT) == TargetLowering::Custom){ 6778 // If the target wants to, allow it to lower this itself. 6779 switch (getTypeAction(Node->getOperand(0).getValueType())) { 6780 case Expand: assert(0 && "cannot expand FP!"); 6781 case Legal: Tmp = LegalizeOp(Node->getOperand(0)); break; 6782 case Promote: Tmp = PromoteOp (Node->getOperand(0)); break; 6783 } 6784 Tmp = TLI.LowerOperation(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp), DAG); 6785 } 6786 6787 // f32 / f64 must be expanded to i32 / i64. 6788 if (VT == MVT::f32 || VT == MVT::f64) { 6789 Lo = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0)); 6790 if (getTypeAction(NVT) == Expand) 6791 ExpandOp(Lo, Lo, Hi); 6792 break; 6793 } 6794 6795 // If source operand will be expanded to the same type as VT, i.e. 6796 // i64 <- f64, i32 <- f32, expand the source operand instead. 6797 MVT VT0 = Node->getOperand(0).getValueType(); 6798 if (getTypeAction(VT0) == Expand && TLI.getTypeToTransformTo(VT0) == VT) { 6799 ExpandOp(Node->getOperand(0), Lo, Hi); 6800 break; 6801 } 6802 6803 // Turn this into a load/store pair by default. 6804 if (Tmp.getNode() == 0) 6805 Tmp = EmitStackConvert(Node->getOperand(0), VT, VT, dl); 6806 6807 ExpandOp(Tmp, Lo, Hi); 6808 break; 6809 } 6810 6811 case ISD::READCYCLECOUNTER: { 6812 assert(TLI.getOperationAction(ISD::READCYCLECOUNTER, VT) == 6813 TargetLowering::Custom && 6814 "Must custom expand ReadCycleCounter"); 6815 SDValue Tmp = TLI.LowerOperation(Op, DAG); 6816 assert(Tmp.getNode() && "Node must be custom expanded!"); 6817 ExpandOp(Tmp.getValue(0), Lo, Hi); 6818 AddLegalizedOperand(SDValue(Node, 1), // Remember we legalized the chain. 6819 LegalizeOp(Tmp.getValue(1))); 6820 break; 6821 } 6822 6823 case ISD::ATOMIC_CMP_SWAP: { 6824 // This operation does not need a loop. 6825 SDValue Tmp = TLI.LowerOperation(Op, DAG); 6826 assert(Tmp.getNode() && "Node must be custom expanded!"); 6827 ExpandOp(Tmp.getValue(0), Lo, Hi); 6828 AddLegalizedOperand(SDValue(Node, 1), // Remember we legalized the chain. 6829 LegalizeOp(Tmp.getValue(1))); 6830 break; 6831 } 6832 6833 case ISD::ATOMIC_LOAD_ADD: 6834 case ISD::ATOMIC_LOAD_SUB: 6835 case ISD::ATOMIC_LOAD_AND: 6836 case ISD::ATOMIC_LOAD_OR: 6837 case ISD::ATOMIC_LOAD_XOR: 6838 case ISD::ATOMIC_LOAD_NAND: 6839 case ISD::ATOMIC_SWAP: { 6840 // These operations require a loop to be generated. We can't do that yet, 6841 // so substitute a target-dependent pseudo and expand that later. 6842 SDValue In2Lo, In2Hi, In2; 6843 ExpandOp(Op.getOperand(2), In2Lo, In2Hi); 6844 In2 = DAG.getNode(ISD::BUILD_PAIR, dl, VT, In2Lo, In2Hi); 6845 AtomicSDNode* Anode = cast<AtomicSDNode>(Node); 6846 SDValue Replace = 6847 DAG.getAtomic(Op.getOpcode(), dl, Anode->getMemoryVT(), 6848 Op.getOperand(0), Op.getOperand(1), In2, 6849 Anode->getSrcValue(), Anode->getAlignment()); 6850 SDValue Result = TLI.LowerOperation(Replace, DAG); 6851 ExpandOp(Result.getValue(0), Lo, Hi); 6852 // Remember that we legalized the chain. 6853 AddLegalizedOperand(SDValue(Node, 1), LegalizeOp(Result.getValue(1))); 6854 break; 6855 } 6856 6857 // These operators cannot be expanded directly, emit them as calls to 6858 // library functions. 6859 case ISD::FP_TO_SINT: { 6860 if (TLI.getOperationAction(ISD::FP_TO_SINT, VT) == TargetLowering::Custom) { 6861 SDValue Op; 6862 switch (getTypeAction(Node->getOperand(0).getValueType())) { 6863 case Expand: assert(0 && "cannot expand FP!"); 6864 case Legal: Op = LegalizeOp(Node->getOperand(0)); break; 6865 case Promote: Op = PromoteOp (Node->getOperand(0)); break; 6866 } 6867 6868 Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op), DAG); 6869 6870 // Now that the custom expander is done, expand the result, which is still 6871 // VT. 6872 if (Op.getNode()) { 6873 ExpandOp(Op, Lo, Hi); 6874 break; 6875 } 6876 } 6877 6878 RTLIB::Libcall LC = RTLIB::getFPTOSINT(Node->getOperand(0).getValueType(), 6879 VT); 6880 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected uint-to-fp conversion!"); 6881 Lo = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Hi); 6882 break; 6883 } 6884 6885 case ISD::FP_TO_UINT: { 6886 if (TLI.getOperationAction(ISD::FP_TO_UINT, VT) == TargetLowering::Custom) { 6887 SDValue Op; 6888 switch (getTypeAction(Node->getOperand(0).getValueType())) { 6889 case Expand: assert(0 && "cannot expand FP!"); 6890 case Legal: Op = LegalizeOp(Node->getOperand(0)); break; 6891 case Promote: Op = PromoteOp (Node->getOperand(0)); break; 6892 } 6893 6894 Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_UINT, dl, VT, Op), DAG); 6895 6896 // Now that the custom expander is done, expand the result. 6897 if (Op.getNode()) { 6898 ExpandOp(Op, Lo, Hi); 6899 break; 6900 } 6901 } 6902 6903 RTLIB::Libcall LC = RTLIB::getFPTOUINT(Node->getOperand(0).getValueType(), 6904 VT); 6905 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-uint conversion!"); 6906 Lo = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Hi); 6907 break; 6908 } 6909 6910 case ISD::SHL: { 6911 // If the target wants custom lowering, do so. 6912 SDValue ShiftAmt = LegalizeOp(Node->getOperand(1)); 6913 if (TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Custom) { 6914 SDValue Op = DAG.getNode(ISD::SHL, dl, VT, Node->getOperand(0), ShiftAmt); 6915 Op = TLI.LowerOperation(Op, DAG); 6916 if (Op.getNode()) { 6917 // Now that the custom expander is done, expand the result, which is 6918 // still VT. 6919 ExpandOp(Op, Lo, Hi); 6920 break; 6921 } 6922 } 6923 6924 // If ADDC/ADDE are supported and if the shift amount is a constant 1, emit 6925 // this X << 1 as X+X. 6926 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(ShiftAmt)) { 6927 if (ShAmt->getAPIntValue() == 1 && 6928 TLI.isOperationLegalOrCustom(ISD::ADDC, NVT) && 6929 TLI.isOperationLegalOrCustom(ISD::ADDE, NVT)) { 6930 SDValue LoOps[2], HiOps[3]; 6931 ExpandOp(Node->getOperand(0), LoOps[0], HiOps[0]); 6932 SDVTList VTList = DAG.getVTList(LoOps[0].getValueType(), MVT::Flag); 6933 LoOps[1] = LoOps[0]; 6934 Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps, 2); 6935 6936 HiOps[1] = HiOps[0]; 6937 HiOps[2] = Lo.getValue(1); 6938 Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps, 3); 6939 break; 6940 } 6941 } 6942 6943 // If we can emit an efficient shift operation, do so now. 6944 if (ExpandShift(ISD::SHL, Node->getOperand(0), ShiftAmt, Lo, Hi, dl)) 6945 break; 6946 6947 // If this target supports SHL_PARTS, use it. 6948 TargetLowering::LegalizeAction Action = 6949 TLI.getOperationAction(ISD::SHL_PARTS, NVT); 6950 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 6951 Action == TargetLowering::Custom) { 6952 ExpandShiftParts(ISD::SHL_PARTS, Node->getOperand(0), 6953 ShiftAmt, Lo, Hi, dl); 6954 break; 6955 } 6956 6957 // Otherwise, emit a libcall. 6958 Lo = ExpandLibCall(RTLIB::SHL_I64, Node, false/*left shift=unsigned*/, Hi); 6959 break; 6960 } 6961 6962 case ISD::SRA: { 6963 // If the target wants custom lowering, do so. 6964 SDValue ShiftAmt = LegalizeOp(Node->getOperand(1)); 6965 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Custom) { 6966 SDValue Op = DAG.getNode(ISD::SRA, dl, VT, Node->getOperand(0), ShiftAmt); 6967 Op = TLI.LowerOperation(Op, DAG); 6968 if (Op.getNode()) { 6969 // Now that the custom expander is done, expand the result, which is 6970 // still VT. 6971 ExpandOp(Op, Lo, Hi); 6972 break; 6973 } 6974 } 6975 6976 // If we can emit an efficient shift operation, do so now. 6977 if (ExpandShift(ISD::SRA, Node->getOperand(0), ShiftAmt, Lo, Hi, dl)) 6978 break; 6979 6980 // If this target supports SRA_PARTS, use it. 6981 TargetLowering::LegalizeAction Action = 6982 TLI.getOperationAction(ISD::SRA_PARTS, NVT); 6983 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 6984 Action == TargetLowering::Custom) { 6985 ExpandShiftParts(ISD::SRA_PARTS, Node->getOperand(0), 6986 ShiftAmt, Lo, Hi, dl); 6987 break; 6988 } 6989 6990 // Otherwise, emit a libcall. 6991 Lo = ExpandLibCall(RTLIB::SRA_I64, Node, true/*ashr is signed*/, Hi); 6992 break; 6993 } 6994 6995 case ISD::SRL: { 6996 // If the target wants custom lowering, do so. 6997 SDValue ShiftAmt = LegalizeOp(Node->getOperand(1)); 6998 if (TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Custom) { 6999 SDValue Op = DAG.getNode(ISD::SRL, dl, VT, Node->getOperand(0), ShiftAmt); 7000 Op = TLI.LowerOperation(Op, DAG); 7001 if (Op.getNode()) { 7002 // Now that the custom expander is done, expand the result, which is 7003 // still VT. 7004 ExpandOp(Op, Lo, Hi); 7005 break; 7006 } 7007 } 7008 7009 // If we can emit an efficient shift operation, do so now. 7010 if (ExpandShift(ISD::SRL, Node->getOperand(0), ShiftAmt, Lo, Hi, dl)) 7011 break; 7012 7013 // If this target supports SRL_PARTS, use it. 7014 TargetLowering::LegalizeAction Action = 7015 TLI.getOperationAction(ISD::SRL_PARTS, NVT); 7016 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 7017 Action == TargetLowering::Custom) { 7018 ExpandShiftParts(ISD::SRL_PARTS, 7019 Node->getOperand(0), ShiftAmt, Lo, Hi, dl); 7020 break; 7021 } 7022 7023 // Otherwise, emit a libcall. 7024 Lo = ExpandLibCall(RTLIB::SRL_I64, Node, false/*lshr is unsigned*/, Hi); 7025 break; 7026 } 7027 7028 case ISD::ADD: 7029 case ISD::SUB: { 7030 // If the target wants to custom expand this, let them. 7031 if (TLI.getOperationAction(Node->getOpcode(), VT) == 7032 TargetLowering::Custom) { 7033 SDValue Result = TLI.LowerOperation(Op, DAG); 7034 if (Result.getNode()) { 7035 ExpandOp(Result, Lo, Hi); 7036 break; 7037 } 7038 } 7039 // Expand the subcomponents. 7040 SDValue LHSL, LHSH, RHSL, RHSH; 7041 ExpandOp(Node->getOperand(0), LHSL, LHSH); 7042 ExpandOp(Node->getOperand(1), RHSL, RHSH); 7043 SDValue LoOps[2], HiOps[3]; 7044 LoOps[0] = LHSL; 7045 LoOps[1] = RHSL; 7046 HiOps[0] = LHSH; 7047 HiOps[1] = RHSH; 7048 7049 //cascaded check to see if any smaller size has a a carry flag. 7050 unsigned OpV = Node->getOpcode() == ISD::ADD ? ISD::ADDC : ISD::SUBC; 7051 bool hasCarry = false; 7052 for (unsigned BitSize = NVT.getSizeInBits(); BitSize != 0; BitSize /= 2) { 7053 MVT AVT = MVT::getIntegerVT(BitSize); 7054 if (TLI.isOperationLegalOrCustom(OpV, AVT)) { 7055 hasCarry = true; 7056 break; 7057 } 7058 } 7059 7060 if(hasCarry) { 7061 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 7062 if (Node->getOpcode() == ISD::ADD) { 7063 Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps, 2); 7064 HiOps[2] = Lo.getValue(1); 7065 Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps, 3); 7066 } else { 7067 Lo = DAG.getNode(ISD::SUBC, dl, VTList, LoOps, 2); 7068 HiOps[2] = Lo.getValue(1); 7069 Hi = DAG.getNode(ISD::SUBE, dl, VTList, HiOps, 3); 7070 } 7071 break; 7072 } else { 7073 if (Node->getOpcode() == ISD::ADD) { 7074 Lo = DAG.getNode(ISD::ADD, dl, NVT, LoOps, 2); 7075 Hi = DAG.getNode(ISD::ADD, dl, NVT, HiOps, 2); 7076 SDValue Cmp1 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), 7077 Lo, LoOps[0], ISD::SETULT); 7078 SDValue Carry1 = DAG.getNode(ISD::SELECT, dl, NVT, Cmp1, 7079 DAG.getConstant(1, NVT), 7080 DAG.getConstant(0, NVT)); 7081 SDValue Cmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), 7082 Lo, LoOps[1], ISD::SETULT); 7083 SDValue Carry2 = DAG.getNode(ISD::SELECT, dl, NVT, Cmp2, 7084 DAG.getConstant(1, NVT), 7085 Carry1); 7086 Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, Carry2); 7087 } else { 7088 Lo = DAG.getNode(ISD::SUB, dl, NVT, LoOps, 2); 7089 Hi = DAG.getNode(ISD::SUB, dl, NVT, HiOps, 2); 7090 SDValue Cmp = DAG.getSetCC(dl, NVT, LoOps[0], LoOps[1], ISD::SETULT); 7091 SDValue Borrow = DAG.getNode(ISD::SELECT, dl, NVT, Cmp, 7092 DAG.getConstant(1, NVT), 7093 DAG.getConstant(0, NVT)); 7094 Hi = DAG.getNode(ISD::SUB, dl, NVT, Hi, Borrow); 7095 } 7096 break; 7097 } 7098 } 7099 7100 case ISD::ADDC: 7101 case ISD::SUBC: { 7102 // Expand the subcomponents. 7103 SDValue LHSL, LHSH, RHSL, RHSH; 7104 ExpandOp(Node->getOperand(0), LHSL, LHSH); 7105 ExpandOp(Node->getOperand(1), RHSL, RHSH); 7106 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 7107 SDValue LoOps[2] = { LHSL, RHSL }; 7108 SDValue HiOps[3] = { LHSH, RHSH }; 7109 7110 if (Node->getOpcode() == ISD::ADDC) { 7111 Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps, 2); 7112 HiOps[2] = Lo.getValue(1); 7113 Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps, 3); 7114 } else { 7115 Lo = DAG.getNode(ISD::SUBC, dl, VTList, LoOps, 2); 7116 HiOps[2] = Lo.getValue(1); 7117 Hi = DAG.getNode(ISD::SUBE, dl, VTList, HiOps, 3); 7118 } 7119 // Remember that we legalized the flag. 7120 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1))); 7121 break; 7122 } 7123 case ISD::ADDE: 7124 case ISD::SUBE: { 7125 // Expand the subcomponents. 7126 SDValue LHSL, LHSH, RHSL, RHSH; 7127 ExpandOp(Node->getOperand(0), LHSL, LHSH); 7128 ExpandOp(Node->getOperand(1), RHSL, RHSH); 7129 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 7130 SDValue LoOps[3] = { LHSL, RHSL, Node->getOperand(2) }; 7131 SDValue HiOps[3] = { LHSH, RHSH }; 7132 7133 Lo = DAG.getNode(Node->getOpcode(), dl, VTList, LoOps, 3); 7134 HiOps[2] = Lo.getValue(1); 7135 Hi = DAG.getNode(Node->getOpcode(), dl, VTList, HiOps, 3); 7136 7137 // Remember that we legalized the flag. 7138 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1))); 7139 break; 7140 } 7141 case ISD::MUL: { 7142 // If the target wants to custom expand this, let them. 7143 if (TLI.getOperationAction(ISD::MUL, VT) == TargetLowering::Custom) { 7144 SDValue New = TLI.LowerOperation(Op, DAG); 7145 if (New.getNode()) { 7146 ExpandOp(New, Lo, Hi); 7147 break; 7148 } 7149 } 7150 7151 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, NVT); 7152 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, NVT); 7153 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, NVT); 7154 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, NVT); 7155 if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) { 7156 SDValue LL, LH, RL, RH; 7157 ExpandOp(Node->getOperand(0), LL, LH); 7158 ExpandOp(Node->getOperand(1), RL, RH); 7159 unsigned OuterBitSize = Op.getValueSizeInBits(); 7160 unsigned InnerBitSize = RH.getValueSizeInBits(); 7161 unsigned LHSSB = DAG.ComputeNumSignBits(Op.getOperand(0)); 7162 unsigned RHSSB = DAG.ComputeNumSignBits(Op.getOperand(1)); 7163 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 7164 if (DAG.MaskedValueIsZero(Node->getOperand(0), HighMask) && 7165 DAG.MaskedValueIsZero(Node->getOperand(1), HighMask)) { 7166 // The inputs are both zero-extended. 7167 if (HasUMUL_LOHI) { 7168 // We can emit a umul_lohi. 7169 Lo = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(NVT, NVT), LL, RL); 7170 Hi = SDValue(Lo.getNode(), 1); 7171 break; 7172 } 7173 if (HasMULHU) { 7174 // We can emit a mulhu+mul. 7175 Lo = DAG.getNode(ISD::MUL, dl, NVT, LL, RL); 7176 Hi = DAG.getNode(ISD::MULHU, dl, NVT, LL, RL); 7177 break; 7178 } 7179 } 7180 if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) { 7181 // The input values are both sign-extended. 7182 if (HasSMUL_LOHI) { 7183 // We can emit a smul_lohi. 7184 Lo = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(NVT, NVT), LL, RL); 7185 Hi = SDValue(Lo.getNode(), 1); 7186 break; 7187 } 7188 if (HasMULHS) { 7189 // We can emit a mulhs+mul. 7190 Lo = DAG.getNode(ISD::MUL, dl, NVT, LL, RL); 7191 Hi = DAG.getNode(ISD::MULHS, dl, NVT, LL, RL); 7192 break; 7193 } 7194 } 7195 if (HasUMUL_LOHI) { 7196 // Lo,Hi = umul LHS, RHS. 7197 SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl, 7198 DAG.getVTList(NVT, NVT), LL, RL); 7199 Lo = UMulLOHI; 7200 Hi = UMulLOHI.getValue(1); 7201 RH = DAG.getNode(ISD::MUL, dl, NVT, LL, RH); 7202 LH = DAG.getNode(ISD::MUL, dl, NVT, LH, RL); 7203 Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, RH); 7204 Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, LH); 7205 break; 7206 } 7207 if (HasMULHU) { 7208 Lo = DAG.getNode(ISD::MUL, dl, NVT, LL, RL); 7209 Hi = DAG.getNode(ISD::MULHU, dl, NVT, LL, RL); 7210 RH = DAG.getNode(ISD::MUL, dl, NVT, LL, RH); 7211 LH = DAG.getNode(ISD::MUL, dl, NVT, LH, RL); 7212 Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, RH); 7213 Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, LH); 7214 break; 7215 } 7216 } 7217 7218 // If nothing else, we can make a libcall. 7219 Lo = ExpandLibCall(RTLIB::MUL_I64, Node, false/*sign irrelevant*/, Hi); 7220 break; 7221 } 7222 case ISD::SDIV: 7223 Lo = ExpandLibCall(RTLIB::SDIV_I64, Node, true, Hi); 7224 break; 7225 case ISD::UDIV: 7226 Lo = ExpandLibCall(RTLIB::UDIV_I64, Node, true, Hi); 7227 break; 7228 case ISD::SREM: 7229 Lo = ExpandLibCall(RTLIB::SREM_I64, Node, true, Hi); 7230 break; 7231 case ISD::UREM: 7232 Lo = ExpandLibCall(RTLIB::UREM_I64, Node, true, Hi); 7233 break; 7234 7235 case ISD::FADD: 7236 Lo = ExpandLibCall(GetFPLibCall(VT, RTLIB::ADD_F32, 7237 RTLIB::ADD_F64, 7238 RTLIB::ADD_F80, 7239 RTLIB::ADD_PPCF128), 7240 Node, false, Hi); 7241 break; 7242 case ISD::FSUB: 7243 Lo = ExpandLibCall(GetFPLibCall(VT, RTLIB::SUB_F32, 7244 RTLIB::SUB_F64, 7245 RTLIB::SUB_F80, 7246 RTLIB::SUB_PPCF128), 7247 Node, false, Hi); 7248 break; 7249 case ISD::FMUL: 7250 Lo = ExpandLibCall(GetFPLibCall(VT, RTLIB::MUL_F32, 7251 RTLIB::MUL_F64, 7252 RTLIB::MUL_F80, 7253 RTLIB::MUL_PPCF128), 7254 Node, false, Hi); 7255 break; 7256 case ISD::FDIV: 7257 Lo = ExpandLibCall(GetFPLibCall(VT, RTLIB::DIV_F32, 7258 RTLIB::DIV_F64, 7259 RTLIB::DIV_F80, 7260 RTLIB::DIV_PPCF128), 7261 Node, false, Hi); 7262 break; 7263 case ISD::FP_EXTEND: { 7264 if (VT == MVT::ppcf128) { 7265 assert(Node->getOperand(0).getValueType()==MVT::f32 || 7266 Node->getOperand(0).getValueType()==MVT::f64); 7267 const uint64_t zero = 0; 7268 if (Node->getOperand(0).getValueType()==MVT::f32) 7269 Hi = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Node->getOperand(0)); 7270 else 7271 Hi = Node->getOperand(0); 7272 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); 7273 break; 7274 } 7275 RTLIB::Libcall LC = RTLIB::getFPEXT(Node->getOperand(0).getValueType(), VT); 7276 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_EXTEND!"); 7277 Lo = ExpandLibCall(LC, Node, true, Hi); 7278 break; 7279 } 7280 case ISD::FP_ROUND: { 7281 RTLIB::Libcall LC = RTLIB::getFPROUND(Node->getOperand(0).getValueType(), 7282 VT); 7283 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_ROUND!"); 7284 Lo = ExpandLibCall(LC, Node, true, Hi); 7285 break; 7286 } 7287 case ISD::FSQRT: 7288 case ISD::FSIN: 7289 case ISD::FCOS: 7290 case ISD::FLOG: 7291 case ISD::FLOG2: 7292 case ISD::FLOG10: 7293 case ISD::FEXP: 7294 case ISD::FEXP2: 7295 case ISD::FTRUNC: 7296 case ISD::FFLOOR: 7297 case ISD::FCEIL: 7298 case ISD::FRINT: 7299 case ISD::FNEARBYINT: 7300 case ISD::FPOW: 7301 case ISD::FPOWI: { 7302 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 7303 switch(Node->getOpcode()) { 7304 case ISD::FSQRT: 7305 LC = GetFPLibCall(VT, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 7306 RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128); 7307 break; 7308 case ISD::FSIN: 7309 LC = GetFPLibCall(VT, RTLIB::SIN_F32, RTLIB::SIN_F64, 7310 RTLIB::SIN_F80, RTLIB::SIN_PPCF128); 7311 break; 7312 case ISD::FCOS: 7313 LC = GetFPLibCall(VT, RTLIB::COS_F32, RTLIB::COS_F64, 7314 RTLIB::COS_F80, RTLIB::COS_PPCF128); 7315 break; 7316 case ISD::FLOG: 7317 LC = GetFPLibCall(VT, RTLIB::LOG_F32, RTLIB::LOG_F64, 7318 RTLIB::LOG_F80, RTLIB::LOG_PPCF128); 7319 break; 7320 case ISD::FLOG2: 7321 LC = GetFPLibCall(VT, RTLIB::LOG2_F32, RTLIB::LOG2_F64, 7322 RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128); 7323 break; 7324 case ISD::FLOG10: 7325 LC = GetFPLibCall(VT, RTLIB::LOG10_F32, RTLIB::LOG10_F64, 7326 RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128); 7327 break; 7328 case ISD::FEXP: 7329 LC = GetFPLibCall(VT, RTLIB::EXP_F32, RTLIB::EXP_F64, 7330 RTLIB::EXP_F80, RTLIB::EXP_PPCF128); 7331 break; 7332 case ISD::FEXP2: 7333 LC = GetFPLibCall(VT, RTLIB::EXP2_F32, RTLIB::EXP2_F64, 7334 RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128); 7335 break; 7336 case ISD::FTRUNC: 7337 LC = GetFPLibCall(VT, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 7338 RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128); 7339 break; 7340 case ISD::FFLOOR: 7341 LC = GetFPLibCall(VT, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 7342 RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128); 7343 break; 7344 case ISD::FCEIL: 7345 LC = GetFPLibCall(VT, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 7346 RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128); 7347 break; 7348 case ISD::FRINT: 7349 LC = GetFPLibCall(VT, RTLIB::RINT_F32, RTLIB::RINT_F64, 7350 RTLIB::RINT_F80, RTLIB::RINT_PPCF128); 7351 break; 7352 case ISD::FNEARBYINT: 7353 LC = GetFPLibCall(VT, RTLIB::NEARBYINT_F32, RTLIB::NEARBYINT_F64, 7354 RTLIB::NEARBYINT_F80, RTLIB::NEARBYINT_PPCF128); 7355 break; 7356 case ISD::FPOW: 7357 LC = GetFPLibCall(VT, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, 7358 RTLIB::POW_PPCF128); 7359 break; 7360 case ISD::FPOWI: 7361 LC = GetFPLibCall(VT, RTLIB::POWI_F32, RTLIB::POWI_F64, RTLIB::POWI_F80, 7362 RTLIB::POWI_PPCF128); 7363 break; 7364 default: assert(0 && "Unreachable!"); 7365 } 7366 Lo = ExpandLibCall(LC, Node, false, Hi); 7367 break; 7368 } 7369 case ISD::FABS: { 7370 if (VT == MVT::ppcf128) { 7371 SDValue Tmp; 7372 ExpandOp(Node->getOperand(0), Lo, Tmp); 7373 Hi = DAG.getNode(ISD::FABS, dl, NVT, Tmp); 7374 // lo = hi==fabs(hi) ? lo : -lo; 7375 Lo = DAG.getNode(ISD::SELECT_CC, dl, NVT, Hi, Tmp, 7376 Lo, DAG.getNode(ISD::FNEG, dl, NVT, Lo), 7377 DAG.getCondCode(ISD::SETEQ)); 7378 break; 7379 } 7380 SDValue Mask = (VT == MVT::f64) 7381 ? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT) 7382 : DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT); 7383 Mask = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Mask); 7384 Lo = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0)); 7385 Lo = DAG.getNode(ISD::AND, dl, NVT, Lo, Mask); 7386 if (getTypeAction(NVT) == Expand) 7387 ExpandOp(Lo, Lo, Hi); 7388 break; 7389 } 7390 case ISD::FNEG: { 7391 if (VT == MVT::ppcf128) { 7392 ExpandOp(Node->getOperand(0), Lo, Hi); 7393 Lo = DAG.getNode(ISD::FNEG, dl, MVT::f64, Lo); 7394 Hi = DAG.getNode(ISD::FNEG, dl, MVT::f64, Hi); 7395 break; 7396 } 7397 SDValue Mask = (VT == MVT::f64) 7398 ? DAG.getConstantFP(BitsToDouble(1ULL << 63), VT) 7399 : DAG.getConstantFP(BitsToFloat(1U << 31), VT); 7400 Mask = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Mask); 7401 Lo = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0)); 7402 Lo = DAG.getNode(ISD::XOR, dl, NVT, Lo, Mask); 7403 if (getTypeAction(NVT) == Expand) 7404 ExpandOp(Lo, Lo, Hi); 7405 break; 7406 } 7407 case ISD::FCOPYSIGN: { 7408 Lo = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI); 7409 if (getTypeAction(NVT) == Expand) 7410 ExpandOp(Lo, Lo, Hi); 7411 break; 7412 } 7413 case ISD::SINT_TO_FP: 7414 case ISD::UINT_TO_FP: { 7415 bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP; 7416 MVT SrcVT = Node->getOperand(0).getValueType(); 7417 7418 // Promote the operand if needed. Do this before checking for 7419 // ppcf128 so conversions of i16 and i8 work. 7420 if (getTypeAction(SrcVT) == Promote) { 7421 SDValue Tmp = PromoteOp(Node->getOperand(0)); 7422 Tmp = isSigned 7423 ? DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Tmp.getValueType(), Tmp, 7424 DAG.getValueType(SrcVT)) 7425 : DAG.getZeroExtendInReg(Tmp, dl, SrcVT); 7426 Node = DAG.UpdateNodeOperands(Op, Tmp).getNode(); 7427 SrcVT = Node->getOperand(0).getValueType(); 7428 } 7429 7430 if (VT == MVT::ppcf128 && SrcVT == MVT::i32) { 7431 static const uint64_t zero = 0; 7432 if (isSigned) { 7433 Hi = LegalizeOp(DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f64, 7434 Node->getOperand(0))); 7435 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); 7436 } else { 7437 static const uint64_t TwoE32[] = { 0x41f0000000000000LL, 0 }; 7438 Hi = LegalizeOp(DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f64, 7439 Node->getOperand(0))); 7440 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); 7441 Hi = DAG.getNode(ISD::BUILD_PAIR, dl, VT, Lo, Hi); 7442 // X>=0 ? {(f64)x, 0} : {(f64)x, 0} + 2^32 7443 ExpandOp(DAG.getNode(ISD::SELECT_CC, dl, 7444 MVT::ppcf128, Node->getOperand(0), 7445 DAG.getConstant(0, MVT::i32), 7446 DAG.getNode(ISD::FADD, dl, MVT::ppcf128, Hi, 7447 DAG.getConstantFP 7448 (APFloat(APInt(128, 2, TwoE32)), 7449 MVT::ppcf128)), 7450 Hi, 7451 DAG.getCondCode(ISD::SETLT)), 7452 Lo, Hi); 7453 } 7454 break; 7455 } 7456 if (VT == MVT::ppcf128 && SrcVT == MVT::i64 && !isSigned) { 7457 // si64->ppcf128 done by libcall, below 7458 static const uint64_t TwoE64[] = { 0x43f0000000000000LL, 0 }; 7459 ExpandOp(DAG.getNode(ISD::SINT_TO_FP, dl, MVT::ppcf128, 7460 Node->getOperand(0)), Lo, Hi); 7461 Hi = DAG.getNode(ISD::BUILD_PAIR, dl, VT, Lo, Hi); 7462 // x>=0 ? (ppcf128)(i64)x : (ppcf128)(i64)x + 2^64 7463 ExpandOp(DAG.getNode(ISD::SELECT_CC, dl, MVT::ppcf128, 7464 Node->getOperand(0), 7465 DAG.getConstant(0, MVT::i64), 7466 DAG.getNode(ISD::FADD, dl, MVT::ppcf128, Hi, 7467 DAG.getConstantFP 7468 (APFloat(APInt(128, 2, TwoE64)), 7469 MVT::ppcf128)), 7470 Hi, 7471 DAG.getCondCode(ISD::SETLT)), 7472 Lo, Hi); 7473 break; 7474 } 7475 7476 Lo = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, VT, 7477 Node->getOperand(0), dl); 7478 if (getTypeAction(Lo.getValueType()) == Expand) 7479 // float to i32 etc. can be 'expanded' to a single node. 7480 ExpandOp(Lo, Lo, Hi); 7481 break; 7482 } 7483 } 7484 7485 // Make sure the resultant values have been legalized themselves, unless this 7486 // is a type that requires multi-step expansion. 7487 if (getTypeAction(NVT) != Expand && NVT != MVT::isVoid) { 7488 Lo = LegalizeOp(Lo); 7489 if (Hi.getNode()) 7490 // Don't legalize the high part if it is expanded to a single node. 7491 Hi = LegalizeOp(Hi); 7492 } 7493 7494 // Remember in a map if the values will be reused later. 7495 bool isNew = 7496 ExpandedNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi))).second; 7497 assert(isNew && "Value already expanded?!?"); 7498 isNew = isNew; 7499} 7500 7501/// SplitVectorOp - Given an operand of vector type, break it down into 7502/// two smaller values, still of vector type. 7503void SelectionDAGLegalize::SplitVectorOp(SDValue Op, SDValue &Lo, 7504 SDValue &Hi) { 7505 assert(Op.getValueType().isVector() && "Cannot split non-vector type!"); 7506 SDNode *Node = Op.getNode(); 7507 DebugLoc dl = Node->getDebugLoc(); 7508 unsigned NumElements = Op.getValueType().getVectorNumElements(); 7509 assert(NumElements > 1 && "Cannot split a single element vector!"); 7510 7511 MVT NewEltVT = Op.getValueType().getVectorElementType(); 7512 7513 unsigned NewNumElts_Lo = 1 << Log2_32(NumElements-1); 7514 unsigned NewNumElts_Hi = NumElements - NewNumElts_Lo; 7515 7516 MVT NewVT_Lo = MVT::getVectorVT(NewEltVT, NewNumElts_Lo); 7517 MVT NewVT_Hi = MVT::getVectorVT(NewEltVT, NewNumElts_Hi); 7518 7519 // See if we already split it. 7520 std::map<SDValue, std::pair<SDValue, SDValue> >::iterator I 7521 = SplitNodes.find(Op); 7522 if (I != SplitNodes.end()) { 7523 Lo = I->second.first; 7524 Hi = I->second.second; 7525 return; 7526 } 7527 7528 switch (Node->getOpcode()) { 7529 default: 7530#ifndef NDEBUG 7531 Node->dump(&DAG); 7532#endif 7533 assert(0 && "Unhandled operation in SplitVectorOp!"); 7534 case ISD::UNDEF: 7535 Lo = DAG.getUNDEF(NewVT_Lo); 7536 Hi = DAG.getUNDEF(NewVT_Hi); 7537 break; 7538 case ISD::BUILD_PAIR: 7539 Lo = Node->getOperand(0); 7540 Hi = Node->getOperand(1); 7541 break; 7542 case ISD::INSERT_VECTOR_ELT: { 7543 if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Node->getOperand(2))) { 7544 SplitVectorOp(Node->getOperand(0), Lo, Hi); 7545 unsigned Index = Idx->getZExtValue(); 7546 SDValue ScalarOp = Node->getOperand(1); 7547 if (Index < NewNumElts_Lo) 7548 Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NewVT_Lo, Lo, ScalarOp, 7549 DAG.getIntPtrConstant(Index)); 7550 else 7551 Hi = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NewVT_Hi, Hi, ScalarOp, 7552 DAG.getIntPtrConstant(Index - NewNumElts_Lo)); 7553 break; 7554 } 7555 SDValue Tmp = PerformInsertVectorEltInMemory(Node->getOperand(0), 7556 Node->getOperand(1), 7557 Node->getOperand(2), dl); 7558 SplitVectorOp(Tmp, Lo, Hi); 7559 break; 7560 } 7561 case ISD::VECTOR_SHUFFLE: { 7562 // Build the low part. 7563 SDValue Mask = Node->getOperand(2); 7564 SmallVector<SDValue, 8> Ops; 7565 MVT PtrVT = TLI.getPointerTy(); 7566 7567 // Insert all of the elements from the input that are needed. We use 7568 // buildvector of extractelement here because the input vectors will have 7569 // to be legalized, so this makes the code simpler. 7570 for (unsigned i = 0; i != NewNumElts_Lo; ++i) { 7571 SDValue IdxNode = Mask.getOperand(i); 7572 if (IdxNode.getOpcode() == ISD::UNDEF) { 7573 Ops.push_back(DAG.getUNDEF(NewEltVT)); 7574 continue; 7575 } 7576 unsigned Idx = cast<ConstantSDNode>(IdxNode)->getZExtValue(); 7577 SDValue InVec = Node->getOperand(0); 7578 if (Idx >= NumElements) { 7579 InVec = Node->getOperand(1); 7580 Idx -= NumElements; 7581 } 7582 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NewEltVT, InVec, 7583 DAG.getConstant(Idx, PtrVT))); 7584 } 7585 Lo = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT_Lo, &Ops[0], Ops.size()); 7586 Ops.clear(); 7587 7588 for (unsigned i = NewNumElts_Lo; i != NumElements; ++i) { 7589 SDValue IdxNode = Mask.getOperand(i); 7590 if (IdxNode.getOpcode() == ISD::UNDEF) { 7591 Ops.push_back(DAG.getUNDEF(NewEltVT)); 7592 continue; 7593 } 7594 unsigned Idx = cast<ConstantSDNode>(IdxNode)->getZExtValue(); 7595 SDValue InVec = Node->getOperand(0); 7596 if (Idx >= NumElements) { 7597 InVec = Node->getOperand(1); 7598 Idx -= NumElements; 7599 } 7600 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NewEltVT, InVec, 7601 DAG.getConstant(Idx, PtrVT))); 7602 } 7603 Hi = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT_Hi, &Ops[0], Ops.size()); 7604 break; 7605 } 7606 case ISD::BUILD_VECTOR: { 7607 SmallVector<SDValue, 8> LoOps(Node->op_begin(), 7608 Node->op_begin()+NewNumElts_Lo); 7609 Lo = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT_Lo, &LoOps[0], LoOps.size()); 7610 7611 SmallVector<SDValue, 8> HiOps(Node->op_begin()+NewNumElts_Lo, 7612 Node->op_end()); 7613 Hi = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT_Hi, &HiOps[0], HiOps.size()); 7614 break; 7615 } 7616 case ISD::CONCAT_VECTORS: { 7617 // FIXME: Handle non-power-of-two vectors? 7618 unsigned NewNumSubvectors = Node->getNumOperands() / 2; 7619 if (NewNumSubvectors == 1) { 7620 Lo = Node->getOperand(0); 7621 Hi = Node->getOperand(1); 7622 } else { 7623 SmallVector<SDValue, 8> LoOps(Node->op_begin(), 7624 Node->op_begin()+NewNumSubvectors); 7625 Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewVT_Lo, 7626 &LoOps[0], LoOps.size()); 7627 7628 SmallVector<SDValue, 8> HiOps(Node->op_begin()+NewNumSubvectors, 7629 Node->op_end()); 7630 Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewVT_Hi, 7631 &HiOps[0], HiOps.size()); 7632 } 7633 break; 7634 } 7635 case ISD::EXTRACT_SUBVECTOR: { 7636 SDValue Vec = Op.getOperand(0); 7637 SDValue Idx = Op.getOperand(1); 7638 MVT IdxVT = Idx.getValueType(); 7639 7640 Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NewVT_Lo, Vec, Idx); 7641 ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx); 7642 if (CIdx) { 7643 Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NewVT_Hi, Vec, 7644 DAG.getConstant(CIdx->getZExtValue() + NewNumElts_Lo, 7645 IdxVT)); 7646 } else { 7647 Idx = DAG.getNode(ISD::ADD, dl, IdxVT, Idx, 7648 DAG.getConstant(NewNumElts_Lo, IdxVT)); 7649 Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NewVT_Hi, Vec, Idx); 7650 } 7651 break; 7652 } 7653 case ISD::SELECT: { 7654 SDValue Cond = Node->getOperand(0); 7655 7656 SDValue LL, LH, RL, RH; 7657 SplitVectorOp(Node->getOperand(1), LL, LH); 7658 SplitVectorOp(Node->getOperand(2), RL, RH); 7659 7660 if (Cond.getValueType().isVector()) { 7661 // Handle a vector merge. 7662 SDValue CL, CH; 7663 SplitVectorOp(Cond, CL, CH); 7664 Lo = DAG.getNode(Node->getOpcode(), dl, NewVT_Lo, CL, LL, RL); 7665 Hi = DAG.getNode(Node->getOpcode(), dl, NewVT_Hi, CH, LH, RH); 7666 } else { 7667 // Handle a simple select with vector operands. 7668 Lo = DAG.getNode(Node->getOpcode(), dl, NewVT_Lo, Cond, LL, RL); 7669 Hi = DAG.getNode(Node->getOpcode(), dl, NewVT_Hi, Cond, LH, RH); 7670 } 7671 break; 7672 } 7673 case ISD::SELECT_CC: { 7674 SDValue CondLHS = Node->getOperand(0); 7675 SDValue CondRHS = Node->getOperand(1); 7676 SDValue CondCode = Node->getOperand(4); 7677 7678 SDValue LL, LH, RL, RH; 7679 SplitVectorOp(Node->getOperand(2), LL, LH); 7680 SplitVectorOp(Node->getOperand(3), RL, RH); 7681 7682 // Handle a simple select with vector operands. 7683 Lo = DAG.getNode(ISD::SELECT_CC, dl, NewVT_Lo, CondLHS, CondRHS, 7684 LL, RL, CondCode); 7685 Hi = DAG.getNode(ISD::SELECT_CC, dl, NewVT_Hi, CondLHS, CondRHS, 7686 LH, RH, CondCode); 7687 break; 7688 } 7689 case ISD::VSETCC: { 7690 SDValue LL, LH, RL, RH; 7691 SplitVectorOp(Node->getOperand(0), LL, LH); 7692 SplitVectorOp(Node->getOperand(1), RL, RH); 7693 Lo = DAG.getNode(ISD::VSETCC, dl, NewVT_Lo, LL, RL, Node->getOperand(2)); 7694 Hi = DAG.getNode(ISD::VSETCC, dl, NewVT_Hi, LH, RH, Node->getOperand(2)); 7695 break; 7696 } 7697 case ISD::ADD: 7698 case ISD::SUB: 7699 case ISD::MUL: 7700 case ISD::FADD: 7701 case ISD::FSUB: 7702 case ISD::FMUL: 7703 case ISD::SDIV: 7704 case ISD::UDIV: 7705 case ISD::FDIV: 7706 case ISD::FPOW: 7707 case ISD::AND: 7708 case ISD::OR: 7709 case ISD::XOR: 7710 case ISD::UREM: 7711 case ISD::SREM: 7712 case ISD::FREM: 7713 case ISD::SHL: 7714 case ISD::SRA: 7715 case ISD::SRL: { 7716 SDValue LL, LH, RL, RH; 7717 SplitVectorOp(Node->getOperand(0), LL, LH); 7718 SplitVectorOp(Node->getOperand(1), RL, RH); 7719 7720 Lo = DAG.getNode(Node->getOpcode(), dl, NewVT_Lo, LL, RL); 7721 Hi = DAG.getNode(Node->getOpcode(), dl, NewVT_Hi, LH, RH); 7722 break; 7723 } 7724 case ISD::FP_ROUND: 7725 case ISD::FPOWI: { 7726 SDValue L, H; 7727 SplitVectorOp(Node->getOperand(0), L, H); 7728 7729 Lo = DAG.getNode(Node->getOpcode(), dl, NewVT_Lo, L, Node->getOperand(1)); 7730 Hi = DAG.getNode(Node->getOpcode(), dl, NewVT_Hi, H, Node->getOperand(1)); 7731 break; 7732 } 7733 case ISD::CTTZ: 7734 case ISD::CTLZ: 7735 case ISD::CTPOP: 7736 case ISD::FNEG: 7737 case ISD::FABS: 7738 case ISD::FSQRT: 7739 case ISD::FSIN: 7740 case ISD::FCOS: 7741 case ISD::FLOG: 7742 case ISD::FLOG2: 7743 case ISD::FLOG10: 7744 case ISD::FEXP: 7745 case ISD::FEXP2: 7746 case ISD::FP_TO_SINT: 7747 case ISD::FP_TO_UINT: 7748 case ISD::SINT_TO_FP: 7749 case ISD::UINT_TO_FP: 7750 case ISD::TRUNCATE: 7751 case ISD::ANY_EXTEND: 7752 case ISD::SIGN_EXTEND: 7753 case ISD::ZERO_EXTEND: 7754 case ISD::FP_EXTEND: { 7755 SDValue L, H; 7756 SplitVectorOp(Node->getOperand(0), L, H); 7757 7758 Lo = DAG.getNode(Node->getOpcode(), dl, NewVT_Lo, L); 7759 Hi = DAG.getNode(Node->getOpcode(), dl, NewVT_Hi, H); 7760 break; 7761 } 7762 case ISD::CONVERT_RNDSAT: { 7763 ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(Node)->getCvtCode(); 7764 SDValue L, H; 7765 SplitVectorOp(Node->getOperand(0), L, H); 7766 SDValue DTyOpL = DAG.getValueType(NewVT_Lo); 7767 SDValue DTyOpH = DAG.getValueType(NewVT_Hi); 7768 SDValue STyOpL = DAG.getValueType(L.getValueType()); 7769 SDValue STyOpH = DAG.getValueType(H.getValueType()); 7770 7771 SDValue RndOp = Node->getOperand(3); 7772 SDValue SatOp = Node->getOperand(4); 7773 7774 Lo = DAG.getConvertRndSat(NewVT_Lo, dl, L, DTyOpL, STyOpL, 7775 RndOp, SatOp, CvtCode); 7776 Hi = DAG.getConvertRndSat(NewVT_Hi, dl, H, DTyOpH, STyOpH, 7777 RndOp, SatOp, CvtCode); 7778 break; 7779 } 7780 case ISD::LOAD: { 7781 LoadSDNode *LD = cast<LoadSDNode>(Node); 7782 SDValue Ch = LD->getChain(); 7783 SDValue Ptr = LD->getBasePtr(); 7784 ISD::LoadExtType ExtType = LD->getExtensionType(); 7785 const Value *SV = LD->getSrcValue(); 7786 int SVOffset = LD->getSrcValueOffset(); 7787 MVT MemoryVT = LD->getMemoryVT(); 7788 unsigned Alignment = LD->getAlignment(); 7789 bool isVolatile = LD->isVolatile(); 7790 7791 assert(LD->isUnindexed() && "Indexed vector loads are not supported yet!"); 7792 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 7793 7794 MVT MemNewEltVT = MemoryVT.getVectorElementType(); 7795 MVT MemNewVT_Lo = MVT::getVectorVT(MemNewEltVT, NewNumElts_Lo); 7796 MVT MemNewVT_Hi = MVT::getVectorVT(MemNewEltVT, NewNumElts_Hi); 7797 7798 Lo = DAG.getLoad(ISD::UNINDEXED, dl, ExtType, 7799 NewVT_Lo, Ch, Ptr, Offset, 7800 SV, SVOffset, MemNewVT_Lo, isVolatile, Alignment); 7801 unsigned IncrementSize = NewNumElts_Lo * MemNewEltVT.getSizeInBits()/8; 7802 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 7803 DAG.getIntPtrConstant(IncrementSize)); 7804 SVOffset += IncrementSize; 7805 Alignment = MinAlign(Alignment, IncrementSize); 7806 Hi = DAG.getLoad(ISD::UNINDEXED, dl, ExtType, 7807 NewVT_Hi, Ch, Ptr, Offset, 7808 SV, SVOffset, MemNewVT_Hi, isVolatile, Alignment); 7809 7810 // Build a factor node to remember that this load is independent of the 7811 // other one. 7812 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 7813 Hi.getValue(1)); 7814 7815 // Remember that we legalized the chain. 7816 AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF)); 7817 break; 7818 } 7819 case ISD::BIT_CONVERT: { 7820 // We know the result is a vector. The input may be either a vector or a 7821 // scalar value. 7822 SDValue InOp = Node->getOperand(0); 7823 if (!InOp.getValueType().isVector() || 7824 InOp.getValueType().getVectorNumElements() == 1) { 7825 // The input is a scalar or single-element vector. 7826 // Lower to a store/load so that it can be split. 7827 // FIXME: this could be improved probably. 7828 unsigned LdAlign = TLI.getTargetData()-> 7829 getPrefTypeAlignment(Op.getValueType().getTypeForMVT()); 7830 SDValue Ptr = DAG.CreateStackTemporary(InOp.getValueType(), LdAlign); 7831 int FI = cast<FrameIndexSDNode>(Ptr.getNode())->getIndex(); 7832 7833 SDValue St = DAG.getStore(DAG.getEntryNode(), dl, 7834 InOp, Ptr, 7835 PseudoSourceValue::getFixedStack(FI), 0); 7836 InOp = DAG.getLoad(Op.getValueType(), dl, St, Ptr, 7837 PseudoSourceValue::getFixedStack(FI), 0); 7838 } 7839 // Split the vector and convert each of the pieces now. 7840 SplitVectorOp(InOp, Lo, Hi); 7841 Lo = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT_Lo, Lo); 7842 Hi = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT_Hi, Hi); 7843 break; 7844 } 7845 } 7846 7847 // Remember in a map if the values will be reused later. 7848 bool isNew = 7849 SplitNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi))).second; 7850 assert(isNew && "Value already split?!?"); 7851 isNew = isNew; 7852} 7853 7854 7855/// ScalarizeVectorOp - Given an operand of single-element vector type 7856/// (e.g. v1f32), convert it into the equivalent operation that returns a 7857/// scalar (e.g. f32) value. 7858SDValue SelectionDAGLegalize::ScalarizeVectorOp(SDValue Op) { 7859 assert(Op.getValueType().isVector() && "Bad ScalarizeVectorOp invocation!"); 7860 SDNode *Node = Op.getNode(); 7861 DebugLoc dl = Node->getDebugLoc(); 7862 MVT NewVT = Op.getValueType().getVectorElementType(); 7863 assert(Op.getValueType().getVectorNumElements() == 1); 7864 7865 // See if we already scalarized it. 7866 std::map<SDValue, SDValue>::iterator I = ScalarizedNodes.find(Op); 7867 if (I != ScalarizedNodes.end()) return I->second; 7868 7869 SDValue Result; 7870 switch (Node->getOpcode()) { 7871 default: 7872#ifndef NDEBUG 7873 Node->dump(&DAG); cerr << "\n"; 7874#endif 7875 assert(0 && "Unknown vector operation in ScalarizeVectorOp!"); 7876 case ISD::ADD: 7877 case ISD::FADD: 7878 case ISD::SUB: 7879 case ISD::FSUB: 7880 case ISD::MUL: 7881 case ISD::FMUL: 7882 case ISD::SDIV: 7883 case ISD::UDIV: 7884 case ISD::FDIV: 7885 case ISD::SREM: 7886 case ISD::UREM: 7887 case ISD::FREM: 7888 case ISD::FPOW: 7889 case ISD::AND: 7890 case ISD::OR: 7891 case ISD::XOR: 7892 Result = DAG.getNode(Node->getOpcode(), dl, 7893 NewVT, 7894 ScalarizeVectorOp(Node->getOperand(0)), 7895 ScalarizeVectorOp(Node->getOperand(1))); 7896 break; 7897 case ISD::FNEG: 7898 case ISD::FABS: 7899 case ISD::FSQRT: 7900 case ISD::FSIN: 7901 case ISD::FCOS: 7902 case ISD::FLOG: 7903 case ISD::FLOG2: 7904 case ISD::FLOG10: 7905 case ISD::FEXP: 7906 case ISD::FEXP2: 7907 case ISD::FP_TO_SINT: 7908 case ISD::FP_TO_UINT: 7909 case ISD::SINT_TO_FP: 7910 case ISD::UINT_TO_FP: 7911 case ISD::SIGN_EXTEND: 7912 case ISD::ZERO_EXTEND: 7913 case ISD::ANY_EXTEND: 7914 case ISD::TRUNCATE: 7915 case ISD::FP_EXTEND: 7916 Result = DAG.getNode(Node->getOpcode(), dl, 7917 NewVT, 7918 ScalarizeVectorOp(Node->getOperand(0))); 7919 break; 7920 case ISD::CONVERT_RNDSAT: { 7921 SDValue Op0 = ScalarizeVectorOp(Node->getOperand(0)); 7922 Result = DAG.getConvertRndSat(NewVT, dl, Op0, 7923 DAG.getValueType(NewVT), 7924 DAG.getValueType(Op0.getValueType()), 7925 Node->getOperand(3), 7926 Node->getOperand(4), 7927 cast<CvtRndSatSDNode>(Node)->getCvtCode()); 7928 break; 7929 } 7930 case ISD::FPOWI: 7931 case ISD::FP_ROUND: 7932 Result = DAG.getNode(Node->getOpcode(), dl, 7933 NewVT, 7934 ScalarizeVectorOp(Node->getOperand(0)), 7935 Node->getOperand(1)); 7936 break; 7937 case ISD::LOAD: { 7938 LoadSDNode *LD = cast<LoadSDNode>(Node); 7939 SDValue Ch = LegalizeOp(LD->getChain()); // Legalize the chain. 7940 SDValue Ptr = LegalizeOp(LD->getBasePtr()); // Legalize the pointer. 7941 ISD::LoadExtType ExtType = LD->getExtensionType(); 7942 const Value *SV = LD->getSrcValue(); 7943 int SVOffset = LD->getSrcValueOffset(); 7944 MVT MemoryVT = LD->getMemoryVT(); 7945 unsigned Alignment = LD->getAlignment(); 7946 bool isVolatile = LD->isVolatile(); 7947 7948 assert(LD->isUnindexed() && "Indexed vector loads are not supported yet!"); 7949 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 7950 7951 Result = DAG.getLoad(ISD::UNINDEXED, dl, ExtType, 7952 NewVT, Ch, Ptr, Offset, SV, SVOffset, 7953 MemoryVT.getVectorElementType(), 7954 isVolatile, Alignment); 7955 7956 // Remember that we legalized the chain. 7957 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 7958 break; 7959 } 7960 case ISD::BUILD_VECTOR: 7961 Result = Node->getOperand(0); 7962 break; 7963 case ISD::INSERT_VECTOR_ELT: 7964 // Returning the inserted scalar element. 7965 Result = Node->getOperand(1); 7966 break; 7967 case ISD::CONCAT_VECTORS: 7968 assert(Node->getOperand(0).getValueType() == NewVT && 7969 "Concat of non-legal vectors not yet supported!"); 7970 Result = Node->getOperand(0); 7971 break; 7972 case ISD::VECTOR_SHUFFLE: { 7973 // Figure out if the scalar is the LHS or RHS and return it. 7974 SDValue EltNum = Node->getOperand(2).getOperand(0); 7975 if (cast<ConstantSDNode>(EltNum)->getZExtValue()) 7976 Result = ScalarizeVectorOp(Node->getOperand(1)); 7977 else 7978 Result = ScalarizeVectorOp(Node->getOperand(0)); 7979 break; 7980 } 7981 case ISD::EXTRACT_SUBVECTOR: 7982 Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NewVT, 7983 Node->getOperand(0), Node->getOperand(1)); 7984 break; 7985 case ISD::BIT_CONVERT: { 7986 SDValue Op0 = Op.getOperand(0); 7987 if (Op0.getValueType().isVector() && 7988 Op0.getValueType().getVectorNumElements() == 1) 7989 Op0 = ScalarizeVectorOp(Op0); 7990 Result = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, Op0); 7991 break; 7992 } 7993 case ISD::SELECT: 7994 Result = DAG.getNode(ISD::SELECT, dl, NewVT, Op.getOperand(0), 7995 ScalarizeVectorOp(Op.getOperand(1)), 7996 ScalarizeVectorOp(Op.getOperand(2))); 7997 break; 7998 case ISD::SELECT_CC: 7999 Result = DAG.getNode(ISD::SELECT_CC, dl, NewVT, Node->getOperand(0), 8000 Node->getOperand(1), 8001 ScalarizeVectorOp(Op.getOperand(2)), 8002 ScalarizeVectorOp(Op.getOperand(3)), 8003 Node->getOperand(4)); 8004 break; 8005 case ISD::VSETCC: { 8006 SDValue Op0 = ScalarizeVectorOp(Op.getOperand(0)); 8007 SDValue Op1 = ScalarizeVectorOp(Op.getOperand(1)); 8008 Result = DAG.getNode(ISD::SETCC, dl, 8009 TLI.getSetCCResultType(Op0.getValueType()), 8010 Op0, Op1, Op.getOperand(2)); 8011 Result = DAG.getNode(ISD::SELECT, dl, NewVT, Result, 8012 DAG.getConstant(-1ULL, NewVT), 8013 DAG.getConstant(0ULL, NewVT)); 8014 break; 8015 } 8016 } 8017 8018 if (TLI.isTypeLegal(NewVT)) 8019 Result = LegalizeOp(Result); 8020 bool isNew = ScalarizedNodes.insert(std::make_pair(Op, Result)).second; 8021 assert(isNew && "Value already scalarized?"); 8022 isNew = isNew; 8023 return Result; 8024} 8025 8026 8027SDValue SelectionDAGLegalize::WidenVectorOp(SDValue Op, MVT WidenVT) { 8028 std::map<SDValue, SDValue>::iterator I = WidenNodes.find(Op); 8029 if (I != WidenNodes.end()) return I->second; 8030 8031 MVT VT = Op.getValueType(); 8032 assert(VT.isVector() && "Cannot widen non-vector type!"); 8033 8034 SDValue Result; 8035 SDNode *Node = Op.getNode(); 8036 DebugLoc dl = Node->getDebugLoc(); 8037 MVT EVT = VT.getVectorElementType(); 8038 8039 unsigned NumElts = VT.getVectorNumElements(); 8040 unsigned NewNumElts = WidenVT.getVectorNumElements(); 8041 assert(NewNumElts > NumElts && "Cannot widen to smaller type!"); 8042 assert(NewNumElts < 17); 8043 8044 // When widen is called, it is assumed that it is more efficient to use a 8045 // wide type. The default action is to widen to operation to a wider legal 8046 // vector type and then do the operation if it is legal by calling LegalizeOp 8047 // again. If there is no vector equivalent, we will unroll the operation, do 8048 // it, and rebuild the vector. If most of the operations are vectorizible to 8049 // the legal type, the resulting code will be more efficient. If this is not 8050 // the case, the resulting code will preform badly as we end up generating 8051 // code to pack/unpack the results. It is the function that calls widen 8052 // that is responsible for seeing this doesn't happen. 8053 switch (Node->getOpcode()) { 8054 default: 8055#ifndef NDEBUG 8056 Node->dump(&DAG); 8057#endif 8058 assert(0 && "Unexpected operation in WidenVectorOp!"); 8059 break; 8060 case ISD::CopyFromReg: 8061 assert(0 && "CopyFromReg doesn't need widening!"); 8062 case ISD::Constant: 8063 case ISD::ConstantFP: 8064 // To build a vector of these elements, clients should call BuildVector 8065 // and with each element instead of creating a node with a vector type 8066 assert(0 && "Unexpected operation in WidenVectorOp!"); 8067 case ISD::VAARG: 8068 // Variable Arguments with vector types doesn't make any sense to me 8069 assert(0 && "Unexpected operation in WidenVectorOp!"); 8070 break; 8071 case ISD::UNDEF: 8072 Result = DAG.getUNDEF(WidenVT); 8073 break; 8074 case ISD::BUILD_VECTOR: { 8075 // Build a vector with undefined for the new nodes 8076 SDValueVector NewOps(Node->op_begin(), Node->op_end()); 8077 for (unsigned i = NumElts; i < NewNumElts; ++i) { 8078 NewOps.push_back(DAG.getUNDEF(EVT)); 8079 } 8080 Result = DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, 8081 &NewOps[0], NewOps.size()); 8082 break; 8083 } 8084 case ISD::INSERT_VECTOR_ELT: { 8085 SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT); 8086 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, WidenVT, Tmp1, 8087 Node->getOperand(1), Node->getOperand(2)); 8088 break; 8089 } 8090 case ISD::VECTOR_SHUFFLE: { 8091 SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT); 8092 SDValue Tmp2 = WidenVectorOp(Node->getOperand(1), WidenVT); 8093 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Node); 8094 SmallVector<int, 8> NewMask; 8095 for (unsigned i = 0; i < NumElts; ++i) { 8096 int Idx = SVOp->getMaskElt(i); 8097 if (Idx < (int)NumElts) 8098 NewMask.push_back(Idx); 8099 else 8100 NewMask.push_back(Idx + NewNumElts - NumElts); 8101 } 8102 for (unsigned i = NumElts; i < NewNumElts; ++i) 8103 NewMask.push_back(-1); 8104 8105 Result = DAG.getVectorShuffle(WidenVT, dl, Tmp1, Tmp2, &NewMask[0]); 8106 break; 8107 } 8108 case ISD::LOAD: { 8109 // If the load widen returns true, we can use a single load for the 8110 // vector. Otherwise, it is returning a token factor for multiple 8111 // loads. 8112 SDValue TFOp; 8113 if (LoadWidenVectorOp(Result, TFOp, Op, WidenVT)) 8114 AddLegalizedOperand(Op.getValue(1), LegalizeOp(TFOp.getValue(1))); 8115 else 8116 AddLegalizedOperand(Op.getValue(1), LegalizeOp(TFOp.getValue(0))); 8117 break; 8118 } 8119 8120 case ISD::BIT_CONVERT: { 8121 SDValue Tmp1 = Node->getOperand(0); 8122 // Converts between two different types so we need to determine 8123 // the correct widen type for the input operand. 8124 MVT InVT = Tmp1.getValueType(); 8125 unsigned WidenSize = WidenVT.getSizeInBits(); 8126 if (InVT.isVector()) { 8127 MVT InEltVT = InVT.getVectorElementType(); 8128 unsigned InEltSize = InEltVT.getSizeInBits(); 8129 assert(WidenSize % InEltSize == 0 && 8130 "can not widen bit convert that are not multiple of element type"); 8131 MVT NewInWidenVT = MVT::getVectorVT(InEltVT, WidenSize / InEltSize); 8132 Tmp1 = WidenVectorOp(Tmp1, NewInWidenVT); 8133 assert(Tmp1.getValueType().getSizeInBits() == WidenVT.getSizeInBits()); 8134 Result = DAG.getNode(ISD::BIT_CONVERT, dl, WidenVT, Tmp1); 8135 } else { 8136 // If the result size is a multiple of the input size, widen the input 8137 // and then convert. 8138 unsigned InSize = InVT.getSizeInBits(); 8139 assert(WidenSize % InSize == 0 && 8140 "can not widen bit convert that are not multiple of element type"); 8141 unsigned NewNumElts = WidenSize / InSize; 8142 SmallVector<SDValue, 16> Ops(NewNumElts); 8143 SDValue UndefVal = DAG.getUNDEF(InVT); 8144 Ops[0] = Tmp1; 8145 for (unsigned i = 1; i < NewNumElts; ++i) 8146 Ops[i] = UndefVal; 8147 8148 MVT NewInVT = MVT::getVectorVT(InVT, NewNumElts); 8149 Result = DAG.getNode(ISD::BUILD_VECTOR, dl, NewInVT, &Ops[0], NewNumElts); 8150 Result = DAG.getNode(ISD::BIT_CONVERT, dl, WidenVT, Result); 8151 } 8152 break; 8153 } 8154 8155 case ISD::SINT_TO_FP: 8156 case ISD::UINT_TO_FP: 8157 case ISD::FP_TO_SINT: 8158 case ISD::FP_TO_UINT: 8159 case ISD::FP_ROUND: { 8160 SDValue Tmp1 = Node->getOperand(0); 8161 // Converts between two different types so we need to determine 8162 // the correct widen type for the input operand. 8163 MVT TVT = Tmp1.getValueType(); 8164 assert(TVT.isVector() && "can not widen non vector type"); 8165 MVT TEVT = TVT.getVectorElementType(); 8166 MVT TWidenVT = MVT::getVectorVT(TEVT, NewNumElts); 8167 Tmp1 = WidenVectorOp(Tmp1, TWidenVT); 8168 assert(Tmp1.getValueType().getVectorNumElements() == NewNumElts); 8169 Result = DAG.getNode(Node->getOpcode(), dl, WidenVT, Tmp1); 8170 break; 8171 } 8172 8173 case ISD::FP_EXTEND: 8174 assert(0 && "Case not implemented. Dynamically dead with 2 FP types!"); 8175 case ISD::TRUNCATE: 8176 case ISD::SIGN_EXTEND: 8177 case ISD::ZERO_EXTEND: 8178 case ISD::ANY_EXTEND: 8179 case ISD::SIGN_EXTEND_INREG: 8180 case ISD::FABS: 8181 case ISD::FNEG: 8182 case ISD::FSQRT: 8183 case ISD::FSIN: 8184 case ISD::FCOS: 8185 case ISD::CTPOP: 8186 case ISD::CTTZ: 8187 case ISD::CTLZ: { 8188 // Unary op widening 8189 SDValue Tmp1; 8190 Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT); 8191 assert(Tmp1.getValueType() == WidenVT); 8192 Result = DAG.getNode(Node->getOpcode(), dl, WidenVT, Tmp1); 8193 break; 8194 } 8195 case ISD::CONVERT_RNDSAT: { 8196 SDValue RndOp = Node->getOperand(3); 8197 SDValue SatOp = Node->getOperand(4); 8198 SDValue SrcOp = Node->getOperand(0); 8199 8200 // Converts between two different types so we need to determine 8201 // the correct widen type for the input operand. 8202 MVT SVT = SrcOp.getValueType(); 8203 assert(SVT.isVector() && "can not widen non vector type"); 8204 MVT SEVT = SVT.getVectorElementType(); 8205 MVT SWidenVT = MVT::getVectorVT(SEVT, NewNumElts); 8206 8207 SrcOp = WidenVectorOp(SrcOp, SWidenVT); 8208 assert(SrcOp.getValueType() == WidenVT); 8209 SDValue DTyOp = DAG.getValueType(WidenVT); 8210 SDValue STyOp = DAG.getValueType(SrcOp.getValueType()); 8211 ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(Node)->getCvtCode(); 8212 8213 Result = DAG.getConvertRndSat(WidenVT, dl, SrcOp, DTyOp, STyOp, 8214 RndOp, SatOp, CvtCode); 8215 break; 8216 } 8217 case ISD::FPOW: 8218 case ISD::FPOWI: 8219 case ISD::ADD: 8220 case ISD::SUB: 8221 case ISD::MUL: 8222 case ISD::MULHS: 8223 case ISD::MULHU: 8224 case ISD::AND: 8225 case ISD::OR: 8226 case ISD::XOR: 8227 case ISD::FADD: 8228 case ISD::FSUB: 8229 case ISD::FMUL: 8230 case ISD::SDIV: 8231 case ISD::SREM: 8232 case ISD::FDIV: 8233 case ISD::FREM: 8234 case ISD::FCOPYSIGN: 8235 case ISD::UDIV: 8236 case ISD::UREM: 8237 case ISD::BSWAP: { 8238 // Binary op widening 8239 SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT); 8240 SDValue Tmp2 = WidenVectorOp(Node->getOperand(1), WidenVT); 8241 assert(Tmp1.getValueType() == WidenVT && Tmp2.getValueType() == WidenVT); 8242 Result = DAG.getNode(Node->getOpcode(), dl, WidenVT, Tmp1, Tmp2); 8243 break; 8244 } 8245 8246 case ISD::SHL: 8247 case ISD::SRA: 8248 case ISD::SRL: { 8249 SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT); 8250 assert(Tmp1.getValueType() == WidenVT); 8251 SDValue ShOp = Node->getOperand(1); 8252 MVT ShVT = ShOp.getValueType(); 8253 MVT NewShVT = MVT::getVectorVT(ShVT.getVectorElementType(), 8254 WidenVT.getVectorNumElements()); 8255 ShOp = WidenVectorOp(ShOp, NewShVT); 8256 assert(ShOp.getValueType() == NewShVT); 8257 Result = DAG.getNode(Node->getOpcode(), dl, WidenVT, Tmp1, ShOp); 8258 break; 8259 } 8260 8261 case ISD::EXTRACT_VECTOR_ELT: { 8262 SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT); 8263 assert(Tmp1.getValueType() == WidenVT); 8264 Result = DAG.getNode(Node->getOpcode(), dl, EVT, Tmp1, Node->getOperand(1)); 8265 break; 8266 } 8267 case ISD::CONCAT_VECTORS: { 8268 // We concurrently support only widen on a multiple of the incoming vector. 8269 // We could widen on a multiple of the incoming operand if necessary. 8270 unsigned NumConcat = NewNumElts / NumElts; 8271 assert(NewNumElts % NumElts == 0 && "Can widen only a multiple of vector"); 8272 SDValue UndefVal = DAG.getUNDEF(VT); 8273 SmallVector<SDValue, 8> MOps; 8274 MOps.push_back(Op); 8275 for (unsigned i = 1; i != NumConcat; ++i) { 8276 MOps.push_back(UndefVal); 8277 } 8278 Result = LegalizeOp(DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, 8279 &MOps[0], MOps.size())); 8280 break; 8281 } 8282 case ISD::EXTRACT_SUBVECTOR: { 8283 SDValue Tmp1 = Node->getOperand(0); 8284 SDValue Idx = Node->getOperand(1); 8285 ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx); 8286 if (CIdx && CIdx->getZExtValue() == 0) { 8287 // Since we are access the start of the vector, the incoming 8288 // vector type might be the proper. 8289 MVT Tmp1VT = Tmp1.getValueType(); 8290 if (Tmp1VT == WidenVT) 8291 return Tmp1; 8292 else { 8293 unsigned Tmp1VTNumElts = Tmp1VT.getVectorNumElements(); 8294 if (Tmp1VTNumElts < NewNumElts) 8295 Result = WidenVectorOp(Tmp1, WidenVT); 8296 else 8297 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, WidenVT, Tmp1, Idx); 8298 } 8299 } else if (NewNumElts % NumElts == 0) { 8300 // Widen the extracted subvector. 8301 unsigned NumConcat = NewNumElts / NumElts; 8302 SDValue UndefVal = DAG.getUNDEF(VT); 8303 SmallVector<SDValue, 8> MOps; 8304 MOps.push_back(Op); 8305 for (unsigned i = 1; i != NumConcat; ++i) { 8306 MOps.push_back(UndefVal); 8307 } 8308 Result = LegalizeOp(DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, 8309 &MOps[0], MOps.size())); 8310 } else { 8311 assert(0 && "can not widen extract subvector"); 8312 // This could be implemented using insert and build vector but I would 8313 // like to see when this happens. 8314 } 8315 break; 8316 } 8317 8318 case ISD::SELECT: { 8319 // Determine new condition widen type and widen 8320 SDValue Cond1 = Node->getOperand(0); 8321 MVT CondVT = Cond1.getValueType(); 8322 assert(CondVT.isVector() && "can not widen non vector type"); 8323 MVT CondEVT = CondVT.getVectorElementType(); 8324 MVT CondWidenVT = MVT::getVectorVT(CondEVT, NewNumElts); 8325 Cond1 = WidenVectorOp(Cond1, CondWidenVT); 8326 assert(Cond1.getValueType() == CondWidenVT && "Condition not widen"); 8327 8328 SDValue Tmp1 = WidenVectorOp(Node->getOperand(1), WidenVT); 8329 SDValue Tmp2 = WidenVectorOp(Node->getOperand(2), WidenVT); 8330 assert(Tmp1.getValueType() == WidenVT && Tmp2.getValueType() == WidenVT); 8331 Result = DAG.getNode(Node->getOpcode(), dl, WidenVT, Cond1, Tmp1, Tmp2); 8332 break; 8333 } 8334 8335 case ISD::SELECT_CC: { 8336 // Determine new condition widen type and widen 8337 SDValue Cond1 = Node->getOperand(0); 8338 SDValue Cond2 = Node->getOperand(1); 8339 MVT CondVT = Cond1.getValueType(); 8340 assert(CondVT.isVector() && "can not widen non vector type"); 8341 assert(CondVT == Cond2.getValueType() && "mismatch lhs/rhs"); 8342 MVT CondEVT = CondVT.getVectorElementType(); 8343 MVT CondWidenVT = MVT::getVectorVT(CondEVT, NewNumElts); 8344 Cond1 = WidenVectorOp(Cond1, CondWidenVT); 8345 Cond2 = WidenVectorOp(Cond2, CondWidenVT); 8346 assert(Cond1.getValueType() == CondWidenVT && 8347 Cond2.getValueType() == CondWidenVT && "condition not widen"); 8348 8349 SDValue Tmp1 = WidenVectorOp(Node->getOperand(2), WidenVT); 8350 SDValue Tmp2 = WidenVectorOp(Node->getOperand(3), WidenVT); 8351 assert(Tmp1.getValueType() == WidenVT && Tmp2.getValueType() == WidenVT && 8352 "operands not widen"); 8353 Result = DAG.getNode(Node->getOpcode(), dl, WidenVT, Cond1, Cond2, Tmp1, 8354 Tmp2, Node->getOperand(4)); 8355 break; 8356 } 8357 case ISD::VSETCC: { 8358 // Determine widen for the operand 8359 SDValue Tmp1 = Node->getOperand(0); 8360 MVT TmpVT = Tmp1.getValueType(); 8361 assert(TmpVT.isVector() && "can not widen non vector type"); 8362 MVT TmpEVT = TmpVT.getVectorElementType(); 8363 MVT TmpWidenVT = MVT::getVectorVT(TmpEVT, NewNumElts); 8364 Tmp1 = WidenVectorOp(Tmp1, TmpWidenVT); 8365 SDValue Tmp2 = WidenVectorOp(Node->getOperand(1), TmpWidenVT); 8366 Result = DAG.getNode(Node->getOpcode(), dl, WidenVT, Tmp1, Tmp2, 8367 Node->getOperand(2)); 8368 break; 8369 } 8370 case ISD::ATOMIC_CMP_SWAP: 8371 case ISD::ATOMIC_LOAD_ADD: 8372 case ISD::ATOMIC_LOAD_SUB: 8373 case ISD::ATOMIC_LOAD_AND: 8374 case ISD::ATOMIC_LOAD_OR: 8375 case ISD::ATOMIC_LOAD_XOR: 8376 case ISD::ATOMIC_LOAD_NAND: 8377 case ISD::ATOMIC_LOAD_MIN: 8378 case ISD::ATOMIC_LOAD_MAX: 8379 case ISD::ATOMIC_LOAD_UMIN: 8380 case ISD::ATOMIC_LOAD_UMAX: 8381 case ISD::ATOMIC_SWAP: { 8382 // For now, we assume that using vectors for these operations don't make 8383 // much sense so we just split it. We return an empty result 8384 SDValue X, Y; 8385 SplitVectorOp(Op, X, Y); 8386 return Result; 8387 break; 8388 } 8389 8390 } // end switch (Node->getOpcode()) 8391 8392 assert(Result.getNode() && "Didn't set a result!"); 8393 if (Result != Op) 8394 Result = LegalizeOp(Result); 8395 8396 AddWidenedOperand(Op, Result); 8397 return Result; 8398} 8399 8400// Utility function to find a legal vector type and its associated element 8401// type from a preferred width and whose vector type must be the same size 8402// as the VVT. 8403// TLI: Target lowering used to determine legal types 8404// Width: Preferred width of element type 8405// VVT: Vector value type whose size we must match. 8406// Returns VecEVT and EVT - the vector type and its associated element type 8407static void FindWidenVecType(const TargetLowering &TLI, unsigned Width, MVT VVT, 8408 MVT& EVT, MVT& VecEVT) { 8409 // We start with the preferred width, make it a power of 2 and see if 8410 // we can find a vector type of that width. If not, we reduce it by 8411 // another power of 2. If we have widen the type, a vector of bytes should 8412 // always be legal. 8413 assert(TLI.isTypeLegal(VVT)); 8414 unsigned EWidth = Width + 1; 8415 do { 8416 assert(EWidth > 0); 8417 EWidth = (1 << Log2_32(EWidth-1)); 8418 EVT = MVT::getIntegerVT(EWidth); 8419 unsigned NumEVT = VVT.getSizeInBits()/EWidth; 8420 VecEVT = MVT::getVectorVT(EVT, NumEVT); 8421 } while (!TLI.isTypeLegal(VecEVT) || 8422 VVT.getSizeInBits() != VecEVT.getSizeInBits()); 8423} 8424 8425SDValue SelectionDAGLegalize::genWidenVectorLoads(SDValueVector& LdChain, 8426 SDValue Chain, 8427 SDValue BasePtr, 8428 const Value *SV, 8429 int SVOffset, 8430 unsigned Alignment, 8431 bool isVolatile, 8432 unsigned LdWidth, 8433 MVT ResType, 8434 DebugLoc dl) { 8435 // We assume that we have good rules to handle loading power of two loads so 8436 // we break down the operations to power of 2 loads. The strategy is to 8437 // load the largest power of 2 that we can easily transform to a legal vector 8438 // and then insert into that vector, and the cast the result into the legal 8439 // vector that we want. This avoids unnecessary stack converts. 8440 // TODO: If the Ldwidth is legal, alignment is the same as the LdWidth, and 8441 // the load is nonvolatile, we an use a wider load for the value. 8442 // Find a vector length we can load a large chunk 8443 MVT EVT, VecEVT; 8444 unsigned EVTWidth; 8445 FindWidenVecType(TLI, LdWidth, ResType, EVT, VecEVT); 8446 EVTWidth = EVT.getSizeInBits(); 8447 8448 SDValue LdOp = DAG.getLoad(EVT, dl, Chain, BasePtr, SV, SVOffset, 8449 isVolatile, Alignment); 8450 SDValue VecOp = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecEVT, LdOp); 8451 LdChain.push_back(LdOp.getValue(1)); 8452 8453 // Check if we can load the element with one instruction 8454 if (LdWidth == EVTWidth) { 8455 return DAG.getNode(ISD::BIT_CONVERT, dl, ResType, VecOp); 8456 } 8457 8458 // The vector element order is endianness dependent. 8459 unsigned Idx = 1; 8460 LdWidth -= EVTWidth; 8461 unsigned Offset = 0; 8462 8463 while (LdWidth > 0) { 8464 unsigned Increment = EVTWidth / 8; 8465 Offset += Increment; 8466 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 8467 DAG.getIntPtrConstant(Increment)); 8468 8469 if (LdWidth < EVTWidth) { 8470 // Our current type we are using is too large, use a smaller size by 8471 // using a smaller power of 2 8472 unsigned oEVTWidth = EVTWidth; 8473 FindWidenVecType(TLI, LdWidth, ResType, EVT, VecEVT); 8474 EVTWidth = EVT.getSizeInBits(); 8475 // Readjust position and vector position based on new load type 8476 Idx = Idx * (oEVTWidth/EVTWidth); 8477 VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, VecEVT, VecOp); 8478 } 8479 8480 SDValue LdOp = DAG.getLoad(EVT, dl, Chain, BasePtr, SV, 8481 SVOffset+Offset, isVolatile, 8482 MinAlign(Alignment, Offset)); 8483 LdChain.push_back(LdOp.getValue(1)); 8484 VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecEVT, VecOp, LdOp, 8485 DAG.getIntPtrConstant(Idx++)); 8486 8487 LdWidth -= EVTWidth; 8488 } 8489 8490 return DAG.getNode(ISD::BIT_CONVERT, dl, ResType, VecOp); 8491} 8492 8493bool SelectionDAGLegalize::LoadWidenVectorOp(SDValue& Result, 8494 SDValue& TFOp, 8495 SDValue Op, 8496 MVT NVT) { 8497 // TODO: Add support for ConcatVec and the ability to load many vector 8498 // types (e.g., v4i8). This will not work when a vector register 8499 // to memory mapping is strange (e.g., vector elements are not 8500 // stored in some sequential order). 8501 8502 // It must be true that the widen vector type is bigger than where 8503 // we need to load from. 8504 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 8505 MVT LdVT = LD->getMemoryVT(); 8506 DebugLoc dl = LD->getDebugLoc(); 8507 assert(LdVT.isVector() && NVT.isVector()); 8508 assert(LdVT.getVectorElementType() == NVT.getVectorElementType()); 8509 8510 // Load information 8511 SDValue Chain = LD->getChain(); 8512 SDValue BasePtr = LD->getBasePtr(); 8513 int SVOffset = LD->getSrcValueOffset(); 8514 unsigned Alignment = LD->getAlignment(); 8515 bool isVolatile = LD->isVolatile(); 8516 const Value *SV = LD->getSrcValue(); 8517 unsigned int LdWidth = LdVT.getSizeInBits(); 8518 8519 // Load value as a large register 8520 SDValueVector LdChain; 8521 Result = genWidenVectorLoads(LdChain, Chain, BasePtr, SV, SVOffset, 8522 Alignment, isVolatile, LdWidth, NVT, dl); 8523 8524 if (LdChain.size() == 1) { 8525 TFOp = LdChain[0]; 8526 return true; 8527 } 8528 else { 8529 TFOp=DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 8530 &LdChain[0], LdChain.size()); 8531 return false; 8532 } 8533} 8534 8535 8536void SelectionDAGLegalize::genWidenVectorStores(SDValueVector& StChain, 8537 SDValue Chain, 8538 SDValue BasePtr, 8539 const Value *SV, 8540 int SVOffset, 8541 unsigned Alignment, 8542 bool isVolatile, 8543 SDValue ValOp, 8544 unsigned StWidth, 8545 DebugLoc dl) { 8546 // Breaks the stores into a series of power of 2 width stores. For any 8547 // width, we convert the vector to the vector of element size that we 8548 // want to store. This avoids requiring a stack convert. 8549 8550 // Find a width of the element type we can store with 8551 MVT VVT = ValOp.getValueType(); 8552 MVT EVT, VecEVT; 8553 unsigned EVTWidth; 8554 FindWidenVecType(TLI, StWidth, VVT, EVT, VecEVT); 8555 EVTWidth = EVT.getSizeInBits(); 8556 8557 SDValue VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, VecEVT, ValOp); 8558 SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EVT, VecOp, 8559 DAG.getIntPtrConstant(0)); 8560 SDValue StOp = DAG.getStore(Chain, dl, EOp, BasePtr, SV, SVOffset, 8561 isVolatile, Alignment); 8562 StChain.push_back(StOp); 8563 8564 // Check if we are done 8565 if (StWidth == EVTWidth) { 8566 return; 8567 } 8568 8569 unsigned Idx = 1; 8570 StWidth -= EVTWidth; 8571 unsigned Offset = 0; 8572 8573 while (StWidth > 0) { 8574 unsigned Increment = EVTWidth / 8; 8575 Offset += Increment; 8576 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 8577 DAG.getIntPtrConstant(Increment)); 8578 8579 if (StWidth < EVTWidth) { 8580 // Our current type we are using is too large, use a smaller size by 8581 // using a smaller power of 2 8582 unsigned oEVTWidth = EVTWidth; 8583 FindWidenVecType(TLI, StWidth, VVT, EVT, VecEVT); 8584 EVTWidth = EVT.getSizeInBits(); 8585 // Readjust position and vector position based on new load type 8586 Idx = Idx * (oEVTWidth/EVTWidth); 8587 VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, VecEVT, VecOp); 8588 } 8589 8590 EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EVT, VecOp, 8591 DAG.getIntPtrConstant(Idx++)); 8592 StChain.push_back(DAG.getStore(Chain, dl, EOp, BasePtr, SV, 8593 SVOffset + Offset, isVolatile, 8594 MinAlign(Alignment, Offset))); 8595 StWidth -= EVTWidth; 8596 } 8597} 8598 8599 8600SDValue SelectionDAGLegalize::StoreWidenVectorOp(StoreSDNode *ST, 8601 SDValue Chain, 8602 SDValue BasePtr) { 8603 // TODO: It might be cleaner if we can use SplitVector and have more legal 8604 // vector types that can be stored into memory (e.g., v4xi8 can 8605 // be stored as a word). This will not work when a vector register 8606 // to memory mapping is strange (e.g., vector elements are not 8607 // stored in some sequential order). 8608 8609 MVT StVT = ST->getMemoryVT(); 8610 SDValue ValOp = ST->getValue(); 8611 DebugLoc dl = ST->getDebugLoc(); 8612 8613 // Check if we have widen this node with another value 8614 std::map<SDValue, SDValue>::iterator I = WidenNodes.find(ValOp); 8615 if (I != WidenNodes.end()) 8616 ValOp = I->second; 8617 8618 MVT VVT = ValOp.getValueType(); 8619 8620 // It must be true that we the widen vector type is bigger than where 8621 // we need to store. 8622 assert(StVT.isVector() && VVT.isVector()); 8623 assert(StVT.bitsLT(VVT)); 8624 assert(StVT.getVectorElementType() == VVT.getVectorElementType()); 8625 8626 // Store value 8627 SDValueVector StChain; 8628 genWidenVectorStores(StChain, Chain, BasePtr, ST->getSrcValue(), 8629 ST->getSrcValueOffset(), ST->getAlignment(), 8630 ST->isVolatile(), ValOp, StVT.getSizeInBits(), dl); 8631 if (StChain.size() == 1) 8632 return StChain[0]; 8633 else 8634 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 8635 &StChain[0], StChain.size()); 8636} 8637 8638 8639// SelectionDAG::Legalize - This is the entry point for the file. 8640// 8641void SelectionDAG::Legalize(bool TypesNeedLegalizing, 8642 CodeGenOpt::Level OptLevel) { 8643 /// run - This is the main entry point to this class. 8644 /// 8645 SelectionDAGLegalize(*this, TypesNeedLegalizing, OptLevel).LegalizeDAG(); 8646} 8647 8648