LegalizeDAG.cpp revision 3f6eb7419de437436265831fce92f62498556e08
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file was developed by the LLVM research group and is distributed under 6// the University of Illinois Open Source License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the SelectionDAG::Legalize method. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/SelectionDAG.h" 15#include "llvm/CodeGen/MachineFunction.h" 16#include "llvm/CodeGen/MachineFrameInfo.h" 17#include "llvm/CodeGen/MachineJumpTableInfo.h" 18#include "llvm/Target/TargetFrameInfo.h" 19#include "llvm/Target/TargetLowering.h" 20#include "llvm/Target/TargetData.h" 21#include "llvm/Target/TargetMachine.h" 22#include "llvm/Target/TargetOptions.h" 23#include "llvm/CallingConv.h" 24#include "llvm/Constants.h" 25#include "llvm/DerivedTypes.h" 26#include "llvm/Support/MathExtras.h" 27#include "llvm/Support/CommandLine.h" 28#include "llvm/Support/Compiler.h" 29#include "llvm/ADT/DenseMap.h" 30#include "llvm/ADT/SmallVector.h" 31#include "llvm/ADT/SmallPtrSet.h" 32#include <map> 33using namespace llvm; 34 35#ifndef NDEBUG 36static cl::opt<bool> 37ViewLegalizeDAGs("view-legalize-dags", cl::Hidden, 38 cl::desc("Pop up a window to show dags before legalize")); 39#else 40static const bool ViewLegalizeDAGs = 0; 41#endif 42 43//===----------------------------------------------------------------------===// 44/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and 45/// hacks on it until the target machine can handle it. This involves 46/// eliminating value sizes the machine cannot handle (promoting small sizes to 47/// large sizes or splitting up large values into small values) as well as 48/// eliminating operations the machine cannot handle. 49/// 50/// This code also does a small amount of optimization and recognition of idioms 51/// as part of its processing. For example, if a target does not support a 52/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 53/// will attempt merge setcc and brc instructions into brcc's. 54/// 55namespace { 56class VISIBILITY_HIDDEN SelectionDAGLegalize { 57 TargetLowering &TLI; 58 SelectionDAG &DAG; 59 60 // Libcall insertion helpers. 61 62 /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been 63 /// legalized. We use this to ensure that calls are properly serialized 64 /// against each other, including inserted libcalls. 65 SDOperand LastCALLSEQ_END; 66 67 /// IsLegalizingCall - This member is used *only* for purposes of providing 68 /// helpful assertions that a libcall isn't created while another call is 69 /// being legalized (which could lead to non-serialized call sequences). 70 bool IsLegalizingCall; 71 72 enum LegalizeAction { 73 Legal, // The target natively supports this operation. 74 Promote, // This operation should be executed in a larger type. 75 Expand // Try to expand this to other ops, otherwise use a libcall. 76 }; 77 78 /// ValueTypeActions - This is a bitvector that contains two bits for each 79 /// value type, where the two bits correspond to the LegalizeAction enum. 80 /// This can be queried with "getTypeAction(VT)". 81 TargetLowering::ValueTypeActionImpl ValueTypeActions; 82 83 /// LegalizedNodes - For nodes that are of legal width, and that have more 84 /// than one use, this map indicates what regularized operand to use. This 85 /// allows us to avoid legalizing the same thing more than once. 86 DenseMap<SDOperand, SDOperand> LegalizedNodes; 87 88 /// PromotedNodes - For nodes that are below legal width, and that have more 89 /// than one use, this map indicates what promoted value to use. This allows 90 /// us to avoid promoting the same thing more than once. 91 DenseMap<SDOperand, SDOperand> PromotedNodes; 92 93 /// ExpandedNodes - For nodes that need to be expanded this map indicates 94 /// which which operands are the expanded version of the input. This allows 95 /// us to avoid expanding the same node more than once. 96 DenseMap<SDOperand, std::pair<SDOperand, SDOperand> > ExpandedNodes; 97 98 /// SplitNodes - For vector nodes that need to be split, this map indicates 99 /// which which operands are the split version of the input. This allows us 100 /// to avoid splitting the same node more than once. 101 std::map<SDOperand, std::pair<SDOperand, SDOperand> > SplitNodes; 102 103 /// ScalarizedNodes - For nodes that need to be converted from vector types to 104 /// scalar types, this contains the mapping of ones we have already 105 /// processed to the result. 106 std::map<SDOperand, SDOperand> ScalarizedNodes; 107 108 void AddLegalizedOperand(SDOperand From, SDOperand To) { 109 LegalizedNodes.insert(std::make_pair(From, To)); 110 // If someone requests legalization of the new node, return itself. 111 if (From != To) 112 LegalizedNodes.insert(std::make_pair(To, To)); 113 } 114 void AddPromotedOperand(SDOperand From, SDOperand To) { 115 bool isNew = PromotedNodes.insert(std::make_pair(From, To)); 116 assert(isNew && "Got into the map somehow?"); 117 // If someone requests legalization of the new node, return itself. 118 LegalizedNodes.insert(std::make_pair(To, To)); 119 } 120 121public: 122 123 SelectionDAGLegalize(SelectionDAG &DAG); 124 125 /// getTypeAction - Return how we should legalize values of this type, either 126 /// it is already legal or we need to expand it into multiple registers of 127 /// smaller integer type, or we need to promote it to a larger type. 128 LegalizeAction getTypeAction(MVT::ValueType VT) const { 129 return (LegalizeAction)ValueTypeActions.getTypeAction(VT); 130 } 131 132 /// isTypeLegal - Return true if this type is legal on this target. 133 /// 134 bool isTypeLegal(MVT::ValueType VT) const { 135 return getTypeAction(VT) == Legal; 136 } 137 138 void LegalizeDAG(); 139 140private: 141 /// HandleOp - Legalize, Promote, or Expand the specified operand as 142 /// appropriate for its type. 143 void HandleOp(SDOperand Op); 144 145 /// LegalizeOp - We know that the specified value has a legal type. 146 /// Recursively ensure that the operands have legal types, then return the 147 /// result. 148 SDOperand LegalizeOp(SDOperand O); 149 150 /// PromoteOp - Given an operation that produces a value in an invalid type, 151 /// promote it to compute the value into a larger type. The produced value 152 /// will have the correct bits for the low portion of the register, but no 153 /// guarantee is made about the top bits: it may be zero, sign-extended, or 154 /// garbage. 155 SDOperand PromoteOp(SDOperand O); 156 157 /// ExpandOp - Expand the specified SDOperand into its two component pieces 158 /// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, 159 /// the LegalizeNodes map is filled in for any results that are not expanded, 160 /// the ExpandedNodes map is filled in for any results that are expanded, and 161 /// the Lo/Hi values are returned. This applies to integer types and Vector 162 /// types. 163 void ExpandOp(SDOperand O, SDOperand &Lo, SDOperand &Hi); 164 165 /// SplitVectorOp - Given an operand of vector type, break it down into 166 /// two smaller values. 167 void SplitVectorOp(SDOperand O, SDOperand &Lo, SDOperand &Hi); 168 169 /// ScalarizeVectorOp - Given an operand of single-element vector type 170 /// (e.g. v1f32), convert it into the equivalent operation that returns a 171 /// scalar (e.g. f32) value. 172 SDOperand ScalarizeVectorOp(SDOperand O); 173 174 /// isShuffleLegal - Return true if a vector shuffle is legal with the 175 /// specified mask and type. Targets can specify exactly which masks they 176 /// support and the code generator is tasked with not creating illegal masks. 177 /// 178 /// Note that this will also return true for shuffles that are promoted to a 179 /// different type. 180 /// 181 /// If this is a legal shuffle, this method returns the (possibly promoted) 182 /// build_vector Mask. If it's not a legal shuffle, it returns null. 183 SDNode *isShuffleLegal(MVT::ValueType VT, SDOperand Mask) const; 184 185 bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, 186 SmallPtrSet<SDNode*, 32> &NodesLeadingTo); 187 188 void LegalizeSetCCOperands(SDOperand &LHS, SDOperand &RHS, SDOperand &CC); 189 190 SDOperand CreateStackTemporary(MVT::ValueType VT); 191 192 SDOperand ExpandLibCall(const char *Name, SDNode *Node, bool isSigned, 193 SDOperand &Hi); 194 SDOperand ExpandIntToFP(bool isSigned, MVT::ValueType DestTy, 195 SDOperand Source); 196 197 SDOperand ExpandBIT_CONVERT(MVT::ValueType DestVT, SDOperand SrcOp); 198 SDOperand ExpandBUILD_VECTOR(SDNode *Node); 199 SDOperand ExpandSCALAR_TO_VECTOR(SDNode *Node); 200 SDOperand ExpandLegalINT_TO_FP(bool isSigned, 201 SDOperand LegalOp, 202 MVT::ValueType DestVT); 203 SDOperand PromoteLegalINT_TO_FP(SDOperand LegalOp, MVT::ValueType DestVT, 204 bool isSigned); 205 SDOperand PromoteLegalFP_TO_INT(SDOperand LegalOp, MVT::ValueType DestVT, 206 bool isSigned); 207 208 SDOperand ExpandBSWAP(SDOperand Op); 209 SDOperand ExpandBitCount(unsigned Opc, SDOperand Op); 210 bool ExpandShift(unsigned Opc, SDOperand Op, SDOperand Amt, 211 SDOperand &Lo, SDOperand &Hi); 212 void ExpandShiftParts(unsigned NodeOp, SDOperand Op, SDOperand Amt, 213 SDOperand &Lo, SDOperand &Hi); 214 215 SDOperand ExpandEXTRACT_SUBVECTOR(SDOperand Op); 216 SDOperand ExpandEXTRACT_VECTOR_ELT(SDOperand Op); 217 218 SDOperand getIntPtrConstant(uint64_t Val) { 219 return DAG.getConstant(Val, TLI.getPointerTy()); 220 } 221}; 222} 223 224/// isVectorShuffleLegal - Return true if a vector shuffle is legal with the 225/// specified mask and type. Targets can specify exactly which masks they 226/// support and the code generator is tasked with not creating illegal masks. 227/// 228/// Note that this will also return true for shuffles that are promoted to a 229/// different type. 230SDNode *SelectionDAGLegalize::isShuffleLegal(MVT::ValueType VT, 231 SDOperand Mask) const { 232 switch (TLI.getOperationAction(ISD::VECTOR_SHUFFLE, VT)) { 233 default: return 0; 234 case TargetLowering::Legal: 235 case TargetLowering::Custom: 236 break; 237 case TargetLowering::Promote: { 238 // If this is promoted to a different type, convert the shuffle mask and 239 // ask if it is legal in the promoted type! 240 MVT::ValueType NVT = TLI.getTypeToPromoteTo(ISD::VECTOR_SHUFFLE, VT); 241 242 // If we changed # elements, change the shuffle mask. 243 unsigned NumEltsGrowth = 244 MVT::getVectorNumElements(NVT) / MVT::getVectorNumElements(VT); 245 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 246 if (NumEltsGrowth > 1) { 247 // Renumber the elements. 248 SmallVector<SDOperand, 8> Ops; 249 for (unsigned i = 0, e = Mask.getNumOperands(); i != e; ++i) { 250 SDOperand InOp = Mask.getOperand(i); 251 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 252 if (InOp.getOpcode() == ISD::UNDEF) 253 Ops.push_back(DAG.getNode(ISD::UNDEF, MVT::i32)); 254 else { 255 unsigned InEltNo = cast<ConstantSDNode>(InOp)->getValue(); 256 Ops.push_back(DAG.getConstant(InEltNo*NumEltsGrowth+j, MVT::i32)); 257 } 258 } 259 } 260 Mask = DAG.getNode(ISD::BUILD_VECTOR, NVT, &Ops[0], Ops.size()); 261 } 262 VT = NVT; 263 break; 264 } 265 } 266 return TLI.isShuffleMaskLegal(Mask, VT) ? Mask.Val : 0; 267} 268 269SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag) 270 : TLI(dag.getTargetLoweringInfo()), DAG(dag), 271 ValueTypeActions(TLI.getValueTypeActions()) { 272 assert(MVT::LAST_VALUETYPE <= 32 && 273 "Too many value types for ValueTypeActions to hold!"); 274} 275 276/// ComputeTopDownOrdering - Compute a top-down ordering of the dag, where Order 277/// contains all of a nodes operands before it contains the node. 278static void ComputeTopDownOrdering(SelectionDAG &DAG, 279 SmallVector<SDNode*, 64> &Order) { 280 281 DenseMap<SDNode*, unsigned> Visited; 282 std::vector<SDNode*> Worklist; 283 Worklist.reserve(128); 284 285 // Compute ordering from all of the leaves in the graphs, those (like the 286 // entry node) that have no operands. 287 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 288 E = DAG.allnodes_end(); I != E; ++I) { 289 if (I->getNumOperands() == 0) { 290 Visited[I] = 0 - 1U; 291 Worklist.push_back(I); 292 } 293 } 294 295 while (!Worklist.empty()) { 296 SDNode *N = Worklist.back(); 297 Worklist.pop_back(); 298 299 if (++Visited[N] != N->getNumOperands()) 300 continue; // Haven't visited all operands yet 301 302 Order.push_back(N); 303 304 // Now that we have N in, add anything that uses it if all of their operands 305 // are now done. 306 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 307 UI != E; ++UI) 308 Worklist.push_back(*UI); 309 } 310 311 assert(Order.size() == Visited.size() && 312 Order.size() == 313 (unsigned)std::distance(DAG.allnodes_begin(), DAG.allnodes_end()) && 314 "Error: DAG is cyclic!"); 315} 316 317 318void SelectionDAGLegalize::LegalizeDAG() { 319 LastCALLSEQ_END = DAG.getEntryNode(); 320 IsLegalizingCall = false; 321 322 // The legalize process is inherently a bottom-up recursive process (users 323 // legalize their uses before themselves). Given infinite stack space, we 324 // could just start legalizing on the root and traverse the whole graph. In 325 // practice however, this causes us to run out of stack space on large basic 326 // blocks. To avoid this problem, compute an ordering of the nodes where each 327 // node is only legalized after all of its operands are legalized. 328 SmallVector<SDNode*, 64> Order; 329 ComputeTopDownOrdering(DAG, Order); 330 331 for (unsigned i = 0, e = Order.size(); i != e; ++i) 332 HandleOp(SDOperand(Order[i], 0)); 333 334 // Finally, it's possible the root changed. Get the new root. 335 SDOperand OldRoot = DAG.getRoot(); 336 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 337 DAG.setRoot(LegalizedNodes[OldRoot]); 338 339 ExpandedNodes.clear(); 340 LegalizedNodes.clear(); 341 PromotedNodes.clear(); 342 SplitNodes.clear(); 343 ScalarizedNodes.clear(); 344 345 // Remove dead nodes now. 346 DAG.RemoveDeadNodes(); 347} 348 349 350/// FindCallEndFromCallStart - Given a chained node that is part of a call 351/// sequence, find the CALLSEQ_END node that terminates the call sequence. 352static SDNode *FindCallEndFromCallStart(SDNode *Node) { 353 if (Node->getOpcode() == ISD::CALLSEQ_END) 354 return Node; 355 if (Node->use_empty()) 356 return 0; // No CallSeqEnd 357 358 // The chain is usually at the end. 359 SDOperand TheChain(Node, Node->getNumValues()-1); 360 if (TheChain.getValueType() != MVT::Other) { 361 // Sometimes it's at the beginning. 362 TheChain = SDOperand(Node, 0); 363 if (TheChain.getValueType() != MVT::Other) { 364 // Otherwise, hunt for it. 365 for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i) 366 if (Node->getValueType(i) == MVT::Other) { 367 TheChain = SDOperand(Node, i); 368 break; 369 } 370 371 // Otherwise, we walked into a node without a chain. 372 if (TheChain.getValueType() != MVT::Other) 373 return 0; 374 } 375 } 376 377 for (SDNode::use_iterator UI = Node->use_begin(), 378 E = Node->use_end(); UI != E; ++UI) { 379 380 // Make sure to only follow users of our token chain. 381 SDNode *User = *UI; 382 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) 383 if (User->getOperand(i) == TheChain) 384 if (SDNode *Result = FindCallEndFromCallStart(User)) 385 return Result; 386 } 387 return 0; 388} 389 390/// FindCallStartFromCallEnd - Given a chained node that is part of a call 391/// sequence, find the CALLSEQ_START node that initiates the call sequence. 392static SDNode *FindCallStartFromCallEnd(SDNode *Node) { 393 assert(Node && "Didn't find callseq_start for a call??"); 394 if (Node->getOpcode() == ISD::CALLSEQ_START) return Node; 395 396 assert(Node->getOperand(0).getValueType() == MVT::Other && 397 "Node doesn't have a token chain argument!"); 398 return FindCallStartFromCallEnd(Node->getOperand(0).Val); 399} 400 401/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to 402/// see if any uses can reach Dest. If no dest operands can get to dest, 403/// legalize them, legalize ourself, and return false, otherwise, return true. 404/// 405/// Keep track of the nodes we fine that actually do lead to Dest in 406/// NodesLeadingTo. This avoids retraversing them exponential number of times. 407/// 408bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, 409 SmallPtrSet<SDNode*, 32> &NodesLeadingTo) { 410 if (N == Dest) return true; // N certainly leads to Dest :) 411 412 // If we've already processed this node and it does lead to Dest, there is no 413 // need to reprocess it. 414 if (NodesLeadingTo.count(N)) return true; 415 416 // If the first result of this node has been already legalized, then it cannot 417 // reach N. 418 switch (getTypeAction(N->getValueType(0))) { 419 case Legal: 420 if (LegalizedNodes.count(SDOperand(N, 0))) return false; 421 break; 422 case Promote: 423 if (PromotedNodes.count(SDOperand(N, 0))) return false; 424 break; 425 case Expand: 426 if (ExpandedNodes.count(SDOperand(N, 0))) return false; 427 break; 428 } 429 430 // Okay, this node has not already been legalized. Check and legalize all 431 // operands. If none lead to Dest, then we can legalize this node. 432 bool OperandsLeadToDest = false; 433 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 434 OperandsLeadToDest |= // If an operand leads to Dest, so do we. 435 LegalizeAllNodesNotLeadingTo(N->getOperand(i).Val, Dest, NodesLeadingTo); 436 437 if (OperandsLeadToDest) { 438 NodesLeadingTo.insert(N); 439 return true; 440 } 441 442 // Okay, this node looks safe, legalize it and return false. 443 HandleOp(SDOperand(N, 0)); 444 return false; 445} 446 447/// HandleOp - Legalize, Promote, or Expand the specified operand as 448/// appropriate for its type. 449void SelectionDAGLegalize::HandleOp(SDOperand Op) { 450 MVT::ValueType VT = Op.getValueType(); 451 switch (getTypeAction(VT)) { 452 default: assert(0 && "Bad type action!"); 453 case Legal: (void)LegalizeOp(Op); break; 454 case Promote: (void)PromoteOp(Op); break; 455 case Expand: 456 if (!MVT::isVector(VT)) { 457 // If this is an illegal scalar, expand it into its two component 458 // pieces. 459 SDOperand X, Y; 460 if (Op.getOpcode() == ISD::TargetConstant) 461 break; // Allow illegal target nodes. 462 ExpandOp(Op, X, Y); 463 } else if (MVT::getVectorNumElements(VT) == 1) { 464 // If this is an illegal single element vector, convert it to a 465 // scalar operation. 466 (void)ScalarizeVectorOp(Op); 467 } else { 468 // Otherwise, this is an illegal multiple element vector. 469 // Split it in half and legalize both parts. 470 SDOperand X, Y; 471 SplitVectorOp(Op, X, Y); 472 } 473 break; 474 } 475} 476 477/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or 478/// a load from the constant pool. 479static SDOperand ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP, 480 SelectionDAG &DAG, TargetLowering &TLI) { 481 bool Extend = false; 482 483 // If a FP immediate is precise when represented as a float and if the 484 // target can do an extending load from float to double, we put it into 485 // the constant pool as a float, even if it's is statically typed as a 486 // double. 487 MVT::ValueType VT = CFP->getValueType(0); 488 bool isDouble = VT == MVT::f64; 489 ConstantFP *LLVMC = ConstantFP::get(isDouble ? Type::DoubleTy : 490 Type::FloatTy, CFP->getValueAPF()); 491 if (!UseCP) { 492 const APFloat& Val = LLVMC->getValueAPF(); 493 return isDouble 494 ? DAG.getConstant(*Val.convertToAPInt().getRawData(), MVT::i64) 495 : DAG.getConstant((uint32_t )*Val.convertToAPInt().getRawData(), 496 MVT::i32); 497 } 498 499 if (isDouble && CFP->isValueValidForType(MVT::f32, CFP->getValueAPF()) && 500 // Only do this if the target has a native EXTLOAD instruction from f32. 501 TLI.isLoadXLegal(ISD::EXTLOAD, MVT::f32)) { 502 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC,Type::FloatTy)); 503 VT = MVT::f32; 504 Extend = true; 505 } 506 507 SDOperand CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy()); 508 if (Extend) { 509 return DAG.getExtLoad(ISD::EXTLOAD, MVT::f64, DAG.getEntryNode(), 510 CPIdx, NULL, 0, MVT::f32); 511 } else { 512 return DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0); 513 } 514} 515 516 517/// ExpandFCOPYSIGNToBitwiseOps - Expands fcopysign to a series of bitwise 518/// operations. 519static 520SDOperand ExpandFCOPYSIGNToBitwiseOps(SDNode *Node, MVT::ValueType NVT, 521 SelectionDAG &DAG, TargetLowering &TLI) { 522 MVT::ValueType VT = Node->getValueType(0); 523 MVT::ValueType SrcVT = Node->getOperand(1).getValueType(); 524 assert((SrcVT == MVT::f32 || SrcVT == MVT::f64) && 525 "fcopysign expansion only supported for f32 and f64"); 526 MVT::ValueType SrcNVT = (SrcVT == MVT::f64) ? MVT::i64 : MVT::i32; 527 528 // First get the sign bit of second operand. 529 SDOperand Mask1 = (SrcVT == MVT::f64) 530 ? DAG.getConstantFP(BitsToDouble(1ULL << 63), SrcVT) 531 : DAG.getConstantFP(BitsToFloat(1U << 31), SrcVT); 532 Mask1 = DAG.getNode(ISD::BIT_CONVERT, SrcNVT, Mask1); 533 SDOperand SignBit= DAG.getNode(ISD::BIT_CONVERT, SrcNVT, Node->getOperand(1)); 534 SignBit = DAG.getNode(ISD::AND, SrcNVT, SignBit, Mask1); 535 // Shift right or sign-extend it if the two operands have different types. 536 int SizeDiff = MVT::getSizeInBits(SrcNVT) - MVT::getSizeInBits(NVT); 537 if (SizeDiff > 0) { 538 SignBit = DAG.getNode(ISD::SRL, SrcNVT, SignBit, 539 DAG.getConstant(SizeDiff, TLI.getShiftAmountTy())); 540 SignBit = DAG.getNode(ISD::TRUNCATE, NVT, SignBit); 541 } else if (SizeDiff < 0) 542 SignBit = DAG.getNode(ISD::SIGN_EXTEND, NVT, SignBit); 543 544 // Clear the sign bit of first operand. 545 SDOperand Mask2 = (VT == MVT::f64) 546 ? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT) 547 : DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT); 548 Mask2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask2); 549 SDOperand Result = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 550 Result = DAG.getNode(ISD::AND, NVT, Result, Mask2); 551 552 // Or the value with the sign bit. 553 Result = DAG.getNode(ISD::OR, NVT, Result, SignBit); 554 return Result; 555} 556 557/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores. 558static 559SDOperand ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG, 560 TargetLowering &TLI) { 561 SDOperand Chain = ST->getChain(); 562 SDOperand Ptr = ST->getBasePtr(); 563 SDOperand Val = ST->getValue(); 564 MVT::ValueType VT = Val.getValueType(); 565 int Alignment = ST->getAlignment(); 566 int SVOffset = ST->getSrcValueOffset(); 567 if (MVT::isFloatingPoint(ST->getStoredVT())) { 568 // Expand to a bitconvert of the value to the integer type of the 569 // same size, then a (misaligned) int store. 570 MVT::ValueType intVT; 571 if (VT==MVT::f64) 572 intVT = MVT::i64; 573 else if (VT==MVT::f32) 574 intVT = MVT::i32; 575 else 576 assert(0 && "Unaligned load of unsupported floating point type"); 577 578 SDOperand Result = DAG.getNode(ISD::BIT_CONVERT, intVT, Val); 579 return DAG.getStore(Chain, Result, Ptr, ST->getSrcValue(), 580 SVOffset, ST->isVolatile(), Alignment); 581 } 582 assert(MVT::isInteger(ST->getStoredVT()) && 583 "Unaligned store of unknown type."); 584 // Get the half-size VT 585 MVT::ValueType NewStoredVT = ST->getStoredVT() - 1; 586 int NumBits = MVT::getSizeInBits(NewStoredVT); 587 int IncrementSize = NumBits / 8; 588 589 // Divide the stored value in two parts. 590 SDOperand ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy()); 591 SDOperand Lo = Val; 592 SDOperand Hi = DAG.getNode(ISD::SRL, VT, Val, ShiftAmount); 593 594 // Store the two parts 595 SDOperand Store1, Store2; 596 Store1 = DAG.getTruncStore(Chain, TLI.isLittleEndian()?Lo:Hi, Ptr, 597 ST->getSrcValue(), SVOffset, NewStoredVT, 598 ST->isVolatile(), Alignment); 599 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 600 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 601 Store2 = DAG.getTruncStore(Chain, TLI.isLittleEndian()?Hi:Lo, Ptr, 602 ST->getSrcValue(), SVOffset + IncrementSize, 603 NewStoredVT, ST->isVolatile(), Alignment); 604 605 return DAG.getNode(ISD::TokenFactor, MVT::Other, Store1, Store2); 606} 607 608/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads. 609static 610SDOperand ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG, 611 TargetLowering &TLI) { 612 int SVOffset = LD->getSrcValueOffset(); 613 SDOperand Chain = LD->getChain(); 614 SDOperand Ptr = LD->getBasePtr(); 615 MVT::ValueType VT = LD->getValueType(0); 616 MVT::ValueType LoadedVT = LD->getLoadedVT(); 617 if (MVT::isFloatingPoint(VT)) { 618 // Expand to a (misaligned) integer load of the same size, 619 // then bitconvert to floating point. 620 MVT::ValueType intVT; 621 if (LoadedVT==MVT::f64) 622 intVT = MVT::i64; 623 else if (LoadedVT==MVT::f32) 624 intVT = MVT::i32; 625 else 626 assert(0 && "Unaligned load of unsupported floating point type"); 627 628 SDOperand newLoad = DAG.getLoad(intVT, Chain, Ptr, LD->getSrcValue(), 629 SVOffset, LD->isVolatile(), 630 LD->getAlignment()); 631 SDOperand Result = DAG.getNode(ISD::BIT_CONVERT, LoadedVT, newLoad); 632 if (LoadedVT != VT) 633 Result = DAG.getNode(ISD::FP_EXTEND, VT, Result); 634 635 SDOperand Ops[] = { Result, Chain }; 636 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), 637 Ops, 2); 638 } 639 assert(MVT::isInteger(LoadedVT) && "Unaligned load of unsupported type."); 640 MVT::ValueType NewLoadedVT = LoadedVT - 1; 641 int NumBits = MVT::getSizeInBits(NewLoadedVT); 642 int Alignment = LD->getAlignment(); 643 int IncrementSize = NumBits / 8; 644 ISD::LoadExtType HiExtType = LD->getExtensionType(); 645 646 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 647 if (HiExtType == ISD::NON_EXTLOAD) 648 HiExtType = ISD::ZEXTLOAD; 649 650 // Load the value in two parts 651 SDOperand Lo, Hi; 652 if (TLI.isLittleEndian()) { 653 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, Chain, Ptr, LD->getSrcValue(), 654 SVOffset, NewLoadedVT, LD->isVolatile(), Alignment); 655 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 656 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 657 Hi = DAG.getExtLoad(HiExtType, VT, Chain, Ptr, LD->getSrcValue(), 658 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(), 659 Alignment); 660 } else { 661 Hi = DAG.getExtLoad(HiExtType, VT, Chain, Ptr, LD->getSrcValue(), SVOffset, 662 NewLoadedVT,LD->isVolatile(), Alignment); 663 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 664 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 665 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, Chain, Ptr, LD->getSrcValue(), 666 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(), 667 Alignment); 668 } 669 670 // aggregate the two parts 671 SDOperand ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy()); 672 SDOperand Result = DAG.getNode(ISD::SHL, VT, Hi, ShiftAmount); 673 Result = DAG.getNode(ISD::OR, VT, Result, Lo); 674 675 SDOperand TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 676 Hi.getValue(1)); 677 678 SDOperand Ops[] = { Result, TF }; 679 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), Ops, 2); 680} 681 682/// LegalizeOp - We know that the specified value has a legal type, and 683/// that its operands are legal. Now ensure that the operation itself 684/// is legal, recursively ensuring that the operands' operations remain 685/// legal. 686SDOperand SelectionDAGLegalize::LegalizeOp(SDOperand Op) { 687 if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes. 688 return Op; 689 690 assert(isTypeLegal(Op.getValueType()) && 691 "Caller should expand or promote operands that are not legal!"); 692 SDNode *Node = Op.Val; 693 694 // If this operation defines any values that cannot be represented in a 695 // register on this target, make sure to expand or promote them. 696 if (Node->getNumValues() > 1) { 697 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 698 if (getTypeAction(Node->getValueType(i)) != Legal) { 699 HandleOp(Op.getValue(i)); 700 assert(LegalizedNodes.count(Op) && 701 "Handling didn't add legal operands!"); 702 return LegalizedNodes[Op]; 703 } 704 } 705 706 // Note that LegalizeOp may be reentered even from single-use nodes, which 707 // means that we always must cache transformed nodes. 708 DenseMap<SDOperand, SDOperand>::iterator I = LegalizedNodes.find(Op); 709 if (I != LegalizedNodes.end()) return I->second; 710 711 SDOperand Tmp1, Tmp2, Tmp3, Tmp4; 712 SDOperand Result = Op; 713 bool isCustom = false; 714 715 switch (Node->getOpcode()) { 716 case ISD::FrameIndex: 717 case ISD::EntryToken: 718 case ISD::Register: 719 case ISD::BasicBlock: 720 case ISD::TargetFrameIndex: 721 case ISD::TargetJumpTable: 722 case ISD::TargetConstant: 723 case ISD::TargetConstantFP: 724 case ISD::TargetConstantPool: 725 case ISD::TargetGlobalAddress: 726 case ISD::TargetGlobalTLSAddress: 727 case ISD::TargetExternalSymbol: 728 case ISD::VALUETYPE: 729 case ISD::SRCVALUE: 730 case ISD::STRING: 731 case ISD::CONDCODE: 732 // Primitives must all be legal. 733 assert(TLI.isOperationLegal(Node->getValueType(0), Node->getValueType(0)) && 734 "This must be legal!"); 735 break; 736 default: 737 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 738 // If this is a target node, legalize it by legalizing the operands then 739 // passing it through. 740 SmallVector<SDOperand, 8> Ops; 741 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 742 Ops.push_back(LegalizeOp(Node->getOperand(i))); 743 744 Result = DAG.UpdateNodeOperands(Result.getValue(0), &Ops[0], Ops.size()); 745 746 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 747 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 748 return Result.getValue(Op.ResNo); 749 } 750 // Otherwise this is an unhandled builtin node. splat. 751#ifndef NDEBUG 752 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 753#endif 754 assert(0 && "Do not know how to legalize this operator!"); 755 abort(); 756 case ISD::GLOBAL_OFFSET_TABLE: 757 case ISD::GlobalAddress: 758 case ISD::GlobalTLSAddress: 759 case ISD::ExternalSymbol: 760 case ISD::ConstantPool: 761 case ISD::JumpTable: // Nothing to do. 762 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 763 default: assert(0 && "This action is not supported yet!"); 764 case TargetLowering::Custom: 765 Tmp1 = TLI.LowerOperation(Op, DAG); 766 if (Tmp1.Val) Result = Tmp1; 767 // FALLTHROUGH if the target doesn't want to lower this op after all. 768 case TargetLowering::Legal: 769 break; 770 } 771 break; 772 case ISD::FRAMEADDR: 773 case ISD::RETURNADDR: 774 // The only option for these nodes is to custom lower them. If the target 775 // does not custom lower them, then return zero. 776 Tmp1 = TLI.LowerOperation(Op, DAG); 777 if (Tmp1.Val) 778 Result = Tmp1; 779 else 780 Result = DAG.getConstant(0, TLI.getPointerTy()); 781 break; 782 case ISD::FRAME_TO_ARGS_OFFSET: { 783 MVT::ValueType VT = Node->getValueType(0); 784 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 785 default: assert(0 && "This action is not supported yet!"); 786 case TargetLowering::Custom: 787 Result = TLI.LowerOperation(Op, DAG); 788 if (Result.Val) break; 789 // Fall Thru 790 case TargetLowering::Legal: 791 Result = DAG.getConstant(0, VT); 792 break; 793 } 794 } 795 break; 796 case ISD::EXCEPTIONADDR: { 797 Tmp1 = LegalizeOp(Node->getOperand(0)); 798 MVT::ValueType VT = Node->getValueType(0); 799 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 800 default: assert(0 && "This action is not supported yet!"); 801 case TargetLowering::Expand: { 802 unsigned Reg = TLI.getExceptionAddressRegister(); 803 Result = DAG.getCopyFromReg(Tmp1, Reg, VT).getValue(Op.ResNo); 804 } 805 break; 806 case TargetLowering::Custom: 807 Result = TLI.LowerOperation(Op, DAG); 808 if (Result.Val) break; 809 // Fall Thru 810 case TargetLowering::Legal: { 811 SDOperand Ops[] = { DAG.getConstant(0, VT), Tmp1 }; 812 Result = DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), 813 Ops, 2).getValue(Op.ResNo); 814 break; 815 } 816 } 817 } 818 break; 819 case ISD::EHSELECTION: { 820 Tmp1 = LegalizeOp(Node->getOperand(0)); 821 Tmp2 = LegalizeOp(Node->getOperand(1)); 822 MVT::ValueType VT = Node->getValueType(0); 823 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 824 default: assert(0 && "This action is not supported yet!"); 825 case TargetLowering::Expand: { 826 unsigned Reg = TLI.getExceptionSelectorRegister(); 827 Result = DAG.getCopyFromReg(Tmp2, Reg, VT).getValue(Op.ResNo); 828 } 829 break; 830 case TargetLowering::Custom: 831 Result = TLI.LowerOperation(Op, DAG); 832 if (Result.Val) break; 833 // Fall Thru 834 case TargetLowering::Legal: { 835 SDOperand Ops[] = { DAG.getConstant(0, VT), Tmp2 }; 836 Result = DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), 837 Ops, 2).getValue(Op.ResNo); 838 break; 839 } 840 } 841 } 842 break; 843 case ISD::EH_RETURN: { 844 MVT::ValueType VT = Node->getValueType(0); 845 // The only "good" option for this node is to custom lower it. 846 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 847 default: assert(0 && "This action is not supported at all!"); 848 case TargetLowering::Custom: 849 Result = TLI.LowerOperation(Op, DAG); 850 if (Result.Val) break; 851 // Fall Thru 852 case TargetLowering::Legal: 853 // Target does not know, how to lower this, lower to noop 854 Result = LegalizeOp(Node->getOperand(0)); 855 break; 856 } 857 } 858 break; 859 case ISD::AssertSext: 860 case ISD::AssertZext: 861 Tmp1 = LegalizeOp(Node->getOperand(0)); 862 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 863 break; 864 case ISD::MERGE_VALUES: 865 // Legalize eliminates MERGE_VALUES nodes. 866 Result = Node->getOperand(Op.ResNo); 867 break; 868 case ISD::CopyFromReg: 869 Tmp1 = LegalizeOp(Node->getOperand(0)); 870 Result = Op.getValue(0); 871 if (Node->getNumValues() == 2) { 872 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 873 } else { 874 assert(Node->getNumValues() == 3 && "Invalid copyfromreg!"); 875 if (Node->getNumOperands() == 3) { 876 Tmp2 = LegalizeOp(Node->getOperand(2)); 877 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2); 878 } else { 879 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 880 } 881 AddLegalizedOperand(Op.getValue(2), Result.getValue(2)); 882 } 883 // Since CopyFromReg produces two values, make sure to remember that we 884 // legalized both of them. 885 AddLegalizedOperand(Op.getValue(0), Result); 886 AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); 887 return Result.getValue(Op.ResNo); 888 case ISD::UNDEF: { 889 MVT::ValueType VT = Op.getValueType(); 890 switch (TLI.getOperationAction(ISD::UNDEF, VT)) { 891 default: assert(0 && "This action is not supported yet!"); 892 case TargetLowering::Expand: 893 if (MVT::isInteger(VT)) 894 Result = DAG.getConstant(0, VT); 895 else if (MVT::isFloatingPoint(VT)) 896 Result = DAG.getConstantFP(0, VT); 897 else 898 assert(0 && "Unknown value type!"); 899 break; 900 case TargetLowering::Legal: 901 break; 902 } 903 break; 904 } 905 906 case ISD::INTRINSIC_W_CHAIN: 907 case ISD::INTRINSIC_WO_CHAIN: 908 case ISD::INTRINSIC_VOID: { 909 SmallVector<SDOperand, 8> Ops; 910 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 911 Ops.push_back(LegalizeOp(Node->getOperand(i))); 912 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 913 914 // Allow the target to custom lower its intrinsics if it wants to. 915 if (TLI.getOperationAction(Node->getOpcode(), MVT::Other) == 916 TargetLowering::Custom) { 917 Tmp3 = TLI.LowerOperation(Result, DAG); 918 if (Tmp3.Val) Result = Tmp3; 919 } 920 921 if (Result.Val->getNumValues() == 1) break; 922 923 // Must have return value and chain result. 924 assert(Result.Val->getNumValues() == 2 && 925 "Cannot return more than two values!"); 926 927 // Since loads produce two values, make sure to remember that we 928 // legalized both of them. 929 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 930 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 931 return Result.getValue(Op.ResNo); 932 } 933 934 case ISD::LOCATION: 935 assert(Node->getNumOperands() == 5 && "Invalid LOCATION node!"); 936 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the input chain. 937 938 switch (TLI.getOperationAction(ISD::LOCATION, MVT::Other)) { 939 case TargetLowering::Promote: 940 default: assert(0 && "This action is not supported yet!"); 941 case TargetLowering::Expand: { 942 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 943 bool useDEBUG_LOC = TLI.isOperationLegal(ISD::DEBUG_LOC, MVT::Other); 944 bool useLABEL = TLI.isOperationLegal(ISD::LABEL, MVT::Other); 945 946 if (MMI && (useDEBUG_LOC || useLABEL)) { 947 const std::string &FName = 948 cast<StringSDNode>(Node->getOperand(3))->getValue(); 949 const std::string &DirName = 950 cast<StringSDNode>(Node->getOperand(4))->getValue(); 951 unsigned SrcFile = MMI->RecordSource(DirName, FName); 952 953 SmallVector<SDOperand, 8> Ops; 954 Ops.push_back(Tmp1); // chain 955 SDOperand LineOp = Node->getOperand(1); 956 SDOperand ColOp = Node->getOperand(2); 957 958 if (useDEBUG_LOC) { 959 Ops.push_back(LineOp); // line # 960 Ops.push_back(ColOp); // col # 961 Ops.push_back(DAG.getConstant(SrcFile, MVT::i32)); // source file id 962 Result = DAG.getNode(ISD::DEBUG_LOC, MVT::Other, &Ops[0], Ops.size()); 963 } else { 964 unsigned Line = cast<ConstantSDNode>(LineOp)->getValue(); 965 unsigned Col = cast<ConstantSDNode>(ColOp)->getValue(); 966 unsigned ID = MMI->RecordLabel(Line, Col, SrcFile); 967 Ops.push_back(DAG.getConstant(ID, MVT::i32)); 968 Result = DAG.getNode(ISD::LABEL, MVT::Other,&Ops[0],Ops.size()); 969 } 970 } else { 971 Result = Tmp1; // chain 972 } 973 break; 974 } 975 case TargetLowering::Legal: 976 if (Tmp1 != Node->getOperand(0) || 977 getTypeAction(Node->getOperand(1).getValueType()) == Promote) { 978 SmallVector<SDOperand, 8> Ops; 979 Ops.push_back(Tmp1); 980 if (getTypeAction(Node->getOperand(1).getValueType()) == Legal) { 981 Ops.push_back(Node->getOperand(1)); // line # must be legal. 982 Ops.push_back(Node->getOperand(2)); // col # must be legal. 983 } else { 984 // Otherwise promote them. 985 Ops.push_back(PromoteOp(Node->getOperand(1))); 986 Ops.push_back(PromoteOp(Node->getOperand(2))); 987 } 988 Ops.push_back(Node->getOperand(3)); // filename must be legal. 989 Ops.push_back(Node->getOperand(4)); // working dir # must be legal. 990 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 991 } 992 break; 993 } 994 break; 995 996 case ISD::DEBUG_LOC: 997 assert(Node->getNumOperands() == 4 && "Invalid DEBUG_LOC node!"); 998 switch (TLI.getOperationAction(ISD::DEBUG_LOC, MVT::Other)) { 999 default: assert(0 && "This action is not supported yet!"); 1000 case TargetLowering::Legal: 1001 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1002 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the line #. 1003 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the col #. 1004 Tmp4 = LegalizeOp(Node->getOperand(3)); // Legalize the source file id. 1005 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4); 1006 break; 1007 } 1008 break; 1009 1010 case ISD::LABEL: 1011 assert(Node->getNumOperands() == 2 && "Invalid LABEL node!"); 1012 switch (TLI.getOperationAction(ISD::LABEL, MVT::Other)) { 1013 default: assert(0 && "This action is not supported yet!"); 1014 case TargetLowering::Legal: 1015 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1016 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the label id. 1017 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1018 break; 1019 case TargetLowering::Expand: 1020 Result = LegalizeOp(Node->getOperand(0)); 1021 break; 1022 } 1023 break; 1024 1025 case ISD::Constant: { 1026 ConstantSDNode *CN = cast<ConstantSDNode>(Node); 1027 unsigned opAction = 1028 TLI.getOperationAction(ISD::Constant, CN->getValueType(0)); 1029 1030 // We know we don't need to expand constants here, constants only have one 1031 // value and we check that it is fine above. 1032 1033 if (opAction == TargetLowering::Custom) { 1034 Tmp1 = TLI.LowerOperation(Result, DAG); 1035 if (Tmp1.Val) 1036 Result = Tmp1; 1037 } 1038 break; 1039 } 1040 case ISD::ConstantFP: { 1041 // Spill FP immediates to the constant pool if the target cannot directly 1042 // codegen them. Targets often have some immediate values that can be 1043 // efficiently generated into an FP register without a load. We explicitly 1044 // leave these constants as ConstantFP nodes for the target to deal with. 1045 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 1046 1047 // Check to see if this FP immediate is already legal. 1048 bool isLegal = false; 1049 for (TargetLowering::legal_fpimm_iterator I = TLI.legal_fpimm_begin(), 1050 E = TLI.legal_fpimm_end(); I != E; ++I) 1051 if (CFP->isExactlyValue(*I)) { 1052 isLegal = true; 1053 break; 1054 } 1055 1056 // If this is a legal constant, turn it into a TargetConstantFP node. 1057 if (isLegal) { 1058 Result = DAG.getTargetConstantFP(CFP->getValueAPF(), 1059 CFP->getValueType(0)); 1060 break; 1061 } 1062 1063 switch (TLI.getOperationAction(ISD::ConstantFP, CFP->getValueType(0))) { 1064 default: assert(0 && "This action is not supported yet!"); 1065 case TargetLowering::Custom: 1066 Tmp3 = TLI.LowerOperation(Result, DAG); 1067 if (Tmp3.Val) { 1068 Result = Tmp3; 1069 break; 1070 } 1071 // FALLTHROUGH 1072 case TargetLowering::Expand: 1073 Result = ExpandConstantFP(CFP, true, DAG, TLI); 1074 } 1075 break; 1076 } 1077 case ISD::TokenFactor: 1078 if (Node->getNumOperands() == 2) { 1079 Tmp1 = LegalizeOp(Node->getOperand(0)); 1080 Tmp2 = LegalizeOp(Node->getOperand(1)); 1081 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1082 } else if (Node->getNumOperands() == 3) { 1083 Tmp1 = LegalizeOp(Node->getOperand(0)); 1084 Tmp2 = LegalizeOp(Node->getOperand(1)); 1085 Tmp3 = LegalizeOp(Node->getOperand(2)); 1086 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1087 } else { 1088 SmallVector<SDOperand, 8> Ops; 1089 // Legalize the operands. 1090 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 1091 Ops.push_back(LegalizeOp(Node->getOperand(i))); 1092 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1093 } 1094 break; 1095 1096 case ISD::FORMAL_ARGUMENTS: 1097 case ISD::CALL: 1098 // The only option for this is to custom lower it. 1099 Tmp3 = TLI.LowerOperation(Result.getValue(0), DAG); 1100 assert(Tmp3.Val && "Target didn't custom lower this node!"); 1101 assert(Tmp3.Val->getNumValues() == Result.Val->getNumValues() && 1102 "Lowering call/formal_arguments produced unexpected # results!"); 1103 1104 // Since CALL/FORMAL_ARGUMENTS nodes produce multiple values, make sure to 1105 // remember that we legalized all of them, so it doesn't get relegalized. 1106 for (unsigned i = 0, e = Tmp3.Val->getNumValues(); i != e; ++i) { 1107 Tmp1 = LegalizeOp(Tmp3.getValue(i)); 1108 if (Op.ResNo == i) 1109 Tmp2 = Tmp1; 1110 AddLegalizedOperand(SDOperand(Node, i), Tmp1); 1111 } 1112 return Tmp2; 1113 case ISD::EXTRACT_SUBREG: { 1114 Tmp1 = LegalizeOp(Node->getOperand(0)); 1115 ConstantSDNode *idx = dyn_cast<ConstantSDNode>(Node->getOperand(1)); 1116 assert(idx && "Operand must be a constant"); 1117 Tmp2 = DAG.getTargetConstant(idx->getValue(), idx->getValueType(0)); 1118 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1119 } 1120 break; 1121 case ISD::INSERT_SUBREG: { 1122 Tmp1 = LegalizeOp(Node->getOperand(0)); 1123 Tmp2 = LegalizeOp(Node->getOperand(1)); 1124 ConstantSDNode *idx = dyn_cast<ConstantSDNode>(Node->getOperand(2)); 1125 assert(idx && "Operand must be a constant"); 1126 Tmp3 = DAG.getTargetConstant(idx->getValue(), idx->getValueType(0)); 1127 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1128 } 1129 break; 1130 case ISD::BUILD_VECTOR: 1131 switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) { 1132 default: assert(0 && "This action is not supported yet!"); 1133 case TargetLowering::Custom: 1134 Tmp3 = TLI.LowerOperation(Result, DAG); 1135 if (Tmp3.Val) { 1136 Result = Tmp3; 1137 break; 1138 } 1139 // FALLTHROUGH 1140 case TargetLowering::Expand: 1141 Result = ExpandBUILD_VECTOR(Result.Val); 1142 break; 1143 } 1144 break; 1145 case ISD::INSERT_VECTOR_ELT: 1146 Tmp1 = LegalizeOp(Node->getOperand(0)); // InVec 1147 Tmp2 = LegalizeOp(Node->getOperand(1)); // InVal 1148 Tmp3 = LegalizeOp(Node->getOperand(2)); // InEltNo 1149 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1150 1151 switch (TLI.getOperationAction(ISD::INSERT_VECTOR_ELT, 1152 Node->getValueType(0))) { 1153 default: assert(0 && "This action is not supported yet!"); 1154 case TargetLowering::Legal: 1155 break; 1156 case TargetLowering::Custom: 1157 Tmp3 = TLI.LowerOperation(Result, DAG); 1158 if (Tmp3.Val) { 1159 Result = Tmp3; 1160 break; 1161 } 1162 // FALLTHROUGH 1163 case TargetLowering::Expand: { 1164 // If the insert index is a constant, codegen this as a scalar_to_vector, 1165 // then a shuffle that inserts it into the right position in the vector. 1166 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Tmp3)) { 1167 SDOperand ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, 1168 Tmp1.getValueType(), Tmp2); 1169 1170 unsigned NumElts = MVT::getVectorNumElements(Tmp1.getValueType()); 1171 MVT::ValueType ShufMaskVT = MVT::getIntVectorWithNumElements(NumElts); 1172 MVT::ValueType ShufMaskEltVT = MVT::getVectorElementType(ShufMaskVT); 1173 1174 // We generate a shuffle of InVec and ScVec, so the shuffle mask should 1175 // be 0,1,2,3,4,5... with the appropriate element replaced with elt 0 of 1176 // the RHS. 1177 SmallVector<SDOperand, 8> ShufOps; 1178 for (unsigned i = 0; i != NumElts; ++i) { 1179 if (i != InsertPos->getValue()) 1180 ShufOps.push_back(DAG.getConstant(i, ShufMaskEltVT)); 1181 else 1182 ShufOps.push_back(DAG.getConstant(NumElts, ShufMaskEltVT)); 1183 } 1184 SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, ShufMaskVT, 1185 &ShufOps[0], ShufOps.size()); 1186 1187 Result = DAG.getNode(ISD::VECTOR_SHUFFLE, Tmp1.getValueType(), 1188 Tmp1, ScVec, ShufMask); 1189 Result = LegalizeOp(Result); 1190 break; 1191 } 1192 1193 // If the target doesn't support this, we have to spill the input vector 1194 // to a temporary stack slot, update the element, then reload it. This is 1195 // badness. We could also load the value into a vector register (either 1196 // with a "move to register" or "extload into register" instruction, then 1197 // permute it into place, if the idx is a constant and if the idx is 1198 // supported by the target. 1199 MVT::ValueType VT = Tmp1.getValueType(); 1200 MVT::ValueType EltVT = Tmp2.getValueType(); 1201 MVT::ValueType IdxVT = Tmp3.getValueType(); 1202 MVT::ValueType PtrVT = TLI.getPointerTy(); 1203 SDOperand StackPtr = CreateStackTemporary(VT); 1204 // Store the vector. 1205 SDOperand Ch = DAG.getStore(DAG.getEntryNode(), Tmp1, StackPtr, NULL, 0); 1206 1207 // Truncate or zero extend offset to target pointer type. 1208 unsigned CastOpc = (IdxVT > PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND; 1209 Tmp3 = DAG.getNode(CastOpc, PtrVT, Tmp3); 1210 // Add the offset to the index. 1211 unsigned EltSize = MVT::getSizeInBits(EltVT)/8; 1212 Tmp3 = DAG.getNode(ISD::MUL, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT)); 1213 SDOperand StackPtr2 = DAG.getNode(ISD::ADD, IdxVT, Tmp3, StackPtr); 1214 // Store the scalar value. 1215 Ch = DAG.getStore(Ch, Tmp2, StackPtr2, NULL, 0); 1216 // Load the updated vector. 1217 Result = DAG.getLoad(VT, Ch, StackPtr, NULL, 0); 1218 break; 1219 } 1220 } 1221 break; 1222 case ISD::SCALAR_TO_VECTOR: 1223 if (!TLI.isTypeLegal(Node->getOperand(0).getValueType())) { 1224 Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node)); 1225 break; 1226 } 1227 1228 Tmp1 = LegalizeOp(Node->getOperand(0)); // InVal 1229 Result = DAG.UpdateNodeOperands(Result, Tmp1); 1230 switch (TLI.getOperationAction(ISD::SCALAR_TO_VECTOR, 1231 Node->getValueType(0))) { 1232 default: assert(0 && "This action is not supported yet!"); 1233 case TargetLowering::Legal: 1234 break; 1235 case TargetLowering::Custom: 1236 Tmp3 = TLI.LowerOperation(Result, DAG); 1237 if (Tmp3.Val) { 1238 Result = Tmp3; 1239 break; 1240 } 1241 // FALLTHROUGH 1242 case TargetLowering::Expand: 1243 Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node)); 1244 break; 1245 } 1246 break; 1247 case ISD::VECTOR_SHUFFLE: 1248 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the input vectors, 1249 Tmp2 = LegalizeOp(Node->getOperand(1)); // but not the shuffle mask. 1250 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 1251 1252 // Allow targets to custom lower the SHUFFLEs they support. 1253 switch (TLI.getOperationAction(ISD::VECTOR_SHUFFLE,Result.getValueType())) { 1254 default: assert(0 && "Unknown operation action!"); 1255 case TargetLowering::Legal: 1256 assert(isShuffleLegal(Result.getValueType(), Node->getOperand(2)) && 1257 "vector shuffle should not be created if not legal!"); 1258 break; 1259 case TargetLowering::Custom: 1260 Tmp3 = TLI.LowerOperation(Result, DAG); 1261 if (Tmp3.Val) { 1262 Result = Tmp3; 1263 break; 1264 } 1265 // FALLTHROUGH 1266 case TargetLowering::Expand: { 1267 MVT::ValueType VT = Node->getValueType(0); 1268 MVT::ValueType EltVT = MVT::getVectorElementType(VT); 1269 MVT::ValueType PtrVT = TLI.getPointerTy(); 1270 SDOperand Mask = Node->getOperand(2); 1271 unsigned NumElems = Mask.getNumOperands(); 1272 SmallVector<SDOperand,8> Ops; 1273 for (unsigned i = 0; i != NumElems; ++i) { 1274 SDOperand Arg = Mask.getOperand(i); 1275 if (Arg.getOpcode() == ISD::UNDEF) { 1276 Ops.push_back(DAG.getNode(ISD::UNDEF, EltVT)); 1277 } else { 1278 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 1279 unsigned Idx = cast<ConstantSDNode>(Arg)->getValue(); 1280 if (Idx < NumElems) 1281 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Tmp1, 1282 DAG.getConstant(Idx, PtrVT))); 1283 else 1284 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Tmp2, 1285 DAG.getConstant(Idx - NumElems, PtrVT))); 1286 } 1287 } 1288 Result = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()); 1289 break; 1290 } 1291 case TargetLowering::Promote: { 1292 // Change base type to a different vector type. 1293 MVT::ValueType OVT = Node->getValueType(0); 1294 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 1295 1296 // Cast the two input vectors. 1297 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp1); 1298 Tmp2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp2); 1299 1300 // Convert the shuffle mask to the right # elements. 1301 Tmp3 = SDOperand(isShuffleLegal(OVT, Node->getOperand(2)), 0); 1302 assert(Tmp3.Val && "Shuffle not legal?"); 1303 Result = DAG.getNode(ISD::VECTOR_SHUFFLE, NVT, Tmp1, Tmp2, Tmp3); 1304 Result = DAG.getNode(ISD::BIT_CONVERT, OVT, Result); 1305 break; 1306 } 1307 } 1308 break; 1309 1310 case ISD::EXTRACT_VECTOR_ELT: 1311 Tmp1 = Node->getOperand(0); 1312 Tmp2 = LegalizeOp(Node->getOperand(1)); 1313 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1314 Result = ExpandEXTRACT_VECTOR_ELT(Result); 1315 break; 1316 1317 case ISD::EXTRACT_SUBVECTOR: 1318 Tmp1 = Node->getOperand(0); 1319 Tmp2 = LegalizeOp(Node->getOperand(1)); 1320 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1321 Result = ExpandEXTRACT_SUBVECTOR(Result); 1322 break; 1323 1324 case ISD::CALLSEQ_START: { 1325 SDNode *CallEnd = FindCallEndFromCallStart(Node); 1326 1327 // Recursively Legalize all of the inputs of the call end that do not lead 1328 // to this call start. This ensures that any libcalls that need be inserted 1329 // are inserted *before* the CALLSEQ_START. 1330 {SmallPtrSet<SDNode*, 32> NodesLeadingTo; 1331 for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i) 1332 LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).Val, Node, 1333 NodesLeadingTo); 1334 } 1335 1336 // Now that we legalized all of the inputs (which may have inserted 1337 // libcalls) create the new CALLSEQ_START node. 1338 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1339 1340 // Merge in the last call, to ensure that this call start after the last 1341 // call ended. 1342 if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) { 1343 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1344 Tmp1 = LegalizeOp(Tmp1); 1345 } 1346 1347 // Do not try to legalize the target-specific arguments (#1+). 1348 if (Tmp1 != Node->getOperand(0)) { 1349 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1350 Ops[0] = Tmp1; 1351 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1352 } 1353 1354 // Remember that the CALLSEQ_START is legalized. 1355 AddLegalizedOperand(Op.getValue(0), Result); 1356 if (Node->getNumValues() == 2) // If this has a flag result, remember it. 1357 AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); 1358 1359 // Now that the callseq_start and all of the non-call nodes above this call 1360 // sequence have been legalized, legalize the call itself. During this 1361 // process, no libcalls can/will be inserted, guaranteeing that no calls 1362 // can overlap. 1363 assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!"); 1364 SDOperand InCallSEQ = LastCALLSEQ_END; 1365 // Note that we are selecting this call! 1366 LastCALLSEQ_END = SDOperand(CallEnd, 0); 1367 IsLegalizingCall = true; 1368 1369 // Legalize the call, starting from the CALLSEQ_END. 1370 LegalizeOp(LastCALLSEQ_END); 1371 assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!"); 1372 return Result; 1373 } 1374 case ISD::CALLSEQ_END: 1375 // If the CALLSEQ_START node hasn't been legalized first, legalize it. This 1376 // will cause this node to be legalized as well as handling libcalls right. 1377 if (LastCALLSEQ_END.Val != Node) { 1378 LegalizeOp(SDOperand(FindCallStartFromCallEnd(Node), 0)); 1379 DenseMap<SDOperand, SDOperand>::iterator I = LegalizedNodes.find(Op); 1380 assert(I != LegalizedNodes.end() && 1381 "Legalizing the call start should have legalized this node!"); 1382 return I->second; 1383 } 1384 1385 // Otherwise, the call start has been legalized and everything is going 1386 // according to plan. Just legalize ourselves normally here. 1387 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1388 // Do not try to legalize the target-specific arguments (#1+), except for 1389 // an optional flag input. 1390 if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){ 1391 if (Tmp1 != Node->getOperand(0)) { 1392 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1393 Ops[0] = Tmp1; 1394 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1395 } 1396 } else { 1397 Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1)); 1398 if (Tmp1 != Node->getOperand(0) || 1399 Tmp2 != Node->getOperand(Node->getNumOperands()-1)) { 1400 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1401 Ops[0] = Tmp1; 1402 Ops.back() = Tmp2; 1403 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1404 } 1405 } 1406 assert(IsLegalizingCall && "Call sequence imbalance between start/end?"); 1407 // This finishes up call legalization. 1408 IsLegalizingCall = false; 1409 1410 // If the CALLSEQ_END node has a flag, remember that we legalized it. 1411 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 1412 if (Node->getNumValues() == 2) 1413 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 1414 return Result.getValue(Op.ResNo); 1415 case ISD::DYNAMIC_STACKALLOC: { 1416 MVT::ValueType VT = Node->getValueType(0); 1417 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1418 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the size. 1419 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the alignment. 1420 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1421 1422 Tmp1 = Result.getValue(0); 1423 Tmp2 = Result.getValue(1); 1424 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1425 default: assert(0 && "This action is not supported yet!"); 1426 case TargetLowering::Expand: { 1427 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1428 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1429 " not tell us which reg is the stack pointer!"); 1430 SDOperand Chain = Tmp1.getOperand(0); 1431 SDOperand Size = Tmp2.getOperand(1); 1432 SDOperand SP = DAG.getCopyFromReg(Chain, SPReg, VT); 1433 Chain = SP.getValue(1); 1434 unsigned Align = cast<ConstantSDNode>(Tmp3)->getValue(); 1435 unsigned StackAlign = 1436 TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); 1437 if (Align > StackAlign) 1438 SP = DAG.getNode(ISD::AND, VT, SP, 1439 DAG.getConstant(-(uint64_t)Align, VT)); 1440 Tmp1 = DAG.getNode(ISD::SUB, VT, SP, Size); // Value 1441 Tmp2 = DAG.getCopyToReg(Chain, SPReg, Tmp1); // Output chain 1442 Tmp1 = LegalizeOp(Tmp1); 1443 Tmp2 = LegalizeOp(Tmp2); 1444 break; 1445 } 1446 case TargetLowering::Custom: 1447 Tmp3 = TLI.LowerOperation(Tmp1, DAG); 1448 if (Tmp3.Val) { 1449 Tmp1 = LegalizeOp(Tmp3); 1450 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 1451 } 1452 break; 1453 case TargetLowering::Legal: 1454 break; 1455 } 1456 // Since this op produce two values, make sure to remember that we 1457 // legalized both of them. 1458 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 1459 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 1460 return Op.ResNo ? Tmp2 : Tmp1; 1461 } 1462 case ISD::INLINEASM: { 1463 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1464 bool Changed = false; 1465 // Legalize all of the operands of the inline asm, in case they are nodes 1466 // that need to be expanded or something. Note we skip the asm string and 1467 // all of the TargetConstant flags. 1468 SDOperand Op = LegalizeOp(Ops[0]); 1469 Changed = Op != Ops[0]; 1470 Ops[0] = Op; 1471 1472 bool HasInFlag = Ops.back().getValueType() == MVT::Flag; 1473 for (unsigned i = 2, e = Ops.size()-HasInFlag; i < e; ) { 1474 unsigned NumVals = cast<ConstantSDNode>(Ops[i])->getValue() >> 3; 1475 for (++i; NumVals; ++i, --NumVals) { 1476 SDOperand Op = LegalizeOp(Ops[i]); 1477 if (Op != Ops[i]) { 1478 Changed = true; 1479 Ops[i] = Op; 1480 } 1481 } 1482 } 1483 1484 if (HasInFlag) { 1485 Op = LegalizeOp(Ops.back()); 1486 Changed |= Op != Ops.back(); 1487 Ops.back() = Op; 1488 } 1489 1490 if (Changed) 1491 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1492 1493 // INLINE asm returns a chain and flag, make sure to add both to the map. 1494 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 1495 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 1496 return Result.getValue(Op.ResNo); 1497 } 1498 case ISD::BR: 1499 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1500 // Ensure that libcalls are emitted before a branch. 1501 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1502 Tmp1 = LegalizeOp(Tmp1); 1503 LastCALLSEQ_END = DAG.getEntryNode(); 1504 1505 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 1506 break; 1507 case ISD::BRIND: 1508 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1509 // Ensure that libcalls are emitted before a branch. 1510 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1511 Tmp1 = LegalizeOp(Tmp1); 1512 LastCALLSEQ_END = DAG.getEntryNode(); 1513 1514 switch (getTypeAction(Node->getOperand(1).getValueType())) { 1515 default: assert(0 && "Indirect target must be legal type (pointer)!"); 1516 case Legal: 1517 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition. 1518 break; 1519 } 1520 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1521 break; 1522 case ISD::BR_JT: 1523 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1524 // Ensure that libcalls are emitted before a branch. 1525 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1526 Tmp1 = LegalizeOp(Tmp1); 1527 LastCALLSEQ_END = DAG.getEntryNode(); 1528 1529 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the jumptable node. 1530 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 1531 1532 switch (TLI.getOperationAction(ISD::BR_JT, MVT::Other)) { 1533 default: assert(0 && "This action is not supported yet!"); 1534 case TargetLowering::Legal: break; 1535 case TargetLowering::Custom: 1536 Tmp1 = TLI.LowerOperation(Result, DAG); 1537 if (Tmp1.Val) Result = Tmp1; 1538 break; 1539 case TargetLowering::Expand: { 1540 SDOperand Chain = Result.getOperand(0); 1541 SDOperand Table = Result.getOperand(1); 1542 SDOperand Index = Result.getOperand(2); 1543 1544 MVT::ValueType PTy = TLI.getPointerTy(); 1545 MachineFunction &MF = DAG.getMachineFunction(); 1546 unsigned EntrySize = MF.getJumpTableInfo()->getEntrySize(); 1547 Index= DAG.getNode(ISD::MUL, PTy, Index, DAG.getConstant(EntrySize, PTy)); 1548 SDOperand Addr = DAG.getNode(ISD::ADD, PTy, Index, Table); 1549 1550 SDOperand LD; 1551 switch (EntrySize) { 1552 default: assert(0 && "Size of jump table not supported yet."); break; 1553 case 4: LD = DAG.getLoad(MVT::i32, Chain, Addr, NULL, 0); break; 1554 case 8: LD = DAG.getLoad(MVT::i64, Chain, Addr, NULL, 0); break; 1555 } 1556 1557 if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) { 1558 // For PIC, the sequence is: 1559 // BRIND(load(Jumptable + index) + RelocBase) 1560 // RelocBase is the JumpTable on PPC and X86, GOT on Alpha 1561 SDOperand Reloc; 1562 if (TLI.usesGlobalOffsetTable()) 1563 Reloc = DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, PTy); 1564 else 1565 Reloc = Table; 1566 Addr = (PTy != MVT::i32) ? DAG.getNode(ISD::SIGN_EXTEND, PTy, LD) : LD; 1567 Addr = DAG.getNode(ISD::ADD, PTy, Addr, Reloc); 1568 Result = DAG.getNode(ISD::BRIND, MVT::Other, LD.getValue(1), Addr); 1569 } else { 1570 Result = DAG.getNode(ISD::BRIND, MVT::Other, LD.getValue(1), LD); 1571 } 1572 } 1573 } 1574 break; 1575 case ISD::BRCOND: 1576 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1577 // Ensure that libcalls are emitted before a return. 1578 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1579 Tmp1 = LegalizeOp(Tmp1); 1580 LastCALLSEQ_END = DAG.getEntryNode(); 1581 1582 switch (getTypeAction(Node->getOperand(1).getValueType())) { 1583 case Expand: assert(0 && "It's impossible to expand bools"); 1584 case Legal: 1585 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition. 1586 break; 1587 case Promote: 1588 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the condition. 1589 1590 // The top bits of the promoted condition are not necessarily zero, ensure 1591 // that the value is properly zero extended. 1592 if (!DAG.MaskedValueIsZero(Tmp2, 1593 MVT::getIntVTBitMask(Tmp2.getValueType())^1)) 1594 Tmp2 = DAG.getZeroExtendInReg(Tmp2, MVT::i1); 1595 break; 1596 } 1597 1598 // Basic block destination (Op#2) is always legal. 1599 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 1600 1601 switch (TLI.getOperationAction(ISD::BRCOND, MVT::Other)) { 1602 default: assert(0 && "This action is not supported yet!"); 1603 case TargetLowering::Legal: break; 1604 case TargetLowering::Custom: 1605 Tmp1 = TLI.LowerOperation(Result, DAG); 1606 if (Tmp1.Val) Result = Tmp1; 1607 break; 1608 case TargetLowering::Expand: 1609 // Expand brcond's setcc into its constituent parts and create a BR_CC 1610 // Node. 1611 if (Tmp2.getOpcode() == ISD::SETCC) { 1612 Result = DAG.getNode(ISD::BR_CC, MVT::Other, Tmp1, Tmp2.getOperand(2), 1613 Tmp2.getOperand(0), Tmp2.getOperand(1), 1614 Node->getOperand(2)); 1615 } else { 1616 Result = DAG.getNode(ISD::BR_CC, MVT::Other, Tmp1, 1617 DAG.getCondCode(ISD::SETNE), Tmp2, 1618 DAG.getConstant(0, Tmp2.getValueType()), 1619 Node->getOperand(2)); 1620 } 1621 break; 1622 } 1623 break; 1624 case ISD::BR_CC: 1625 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1626 // Ensure that libcalls are emitted before a branch. 1627 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1628 Tmp1 = LegalizeOp(Tmp1); 1629 Tmp2 = Node->getOperand(2); // LHS 1630 Tmp3 = Node->getOperand(3); // RHS 1631 Tmp4 = Node->getOperand(1); // CC 1632 1633 LegalizeSetCCOperands(Tmp2, Tmp3, Tmp4); 1634 LastCALLSEQ_END = DAG.getEntryNode(); 1635 1636 // If we didn't get both a LHS and RHS back from LegalizeSetCCOperands, 1637 // the LHS is a legal SETCC itself. In this case, we need to compare 1638 // the result against zero to select between true and false values. 1639 if (Tmp3.Val == 0) { 1640 Tmp3 = DAG.getConstant(0, Tmp2.getValueType()); 1641 Tmp4 = DAG.getCondCode(ISD::SETNE); 1642 } 1643 1644 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp4, Tmp2, Tmp3, 1645 Node->getOperand(4)); 1646 1647 switch (TLI.getOperationAction(ISD::BR_CC, Tmp3.getValueType())) { 1648 default: assert(0 && "Unexpected action for BR_CC!"); 1649 case TargetLowering::Legal: break; 1650 case TargetLowering::Custom: 1651 Tmp4 = TLI.LowerOperation(Result, DAG); 1652 if (Tmp4.Val) Result = Tmp4; 1653 break; 1654 } 1655 break; 1656 case ISD::LOAD: { 1657 LoadSDNode *LD = cast<LoadSDNode>(Node); 1658 Tmp1 = LegalizeOp(LD->getChain()); // Legalize the chain. 1659 Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer. 1660 1661 ISD::LoadExtType ExtType = LD->getExtensionType(); 1662 if (ExtType == ISD::NON_EXTLOAD) { 1663 MVT::ValueType VT = Node->getValueType(0); 1664 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset()); 1665 Tmp3 = Result.getValue(0); 1666 Tmp4 = Result.getValue(1); 1667 1668 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1669 default: assert(0 && "This action is not supported yet!"); 1670 case TargetLowering::Legal: 1671 // If this is an unaligned load and the target doesn't support it, 1672 // expand it. 1673 if (!TLI.allowsUnalignedMemoryAccesses()) { 1674 unsigned ABIAlignment = TLI.getTargetData()-> 1675 getABITypeAlignment(MVT::getTypeForValueType(LD->getLoadedVT())); 1676 if (LD->getAlignment() < ABIAlignment){ 1677 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.Val), DAG, 1678 TLI); 1679 Tmp3 = Result.getOperand(0); 1680 Tmp4 = Result.getOperand(1); 1681 Tmp3 = LegalizeOp(Tmp3); 1682 Tmp4 = LegalizeOp(Tmp4); 1683 } 1684 } 1685 break; 1686 case TargetLowering::Custom: 1687 Tmp1 = TLI.LowerOperation(Tmp3, DAG); 1688 if (Tmp1.Val) { 1689 Tmp3 = LegalizeOp(Tmp1); 1690 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 1691 } 1692 break; 1693 case TargetLowering::Promote: { 1694 // Only promote a load of vector type to another. 1695 assert(MVT::isVector(VT) && "Cannot promote this load!"); 1696 // Change base type to a different vector type. 1697 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 1698 1699 Tmp1 = DAG.getLoad(NVT, Tmp1, Tmp2, LD->getSrcValue(), 1700 LD->getSrcValueOffset(), 1701 LD->isVolatile(), LD->getAlignment()); 1702 Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, VT, Tmp1)); 1703 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 1704 break; 1705 } 1706 } 1707 // Since loads produce two values, make sure to remember that we 1708 // legalized both of them. 1709 AddLegalizedOperand(SDOperand(Node, 0), Tmp3); 1710 AddLegalizedOperand(SDOperand(Node, 1), Tmp4); 1711 return Op.ResNo ? Tmp4 : Tmp3; 1712 } else { 1713 MVT::ValueType SrcVT = LD->getLoadedVT(); 1714 switch (TLI.getLoadXAction(ExtType, SrcVT)) { 1715 default: assert(0 && "This action is not supported yet!"); 1716 case TargetLowering::Promote: 1717 assert(SrcVT == MVT::i1 && 1718 "Can only promote extending LOAD from i1 -> i8!"); 1719 Result = DAG.getExtLoad(ExtType, Node->getValueType(0), Tmp1, Tmp2, 1720 LD->getSrcValue(), LD->getSrcValueOffset(), 1721 MVT::i8, LD->isVolatile(), LD->getAlignment()); 1722 Tmp1 = Result.getValue(0); 1723 Tmp2 = Result.getValue(1); 1724 break; 1725 case TargetLowering::Custom: 1726 isCustom = true; 1727 // FALLTHROUGH 1728 case TargetLowering::Legal: 1729 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset()); 1730 Tmp1 = Result.getValue(0); 1731 Tmp2 = Result.getValue(1); 1732 1733 if (isCustom) { 1734 Tmp3 = TLI.LowerOperation(Result, DAG); 1735 if (Tmp3.Val) { 1736 Tmp1 = LegalizeOp(Tmp3); 1737 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 1738 } 1739 } else { 1740 // If this is an unaligned load and the target doesn't support it, 1741 // expand it. 1742 if (!TLI.allowsUnalignedMemoryAccesses()) { 1743 unsigned ABIAlignment = TLI.getTargetData()-> 1744 getABITypeAlignment(MVT::getTypeForValueType(LD->getLoadedVT())); 1745 if (LD->getAlignment() < ABIAlignment){ 1746 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.Val), DAG, 1747 TLI); 1748 Tmp1 = Result.getOperand(0); 1749 Tmp2 = Result.getOperand(1); 1750 Tmp1 = LegalizeOp(Tmp1); 1751 Tmp2 = LegalizeOp(Tmp2); 1752 } 1753 } 1754 } 1755 break; 1756 case TargetLowering::Expand: 1757 // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND 1758 if (SrcVT == MVT::f32 && Node->getValueType(0) == MVT::f64) { 1759 SDOperand Load = DAG.getLoad(SrcVT, Tmp1, Tmp2, LD->getSrcValue(), 1760 LD->getSrcValueOffset(), 1761 LD->isVolatile(), LD->getAlignment()); 1762 Result = DAG.getNode(ISD::FP_EXTEND, Node->getValueType(0), Load); 1763 Tmp1 = LegalizeOp(Result); // Relegalize new nodes. 1764 Tmp2 = LegalizeOp(Load.getValue(1)); 1765 break; 1766 } 1767 assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!"); 1768 // Turn the unsupported load into an EXTLOAD followed by an explicit 1769 // zero/sign extend inreg. 1770 Result = DAG.getExtLoad(ISD::EXTLOAD, Node->getValueType(0), 1771 Tmp1, Tmp2, LD->getSrcValue(), 1772 LD->getSrcValueOffset(), SrcVT, 1773 LD->isVolatile(), LD->getAlignment()); 1774 SDOperand ValRes; 1775 if (ExtType == ISD::SEXTLOAD) 1776 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 1777 Result, DAG.getValueType(SrcVT)); 1778 else 1779 ValRes = DAG.getZeroExtendInReg(Result, SrcVT); 1780 Tmp1 = LegalizeOp(ValRes); // Relegalize new nodes. 1781 Tmp2 = LegalizeOp(Result.getValue(1)); // Relegalize new nodes. 1782 break; 1783 } 1784 // Since loads produce two values, make sure to remember that we legalized 1785 // both of them. 1786 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 1787 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 1788 return Op.ResNo ? Tmp2 : Tmp1; 1789 } 1790 } 1791 case ISD::EXTRACT_ELEMENT: { 1792 MVT::ValueType OpTy = Node->getOperand(0).getValueType(); 1793 switch (getTypeAction(OpTy)) { 1794 default: assert(0 && "EXTRACT_ELEMENT action for type unimplemented!"); 1795 case Legal: 1796 if (cast<ConstantSDNode>(Node->getOperand(1))->getValue()) { 1797 // 1 -> Hi 1798 Result = DAG.getNode(ISD::SRL, OpTy, Node->getOperand(0), 1799 DAG.getConstant(MVT::getSizeInBits(OpTy)/2, 1800 TLI.getShiftAmountTy())); 1801 Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), Result); 1802 } else { 1803 // 0 -> Lo 1804 Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), 1805 Node->getOperand(0)); 1806 } 1807 break; 1808 case Expand: 1809 // Get both the low and high parts. 1810 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 1811 if (cast<ConstantSDNode>(Node->getOperand(1))->getValue()) 1812 Result = Tmp2; // 1 -> Hi 1813 else 1814 Result = Tmp1; // 0 -> Lo 1815 break; 1816 } 1817 break; 1818 } 1819 1820 case ISD::CopyToReg: 1821 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1822 1823 assert(isTypeLegal(Node->getOperand(2).getValueType()) && 1824 "Register type must be legal!"); 1825 // Legalize the incoming value (must be a legal type). 1826 Tmp2 = LegalizeOp(Node->getOperand(2)); 1827 if (Node->getNumValues() == 1) { 1828 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2); 1829 } else { 1830 assert(Node->getNumValues() == 2 && "Unknown CopyToReg"); 1831 if (Node->getNumOperands() == 4) { 1832 Tmp3 = LegalizeOp(Node->getOperand(3)); 1833 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2, 1834 Tmp3); 1835 } else { 1836 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2); 1837 } 1838 1839 // Since this produces two values, make sure to remember that we legalized 1840 // both of them. 1841 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 1842 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 1843 return Result; 1844 } 1845 break; 1846 1847 case ISD::RET: 1848 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1849 1850 // Ensure that libcalls are emitted before a return. 1851 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1852 Tmp1 = LegalizeOp(Tmp1); 1853 LastCALLSEQ_END = DAG.getEntryNode(); 1854 1855 switch (Node->getNumOperands()) { 1856 case 3: // ret val 1857 Tmp2 = Node->getOperand(1); 1858 Tmp3 = Node->getOperand(2); // Signness 1859 switch (getTypeAction(Tmp2.getValueType())) { 1860 case Legal: 1861 Result = DAG.UpdateNodeOperands(Result, Tmp1, LegalizeOp(Tmp2), Tmp3); 1862 break; 1863 case Expand: 1864 if (!MVT::isVector(Tmp2.getValueType())) { 1865 SDOperand Lo, Hi; 1866 ExpandOp(Tmp2, Lo, Hi); 1867 1868 // Big endian systems want the hi reg first. 1869 if (!TLI.isLittleEndian()) 1870 std::swap(Lo, Hi); 1871 1872 if (Hi.Val) 1873 Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3, Hi,Tmp3); 1874 else 1875 Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3); 1876 Result = LegalizeOp(Result); 1877 } else { 1878 SDNode *InVal = Tmp2.Val; 1879 unsigned NumElems = MVT::getVectorNumElements(InVal->getValueType(0)); 1880 MVT::ValueType EVT = MVT::getVectorElementType(InVal->getValueType(0)); 1881 1882 // Figure out if there is a simple type corresponding to this Vector 1883 // type. If so, convert to the vector type. 1884 MVT::ValueType TVT = MVT::getVectorType(EVT, NumElems); 1885 if (TLI.isTypeLegal(TVT)) { 1886 // Turn this into a return of the vector type. 1887 Tmp2 = LegalizeOp(Tmp2); 1888 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1889 } else if (NumElems == 1) { 1890 // Turn this into a return of the scalar type. 1891 Tmp2 = ScalarizeVectorOp(Tmp2); 1892 Tmp2 = LegalizeOp(Tmp2); 1893 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1894 1895 // FIXME: Returns of gcc generic vectors smaller than a legal type 1896 // should be returned in integer registers! 1897 1898 // The scalarized value type may not be legal, e.g. it might require 1899 // promotion or expansion. Relegalize the return. 1900 Result = LegalizeOp(Result); 1901 } else { 1902 // FIXME: Returns of gcc generic vectors larger than a legal vector 1903 // type should be returned by reference! 1904 SDOperand Lo, Hi; 1905 SplitVectorOp(Tmp2, Lo, Hi); 1906 Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3, Hi,Tmp3); 1907 Result = LegalizeOp(Result); 1908 } 1909 } 1910 break; 1911 case Promote: 1912 Tmp2 = PromoteOp(Node->getOperand(1)); 1913 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1914 Result = LegalizeOp(Result); 1915 break; 1916 } 1917 break; 1918 case 1: // ret void 1919 Result = DAG.UpdateNodeOperands(Result, Tmp1); 1920 break; 1921 default: { // ret <values> 1922 SmallVector<SDOperand, 8> NewValues; 1923 NewValues.push_back(Tmp1); 1924 for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2) 1925 switch (getTypeAction(Node->getOperand(i).getValueType())) { 1926 case Legal: 1927 NewValues.push_back(LegalizeOp(Node->getOperand(i))); 1928 NewValues.push_back(Node->getOperand(i+1)); 1929 break; 1930 case Expand: { 1931 SDOperand Lo, Hi; 1932 assert(!MVT::isExtendedVT(Node->getOperand(i).getValueType()) && 1933 "FIXME: TODO: implement returning non-legal vector types!"); 1934 ExpandOp(Node->getOperand(i), Lo, Hi); 1935 NewValues.push_back(Lo); 1936 NewValues.push_back(Node->getOperand(i+1)); 1937 if (Hi.Val) { 1938 NewValues.push_back(Hi); 1939 NewValues.push_back(Node->getOperand(i+1)); 1940 } 1941 break; 1942 } 1943 case Promote: 1944 assert(0 && "Can't promote multiple return value yet!"); 1945 } 1946 1947 if (NewValues.size() == Node->getNumOperands()) 1948 Result = DAG.UpdateNodeOperands(Result, &NewValues[0],NewValues.size()); 1949 else 1950 Result = DAG.getNode(ISD::RET, MVT::Other, 1951 &NewValues[0], NewValues.size()); 1952 break; 1953 } 1954 } 1955 1956 if (Result.getOpcode() == ISD::RET) { 1957 switch (TLI.getOperationAction(Result.getOpcode(), MVT::Other)) { 1958 default: assert(0 && "This action is not supported yet!"); 1959 case TargetLowering::Legal: break; 1960 case TargetLowering::Custom: 1961 Tmp1 = TLI.LowerOperation(Result, DAG); 1962 if (Tmp1.Val) Result = Tmp1; 1963 break; 1964 } 1965 } 1966 break; 1967 case ISD::STORE: { 1968 StoreSDNode *ST = cast<StoreSDNode>(Node); 1969 Tmp1 = LegalizeOp(ST->getChain()); // Legalize the chain. 1970 Tmp2 = LegalizeOp(ST->getBasePtr()); // Legalize the pointer. 1971 int SVOffset = ST->getSrcValueOffset(); 1972 unsigned Alignment = ST->getAlignment(); 1973 bool isVolatile = ST->isVolatile(); 1974 1975 if (!ST->isTruncatingStore()) { 1976 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 1977 // FIXME: We shouldn't do this for TargetConstantFP's. 1978 // FIXME: move this to the DAG Combiner! Note that we can't regress due 1979 // to phase ordering between legalized code and the dag combiner. This 1980 // probably means that we need to integrate dag combiner and legalizer 1981 // together. 1982 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 1983 if (CFP->getValueType(0) == MVT::f32) { 1984 Tmp3 = DAG.getConstant((uint32_t)*CFP->getValueAPF(). 1985 convertToAPInt().getRawData(), 1986 MVT::i32); 1987 } else { 1988 assert(CFP->getValueType(0) == MVT::f64 && "Unknown FP type!"); 1989 Tmp3 = DAG.getConstant(*CFP->getValueAPF().convertToAPInt(). 1990 getRawData(), MVT::i64); 1991 } 1992 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 1993 SVOffset, isVolatile, Alignment); 1994 break; 1995 } 1996 1997 switch (getTypeAction(ST->getStoredVT())) { 1998 case Legal: { 1999 Tmp3 = LegalizeOp(ST->getValue()); 2000 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2, 2001 ST->getOffset()); 2002 2003 MVT::ValueType VT = Tmp3.getValueType(); 2004 switch (TLI.getOperationAction(ISD::STORE, VT)) { 2005 default: assert(0 && "This action is not supported yet!"); 2006 case TargetLowering::Legal: 2007 // If this is an unaligned store and the target doesn't support it, 2008 // expand it. 2009 if (!TLI.allowsUnalignedMemoryAccesses()) { 2010 unsigned ABIAlignment = TLI.getTargetData()-> 2011 getABITypeAlignment(MVT::getTypeForValueType(ST->getStoredVT())); 2012 if (ST->getAlignment() < ABIAlignment) 2013 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.Val), DAG, 2014 TLI); 2015 } 2016 break; 2017 case TargetLowering::Custom: 2018 Tmp1 = TLI.LowerOperation(Result, DAG); 2019 if (Tmp1.Val) Result = Tmp1; 2020 break; 2021 case TargetLowering::Promote: 2022 assert(MVT::isVector(VT) && "Unknown legal promote case!"); 2023 Tmp3 = DAG.getNode(ISD::BIT_CONVERT, 2024 TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3); 2025 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, 2026 ST->getSrcValue(), SVOffset, isVolatile, 2027 Alignment); 2028 break; 2029 } 2030 break; 2031 } 2032 case Promote: 2033 // Truncate the value and store the result. 2034 Tmp3 = PromoteOp(ST->getValue()); 2035 Result = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2036 SVOffset, ST->getStoredVT(), 2037 isVolatile, Alignment); 2038 break; 2039 2040 case Expand: 2041 unsigned IncrementSize = 0; 2042 SDOperand Lo, Hi; 2043 2044 // If this is a vector type, then we have to calculate the increment as 2045 // the product of the element size in bytes, and the number of elements 2046 // in the high half of the vector. 2047 if (MVT::isVector(ST->getValue().getValueType())) { 2048 SDNode *InVal = ST->getValue().Val; 2049 unsigned NumElems = MVT::getVectorNumElements(InVal->getValueType(0)); 2050 MVT::ValueType EVT = MVT::getVectorElementType(InVal->getValueType(0)); 2051 2052 // Figure out if there is a simple type corresponding to this Vector 2053 // type. If so, convert to the vector type. 2054 MVT::ValueType TVT = MVT::getVectorType(EVT, NumElems); 2055 if (TLI.isTypeLegal(TVT)) { 2056 // Turn this into a normal store of the vector type. 2057 Tmp3 = LegalizeOp(Node->getOperand(1)); 2058 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2059 SVOffset, isVolatile, Alignment); 2060 Result = LegalizeOp(Result); 2061 break; 2062 } else if (NumElems == 1) { 2063 // Turn this into a normal store of the scalar type. 2064 Tmp3 = ScalarizeVectorOp(Node->getOperand(1)); 2065 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2066 SVOffset, isVolatile, Alignment); 2067 // The scalarized value type may not be legal, e.g. it might require 2068 // promotion or expansion. Relegalize the scalar store. 2069 Result = LegalizeOp(Result); 2070 break; 2071 } else { 2072 SplitVectorOp(Node->getOperand(1), Lo, Hi); 2073 IncrementSize = NumElems/2 * MVT::getSizeInBits(EVT)/8; 2074 } 2075 } else { 2076 ExpandOp(Node->getOperand(1), Lo, Hi); 2077 IncrementSize = Hi.Val ? MVT::getSizeInBits(Hi.getValueType())/8 : 0; 2078 2079 if (!TLI.isLittleEndian()) 2080 std::swap(Lo, Hi); 2081 } 2082 2083 Lo = DAG.getStore(Tmp1, Lo, Tmp2, ST->getSrcValue(), 2084 SVOffset, isVolatile, Alignment); 2085 2086 if (Hi.Val == NULL) { 2087 // Must be int <-> float one-to-one expansion. 2088 Result = Lo; 2089 break; 2090 } 2091 2092 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2093 getIntPtrConstant(IncrementSize)); 2094 assert(isTypeLegal(Tmp2.getValueType()) && 2095 "Pointers must be legal!"); 2096 SVOffset += IncrementSize; 2097 if (Alignment > IncrementSize) 2098 Alignment = IncrementSize; 2099 Hi = DAG.getStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), 2100 SVOffset, isVolatile, Alignment); 2101 Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); 2102 break; 2103 } 2104 } else { 2105 // Truncating store 2106 assert(isTypeLegal(ST->getValue().getValueType()) && 2107 "Cannot handle illegal TRUNCSTORE yet!"); 2108 Tmp3 = LegalizeOp(ST->getValue()); 2109 2110 // The only promote case we handle is TRUNCSTORE:i1 X into 2111 // -> TRUNCSTORE:i8 (and X, 1) 2112 if (ST->getStoredVT() == MVT::i1 && 2113 TLI.getStoreXAction(MVT::i1) == TargetLowering::Promote) { 2114 // Promote the bool to a mask then store. 2115 Tmp3 = DAG.getNode(ISD::AND, Tmp3.getValueType(), Tmp3, 2116 DAG.getConstant(1, Tmp3.getValueType())); 2117 Result = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2118 SVOffset, MVT::i8, 2119 isVolatile, Alignment); 2120 } else if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() || 2121 Tmp2 != ST->getBasePtr()) { 2122 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2, 2123 ST->getOffset()); 2124 } 2125 2126 MVT::ValueType StVT = cast<StoreSDNode>(Result.Val)->getStoredVT(); 2127 switch (TLI.getStoreXAction(StVT)) { 2128 default: assert(0 && "This action is not supported yet!"); 2129 case TargetLowering::Legal: 2130 // If this is an unaligned store and the target doesn't support it, 2131 // expand it. 2132 if (!TLI.allowsUnalignedMemoryAccesses()) { 2133 unsigned ABIAlignment = TLI.getTargetData()-> 2134 getABITypeAlignment(MVT::getTypeForValueType(ST->getStoredVT())); 2135 if (ST->getAlignment() < ABIAlignment) 2136 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.Val), DAG, 2137 TLI); 2138 } 2139 break; 2140 case TargetLowering::Custom: 2141 Tmp1 = TLI.LowerOperation(Result, DAG); 2142 if (Tmp1.Val) Result = Tmp1; 2143 break; 2144 } 2145 } 2146 break; 2147 } 2148 case ISD::PCMARKER: 2149 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2150 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 2151 break; 2152 case ISD::STACKSAVE: 2153 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2154 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2155 Tmp1 = Result.getValue(0); 2156 Tmp2 = Result.getValue(1); 2157 2158 switch (TLI.getOperationAction(ISD::STACKSAVE, MVT::Other)) { 2159 default: assert(0 && "This action is not supported yet!"); 2160 case TargetLowering::Legal: break; 2161 case TargetLowering::Custom: 2162 Tmp3 = TLI.LowerOperation(Result, DAG); 2163 if (Tmp3.Val) { 2164 Tmp1 = LegalizeOp(Tmp3); 2165 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 2166 } 2167 break; 2168 case TargetLowering::Expand: 2169 // Expand to CopyFromReg if the target set 2170 // StackPointerRegisterToSaveRestore. 2171 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 2172 Tmp1 = DAG.getCopyFromReg(Result.getOperand(0), SP, 2173 Node->getValueType(0)); 2174 Tmp2 = Tmp1.getValue(1); 2175 } else { 2176 Tmp1 = DAG.getNode(ISD::UNDEF, Node->getValueType(0)); 2177 Tmp2 = Node->getOperand(0); 2178 } 2179 break; 2180 } 2181 2182 // Since stacksave produce two values, make sure to remember that we 2183 // legalized both of them. 2184 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 2185 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 2186 return Op.ResNo ? Tmp2 : Tmp1; 2187 2188 case ISD::STACKRESTORE: 2189 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2190 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 2191 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 2192 2193 switch (TLI.getOperationAction(ISD::STACKRESTORE, MVT::Other)) { 2194 default: assert(0 && "This action is not supported yet!"); 2195 case TargetLowering::Legal: break; 2196 case TargetLowering::Custom: 2197 Tmp1 = TLI.LowerOperation(Result, DAG); 2198 if (Tmp1.Val) Result = Tmp1; 2199 break; 2200 case TargetLowering::Expand: 2201 // Expand to CopyToReg if the target set 2202 // StackPointerRegisterToSaveRestore. 2203 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 2204 Result = DAG.getCopyToReg(Tmp1, SP, Tmp2); 2205 } else { 2206 Result = Tmp1; 2207 } 2208 break; 2209 } 2210 break; 2211 2212 case ISD::READCYCLECOUNTER: 2213 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain 2214 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2215 switch (TLI.getOperationAction(ISD::READCYCLECOUNTER, 2216 Node->getValueType(0))) { 2217 default: assert(0 && "This action is not supported yet!"); 2218 case TargetLowering::Legal: 2219 Tmp1 = Result.getValue(0); 2220 Tmp2 = Result.getValue(1); 2221 break; 2222 case TargetLowering::Custom: 2223 Result = TLI.LowerOperation(Result, DAG); 2224 Tmp1 = LegalizeOp(Result.getValue(0)); 2225 Tmp2 = LegalizeOp(Result.getValue(1)); 2226 break; 2227 } 2228 2229 // Since rdcc produce two values, make sure to remember that we legalized 2230 // both of them. 2231 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 2232 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 2233 return Result; 2234 2235 case ISD::SELECT: 2236 switch (getTypeAction(Node->getOperand(0).getValueType())) { 2237 case Expand: assert(0 && "It's impossible to expand bools"); 2238 case Legal: 2239 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the condition. 2240 break; 2241 case Promote: 2242 Tmp1 = PromoteOp(Node->getOperand(0)); // Promote the condition. 2243 // Make sure the condition is either zero or one. 2244 if (!DAG.MaskedValueIsZero(Tmp1, 2245 MVT::getIntVTBitMask(Tmp1.getValueType())^1)) 2246 Tmp1 = DAG.getZeroExtendInReg(Tmp1, MVT::i1); 2247 break; 2248 } 2249 Tmp2 = LegalizeOp(Node->getOperand(1)); // TrueVal 2250 Tmp3 = LegalizeOp(Node->getOperand(2)); // FalseVal 2251 2252 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2253 2254 switch (TLI.getOperationAction(ISD::SELECT, Tmp2.getValueType())) { 2255 default: assert(0 && "This action is not supported yet!"); 2256 case TargetLowering::Legal: break; 2257 case TargetLowering::Custom: { 2258 Tmp1 = TLI.LowerOperation(Result, DAG); 2259 if (Tmp1.Val) Result = Tmp1; 2260 break; 2261 } 2262 case TargetLowering::Expand: 2263 if (Tmp1.getOpcode() == ISD::SETCC) { 2264 Result = DAG.getSelectCC(Tmp1.getOperand(0), Tmp1.getOperand(1), 2265 Tmp2, Tmp3, 2266 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 2267 } else { 2268 Result = DAG.getSelectCC(Tmp1, 2269 DAG.getConstant(0, Tmp1.getValueType()), 2270 Tmp2, Tmp3, ISD::SETNE); 2271 } 2272 break; 2273 case TargetLowering::Promote: { 2274 MVT::ValueType NVT = 2275 TLI.getTypeToPromoteTo(ISD::SELECT, Tmp2.getValueType()); 2276 unsigned ExtOp, TruncOp; 2277 if (MVT::isVector(Tmp2.getValueType())) { 2278 ExtOp = ISD::BIT_CONVERT; 2279 TruncOp = ISD::BIT_CONVERT; 2280 } else if (MVT::isInteger(Tmp2.getValueType())) { 2281 ExtOp = ISD::ANY_EXTEND; 2282 TruncOp = ISD::TRUNCATE; 2283 } else { 2284 ExtOp = ISD::FP_EXTEND; 2285 TruncOp = ISD::FP_ROUND; 2286 } 2287 // Promote each of the values to the new type. 2288 Tmp2 = DAG.getNode(ExtOp, NVT, Tmp2); 2289 Tmp3 = DAG.getNode(ExtOp, NVT, Tmp3); 2290 // Perform the larger operation, then round down. 2291 Result = DAG.getNode(ISD::SELECT, NVT, Tmp1, Tmp2,Tmp3); 2292 Result = DAG.getNode(TruncOp, Node->getValueType(0), Result); 2293 break; 2294 } 2295 } 2296 break; 2297 case ISD::SELECT_CC: { 2298 Tmp1 = Node->getOperand(0); // LHS 2299 Tmp2 = Node->getOperand(1); // RHS 2300 Tmp3 = LegalizeOp(Node->getOperand(2)); // True 2301 Tmp4 = LegalizeOp(Node->getOperand(3)); // False 2302 SDOperand CC = Node->getOperand(4); 2303 2304 LegalizeSetCCOperands(Tmp1, Tmp2, CC); 2305 2306 // If we didn't get both a LHS and RHS back from LegalizeSetCCOperands, 2307 // the LHS is a legal SETCC itself. In this case, we need to compare 2308 // the result against zero to select between true and false values. 2309 if (Tmp2.Val == 0) { 2310 Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); 2311 CC = DAG.getCondCode(ISD::SETNE); 2312 } 2313 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4, CC); 2314 2315 // Everything is legal, see if we should expand this op or something. 2316 switch (TLI.getOperationAction(ISD::SELECT_CC, Tmp3.getValueType())) { 2317 default: assert(0 && "This action is not supported yet!"); 2318 case TargetLowering::Legal: break; 2319 case TargetLowering::Custom: 2320 Tmp1 = TLI.LowerOperation(Result, DAG); 2321 if (Tmp1.Val) Result = Tmp1; 2322 break; 2323 } 2324 break; 2325 } 2326 case ISD::SETCC: 2327 Tmp1 = Node->getOperand(0); 2328 Tmp2 = Node->getOperand(1); 2329 Tmp3 = Node->getOperand(2); 2330 LegalizeSetCCOperands(Tmp1, Tmp2, Tmp3); 2331 2332 // If we had to Expand the SetCC operands into a SELECT node, then it may 2333 // not always be possible to return a true LHS & RHS. In this case, just 2334 // return the value we legalized, returned in the LHS 2335 if (Tmp2.Val == 0) { 2336 Result = Tmp1; 2337 break; 2338 } 2339 2340 switch (TLI.getOperationAction(ISD::SETCC, Tmp1.getValueType())) { 2341 default: assert(0 && "Cannot handle this action for SETCC yet!"); 2342 case TargetLowering::Custom: 2343 isCustom = true; 2344 // FALLTHROUGH. 2345 case TargetLowering::Legal: 2346 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2347 if (isCustom) { 2348 Tmp4 = TLI.LowerOperation(Result, DAG); 2349 if (Tmp4.Val) Result = Tmp4; 2350 } 2351 break; 2352 case TargetLowering::Promote: { 2353 // First step, figure out the appropriate operation to use. 2354 // Allow SETCC to not be supported for all legal data types 2355 // Mostly this targets FP 2356 MVT::ValueType NewInTy = Node->getOperand(0).getValueType(); 2357 MVT::ValueType OldVT = NewInTy; OldVT = OldVT; 2358 2359 // Scan for the appropriate larger type to use. 2360 while (1) { 2361 NewInTy = (MVT::ValueType)(NewInTy+1); 2362 2363 assert(MVT::isInteger(NewInTy) == MVT::isInteger(OldVT) && 2364 "Fell off of the edge of the integer world"); 2365 assert(MVT::isFloatingPoint(NewInTy) == MVT::isFloatingPoint(OldVT) && 2366 "Fell off of the edge of the floating point world"); 2367 2368 // If the target supports SETCC of this type, use it. 2369 if (TLI.isOperationLegal(ISD::SETCC, NewInTy)) 2370 break; 2371 } 2372 if (MVT::isInteger(NewInTy)) 2373 assert(0 && "Cannot promote Legal Integer SETCC yet"); 2374 else { 2375 Tmp1 = DAG.getNode(ISD::FP_EXTEND, NewInTy, Tmp1); 2376 Tmp2 = DAG.getNode(ISD::FP_EXTEND, NewInTy, Tmp2); 2377 } 2378 Tmp1 = LegalizeOp(Tmp1); 2379 Tmp2 = LegalizeOp(Tmp2); 2380 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2381 Result = LegalizeOp(Result); 2382 break; 2383 } 2384 case TargetLowering::Expand: 2385 // Expand a setcc node into a select_cc of the same condition, lhs, and 2386 // rhs that selects between const 1 (true) and const 0 (false). 2387 MVT::ValueType VT = Node->getValueType(0); 2388 Result = DAG.getNode(ISD::SELECT_CC, VT, Tmp1, Tmp2, 2389 DAG.getConstant(1, VT), DAG.getConstant(0, VT), 2390 Tmp3); 2391 break; 2392 } 2393 break; 2394 case ISD::MEMSET: 2395 case ISD::MEMCPY: 2396 case ISD::MEMMOVE: { 2397 Tmp1 = LegalizeOp(Node->getOperand(0)); // Chain 2398 Tmp2 = LegalizeOp(Node->getOperand(1)); // Pointer 2399 2400 if (Node->getOpcode() == ISD::MEMSET) { // memset = ubyte 2401 switch (getTypeAction(Node->getOperand(2).getValueType())) { 2402 case Expand: assert(0 && "Cannot expand a byte!"); 2403 case Legal: 2404 Tmp3 = LegalizeOp(Node->getOperand(2)); 2405 break; 2406 case Promote: 2407 Tmp3 = PromoteOp(Node->getOperand(2)); 2408 break; 2409 } 2410 } else { 2411 Tmp3 = LegalizeOp(Node->getOperand(2)); // memcpy/move = pointer, 2412 } 2413 2414 SDOperand Tmp4; 2415 switch (getTypeAction(Node->getOperand(3).getValueType())) { 2416 case Expand: { 2417 // Length is too big, just take the lo-part of the length. 2418 SDOperand HiPart; 2419 ExpandOp(Node->getOperand(3), Tmp4, HiPart); 2420 break; 2421 } 2422 case Legal: 2423 Tmp4 = LegalizeOp(Node->getOperand(3)); 2424 break; 2425 case Promote: 2426 Tmp4 = PromoteOp(Node->getOperand(3)); 2427 break; 2428 } 2429 2430 SDOperand Tmp5; 2431 switch (getTypeAction(Node->getOperand(4).getValueType())) { // uint 2432 case Expand: assert(0 && "Cannot expand this yet!"); 2433 case Legal: 2434 Tmp5 = LegalizeOp(Node->getOperand(4)); 2435 break; 2436 case Promote: 2437 Tmp5 = PromoteOp(Node->getOperand(4)); 2438 break; 2439 } 2440 2441 switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) { 2442 default: assert(0 && "This action not implemented for this operation!"); 2443 case TargetLowering::Custom: 2444 isCustom = true; 2445 // FALLTHROUGH 2446 case TargetLowering::Legal: 2447 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4, Tmp5); 2448 if (isCustom) { 2449 Tmp1 = TLI.LowerOperation(Result, DAG); 2450 if (Tmp1.Val) Result = Tmp1; 2451 } 2452 break; 2453 case TargetLowering::Expand: { 2454 // Otherwise, the target does not support this operation. Lower the 2455 // operation to an explicit libcall as appropriate. 2456 MVT::ValueType IntPtr = TLI.getPointerTy(); 2457 const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(); 2458 TargetLowering::ArgListTy Args; 2459 TargetLowering::ArgListEntry Entry; 2460 2461 const char *FnName = 0; 2462 if (Node->getOpcode() == ISD::MEMSET) { 2463 Entry.Node = Tmp2; Entry.Ty = IntPtrTy; 2464 Args.push_back(Entry); 2465 // Extend the (previously legalized) ubyte argument to be an int value 2466 // for the call. 2467 if (Tmp3.getValueType() > MVT::i32) 2468 Tmp3 = DAG.getNode(ISD::TRUNCATE, MVT::i32, Tmp3); 2469 else 2470 Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Tmp3); 2471 Entry.Node = Tmp3; Entry.Ty = Type::Int32Ty; Entry.isSExt = true; 2472 Args.push_back(Entry); 2473 Entry.Node = Tmp4; Entry.Ty = IntPtrTy; Entry.isSExt = false; 2474 Args.push_back(Entry); 2475 2476 FnName = "memset"; 2477 } else if (Node->getOpcode() == ISD::MEMCPY || 2478 Node->getOpcode() == ISD::MEMMOVE) { 2479 Entry.Ty = IntPtrTy; 2480 Entry.Node = Tmp2; Args.push_back(Entry); 2481 Entry.Node = Tmp3; Args.push_back(Entry); 2482 Entry.Node = Tmp4; Args.push_back(Entry); 2483 FnName = Node->getOpcode() == ISD::MEMMOVE ? "memmove" : "memcpy"; 2484 } else { 2485 assert(0 && "Unknown op!"); 2486 } 2487 2488 std::pair<SDOperand,SDOperand> CallResult = 2489 TLI.LowerCallTo(Tmp1, Type::VoidTy, false, false, CallingConv::C, false, 2490 DAG.getExternalSymbol(FnName, IntPtr), Args, DAG); 2491 Result = CallResult.second; 2492 break; 2493 } 2494 } 2495 break; 2496 } 2497 2498 case ISD::SHL_PARTS: 2499 case ISD::SRA_PARTS: 2500 case ISD::SRL_PARTS: { 2501 SmallVector<SDOperand, 8> Ops; 2502 bool Changed = false; 2503 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 2504 Ops.push_back(LegalizeOp(Node->getOperand(i))); 2505 Changed |= Ops.back() != Node->getOperand(i); 2506 } 2507 if (Changed) 2508 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 2509 2510 switch (TLI.getOperationAction(Node->getOpcode(), 2511 Node->getValueType(0))) { 2512 default: assert(0 && "This action is not supported yet!"); 2513 case TargetLowering::Legal: break; 2514 case TargetLowering::Custom: 2515 Tmp1 = TLI.LowerOperation(Result, DAG); 2516 if (Tmp1.Val) { 2517 SDOperand Tmp2, RetVal(0, 0); 2518 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { 2519 Tmp2 = LegalizeOp(Tmp1.getValue(i)); 2520 AddLegalizedOperand(SDOperand(Node, i), Tmp2); 2521 if (i == Op.ResNo) 2522 RetVal = Tmp2; 2523 } 2524 assert(RetVal.Val && "Illegal result number"); 2525 return RetVal; 2526 } 2527 break; 2528 } 2529 2530 // Since these produce multiple values, make sure to remember that we 2531 // legalized all of them. 2532 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 2533 AddLegalizedOperand(SDOperand(Node, i), Result.getValue(i)); 2534 return Result.getValue(Op.ResNo); 2535 } 2536 2537 // Binary operators 2538 case ISD::ADD: 2539 case ISD::SUB: 2540 case ISD::MUL: 2541 case ISD::MULHS: 2542 case ISD::MULHU: 2543 case ISD::UDIV: 2544 case ISD::SDIV: 2545 case ISD::AND: 2546 case ISD::OR: 2547 case ISD::XOR: 2548 case ISD::SHL: 2549 case ISD::SRL: 2550 case ISD::SRA: 2551 case ISD::FADD: 2552 case ISD::FSUB: 2553 case ISD::FMUL: 2554 case ISD::FDIV: 2555 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 2556 switch (getTypeAction(Node->getOperand(1).getValueType())) { 2557 case Expand: assert(0 && "Not possible"); 2558 case Legal: 2559 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the RHS. 2560 break; 2561 case Promote: 2562 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the RHS. 2563 break; 2564 } 2565 2566 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 2567 2568 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 2569 default: assert(0 && "BinOp legalize operation not supported"); 2570 case TargetLowering::Legal: break; 2571 case TargetLowering::Custom: 2572 Tmp1 = TLI.LowerOperation(Result, DAG); 2573 if (Tmp1.Val) Result = Tmp1; 2574 break; 2575 case TargetLowering::Expand: { 2576 if (Node->getValueType(0) == MVT::i32) { 2577 switch (Node->getOpcode()) { 2578 default: assert(0 && "Do not know how to expand this integer BinOp!"); 2579 case ISD::UDIV: 2580 case ISD::SDIV: 2581 RTLIB::Libcall LC = Node->getOpcode() == ISD::UDIV 2582 ? RTLIB::UDIV_I32 : RTLIB::SDIV_I32; 2583 SDOperand Dummy; 2584 bool isSigned = Node->getOpcode() == ISD::SDIV; 2585 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, isSigned, Dummy); 2586 }; 2587 break; 2588 } 2589 2590 assert(MVT::isVector(Node->getValueType(0)) && 2591 "Cannot expand this binary operator!"); 2592 // Expand the operation into a bunch of nasty scalar code. 2593 SmallVector<SDOperand, 8> Ops; 2594 MVT::ValueType EltVT = MVT::getVectorElementType(Node->getValueType(0)); 2595 MVT::ValueType PtrVT = TLI.getPointerTy(); 2596 for (unsigned i = 0, e = MVT::getVectorNumElements(Node->getValueType(0)); 2597 i != e; ++i) { 2598 SDOperand Idx = DAG.getConstant(i, PtrVT); 2599 SDOperand LHS = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Tmp1, Idx); 2600 SDOperand RHS = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Tmp2, Idx); 2601 Ops.push_back(DAG.getNode(Node->getOpcode(), EltVT, LHS, RHS)); 2602 } 2603 Result = DAG.getNode(ISD::BUILD_VECTOR, Node->getValueType(0), 2604 &Ops[0], Ops.size()); 2605 break; 2606 } 2607 case TargetLowering::Promote: { 2608 switch (Node->getOpcode()) { 2609 default: assert(0 && "Do not know how to promote this BinOp!"); 2610 case ISD::AND: 2611 case ISD::OR: 2612 case ISD::XOR: { 2613 MVT::ValueType OVT = Node->getValueType(0); 2614 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 2615 assert(MVT::isVector(OVT) && "Cannot promote this BinOp!"); 2616 // Bit convert each of the values to the new type. 2617 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp1); 2618 Tmp2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp2); 2619 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 2620 // Bit convert the result back the original type. 2621 Result = DAG.getNode(ISD::BIT_CONVERT, OVT, Result); 2622 break; 2623 } 2624 } 2625 } 2626 } 2627 break; 2628 2629 case ISD::FCOPYSIGN: // FCOPYSIGN does not require LHS/RHS to match type! 2630 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 2631 switch (getTypeAction(Node->getOperand(1).getValueType())) { 2632 case Expand: assert(0 && "Not possible"); 2633 case Legal: 2634 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the RHS. 2635 break; 2636 case Promote: 2637 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the RHS. 2638 break; 2639 } 2640 2641 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 2642 2643 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 2644 default: assert(0 && "Operation not supported"); 2645 case TargetLowering::Custom: 2646 Tmp1 = TLI.LowerOperation(Result, DAG); 2647 if (Tmp1.Val) Result = Tmp1; 2648 break; 2649 case TargetLowering::Legal: break; 2650 case TargetLowering::Expand: { 2651 // If this target supports fabs/fneg natively and select is cheap, 2652 // do this efficiently. 2653 if (!TLI.isSelectExpensive() && 2654 TLI.getOperationAction(ISD::FABS, Tmp1.getValueType()) == 2655 TargetLowering::Legal && 2656 TLI.getOperationAction(ISD::FNEG, Tmp1.getValueType()) == 2657 TargetLowering::Legal) { 2658 // Get the sign bit of the RHS. 2659 MVT::ValueType IVT = 2660 Tmp2.getValueType() == MVT::f32 ? MVT::i32 : MVT::i64; 2661 SDOperand SignBit = DAG.getNode(ISD::BIT_CONVERT, IVT, Tmp2); 2662 SignBit = DAG.getSetCC(TLI.getSetCCResultTy(), 2663 SignBit, DAG.getConstant(0, IVT), ISD::SETLT); 2664 // Get the absolute value of the result. 2665 SDOperand AbsVal = DAG.getNode(ISD::FABS, Tmp1.getValueType(), Tmp1); 2666 // Select between the nabs and abs value based on the sign bit of 2667 // the input. 2668 Result = DAG.getNode(ISD::SELECT, AbsVal.getValueType(), SignBit, 2669 DAG.getNode(ISD::FNEG, AbsVal.getValueType(), 2670 AbsVal), 2671 AbsVal); 2672 Result = LegalizeOp(Result); 2673 break; 2674 } 2675 2676 // Otherwise, do bitwise ops! 2677 MVT::ValueType NVT = 2678 Node->getValueType(0) == MVT::f32 ? MVT::i32 : MVT::i64; 2679 Result = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI); 2680 Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), Result); 2681 Result = LegalizeOp(Result); 2682 break; 2683 } 2684 } 2685 break; 2686 2687 case ISD::ADDC: 2688 case ISD::SUBC: 2689 Tmp1 = LegalizeOp(Node->getOperand(0)); 2690 Tmp2 = LegalizeOp(Node->getOperand(1)); 2691 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 2692 // Since this produces two values, make sure to remember that we legalized 2693 // both of them. 2694 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 2695 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 2696 return Result; 2697 2698 case ISD::ADDE: 2699 case ISD::SUBE: 2700 Tmp1 = LegalizeOp(Node->getOperand(0)); 2701 Tmp2 = LegalizeOp(Node->getOperand(1)); 2702 Tmp3 = LegalizeOp(Node->getOperand(2)); 2703 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2704 // Since this produces two values, make sure to remember that we legalized 2705 // both of them. 2706 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 2707 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 2708 return Result; 2709 2710 case ISD::BUILD_PAIR: { 2711 MVT::ValueType PairTy = Node->getValueType(0); 2712 // TODO: handle the case where the Lo and Hi operands are not of legal type 2713 Tmp1 = LegalizeOp(Node->getOperand(0)); // Lo 2714 Tmp2 = LegalizeOp(Node->getOperand(1)); // Hi 2715 switch (TLI.getOperationAction(ISD::BUILD_PAIR, PairTy)) { 2716 case TargetLowering::Promote: 2717 case TargetLowering::Custom: 2718 assert(0 && "Cannot promote/custom this yet!"); 2719 case TargetLowering::Legal: 2720 if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1)) 2721 Result = DAG.getNode(ISD::BUILD_PAIR, PairTy, Tmp1, Tmp2); 2722 break; 2723 case TargetLowering::Expand: 2724 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, PairTy, Tmp1); 2725 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, PairTy, Tmp2); 2726 Tmp2 = DAG.getNode(ISD::SHL, PairTy, Tmp2, 2727 DAG.getConstant(MVT::getSizeInBits(PairTy)/2, 2728 TLI.getShiftAmountTy())); 2729 Result = DAG.getNode(ISD::OR, PairTy, Tmp1, Tmp2); 2730 break; 2731 } 2732 break; 2733 } 2734 2735 case ISD::UREM: 2736 case ISD::SREM: 2737 case ISD::FREM: 2738 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 2739 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 2740 2741 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 2742 case TargetLowering::Promote: assert(0 && "Cannot promote this yet!"); 2743 case TargetLowering::Custom: 2744 isCustom = true; 2745 // FALLTHROUGH 2746 case TargetLowering::Legal: 2747 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 2748 if (isCustom) { 2749 Tmp1 = TLI.LowerOperation(Result, DAG); 2750 if (Tmp1.Val) Result = Tmp1; 2751 } 2752 break; 2753 case TargetLowering::Expand: 2754 unsigned DivOpc= (Node->getOpcode() == ISD::UREM) ? ISD::UDIV : ISD::SDIV; 2755 bool isSigned = DivOpc == ISD::SDIV; 2756 if (MVT::isInteger(Node->getValueType(0))) { 2757 if (TLI.getOperationAction(DivOpc, Node->getValueType(0)) == 2758 TargetLowering::Legal) { 2759 // X % Y -> X-X/Y*Y 2760 MVT::ValueType VT = Node->getValueType(0); 2761 Result = DAG.getNode(DivOpc, VT, Tmp1, Tmp2); 2762 Result = DAG.getNode(ISD::MUL, VT, Result, Tmp2); 2763 Result = DAG.getNode(ISD::SUB, VT, Tmp1, Result); 2764 } else { 2765 assert(Node->getValueType(0) == MVT::i32 && 2766 "Cannot expand this binary operator!"); 2767 RTLIB::Libcall LC = Node->getOpcode() == ISD::UREM 2768 ? RTLIB::UREM_I32 : RTLIB::SREM_I32; 2769 SDOperand Dummy; 2770 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, isSigned, Dummy); 2771 } 2772 } else { 2773 // Floating point mod -> fmod libcall. 2774 RTLIB::Libcall LC = Node->getValueType(0) == MVT::f32 2775 ? RTLIB::REM_F32 : RTLIB::REM_F64; 2776 SDOperand Dummy; 2777 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 2778 false/*sign irrelevant*/, Dummy); 2779 } 2780 break; 2781 } 2782 break; 2783 case ISD::VAARG: { 2784 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2785 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 2786 2787 MVT::ValueType VT = Node->getValueType(0); 2788 switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) { 2789 default: assert(0 && "This action is not supported yet!"); 2790 case TargetLowering::Custom: 2791 isCustom = true; 2792 // FALLTHROUGH 2793 case TargetLowering::Legal: 2794 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 2795 Result = Result.getValue(0); 2796 Tmp1 = Result.getValue(1); 2797 2798 if (isCustom) { 2799 Tmp2 = TLI.LowerOperation(Result, DAG); 2800 if (Tmp2.Val) { 2801 Result = LegalizeOp(Tmp2); 2802 Tmp1 = LegalizeOp(Tmp2.getValue(1)); 2803 } 2804 } 2805 break; 2806 case TargetLowering::Expand: { 2807 SrcValueSDNode *SV = cast<SrcValueSDNode>(Node->getOperand(2)); 2808 SDOperand VAList = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp2, 2809 SV->getValue(), SV->getOffset()); 2810 // Increment the pointer, VAList, to the next vaarg 2811 Tmp3 = DAG.getNode(ISD::ADD, TLI.getPointerTy(), VAList, 2812 DAG.getConstant(MVT::getSizeInBits(VT)/8, 2813 TLI.getPointerTy())); 2814 // Store the incremented VAList to the legalized pointer 2815 Tmp3 = DAG.getStore(VAList.getValue(1), Tmp3, Tmp2, SV->getValue(), 2816 SV->getOffset()); 2817 // Load the actual argument out of the pointer VAList 2818 Result = DAG.getLoad(VT, Tmp3, VAList, NULL, 0); 2819 Tmp1 = LegalizeOp(Result.getValue(1)); 2820 Result = LegalizeOp(Result); 2821 break; 2822 } 2823 } 2824 // Since VAARG produces two values, make sure to remember that we 2825 // legalized both of them. 2826 AddLegalizedOperand(SDOperand(Node, 0), Result); 2827 AddLegalizedOperand(SDOperand(Node, 1), Tmp1); 2828 return Op.ResNo ? Tmp1 : Result; 2829 } 2830 2831 case ISD::VACOPY: 2832 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2833 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the dest pointer. 2834 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the source pointer. 2835 2836 switch (TLI.getOperationAction(ISD::VACOPY, MVT::Other)) { 2837 default: assert(0 && "This action is not supported yet!"); 2838 case TargetLowering::Custom: 2839 isCustom = true; 2840 // FALLTHROUGH 2841 case TargetLowering::Legal: 2842 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, 2843 Node->getOperand(3), Node->getOperand(4)); 2844 if (isCustom) { 2845 Tmp1 = TLI.LowerOperation(Result, DAG); 2846 if (Tmp1.Val) Result = Tmp1; 2847 } 2848 break; 2849 case TargetLowering::Expand: 2850 // This defaults to loading a pointer from the input and storing it to the 2851 // output, returning the chain. 2852 SrcValueSDNode *SVD = cast<SrcValueSDNode>(Node->getOperand(3)); 2853 SrcValueSDNode *SVS = cast<SrcValueSDNode>(Node->getOperand(4)); 2854 Tmp4 = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp3, SVD->getValue(), 2855 SVD->getOffset()); 2856 Result = DAG.getStore(Tmp4.getValue(1), Tmp4, Tmp2, SVS->getValue(), 2857 SVS->getOffset()); 2858 break; 2859 } 2860 break; 2861 2862 case ISD::VAEND: 2863 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2864 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 2865 2866 switch (TLI.getOperationAction(ISD::VAEND, MVT::Other)) { 2867 default: assert(0 && "This action is not supported yet!"); 2868 case TargetLowering::Custom: 2869 isCustom = true; 2870 // FALLTHROUGH 2871 case TargetLowering::Legal: 2872 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 2873 if (isCustom) { 2874 Tmp1 = TLI.LowerOperation(Tmp1, DAG); 2875 if (Tmp1.Val) Result = Tmp1; 2876 } 2877 break; 2878 case TargetLowering::Expand: 2879 Result = Tmp1; // Default to a no-op, return the chain 2880 break; 2881 } 2882 break; 2883 2884 case ISD::VASTART: 2885 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2886 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 2887 2888 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 2889 2890 switch (TLI.getOperationAction(ISD::VASTART, MVT::Other)) { 2891 default: assert(0 && "This action is not supported yet!"); 2892 case TargetLowering::Legal: break; 2893 case TargetLowering::Custom: 2894 Tmp1 = TLI.LowerOperation(Result, DAG); 2895 if (Tmp1.Val) Result = Tmp1; 2896 break; 2897 } 2898 break; 2899 2900 case ISD::ROTL: 2901 case ISD::ROTR: 2902 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 2903 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 2904 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 2905 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 2906 default: 2907 assert(0 && "ROTL/ROTR legalize operation not supported"); 2908 break; 2909 case TargetLowering::Legal: 2910 break; 2911 case TargetLowering::Custom: 2912 Tmp1 = TLI.LowerOperation(Result, DAG); 2913 if (Tmp1.Val) Result = Tmp1; 2914 break; 2915 case TargetLowering::Promote: 2916 assert(0 && "Do not know how to promote ROTL/ROTR"); 2917 break; 2918 case TargetLowering::Expand: 2919 assert(0 && "Do not know how to expand ROTL/ROTR"); 2920 break; 2921 } 2922 break; 2923 2924 case ISD::BSWAP: 2925 Tmp1 = LegalizeOp(Node->getOperand(0)); // Op 2926 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 2927 case TargetLowering::Custom: 2928 assert(0 && "Cannot custom legalize this yet!"); 2929 case TargetLowering::Legal: 2930 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2931 break; 2932 case TargetLowering::Promote: { 2933 MVT::ValueType OVT = Tmp1.getValueType(); 2934 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 2935 unsigned DiffBits = MVT::getSizeInBits(NVT) - MVT::getSizeInBits(OVT); 2936 2937 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); 2938 Tmp1 = DAG.getNode(ISD::BSWAP, NVT, Tmp1); 2939 Result = DAG.getNode(ISD::SRL, NVT, Tmp1, 2940 DAG.getConstant(DiffBits, TLI.getShiftAmountTy())); 2941 break; 2942 } 2943 case TargetLowering::Expand: 2944 Result = ExpandBSWAP(Tmp1); 2945 break; 2946 } 2947 break; 2948 2949 case ISD::CTPOP: 2950 case ISD::CTTZ: 2951 case ISD::CTLZ: 2952 Tmp1 = LegalizeOp(Node->getOperand(0)); // Op 2953 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 2954 case TargetLowering::Custom: 2955 case TargetLowering::Legal: 2956 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2957 if (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)) == 2958 TargetLowering::Custom) { 2959 Tmp1 = TLI.LowerOperation(Result, DAG); 2960 if (Tmp1.Val) { 2961 Result = Tmp1; 2962 } 2963 } 2964 break; 2965 case TargetLowering::Promote: { 2966 MVT::ValueType OVT = Tmp1.getValueType(); 2967 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 2968 2969 // Zero extend the argument. 2970 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); 2971 // Perform the larger operation, then subtract if needed. 2972 Tmp1 = DAG.getNode(Node->getOpcode(), Node->getValueType(0), Tmp1); 2973 switch (Node->getOpcode()) { 2974 case ISD::CTPOP: 2975 Result = Tmp1; 2976 break; 2977 case ISD::CTTZ: 2978 //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) 2979 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), Tmp1, 2980 DAG.getConstant(MVT::getSizeInBits(NVT), NVT), 2981 ISD::SETEQ); 2982 Result = DAG.getNode(ISD::SELECT, NVT, Tmp2, 2983 DAG.getConstant(MVT::getSizeInBits(OVT),NVT), Tmp1); 2984 break; 2985 case ISD::CTLZ: 2986 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 2987 Result = DAG.getNode(ISD::SUB, NVT, Tmp1, 2988 DAG.getConstant(MVT::getSizeInBits(NVT) - 2989 MVT::getSizeInBits(OVT), NVT)); 2990 break; 2991 } 2992 break; 2993 } 2994 case TargetLowering::Expand: 2995 Result = ExpandBitCount(Node->getOpcode(), Tmp1); 2996 break; 2997 } 2998 break; 2999 3000 // Unary operators 3001 case ISD::FABS: 3002 case ISD::FNEG: 3003 case ISD::FSQRT: 3004 case ISD::FSIN: 3005 case ISD::FCOS: 3006 Tmp1 = LegalizeOp(Node->getOperand(0)); 3007 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3008 case TargetLowering::Promote: 3009 case TargetLowering::Custom: 3010 isCustom = true; 3011 // FALLTHROUGH 3012 case TargetLowering::Legal: 3013 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3014 if (isCustom) { 3015 Tmp1 = TLI.LowerOperation(Result, DAG); 3016 if (Tmp1.Val) Result = Tmp1; 3017 } 3018 break; 3019 case TargetLowering::Expand: 3020 switch (Node->getOpcode()) { 3021 default: assert(0 && "Unreachable!"); 3022 case ISD::FNEG: 3023 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 3024 Tmp2 = DAG.getConstantFP(-0.0, Node->getValueType(0)); 3025 Result = DAG.getNode(ISD::FSUB, Node->getValueType(0), Tmp2, Tmp1); 3026 break; 3027 case ISD::FABS: { 3028 // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X). 3029 MVT::ValueType VT = Node->getValueType(0); 3030 Tmp2 = DAG.getConstantFP(0.0, VT); 3031 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), Tmp1, Tmp2, ISD::SETUGT); 3032 Tmp3 = DAG.getNode(ISD::FNEG, VT, Tmp1); 3033 Result = DAG.getNode(ISD::SELECT, VT, Tmp2, Tmp1, Tmp3); 3034 break; 3035 } 3036 case ISD::FSQRT: 3037 case ISD::FSIN: 3038 case ISD::FCOS: { 3039 MVT::ValueType VT = Node->getValueType(0); 3040 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3041 switch(Node->getOpcode()) { 3042 case ISD::FSQRT: 3043 LC = VT == MVT::f32 ? RTLIB::SQRT_F32 : RTLIB::SQRT_F64; 3044 break; 3045 case ISD::FSIN: 3046 LC = VT == MVT::f32 ? RTLIB::SIN_F32 : RTLIB::SIN_F64; 3047 break; 3048 case ISD::FCOS: 3049 LC = VT == MVT::f32 ? RTLIB::COS_F32 : RTLIB::COS_F64; 3050 break; 3051 default: assert(0 && "Unreachable!"); 3052 } 3053 SDOperand Dummy; 3054 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 3055 false/*sign irrelevant*/, Dummy); 3056 break; 3057 } 3058 } 3059 break; 3060 } 3061 break; 3062 case ISD::FPOWI: { 3063 // We always lower FPOWI into a libcall. No target support it yet. 3064 RTLIB::Libcall LC = Node->getValueType(0) == MVT::f32 3065 ? RTLIB::POWI_F32 : RTLIB::POWI_F64; 3066 SDOperand Dummy; 3067 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 3068 false/*sign irrelevant*/, Dummy); 3069 break; 3070 } 3071 case ISD::BIT_CONVERT: 3072 if (!isTypeLegal(Node->getOperand(0).getValueType())) { 3073 Result = ExpandBIT_CONVERT(Node->getValueType(0), Node->getOperand(0)); 3074 } else if (MVT::isVector(Op.getOperand(0).getValueType())) { 3075 // The input has to be a vector type, we have to either scalarize it, pack 3076 // it, or convert it based on whether the input vector type is legal. 3077 SDNode *InVal = Node->getOperand(0).Val; 3078 unsigned NumElems = MVT::getVectorNumElements(InVal->getValueType(0)); 3079 MVT::ValueType EVT = MVT::getVectorElementType(InVal->getValueType(0)); 3080 3081 // Figure out if there is a simple type corresponding to this Vector 3082 // type. If so, convert to the vector type. 3083 MVT::ValueType TVT = MVT::getVectorType(EVT, NumElems); 3084 if (TLI.isTypeLegal(TVT)) { 3085 // Turn this into a bit convert of the vector input. 3086 Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), 3087 LegalizeOp(Node->getOperand(0))); 3088 break; 3089 } else if (NumElems == 1) { 3090 // Turn this into a bit convert of the scalar input. 3091 Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), 3092 ScalarizeVectorOp(Node->getOperand(0))); 3093 break; 3094 } else { 3095 // FIXME: UNIMP! Store then reload 3096 assert(0 && "Cast from unsupported vector type not implemented yet!"); 3097 } 3098 } else { 3099 switch (TLI.getOperationAction(ISD::BIT_CONVERT, 3100 Node->getOperand(0).getValueType())) { 3101 default: assert(0 && "Unknown operation action!"); 3102 case TargetLowering::Expand: 3103 Result = ExpandBIT_CONVERT(Node->getValueType(0), Node->getOperand(0)); 3104 break; 3105 case TargetLowering::Legal: 3106 Tmp1 = LegalizeOp(Node->getOperand(0)); 3107 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3108 break; 3109 } 3110 } 3111 break; 3112 3113 // Conversion operators. The source and destination have different types. 3114 case ISD::SINT_TO_FP: 3115 case ISD::UINT_TO_FP: { 3116 bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP; 3117 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3118 case Legal: 3119 switch (TLI.getOperationAction(Node->getOpcode(), 3120 Node->getOperand(0).getValueType())) { 3121 default: assert(0 && "Unknown operation action!"); 3122 case TargetLowering::Custom: 3123 isCustom = true; 3124 // FALLTHROUGH 3125 case TargetLowering::Legal: 3126 Tmp1 = LegalizeOp(Node->getOperand(0)); 3127 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3128 if (isCustom) { 3129 Tmp1 = TLI.LowerOperation(Result, DAG); 3130 if (Tmp1.Val) Result = Tmp1; 3131 } 3132 break; 3133 case TargetLowering::Expand: 3134 Result = ExpandLegalINT_TO_FP(isSigned, 3135 LegalizeOp(Node->getOperand(0)), 3136 Node->getValueType(0)); 3137 break; 3138 case TargetLowering::Promote: 3139 Result = PromoteLegalINT_TO_FP(LegalizeOp(Node->getOperand(0)), 3140 Node->getValueType(0), 3141 isSigned); 3142 break; 3143 } 3144 break; 3145 case Expand: 3146 Result = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, 3147 Node->getValueType(0), Node->getOperand(0)); 3148 break; 3149 case Promote: 3150 Tmp1 = PromoteOp(Node->getOperand(0)); 3151 if (isSigned) { 3152 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, Tmp1.getValueType(), 3153 Tmp1, DAG.getValueType(Node->getOperand(0).getValueType())); 3154 } else { 3155 Tmp1 = DAG.getZeroExtendInReg(Tmp1, 3156 Node->getOperand(0).getValueType()); 3157 } 3158 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3159 Result = LegalizeOp(Result); // The 'op' is not necessarily legal! 3160 break; 3161 } 3162 break; 3163 } 3164 case ISD::TRUNCATE: 3165 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3166 case Legal: 3167 Tmp1 = LegalizeOp(Node->getOperand(0)); 3168 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3169 break; 3170 case Expand: 3171 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 3172 3173 // Since the result is legal, we should just be able to truncate the low 3174 // part of the source. 3175 Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), Tmp1); 3176 break; 3177 case Promote: 3178 Result = PromoteOp(Node->getOperand(0)); 3179 Result = DAG.getNode(ISD::TRUNCATE, Op.getValueType(), Result); 3180 break; 3181 } 3182 break; 3183 3184 case ISD::FP_TO_SINT: 3185 case ISD::FP_TO_UINT: 3186 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3187 case Legal: 3188 Tmp1 = LegalizeOp(Node->getOperand(0)); 3189 3190 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))){ 3191 default: assert(0 && "Unknown operation action!"); 3192 case TargetLowering::Custom: 3193 isCustom = true; 3194 // FALLTHROUGH 3195 case TargetLowering::Legal: 3196 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3197 if (isCustom) { 3198 Tmp1 = TLI.LowerOperation(Result, DAG); 3199 if (Tmp1.Val) Result = Tmp1; 3200 } 3201 break; 3202 case TargetLowering::Promote: 3203 Result = PromoteLegalFP_TO_INT(Tmp1, Node->getValueType(0), 3204 Node->getOpcode() == ISD::FP_TO_SINT); 3205 break; 3206 case TargetLowering::Expand: 3207 if (Node->getOpcode() == ISD::FP_TO_UINT) { 3208 SDOperand True, False; 3209 MVT::ValueType VT = Node->getOperand(0).getValueType(); 3210 MVT::ValueType NVT = Node->getValueType(0); 3211 unsigned ShiftAmt = MVT::getSizeInBits(Node->getValueType(0))-1; 3212 Tmp2 = DAG.getConstantFP((double)(1ULL << ShiftAmt), VT); 3213 Tmp3 = DAG.getSetCC(TLI.getSetCCResultTy(), 3214 Node->getOperand(0), Tmp2, ISD::SETLT); 3215 True = DAG.getNode(ISD::FP_TO_SINT, NVT, Node->getOperand(0)); 3216 False = DAG.getNode(ISD::FP_TO_SINT, NVT, 3217 DAG.getNode(ISD::FSUB, VT, Node->getOperand(0), 3218 Tmp2)); 3219 False = DAG.getNode(ISD::XOR, NVT, False, 3220 DAG.getConstant(1ULL << ShiftAmt, NVT)); 3221 Result = DAG.getNode(ISD::SELECT, NVT, Tmp3, True, False); 3222 break; 3223 } else { 3224 assert(0 && "Do not know how to expand FP_TO_SINT yet!"); 3225 } 3226 break; 3227 } 3228 break; 3229 case Expand: { 3230 // Convert f32 / f64 to i32 / i64. 3231 MVT::ValueType VT = Op.getValueType(); 3232 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3233 switch (Node->getOpcode()) { 3234 case ISD::FP_TO_SINT: 3235 if (Node->getOperand(0).getValueType() == MVT::f32) 3236 LC = (VT == MVT::i32) 3237 ? RTLIB::FPTOSINT_F32_I32 : RTLIB::FPTOSINT_F32_I64; 3238 else 3239 LC = (VT == MVT::i32) 3240 ? RTLIB::FPTOSINT_F64_I32 : RTLIB::FPTOSINT_F64_I64; 3241 break; 3242 case ISD::FP_TO_UINT: 3243 if (Node->getOperand(0).getValueType() == MVT::f32) 3244 LC = (VT == MVT::i32) 3245 ? RTLIB::FPTOUINT_F32_I32 : RTLIB::FPTOSINT_F32_I64; 3246 else 3247 LC = (VT == MVT::i32) 3248 ? RTLIB::FPTOUINT_F64_I32 : RTLIB::FPTOSINT_F64_I64; 3249 break; 3250 default: assert(0 && "Unreachable!"); 3251 } 3252 SDOperand Dummy; 3253 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 3254 false/*sign irrelevant*/, Dummy); 3255 break; 3256 } 3257 case Promote: 3258 Tmp1 = PromoteOp(Node->getOperand(0)); 3259 Result = DAG.UpdateNodeOperands(Result, LegalizeOp(Tmp1)); 3260 Result = LegalizeOp(Result); 3261 break; 3262 } 3263 break; 3264 3265 case ISD::FP_EXTEND: 3266 case ISD::FP_ROUND: { 3267 MVT::ValueType newVT = Op.getValueType(); 3268 MVT::ValueType oldVT = Op.getOperand(0).getValueType(); 3269 if (TLI.getConvertAction(oldVT, newVT) == TargetLowering::Expand) { 3270 // The only way we can lower this is to turn it into a STORE, 3271 // LOAD pair, targetting a temporary location (a stack slot). 3272 3273 // NOTE: there is a choice here between constantly creating new stack 3274 // slots and always reusing the same one. We currently always create 3275 // new ones, as reuse may inhibit scheduling. 3276 MVT::ValueType slotVT = 3277 (Node->getOpcode() == ISD::FP_EXTEND) ? oldVT : newVT; 3278 const Type *Ty = MVT::getTypeForValueType(slotVT); 3279 uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty); 3280 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 3281 MachineFunction &MF = DAG.getMachineFunction(); 3282 int SSFI = 3283 MF.getFrameInfo()->CreateStackObject(TySize, Align); 3284 SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 3285 if (Node->getOpcode() == ISD::FP_EXTEND) { 3286 Result = DAG.getStore(DAG.getEntryNode(), Node->getOperand(0), 3287 StackSlot, NULL, 0); 3288 Result = DAG.getExtLoad(ISD::EXTLOAD, newVT, 3289 Result, StackSlot, NULL, 0, oldVT); 3290 } else { 3291 Result = DAG.getTruncStore(DAG.getEntryNode(), Node->getOperand(0), 3292 StackSlot, NULL, 0, newVT); 3293 Result = DAG.getLoad(newVT, Result, StackSlot, NULL, 0, newVT); 3294 } 3295 break; 3296 } 3297 } 3298 // FALL THROUGH 3299 case ISD::ANY_EXTEND: 3300 case ISD::ZERO_EXTEND: 3301 case ISD::SIGN_EXTEND: 3302 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3303 case Expand: assert(0 && "Shouldn't need to expand other operators here!"); 3304 case Legal: 3305 Tmp1 = LegalizeOp(Node->getOperand(0)); 3306 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3307 break; 3308 case Promote: 3309 switch (Node->getOpcode()) { 3310 case ISD::ANY_EXTEND: 3311 Tmp1 = PromoteOp(Node->getOperand(0)); 3312 Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Tmp1); 3313 break; 3314 case ISD::ZERO_EXTEND: 3315 Result = PromoteOp(Node->getOperand(0)); 3316 Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Result); 3317 Result = DAG.getZeroExtendInReg(Result, 3318 Node->getOperand(0).getValueType()); 3319 break; 3320 case ISD::SIGN_EXTEND: 3321 Result = PromoteOp(Node->getOperand(0)); 3322 Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Result); 3323 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 3324 Result, 3325 DAG.getValueType(Node->getOperand(0).getValueType())); 3326 break; 3327 case ISD::FP_EXTEND: 3328 Result = PromoteOp(Node->getOperand(0)); 3329 if (Result.getValueType() != Op.getValueType()) 3330 // Dynamically dead while we have only 2 FP types. 3331 Result = DAG.getNode(ISD::FP_EXTEND, Op.getValueType(), Result); 3332 break; 3333 case ISD::FP_ROUND: 3334 Result = PromoteOp(Node->getOperand(0)); 3335 Result = DAG.getNode(Node->getOpcode(), Op.getValueType(), Result); 3336 break; 3337 } 3338 } 3339 break; 3340 case ISD::FP_ROUND_INREG: 3341 case ISD::SIGN_EXTEND_INREG: { 3342 Tmp1 = LegalizeOp(Node->getOperand(0)); 3343 MVT::ValueType ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 3344 3345 // If this operation is not supported, convert it to a shl/shr or load/store 3346 // pair. 3347 switch (TLI.getOperationAction(Node->getOpcode(), ExtraVT)) { 3348 default: assert(0 && "This action not supported for this op yet!"); 3349 case TargetLowering::Legal: 3350 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 3351 break; 3352 case TargetLowering::Expand: 3353 // If this is an integer extend and shifts are supported, do that. 3354 if (Node->getOpcode() == ISD::SIGN_EXTEND_INREG) { 3355 // NOTE: we could fall back on load/store here too for targets without 3356 // SAR. However, it is doubtful that any exist. 3357 unsigned BitsDiff = MVT::getSizeInBits(Node->getValueType(0)) - 3358 MVT::getSizeInBits(ExtraVT); 3359 SDOperand ShiftCst = DAG.getConstant(BitsDiff, TLI.getShiftAmountTy()); 3360 Result = DAG.getNode(ISD::SHL, Node->getValueType(0), 3361 Node->getOperand(0), ShiftCst); 3362 Result = DAG.getNode(ISD::SRA, Node->getValueType(0), 3363 Result, ShiftCst); 3364 } else if (Node->getOpcode() == ISD::FP_ROUND_INREG) { 3365 // The only way we can lower this is to turn it into a TRUNCSTORE, 3366 // EXTLOAD pair, targetting a temporary location (a stack slot). 3367 3368 // NOTE: there is a choice here between constantly creating new stack 3369 // slots and always reusing the same one. We currently always create 3370 // new ones, as reuse may inhibit scheduling. 3371 const Type *Ty = MVT::getTypeForValueType(ExtraVT); 3372 uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty); 3373 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 3374 MachineFunction &MF = DAG.getMachineFunction(); 3375 int SSFI = 3376 MF.getFrameInfo()->CreateStackObject(TySize, Align); 3377 SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 3378 Result = DAG.getTruncStore(DAG.getEntryNode(), Node->getOperand(0), 3379 StackSlot, NULL, 0, ExtraVT); 3380 Result = DAG.getExtLoad(ISD::EXTLOAD, Node->getValueType(0), 3381 Result, StackSlot, NULL, 0, ExtraVT); 3382 } else { 3383 assert(0 && "Unknown op"); 3384 } 3385 break; 3386 } 3387 break; 3388 } 3389 case ISD::TRAMPOLINE: { 3390 SDOperand Ops[6]; 3391 for (unsigned i = 0; i != 6; ++i) 3392 Ops[i] = LegalizeOp(Node->getOperand(i)); 3393 Result = DAG.UpdateNodeOperands(Result, Ops, 6); 3394 // The only option for this node is to custom lower it. 3395 Result = TLI.LowerOperation(Result, DAG); 3396 assert(Result.Val && "Should always custom lower!"); 3397 3398 // Since trampoline produces two values, make sure to remember that we 3399 // legalized both of them. 3400 Tmp1 = LegalizeOp(Result.getValue(1)); 3401 Result = LegalizeOp(Result); 3402 AddLegalizedOperand(SDOperand(Node, 0), Result); 3403 AddLegalizedOperand(SDOperand(Node, 1), Tmp1); 3404 return Op.ResNo ? Tmp1 : Result; 3405 } 3406 } 3407 3408 assert(Result.getValueType() == Op.getValueType() && 3409 "Bad legalization!"); 3410 3411 // Make sure that the generated code is itself legal. 3412 if (Result != Op) 3413 Result = LegalizeOp(Result); 3414 3415 // Note that LegalizeOp may be reentered even from single-use nodes, which 3416 // means that we always must cache transformed nodes. 3417 AddLegalizedOperand(Op, Result); 3418 return Result; 3419} 3420 3421/// PromoteOp - Given an operation that produces a value in an invalid type, 3422/// promote it to compute the value into a larger type. The produced value will 3423/// have the correct bits for the low portion of the register, but no guarantee 3424/// is made about the top bits: it may be zero, sign-extended, or garbage. 3425SDOperand SelectionDAGLegalize::PromoteOp(SDOperand Op) { 3426 MVT::ValueType VT = Op.getValueType(); 3427 MVT::ValueType NVT = TLI.getTypeToTransformTo(VT); 3428 assert(getTypeAction(VT) == Promote && 3429 "Caller should expand or legalize operands that are not promotable!"); 3430 assert(NVT > VT && MVT::isInteger(NVT) == MVT::isInteger(VT) && 3431 "Cannot promote to smaller type!"); 3432 3433 SDOperand Tmp1, Tmp2, Tmp3; 3434 SDOperand Result; 3435 SDNode *Node = Op.Val; 3436 3437 DenseMap<SDOperand, SDOperand>::iterator I = PromotedNodes.find(Op); 3438 if (I != PromotedNodes.end()) return I->second; 3439 3440 switch (Node->getOpcode()) { 3441 case ISD::CopyFromReg: 3442 assert(0 && "CopyFromReg must be legal!"); 3443 default: 3444#ifndef NDEBUG 3445 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 3446#endif 3447 assert(0 && "Do not know how to promote this operator!"); 3448 abort(); 3449 case ISD::UNDEF: 3450 Result = DAG.getNode(ISD::UNDEF, NVT); 3451 break; 3452 case ISD::Constant: 3453 if (VT != MVT::i1) 3454 Result = DAG.getNode(ISD::SIGN_EXTEND, NVT, Op); 3455 else 3456 Result = DAG.getNode(ISD::ZERO_EXTEND, NVT, Op); 3457 assert(isa<ConstantSDNode>(Result) && "Didn't constant fold zext?"); 3458 break; 3459 case ISD::ConstantFP: 3460 Result = DAG.getNode(ISD::FP_EXTEND, NVT, Op); 3461 assert(isa<ConstantFPSDNode>(Result) && "Didn't constant fold fp_extend?"); 3462 break; 3463 3464 case ISD::SETCC: 3465 assert(isTypeLegal(TLI.getSetCCResultTy()) && "SetCC type is not legal??"); 3466 Result = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(),Node->getOperand(0), 3467 Node->getOperand(1), Node->getOperand(2)); 3468 break; 3469 3470 case ISD::TRUNCATE: 3471 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3472 case Legal: 3473 Result = LegalizeOp(Node->getOperand(0)); 3474 assert(Result.getValueType() >= NVT && 3475 "This truncation doesn't make sense!"); 3476 if (Result.getValueType() > NVT) // Truncate to NVT instead of VT 3477 Result = DAG.getNode(ISD::TRUNCATE, NVT, Result); 3478 break; 3479 case Promote: 3480 // The truncation is not required, because we don't guarantee anything 3481 // about high bits anyway. 3482 Result = PromoteOp(Node->getOperand(0)); 3483 break; 3484 case Expand: 3485 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 3486 // Truncate the low part of the expanded value to the result type 3487 Result = DAG.getNode(ISD::TRUNCATE, NVT, Tmp1); 3488 } 3489 break; 3490 case ISD::SIGN_EXTEND: 3491 case ISD::ZERO_EXTEND: 3492 case ISD::ANY_EXTEND: 3493 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3494 case Expand: assert(0 && "BUG: Smaller reg should have been promoted!"); 3495 case Legal: 3496 // Input is legal? Just do extend all the way to the larger type. 3497 Result = DAG.getNode(Node->getOpcode(), NVT, Node->getOperand(0)); 3498 break; 3499 case Promote: 3500 // Promote the reg if it's smaller. 3501 Result = PromoteOp(Node->getOperand(0)); 3502 // The high bits are not guaranteed to be anything. Insert an extend. 3503 if (Node->getOpcode() == ISD::SIGN_EXTEND) 3504 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Result, 3505 DAG.getValueType(Node->getOperand(0).getValueType())); 3506 else if (Node->getOpcode() == ISD::ZERO_EXTEND) 3507 Result = DAG.getZeroExtendInReg(Result, 3508 Node->getOperand(0).getValueType()); 3509 break; 3510 } 3511 break; 3512 case ISD::BIT_CONVERT: 3513 Result = ExpandBIT_CONVERT(Node->getValueType(0), Node->getOperand(0)); 3514 Result = PromoteOp(Result); 3515 break; 3516 3517 case ISD::FP_EXTEND: 3518 assert(0 && "Case not implemented. Dynamically dead with 2 FP types!"); 3519 case ISD::FP_ROUND: 3520 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3521 case Expand: assert(0 && "BUG: Cannot expand FP regs!"); 3522 case Promote: assert(0 && "Unreachable with 2 FP types!"); 3523 case Legal: 3524 // Input is legal? Do an FP_ROUND_INREG. 3525 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Node->getOperand(0), 3526 DAG.getValueType(VT)); 3527 break; 3528 } 3529 break; 3530 3531 case ISD::SINT_TO_FP: 3532 case ISD::UINT_TO_FP: 3533 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3534 case Legal: 3535 // No extra round required here. 3536 Result = DAG.getNode(Node->getOpcode(), NVT, Node->getOperand(0)); 3537 break; 3538 3539 case Promote: 3540 Result = PromoteOp(Node->getOperand(0)); 3541 if (Node->getOpcode() == ISD::SINT_TO_FP) 3542 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 3543 Result, 3544 DAG.getValueType(Node->getOperand(0).getValueType())); 3545 else 3546 Result = DAG.getZeroExtendInReg(Result, 3547 Node->getOperand(0).getValueType()); 3548 // No extra round required here. 3549 Result = DAG.getNode(Node->getOpcode(), NVT, Result); 3550 break; 3551 case Expand: 3552 Result = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, NVT, 3553 Node->getOperand(0)); 3554 // Round if we cannot tolerate excess precision. 3555 if (NoExcessFPPrecision) 3556 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 3557 DAG.getValueType(VT)); 3558 break; 3559 } 3560 break; 3561 3562 case ISD::SIGN_EXTEND_INREG: 3563 Result = PromoteOp(Node->getOperand(0)); 3564 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Result, 3565 Node->getOperand(1)); 3566 break; 3567 case ISD::FP_TO_SINT: 3568 case ISD::FP_TO_UINT: 3569 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3570 case Legal: 3571 case Expand: 3572 Tmp1 = Node->getOperand(0); 3573 break; 3574 case Promote: 3575 // The input result is prerounded, so we don't have to do anything 3576 // special. 3577 Tmp1 = PromoteOp(Node->getOperand(0)); 3578 break; 3579 } 3580 // If we're promoting a UINT to a larger size, check to see if the new node 3581 // will be legal. If it isn't, check to see if FP_TO_SINT is legal, since 3582 // we can use that instead. This allows us to generate better code for 3583 // FP_TO_UINT for small destination sizes on targets where FP_TO_UINT is not 3584 // legal, such as PowerPC. 3585 if (Node->getOpcode() == ISD::FP_TO_UINT && 3586 !TLI.isOperationLegal(ISD::FP_TO_UINT, NVT) && 3587 (TLI.isOperationLegal(ISD::FP_TO_SINT, NVT) || 3588 TLI.getOperationAction(ISD::FP_TO_SINT, NVT)==TargetLowering::Custom)){ 3589 Result = DAG.getNode(ISD::FP_TO_SINT, NVT, Tmp1); 3590 } else { 3591 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 3592 } 3593 break; 3594 3595 case ISD::FABS: 3596 case ISD::FNEG: 3597 Tmp1 = PromoteOp(Node->getOperand(0)); 3598 assert(Tmp1.getValueType() == NVT); 3599 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 3600 // NOTE: we do not have to do any extra rounding here for 3601 // NoExcessFPPrecision, because we know the input will have the appropriate 3602 // precision, and these operations don't modify precision at all. 3603 break; 3604 3605 case ISD::FSQRT: 3606 case ISD::FSIN: 3607 case ISD::FCOS: 3608 Tmp1 = PromoteOp(Node->getOperand(0)); 3609 assert(Tmp1.getValueType() == NVT); 3610 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 3611 if (NoExcessFPPrecision) 3612 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 3613 DAG.getValueType(VT)); 3614 break; 3615 3616 case ISD::FPOWI: { 3617 // Promote f32 powi to f64 powi. Note that this could insert a libcall 3618 // directly as well, which may be better. 3619 Tmp1 = PromoteOp(Node->getOperand(0)); 3620 assert(Tmp1.getValueType() == NVT); 3621 Result = DAG.getNode(ISD::FPOWI, NVT, Tmp1, Node->getOperand(1)); 3622 if (NoExcessFPPrecision) 3623 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 3624 DAG.getValueType(VT)); 3625 break; 3626 } 3627 3628 case ISD::AND: 3629 case ISD::OR: 3630 case ISD::XOR: 3631 case ISD::ADD: 3632 case ISD::SUB: 3633 case ISD::MUL: 3634 // The input may have strange things in the top bits of the registers, but 3635 // these operations don't care. They may have weird bits going out, but 3636 // that too is okay if they are integer operations. 3637 Tmp1 = PromoteOp(Node->getOperand(0)); 3638 Tmp2 = PromoteOp(Node->getOperand(1)); 3639 assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT); 3640 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 3641 break; 3642 case ISD::FADD: 3643 case ISD::FSUB: 3644 case ISD::FMUL: 3645 Tmp1 = PromoteOp(Node->getOperand(0)); 3646 Tmp2 = PromoteOp(Node->getOperand(1)); 3647 assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT); 3648 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 3649 3650 // Floating point operations will give excess precision that we may not be 3651 // able to tolerate. If we DO allow excess precision, just leave it, 3652 // otherwise excise it. 3653 // FIXME: Why would we need to round FP ops more than integer ones? 3654 // Is Round(Add(Add(A,B),C)) != Round(Add(Round(Add(A,B)), C)) 3655 if (NoExcessFPPrecision) 3656 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 3657 DAG.getValueType(VT)); 3658 break; 3659 3660 case ISD::SDIV: 3661 case ISD::SREM: 3662 // These operators require that their input be sign extended. 3663 Tmp1 = PromoteOp(Node->getOperand(0)); 3664 Tmp2 = PromoteOp(Node->getOperand(1)); 3665 if (MVT::isInteger(NVT)) { 3666 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, 3667 DAG.getValueType(VT)); 3668 Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp2, 3669 DAG.getValueType(VT)); 3670 } 3671 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 3672 3673 // Perform FP_ROUND: this is probably overly pessimistic. 3674 if (MVT::isFloatingPoint(NVT) && NoExcessFPPrecision) 3675 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 3676 DAG.getValueType(VT)); 3677 break; 3678 case ISD::FDIV: 3679 case ISD::FREM: 3680 case ISD::FCOPYSIGN: 3681 // These operators require that their input be fp extended. 3682 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3683 case Legal: 3684 Tmp1 = LegalizeOp(Node->getOperand(0)); 3685 break; 3686 case Promote: 3687 Tmp1 = PromoteOp(Node->getOperand(0)); 3688 break; 3689 case Expand: 3690 assert(0 && "not implemented"); 3691 } 3692 switch (getTypeAction(Node->getOperand(1).getValueType())) { 3693 case Legal: 3694 Tmp2 = LegalizeOp(Node->getOperand(1)); 3695 break; 3696 case Promote: 3697 Tmp2 = PromoteOp(Node->getOperand(1)); 3698 break; 3699 case Expand: 3700 assert(0 && "not implemented"); 3701 } 3702 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 3703 3704 // Perform FP_ROUND: this is probably overly pessimistic. 3705 if (NoExcessFPPrecision && Node->getOpcode() != ISD::FCOPYSIGN) 3706 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 3707 DAG.getValueType(VT)); 3708 break; 3709 3710 case ISD::UDIV: 3711 case ISD::UREM: 3712 // These operators require that their input be zero extended. 3713 Tmp1 = PromoteOp(Node->getOperand(0)); 3714 Tmp2 = PromoteOp(Node->getOperand(1)); 3715 assert(MVT::isInteger(NVT) && "Operators don't apply to FP!"); 3716 Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); 3717 Tmp2 = DAG.getZeroExtendInReg(Tmp2, VT); 3718 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 3719 break; 3720 3721 case ISD::SHL: 3722 Tmp1 = PromoteOp(Node->getOperand(0)); 3723 Result = DAG.getNode(ISD::SHL, NVT, Tmp1, Node->getOperand(1)); 3724 break; 3725 case ISD::SRA: 3726 // The input value must be properly sign extended. 3727 Tmp1 = PromoteOp(Node->getOperand(0)); 3728 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, 3729 DAG.getValueType(VT)); 3730 Result = DAG.getNode(ISD::SRA, NVT, Tmp1, Node->getOperand(1)); 3731 break; 3732 case ISD::SRL: 3733 // The input value must be properly zero extended. 3734 Tmp1 = PromoteOp(Node->getOperand(0)); 3735 Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); 3736 Result = DAG.getNode(ISD::SRL, NVT, Tmp1, Node->getOperand(1)); 3737 break; 3738 3739 case ISD::VAARG: 3740 Tmp1 = Node->getOperand(0); // Get the chain. 3741 Tmp2 = Node->getOperand(1); // Get the pointer. 3742 if (TLI.getOperationAction(ISD::VAARG, VT) == TargetLowering::Custom) { 3743 Tmp3 = DAG.getVAArg(VT, Tmp1, Tmp2, Node->getOperand(2)); 3744 Result = TLI.CustomPromoteOperation(Tmp3, DAG); 3745 } else { 3746 SrcValueSDNode *SV = cast<SrcValueSDNode>(Node->getOperand(2)); 3747 SDOperand VAList = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp2, 3748 SV->getValue(), SV->getOffset()); 3749 // Increment the pointer, VAList, to the next vaarg 3750 Tmp3 = DAG.getNode(ISD::ADD, TLI.getPointerTy(), VAList, 3751 DAG.getConstant(MVT::getSizeInBits(VT)/8, 3752 TLI.getPointerTy())); 3753 // Store the incremented VAList to the legalized pointer 3754 Tmp3 = DAG.getStore(VAList.getValue(1), Tmp3, Tmp2, SV->getValue(), 3755 SV->getOffset()); 3756 // Load the actual argument out of the pointer VAList 3757 Result = DAG.getExtLoad(ISD::EXTLOAD, NVT, Tmp3, VAList, NULL, 0, VT); 3758 } 3759 // Remember that we legalized the chain. 3760 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 3761 break; 3762 3763 case ISD::LOAD: { 3764 LoadSDNode *LD = cast<LoadSDNode>(Node); 3765 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(Node) 3766 ? ISD::EXTLOAD : LD->getExtensionType(); 3767 Result = DAG.getExtLoad(ExtType, NVT, 3768 LD->getChain(), LD->getBasePtr(), 3769 LD->getSrcValue(), LD->getSrcValueOffset(), 3770 LD->getLoadedVT(), 3771 LD->isVolatile(), 3772 LD->getAlignment()); 3773 // Remember that we legalized the chain. 3774 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 3775 break; 3776 } 3777 case ISD::SELECT: 3778 Tmp2 = PromoteOp(Node->getOperand(1)); // Legalize the op0 3779 Tmp3 = PromoteOp(Node->getOperand(2)); // Legalize the op1 3780 Result = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), Tmp2, Tmp3); 3781 break; 3782 case ISD::SELECT_CC: 3783 Tmp2 = PromoteOp(Node->getOperand(2)); // True 3784 Tmp3 = PromoteOp(Node->getOperand(3)); // False 3785 Result = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0), 3786 Node->getOperand(1), Tmp2, Tmp3, Node->getOperand(4)); 3787 break; 3788 case ISD::BSWAP: 3789 Tmp1 = Node->getOperand(0); 3790 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); 3791 Tmp1 = DAG.getNode(ISD::BSWAP, NVT, Tmp1); 3792 Result = DAG.getNode(ISD::SRL, NVT, Tmp1, 3793 DAG.getConstant(MVT::getSizeInBits(NVT) - 3794 MVT::getSizeInBits(VT), 3795 TLI.getShiftAmountTy())); 3796 break; 3797 case ISD::CTPOP: 3798 case ISD::CTTZ: 3799 case ISD::CTLZ: 3800 // Zero extend the argument 3801 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Node->getOperand(0)); 3802 // Perform the larger operation, then subtract if needed. 3803 Tmp1 = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 3804 switch(Node->getOpcode()) { 3805 case ISD::CTPOP: 3806 Result = Tmp1; 3807 break; 3808 case ISD::CTTZ: 3809 // if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) 3810 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), Tmp1, 3811 DAG.getConstant(MVT::getSizeInBits(NVT), NVT), 3812 ISD::SETEQ); 3813 Result = DAG.getNode(ISD::SELECT, NVT, Tmp2, 3814 DAG.getConstant(MVT::getSizeInBits(VT), NVT), Tmp1); 3815 break; 3816 case ISD::CTLZ: 3817 //Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 3818 Result = DAG.getNode(ISD::SUB, NVT, Tmp1, 3819 DAG.getConstant(MVT::getSizeInBits(NVT) - 3820 MVT::getSizeInBits(VT), NVT)); 3821 break; 3822 } 3823 break; 3824 case ISD::EXTRACT_SUBVECTOR: 3825 Result = PromoteOp(ExpandEXTRACT_SUBVECTOR(Op)); 3826 break; 3827 case ISD::EXTRACT_VECTOR_ELT: 3828 Result = PromoteOp(ExpandEXTRACT_VECTOR_ELT(Op)); 3829 break; 3830 } 3831 3832 assert(Result.Val && "Didn't set a result!"); 3833 3834 // Make sure the result is itself legal. 3835 Result = LegalizeOp(Result); 3836 3837 // Remember that we promoted this! 3838 AddPromotedOperand(Op, Result); 3839 return Result; 3840} 3841 3842/// ExpandEXTRACT_VECTOR_ELT - Expand an EXTRACT_VECTOR_ELT operation into 3843/// a legal EXTRACT_VECTOR_ELT operation, scalar code, or memory traffic, 3844/// based on the vector type. The return type of this matches the element type 3845/// of the vector, which may not be legal for the target. 3846SDOperand SelectionDAGLegalize::ExpandEXTRACT_VECTOR_ELT(SDOperand Op) { 3847 // We know that operand #0 is the Vec vector. If the index is a constant 3848 // or if the invec is a supported hardware type, we can use it. Otherwise, 3849 // lower to a store then an indexed load. 3850 SDOperand Vec = Op.getOperand(0); 3851 SDOperand Idx = Op.getOperand(1); 3852 3853 SDNode *InVal = Vec.Val; 3854 MVT::ValueType TVT = InVal->getValueType(0); 3855 unsigned NumElems = MVT::getVectorNumElements(TVT); 3856 3857 switch (TLI.getOperationAction(ISD::EXTRACT_VECTOR_ELT, TVT)) { 3858 default: assert(0 && "This action is not supported yet!"); 3859 case TargetLowering::Custom: { 3860 Vec = LegalizeOp(Vec); 3861 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 3862 SDOperand Tmp3 = TLI.LowerOperation(Op, DAG); 3863 if (Tmp3.Val) 3864 return Tmp3; 3865 break; 3866 } 3867 case TargetLowering::Legal: 3868 if (isTypeLegal(TVT)) { 3869 Vec = LegalizeOp(Vec); 3870 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 3871 return Op; 3872 } 3873 break; 3874 case TargetLowering::Expand: 3875 break; 3876 } 3877 3878 if (NumElems == 1) { 3879 // This must be an access of the only element. Return it. 3880 Op = ScalarizeVectorOp(Vec); 3881 } else if (!TLI.isTypeLegal(TVT) && isa<ConstantSDNode>(Idx)) { 3882 ConstantSDNode *CIdx = cast<ConstantSDNode>(Idx); 3883 SDOperand Lo, Hi; 3884 SplitVectorOp(Vec, Lo, Hi); 3885 if (CIdx->getValue() < NumElems/2) { 3886 Vec = Lo; 3887 } else { 3888 Vec = Hi; 3889 Idx = DAG.getConstant(CIdx->getValue() - NumElems/2, 3890 Idx.getValueType()); 3891 } 3892 3893 // It's now an extract from the appropriate high or low part. Recurse. 3894 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 3895 Op = ExpandEXTRACT_VECTOR_ELT(Op); 3896 } else { 3897 // Store the value to a temporary stack slot, then LOAD the scalar 3898 // element back out. 3899 SDOperand StackPtr = CreateStackTemporary(Vec.getValueType()); 3900 SDOperand Ch = DAG.getStore(DAG.getEntryNode(), Vec, StackPtr, NULL, 0); 3901 3902 // Add the offset to the index. 3903 unsigned EltSize = MVT::getSizeInBits(Op.getValueType())/8; 3904 Idx = DAG.getNode(ISD::MUL, Idx.getValueType(), Idx, 3905 DAG.getConstant(EltSize, Idx.getValueType())); 3906 StackPtr = DAG.getNode(ISD::ADD, Idx.getValueType(), Idx, StackPtr); 3907 3908 Op = DAG.getLoad(Op.getValueType(), Ch, StackPtr, NULL, 0); 3909 } 3910 return Op; 3911} 3912 3913/// ExpandEXTRACT_SUBVECTOR - Expand a EXTRACT_SUBVECTOR operation. For now 3914/// we assume the operation can be split if it is not already legal. 3915SDOperand SelectionDAGLegalize::ExpandEXTRACT_SUBVECTOR(SDOperand Op) { 3916 // We know that operand #0 is the Vec vector. For now we assume the index 3917 // is a constant and that the extracted result is a supported hardware type. 3918 SDOperand Vec = Op.getOperand(0); 3919 SDOperand Idx = LegalizeOp(Op.getOperand(1)); 3920 3921 unsigned NumElems = MVT::getVectorNumElements(Vec.getValueType()); 3922 3923 if (NumElems == MVT::getVectorNumElements(Op.getValueType())) { 3924 // This must be an access of the desired vector length. Return it. 3925 return Vec; 3926 } 3927 3928 ConstantSDNode *CIdx = cast<ConstantSDNode>(Idx); 3929 SDOperand Lo, Hi; 3930 SplitVectorOp(Vec, Lo, Hi); 3931 if (CIdx->getValue() < NumElems/2) { 3932 Vec = Lo; 3933 } else { 3934 Vec = Hi; 3935 Idx = DAG.getConstant(CIdx->getValue() - NumElems/2, Idx.getValueType()); 3936 } 3937 3938 // It's now an extract from the appropriate high or low part. Recurse. 3939 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 3940 return ExpandEXTRACT_SUBVECTOR(Op); 3941} 3942 3943/// LegalizeSetCCOperands - Attempts to create a legal LHS and RHS for a SETCC 3944/// with condition CC on the current target. This usually involves legalizing 3945/// or promoting the arguments. In the case where LHS and RHS must be expanded, 3946/// there may be no choice but to create a new SetCC node to represent the 3947/// legalized value of setcc lhs, rhs. In this case, the value is returned in 3948/// LHS, and the SDOperand returned in RHS has a nil SDNode value. 3949void SelectionDAGLegalize::LegalizeSetCCOperands(SDOperand &LHS, 3950 SDOperand &RHS, 3951 SDOperand &CC) { 3952 SDOperand Tmp1, Tmp2, Result; 3953 3954 switch (getTypeAction(LHS.getValueType())) { 3955 case Legal: 3956 Tmp1 = LegalizeOp(LHS); // LHS 3957 Tmp2 = LegalizeOp(RHS); // RHS 3958 break; 3959 case Promote: 3960 Tmp1 = PromoteOp(LHS); // LHS 3961 Tmp2 = PromoteOp(RHS); // RHS 3962 3963 // If this is an FP compare, the operands have already been extended. 3964 if (MVT::isInteger(LHS.getValueType())) { 3965 MVT::ValueType VT = LHS.getValueType(); 3966 MVT::ValueType NVT = TLI.getTypeToTransformTo(VT); 3967 3968 // Otherwise, we have to insert explicit sign or zero extends. Note 3969 // that we could insert sign extends for ALL conditions, but zero extend 3970 // is cheaper on many machines (an AND instead of two shifts), so prefer 3971 // it. 3972 switch (cast<CondCodeSDNode>(CC)->get()) { 3973 default: assert(0 && "Unknown integer comparison!"); 3974 case ISD::SETEQ: 3975 case ISD::SETNE: 3976 case ISD::SETUGE: 3977 case ISD::SETUGT: 3978 case ISD::SETULE: 3979 case ISD::SETULT: 3980 // ALL of these operations will work if we either sign or zero extend 3981 // the operands (including the unsigned comparisons!). Zero extend is 3982 // usually a simpler/cheaper operation, so prefer it. 3983 Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); 3984 Tmp2 = DAG.getZeroExtendInReg(Tmp2, VT); 3985 break; 3986 case ISD::SETGE: 3987 case ISD::SETGT: 3988 case ISD::SETLT: 3989 case ISD::SETLE: 3990 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, 3991 DAG.getValueType(VT)); 3992 Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp2, 3993 DAG.getValueType(VT)); 3994 break; 3995 } 3996 } 3997 break; 3998 case Expand: { 3999 MVT::ValueType VT = LHS.getValueType(); 4000 if (VT == MVT::f32 || VT == MVT::f64) { 4001 // Expand into one or more soft-fp libcall(s). 4002 RTLIB::Libcall LC1, LC2 = RTLIB::UNKNOWN_LIBCALL; 4003 switch (cast<CondCodeSDNode>(CC)->get()) { 4004 case ISD::SETEQ: 4005 case ISD::SETOEQ: 4006 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64; 4007 break; 4008 case ISD::SETNE: 4009 case ISD::SETUNE: 4010 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : RTLIB::UNE_F64; 4011 break; 4012 case ISD::SETGE: 4013 case ISD::SETOGE: 4014 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64; 4015 break; 4016 case ISD::SETLT: 4017 case ISD::SETOLT: 4018 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 4019 break; 4020 case ISD::SETLE: 4021 case ISD::SETOLE: 4022 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64; 4023 break; 4024 case ISD::SETGT: 4025 case ISD::SETOGT: 4026 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64; 4027 break; 4028 case ISD::SETUO: 4029 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64; 4030 break; 4031 case ISD::SETO: 4032 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : RTLIB::O_F64; 4033 break; 4034 default: 4035 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64; 4036 switch (cast<CondCodeSDNode>(CC)->get()) { 4037 case ISD::SETONE: 4038 // SETONE = SETOLT | SETOGT 4039 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 4040 // Fallthrough 4041 case ISD::SETUGT: 4042 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64; 4043 break; 4044 case ISD::SETUGE: 4045 LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64; 4046 break; 4047 case ISD::SETULT: 4048 LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 4049 break; 4050 case ISD::SETULE: 4051 LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64; 4052 break; 4053 case ISD::SETUEQ: 4054 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64; 4055 break; 4056 default: assert(0 && "Unsupported FP setcc!"); 4057 } 4058 } 4059 4060 SDOperand Dummy; 4061 Tmp1 = ExpandLibCall(TLI.getLibcallName(LC1), 4062 DAG.getNode(ISD::MERGE_VALUES, VT, LHS, RHS).Val, 4063 false /*sign irrelevant*/, Dummy); 4064 Tmp2 = DAG.getConstant(0, MVT::i32); 4065 CC = DAG.getCondCode(TLI.getCmpLibcallCC(LC1)); 4066 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 4067 Tmp1 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), Tmp1, Tmp2, CC); 4068 LHS = ExpandLibCall(TLI.getLibcallName(LC2), 4069 DAG.getNode(ISD::MERGE_VALUES, VT, LHS, RHS).Val, 4070 false /*sign irrelevant*/, Dummy); 4071 Tmp2 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), LHS, Tmp2, 4072 DAG.getCondCode(TLI.getCmpLibcallCC(LC2))); 4073 Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp2); 4074 Tmp2 = SDOperand(); 4075 } 4076 LHS = Tmp1; 4077 RHS = Tmp2; 4078 return; 4079 } 4080 4081 SDOperand LHSLo, LHSHi, RHSLo, RHSHi; 4082 ExpandOp(LHS, LHSLo, LHSHi); 4083 ExpandOp(RHS, RHSLo, RHSHi); 4084 switch (cast<CondCodeSDNode>(CC)->get()) { 4085 case ISD::SETEQ: 4086 case ISD::SETNE: 4087 if (RHSLo == RHSHi) 4088 if (ConstantSDNode *RHSCST = dyn_cast<ConstantSDNode>(RHSLo)) 4089 if (RHSCST->isAllOnesValue()) { 4090 // Comparison to -1. 4091 Tmp1 = DAG.getNode(ISD::AND, LHSLo.getValueType(), LHSLo, LHSHi); 4092 Tmp2 = RHSLo; 4093 break; 4094 } 4095 4096 Tmp1 = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSLo, RHSLo); 4097 Tmp2 = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSHi, RHSHi); 4098 Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp2); 4099 Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); 4100 break; 4101 default: 4102 // If this is a comparison of the sign bit, just look at the top part. 4103 // X > -1, x < 0 4104 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(RHS)) 4105 if ((cast<CondCodeSDNode>(CC)->get() == ISD::SETLT && 4106 CST->getValue() == 0) || // X < 0 4107 (cast<CondCodeSDNode>(CC)->get() == ISD::SETGT && 4108 CST->isAllOnesValue())) { // X > -1 4109 Tmp1 = LHSHi; 4110 Tmp2 = RHSHi; 4111 break; 4112 } 4113 4114 // FIXME: This generated code sucks. 4115 ISD::CondCode LowCC; 4116 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 4117 switch (CCCode) { 4118 default: assert(0 && "Unknown integer setcc!"); 4119 case ISD::SETLT: 4120 case ISD::SETULT: LowCC = ISD::SETULT; break; 4121 case ISD::SETGT: 4122 case ISD::SETUGT: LowCC = ISD::SETUGT; break; 4123 case ISD::SETLE: 4124 case ISD::SETULE: LowCC = ISD::SETULE; break; 4125 case ISD::SETGE: 4126 case ISD::SETUGE: LowCC = ISD::SETUGE; break; 4127 } 4128 4129 // Tmp1 = lo(op1) < lo(op2) // Always unsigned comparison 4130 // Tmp2 = hi(op1) < hi(op2) // Signedness depends on operands 4131 // dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2; 4132 4133 // NOTE: on targets without efficient SELECT of bools, we can always use 4134 // this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3) 4135 TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, false, true, NULL); 4136 Tmp1 = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, LowCC, 4137 false, DagCombineInfo); 4138 if (!Tmp1.Val) 4139 Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, LowCC); 4140 Tmp2 = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, 4141 CCCode, false, DagCombineInfo); 4142 if (!Tmp2.Val) 4143 Tmp2 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), LHSHi, RHSHi, CC); 4144 4145 ConstantSDNode *Tmp1C = dyn_cast<ConstantSDNode>(Tmp1.Val); 4146 ConstantSDNode *Tmp2C = dyn_cast<ConstantSDNode>(Tmp2.Val); 4147 if ((Tmp1C && Tmp1C->getValue() == 0) || 4148 (Tmp2C && Tmp2C->getValue() == 0 && 4149 (CCCode == ISD::SETLE || CCCode == ISD::SETGE || 4150 CCCode == ISD::SETUGE || CCCode == ISD::SETULE)) || 4151 (Tmp2C && Tmp2C->getValue() == 1 && 4152 (CCCode == ISD::SETLT || CCCode == ISD::SETGT || 4153 CCCode == ISD::SETUGT || CCCode == ISD::SETULT))) { 4154 // low part is known false, returns high part. 4155 // For LE / GE, if high part is known false, ignore the low part. 4156 // For LT / GT, if high part is known true, ignore the low part. 4157 Tmp1 = Tmp2; 4158 Tmp2 = SDOperand(); 4159 } else { 4160 Result = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, 4161 ISD::SETEQ, false, DagCombineInfo); 4162 if (!Result.Val) 4163 Result=DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETEQ); 4164 Result = LegalizeOp(DAG.getNode(ISD::SELECT, Tmp1.getValueType(), 4165 Result, Tmp1, Tmp2)); 4166 Tmp1 = Result; 4167 Tmp2 = SDOperand(); 4168 } 4169 } 4170 } 4171 } 4172 LHS = Tmp1; 4173 RHS = Tmp2; 4174} 4175 4176/// ExpandBIT_CONVERT - Expand a BIT_CONVERT node into a store/load combination. 4177/// The resultant code need not be legal. Note that SrcOp is the input operand 4178/// to the BIT_CONVERT, not the BIT_CONVERT node itself. 4179SDOperand SelectionDAGLegalize::ExpandBIT_CONVERT(MVT::ValueType DestVT, 4180 SDOperand SrcOp) { 4181 // Create the stack frame object. 4182 SDOperand FIPtr = CreateStackTemporary(DestVT); 4183 4184 // Emit a store to the stack slot. 4185 SDOperand Store = DAG.getStore(DAG.getEntryNode(), SrcOp, FIPtr, NULL, 0); 4186 // Result is a load from the stack slot. 4187 return DAG.getLoad(DestVT, Store, FIPtr, NULL, 0); 4188} 4189 4190SDOperand SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 4191 // Create a vector sized/aligned stack slot, store the value to element #0, 4192 // then load the whole vector back out. 4193 SDOperand StackPtr = CreateStackTemporary(Node->getValueType(0)); 4194 SDOperand Ch = DAG.getStore(DAG.getEntryNode(), Node->getOperand(0), StackPtr, 4195 NULL, 0); 4196 return DAG.getLoad(Node->getValueType(0), Ch, StackPtr, NULL, 0); 4197} 4198 4199 4200/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't 4201/// support the operation, but do support the resultant vector type. 4202SDOperand SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 4203 4204 // If the only non-undef value is the low element, turn this into a 4205 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 4206 unsigned NumElems = Node->getNumOperands(); 4207 bool isOnlyLowElement = true; 4208 SDOperand SplatValue = Node->getOperand(0); 4209 std::map<SDOperand, std::vector<unsigned> > Values; 4210 Values[SplatValue].push_back(0); 4211 bool isConstant = true; 4212 if (!isa<ConstantFPSDNode>(SplatValue) && !isa<ConstantSDNode>(SplatValue) && 4213 SplatValue.getOpcode() != ISD::UNDEF) 4214 isConstant = false; 4215 4216 for (unsigned i = 1; i < NumElems; ++i) { 4217 SDOperand V = Node->getOperand(i); 4218 Values[V].push_back(i); 4219 if (V.getOpcode() != ISD::UNDEF) 4220 isOnlyLowElement = false; 4221 if (SplatValue != V) 4222 SplatValue = SDOperand(0,0); 4223 4224 // If this isn't a constant element or an undef, we can't use a constant 4225 // pool load. 4226 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V) && 4227 V.getOpcode() != ISD::UNDEF) 4228 isConstant = false; 4229 } 4230 4231 if (isOnlyLowElement) { 4232 // If the low element is an undef too, then this whole things is an undef. 4233 if (Node->getOperand(0).getOpcode() == ISD::UNDEF) 4234 return DAG.getNode(ISD::UNDEF, Node->getValueType(0)); 4235 // Otherwise, turn this into a scalar_to_vector node. 4236 return DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), 4237 Node->getOperand(0)); 4238 } 4239 4240 // If all elements are constants, create a load from the constant pool. 4241 if (isConstant) { 4242 MVT::ValueType VT = Node->getValueType(0); 4243 const Type *OpNTy = 4244 MVT::getTypeForValueType(Node->getOperand(0).getValueType()); 4245 std::vector<Constant*> CV; 4246 for (unsigned i = 0, e = NumElems; i != e; ++i) { 4247 if (ConstantFPSDNode *V = 4248 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 4249 CV.push_back(ConstantFP::get(OpNTy, V->getValueAPF())); 4250 } else if (ConstantSDNode *V = 4251 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 4252 CV.push_back(ConstantInt::get(OpNTy, V->getValue())); 4253 } else { 4254 assert(Node->getOperand(i).getOpcode() == ISD::UNDEF); 4255 CV.push_back(UndefValue::get(OpNTy)); 4256 } 4257 } 4258 Constant *CP = ConstantVector::get(CV); 4259 SDOperand CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy()); 4260 return DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0); 4261 } 4262 4263 if (SplatValue.Val) { // Splat of one value? 4264 // Build the shuffle constant vector: <0, 0, 0, 0> 4265 MVT::ValueType MaskVT = 4266 MVT::getIntVectorWithNumElements(NumElems); 4267 SDOperand Zero = DAG.getConstant(0, MVT::getVectorElementType(MaskVT)); 4268 std::vector<SDOperand> ZeroVec(NumElems, Zero); 4269 SDOperand SplatMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 4270 &ZeroVec[0], ZeroVec.size()); 4271 4272 // If the target supports VECTOR_SHUFFLE and this shuffle mask, use it. 4273 if (isShuffleLegal(Node->getValueType(0), SplatMask)) { 4274 // Get the splatted value into the low element of a vector register. 4275 SDOperand LowValVec = 4276 DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), SplatValue); 4277 4278 // Return shuffle(LowValVec, undef, <0,0,0,0>) 4279 return DAG.getNode(ISD::VECTOR_SHUFFLE, Node->getValueType(0), LowValVec, 4280 DAG.getNode(ISD::UNDEF, Node->getValueType(0)), 4281 SplatMask); 4282 } 4283 } 4284 4285 // If there are only two unique elements, we may be able to turn this into a 4286 // vector shuffle. 4287 if (Values.size() == 2) { 4288 // Build the shuffle constant vector: e.g. <0, 4, 0, 4> 4289 MVT::ValueType MaskVT = 4290 MVT::getIntVectorWithNumElements(NumElems); 4291 std::vector<SDOperand> MaskVec(NumElems); 4292 unsigned i = 0; 4293 for (std::map<SDOperand,std::vector<unsigned> >::iterator I=Values.begin(), 4294 E = Values.end(); I != E; ++I) { 4295 for (std::vector<unsigned>::iterator II = I->second.begin(), 4296 EE = I->second.end(); II != EE; ++II) 4297 MaskVec[*II] = DAG.getConstant(i, MVT::getVectorElementType(MaskVT)); 4298 i += NumElems; 4299 } 4300 SDOperand ShuffleMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 4301 &MaskVec[0], MaskVec.size()); 4302 4303 // If the target supports VECTOR_SHUFFLE and this shuffle mask, use it. 4304 if (TLI.isOperationLegal(ISD::SCALAR_TO_VECTOR, Node->getValueType(0)) && 4305 isShuffleLegal(Node->getValueType(0), ShuffleMask)) { 4306 SmallVector<SDOperand, 8> Ops; 4307 for(std::map<SDOperand,std::vector<unsigned> >::iterator I=Values.begin(), 4308 E = Values.end(); I != E; ++I) { 4309 SDOperand Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), 4310 I->first); 4311 Ops.push_back(Op); 4312 } 4313 Ops.push_back(ShuffleMask); 4314 4315 // Return shuffle(LoValVec, HiValVec, <0,1,0,1>) 4316 return DAG.getNode(ISD::VECTOR_SHUFFLE, Node->getValueType(0), 4317 &Ops[0], Ops.size()); 4318 } 4319 } 4320 4321 // Otherwise, we can't handle this case efficiently. Allocate a sufficiently 4322 // aligned object on the stack, store each element into it, then load 4323 // the result as a vector. 4324 MVT::ValueType VT = Node->getValueType(0); 4325 // Create the stack frame object. 4326 SDOperand FIPtr = CreateStackTemporary(VT); 4327 4328 // Emit a store of each element to the stack slot. 4329 SmallVector<SDOperand, 8> Stores; 4330 unsigned TypeByteSize = 4331 MVT::getSizeInBits(Node->getOperand(0).getValueType())/8; 4332 // Store (in the right endianness) the elements to memory. 4333 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 4334 // Ignore undef elements. 4335 if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue; 4336 4337 unsigned Offset = TypeByteSize*i; 4338 4339 SDOperand Idx = DAG.getConstant(Offset, FIPtr.getValueType()); 4340 Idx = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr, Idx); 4341 4342 Stores.push_back(DAG.getStore(DAG.getEntryNode(), Node->getOperand(i), Idx, 4343 NULL, 0)); 4344 } 4345 4346 SDOperand StoreChain; 4347 if (!Stores.empty()) // Not all undef elements? 4348 StoreChain = DAG.getNode(ISD::TokenFactor, MVT::Other, 4349 &Stores[0], Stores.size()); 4350 else 4351 StoreChain = DAG.getEntryNode(); 4352 4353 // Result is a load from the stack slot. 4354 return DAG.getLoad(VT, StoreChain, FIPtr, NULL, 0); 4355} 4356 4357/// CreateStackTemporary - Create a stack temporary, suitable for holding the 4358/// specified value type. 4359SDOperand SelectionDAGLegalize::CreateStackTemporary(MVT::ValueType VT) { 4360 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 4361 unsigned ByteSize = MVT::getSizeInBits(VT)/8; 4362 const Type *Ty = MVT::getTypeForValueType(VT); 4363 unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty); 4364 int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign); 4365 return DAG.getFrameIndex(FrameIdx, TLI.getPointerTy()); 4366} 4367 4368void SelectionDAGLegalize::ExpandShiftParts(unsigned NodeOp, 4369 SDOperand Op, SDOperand Amt, 4370 SDOperand &Lo, SDOperand &Hi) { 4371 // Expand the subcomponents. 4372 SDOperand LHSL, LHSH; 4373 ExpandOp(Op, LHSL, LHSH); 4374 4375 SDOperand Ops[] = { LHSL, LHSH, Amt }; 4376 MVT::ValueType VT = LHSL.getValueType(); 4377 Lo = DAG.getNode(NodeOp, DAG.getNodeValueTypes(VT, VT), 2, Ops, 3); 4378 Hi = Lo.getValue(1); 4379} 4380 4381 4382/// ExpandShift - Try to find a clever way to expand this shift operation out to 4383/// smaller elements. If we can't find a way that is more efficient than a 4384/// libcall on this target, return false. Otherwise, return true with the 4385/// low-parts expanded into Lo and Hi. 4386bool SelectionDAGLegalize::ExpandShift(unsigned Opc, SDOperand Op,SDOperand Amt, 4387 SDOperand &Lo, SDOperand &Hi) { 4388 assert((Opc == ISD::SHL || Opc == ISD::SRA || Opc == ISD::SRL) && 4389 "This is not a shift!"); 4390 4391 MVT::ValueType NVT = TLI.getTypeToTransformTo(Op.getValueType()); 4392 SDOperand ShAmt = LegalizeOp(Amt); 4393 MVT::ValueType ShTy = ShAmt.getValueType(); 4394 unsigned VTBits = MVT::getSizeInBits(Op.getValueType()); 4395 unsigned NVTBits = MVT::getSizeInBits(NVT); 4396 4397 // Handle the case when Amt is an immediate. Other cases are currently broken 4398 // and are disabled. 4399 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Amt.Val)) { 4400 unsigned Cst = CN->getValue(); 4401 // Expand the incoming operand to be shifted, so that we have its parts 4402 SDOperand InL, InH; 4403 ExpandOp(Op, InL, InH); 4404 switch(Opc) { 4405 case ISD::SHL: 4406 if (Cst > VTBits) { 4407 Lo = DAG.getConstant(0, NVT); 4408 Hi = DAG.getConstant(0, NVT); 4409 } else if (Cst > NVTBits) { 4410 Lo = DAG.getConstant(0, NVT); 4411 Hi = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Cst-NVTBits,ShTy)); 4412 } else if (Cst == NVTBits) { 4413 Lo = DAG.getConstant(0, NVT); 4414 Hi = InL; 4415 } else { 4416 Lo = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Cst, ShTy)); 4417 Hi = DAG.getNode(ISD::OR, NVT, 4418 DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(Cst, ShTy)), 4419 DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(NVTBits-Cst, ShTy))); 4420 } 4421 return true; 4422 case ISD::SRL: 4423 if (Cst > VTBits) { 4424 Lo = DAG.getConstant(0, NVT); 4425 Hi = DAG.getConstant(0, NVT); 4426 } else if (Cst > NVTBits) { 4427 Lo = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Cst-NVTBits,ShTy)); 4428 Hi = DAG.getConstant(0, NVT); 4429 } else if (Cst == NVTBits) { 4430 Lo = InH; 4431 Hi = DAG.getConstant(0, NVT); 4432 } else { 4433 Lo = DAG.getNode(ISD::OR, NVT, 4434 DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(Cst, ShTy)), 4435 DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(NVTBits-Cst, ShTy))); 4436 Hi = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Cst, ShTy)); 4437 } 4438 return true; 4439 case ISD::SRA: 4440 if (Cst > VTBits) { 4441 Hi = Lo = DAG.getNode(ISD::SRA, NVT, InH, 4442 DAG.getConstant(NVTBits-1, ShTy)); 4443 } else if (Cst > NVTBits) { 4444 Lo = DAG.getNode(ISD::SRA, NVT, InH, 4445 DAG.getConstant(Cst-NVTBits, ShTy)); 4446 Hi = DAG.getNode(ISD::SRA, NVT, InH, 4447 DAG.getConstant(NVTBits-1, ShTy)); 4448 } else if (Cst == NVTBits) { 4449 Lo = InH; 4450 Hi = DAG.getNode(ISD::SRA, NVT, InH, 4451 DAG.getConstant(NVTBits-1, ShTy)); 4452 } else { 4453 Lo = DAG.getNode(ISD::OR, NVT, 4454 DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(Cst, ShTy)), 4455 DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(NVTBits-Cst, ShTy))); 4456 Hi = DAG.getNode(ISD::SRA, NVT, InH, DAG.getConstant(Cst, ShTy)); 4457 } 4458 return true; 4459 } 4460 } 4461 4462 // Okay, the shift amount isn't constant. However, if we can tell that it is 4463 // >= 32 or < 32, we can still simplify it, without knowing the actual value. 4464 uint64_t Mask = NVTBits, KnownZero, KnownOne; 4465 DAG.ComputeMaskedBits(Amt, Mask, KnownZero, KnownOne); 4466 4467 // If we know that the high bit of the shift amount is one, then we can do 4468 // this as a couple of simple shifts. 4469 if (KnownOne & Mask) { 4470 // Mask out the high bit, which we know is set. 4471 Amt = DAG.getNode(ISD::AND, Amt.getValueType(), Amt, 4472 DAG.getConstant(NVTBits-1, Amt.getValueType())); 4473 4474 // Expand the incoming operand to be shifted, so that we have its parts 4475 SDOperand InL, InH; 4476 ExpandOp(Op, InL, InH); 4477 switch(Opc) { 4478 case ISD::SHL: 4479 Lo = DAG.getConstant(0, NVT); // Low part is zero. 4480 Hi = DAG.getNode(ISD::SHL, NVT, InL, Amt); // High part from Lo part. 4481 return true; 4482 case ISD::SRL: 4483 Hi = DAG.getConstant(0, NVT); // Hi part is zero. 4484 Lo = DAG.getNode(ISD::SRL, NVT, InH, Amt); // Lo part from Hi part. 4485 return true; 4486 case ISD::SRA: 4487 Hi = DAG.getNode(ISD::SRA, NVT, InH, // Sign extend high part. 4488 DAG.getConstant(NVTBits-1, Amt.getValueType())); 4489 Lo = DAG.getNode(ISD::SRA, NVT, InH, Amt); // Lo part from Hi part. 4490 return true; 4491 } 4492 } 4493 4494 // If we know that the high bit of the shift amount is zero, then we can do 4495 // this as a couple of simple shifts. 4496 if (KnownZero & Mask) { 4497 // Compute 32-amt. 4498 SDOperand Amt2 = DAG.getNode(ISD::SUB, Amt.getValueType(), 4499 DAG.getConstant(NVTBits, Amt.getValueType()), 4500 Amt); 4501 4502 // Expand the incoming operand to be shifted, so that we have its parts 4503 SDOperand InL, InH; 4504 ExpandOp(Op, InL, InH); 4505 switch(Opc) { 4506 case ISD::SHL: 4507 Lo = DAG.getNode(ISD::SHL, NVT, InL, Amt); 4508 Hi = DAG.getNode(ISD::OR, NVT, 4509 DAG.getNode(ISD::SHL, NVT, InH, Amt), 4510 DAG.getNode(ISD::SRL, NVT, InL, Amt2)); 4511 return true; 4512 case ISD::SRL: 4513 Hi = DAG.getNode(ISD::SRL, NVT, InH, Amt); 4514 Lo = DAG.getNode(ISD::OR, NVT, 4515 DAG.getNode(ISD::SRL, NVT, InL, Amt), 4516 DAG.getNode(ISD::SHL, NVT, InH, Amt2)); 4517 return true; 4518 case ISD::SRA: 4519 Hi = DAG.getNode(ISD::SRA, NVT, InH, Amt); 4520 Lo = DAG.getNode(ISD::OR, NVT, 4521 DAG.getNode(ISD::SRL, NVT, InL, Amt), 4522 DAG.getNode(ISD::SHL, NVT, InH, Amt2)); 4523 return true; 4524 } 4525 } 4526 4527 return false; 4528} 4529 4530 4531// ExpandLibCall - Expand a node into a call to a libcall. If the result value 4532// does not fit into a register, return the lo part and set the hi part to the 4533// by-reg argument. If it does fit into a single register, return the result 4534// and leave the Hi part unset. 4535SDOperand SelectionDAGLegalize::ExpandLibCall(const char *Name, SDNode *Node, 4536 bool isSigned, SDOperand &Hi) { 4537 assert(!IsLegalizingCall && "Cannot overlap legalization of calls!"); 4538 // The input chain to this libcall is the entry node of the function. 4539 // Legalizing the call will automatically add the previous call to the 4540 // dependence. 4541 SDOperand InChain = DAG.getEntryNode(); 4542 4543 TargetLowering::ArgListTy Args; 4544 TargetLowering::ArgListEntry Entry; 4545 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 4546 MVT::ValueType ArgVT = Node->getOperand(i).getValueType(); 4547 const Type *ArgTy = MVT::getTypeForValueType(ArgVT); 4548 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; 4549 Entry.isSExt = isSigned; 4550 Args.push_back(Entry); 4551 } 4552 SDOperand Callee = DAG.getExternalSymbol(Name, TLI.getPointerTy()); 4553 4554 // Splice the libcall in wherever FindInputOutputChains tells us to. 4555 const Type *RetTy = MVT::getTypeForValueType(Node->getValueType(0)); 4556 std::pair<SDOperand,SDOperand> CallInfo = 4557 TLI.LowerCallTo(InChain, RetTy, isSigned, false, CallingConv::C, false, 4558 Callee, Args, DAG); 4559 4560 // Legalize the call sequence, starting with the chain. This will advance 4561 // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that 4562 // was added by LowerCallTo (guaranteeing proper serialization of calls). 4563 LegalizeOp(CallInfo.second); 4564 SDOperand Result; 4565 switch (getTypeAction(CallInfo.first.getValueType())) { 4566 default: assert(0 && "Unknown thing"); 4567 case Legal: 4568 Result = CallInfo.first; 4569 break; 4570 case Expand: 4571 ExpandOp(CallInfo.first, Result, Hi); 4572 break; 4573 } 4574 return Result; 4575} 4576 4577 4578/// ExpandIntToFP - Expand a [US]INT_TO_FP operation. 4579/// 4580SDOperand SelectionDAGLegalize:: 4581ExpandIntToFP(bool isSigned, MVT::ValueType DestTy, SDOperand Source) { 4582 assert(getTypeAction(Source.getValueType()) == Expand && 4583 "This is not an expansion!"); 4584 assert(Source.getValueType() == MVT::i64 && "Only handle expand from i64!"); 4585 4586 if (!isSigned) { 4587 assert(Source.getValueType() == MVT::i64 && 4588 "This only works for 64-bit -> FP"); 4589 // The 64-bit value loaded will be incorrectly if the 'sign bit' of the 4590 // incoming integer is set. To handle this, we dynamically test to see if 4591 // it is set, and, if so, add a fudge factor. 4592 SDOperand Lo, Hi; 4593 ExpandOp(Source, Lo, Hi); 4594 4595 // If this is unsigned, and not supported, first perform the conversion to 4596 // signed, then adjust the result if the sign bit is set. 4597 SDOperand SignedConv = ExpandIntToFP(true, DestTy, 4598 DAG.getNode(ISD::BUILD_PAIR, Source.getValueType(), Lo, Hi)); 4599 4600 SDOperand SignSet = DAG.getSetCC(TLI.getSetCCResultTy(), Hi, 4601 DAG.getConstant(0, Hi.getValueType()), 4602 ISD::SETLT); 4603 SDOperand Zero = getIntPtrConstant(0), Four = getIntPtrConstant(4); 4604 SDOperand CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(), 4605 SignSet, Four, Zero); 4606 uint64_t FF = 0x5f800000ULL; 4607 if (TLI.isLittleEndian()) FF <<= 32; 4608 static Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF); 4609 4610 SDOperand CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); 4611 CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset); 4612 SDOperand FudgeInReg; 4613 if (DestTy == MVT::f32) 4614 FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx, NULL, 0); 4615 else { 4616 assert(DestTy == MVT::f64 && "Unexpected conversion"); 4617 // FIXME: Avoid the extend by construction the right constantpool? 4618 FudgeInReg = DAG.getExtLoad(ISD::EXTLOAD, MVT::f64, DAG.getEntryNode(), 4619 CPIdx, NULL, 0, MVT::f32); 4620 } 4621 MVT::ValueType SCVT = SignedConv.getValueType(); 4622 if (SCVT != DestTy) { 4623 // Destination type needs to be expanded as well. The FADD now we are 4624 // constructing will be expanded into a libcall. 4625 if (MVT::getSizeInBits(SCVT) != MVT::getSizeInBits(DestTy)) { 4626 assert(SCVT == MVT::i32 && DestTy == MVT::f64); 4627 SignedConv = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, 4628 SignedConv, SignedConv.getValue(1)); 4629 } 4630 SignedConv = DAG.getNode(ISD::BIT_CONVERT, DestTy, SignedConv); 4631 } 4632 return DAG.getNode(ISD::FADD, DestTy, SignedConv, FudgeInReg); 4633 } 4634 4635 // Check to see if the target has a custom way to lower this. If so, use it. 4636 switch (TLI.getOperationAction(ISD::SINT_TO_FP, Source.getValueType())) { 4637 default: assert(0 && "This action not implemented for this operation!"); 4638 case TargetLowering::Legal: 4639 case TargetLowering::Expand: 4640 break; // This case is handled below. 4641 case TargetLowering::Custom: { 4642 SDOperand NV = TLI.LowerOperation(DAG.getNode(ISD::SINT_TO_FP, DestTy, 4643 Source), DAG); 4644 if (NV.Val) 4645 return LegalizeOp(NV); 4646 break; // The target decided this was legal after all 4647 } 4648 } 4649 4650 // Expand the source, then glue it back together for the call. We must expand 4651 // the source in case it is shared (this pass of legalize must traverse it). 4652 SDOperand SrcLo, SrcHi; 4653 ExpandOp(Source, SrcLo, SrcHi); 4654 Source = DAG.getNode(ISD::BUILD_PAIR, Source.getValueType(), SrcLo, SrcHi); 4655 4656 RTLIB::Libcall LC; 4657 if (DestTy == MVT::f32) 4658 LC = RTLIB::SINTTOFP_I64_F32; 4659 else { 4660 assert(DestTy == MVT::f64 && "Unknown fp value type!"); 4661 LC = RTLIB::SINTTOFP_I64_F64; 4662 } 4663 4664 assert(TLI.getLibcallName(LC) && "Don't know how to expand this SINT_TO_FP!"); 4665 Source = DAG.getNode(ISD::SINT_TO_FP, DestTy, Source); 4666 SDOperand UnusedHiPart; 4667 return ExpandLibCall(TLI.getLibcallName(LC), Source.Val, isSigned, 4668 UnusedHiPart); 4669} 4670 4671/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a 4672/// INT_TO_FP operation of the specified operand when the target requests that 4673/// we expand it. At this point, we know that the result and operand types are 4674/// legal for the target. 4675SDOperand SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, 4676 SDOperand Op0, 4677 MVT::ValueType DestVT) { 4678 if (Op0.getValueType() == MVT::i32) { 4679 // simple 32-bit [signed|unsigned] integer to float/double expansion 4680 4681 // get the stack frame index of a 8 byte buffer, pessimistically aligned 4682 MachineFunction &MF = DAG.getMachineFunction(); 4683 const Type *F64Type = MVT::getTypeForValueType(MVT::f64); 4684 unsigned StackAlign = 4685 (unsigned)TLI.getTargetData()->getPrefTypeAlignment(F64Type); 4686 int SSFI = MF.getFrameInfo()->CreateStackObject(8, StackAlign); 4687 // get address of 8 byte buffer 4688 SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 4689 // word offset constant for Hi/Lo address computation 4690 SDOperand WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy()); 4691 // set up Hi and Lo (into buffer) address based on endian 4692 SDOperand Hi = StackSlot; 4693 SDOperand Lo = DAG.getNode(ISD::ADD, TLI.getPointerTy(), StackSlot,WordOff); 4694 if (TLI.isLittleEndian()) 4695 std::swap(Hi, Lo); 4696 4697 // if signed map to unsigned space 4698 SDOperand Op0Mapped; 4699 if (isSigned) { 4700 // constant used to invert sign bit (signed to unsigned mapping) 4701 SDOperand SignBit = DAG.getConstant(0x80000000u, MVT::i32); 4702 Op0Mapped = DAG.getNode(ISD::XOR, MVT::i32, Op0, SignBit); 4703 } else { 4704 Op0Mapped = Op0; 4705 } 4706 // store the lo of the constructed double - based on integer input 4707 SDOperand Store1 = DAG.getStore(DAG.getEntryNode(), 4708 Op0Mapped, Lo, NULL, 0); 4709 // initial hi portion of constructed double 4710 SDOperand InitialHi = DAG.getConstant(0x43300000u, MVT::i32); 4711 // store the hi of the constructed double - biased exponent 4712 SDOperand Store2=DAG.getStore(Store1, InitialHi, Hi, NULL, 0); 4713 // load the constructed double 4714 SDOperand Load = DAG.getLoad(MVT::f64, Store2, StackSlot, NULL, 0); 4715 // FP constant to bias correct the final result 4716 SDOperand Bias = DAG.getConstantFP(isSigned ? 4717 BitsToDouble(0x4330000080000000ULL) 4718 : BitsToDouble(0x4330000000000000ULL), 4719 MVT::f64); 4720 // subtract the bias 4721 SDOperand Sub = DAG.getNode(ISD::FSUB, MVT::f64, Load, Bias); 4722 // final result 4723 SDOperand Result; 4724 // handle final rounding 4725 if (DestVT == MVT::f64) { 4726 // do nothing 4727 Result = Sub; 4728 } else { 4729 // if f32 then cast to f32 4730 Result = DAG.getNode(ISD::FP_ROUND, MVT::f32, Sub); 4731 } 4732 return Result; 4733 } 4734 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 4735 SDOperand Tmp1 = DAG.getNode(ISD::SINT_TO_FP, DestVT, Op0); 4736 4737 SDOperand SignSet = DAG.getSetCC(TLI.getSetCCResultTy(), Op0, 4738 DAG.getConstant(0, Op0.getValueType()), 4739 ISD::SETLT); 4740 SDOperand Zero = getIntPtrConstant(0), Four = getIntPtrConstant(4); 4741 SDOperand CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(), 4742 SignSet, Four, Zero); 4743 4744 // If the sign bit of the integer is set, the large number will be treated 4745 // as a negative number. To counteract this, the dynamic code adds an 4746 // offset depending on the data type. 4747 uint64_t FF; 4748 switch (Op0.getValueType()) { 4749 default: assert(0 && "Unsupported integer type!"); 4750 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 4751 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 4752 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 4753 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 4754 } 4755 if (TLI.isLittleEndian()) FF <<= 32; 4756 static Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF); 4757 4758 SDOperand CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); 4759 CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset); 4760 SDOperand FudgeInReg; 4761 if (DestVT == MVT::f32) 4762 FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx, NULL, 0); 4763 else { 4764 assert(DestVT == MVT::f64 && "Unexpected conversion"); 4765 FudgeInReg = LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, MVT::f64, 4766 DAG.getEntryNode(), CPIdx, 4767 NULL, 0, MVT::f32)); 4768 } 4769 4770 return DAG.getNode(ISD::FADD, DestVT, Tmp1, FudgeInReg); 4771} 4772 4773/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a 4774/// *INT_TO_FP operation of the specified operand when the target requests that 4775/// we promote it. At this point, we know that the result and operand types are 4776/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 4777/// operation that takes a larger input. 4778SDOperand SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDOperand LegalOp, 4779 MVT::ValueType DestVT, 4780 bool isSigned) { 4781 // First step, figure out the appropriate *INT_TO_FP operation to use. 4782 MVT::ValueType NewInTy = LegalOp.getValueType(); 4783 4784 unsigned OpToUse = 0; 4785 4786 // Scan for the appropriate larger type to use. 4787 while (1) { 4788 NewInTy = (MVT::ValueType)(NewInTy+1); 4789 assert(MVT::isInteger(NewInTy) && "Ran out of possibilities!"); 4790 4791 // If the target supports SINT_TO_FP of this type, use it. 4792 switch (TLI.getOperationAction(ISD::SINT_TO_FP, NewInTy)) { 4793 default: break; 4794 case TargetLowering::Legal: 4795 if (!TLI.isTypeLegal(NewInTy)) 4796 break; // Can't use this datatype. 4797 // FALL THROUGH. 4798 case TargetLowering::Custom: 4799 OpToUse = ISD::SINT_TO_FP; 4800 break; 4801 } 4802 if (OpToUse) break; 4803 if (isSigned) continue; 4804 4805 // If the target supports UINT_TO_FP of this type, use it. 4806 switch (TLI.getOperationAction(ISD::UINT_TO_FP, NewInTy)) { 4807 default: break; 4808 case TargetLowering::Legal: 4809 if (!TLI.isTypeLegal(NewInTy)) 4810 break; // Can't use this datatype. 4811 // FALL THROUGH. 4812 case TargetLowering::Custom: 4813 OpToUse = ISD::UINT_TO_FP; 4814 break; 4815 } 4816 if (OpToUse) break; 4817 4818 // Otherwise, try a larger type. 4819 } 4820 4821 // Okay, we found the operation and type to use. Zero extend our input to the 4822 // desired type then run the operation on it. 4823 return DAG.getNode(OpToUse, DestVT, 4824 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 4825 NewInTy, LegalOp)); 4826} 4827 4828/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a 4829/// FP_TO_*INT operation of the specified operand when the target requests that 4830/// we promote it. At this point, we know that the result and operand types are 4831/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 4832/// operation that returns a larger result. 4833SDOperand SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDOperand LegalOp, 4834 MVT::ValueType DestVT, 4835 bool isSigned) { 4836 // First step, figure out the appropriate FP_TO*INT operation to use. 4837 MVT::ValueType NewOutTy = DestVT; 4838 4839 unsigned OpToUse = 0; 4840 4841 // Scan for the appropriate larger type to use. 4842 while (1) { 4843 NewOutTy = (MVT::ValueType)(NewOutTy+1); 4844 assert(MVT::isInteger(NewOutTy) && "Ran out of possibilities!"); 4845 4846 // If the target supports FP_TO_SINT returning this type, use it. 4847 switch (TLI.getOperationAction(ISD::FP_TO_SINT, NewOutTy)) { 4848 default: break; 4849 case TargetLowering::Legal: 4850 if (!TLI.isTypeLegal(NewOutTy)) 4851 break; // Can't use this datatype. 4852 // FALL THROUGH. 4853 case TargetLowering::Custom: 4854 OpToUse = ISD::FP_TO_SINT; 4855 break; 4856 } 4857 if (OpToUse) break; 4858 4859 // If the target supports FP_TO_UINT of this type, use it. 4860 switch (TLI.getOperationAction(ISD::FP_TO_UINT, NewOutTy)) { 4861 default: break; 4862 case TargetLowering::Legal: 4863 if (!TLI.isTypeLegal(NewOutTy)) 4864 break; // Can't use this datatype. 4865 // FALL THROUGH. 4866 case TargetLowering::Custom: 4867 OpToUse = ISD::FP_TO_UINT; 4868 break; 4869 } 4870 if (OpToUse) break; 4871 4872 // Otherwise, try a larger type. 4873 } 4874 4875 // Okay, we found the operation and type to use. Truncate the result of the 4876 // extended FP_TO_*INT operation to the desired size. 4877 return DAG.getNode(ISD::TRUNCATE, DestVT, 4878 DAG.getNode(OpToUse, NewOutTy, LegalOp)); 4879} 4880 4881/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation. 4882/// 4883SDOperand SelectionDAGLegalize::ExpandBSWAP(SDOperand Op) { 4884 MVT::ValueType VT = Op.getValueType(); 4885 MVT::ValueType SHVT = TLI.getShiftAmountTy(); 4886 SDOperand Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 4887 switch (VT) { 4888 default: assert(0 && "Unhandled Expand type in BSWAP!"); abort(); 4889 case MVT::i16: 4890 Tmp2 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT)); 4891 Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT)); 4892 return DAG.getNode(ISD::OR, VT, Tmp1, Tmp2); 4893 case MVT::i32: 4894 Tmp4 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(24, SHVT)); 4895 Tmp3 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT)); 4896 Tmp2 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT)); 4897 Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(24, SHVT)); 4898 Tmp3 = DAG.getNode(ISD::AND, VT, Tmp3, DAG.getConstant(0xFF0000, VT)); 4899 Tmp2 = DAG.getNode(ISD::AND, VT, Tmp2, DAG.getConstant(0xFF00, VT)); 4900 Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp3); 4901 Tmp2 = DAG.getNode(ISD::OR, VT, Tmp2, Tmp1); 4902 return DAG.getNode(ISD::OR, VT, Tmp4, Tmp2); 4903 case MVT::i64: 4904 Tmp8 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(56, SHVT)); 4905 Tmp7 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(40, SHVT)); 4906 Tmp6 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(24, SHVT)); 4907 Tmp5 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT)); 4908 Tmp4 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT)); 4909 Tmp3 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(24, SHVT)); 4910 Tmp2 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(40, SHVT)); 4911 Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(56, SHVT)); 4912 Tmp7 = DAG.getNode(ISD::AND, VT, Tmp7, DAG.getConstant(255ULL<<48, VT)); 4913 Tmp6 = DAG.getNode(ISD::AND, VT, Tmp6, DAG.getConstant(255ULL<<40, VT)); 4914 Tmp5 = DAG.getNode(ISD::AND, VT, Tmp5, DAG.getConstant(255ULL<<32, VT)); 4915 Tmp4 = DAG.getNode(ISD::AND, VT, Tmp4, DAG.getConstant(255ULL<<24, VT)); 4916 Tmp3 = DAG.getNode(ISD::AND, VT, Tmp3, DAG.getConstant(255ULL<<16, VT)); 4917 Tmp2 = DAG.getNode(ISD::AND, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT)); 4918 Tmp8 = DAG.getNode(ISD::OR, VT, Tmp8, Tmp7); 4919 Tmp6 = DAG.getNode(ISD::OR, VT, Tmp6, Tmp5); 4920 Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp3); 4921 Tmp2 = DAG.getNode(ISD::OR, VT, Tmp2, Tmp1); 4922 Tmp8 = DAG.getNode(ISD::OR, VT, Tmp8, Tmp6); 4923 Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp2); 4924 return DAG.getNode(ISD::OR, VT, Tmp8, Tmp4); 4925 } 4926} 4927 4928/// ExpandBitCount - Expand the specified bitcount instruction into operations. 4929/// 4930SDOperand SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDOperand Op) { 4931 switch (Opc) { 4932 default: assert(0 && "Cannot expand this yet!"); 4933 case ISD::CTPOP: { 4934 static const uint64_t mask[6] = { 4935 0x5555555555555555ULL, 0x3333333333333333ULL, 4936 0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL, 4937 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL 4938 }; 4939 MVT::ValueType VT = Op.getValueType(); 4940 MVT::ValueType ShVT = TLI.getShiftAmountTy(); 4941 unsigned len = MVT::getSizeInBits(VT); 4942 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 4943 //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8]) 4944 SDOperand Tmp2 = DAG.getConstant(mask[i], VT); 4945 SDOperand Tmp3 = DAG.getConstant(1ULL << i, ShVT); 4946 Op = DAG.getNode(ISD::ADD, VT, DAG.getNode(ISD::AND, VT, Op, Tmp2), 4947 DAG.getNode(ISD::AND, VT, 4948 DAG.getNode(ISD::SRL, VT, Op, Tmp3),Tmp2)); 4949 } 4950 return Op; 4951 } 4952 case ISD::CTLZ: { 4953 // for now, we do this: 4954 // x = x | (x >> 1); 4955 // x = x | (x >> 2); 4956 // ... 4957 // x = x | (x >>16); 4958 // x = x | (x >>32); // for 64-bit input 4959 // return popcount(~x); 4960 // 4961 // but see also: http://www.hackersdelight.org/HDcode/nlz.cc 4962 MVT::ValueType VT = Op.getValueType(); 4963 MVT::ValueType ShVT = TLI.getShiftAmountTy(); 4964 unsigned len = MVT::getSizeInBits(VT); 4965 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 4966 SDOperand Tmp3 = DAG.getConstant(1ULL << i, ShVT); 4967 Op = DAG.getNode(ISD::OR, VT, Op, DAG.getNode(ISD::SRL, VT, Op, Tmp3)); 4968 } 4969 Op = DAG.getNode(ISD::XOR, VT, Op, DAG.getConstant(~0ULL, VT)); 4970 return DAG.getNode(ISD::CTPOP, VT, Op); 4971 } 4972 case ISD::CTTZ: { 4973 // for now, we use: { return popcount(~x & (x - 1)); } 4974 // unless the target has ctlz but not ctpop, in which case we use: 4975 // { return 32 - nlz(~x & (x-1)); } 4976 // see also http://www.hackersdelight.org/HDcode/ntz.cc 4977 MVT::ValueType VT = Op.getValueType(); 4978 SDOperand Tmp2 = DAG.getConstant(~0ULL, VT); 4979 SDOperand Tmp3 = DAG.getNode(ISD::AND, VT, 4980 DAG.getNode(ISD::XOR, VT, Op, Tmp2), 4981 DAG.getNode(ISD::SUB, VT, Op, DAG.getConstant(1, VT))); 4982 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 4983 if (!TLI.isOperationLegal(ISD::CTPOP, VT) && 4984 TLI.isOperationLegal(ISD::CTLZ, VT)) 4985 return DAG.getNode(ISD::SUB, VT, 4986 DAG.getConstant(MVT::getSizeInBits(VT), VT), 4987 DAG.getNode(ISD::CTLZ, VT, Tmp3)); 4988 return DAG.getNode(ISD::CTPOP, VT, Tmp3); 4989 } 4990 } 4991} 4992 4993/// ExpandOp - Expand the specified SDOperand into its two component pieces 4994/// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, the 4995/// LegalizeNodes map is filled in for any results that are not expanded, the 4996/// ExpandedNodes map is filled in for any results that are expanded, and the 4997/// Lo/Hi values are returned. 4998void SelectionDAGLegalize::ExpandOp(SDOperand Op, SDOperand &Lo, SDOperand &Hi){ 4999 MVT::ValueType VT = Op.getValueType(); 5000 MVT::ValueType NVT = TLI.getTypeToTransformTo(VT); 5001 SDNode *Node = Op.Val; 5002 assert(getTypeAction(VT) == Expand && "Not an expanded type!"); 5003 assert(((MVT::isInteger(NVT) && NVT < VT) || MVT::isFloatingPoint(VT) || 5004 MVT::isVector(VT)) && 5005 "Cannot expand to FP value or to larger int value!"); 5006 5007 // See if we already expanded it. 5008 DenseMap<SDOperand, std::pair<SDOperand, SDOperand> >::iterator I 5009 = ExpandedNodes.find(Op); 5010 if (I != ExpandedNodes.end()) { 5011 Lo = I->second.first; 5012 Hi = I->second.second; 5013 return; 5014 } 5015 5016 switch (Node->getOpcode()) { 5017 case ISD::CopyFromReg: 5018 assert(0 && "CopyFromReg must be legal!"); 5019 default: 5020#ifndef NDEBUG 5021 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 5022#endif 5023 assert(0 && "Do not know how to expand this operator!"); 5024 abort(); 5025 case ISD::UNDEF: 5026 NVT = TLI.getTypeToExpandTo(VT); 5027 Lo = DAG.getNode(ISD::UNDEF, NVT); 5028 Hi = DAG.getNode(ISD::UNDEF, NVT); 5029 break; 5030 case ISD::Constant: { 5031 uint64_t Cst = cast<ConstantSDNode>(Node)->getValue(); 5032 Lo = DAG.getConstant(Cst, NVT); 5033 Hi = DAG.getConstant(Cst >> MVT::getSizeInBits(NVT), NVT); 5034 break; 5035 } 5036 case ISD::ConstantFP: { 5037 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 5038 Lo = ExpandConstantFP(CFP, false, DAG, TLI); 5039 if (getTypeAction(Lo.getValueType()) == Expand) 5040 ExpandOp(Lo, Lo, Hi); 5041 break; 5042 } 5043 case ISD::BUILD_PAIR: 5044 // Return the operands. 5045 Lo = Node->getOperand(0); 5046 Hi = Node->getOperand(1); 5047 break; 5048 5049 case ISD::SIGN_EXTEND_INREG: 5050 ExpandOp(Node->getOperand(0), Lo, Hi); 5051 // sext_inreg the low part if needed. 5052 Lo = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Lo, Node->getOperand(1)); 5053 5054 // The high part gets the sign extension from the lo-part. This handles 5055 // things like sextinreg V:i64 from i8. 5056 Hi = DAG.getNode(ISD::SRA, NVT, Lo, 5057 DAG.getConstant(MVT::getSizeInBits(NVT)-1, 5058 TLI.getShiftAmountTy())); 5059 break; 5060 5061 case ISD::BSWAP: { 5062 ExpandOp(Node->getOperand(0), Lo, Hi); 5063 SDOperand TempLo = DAG.getNode(ISD::BSWAP, NVT, Hi); 5064 Hi = DAG.getNode(ISD::BSWAP, NVT, Lo); 5065 Lo = TempLo; 5066 break; 5067 } 5068 5069 case ISD::CTPOP: 5070 ExpandOp(Node->getOperand(0), Lo, Hi); 5071 Lo = DAG.getNode(ISD::ADD, NVT, // ctpop(HL) -> ctpop(H)+ctpop(L) 5072 DAG.getNode(ISD::CTPOP, NVT, Lo), 5073 DAG.getNode(ISD::CTPOP, NVT, Hi)); 5074 Hi = DAG.getConstant(0, NVT); 5075 break; 5076 5077 case ISD::CTLZ: { 5078 // ctlz (HL) -> ctlz(H) != 32 ? ctlz(H) : (ctlz(L)+32) 5079 ExpandOp(Node->getOperand(0), Lo, Hi); 5080 SDOperand BitsC = DAG.getConstant(MVT::getSizeInBits(NVT), NVT); 5081 SDOperand HLZ = DAG.getNode(ISD::CTLZ, NVT, Hi); 5082 SDOperand TopNotZero = DAG.getSetCC(TLI.getSetCCResultTy(), HLZ, BitsC, 5083 ISD::SETNE); 5084 SDOperand LowPart = DAG.getNode(ISD::CTLZ, NVT, Lo); 5085 LowPart = DAG.getNode(ISD::ADD, NVT, LowPart, BitsC); 5086 5087 Lo = DAG.getNode(ISD::SELECT, NVT, TopNotZero, HLZ, LowPart); 5088 Hi = DAG.getConstant(0, NVT); 5089 break; 5090 } 5091 5092 case ISD::CTTZ: { 5093 // cttz (HL) -> cttz(L) != 32 ? cttz(L) : (cttz(H)+32) 5094 ExpandOp(Node->getOperand(0), Lo, Hi); 5095 SDOperand BitsC = DAG.getConstant(MVT::getSizeInBits(NVT), NVT); 5096 SDOperand LTZ = DAG.getNode(ISD::CTTZ, NVT, Lo); 5097 SDOperand BotNotZero = DAG.getSetCC(TLI.getSetCCResultTy(), LTZ, BitsC, 5098 ISD::SETNE); 5099 SDOperand HiPart = DAG.getNode(ISD::CTTZ, NVT, Hi); 5100 HiPart = DAG.getNode(ISD::ADD, NVT, HiPart, BitsC); 5101 5102 Lo = DAG.getNode(ISD::SELECT, NVT, BotNotZero, LTZ, HiPart); 5103 Hi = DAG.getConstant(0, NVT); 5104 break; 5105 } 5106 5107 case ISD::VAARG: { 5108 SDOperand Ch = Node->getOperand(0); // Legalize the chain. 5109 SDOperand Ptr = Node->getOperand(1); // Legalize the pointer. 5110 Lo = DAG.getVAArg(NVT, Ch, Ptr, Node->getOperand(2)); 5111 Hi = DAG.getVAArg(NVT, Lo.getValue(1), Ptr, Node->getOperand(2)); 5112 5113 // Remember that we legalized the chain. 5114 Hi = LegalizeOp(Hi); 5115 AddLegalizedOperand(Op.getValue(1), Hi.getValue(1)); 5116 if (!TLI.isLittleEndian()) 5117 std::swap(Lo, Hi); 5118 break; 5119 } 5120 5121 case ISD::LOAD: { 5122 LoadSDNode *LD = cast<LoadSDNode>(Node); 5123 SDOperand Ch = LD->getChain(); // Legalize the chain. 5124 SDOperand Ptr = LD->getBasePtr(); // Legalize the pointer. 5125 ISD::LoadExtType ExtType = LD->getExtensionType(); 5126 int SVOffset = LD->getSrcValueOffset(); 5127 unsigned Alignment = LD->getAlignment(); 5128 bool isVolatile = LD->isVolatile(); 5129 5130 if (ExtType == ISD::NON_EXTLOAD) { 5131 Lo = DAG.getLoad(NVT, Ch, Ptr, LD->getSrcValue(), SVOffset, 5132 isVolatile, Alignment); 5133 if (VT == MVT::f32 || VT == MVT::f64) { 5134 // f32->i32 or f64->i64 one to one expansion. 5135 // Remember that we legalized the chain. 5136 AddLegalizedOperand(SDOperand(Node, 1), LegalizeOp(Lo.getValue(1))); 5137 // Recursively expand the new load. 5138 if (getTypeAction(NVT) == Expand) 5139 ExpandOp(Lo, Lo, Hi); 5140 break; 5141 } 5142 5143 // Increment the pointer to the other half. 5144 unsigned IncrementSize = MVT::getSizeInBits(Lo.getValueType())/8; 5145 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 5146 getIntPtrConstant(IncrementSize)); 5147 SVOffset += IncrementSize; 5148 if (Alignment > IncrementSize) 5149 Alignment = IncrementSize; 5150 Hi = DAG.getLoad(NVT, Ch, Ptr, LD->getSrcValue(), SVOffset, 5151 isVolatile, Alignment); 5152 5153 // Build a factor node to remember that this load is independent of the 5154 // other one. 5155 SDOperand TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 5156 Hi.getValue(1)); 5157 5158 // Remember that we legalized the chain. 5159 AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF)); 5160 if (!TLI.isLittleEndian()) 5161 std::swap(Lo, Hi); 5162 } else { 5163 MVT::ValueType EVT = LD->getLoadedVT(); 5164 5165 if (VT == MVT::f64 && EVT == MVT::f32) { 5166 // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND 5167 SDOperand Load = DAG.getLoad(EVT, Ch, Ptr, LD->getSrcValue(), 5168 SVOffset, isVolatile, Alignment); 5169 // Remember that we legalized the chain. 5170 AddLegalizedOperand(SDOperand(Node, 1), LegalizeOp(Load.getValue(1))); 5171 ExpandOp(DAG.getNode(ISD::FP_EXTEND, VT, Load), Lo, Hi); 5172 break; 5173 } 5174 5175 if (EVT == NVT) 5176 Lo = DAG.getLoad(NVT, Ch, Ptr, LD->getSrcValue(), 5177 SVOffset, isVolatile, Alignment); 5178 else 5179 Lo = DAG.getExtLoad(ExtType, NVT, Ch, Ptr, LD->getSrcValue(), 5180 SVOffset, EVT, isVolatile, 5181 Alignment); 5182 5183 // Remember that we legalized the chain. 5184 AddLegalizedOperand(SDOperand(Node, 1), LegalizeOp(Lo.getValue(1))); 5185 5186 if (ExtType == ISD::SEXTLOAD) { 5187 // The high part is obtained by SRA'ing all but one of the bits of the 5188 // lo part. 5189 unsigned LoSize = MVT::getSizeInBits(Lo.getValueType()); 5190 Hi = DAG.getNode(ISD::SRA, NVT, Lo, 5191 DAG.getConstant(LoSize-1, TLI.getShiftAmountTy())); 5192 } else if (ExtType == ISD::ZEXTLOAD) { 5193 // The high part is just a zero. 5194 Hi = DAG.getConstant(0, NVT); 5195 } else /* if (ExtType == ISD::EXTLOAD) */ { 5196 // The high part is undefined. 5197 Hi = DAG.getNode(ISD::UNDEF, NVT); 5198 } 5199 } 5200 break; 5201 } 5202 case ISD::AND: 5203 case ISD::OR: 5204 case ISD::XOR: { // Simple logical operators -> two trivial pieces. 5205 SDOperand LL, LH, RL, RH; 5206 ExpandOp(Node->getOperand(0), LL, LH); 5207 ExpandOp(Node->getOperand(1), RL, RH); 5208 Lo = DAG.getNode(Node->getOpcode(), NVT, LL, RL); 5209 Hi = DAG.getNode(Node->getOpcode(), NVT, LH, RH); 5210 break; 5211 } 5212 case ISD::SELECT: { 5213 SDOperand LL, LH, RL, RH; 5214 ExpandOp(Node->getOperand(1), LL, LH); 5215 ExpandOp(Node->getOperand(2), RL, RH); 5216 if (getTypeAction(NVT) == Expand) 5217 NVT = TLI.getTypeToExpandTo(NVT); 5218 Lo = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), LL, RL); 5219 if (VT != MVT::f32) 5220 Hi = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), LH, RH); 5221 break; 5222 } 5223 case ISD::SELECT_CC: { 5224 SDOperand TL, TH, FL, FH; 5225 ExpandOp(Node->getOperand(2), TL, TH); 5226 ExpandOp(Node->getOperand(3), FL, FH); 5227 if (getTypeAction(NVT) == Expand) 5228 NVT = TLI.getTypeToExpandTo(NVT); 5229 Lo = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0), 5230 Node->getOperand(1), TL, FL, Node->getOperand(4)); 5231 if (VT != MVT::f32) 5232 Hi = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0), 5233 Node->getOperand(1), TH, FH, Node->getOperand(4)); 5234 break; 5235 } 5236 case ISD::ANY_EXTEND: 5237 // The low part is any extension of the input (which degenerates to a copy). 5238 Lo = DAG.getNode(ISD::ANY_EXTEND, NVT, Node->getOperand(0)); 5239 // The high part is undefined. 5240 Hi = DAG.getNode(ISD::UNDEF, NVT); 5241 break; 5242 case ISD::SIGN_EXTEND: { 5243 // The low part is just a sign extension of the input (which degenerates to 5244 // a copy). 5245 Lo = DAG.getNode(ISD::SIGN_EXTEND, NVT, Node->getOperand(0)); 5246 5247 // The high part is obtained by SRA'ing all but one of the bits of the lo 5248 // part. 5249 unsigned LoSize = MVT::getSizeInBits(Lo.getValueType()); 5250 Hi = DAG.getNode(ISD::SRA, NVT, Lo, 5251 DAG.getConstant(LoSize-1, TLI.getShiftAmountTy())); 5252 break; 5253 } 5254 case ISD::ZERO_EXTEND: 5255 // The low part is just a zero extension of the input (which degenerates to 5256 // a copy). 5257 Lo = DAG.getNode(ISD::ZERO_EXTEND, NVT, Node->getOperand(0)); 5258 5259 // The high part is just a zero. 5260 Hi = DAG.getConstant(0, NVT); 5261 break; 5262 5263 case ISD::TRUNCATE: { 5264 // The input value must be larger than this value. Expand *it*. 5265 SDOperand NewLo; 5266 ExpandOp(Node->getOperand(0), NewLo, Hi); 5267 5268 // The low part is now either the right size, or it is closer. If not the 5269 // right size, make an illegal truncate so we recursively expand it. 5270 if (NewLo.getValueType() != Node->getValueType(0)) 5271 NewLo = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), NewLo); 5272 ExpandOp(NewLo, Lo, Hi); 5273 break; 5274 } 5275 5276 case ISD::BIT_CONVERT: { 5277 SDOperand Tmp; 5278 if (TLI.getOperationAction(ISD::BIT_CONVERT, VT) == TargetLowering::Custom){ 5279 // If the target wants to, allow it to lower this itself. 5280 switch (getTypeAction(Node->getOperand(0).getValueType())) { 5281 case Expand: assert(0 && "cannot expand FP!"); 5282 case Legal: Tmp = LegalizeOp(Node->getOperand(0)); break; 5283 case Promote: Tmp = PromoteOp (Node->getOperand(0)); break; 5284 } 5285 Tmp = TLI.LowerOperation(DAG.getNode(ISD::BIT_CONVERT, VT, Tmp), DAG); 5286 } 5287 5288 // f32 / f64 must be expanded to i32 / i64. 5289 if (VT == MVT::f32 || VT == MVT::f64) { 5290 Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 5291 if (getTypeAction(NVT) == Expand) 5292 ExpandOp(Lo, Lo, Hi); 5293 break; 5294 } 5295 5296 // If source operand will be expanded to the same type as VT, i.e. 5297 // i64 <- f64, i32 <- f32, expand the source operand instead. 5298 MVT::ValueType VT0 = Node->getOperand(0).getValueType(); 5299 if (getTypeAction(VT0) == Expand && TLI.getTypeToTransformTo(VT0) == VT) { 5300 ExpandOp(Node->getOperand(0), Lo, Hi); 5301 break; 5302 } 5303 5304 // Turn this into a load/store pair by default. 5305 if (Tmp.Val == 0) 5306 Tmp = ExpandBIT_CONVERT(VT, Node->getOperand(0)); 5307 5308 ExpandOp(Tmp, Lo, Hi); 5309 break; 5310 } 5311 5312 case ISD::READCYCLECOUNTER: 5313 assert(TLI.getOperationAction(ISD::READCYCLECOUNTER, VT) == 5314 TargetLowering::Custom && 5315 "Must custom expand ReadCycleCounter"); 5316 Lo = TLI.LowerOperation(Op, DAG); 5317 assert(Lo.Val && "Node must be custom expanded!"); 5318 Hi = Lo.getValue(1); 5319 AddLegalizedOperand(SDOperand(Node, 1), // Remember we legalized the chain. 5320 LegalizeOp(Lo.getValue(2))); 5321 break; 5322 5323 // These operators cannot be expanded directly, emit them as calls to 5324 // library functions. 5325 case ISD::FP_TO_SINT: { 5326 if (TLI.getOperationAction(ISD::FP_TO_SINT, VT) == TargetLowering::Custom) { 5327 SDOperand Op; 5328 switch (getTypeAction(Node->getOperand(0).getValueType())) { 5329 case Expand: assert(0 && "cannot expand FP!"); 5330 case Legal: Op = LegalizeOp(Node->getOperand(0)); break; 5331 case Promote: Op = PromoteOp (Node->getOperand(0)); break; 5332 } 5333 5334 Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_SINT, VT, Op), DAG); 5335 5336 // Now that the custom expander is done, expand the result, which is still 5337 // VT. 5338 if (Op.Val) { 5339 ExpandOp(Op, Lo, Hi); 5340 break; 5341 } 5342 } 5343 5344 RTLIB::Libcall LC; 5345 if (Node->getOperand(0).getValueType() == MVT::f32) 5346 LC = RTLIB::FPTOSINT_F32_I64; 5347 else 5348 LC = RTLIB::FPTOSINT_F64_I64; 5349 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, 5350 false/*sign irrelevant*/, Hi); 5351 break; 5352 } 5353 5354 case ISD::FP_TO_UINT: { 5355 if (TLI.getOperationAction(ISD::FP_TO_UINT, VT) == TargetLowering::Custom) { 5356 SDOperand Op; 5357 switch (getTypeAction(Node->getOperand(0).getValueType())) { 5358 case Expand: assert(0 && "cannot expand FP!"); 5359 case Legal: Op = LegalizeOp(Node->getOperand(0)); break; 5360 case Promote: Op = PromoteOp (Node->getOperand(0)); break; 5361 } 5362 5363 Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_UINT, VT, Op), DAG); 5364 5365 // Now that the custom expander is done, expand the result. 5366 if (Op.Val) { 5367 ExpandOp(Op, Lo, Hi); 5368 break; 5369 } 5370 } 5371 5372 RTLIB::Libcall LC; 5373 if (Node->getOperand(0).getValueType() == MVT::f32) 5374 LC = RTLIB::FPTOUINT_F32_I64; 5375 else 5376 LC = RTLIB::FPTOUINT_F64_I64; 5377 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, 5378 false/*sign irrelevant*/, Hi); 5379 break; 5380 } 5381 5382 case ISD::SHL: { 5383 // If the target wants custom lowering, do so. 5384 SDOperand ShiftAmt = LegalizeOp(Node->getOperand(1)); 5385 if (TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Custom) { 5386 SDOperand Op = DAG.getNode(ISD::SHL, VT, Node->getOperand(0), ShiftAmt); 5387 Op = TLI.LowerOperation(Op, DAG); 5388 if (Op.Val) { 5389 // Now that the custom expander is done, expand the result, which is 5390 // still VT. 5391 ExpandOp(Op, Lo, Hi); 5392 break; 5393 } 5394 } 5395 5396 // If ADDC/ADDE are supported and if the shift amount is a constant 1, emit 5397 // this X << 1 as X+X. 5398 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(ShiftAmt)) { 5399 if (ShAmt->getValue() == 1 && TLI.isOperationLegal(ISD::ADDC, NVT) && 5400 TLI.isOperationLegal(ISD::ADDE, NVT)) { 5401 SDOperand LoOps[2], HiOps[3]; 5402 ExpandOp(Node->getOperand(0), LoOps[0], HiOps[0]); 5403 SDVTList VTList = DAG.getVTList(LoOps[0].getValueType(), MVT::Flag); 5404 LoOps[1] = LoOps[0]; 5405 Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); 5406 5407 HiOps[1] = HiOps[0]; 5408 HiOps[2] = Lo.getValue(1); 5409 Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); 5410 break; 5411 } 5412 } 5413 5414 // If we can emit an efficient shift operation, do so now. 5415 if (ExpandShift(ISD::SHL, Node->getOperand(0), ShiftAmt, Lo, Hi)) 5416 break; 5417 5418 // If this target supports SHL_PARTS, use it. 5419 TargetLowering::LegalizeAction Action = 5420 TLI.getOperationAction(ISD::SHL_PARTS, NVT); 5421 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 5422 Action == TargetLowering::Custom) { 5423 ExpandShiftParts(ISD::SHL_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi); 5424 break; 5425 } 5426 5427 // Otherwise, emit a libcall. 5428 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SHL_I64), Node, 5429 false/*left shift=unsigned*/, Hi); 5430 break; 5431 } 5432 5433 case ISD::SRA: { 5434 // If the target wants custom lowering, do so. 5435 SDOperand ShiftAmt = LegalizeOp(Node->getOperand(1)); 5436 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Custom) { 5437 SDOperand Op = DAG.getNode(ISD::SRA, VT, Node->getOperand(0), ShiftAmt); 5438 Op = TLI.LowerOperation(Op, DAG); 5439 if (Op.Val) { 5440 // Now that the custom expander is done, expand the result, which is 5441 // still VT. 5442 ExpandOp(Op, Lo, Hi); 5443 break; 5444 } 5445 } 5446 5447 // If we can emit an efficient shift operation, do so now. 5448 if (ExpandShift(ISD::SRA, Node->getOperand(0), ShiftAmt, Lo, Hi)) 5449 break; 5450 5451 // If this target supports SRA_PARTS, use it. 5452 TargetLowering::LegalizeAction Action = 5453 TLI.getOperationAction(ISD::SRA_PARTS, NVT); 5454 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 5455 Action == TargetLowering::Custom) { 5456 ExpandShiftParts(ISD::SRA_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi); 5457 break; 5458 } 5459 5460 // Otherwise, emit a libcall. 5461 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SRA_I64), Node, 5462 true/*ashr is signed*/, Hi); 5463 break; 5464 } 5465 5466 case ISD::SRL: { 5467 // If the target wants custom lowering, do so. 5468 SDOperand ShiftAmt = LegalizeOp(Node->getOperand(1)); 5469 if (TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Custom) { 5470 SDOperand Op = DAG.getNode(ISD::SRL, VT, Node->getOperand(0), ShiftAmt); 5471 Op = TLI.LowerOperation(Op, DAG); 5472 if (Op.Val) { 5473 // Now that the custom expander is done, expand the result, which is 5474 // still VT. 5475 ExpandOp(Op, Lo, Hi); 5476 break; 5477 } 5478 } 5479 5480 // If we can emit an efficient shift operation, do so now. 5481 if (ExpandShift(ISD::SRL, Node->getOperand(0), ShiftAmt, Lo, Hi)) 5482 break; 5483 5484 // If this target supports SRL_PARTS, use it. 5485 TargetLowering::LegalizeAction Action = 5486 TLI.getOperationAction(ISD::SRL_PARTS, NVT); 5487 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 5488 Action == TargetLowering::Custom) { 5489 ExpandShiftParts(ISD::SRL_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi); 5490 break; 5491 } 5492 5493 // Otherwise, emit a libcall. 5494 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SRL_I64), Node, 5495 false/*lshr is unsigned*/, Hi); 5496 break; 5497 } 5498 5499 case ISD::ADD: 5500 case ISD::SUB: { 5501 // If the target wants to custom expand this, let them. 5502 if (TLI.getOperationAction(Node->getOpcode(), VT) == 5503 TargetLowering::Custom) { 5504 Op = TLI.LowerOperation(Op, DAG); 5505 if (Op.Val) { 5506 ExpandOp(Op, Lo, Hi); 5507 break; 5508 } 5509 } 5510 5511 // Expand the subcomponents. 5512 SDOperand LHSL, LHSH, RHSL, RHSH; 5513 ExpandOp(Node->getOperand(0), LHSL, LHSH); 5514 ExpandOp(Node->getOperand(1), RHSL, RHSH); 5515 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 5516 SDOperand LoOps[2], HiOps[3]; 5517 LoOps[0] = LHSL; 5518 LoOps[1] = RHSL; 5519 HiOps[0] = LHSH; 5520 HiOps[1] = RHSH; 5521 if (Node->getOpcode() == ISD::ADD) { 5522 Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); 5523 HiOps[2] = Lo.getValue(1); 5524 Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); 5525 } else { 5526 Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2); 5527 HiOps[2] = Lo.getValue(1); 5528 Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3); 5529 } 5530 break; 5531 } 5532 5533 case ISD::ADDC: 5534 case ISD::SUBC: { 5535 // Expand the subcomponents. 5536 SDOperand LHSL, LHSH, RHSL, RHSH; 5537 ExpandOp(Node->getOperand(0), LHSL, LHSH); 5538 ExpandOp(Node->getOperand(1), RHSL, RHSH); 5539 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 5540 SDOperand LoOps[2] = { LHSL, RHSL }; 5541 SDOperand HiOps[3] = { LHSH, RHSH }; 5542 5543 if (Node->getOpcode() == ISD::ADDC) { 5544 Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); 5545 HiOps[2] = Lo.getValue(1); 5546 Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); 5547 } else { 5548 Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2); 5549 HiOps[2] = Lo.getValue(1); 5550 Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3); 5551 } 5552 // Remember that we legalized the flag. 5553 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1))); 5554 break; 5555 } 5556 case ISD::ADDE: 5557 case ISD::SUBE: { 5558 // Expand the subcomponents. 5559 SDOperand LHSL, LHSH, RHSL, RHSH; 5560 ExpandOp(Node->getOperand(0), LHSL, LHSH); 5561 ExpandOp(Node->getOperand(1), RHSL, RHSH); 5562 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 5563 SDOperand LoOps[3] = { LHSL, RHSL, Node->getOperand(2) }; 5564 SDOperand HiOps[3] = { LHSH, RHSH }; 5565 5566 Lo = DAG.getNode(Node->getOpcode(), VTList, LoOps, 3); 5567 HiOps[2] = Lo.getValue(1); 5568 Hi = DAG.getNode(Node->getOpcode(), VTList, HiOps, 3); 5569 5570 // Remember that we legalized the flag. 5571 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1))); 5572 break; 5573 } 5574 case ISD::MUL: { 5575 // If the target wants to custom expand this, let them. 5576 if (TLI.getOperationAction(ISD::MUL, VT) == TargetLowering::Custom) { 5577 SDOperand New = TLI.LowerOperation(Op, DAG); 5578 if (New.Val) { 5579 ExpandOp(New, Lo, Hi); 5580 break; 5581 } 5582 } 5583 5584 bool HasMULHS = TLI.isOperationLegal(ISD::MULHS, NVT); 5585 bool HasMULHU = TLI.isOperationLegal(ISD::MULHU, NVT); 5586 if (HasMULHS || HasMULHU) { 5587 SDOperand LL, LH, RL, RH; 5588 ExpandOp(Node->getOperand(0), LL, LH); 5589 ExpandOp(Node->getOperand(1), RL, RH); 5590 unsigned SH = MVT::getSizeInBits(RH.getValueType())-1; 5591 // FIXME: Move this to the dag combiner. 5592 // MULHS implicitly sign extends its inputs. Check to see if ExpandOp 5593 // extended the sign bit of the low half through the upper half, and if so 5594 // emit a MULHS instead of the alternate sequence that is valid for any 5595 // i64 x i64 multiply. 5596 if (HasMULHS && 5597 // is RH an extension of the sign bit of RL? 5598 RH.getOpcode() == ISD::SRA && RH.getOperand(0) == RL && 5599 RH.getOperand(1).getOpcode() == ISD::Constant && 5600 cast<ConstantSDNode>(RH.getOperand(1))->getValue() == SH && 5601 // is LH an extension of the sign bit of LL? 5602 LH.getOpcode() == ISD::SRA && LH.getOperand(0) == LL && 5603 LH.getOperand(1).getOpcode() == ISD::Constant && 5604 cast<ConstantSDNode>(LH.getOperand(1))->getValue() == SH) { 5605 // Low part: 5606 Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); 5607 // High part: 5608 Hi = DAG.getNode(ISD::MULHS, NVT, LL, RL); 5609 break; 5610 } else if (HasMULHU) { 5611 // Low part: 5612 Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); 5613 5614 // High part: 5615 Hi = DAG.getNode(ISD::MULHU, NVT, LL, RL); 5616 RH = DAG.getNode(ISD::MUL, NVT, LL, RH); 5617 LH = DAG.getNode(ISD::MUL, NVT, LH, RL); 5618 Hi = DAG.getNode(ISD::ADD, NVT, Hi, RH); 5619 Hi = DAG.getNode(ISD::ADD, NVT, Hi, LH); 5620 break; 5621 } 5622 } 5623 5624 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::MUL_I64), Node, 5625 false/*sign irrelevant*/, Hi); 5626 break; 5627 } 5628 case ISD::SDIV: 5629 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SDIV_I64), Node, true, Hi); 5630 break; 5631 case ISD::UDIV: 5632 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::UDIV_I64), Node, true, Hi); 5633 break; 5634 case ISD::SREM: 5635 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SREM_I64), Node, true, Hi); 5636 break; 5637 case ISD::UREM: 5638 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::UREM_I64), Node, true, Hi); 5639 break; 5640 5641 case ISD::FADD: 5642 Lo = ExpandLibCall(TLI.getLibcallName((VT == MVT::f32) 5643 ? RTLIB::ADD_F32 : RTLIB::ADD_F64), 5644 Node, false, Hi); 5645 break; 5646 case ISD::FSUB: 5647 Lo = ExpandLibCall(TLI.getLibcallName((VT == MVT::f32) 5648 ? RTLIB::SUB_F32 : RTLIB::SUB_F64), 5649 Node, false, Hi); 5650 break; 5651 case ISD::FMUL: 5652 Lo = ExpandLibCall(TLI.getLibcallName((VT == MVT::f32) 5653 ? RTLIB::MUL_F32 : RTLIB::MUL_F64), 5654 Node, false, Hi); 5655 break; 5656 case ISD::FDIV: 5657 Lo = ExpandLibCall(TLI.getLibcallName((VT == MVT::f32) 5658 ? RTLIB::DIV_F32 : RTLIB::DIV_F64), 5659 Node, false, Hi); 5660 break; 5661 case ISD::FP_EXTEND: 5662 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::FPEXT_F32_F64), Node, true,Hi); 5663 break; 5664 case ISD::FP_ROUND: 5665 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::FPROUND_F64_F32),Node,true,Hi); 5666 break; 5667 case ISD::FPOWI: 5668 Lo = ExpandLibCall(TLI.getLibcallName((VT == MVT::f32) 5669 ? RTLIB::POWI_F32 : RTLIB::POWI_F64), 5670 Node, false, Hi); 5671 break; 5672 case ISD::FSQRT: 5673 case ISD::FSIN: 5674 case ISD::FCOS: { 5675 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 5676 switch(Node->getOpcode()) { 5677 case ISD::FSQRT: 5678 LC = (VT == MVT::f32) ? RTLIB::SQRT_F32 : RTLIB::SQRT_F64; 5679 break; 5680 case ISD::FSIN: 5681 LC = (VT == MVT::f32) ? RTLIB::SIN_F32 : RTLIB::SIN_F64; 5682 break; 5683 case ISD::FCOS: 5684 LC = (VT == MVT::f32) ? RTLIB::COS_F32 : RTLIB::COS_F64; 5685 break; 5686 default: assert(0 && "Unreachable!"); 5687 } 5688 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, false, Hi); 5689 break; 5690 } 5691 case ISD::FABS: { 5692 SDOperand Mask = (VT == MVT::f64) 5693 ? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT) 5694 : DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT); 5695 Mask = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask); 5696 Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 5697 Lo = DAG.getNode(ISD::AND, NVT, Lo, Mask); 5698 if (getTypeAction(NVT) == Expand) 5699 ExpandOp(Lo, Lo, Hi); 5700 break; 5701 } 5702 case ISD::FNEG: { 5703 SDOperand Mask = (VT == MVT::f64) 5704 ? DAG.getConstantFP(BitsToDouble(1ULL << 63), VT) 5705 : DAG.getConstantFP(BitsToFloat(1U << 31), VT); 5706 Mask = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask); 5707 Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 5708 Lo = DAG.getNode(ISD::XOR, NVT, Lo, Mask); 5709 if (getTypeAction(NVT) == Expand) 5710 ExpandOp(Lo, Lo, Hi); 5711 break; 5712 } 5713 case ISD::FCOPYSIGN: { 5714 Lo = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI); 5715 if (getTypeAction(NVT) == Expand) 5716 ExpandOp(Lo, Lo, Hi); 5717 break; 5718 } 5719 case ISD::SINT_TO_FP: 5720 case ISD::UINT_TO_FP: { 5721 bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP; 5722 MVT::ValueType SrcVT = Node->getOperand(0).getValueType(); 5723 RTLIB::Libcall LC; 5724 if (Node->getOperand(0).getValueType() == MVT::i64) { 5725 if (VT == MVT::f32) 5726 LC = isSigned ? RTLIB::SINTTOFP_I64_F32 : RTLIB::UINTTOFP_I64_F32; 5727 else 5728 LC = isSigned ? RTLIB::SINTTOFP_I64_F64 : RTLIB::UINTTOFP_I64_F64; 5729 } else { 5730 if (VT == MVT::f32) 5731 LC = isSigned ? RTLIB::SINTTOFP_I32_F32 : RTLIB::UINTTOFP_I32_F32; 5732 else 5733 LC = isSigned ? RTLIB::SINTTOFP_I32_F64 : RTLIB::UINTTOFP_I32_F64; 5734 } 5735 5736 // Promote the operand if needed. 5737 if (getTypeAction(SrcVT) == Promote) { 5738 SDOperand Tmp = PromoteOp(Node->getOperand(0)); 5739 Tmp = isSigned 5740 ? DAG.getNode(ISD::SIGN_EXTEND_INREG, Tmp.getValueType(), Tmp, 5741 DAG.getValueType(SrcVT)) 5742 : DAG.getZeroExtendInReg(Tmp, SrcVT); 5743 Node = DAG.UpdateNodeOperands(Op, Tmp).Val; 5744 } 5745 5746 const char *LibCall = TLI.getLibcallName(LC); 5747 if (LibCall) 5748 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, isSigned, Hi); 5749 else { 5750 Lo = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, VT, 5751 Node->getOperand(0)); 5752 if (getTypeAction(Lo.getValueType()) == Expand) 5753 ExpandOp(Lo, Lo, Hi); 5754 } 5755 break; 5756 } 5757 } 5758 5759 // Make sure the resultant values have been legalized themselves, unless this 5760 // is a type that requires multi-step expansion. 5761 if (getTypeAction(NVT) != Expand && NVT != MVT::isVoid) { 5762 Lo = LegalizeOp(Lo); 5763 if (Hi.Val) 5764 // Don't legalize the high part if it is expanded to a single node. 5765 Hi = LegalizeOp(Hi); 5766 } 5767 5768 // Remember in a map if the values will be reused later. 5769 bool isNew = ExpandedNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi))); 5770 assert(isNew && "Value already expanded?!?"); 5771} 5772 5773/// SplitVectorOp - Given an operand of vector type, break it down into 5774/// two smaller values, still of vector type. 5775void SelectionDAGLegalize::SplitVectorOp(SDOperand Op, SDOperand &Lo, 5776 SDOperand &Hi) { 5777 assert(MVT::isVector(Op.getValueType()) && "Cannot split non-vector type!"); 5778 SDNode *Node = Op.Val; 5779 unsigned NumElements = MVT::getVectorNumElements(Node->getValueType(0)); 5780 assert(NumElements > 1 && "Cannot split a single element vector!"); 5781 unsigned NewNumElts = NumElements/2; 5782 MVT::ValueType NewEltVT = MVT::getVectorElementType(Node->getValueType(0)); 5783 MVT::ValueType NewVT = MVT::getVectorType(NewEltVT, NewNumElts); 5784 5785 // See if we already split it. 5786 std::map<SDOperand, std::pair<SDOperand, SDOperand> >::iterator I 5787 = SplitNodes.find(Op); 5788 if (I != SplitNodes.end()) { 5789 Lo = I->second.first; 5790 Hi = I->second.second; 5791 return; 5792 } 5793 5794 switch (Node->getOpcode()) { 5795 default: 5796#ifndef NDEBUG 5797 Node->dump(&DAG); 5798#endif 5799 assert(0 && "Unhandled operation in SplitVectorOp!"); 5800 case ISD::BUILD_PAIR: 5801 Lo = Node->getOperand(0); 5802 Hi = Node->getOperand(1); 5803 break; 5804 case ISD::BUILD_VECTOR: { 5805 SmallVector<SDOperand, 8> LoOps(Node->op_begin(), 5806 Node->op_begin()+NewNumElts); 5807 Lo = DAG.getNode(ISD::BUILD_VECTOR, NewVT, &LoOps[0], LoOps.size()); 5808 5809 SmallVector<SDOperand, 8> HiOps(Node->op_begin()+NewNumElts, 5810 Node->op_end()); 5811 Hi = DAG.getNode(ISD::BUILD_VECTOR, NewVT, &HiOps[0], HiOps.size()); 5812 break; 5813 } 5814 case ISD::CONCAT_VECTORS: { 5815 unsigned NewNumSubvectors = Node->getNumOperands() / 2; 5816 if (NewNumSubvectors == 1) { 5817 Lo = Node->getOperand(0); 5818 Hi = Node->getOperand(1); 5819 } else { 5820 SmallVector<SDOperand, 8> LoOps(Node->op_begin(), 5821 Node->op_begin()+NewNumSubvectors); 5822 Lo = DAG.getNode(ISD::CONCAT_VECTORS, NewVT, &LoOps[0], LoOps.size()); 5823 5824 SmallVector<SDOperand, 8> HiOps(Node->op_begin()+NewNumSubvectors, 5825 Node->op_end()); 5826 Hi = DAG.getNode(ISD::CONCAT_VECTORS, NewVT, &HiOps[0], HiOps.size()); 5827 } 5828 break; 5829 } 5830 case ISD::ADD: 5831 case ISD::SUB: 5832 case ISD::MUL: 5833 case ISD::FADD: 5834 case ISD::FSUB: 5835 case ISD::FMUL: 5836 case ISD::SDIV: 5837 case ISD::UDIV: 5838 case ISD::FDIV: 5839 case ISD::AND: 5840 case ISD::OR: 5841 case ISD::XOR: { 5842 SDOperand LL, LH, RL, RH; 5843 SplitVectorOp(Node->getOperand(0), LL, LH); 5844 SplitVectorOp(Node->getOperand(1), RL, RH); 5845 5846 Lo = DAG.getNode(Node->getOpcode(), NewVT, LL, RL); 5847 Hi = DAG.getNode(Node->getOpcode(), NewVT, LH, RH); 5848 break; 5849 } 5850 case ISD::LOAD: { 5851 LoadSDNode *LD = cast<LoadSDNode>(Node); 5852 SDOperand Ch = LD->getChain(); 5853 SDOperand Ptr = LD->getBasePtr(); 5854 const Value *SV = LD->getSrcValue(); 5855 int SVOffset = LD->getSrcValueOffset(); 5856 unsigned Alignment = LD->getAlignment(); 5857 bool isVolatile = LD->isVolatile(); 5858 5859 Lo = DAG.getLoad(NewVT, Ch, Ptr, SV, SVOffset, isVolatile, Alignment); 5860 unsigned IncrementSize = NewNumElts * MVT::getSizeInBits(NewEltVT)/8; 5861 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 5862 getIntPtrConstant(IncrementSize)); 5863 SVOffset += IncrementSize; 5864 if (Alignment > IncrementSize) 5865 Alignment = IncrementSize; 5866 Hi = DAG.getLoad(NewVT, Ch, Ptr, SV, SVOffset, isVolatile, Alignment); 5867 5868 // Build a factor node to remember that this load is independent of the 5869 // other one. 5870 SDOperand TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 5871 Hi.getValue(1)); 5872 5873 // Remember that we legalized the chain. 5874 AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF)); 5875 break; 5876 } 5877 case ISD::BIT_CONVERT: { 5878 // We know the result is a vector. The input may be either a vector or a 5879 // scalar value. 5880 SDOperand InOp = Node->getOperand(0); 5881 if (!MVT::isVector(InOp.getValueType()) || 5882 MVT::getVectorNumElements(InOp.getValueType()) == 1) { 5883 // The input is a scalar or single-element vector. 5884 // Lower to a store/load so that it can be split. 5885 // FIXME: this could be improved probably. 5886 SDOperand Ptr = CreateStackTemporary(InOp.getValueType()); 5887 5888 SDOperand St = DAG.getStore(DAG.getEntryNode(), 5889 InOp, Ptr, NULL, 0); 5890 InOp = DAG.getLoad(Op.getValueType(), St, Ptr, NULL, 0); 5891 } 5892 // Split the vector and convert each of the pieces now. 5893 SplitVectorOp(InOp, Lo, Hi); 5894 Lo = DAG.getNode(ISD::BIT_CONVERT, NewVT, Lo); 5895 Hi = DAG.getNode(ISD::BIT_CONVERT, NewVT, Hi); 5896 break; 5897 } 5898 } 5899 5900 // Remember in a map if the values will be reused later. 5901 bool isNew = 5902 SplitNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi))).second; 5903 assert(isNew && "Value already split?!?"); 5904} 5905 5906 5907/// ScalarizeVectorOp - Given an operand of single-element vector type 5908/// (e.g. v1f32), convert it into the equivalent operation that returns a 5909/// scalar (e.g. f32) value. 5910SDOperand SelectionDAGLegalize::ScalarizeVectorOp(SDOperand Op) { 5911 assert(MVT::isVector(Op.getValueType()) && 5912 "Bad ScalarizeVectorOp invocation!"); 5913 SDNode *Node = Op.Val; 5914 MVT::ValueType NewVT = MVT::getVectorElementType(Op.getValueType()); 5915 assert(MVT::getVectorNumElements(Op.getValueType()) == 1); 5916 5917 // See if we already scalarized it. 5918 std::map<SDOperand, SDOperand>::iterator I = ScalarizedNodes.find(Op); 5919 if (I != ScalarizedNodes.end()) return I->second; 5920 5921 SDOperand Result; 5922 switch (Node->getOpcode()) { 5923 default: 5924#ifndef NDEBUG 5925 Node->dump(&DAG); cerr << "\n"; 5926#endif 5927 assert(0 && "Unknown vector operation in ScalarizeVectorOp!"); 5928 case ISD::ADD: 5929 case ISD::FADD: 5930 case ISD::SUB: 5931 case ISD::FSUB: 5932 case ISD::MUL: 5933 case ISD::FMUL: 5934 case ISD::SDIV: 5935 case ISD::UDIV: 5936 case ISD::FDIV: 5937 case ISD::SREM: 5938 case ISD::UREM: 5939 case ISD::FREM: 5940 case ISD::AND: 5941 case ISD::OR: 5942 case ISD::XOR: 5943 Result = DAG.getNode(Node->getOpcode(), 5944 NewVT, 5945 ScalarizeVectorOp(Node->getOperand(0)), 5946 ScalarizeVectorOp(Node->getOperand(1))); 5947 break; 5948 case ISD::FNEG: 5949 case ISD::FABS: 5950 case ISD::FSQRT: 5951 case ISD::FSIN: 5952 case ISD::FCOS: 5953 Result = DAG.getNode(Node->getOpcode(), 5954 NewVT, 5955 ScalarizeVectorOp(Node->getOperand(0))); 5956 break; 5957 case ISD::LOAD: { 5958 LoadSDNode *LD = cast<LoadSDNode>(Node); 5959 SDOperand Ch = LegalizeOp(LD->getChain()); // Legalize the chain. 5960 SDOperand Ptr = LegalizeOp(LD->getBasePtr()); // Legalize the pointer. 5961 5962 const Value *SV = LD->getSrcValue(); 5963 int SVOffset = LD->getSrcValueOffset(); 5964 Result = DAG.getLoad(NewVT, Ch, Ptr, SV, SVOffset, 5965 LD->isVolatile(), LD->getAlignment()); 5966 5967 // Remember that we legalized the chain. 5968 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 5969 break; 5970 } 5971 case ISD::BUILD_VECTOR: 5972 Result = Node->getOperand(0); 5973 break; 5974 case ISD::INSERT_VECTOR_ELT: 5975 // Returning the inserted scalar element. 5976 Result = Node->getOperand(1); 5977 break; 5978 case ISD::CONCAT_VECTORS: 5979 assert(Node->getOperand(0).getValueType() == NewVT && 5980 "Concat of non-legal vectors not yet supported!"); 5981 Result = Node->getOperand(0); 5982 break; 5983 case ISD::VECTOR_SHUFFLE: { 5984 // Figure out if the scalar is the LHS or RHS and return it. 5985 SDOperand EltNum = Node->getOperand(2).getOperand(0); 5986 if (cast<ConstantSDNode>(EltNum)->getValue()) 5987 Result = ScalarizeVectorOp(Node->getOperand(1)); 5988 else 5989 Result = ScalarizeVectorOp(Node->getOperand(0)); 5990 break; 5991 } 5992 case ISD::EXTRACT_SUBVECTOR: 5993 Result = Node->getOperand(0); 5994 assert(Result.getValueType() == NewVT); 5995 break; 5996 case ISD::BIT_CONVERT: 5997 Result = DAG.getNode(ISD::BIT_CONVERT, NewVT, Op.getOperand(0)); 5998 break; 5999 case ISD::SELECT: 6000 Result = DAG.getNode(ISD::SELECT, NewVT, Op.getOperand(0), 6001 ScalarizeVectorOp(Op.getOperand(1)), 6002 ScalarizeVectorOp(Op.getOperand(2))); 6003 break; 6004 } 6005 6006 if (TLI.isTypeLegal(NewVT)) 6007 Result = LegalizeOp(Result); 6008 bool isNew = ScalarizedNodes.insert(std::make_pair(Op, Result)).second; 6009 assert(isNew && "Value already scalarized?"); 6010 return Result; 6011} 6012 6013 6014// SelectionDAG::Legalize - This is the entry point for the file. 6015// 6016void SelectionDAG::Legalize() { 6017 if (ViewLegalizeDAGs) viewGraph(); 6018 6019 /// run - This is the main entry point to this class. 6020 /// 6021 SelectionDAGLegalize(*this).LegalizeDAG(); 6022} 6023 6024