LegalizeDAG.cpp revision 5274a4afb720858bf1ab927fc90068f1a8f12eb2
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the SelectionDAG::Legalize method. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/SelectionDAG.h" 15#include "llvm/CodeGen/MachineFunction.h" 16#include "llvm/CodeGen/MachineFrameInfo.h" 17#include "llvm/CodeGen/MachineJumpTableInfo.h" 18#include "llvm/CodeGen/MachineModuleInfo.h" 19#include "llvm/CodeGen/DwarfWriter.h" 20#include "llvm/Analysis/DebugInfo.h" 21#include "llvm/CodeGen/PseudoSourceValue.h" 22#include "llvm/Target/TargetFrameInfo.h" 23#include "llvm/Target/TargetLowering.h" 24#include "llvm/Target/TargetData.h" 25#include "llvm/Target/TargetMachine.h" 26#include "llvm/Target/TargetOptions.h" 27#include "llvm/Target/TargetSubtarget.h" 28#include "llvm/CallingConv.h" 29#include "llvm/Constants.h" 30#include "llvm/DerivedTypes.h" 31#include "llvm/Function.h" 32#include "llvm/GlobalVariable.h" 33#include "llvm/Support/CommandLine.h" 34#include "llvm/Support/Compiler.h" 35#include "llvm/Support/MathExtras.h" 36#include "llvm/ADT/DenseMap.h" 37#include "llvm/ADT/SmallVector.h" 38#include "llvm/ADT/SmallPtrSet.h" 39#include <map> 40using namespace llvm; 41 42//===----------------------------------------------------------------------===// 43/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and 44/// hacks on it until the target machine can handle it. This involves 45/// eliminating value sizes the machine cannot handle (promoting small sizes to 46/// large sizes or splitting up large values into small values) as well as 47/// eliminating operations the machine cannot handle. 48/// 49/// This code also does a small amount of optimization and recognition of idioms 50/// as part of its processing. For example, if a target does not support a 51/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 52/// will attempt merge setcc and brc instructions into brcc's. 53/// 54namespace { 55class VISIBILITY_HIDDEN SelectionDAGLegalize { 56 TargetLowering &TLI; 57 SelectionDAG &DAG; 58 bool TypesNeedLegalizing; 59 bool Fast; 60 61 // Libcall insertion helpers. 62 63 /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been 64 /// legalized. We use this to ensure that calls are properly serialized 65 /// against each other, including inserted libcalls. 66 SDValue LastCALLSEQ_END; 67 68 /// IsLegalizingCall - This member is used *only* for purposes of providing 69 /// helpful assertions that a libcall isn't created while another call is 70 /// being legalized (which could lead to non-serialized call sequences). 71 bool IsLegalizingCall; 72 73 /// IsLegalizingCallArguments - This member is used only for the purpose 74 /// of providing assert to check for LegalizeTypes because legalizing an 75 /// operation might introduce call nodes that might need type legalization. 76 bool IsLegalizingCallArgs; 77 78 enum LegalizeAction { 79 Legal, // The target natively supports this operation. 80 Promote, // This operation should be executed in a larger type. 81 Expand // Try to expand this to other ops, otherwise use a libcall. 82 }; 83 84 /// ValueTypeActions - This is a bitvector that contains two bits for each 85 /// value type, where the two bits correspond to the LegalizeAction enum. 86 /// This can be queried with "getTypeAction(VT)". 87 TargetLowering::ValueTypeActionImpl ValueTypeActions; 88 89 /// LegalizedNodes - For nodes that are of legal width, and that have more 90 /// than one use, this map indicates what regularized operand to use. This 91 /// allows us to avoid legalizing the same thing more than once. 92 DenseMap<SDValue, SDValue> LegalizedNodes; 93 94 /// PromotedNodes - For nodes that are below legal width, and that have more 95 /// than one use, this map indicates what promoted value to use. This allows 96 /// us to avoid promoting the same thing more than once. 97 DenseMap<SDValue, SDValue> PromotedNodes; 98 99 /// ExpandedNodes - For nodes that need to be expanded this map indicates 100 /// which operands are the expanded version of the input. This allows 101 /// us to avoid expanding the same node more than once. 102 DenseMap<SDValue, std::pair<SDValue, SDValue> > ExpandedNodes; 103 104 /// SplitNodes - For vector nodes that need to be split, this map indicates 105 /// which operands are the split version of the input. This allows us 106 /// to avoid splitting the same node more than once. 107 std::map<SDValue, std::pair<SDValue, SDValue> > SplitNodes; 108 109 /// ScalarizedNodes - For nodes that need to be converted from vector types to 110 /// scalar types, this contains the mapping of ones we have already 111 /// processed to the result. 112 std::map<SDValue, SDValue> ScalarizedNodes; 113 114 /// WidenNodes - For nodes that need to be widened from one vector type to 115 /// another, this contains the mapping of those that we have already widen. 116 /// This allows us to avoid widening more than once. 117 std::map<SDValue, SDValue> WidenNodes; 118 119 void AddLegalizedOperand(SDValue From, SDValue To) { 120 LegalizedNodes.insert(std::make_pair(From, To)); 121 // If someone requests legalization of the new node, return itself. 122 if (From != To) 123 LegalizedNodes.insert(std::make_pair(To, To)); 124 } 125 void AddPromotedOperand(SDValue From, SDValue To) { 126 bool isNew = PromotedNodes.insert(std::make_pair(From, To)).second; 127 assert(isNew && "Got into the map somehow?"); 128 isNew = isNew; 129 // If someone requests legalization of the new node, return itself. 130 LegalizedNodes.insert(std::make_pair(To, To)); 131 } 132 void AddWidenedOperand(SDValue From, SDValue To) { 133 bool isNew = WidenNodes.insert(std::make_pair(From, To)).second; 134 assert(isNew && "Got into the map somehow?"); 135 isNew = isNew; 136 // If someone requests legalization of the new node, return itself. 137 LegalizedNodes.insert(std::make_pair(To, To)); 138 } 139 140public: 141 explicit SelectionDAGLegalize(SelectionDAG &DAG, bool TypesNeedLegalizing, 142 bool fast); 143 144 /// getTypeAction - Return how we should legalize values of this type, either 145 /// it is already legal or we need to expand it into multiple registers of 146 /// smaller integer type, or we need to promote it to a larger type. 147 LegalizeAction getTypeAction(MVT VT) const { 148 return (LegalizeAction)ValueTypeActions.getTypeAction(VT); 149 } 150 151 /// isTypeLegal - Return true if this type is legal on this target. 152 /// 153 bool isTypeLegal(MVT VT) const { 154 return getTypeAction(VT) == Legal; 155 } 156 157 void LegalizeDAG(); 158 159private: 160 /// HandleOp - Legalize, Promote, or Expand the specified operand as 161 /// appropriate for its type. 162 void HandleOp(SDValue Op); 163 164 /// LegalizeOp - We know that the specified value has a legal type. 165 /// Recursively ensure that the operands have legal types, then return the 166 /// result. 167 SDValue LegalizeOp(SDValue O); 168 169 /// UnrollVectorOp - We know that the given vector has a legal type, however 170 /// the operation it performs is not legal and is an operation that we have 171 /// no way of lowering. "Unroll" the vector, splitting out the scalars and 172 /// operating on each element individually. 173 SDValue UnrollVectorOp(SDValue O); 174 175 /// PerformInsertVectorEltInMemory - Some target cannot handle a variable 176 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 177 /// is necessary to spill the vector being inserted into to memory, perform 178 /// the insert there, and then read the result back. 179 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, 180 SDValue Idx, DebugLoc dl); 181 182 /// PromoteOp - Given an operation that produces a value in an invalid type, 183 /// promote it to compute the value into a larger type. The produced value 184 /// will have the correct bits for the low portion of the register, but no 185 /// guarantee is made about the top bits: it may be zero, sign-extended, or 186 /// garbage. 187 SDValue PromoteOp(SDValue O); 188 189 /// ExpandOp - Expand the specified SDValue into its two component pieces 190 /// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, 191 /// the LegalizedNodes map is filled in for any results that are not expanded, 192 /// the ExpandedNodes map is filled in for any results that are expanded, and 193 /// the Lo/Hi values are returned. This applies to integer types and Vector 194 /// types. 195 void ExpandOp(SDValue O, SDValue &Lo, SDValue &Hi); 196 197 /// WidenVectorOp - Widen a vector operation to a wider type given by WidenVT 198 /// (e.g., v3i32 to v4i32). The produced value will have the correct value 199 /// for the existing elements but no guarantee is made about the new elements 200 /// at the end of the vector: it may be zero, ones, or garbage. This is useful 201 /// when we have an instruction operating on an illegal vector type and we 202 /// want to widen it to do the computation on a legal wider vector type. 203 SDValue WidenVectorOp(SDValue Op, MVT WidenVT); 204 205 /// SplitVectorOp - Given an operand of vector type, break it down into 206 /// two smaller values. 207 void SplitVectorOp(SDValue O, SDValue &Lo, SDValue &Hi); 208 209 /// ScalarizeVectorOp - Given an operand of single-element vector type 210 /// (e.g. v1f32), convert it into the equivalent operation that returns a 211 /// scalar (e.g. f32) value. 212 SDValue ScalarizeVectorOp(SDValue O); 213 214 /// Useful 16 element vector type that is used to pass operands for widening. 215 typedef SmallVector<SDValue, 16> SDValueVector; 216 217 /// LoadWidenVectorOp - Load a vector for a wider type. Returns true if 218 /// the LdChain contains a single load and false if it contains a token 219 /// factor for multiple loads. It takes 220 /// Result: location to return the result 221 /// LdChain: location to return the load chain 222 /// Op: load operation to widen 223 /// NVT: widen vector result type we want for the load 224 bool LoadWidenVectorOp(SDValue& Result, SDValue& LdChain, 225 SDValue Op, MVT NVT); 226 227 /// Helper genWidenVectorLoads - Helper function to generate a set of 228 /// loads to load a vector with a resulting wider type. It takes 229 /// LdChain: list of chains for the load we have generated 230 /// Chain: incoming chain for the ld vector 231 /// BasePtr: base pointer to load from 232 /// SV: memory disambiguation source value 233 /// SVOffset: memory disambiugation offset 234 /// Alignment: alignment of the memory 235 /// isVolatile: volatile load 236 /// LdWidth: width of memory that we want to load 237 /// ResType: the wider result result type for the resulting loaded vector 238 SDValue genWidenVectorLoads(SDValueVector& LdChain, SDValue Chain, 239 SDValue BasePtr, const Value *SV, 240 int SVOffset, unsigned Alignment, 241 bool isVolatile, unsigned LdWidth, 242 MVT ResType, DebugLoc dl); 243 244 /// StoreWidenVectorOp - Stores a widen vector into non widen memory 245 /// location. It takes 246 /// ST: store node that we want to replace 247 /// Chain: incoming store chain 248 /// BasePtr: base address of where we want to store into 249 SDValue StoreWidenVectorOp(StoreSDNode *ST, SDValue Chain, 250 SDValue BasePtr); 251 252 /// Helper genWidenVectorStores - Helper function to generate a set of 253 /// stores to store a widen vector into non widen memory 254 // It takes 255 // StChain: list of chains for the stores we have generated 256 // Chain: incoming chain for the ld vector 257 // BasePtr: base pointer to load from 258 // SV: memory disambiguation source value 259 // SVOffset: memory disambiugation offset 260 // Alignment: alignment of the memory 261 // isVolatile: volatile lod 262 // ValOp: value to store 263 // StWidth: width of memory that we want to store 264 void genWidenVectorStores(SDValueVector& StChain, SDValue Chain, 265 SDValue BasePtr, const Value *SV, 266 int SVOffset, unsigned Alignment, 267 bool isVolatile, SDValue ValOp, 268 unsigned StWidth, DebugLoc dl); 269 270 /// isShuffleLegal - Return non-null if a vector shuffle is legal with the 271 /// specified mask and type. Targets can specify exactly which masks they 272 /// support and the code generator is tasked with not creating illegal masks. 273 /// 274 /// Note that this will also return true for shuffles that are promoted to a 275 /// different type. 276 /// 277 /// If this is a legal shuffle, this method returns the (possibly promoted) 278 /// build_vector Mask. If it's not a legal shuffle, it returns null. 279 SDNode *isShuffleLegal(MVT VT, SDValue Mask) const; 280 281 bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, 282 SmallPtrSet<SDNode*, 32> &NodesLeadingTo); 283 284 void LegalizeSetCCOperands(SDValue &LHS, SDValue &RHS, SDValue &CC, 285 DebugLoc dl); 286 void LegalizeSetCCCondCode(MVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, 287 DebugLoc dl); 288 void LegalizeSetCC(MVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, 289 DebugLoc dl) { 290 LegalizeSetCCOperands(LHS, RHS, CC, dl); 291 LegalizeSetCCCondCode(VT, LHS, RHS, CC, dl); 292 } 293 294 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned, 295 SDValue &Hi); 296 SDValue ExpandIntToFP(bool isSigned, MVT DestTy, SDValue Source, DebugLoc dl); 297 298 SDValue EmitStackConvert(SDValue SrcOp, MVT SlotVT, MVT DestVT, DebugLoc dl); 299 SDValue ExpandBUILD_VECTOR(SDNode *Node); 300 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 301 SDValue LegalizeINT_TO_FP(SDValue Result, bool isSigned, MVT DestTy, 302 SDValue Op, DebugLoc dl); 303 SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, MVT DestVT, 304 DebugLoc dl); 305 SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, MVT DestVT, bool isSigned, 306 DebugLoc dl); 307 SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, MVT DestVT, bool isSigned, 308 DebugLoc dl); 309 310 SDValue ExpandBSWAP(SDValue Op, DebugLoc dl); 311 SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl); 312 bool ExpandShift(unsigned Opc, SDValue Op, SDValue Amt, 313 SDValue &Lo, SDValue &Hi, DebugLoc dl); 314 void ExpandShiftParts(unsigned NodeOp, SDValue Op, SDValue Amt, 315 SDValue &Lo, SDValue &Hi, DebugLoc dl); 316 317 SDValue ExpandEXTRACT_SUBVECTOR(SDValue Op); 318 SDValue ExpandEXTRACT_VECTOR_ELT(SDValue Op); 319}; 320} 321 322/// isVectorShuffleLegal - Return true if a vector shuffle is legal with the 323/// specified mask and type. Targets can specify exactly which masks they 324/// support and the code generator is tasked with not creating illegal masks. 325/// 326/// Note that this will also return true for shuffles that are promoted to a 327/// different type. 328SDNode *SelectionDAGLegalize::isShuffleLegal(MVT VT, SDValue Mask) const { 329 switch (TLI.getOperationAction(ISD::VECTOR_SHUFFLE, VT)) { 330 default: return 0; 331 case TargetLowering::Legal: 332 case TargetLowering::Custom: 333 break; 334 case TargetLowering::Promote: { 335 // If this is promoted to a different type, convert the shuffle mask and 336 // ask if it is legal in the promoted type! 337 MVT NVT = TLI.getTypeToPromoteTo(ISD::VECTOR_SHUFFLE, VT); 338 MVT EltVT = NVT.getVectorElementType(); 339 340 // If we changed # elements, change the shuffle mask. 341 unsigned NumEltsGrowth = 342 NVT.getVectorNumElements() / VT.getVectorNumElements(); 343 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 344 if (NumEltsGrowth > 1) { 345 // Renumber the elements. 346 SmallVector<SDValue, 8> Ops; 347 for (unsigned i = 0, e = Mask.getNumOperands(); i != e; ++i) { 348 SDValue InOp = Mask.getOperand(i); 349 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 350 if (InOp.getOpcode() == ISD::UNDEF) 351 Ops.push_back(DAG.getUNDEF(EltVT)); 352 else { 353 unsigned InEltNo = cast<ConstantSDNode>(InOp)->getZExtValue(); 354 Ops.push_back(DAG.getConstant(InEltNo*NumEltsGrowth+j, EltVT)); 355 } 356 } 357 } 358 Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getDebugLoc(), 359 NVT, &Ops[0], Ops.size()); 360 } 361 VT = NVT; 362 break; 363 } 364 } 365 return TLI.isShuffleMaskLegal(Mask, VT) ? Mask.getNode() : 0; 366} 367 368SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag, 369 bool types, bool fast) 370 : TLI(dag.getTargetLoweringInfo()), DAG(dag), TypesNeedLegalizing(types), 371 Fast(fast), ValueTypeActions(TLI.getValueTypeActions()) { 372 assert(MVT::LAST_VALUETYPE <= 32 && 373 "Too many value types for ValueTypeActions to hold!"); 374} 375 376void SelectionDAGLegalize::LegalizeDAG() { 377 LastCALLSEQ_END = DAG.getEntryNode(); 378 IsLegalizingCall = false; 379 IsLegalizingCallArgs = false; 380 381 // The legalize process is inherently a bottom-up recursive process (users 382 // legalize their uses before themselves). Given infinite stack space, we 383 // could just start legalizing on the root and traverse the whole graph. In 384 // practice however, this causes us to run out of stack space on large basic 385 // blocks. To avoid this problem, compute an ordering of the nodes where each 386 // node is only legalized after all of its operands are legalized. 387 DAG.AssignTopologicalOrder(); 388 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 389 E = prior(DAG.allnodes_end()); I != next(E); ++I) 390 HandleOp(SDValue(I, 0)); 391 392 // Finally, it's possible the root changed. Get the new root. 393 SDValue OldRoot = DAG.getRoot(); 394 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 395 DAG.setRoot(LegalizedNodes[OldRoot]); 396 397 ExpandedNodes.clear(); 398 LegalizedNodes.clear(); 399 PromotedNodes.clear(); 400 SplitNodes.clear(); 401 ScalarizedNodes.clear(); 402 WidenNodes.clear(); 403 404 // Remove dead nodes now. 405 DAG.RemoveDeadNodes(); 406} 407 408 409/// FindCallEndFromCallStart - Given a chained node that is part of a call 410/// sequence, find the CALLSEQ_END node that terminates the call sequence. 411static SDNode *FindCallEndFromCallStart(SDNode *Node) { 412 if (Node->getOpcode() == ISD::CALLSEQ_END) 413 return Node; 414 if (Node->use_empty()) 415 return 0; // No CallSeqEnd 416 417 // The chain is usually at the end. 418 SDValue TheChain(Node, Node->getNumValues()-1); 419 if (TheChain.getValueType() != MVT::Other) { 420 // Sometimes it's at the beginning. 421 TheChain = SDValue(Node, 0); 422 if (TheChain.getValueType() != MVT::Other) { 423 // Otherwise, hunt for it. 424 for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i) 425 if (Node->getValueType(i) == MVT::Other) { 426 TheChain = SDValue(Node, i); 427 break; 428 } 429 430 // Otherwise, we walked into a node without a chain. 431 if (TheChain.getValueType() != MVT::Other) 432 return 0; 433 } 434 } 435 436 for (SDNode::use_iterator UI = Node->use_begin(), 437 E = Node->use_end(); UI != E; ++UI) { 438 439 // Make sure to only follow users of our token chain. 440 SDNode *User = *UI; 441 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) 442 if (User->getOperand(i) == TheChain) 443 if (SDNode *Result = FindCallEndFromCallStart(User)) 444 return Result; 445 } 446 return 0; 447} 448 449/// FindCallStartFromCallEnd - Given a chained node that is part of a call 450/// sequence, find the CALLSEQ_START node that initiates the call sequence. 451static SDNode *FindCallStartFromCallEnd(SDNode *Node) { 452 assert(Node && "Didn't find callseq_start for a call??"); 453 if (Node->getOpcode() == ISD::CALLSEQ_START) return Node; 454 455 assert(Node->getOperand(0).getValueType() == MVT::Other && 456 "Node doesn't have a token chain argument!"); 457 return FindCallStartFromCallEnd(Node->getOperand(0).getNode()); 458} 459 460/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to 461/// see if any uses can reach Dest. If no dest operands can get to dest, 462/// legalize them, legalize ourself, and return false, otherwise, return true. 463/// 464/// Keep track of the nodes we fine that actually do lead to Dest in 465/// NodesLeadingTo. This avoids retraversing them exponential number of times. 466/// 467bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, 468 SmallPtrSet<SDNode*, 32> &NodesLeadingTo) { 469 if (N == Dest) return true; // N certainly leads to Dest :) 470 471 // If we've already processed this node and it does lead to Dest, there is no 472 // need to reprocess it. 473 if (NodesLeadingTo.count(N)) return true; 474 475 // If the first result of this node has been already legalized, then it cannot 476 // reach N. 477 switch (getTypeAction(N->getValueType(0))) { 478 case Legal: 479 if (LegalizedNodes.count(SDValue(N, 0))) return false; 480 break; 481 case Promote: 482 if (PromotedNodes.count(SDValue(N, 0))) return false; 483 break; 484 case Expand: 485 if (ExpandedNodes.count(SDValue(N, 0))) return false; 486 break; 487 } 488 489 // Okay, this node has not already been legalized. Check and legalize all 490 // operands. If none lead to Dest, then we can legalize this node. 491 bool OperandsLeadToDest = false; 492 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 493 OperandsLeadToDest |= // If an operand leads to Dest, so do we. 494 LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest, NodesLeadingTo); 495 496 if (OperandsLeadToDest) { 497 NodesLeadingTo.insert(N); 498 return true; 499 } 500 501 // Okay, this node looks safe, legalize it and return false. 502 HandleOp(SDValue(N, 0)); 503 return false; 504} 505 506/// HandleOp - Legalize, Promote, Widen, or Expand the specified operand as 507/// appropriate for its type. 508void SelectionDAGLegalize::HandleOp(SDValue Op) { 509 MVT VT = Op.getValueType(); 510 // If the type legalizer was run then we should never see any illegal result 511 // types here except for target constants (the type legalizer does not touch 512 // those) or for build vector used as a mask for a vector shuffle. 513 // FIXME: We can removed the BUILD_VECTOR case when we fix PR2957. 514 assert((TypesNeedLegalizing || getTypeAction(VT) == Legal || 515 IsLegalizingCallArgs || Op.getOpcode() == ISD::TargetConstant || 516 Op.getOpcode() == ISD::BUILD_VECTOR) && 517 "Illegal type introduced after type legalization?"); 518 switch (getTypeAction(VT)) { 519 default: assert(0 && "Bad type action!"); 520 case Legal: (void)LegalizeOp(Op); break; 521 case Promote: 522 if (!VT.isVector()) { 523 (void)PromoteOp(Op); 524 break; 525 } 526 else { 527 // See if we can widen otherwise use Expand to either scalarize or split 528 MVT WidenVT = TLI.getWidenVectorType(VT); 529 if (WidenVT != MVT::Other) { 530 (void) WidenVectorOp(Op, WidenVT); 531 break; 532 } 533 // else fall thru to expand since we can't widen the vector 534 } 535 case Expand: 536 if (!VT.isVector()) { 537 // If this is an illegal scalar, expand it into its two component 538 // pieces. 539 SDValue X, Y; 540 if (Op.getOpcode() == ISD::TargetConstant) 541 break; // Allow illegal target nodes. 542 ExpandOp(Op, X, Y); 543 } else if (VT.getVectorNumElements() == 1) { 544 // If this is an illegal single element vector, convert it to a 545 // scalar operation. 546 (void)ScalarizeVectorOp(Op); 547 } else { 548 // This is an illegal multiple element vector. 549 // Split it in half and legalize both parts. 550 SDValue X, Y; 551 SplitVectorOp(Op, X, Y); 552 } 553 break; 554 } 555} 556 557/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or 558/// a load from the constant pool. 559static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP, 560 SelectionDAG &DAG, const TargetLowering &TLI) { 561 bool Extend = false; 562 DebugLoc dl = CFP->getDebugLoc(); 563 564 // If a FP immediate is precise when represented as a float and if the 565 // target can do an extending load from float to double, we put it into 566 // the constant pool as a float, even if it's is statically typed as a 567 // double. This shrinks FP constants and canonicalizes them for targets where 568 // an FP extending load is the same cost as a normal load (such as on the x87 569 // fp stack or PPC FP unit). 570 MVT VT = CFP->getValueType(0); 571 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 572 if (!UseCP) { 573 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 574 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), 575 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 576 } 577 578 MVT OrigVT = VT; 579 MVT SVT = VT; 580 while (SVT != MVT::f32) { 581 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT() - 1); 582 if (CFP->isValueValidForType(SVT, CFP->getValueAPF()) && 583 // Only do this if the target has a native EXTLOAD instruction from 584 // smaller type. 585 TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) && 586 TLI.ShouldShrinkFPConstant(OrigVT)) { 587 const Type *SType = SVT.getTypeForMVT(); 588 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 589 VT = SVT; 590 Extend = true; 591 } 592 } 593 594 SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy()); 595 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 596 if (Extend) 597 return DAG.getExtLoad(ISD::EXTLOAD, dl, 598 OrigVT, DAG.getEntryNode(), 599 CPIdx, PseudoSourceValue::getConstantPool(), 600 0, VT, false, Alignment); 601 return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx, 602 PseudoSourceValue::getConstantPool(), 0, false, Alignment); 603} 604 605 606/// ExpandFCOPYSIGNToBitwiseOps - Expands fcopysign to a series of bitwise 607/// operations. 608static 609SDValue ExpandFCOPYSIGNToBitwiseOps(SDNode *Node, MVT NVT, 610 SelectionDAG &DAG, 611 const TargetLowering &TLI) { 612 DebugLoc dl = Node->getDebugLoc(); 613 MVT VT = Node->getValueType(0); 614 MVT SrcVT = Node->getOperand(1).getValueType(); 615 assert((SrcVT == MVT::f32 || SrcVT == MVT::f64) && 616 "fcopysign expansion only supported for f32 and f64"); 617 MVT SrcNVT = (SrcVT == MVT::f64) ? MVT::i64 : MVT::i32; 618 619 // First get the sign bit of second operand. 620 SDValue Mask1 = (SrcVT == MVT::f64) 621 ? DAG.getConstantFP(BitsToDouble(1ULL << 63), SrcVT) 622 : DAG.getConstantFP(BitsToFloat(1U << 31), SrcVT); 623 Mask1 = DAG.getNode(ISD::BIT_CONVERT, dl, SrcNVT, Mask1); 624 SDValue SignBit= DAG.getNode(ISD::BIT_CONVERT, dl, SrcNVT, 625 Node->getOperand(1)); 626 SignBit = DAG.getNode(ISD::AND, dl, SrcNVT, SignBit, Mask1); 627 // Shift right or sign-extend it if the two operands have different types. 628 int SizeDiff = SrcNVT.getSizeInBits() - NVT.getSizeInBits(); 629 if (SizeDiff > 0) { 630 SignBit = DAG.getNode(ISD::SRL, dl, SrcNVT, SignBit, 631 DAG.getConstant(SizeDiff, TLI.getShiftAmountTy())); 632 SignBit = DAG.getNode(ISD::TRUNCATE, dl, NVT, SignBit); 633 } else if (SizeDiff < 0) { 634 SignBit = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, SignBit); 635 SignBit = DAG.getNode(ISD::SHL, dl, NVT, SignBit, 636 DAG.getConstant(-SizeDiff, TLI.getShiftAmountTy())); 637 } 638 639 // Clear the sign bit of first operand. 640 SDValue Mask2 = (VT == MVT::f64) 641 ? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT) 642 : DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT); 643 Mask2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Mask2); 644 SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0)); 645 Result = DAG.getNode(ISD::AND, dl, NVT, Result, Mask2); 646 647 // Or the value with the sign bit. 648 Result = DAG.getNode(ISD::OR, dl, NVT, Result, SignBit); 649 return Result; 650} 651 652/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores. 653static 654SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG, 655 const TargetLowering &TLI) { 656 SDValue Chain = ST->getChain(); 657 SDValue Ptr = ST->getBasePtr(); 658 SDValue Val = ST->getValue(); 659 MVT VT = Val.getValueType(); 660 int Alignment = ST->getAlignment(); 661 int SVOffset = ST->getSrcValueOffset(); 662 DebugLoc dl = ST->getDebugLoc(); 663 if (ST->getMemoryVT().isFloatingPoint() || 664 ST->getMemoryVT().isVector()) { 665 MVT intVT = MVT::getIntegerVT(VT.getSizeInBits()); 666 if (TLI.isTypeLegal(intVT)) { 667 // Expand to a bitconvert of the value to the integer type of the 668 // same size, then a (misaligned) int store. 669 // FIXME: Does not handle truncating floating point stores! 670 SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val); 671 return DAG.getStore(Chain, dl, Result, Ptr, ST->getSrcValue(), 672 SVOffset, ST->isVolatile(), Alignment); 673 } else { 674 // Do a (aligned) store to a stack slot, then copy from the stack slot 675 // to the final destination using (unaligned) integer loads and stores. 676 MVT StoredVT = ST->getMemoryVT(); 677 MVT RegVT = 678 TLI.getRegisterType(MVT::getIntegerVT(StoredVT.getSizeInBits())); 679 unsigned StoredBytes = StoredVT.getSizeInBits() / 8; 680 unsigned RegBytes = RegVT.getSizeInBits() / 8; 681 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 682 683 // Make sure the stack slot is also aligned for the register type. 684 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); 685 686 // Perform the original store, only redirected to the stack slot. 687 SDValue Store = DAG.getTruncStore(Chain, dl, 688 Val, StackPtr, NULL, 0,StoredVT); 689 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy()); 690 SmallVector<SDValue, 8> Stores; 691 unsigned Offset = 0; 692 693 // Do all but one copies using the full register width. 694 for (unsigned i = 1; i < NumRegs; i++) { 695 // Load one integer register's worth from the stack slot. 696 SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, NULL, 0); 697 // Store it to the final location. Remember the store. 698 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 699 ST->getSrcValue(), SVOffset + Offset, 700 ST->isVolatile(), 701 MinAlign(ST->getAlignment(), Offset))); 702 // Increment the pointers. 703 Offset += RegBytes; 704 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, 705 Increment); 706 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 707 } 708 709 // The last store may be partial. Do a truncating store. On big-endian 710 // machines this requires an extending load from the stack slot to ensure 711 // that the bits are in the right place. 712 MVT MemVT = MVT::getIntegerVT(8 * (StoredBytes - Offset)); 713 714 // Load from the stack slot. 715 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 716 NULL, 0, MemVT); 717 718 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 719 ST->getSrcValue(), SVOffset + Offset, 720 MemVT, ST->isVolatile(), 721 MinAlign(ST->getAlignment(), Offset))); 722 // The order of the stores doesn't matter - say it with a TokenFactor. 723 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0], 724 Stores.size()); 725 } 726 } 727 assert(ST->getMemoryVT().isInteger() && 728 !ST->getMemoryVT().isVector() && 729 "Unaligned store of unknown type."); 730 // Get the half-size VT 731 MVT NewStoredVT = 732 (MVT::SimpleValueType)(ST->getMemoryVT().getSimpleVT() - 1); 733 int NumBits = NewStoredVT.getSizeInBits(); 734 int IncrementSize = NumBits / 8; 735 736 // Divide the stored value in two parts. 737 SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy()); 738 SDValue Lo = Val; 739 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 740 741 // Store the two parts 742 SDValue Store1, Store2; 743 Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr, 744 ST->getSrcValue(), SVOffset, NewStoredVT, 745 ST->isVolatile(), Alignment); 746 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 747 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 748 Alignment = MinAlign(Alignment, IncrementSize); 749 Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr, 750 ST->getSrcValue(), SVOffset + IncrementSize, 751 NewStoredVT, ST->isVolatile(), Alignment); 752 753 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 754} 755 756/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads. 757static 758SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG, 759 const TargetLowering &TLI) { 760 int SVOffset = LD->getSrcValueOffset(); 761 SDValue Chain = LD->getChain(); 762 SDValue Ptr = LD->getBasePtr(); 763 MVT VT = LD->getValueType(0); 764 MVT LoadedVT = LD->getMemoryVT(); 765 DebugLoc dl = LD->getDebugLoc(); 766 if (VT.isFloatingPoint() || VT.isVector()) { 767 MVT intVT = MVT::getIntegerVT(LoadedVT.getSizeInBits()); 768 if (TLI.isTypeLegal(intVT)) { 769 // Expand to a (misaligned) integer load of the same size, 770 // then bitconvert to floating point or vector. 771 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getSrcValue(), 772 SVOffset, LD->isVolatile(), 773 LD->getAlignment()); 774 SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad); 775 if (VT.isFloatingPoint() && LoadedVT != VT) 776 Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result); 777 778 SDValue Ops[] = { Result, Chain }; 779 return DAG.getMergeValues(Ops, 2, dl); 780 } else { 781 // Copy the value to a (aligned) stack slot using (unaligned) integer 782 // loads and stores, then do a (aligned) load from the stack slot. 783 MVT RegVT = TLI.getRegisterType(intVT); 784 unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8; 785 unsigned RegBytes = RegVT.getSizeInBits() / 8; 786 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 787 788 // Make sure the stack slot is also aligned for the register type. 789 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 790 791 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy()); 792 SmallVector<SDValue, 8> Stores; 793 SDValue StackPtr = StackBase; 794 unsigned Offset = 0; 795 796 // Do all but one copies using the full register width. 797 for (unsigned i = 1; i < NumRegs; i++) { 798 // Load one integer register's worth from the original location. 799 SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, LD->getSrcValue(), 800 SVOffset + Offset, LD->isVolatile(), 801 MinAlign(LD->getAlignment(), Offset)); 802 // Follow the load with a store to the stack slot. Remember the store. 803 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr, 804 NULL, 0)); 805 // Increment the pointers. 806 Offset += RegBytes; 807 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 808 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, 809 Increment); 810 } 811 812 // The last copy may be partial. Do an extending load. 813 MVT MemVT = MVT::getIntegerVT(8 * (LoadedBytes - Offset)); 814 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 815 LD->getSrcValue(), SVOffset + Offset, 816 MemVT, LD->isVolatile(), 817 MinAlign(LD->getAlignment(), Offset)); 818 // Follow the load with a store to the stack slot. Remember the store. 819 // On big-endian machines this requires a truncating store to ensure 820 // that the bits end up in the right place. 821 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr, 822 NULL, 0, MemVT)); 823 824 // The order of the stores doesn't matter - say it with a TokenFactor. 825 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0], 826 Stores.size()); 827 828 // Finally, perform the original load only redirected to the stack slot. 829 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 830 NULL, 0, LoadedVT); 831 832 // Callers expect a MERGE_VALUES node. 833 SDValue Ops[] = { Load, TF }; 834 return DAG.getMergeValues(Ops, 2, dl); 835 } 836 } 837 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 838 "Unaligned load of unsupported type."); 839 840 // Compute the new VT that is half the size of the old one. This is an 841 // integer MVT. 842 unsigned NumBits = LoadedVT.getSizeInBits(); 843 MVT NewLoadedVT; 844 NewLoadedVT = MVT::getIntegerVT(NumBits/2); 845 NumBits >>= 1; 846 847 unsigned Alignment = LD->getAlignment(); 848 unsigned IncrementSize = NumBits / 8; 849 ISD::LoadExtType HiExtType = LD->getExtensionType(); 850 851 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 852 if (HiExtType == ISD::NON_EXTLOAD) 853 HiExtType = ISD::ZEXTLOAD; 854 855 // Load the value in two parts 856 SDValue Lo, Hi; 857 if (TLI.isLittleEndian()) { 858 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(), 859 SVOffset, NewLoadedVT, LD->isVolatile(), Alignment); 860 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 861 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 862 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(), 863 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(), 864 MinAlign(Alignment, IncrementSize)); 865 } else { 866 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(), 867 SVOffset, NewLoadedVT,LD->isVolatile(), Alignment); 868 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 869 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 870 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(), 871 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(), 872 MinAlign(Alignment, IncrementSize)); 873 } 874 875 // aggregate the two parts 876 SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy()); 877 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 878 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 879 880 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 881 Hi.getValue(1)); 882 883 SDValue Ops[] = { Result, TF }; 884 return DAG.getMergeValues(Ops, 2, dl); 885} 886 887/// UnrollVectorOp - We know that the given vector has a legal type, however 888/// the operation it performs is not legal and is an operation that we have 889/// no way of lowering. "Unroll" the vector, splitting out the scalars and 890/// operating on each element individually. 891SDValue SelectionDAGLegalize::UnrollVectorOp(SDValue Op) { 892 MVT VT = Op.getValueType(); 893 assert(isTypeLegal(VT) && 894 "Caller should expand or promote operands that are not legal!"); 895 assert(Op.getNode()->getNumValues() == 1 && 896 "Can't unroll a vector with multiple results!"); 897 unsigned NE = VT.getVectorNumElements(); 898 MVT EltVT = VT.getVectorElementType(); 899 DebugLoc dl = Op.getDebugLoc(); 900 901 SmallVector<SDValue, 8> Scalars; 902 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 903 for (unsigned i = 0; i != NE; ++i) { 904 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 905 SDValue Operand = Op.getOperand(j); 906 MVT OperandVT = Operand.getValueType(); 907 if (OperandVT.isVector()) { 908 // A vector operand; extract a single element. 909 MVT OperandEltVT = OperandVT.getVectorElementType(); 910 Operands[j] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 911 OperandEltVT, 912 Operand, 913 DAG.getConstant(i, MVT::i32)); 914 } else { 915 // A scalar operand; just use it as is. 916 Operands[j] = Operand; 917 } 918 } 919 920 switch (Op.getOpcode()) { 921 default: 922 Scalars.push_back(DAG.getNode(Op.getOpcode(), dl, EltVT, 923 &Operands[0], Operands.size())); 924 break; 925 case ISD::SHL: 926 case ISD::SRA: 927 case ISD::SRL: 928 case ISD::ROTL: 929 case ISD::ROTR: 930 Scalars.push_back(DAG.getNode(Op.getOpcode(), dl, EltVT, Operands[0], 931 DAG.getShiftAmountOperand(Operands[1]))); 932 break; 933 } 934 } 935 936 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Scalars[0], Scalars.size()); 937} 938 939/// GetFPLibCall - Return the right libcall for the given floating point type. 940static RTLIB::Libcall GetFPLibCall(MVT VT, 941 RTLIB::Libcall Call_F32, 942 RTLIB::Libcall Call_F64, 943 RTLIB::Libcall Call_F80, 944 RTLIB::Libcall Call_PPCF128) { 945 return 946 VT == MVT::f32 ? Call_F32 : 947 VT == MVT::f64 ? Call_F64 : 948 VT == MVT::f80 ? Call_F80 : 949 VT == MVT::ppcf128 ? Call_PPCF128 : 950 RTLIB::UNKNOWN_LIBCALL; 951} 952 953/// PerformInsertVectorEltInMemory - Some target cannot handle a variable 954/// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 955/// is necessary to spill the vector being inserted into to memory, perform 956/// the insert there, and then read the result back. 957SDValue SelectionDAGLegalize:: 958PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 959 DebugLoc dl) { 960 SDValue Tmp1 = Vec; 961 SDValue Tmp2 = Val; 962 SDValue Tmp3 = Idx; 963 964 // If the target doesn't support this, we have to spill the input vector 965 // to a temporary stack slot, update the element, then reload it. This is 966 // badness. We could also load the value into a vector register (either 967 // with a "move to register" or "extload into register" instruction, then 968 // permute it into place, if the idx is a constant and if the idx is 969 // supported by the target. 970 MVT VT = Tmp1.getValueType(); 971 MVT EltVT = VT.getVectorElementType(); 972 MVT IdxVT = Tmp3.getValueType(); 973 MVT PtrVT = TLI.getPointerTy(); 974 SDValue StackPtr = DAG.CreateStackTemporary(VT); 975 976 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 977 978 // Store the vector. 979 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr, 980 PseudoSourceValue::getFixedStack(SPFI), 0); 981 982 // Truncate or zero extend offset to target pointer type. 983 unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND; 984 Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3); 985 // Add the offset to the index. 986 unsigned EltSize = EltVT.getSizeInBits()/8; 987 Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT)); 988 SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr); 989 // Store the scalar value. 990 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, 991 PseudoSourceValue::getFixedStack(SPFI), 0, EltVT); 992 // Load the updated vector. 993 return DAG.getLoad(VT, dl, Ch, StackPtr, 994 PseudoSourceValue::getFixedStack(SPFI), 0); 995} 996 997 998/// LegalizeOp - We know that the specified value has a legal type, and 999/// that its operands are legal. Now ensure that the operation itself 1000/// is legal, recursively ensuring that the operands' operations remain 1001/// legal. 1002SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) { 1003 if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes. 1004 return Op; 1005 1006 assert(isTypeLegal(Op.getValueType()) && 1007 "Caller should expand or promote operands that are not legal!"); 1008 SDNode *Node = Op.getNode(); 1009 DebugLoc dl = Node->getDebugLoc(); 1010 1011 // If this operation defines any values that cannot be represented in a 1012 // register on this target, make sure to expand or promote them. 1013 if (Node->getNumValues() > 1) { 1014 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 1015 if (getTypeAction(Node->getValueType(i)) != Legal) { 1016 HandleOp(Op.getValue(i)); 1017 assert(LegalizedNodes.count(Op) && 1018 "Handling didn't add legal operands!"); 1019 return LegalizedNodes[Op]; 1020 } 1021 } 1022 1023 // Note that LegalizeOp may be reentered even from single-use nodes, which 1024 // means that we always must cache transformed nodes. 1025 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 1026 if (I != LegalizedNodes.end()) return I->second; 1027 1028 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 1029 SDValue Result = Op; 1030 bool isCustom = false; 1031 1032 switch (Node->getOpcode()) { 1033 case ISD::FrameIndex: 1034 case ISD::EntryToken: 1035 case ISD::Register: 1036 case ISD::BasicBlock: 1037 case ISD::TargetFrameIndex: 1038 case ISD::TargetJumpTable: 1039 case ISD::TargetConstant: 1040 case ISD::TargetConstantFP: 1041 case ISD::TargetConstantPool: 1042 case ISD::TargetGlobalAddress: 1043 case ISD::TargetGlobalTLSAddress: 1044 case ISD::TargetExternalSymbol: 1045 case ISD::VALUETYPE: 1046 case ISD::SRCVALUE: 1047 case ISD::MEMOPERAND: 1048 case ISD::CONDCODE: 1049 case ISD::ARG_FLAGS: 1050 // Primitives must all be legal. 1051 assert(TLI.isOperationLegal(Node->getOpcode(), Node->getValueType(0)) && 1052 "This must be legal!"); 1053 break; 1054 default: 1055 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 1056 // If this is a target node, legalize it by legalizing the operands then 1057 // passing it through. 1058 SmallVector<SDValue, 8> Ops; 1059 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 1060 Ops.push_back(LegalizeOp(Node->getOperand(i))); 1061 1062 Result = DAG.UpdateNodeOperands(Result.getValue(0), &Ops[0], Ops.size()); 1063 1064 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 1065 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 1066 return Result.getValue(Op.getResNo()); 1067 } 1068 // Otherwise this is an unhandled builtin node. splat. 1069#ifndef NDEBUG 1070 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 1071#endif 1072 assert(0 && "Do not know how to legalize this operator!"); 1073 abort(); 1074 case ISD::GLOBAL_OFFSET_TABLE: 1075 case ISD::GlobalAddress: 1076 case ISD::GlobalTLSAddress: 1077 case ISD::ExternalSymbol: 1078 case ISD::ConstantPool: 1079 case ISD::JumpTable: // Nothing to do. 1080 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 1081 default: assert(0 && "This action is not supported yet!"); 1082 case TargetLowering::Custom: 1083 Tmp1 = TLI.LowerOperation(Op, DAG); 1084 if (Tmp1.getNode()) Result = Tmp1; 1085 // FALLTHROUGH if the target doesn't want to lower this op after all. 1086 case TargetLowering::Legal: 1087 break; 1088 } 1089 break; 1090 case ISD::FRAMEADDR: 1091 case ISD::RETURNADDR: 1092 // The only option for these nodes is to custom lower them. If the target 1093 // does not custom lower them, then return zero. 1094 Tmp1 = TLI.LowerOperation(Op, DAG); 1095 if (Tmp1.getNode()) 1096 Result = Tmp1; 1097 else 1098 Result = DAG.getConstant(0, TLI.getPointerTy()); 1099 break; 1100 case ISD::FRAME_TO_ARGS_OFFSET: { 1101 MVT VT = Node->getValueType(0); 1102 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1103 default: assert(0 && "This action is not supported yet!"); 1104 case TargetLowering::Custom: 1105 Result = TLI.LowerOperation(Op, DAG); 1106 if (Result.getNode()) break; 1107 // Fall Thru 1108 case TargetLowering::Legal: 1109 Result = DAG.getConstant(0, VT); 1110 break; 1111 } 1112 } 1113 break; 1114 case ISD::EXCEPTIONADDR: { 1115 Tmp1 = LegalizeOp(Node->getOperand(0)); 1116 MVT VT = Node->getValueType(0); 1117 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1118 default: assert(0 && "This action is not supported yet!"); 1119 case TargetLowering::Expand: { 1120 unsigned Reg = TLI.getExceptionAddressRegister(); 1121 Result = DAG.getCopyFromReg(Tmp1, dl, Reg, VT); 1122 } 1123 break; 1124 case TargetLowering::Custom: 1125 Result = TLI.LowerOperation(Op, DAG); 1126 if (Result.getNode()) break; 1127 // Fall Thru 1128 case TargetLowering::Legal: { 1129 SDValue Ops[] = { DAG.getConstant(0, VT), Tmp1 }; 1130 Result = DAG.getMergeValues(Ops, 2, dl); 1131 break; 1132 } 1133 } 1134 } 1135 if (Result.getNode()->getNumValues() == 1) break; 1136 1137 assert(Result.getNode()->getNumValues() == 2 && 1138 "Cannot return more than two values!"); 1139 1140 // Since we produced two values, make sure to remember that we 1141 // legalized both of them. 1142 Tmp1 = LegalizeOp(Result); 1143 Tmp2 = LegalizeOp(Result.getValue(1)); 1144 AddLegalizedOperand(Op.getValue(0), Tmp1); 1145 AddLegalizedOperand(Op.getValue(1), Tmp2); 1146 return Op.getResNo() ? Tmp2 : Tmp1; 1147 case ISD::EHSELECTION: { 1148 Tmp1 = LegalizeOp(Node->getOperand(0)); 1149 Tmp2 = LegalizeOp(Node->getOperand(1)); 1150 MVT VT = Node->getValueType(0); 1151 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1152 default: assert(0 && "This action is not supported yet!"); 1153 case TargetLowering::Expand: { 1154 unsigned Reg = TLI.getExceptionSelectorRegister(); 1155 Result = DAG.getCopyFromReg(Tmp2, dl, Reg, VT); 1156 } 1157 break; 1158 case TargetLowering::Custom: 1159 Result = TLI.LowerOperation(Op, DAG); 1160 if (Result.getNode()) break; 1161 // Fall Thru 1162 case TargetLowering::Legal: { 1163 SDValue Ops[] = { DAG.getConstant(0, VT), Tmp2 }; 1164 Result = DAG.getMergeValues(Ops, 2, dl); 1165 break; 1166 } 1167 } 1168 } 1169 if (Result.getNode()->getNumValues() == 1) break; 1170 1171 assert(Result.getNode()->getNumValues() == 2 && 1172 "Cannot return more than two values!"); 1173 1174 // Since we produced two values, make sure to remember that we 1175 // legalized both of them. 1176 Tmp1 = LegalizeOp(Result); 1177 Tmp2 = LegalizeOp(Result.getValue(1)); 1178 AddLegalizedOperand(Op.getValue(0), Tmp1); 1179 AddLegalizedOperand(Op.getValue(1), Tmp2); 1180 return Op.getResNo() ? Tmp2 : Tmp1; 1181 case ISD::EH_RETURN: { 1182 MVT VT = Node->getValueType(0); 1183 // The only "good" option for this node is to custom lower it. 1184 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1185 default: assert(0 && "This action is not supported at all!"); 1186 case TargetLowering::Custom: 1187 Result = TLI.LowerOperation(Op, DAG); 1188 if (Result.getNode()) break; 1189 // Fall Thru 1190 case TargetLowering::Legal: 1191 // Target does not know, how to lower this, lower to noop 1192 Result = LegalizeOp(Node->getOperand(0)); 1193 break; 1194 } 1195 } 1196 break; 1197 case ISD::AssertSext: 1198 case ISD::AssertZext: 1199 Tmp1 = LegalizeOp(Node->getOperand(0)); 1200 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 1201 break; 1202 case ISD::MERGE_VALUES: 1203 // Legalize eliminates MERGE_VALUES nodes. 1204 Result = Node->getOperand(Op.getResNo()); 1205 break; 1206 case ISD::CopyFromReg: 1207 Tmp1 = LegalizeOp(Node->getOperand(0)); 1208 Result = Op.getValue(0); 1209 if (Node->getNumValues() == 2) { 1210 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 1211 } else { 1212 assert(Node->getNumValues() == 3 && "Invalid copyfromreg!"); 1213 if (Node->getNumOperands() == 3) { 1214 Tmp2 = LegalizeOp(Node->getOperand(2)); 1215 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2); 1216 } else { 1217 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 1218 } 1219 AddLegalizedOperand(Op.getValue(2), Result.getValue(2)); 1220 } 1221 // Since CopyFromReg produces two values, make sure to remember that we 1222 // legalized both of them. 1223 AddLegalizedOperand(Op.getValue(0), Result); 1224 AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); 1225 return Result.getValue(Op.getResNo()); 1226 case ISD::UNDEF: { 1227 MVT VT = Op.getValueType(); 1228 switch (TLI.getOperationAction(ISD::UNDEF, VT)) { 1229 default: assert(0 && "This action is not supported yet!"); 1230 case TargetLowering::Expand: 1231 if (VT.isInteger()) 1232 Result = DAG.getConstant(0, VT); 1233 else if (VT.isFloatingPoint()) 1234 Result = DAG.getConstantFP(APFloat(APInt(VT.getSizeInBits(), 0)), 1235 VT); 1236 else 1237 assert(0 && "Unknown value type!"); 1238 break; 1239 case TargetLowering::Legal: 1240 break; 1241 } 1242 break; 1243 } 1244 1245 case ISD::INTRINSIC_W_CHAIN: 1246 case ISD::INTRINSIC_WO_CHAIN: 1247 case ISD::INTRINSIC_VOID: { 1248 SmallVector<SDValue, 8> Ops; 1249 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 1250 Ops.push_back(LegalizeOp(Node->getOperand(i))); 1251 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1252 1253 // Allow the target to custom lower its intrinsics if it wants to. 1254 if (TLI.getOperationAction(Node->getOpcode(), MVT::Other) == 1255 TargetLowering::Custom) { 1256 Tmp3 = TLI.LowerOperation(Result, DAG); 1257 if (Tmp3.getNode()) Result = Tmp3; 1258 } 1259 1260 if (Result.getNode()->getNumValues() == 1) break; 1261 1262 // Must have return value and chain result. 1263 assert(Result.getNode()->getNumValues() == 2 && 1264 "Cannot return more than two values!"); 1265 1266 // Since loads produce two values, make sure to remember that we 1267 // legalized both of them. 1268 AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); 1269 AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); 1270 return Result.getValue(Op.getResNo()); 1271 } 1272 1273 case ISD::DBG_STOPPOINT: 1274 assert(Node->getNumOperands() == 1 && "Invalid DBG_STOPPOINT node!"); 1275 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the input chain. 1276 1277 switch (TLI.getOperationAction(ISD::DBG_STOPPOINT, MVT::Other)) { 1278 case TargetLowering::Promote: 1279 default: assert(0 && "This action is not supported yet!"); 1280 case TargetLowering::Expand: { 1281 DwarfWriter *DW = DAG.getDwarfWriter(); 1282 bool useDEBUG_LOC = TLI.isOperationLegalOrCustom(ISD::DEBUG_LOC, 1283 MVT::Other); 1284 bool useLABEL = TLI.isOperationLegalOrCustom(ISD::DBG_LABEL, MVT::Other); 1285 1286 const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(Node); 1287 GlobalVariable *CU_GV = cast<GlobalVariable>(DSP->getCompileUnit()); 1288 if (DW && (useDEBUG_LOC || useLABEL) && !CU_GV->isDeclaration()) { 1289 DICompileUnit CU(cast<GlobalVariable>(DSP->getCompileUnit())); 1290 std::string Dir, FN; 1291 unsigned SrcFile = DW->getOrCreateSourceID(CU.getDirectory(Dir), 1292 CU.getFilename(FN)); 1293 1294 unsigned Line = DSP->getLine(); 1295 unsigned Col = DSP->getColumn(); 1296 1297 if (Fast) { 1298 // A bit self-referential to have DebugLoc on Debug_Loc nodes, but it 1299 // won't hurt anything. 1300 if (useDEBUG_LOC) { 1301 SDValue Ops[] = { Tmp1, DAG.getConstant(Line, MVT::i32), 1302 DAG.getConstant(Col, MVT::i32), 1303 DAG.getConstant(SrcFile, MVT::i32) }; 1304 Result = DAG.getNode(ISD::DEBUG_LOC, dl, MVT::Other, Ops, 4); 1305 } else { 1306 unsigned ID = DW->RecordSourceLine(Line, Col, SrcFile); 1307 Result = DAG.getLabel(ISD::DBG_LABEL, dl, Tmp1, ID); 1308 } 1309 } else { 1310 Result = Tmp1; // chain 1311 } 1312 } else { 1313 Result = Tmp1; // chain 1314 } 1315 break; 1316 } 1317 case TargetLowering::Custom: 1318 Result = TLI.LowerOperation(Op, DAG); 1319 if (Result.getNode()) 1320 break; 1321 case TargetLowering::Legal: { 1322 LegalizeAction Action = getTypeAction(Node->getOperand(1).getValueType()); 1323 if (Action == Legal && Tmp1 == Node->getOperand(0)) 1324 break; 1325 1326 SmallVector<SDValue, 8> Ops; 1327 Ops.push_back(Tmp1); 1328 if (Action == Legal) { 1329 Ops.push_back(Node->getOperand(1)); // line # must be legal. 1330 Ops.push_back(Node->getOperand(2)); // col # must be legal. 1331 } else { 1332 // Otherwise promote them. 1333 Ops.push_back(PromoteOp(Node->getOperand(1))); 1334 Ops.push_back(PromoteOp(Node->getOperand(2))); 1335 } 1336 Ops.push_back(Node->getOperand(3)); // filename must be legal. 1337 Ops.push_back(Node->getOperand(4)); // working dir # must be legal. 1338 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1339 break; 1340 } 1341 } 1342 break; 1343 1344 case ISD::DECLARE: 1345 assert(Node->getNumOperands() == 3 && "Invalid DECLARE node!"); 1346 switch (TLI.getOperationAction(ISD::DECLARE, MVT::Other)) { 1347 default: assert(0 && "This action is not supported yet!"); 1348 case TargetLowering::Legal: 1349 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1350 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the address. 1351 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the variable. 1352 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1353 break; 1354 case TargetLowering::Expand: 1355 Result = LegalizeOp(Node->getOperand(0)); 1356 break; 1357 } 1358 break; 1359 1360 case ISD::DEBUG_LOC: 1361 assert(Node->getNumOperands() == 4 && "Invalid DEBUG_LOC node!"); 1362 switch (TLI.getOperationAction(ISD::DEBUG_LOC, MVT::Other)) { 1363 default: assert(0 && "This action is not supported yet!"); 1364 case TargetLowering::Legal: { 1365 LegalizeAction Action = getTypeAction(Node->getOperand(1).getValueType()); 1366 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1367 if (Action == Legal && Tmp1 == Node->getOperand(0)) 1368 break; 1369 if (Action == Legal) { 1370 Tmp2 = Node->getOperand(1); 1371 Tmp3 = Node->getOperand(2); 1372 Tmp4 = Node->getOperand(3); 1373 } else { 1374 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the line #. 1375 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the col #. 1376 Tmp4 = LegalizeOp(Node->getOperand(3)); // Legalize the source file id. 1377 } 1378 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4); 1379 break; 1380 } 1381 } 1382 break; 1383 1384 case ISD::DBG_LABEL: 1385 case ISD::EH_LABEL: 1386 assert(Node->getNumOperands() == 1 && "Invalid LABEL node!"); 1387 switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) { 1388 default: assert(0 && "This action is not supported yet!"); 1389 case TargetLowering::Legal: 1390 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1391 Result = DAG.UpdateNodeOperands(Result, Tmp1); 1392 break; 1393 case TargetLowering::Expand: 1394 Result = LegalizeOp(Node->getOperand(0)); 1395 break; 1396 } 1397 break; 1398 1399 case ISD::PREFETCH: 1400 assert(Node->getNumOperands() == 4 && "Invalid Prefetch node!"); 1401 switch (TLI.getOperationAction(ISD::PREFETCH, MVT::Other)) { 1402 default: assert(0 && "This action is not supported yet!"); 1403 case TargetLowering::Legal: 1404 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1405 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the address. 1406 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the rw specifier. 1407 Tmp4 = LegalizeOp(Node->getOperand(3)); // Legalize locality specifier. 1408 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4); 1409 break; 1410 case TargetLowering::Expand: 1411 // It's a noop. 1412 Result = LegalizeOp(Node->getOperand(0)); 1413 break; 1414 } 1415 break; 1416 1417 case ISD::MEMBARRIER: { 1418 assert(Node->getNumOperands() == 6 && "Invalid MemBarrier node!"); 1419 switch (TLI.getOperationAction(ISD::MEMBARRIER, MVT::Other)) { 1420 default: assert(0 && "This action is not supported yet!"); 1421 case TargetLowering::Legal: { 1422 SDValue Ops[6]; 1423 Ops[0] = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1424 for (int x = 1; x < 6; ++x) { 1425 Ops[x] = Node->getOperand(x); 1426 if (!isTypeLegal(Ops[x].getValueType())) 1427 Ops[x] = PromoteOp(Ops[x]); 1428 } 1429 Result = DAG.UpdateNodeOperands(Result, &Ops[0], 6); 1430 break; 1431 } 1432 case TargetLowering::Expand: 1433 //There is no libgcc call for this op 1434 Result = Node->getOperand(0); // Noop 1435 break; 1436 } 1437 break; 1438 } 1439 1440 case ISD::ATOMIC_CMP_SWAP: { 1441 unsigned int num_operands = 4; 1442 assert(Node->getNumOperands() == num_operands && "Invalid Atomic node!"); 1443 SDValue Ops[4]; 1444 for (unsigned int x = 0; x < num_operands; ++x) 1445 Ops[x] = LegalizeOp(Node->getOperand(x)); 1446 Result = DAG.UpdateNodeOperands(Result, &Ops[0], num_operands); 1447 1448 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 1449 default: assert(0 && "This action is not supported yet!"); 1450 case TargetLowering::Custom: 1451 Result = TLI.LowerOperation(Result, DAG); 1452 break; 1453 case TargetLowering::Legal: 1454 break; 1455 } 1456 AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); 1457 AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); 1458 return Result.getValue(Op.getResNo()); 1459 } 1460 case ISD::ATOMIC_LOAD_ADD: 1461 case ISD::ATOMIC_LOAD_SUB: 1462 case ISD::ATOMIC_LOAD_AND: 1463 case ISD::ATOMIC_LOAD_OR: 1464 case ISD::ATOMIC_LOAD_XOR: 1465 case ISD::ATOMIC_LOAD_NAND: 1466 case ISD::ATOMIC_LOAD_MIN: 1467 case ISD::ATOMIC_LOAD_MAX: 1468 case ISD::ATOMIC_LOAD_UMIN: 1469 case ISD::ATOMIC_LOAD_UMAX: 1470 case ISD::ATOMIC_SWAP: { 1471 unsigned int num_operands = 3; 1472 assert(Node->getNumOperands() == num_operands && "Invalid Atomic node!"); 1473 SDValue Ops[3]; 1474 for (unsigned int x = 0; x < num_operands; ++x) 1475 Ops[x] = LegalizeOp(Node->getOperand(x)); 1476 Result = DAG.UpdateNodeOperands(Result, &Ops[0], num_operands); 1477 1478 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 1479 default: assert(0 && "This action is not supported yet!"); 1480 case TargetLowering::Custom: 1481 Result = TLI.LowerOperation(Result, DAG); 1482 break; 1483 case TargetLowering::Legal: 1484 break; 1485 } 1486 AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); 1487 AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); 1488 return Result.getValue(Op.getResNo()); 1489 } 1490 case ISD::Constant: { 1491 ConstantSDNode *CN = cast<ConstantSDNode>(Node); 1492 unsigned opAction = 1493 TLI.getOperationAction(ISD::Constant, CN->getValueType(0)); 1494 1495 // We know we don't need to expand constants here, constants only have one 1496 // value and we check that it is fine above. 1497 1498 if (opAction == TargetLowering::Custom) { 1499 Tmp1 = TLI.LowerOperation(Result, DAG); 1500 if (Tmp1.getNode()) 1501 Result = Tmp1; 1502 } 1503 break; 1504 } 1505 case ISD::ConstantFP: { 1506 // Spill FP immediates to the constant pool if the target cannot directly 1507 // codegen them. Targets often have some immediate values that can be 1508 // efficiently generated into an FP register without a load. We explicitly 1509 // leave these constants as ConstantFP nodes for the target to deal with. 1510 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 1511 1512 switch (TLI.getOperationAction(ISD::ConstantFP, CFP->getValueType(0))) { 1513 default: assert(0 && "This action is not supported yet!"); 1514 case TargetLowering::Legal: 1515 break; 1516 case TargetLowering::Custom: 1517 Tmp3 = TLI.LowerOperation(Result, DAG); 1518 if (Tmp3.getNode()) { 1519 Result = Tmp3; 1520 break; 1521 } 1522 // FALLTHROUGH 1523 case TargetLowering::Expand: { 1524 // Check to see if this FP immediate is already legal. 1525 bool isLegal = false; 1526 for (TargetLowering::legal_fpimm_iterator I = TLI.legal_fpimm_begin(), 1527 E = TLI.legal_fpimm_end(); I != E; ++I) { 1528 if (CFP->isExactlyValue(*I)) { 1529 isLegal = true; 1530 break; 1531 } 1532 } 1533 // If this is a legal constant, turn it into a TargetConstantFP node. 1534 if (isLegal) 1535 break; 1536 Result = ExpandConstantFP(CFP, true, DAG, TLI); 1537 } 1538 } 1539 break; 1540 } 1541 case ISD::TokenFactor: 1542 if (Node->getNumOperands() == 2) { 1543 Tmp1 = LegalizeOp(Node->getOperand(0)); 1544 Tmp2 = LegalizeOp(Node->getOperand(1)); 1545 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1546 } else if (Node->getNumOperands() == 3) { 1547 Tmp1 = LegalizeOp(Node->getOperand(0)); 1548 Tmp2 = LegalizeOp(Node->getOperand(1)); 1549 Tmp3 = LegalizeOp(Node->getOperand(2)); 1550 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1551 } else { 1552 SmallVector<SDValue, 8> Ops; 1553 // Legalize the operands. 1554 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 1555 Ops.push_back(LegalizeOp(Node->getOperand(i))); 1556 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1557 } 1558 break; 1559 1560 case ISD::FORMAL_ARGUMENTS: 1561 case ISD::CALL: 1562 // The only option for this is to custom lower it. 1563 Tmp3 = TLI.LowerOperation(Result.getValue(0), DAG); 1564 assert(Tmp3.getNode() && "Target didn't custom lower this node!"); 1565 // A call within a calling sequence must be legalized to something 1566 // other than the normal CALLSEQ_END. Violating this gets Legalize 1567 // into an infinite loop. 1568 assert ((!IsLegalizingCall || 1569 Node->getOpcode() != ISD::CALL || 1570 Tmp3.getNode()->getOpcode() != ISD::CALLSEQ_END) && 1571 "Nested CALLSEQ_START..CALLSEQ_END not supported."); 1572 1573 // The number of incoming and outgoing values should match; unless the final 1574 // outgoing value is a flag. 1575 assert((Tmp3.getNode()->getNumValues() == Result.getNode()->getNumValues() || 1576 (Tmp3.getNode()->getNumValues() == Result.getNode()->getNumValues() + 1 && 1577 Tmp3.getNode()->getValueType(Tmp3.getNode()->getNumValues() - 1) == 1578 MVT::Flag)) && 1579 "Lowering call/formal_arguments produced unexpected # results!"); 1580 1581 // Since CALL/FORMAL_ARGUMENTS nodes produce multiple values, make sure to 1582 // remember that we legalized all of them, so it doesn't get relegalized. 1583 for (unsigned i = 0, e = Tmp3.getNode()->getNumValues(); i != e; ++i) { 1584 if (Tmp3.getNode()->getValueType(i) == MVT::Flag) 1585 continue; 1586 Tmp1 = LegalizeOp(Tmp3.getValue(i)); 1587 if (Op.getResNo() == i) 1588 Tmp2 = Tmp1; 1589 AddLegalizedOperand(SDValue(Node, i), Tmp1); 1590 } 1591 return Tmp2; 1592 case ISD::EXTRACT_SUBREG: { 1593 Tmp1 = LegalizeOp(Node->getOperand(0)); 1594 ConstantSDNode *idx = dyn_cast<ConstantSDNode>(Node->getOperand(1)); 1595 assert(idx && "Operand must be a constant"); 1596 Tmp2 = DAG.getTargetConstant(idx->getAPIntValue(), idx->getValueType(0)); 1597 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1598 } 1599 break; 1600 case ISD::INSERT_SUBREG: { 1601 Tmp1 = LegalizeOp(Node->getOperand(0)); 1602 Tmp2 = LegalizeOp(Node->getOperand(1)); 1603 ConstantSDNode *idx = dyn_cast<ConstantSDNode>(Node->getOperand(2)); 1604 assert(idx && "Operand must be a constant"); 1605 Tmp3 = DAG.getTargetConstant(idx->getAPIntValue(), idx->getValueType(0)); 1606 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1607 } 1608 break; 1609 case ISD::BUILD_VECTOR: 1610 switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) { 1611 default: assert(0 && "This action is not supported yet!"); 1612 case TargetLowering::Custom: 1613 Tmp3 = TLI.LowerOperation(Result, DAG); 1614 if (Tmp3.getNode()) { 1615 Result = Tmp3; 1616 break; 1617 } 1618 // FALLTHROUGH 1619 case TargetLowering::Expand: 1620 Result = ExpandBUILD_VECTOR(Result.getNode()); 1621 break; 1622 } 1623 break; 1624 case ISD::INSERT_VECTOR_ELT: 1625 Tmp1 = LegalizeOp(Node->getOperand(0)); // InVec 1626 Tmp3 = LegalizeOp(Node->getOperand(2)); // InEltNo 1627 1628 // The type of the value to insert may not be legal, even though the vector 1629 // type is legal. Legalize/Promote accordingly. We do not handle Expand 1630 // here. 1631 switch (getTypeAction(Node->getOperand(1).getValueType())) { 1632 default: assert(0 && "Cannot expand insert element operand"); 1633 case Legal: Tmp2 = LegalizeOp(Node->getOperand(1)); break; 1634 case Promote: Tmp2 = PromoteOp(Node->getOperand(1)); break; 1635 case Expand: 1636 // FIXME: An alternative would be to check to see if the target is not 1637 // going to custom lower this operation, we could bitcast to half elt 1638 // width and perform two inserts at that width, if that is legal. 1639 Tmp2 = Node->getOperand(1); 1640 break; 1641 } 1642 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1643 1644 switch (TLI.getOperationAction(ISD::INSERT_VECTOR_ELT, 1645 Node->getValueType(0))) { 1646 default: assert(0 && "This action is not supported yet!"); 1647 case TargetLowering::Legal: 1648 break; 1649 case TargetLowering::Custom: 1650 Tmp4 = TLI.LowerOperation(Result, DAG); 1651 if (Tmp4.getNode()) { 1652 Result = Tmp4; 1653 break; 1654 } 1655 // FALLTHROUGH 1656 case TargetLowering::Promote: 1657 // Fall thru for vector case 1658 case TargetLowering::Expand: { 1659 // If the insert index is a constant, codegen this as a scalar_to_vector, 1660 // then a shuffle that inserts it into the right position in the vector. 1661 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Tmp3)) { 1662 // SCALAR_TO_VECTOR requires that the type of the value being inserted 1663 // match the element type of the vector being created. 1664 if (Tmp2.getValueType() == 1665 Op.getValueType().getVectorElementType()) { 1666 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 1667 Tmp1.getValueType(), Tmp2); 1668 1669 unsigned NumElts = Tmp1.getValueType().getVectorNumElements(); 1670 MVT ShufMaskVT = 1671 MVT::getIntVectorWithNumElements(NumElts); 1672 MVT ShufMaskEltVT = ShufMaskVT.getVectorElementType(); 1673 1674 // We generate a shuffle of InVec and ScVec, so the shuffle mask 1675 // should be 0,1,2,3,4,5... with the appropriate element replaced with 1676 // elt 0 of the RHS. 1677 SmallVector<SDValue, 8> ShufOps; 1678 for (unsigned i = 0; i != NumElts; ++i) { 1679 if (i != InsertPos->getZExtValue()) 1680 ShufOps.push_back(DAG.getConstant(i, ShufMaskEltVT)); 1681 else 1682 ShufOps.push_back(DAG.getConstant(NumElts, ShufMaskEltVT)); 1683 } 1684 SDValue ShufMask = DAG.getNode(ISD::BUILD_VECTOR, dl, ShufMaskVT, 1685 &ShufOps[0], ShufOps.size()); 1686 1687 Result = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, Tmp1.getValueType(), 1688 Tmp1, ScVec, ShufMask); 1689 Result = LegalizeOp(Result); 1690 break; 1691 } 1692 } 1693 Result = PerformInsertVectorEltInMemory(Tmp1, Tmp2, Tmp3, dl); 1694 break; 1695 } 1696 } 1697 break; 1698 case ISD::SCALAR_TO_VECTOR: 1699 if (!TLI.isTypeLegal(Node->getOperand(0).getValueType())) { 1700 Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node)); 1701 break; 1702 } 1703 1704 Tmp1 = LegalizeOp(Node->getOperand(0)); // InVal 1705 Result = DAG.UpdateNodeOperands(Result, Tmp1); 1706 switch (TLI.getOperationAction(ISD::SCALAR_TO_VECTOR, 1707 Node->getValueType(0))) { 1708 default: assert(0 && "This action is not supported yet!"); 1709 case TargetLowering::Legal: 1710 break; 1711 case TargetLowering::Custom: 1712 Tmp3 = TLI.LowerOperation(Result, DAG); 1713 if (Tmp3.getNode()) { 1714 Result = Tmp3; 1715 break; 1716 } 1717 // FALLTHROUGH 1718 case TargetLowering::Expand: 1719 Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node)); 1720 break; 1721 } 1722 break; 1723 case ISD::VECTOR_SHUFFLE: 1724 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the input vectors, 1725 Tmp2 = LegalizeOp(Node->getOperand(1)); // but not the shuffle mask. 1726 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 1727 1728 // Allow targets to custom lower the SHUFFLEs they support. 1729 switch (TLI.getOperationAction(ISD::VECTOR_SHUFFLE,Result.getValueType())) { 1730 default: assert(0 && "Unknown operation action!"); 1731 case TargetLowering::Legal: 1732 assert(isShuffleLegal(Result.getValueType(), Node->getOperand(2)) && 1733 "vector shuffle should not be created if not legal!"); 1734 break; 1735 case TargetLowering::Custom: 1736 Tmp3 = TLI.LowerOperation(Result, DAG); 1737 if (Tmp3.getNode()) { 1738 Result = Tmp3; 1739 break; 1740 } 1741 // FALLTHROUGH 1742 case TargetLowering::Expand: { 1743 MVT VT = Node->getValueType(0); 1744 MVT EltVT = VT.getVectorElementType(); 1745 MVT PtrVT = TLI.getPointerTy(); 1746 SDValue Mask = Node->getOperand(2); 1747 unsigned NumElems = Mask.getNumOperands(); 1748 SmallVector<SDValue,8> Ops; 1749 for (unsigned i = 0; i != NumElems; ++i) { 1750 SDValue Arg = Mask.getOperand(i); 1751 if (Arg.getOpcode() == ISD::UNDEF) { 1752 Ops.push_back(DAG.getUNDEF(EltVT)); 1753 } else { 1754 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 1755 unsigned Idx = cast<ConstantSDNode>(Arg)->getZExtValue(); 1756 if (Idx < NumElems) 1757 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Tmp1, 1758 DAG.getConstant(Idx, PtrVT))); 1759 else 1760 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Tmp2, 1761 DAG.getConstant(Idx - NumElems, PtrVT))); 1762 } 1763 } 1764 Result = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size()); 1765 break; 1766 } 1767 case TargetLowering::Promote: { 1768 // Change base type to a different vector type. 1769 MVT OVT = Node->getValueType(0); 1770 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 1771 1772 // Cast the two input vectors. 1773 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Tmp1); 1774 Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Tmp2); 1775 1776 // Convert the shuffle mask to the right # elements. 1777 Tmp3 = SDValue(isShuffleLegal(OVT, Node->getOperand(2)), 0); 1778 assert(Tmp3.getNode() && "Shuffle not legal?"); 1779 Result = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, NVT, Tmp1, Tmp2, Tmp3); 1780 Result = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Result); 1781 break; 1782 } 1783 } 1784 break; 1785 1786 case ISD::EXTRACT_VECTOR_ELT: 1787 Tmp1 = Node->getOperand(0); 1788 Tmp2 = LegalizeOp(Node->getOperand(1)); 1789 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1790 Result = ExpandEXTRACT_VECTOR_ELT(Result); 1791 break; 1792 1793 case ISD::EXTRACT_SUBVECTOR: 1794 Tmp1 = Node->getOperand(0); 1795 Tmp2 = LegalizeOp(Node->getOperand(1)); 1796 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1797 Result = ExpandEXTRACT_SUBVECTOR(Result); 1798 break; 1799 1800 case ISD::CONCAT_VECTORS: { 1801 // Use extract/insert/build vector for now. We might try to be 1802 // more clever later. 1803 MVT PtrVT = TLI.getPointerTy(); 1804 SmallVector<SDValue, 8> Ops; 1805 unsigned NumOperands = Node->getNumOperands(); 1806 for (unsigned i=0; i < NumOperands; ++i) { 1807 SDValue SubOp = Node->getOperand(i); 1808 MVT VVT = SubOp.getNode()->getValueType(0); 1809 MVT EltVT = VVT.getVectorElementType(); 1810 unsigned NumSubElem = VVT.getVectorNumElements(); 1811 for (unsigned j=0; j < NumSubElem; ++j) { 1812 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SubOp, 1813 DAG.getConstant(j, PtrVT))); 1814 } 1815 } 1816 return LegalizeOp(DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0), 1817 &Ops[0], Ops.size())); 1818 } 1819 1820 case ISD::CALLSEQ_START: { 1821 SDNode *CallEnd = FindCallEndFromCallStart(Node); 1822 1823 // Recursively Legalize all of the inputs of the call end that do not lead 1824 // to this call start. This ensures that any libcalls that need be inserted 1825 // are inserted *before* the CALLSEQ_START. 1826 IsLegalizingCallArgs = true; 1827 {SmallPtrSet<SDNode*, 32> NodesLeadingTo; 1828 for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i) 1829 LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node, 1830 NodesLeadingTo); 1831 } 1832 IsLegalizingCallArgs = false; 1833 1834 // Now that we legalized all of the inputs (which may have inserted 1835 // libcalls) create the new CALLSEQ_START node. 1836 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1837 1838 // Merge in the last call, to ensure that this call start after the last 1839 // call ended. 1840 if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) { 1841 Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 1842 Tmp1, LastCALLSEQ_END); 1843 Tmp1 = LegalizeOp(Tmp1); 1844 } 1845 1846 // Do not try to legalize the target-specific arguments (#1+). 1847 if (Tmp1 != Node->getOperand(0)) { 1848 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end()); 1849 Ops[0] = Tmp1; 1850 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1851 } 1852 1853 // Remember that the CALLSEQ_START is legalized. 1854 AddLegalizedOperand(Op.getValue(0), Result); 1855 if (Node->getNumValues() == 2) // If this has a flag result, remember it. 1856 AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); 1857 1858 // Now that the callseq_start and all of the non-call nodes above this call 1859 // sequence have been legalized, legalize the call itself. During this 1860 // process, no libcalls can/will be inserted, guaranteeing that no calls 1861 // can overlap. 1862 assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!"); 1863 // Note that we are selecting this call! 1864 LastCALLSEQ_END = SDValue(CallEnd, 0); 1865 IsLegalizingCall = true; 1866 1867 // Legalize the call, starting from the CALLSEQ_END. 1868 LegalizeOp(LastCALLSEQ_END); 1869 assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!"); 1870 return Result; 1871 } 1872 case ISD::CALLSEQ_END: 1873 // If the CALLSEQ_START node hasn't been legalized first, legalize it. This 1874 // will cause this node to be legalized as well as handling libcalls right. 1875 if (LastCALLSEQ_END.getNode() != Node) { 1876 LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0)); 1877 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 1878 assert(I != LegalizedNodes.end() && 1879 "Legalizing the call start should have legalized this node!"); 1880 return I->second; 1881 } 1882 1883 // Otherwise, the call start has been legalized and everything is going 1884 // according to plan. Just legalize ourselves normally here. 1885 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1886 // Do not try to legalize the target-specific arguments (#1+), except for 1887 // an optional flag input. 1888 if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){ 1889 if (Tmp1 != Node->getOperand(0)) { 1890 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end()); 1891 Ops[0] = Tmp1; 1892 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1893 } 1894 } else { 1895 Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1)); 1896 if (Tmp1 != Node->getOperand(0) || 1897 Tmp2 != Node->getOperand(Node->getNumOperands()-1)) { 1898 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end()); 1899 Ops[0] = Tmp1; 1900 Ops.back() = Tmp2; 1901 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1902 } 1903 } 1904 assert(IsLegalizingCall && "Call sequence imbalance between start/end?"); 1905 // This finishes up call legalization. 1906 IsLegalizingCall = false; 1907 1908 // If the CALLSEQ_END node has a flag, remember that we legalized it. 1909 AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); 1910 if (Node->getNumValues() == 2) 1911 AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); 1912 return Result.getValue(Op.getResNo()); 1913 case ISD::DYNAMIC_STACKALLOC: { 1914 MVT VT = Node->getValueType(0); 1915 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1916 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the size. 1917 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the alignment. 1918 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1919 1920 Tmp1 = Result.getValue(0); 1921 Tmp2 = Result.getValue(1); 1922 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1923 default: assert(0 && "This action is not supported yet!"); 1924 case TargetLowering::Expand: { 1925 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1926 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1927 " not tell us which reg is the stack pointer!"); 1928 SDValue Chain = Tmp1.getOperand(0); 1929 1930 // Chain the dynamic stack allocation so that it doesn't modify the stack 1931 // pointer when other instructions are using the stack. 1932 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true)); 1933 1934 SDValue Size = Tmp2.getOperand(1); 1935 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1936 Chain = SP.getValue(1); 1937 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); 1938 unsigned StackAlign = 1939 TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); 1940 if (Align > StackAlign) 1941 SP = DAG.getNode(ISD::AND, dl, VT, SP, 1942 DAG.getConstant(-(uint64_t)Align, VT)); 1943 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value 1944 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1945 1946 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true), 1947 DAG.getIntPtrConstant(0, true), SDValue()); 1948 1949 Tmp1 = LegalizeOp(Tmp1); 1950 Tmp2 = LegalizeOp(Tmp2); 1951 break; 1952 } 1953 case TargetLowering::Custom: 1954 Tmp3 = TLI.LowerOperation(Tmp1, DAG); 1955 if (Tmp3.getNode()) { 1956 Tmp1 = LegalizeOp(Tmp3); 1957 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 1958 } 1959 break; 1960 case TargetLowering::Legal: 1961 break; 1962 } 1963 // Since this op produce two values, make sure to remember that we 1964 // legalized both of them. 1965 AddLegalizedOperand(SDValue(Node, 0), Tmp1); 1966 AddLegalizedOperand(SDValue(Node, 1), Tmp2); 1967 return Op.getResNo() ? Tmp2 : Tmp1; 1968 } 1969 case ISD::INLINEASM: { 1970 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end()); 1971 bool Changed = false; 1972 // Legalize all of the operands of the inline asm, in case they are nodes 1973 // that need to be expanded or something. Note we skip the asm string and 1974 // all of the TargetConstant flags. 1975 SDValue Op = LegalizeOp(Ops[0]); 1976 Changed = Op != Ops[0]; 1977 Ops[0] = Op; 1978 1979 bool HasInFlag = Ops.back().getValueType() == MVT::Flag; 1980 for (unsigned i = 2, e = Ops.size()-HasInFlag; i < e; ) { 1981 unsigned NumVals = InlineAsm:: 1982 getNumOperandRegisters(cast<ConstantSDNode>(Ops[i])->getZExtValue()); 1983 for (++i; NumVals; ++i, --NumVals) { 1984 SDValue Op = LegalizeOp(Ops[i]); 1985 if (Op != Ops[i]) { 1986 Changed = true; 1987 Ops[i] = Op; 1988 } 1989 } 1990 } 1991 1992 if (HasInFlag) { 1993 Op = LegalizeOp(Ops.back()); 1994 Changed |= Op != Ops.back(); 1995 Ops.back() = Op; 1996 } 1997 1998 if (Changed) 1999 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 2000 2001 // INLINE asm returns a chain and flag, make sure to add both to the map. 2002 AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); 2003 AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); 2004 return Result.getValue(Op.getResNo()); 2005 } 2006 case ISD::BR: 2007 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2008 // Ensure that libcalls are emitted before a branch. 2009 Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1, LastCALLSEQ_END); 2010 Tmp1 = LegalizeOp(Tmp1); 2011 LastCALLSEQ_END = DAG.getEntryNode(); 2012 2013 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 2014 break; 2015 case ISD::BRIND: 2016 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2017 // Ensure that libcalls are emitted before a branch. 2018 Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1, LastCALLSEQ_END); 2019 Tmp1 = LegalizeOp(Tmp1); 2020 LastCALLSEQ_END = DAG.getEntryNode(); 2021 2022 switch (getTypeAction(Node->getOperand(1).getValueType())) { 2023 default: assert(0 && "Indirect target must be legal type (pointer)!"); 2024 case Legal: 2025 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition. 2026 break; 2027 } 2028 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 2029 break; 2030 case ISD::BR_JT: 2031 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2032 // Ensure that libcalls are emitted before a branch. 2033 Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1, LastCALLSEQ_END); 2034 Tmp1 = LegalizeOp(Tmp1); 2035 LastCALLSEQ_END = DAG.getEntryNode(); 2036 2037 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the jumptable node. 2038 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 2039 2040 switch (TLI.getOperationAction(ISD::BR_JT, MVT::Other)) { 2041 default: assert(0 && "This action is not supported yet!"); 2042 case TargetLowering::Legal: break; 2043 case TargetLowering::Custom: 2044 Tmp1 = TLI.LowerOperation(Result, DAG); 2045 if (Tmp1.getNode()) Result = Tmp1; 2046 break; 2047 case TargetLowering::Expand: { 2048 SDValue Chain = Result.getOperand(0); 2049 SDValue Table = Result.getOperand(1); 2050 SDValue Index = Result.getOperand(2); 2051 2052 MVT PTy = TLI.getPointerTy(); 2053 MachineFunction &MF = DAG.getMachineFunction(); 2054 unsigned EntrySize = MF.getJumpTableInfo()->getEntrySize(); 2055 Index= DAG.getNode(ISD::MUL, dl, PTy, 2056 Index, DAG.getConstant(EntrySize, PTy)); 2057 SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table); 2058 2059 MVT MemVT = MVT::getIntegerVT(EntrySize * 8); 2060 SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr, 2061 PseudoSourceValue::getJumpTable(), 0, MemVT); 2062 Addr = LD; 2063 if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) { 2064 // For PIC, the sequence is: 2065 // BRIND(load(Jumptable + index) + RelocBase) 2066 // RelocBase can be JumpTable, GOT or some sort of global base. 2067 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 2068 TLI.getPICJumpTableRelocBase(Table, DAG)); 2069 } 2070 Result = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr); 2071 } 2072 } 2073 break; 2074 case ISD::BRCOND: 2075 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2076 // Ensure that libcalls are emitted before a return. 2077 Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1, LastCALLSEQ_END); 2078 Tmp1 = LegalizeOp(Tmp1); 2079 LastCALLSEQ_END = DAG.getEntryNode(); 2080 2081 switch (getTypeAction(Node->getOperand(1).getValueType())) { 2082 case Expand: assert(0 && "It's impossible to expand bools"); 2083 case Legal: 2084 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition. 2085 break; 2086 case Promote: { 2087 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the condition. 2088 2089 // The top bits of the promoted condition are not necessarily zero, ensure 2090 // that the value is properly zero extended. 2091 unsigned BitWidth = Tmp2.getValueSizeInBits(); 2092 if (!DAG.MaskedValueIsZero(Tmp2, 2093 APInt::getHighBitsSet(BitWidth, BitWidth-1))) 2094 Tmp2 = DAG.getZeroExtendInReg(Tmp2, dl, MVT::i1); 2095 break; 2096 } 2097 } 2098 2099 // Basic block destination (Op#2) is always legal. 2100 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 2101 2102 switch (TLI.getOperationAction(ISD::BRCOND, MVT::Other)) { 2103 default: assert(0 && "This action is not supported yet!"); 2104 case TargetLowering::Legal: break; 2105 case TargetLowering::Custom: 2106 Tmp1 = TLI.LowerOperation(Result, DAG); 2107 if (Tmp1.getNode()) Result = Tmp1; 2108 break; 2109 case TargetLowering::Expand: 2110 // Expand brcond's setcc into its constituent parts and create a BR_CC 2111 // Node. 2112 if (Tmp2.getOpcode() == ISD::SETCC) { 2113 Result = DAG.getNode(ISD::BR_CC, dl, MVT::Other, 2114 Tmp1, Tmp2.getOperand(2), 2115 Tmp2.getOperand(0), Tmp2.getOperand(1), 2116 Node->getOperand(2)); 2117 } else { 2118 Result = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 2119 DAG.getCondCode(ISD::SETNE), Tmp2, 2120 DAG.getConstant(0, Tmp2.getValueType()), 2121 Node->getOperand(2)); 2122 } 2123 break; 2124 } 2125 break; 2126 case ISD::BR_CC: 2127 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2128 // Ensure that libcalls are emitted before a branch. 2129 Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1, LastCALLSEQ_END); 2130 Tmp1 = LegalizeOp(Tmp1); 2131 Tmp2 = Node->getOperand(2); // LHS 2132 Tmp3 = Node->getOperand(3); // RHS 2133 Tmp4 = Node->getOperand(1); // CC 2134 2135 LegalizeSetCC(TLI.getSetCCResultType(Tmp2.getValueType()), 2136 Tmp2, Tmp3, Tmp4, dl); 2137 LastCALLSEQ_END = DAG.getEntryNode(); 2138 2139 // If we didn't get both a LHS and RHS back from LegalizeSetCC, 2140 // the LHS is a legal SETCC itself. In this case, we need to compare 2141 // the result against zero to select between true and false values. 2142 if (Tmp3.getNode() == 0) { 2143 Tmp3 = DAG.getConstant(0, Tmp2.getValueType()); 2144 Tmp4 = DAG.getCondCode(ISD::SETNE); 2145 } 2146 2147 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp4, Tmp2, Tmp3, 2148 Node->getOperand(4)); 2149 2150 switch (TLI.getOperationAction(ISD::BR_CC, Tmp3.getValueType())) { 2151 default: assert(0 && "Unexpected action for BR_CC!"); 2152 case TargetLowering::Legal: break; 2153 case TargetLowering::Custom: 2154 Tmp4 = TLI.LowerOperation(Result, DAG); 2155 if (Tmp4.getNode()) Result = Tmp4; 2156 break; 2157 } 2158 break; 2159 case ISD::LOAD: { 2160 LoadSDNode *LD = cast<LoadSDNode>(Node); 2161 Tmp1 = LegalizeOp(LD->getChain()); // Legalize the chain. 2162 Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer. 2163 2164 ISD::LoadExtType ExtType = LD->getExtensionType(); 2165 if (ExtType == ISD::NON_EXTLOAD) { 2166 MVT VT = Node->getValueType(0); 2167 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset()); 2168 Tmp3 = Result.getValue(0); 2169 Tmp4 = Result.getValue(1); 2170 2171 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 2172 default: assert(0 && "This action is not supported yet!"); 2173 case TargetLowering::Legal: 2174 // If this is an unaligned load and the target doesn't support it, 2175 // expand it. 2176 if (!TLI.allowsUnalignedMemoryAccesses()) { 2177 unsigned ABIAlignment = TLI.getTargetData()-> 2178 getABITypeAlignment(LD->getMemoryVT().getTypeForMVT()); 2179 if (LD->getAlignment() < ABIAlignment){ 2180 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), DAG, 2181 TLI); 2182 Tmp3 = Result.getOperand(0); 2183 Tmp4 = Result.getOperand(1); 2184 Tmp3 = LegalizeOp(Tmp3); 2185 Tmp4 = LegalizeOp(Tmp4); 2186 } 2187 } 2188 break; 2189 case TargetLowering::Custom: 2190 Tmp1 = TLI.LowerOperation(Tmp3, DAG); 2191 if (Tmp1.getNode()) { 2192 Tmp3 = LegalizeOp(Tmp1); 2193 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 2194 } 2195 break; 2196 case TargetLowering::Promote: { 2197 // Only promote a load of vector type to another. 2198 assert(VT.isVector() && "Cannot promote this load!"); 2199 // Change base type to a different vector type. 2200 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 2201 2202 Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getSrcValue(), 2203 LD->getSrcValueOffset(), 2204 LD->isVolatile(), LD->getAlignment()); 2205 Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1)); 2206 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 2207 break; 2208 } 2209 } 2210 // Since loads produce two values, make sure to remember that we 2211 // legalized both of them. 2212 AddLegalizedOperand(SDValue(Node, 0), Tmp3); 2213 AddLegalizedOperand(SDValue(Node, 1), Tmp4); 2214 return Op.getResNo() ? Tmp4 : Tmp3; 2215 } else { 2216 MVT SrcVT = LD->getMemoryVT(); 2217 unsigned SrcWidth = SrcVT.getSizeInBits(); 2218 int SVOffset = LD->getSrcValueOffset(); 2219 unsigned Alignment = LD->getAlignment(); 2220 bool isVolatile = LD->isVolatile(); 2221 2222 if (SrcWidth != SrcVT.getStoreSizeInBits() && 2223 // Some targets pretend to have an i1 loading operation, and actually 2224 // load an i8. This trick is correct for ZEXTLOAD because the top 7 2225 // bits are guaranteed to be zero; it helps the optimizers understand 2226 // that these bits are zero. It is also useful for EXTLOAD, since it 2227 // tells the optimizers that those bits are undefined. It would be 2228 // nice to have an effective generic way of getting these benefits... 2229 // Until such a way is found, don't insist on promoting i1 here. 2230 (SrcVT != MVT::i1 || 2231 TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) { 2232 // Promote to a byte-sized load if not loading an integral number of 2233 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 2234 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 2235 MVT NVT = MVT::getIntegerVT(NewWidth); 2236 SDValue Ch; 2237 2238 // The extra bits are guaranteed to be zero, since we stored them that 2239 // way. A zext load from NVT thus automatically gives zext from SrcVT. 2240 2241 ISD::LoadExtType NewExtType = 2242 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 2243 2244 Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), 2245 Tmp1, Tmp2, LD->getSrcValue(), SVOffset, 2246 NVT, isVolatile, Alignment); 2247 2248 Ch = Result.getValue(1); // The chain. 2249 2250 if (ExtType == ISD::SEXTLOAD) 2251 // Having the top bits zero doesn't help when sign extending. 2252 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 2253 Result.getValueType(), 2254 Result, DAG.getValueType(SrcVT)); 2255 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 2256 // All the top bits are guaranteed to be zero - inform the optimizers. 2257 Result = DAG.getNode(ISD::AssertZext, dl, 2258 Result.getValueType(), Result, 2259 DAG.getValueType(SrcVT)); 2260 2261 Tmp1 = LegalizeOp(Result); 2262 Tmp2 = LegalizeOp(Ch); 2263 } else if (SrcWidth & (SrcWidth - 1)) { 2264 // If not loading a power-of-2 number of bits, expand as two loads. 2265 assert(SrcVT.isExtended() && !SrcVT.isVector() && 2266 "Unsupported extload!"); 2267 unsigned RoundWidth = 1 << Log2_32(SrcWidth); 2268 assert(RoundWidth < SrcWidth); 2269 unsigned ExtraWidth = SrcWidth - RoundWidth; 2270 assert(ExtraWidth < RoundWidth); 2271 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 2272 "Load size not an integral number of bytes!"); 2273 MVT RoundVT = MVT::getIntegerVT(RoundWidth); 2274 MVT ExtraVT = MVT::getIntegerVT(ExtraWidth); 2275 SDValue Lo, Hi, Ch; 2276 unsigned IncrementSize; 2277 2278 if (TLI.isLittleEndian()) { 2279 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 2280 // Load the bottom RoundWidth bits. 2281 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, 2282 Node->getValueType(0), Tmp1, Tmp2, 2283 LD->getSrcValue(), SVOffset, RoundVT, isVolatile, 2284 Alignment); 2285 2286 // Load the remaining ExtraWidth bits. 2287 IncrementSize = RoundWidth / 8; 2288 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 2289 DAG.getIntPtrConstant(IncrementSize)); 2290 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2, 2291 LD->getSrcValue(), SVOffset + IncrementSize, 2292 ExtraVT, isVolatile, 2293 MinAlign(Alignment, IncrementSize)); 2294 2295 // Build a factor node to remember that this load is independent of the 2296 // other one. 2297 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 2298 Hi.getValue(1)); 2299 2300 // Move the top bits to the right place. 2301 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi, 2302 DAG.getConstant(RoundWidth, TLI.getShiftAmountTy())); 2303 2304 // Join the hi and lo parts. 2305 Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 2306 } else { 2307 // Big endian - avoid unaligned loads. 2308 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 2309 // Load the top RoundWidth bits. 2310 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2, 2311 LD->getSrcValue(), SVOffset, RoundVT, isVolatile, 2312 Alignment); 2313 2314 // Load the remaining ExtraWidth bits. 2315 IncrementSize = RoundWidth / 8; 2316 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 2317 DAG.getIntPtrConstant(IncrementSize)); 2318 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, 2319 Node->getValueType(0), Tmp1, Tmp2, 2320 LD->getSrcValue(), SVOffset + IncrementSize, 2321 ExtraVT, isVolatile, 2322 MinAlign(Alignment, IncrementSize)); 2323 2324 // Build a factor node to remember that this load is independent of the 2325 // other one. 2326 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 2327 Hi.getValue(1)); 2328 2329 // Move the top bits to the right place. 2330 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi, 2331 DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy())); 2332 2333 // Join the hi and lo parts. 2334 Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 2335 } 2336 2337 Tmp1 = LegalizeOp(Result); 2338 Tmp2 = LegalizeOp(Ch); 2339 } else { 2340 switch (TLI.getLoadExtAction(ExtType, SrcVT)) { 2341 default: assert(0 && "This action is not supported yet!"); 2342 case TargetLowering::Custom: 2343 isCustom = true; 2344 // FALLTHROUGH 2345 case TargetLowering::Legal: 2346 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset()); 2347 Tmp1 = Result.getValue(0); 2348 Tmp2 = Result.getValue(1); 2349 2350 if (isCustom) { 2351 Tmp3 = TLI.LowerOperation(Result, DAG); 2352 if (Tmp3.getNode()) { 2353 Tmp1 = LegalizeOp(Tmp3); 2354 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 2355 } 2356 } else { 2357 // If this is an unaligned load and the target doesn't support it, 2358 // expand it. 2359 if (!TLI.allowsUnalignedMemoryAccesses()) { 2360 unsigned ABIAlignment = TLI.getTargetData()-> 2361 getABITypeAlignment(LD->getMemoryVT().getTypeForMVT()); 2362 if (LD->getAlignment() < ABIAlignment){ 2363 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), DAG, 2364 TLI); 2365 Tmp1 = Result.getOperand(0); 2366 Tmp2 = Result.getOperand(1); 2367 Tmp1 = LegalizeOp(Tmp1); 2368 Tmp2 = LegalizeOp(Tmp2); 2369 } 2370 } 2371 } 2372 break; 2373 case TargetLowering::Expand: 2374 // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND 2375 if (SrcVT == MVT::f32 && Node->getValueType(0) == MVT::f64) { 2376 SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, LD->getSrcValue(), 2377 LD->getSrcValueOffset(), 2378 LD->isVolatile(), LD->getAlignment()); 2379 Result = DAG.getNode(ISD::FP_EXTEND, dl, 2380 Node->getValueType(0), Load); 2381 Tmp1 = LegalizeOp(Result); // Relegalize new nodes. 2382 Tmp2 = LegalizeOp(Load.getValue(1)); 2383 break; 2384 } 2385 assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!"); 2386 // Turn the unsupported load into an EXTLOAD followed by an explicit 2387 // zero/sign extend inreg. 2388 Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0), 2389 Tmp1, Tmp2, LD->getSrcValue(), 2390 LD->getSrcValueOffset(), SrcVT, 2391 LD->isVolatile(), LD->getAlignment()); 2392 SDValue ValRes; 2393 if (ExtType == ISD::SEXTLOAD) 2394 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 2395 Result.getValueType(), 2396 Result, DAG.getValueType(SrcVT)); 2397 else 2398 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT); 2399 Tmp1 = LegalizeOp(ValRes); // Relegalize new nodes. 2400 Tmp2 = LegalizeOp(Result.getValue(1)); // Relegalize new nodes. 2401 break; 2402 } 2403 } 2404 2405 // Since loads produce two values, make sure to remember that we legalized 2406 // both of them. 2407 AddLegalizedOperand(SDValue(Node, 0), Tmp1); 2408 AddLegalizedOperand(SDValue(Node, 1), Tmp2); 2409 return Op.getResNo() ? Tmp2 : Tmp1; 2410 } 2411 } 2412 case ISD::EXTRACT_ELEMENT: { 2413 MVT OpTy = Node->getOperand(0).getValueType(); 2414 switch (getTypeAction(OpTy)) { 2415 default: assert(0 && "EXTRACT_ELEMENT action for type unimplemented!"); 2416 case Legal: 2417 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 2418 // 1 -> Hi 2419 Result = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 2420 DAG.getConstant(OpTy.getSizeInBits()/2, 2421 TLI.getShiftAmountTy())); 2422 Result = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Result); 2423 } else { 2424 // 0 -> Lo 2425 Result = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 2426 Node->getOperand(0)); 2427 } 2428 break; 2429 case Expand: 2430 // Get both the low and high parts. 2431 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 2432 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) 2433 Result = Tmp2; // 1 -> Hi 2434 else 2435 Result = Tmp1; // 0 -> Lo 2436 break; 2437 } 2438 break; 2439 } 2440 2441 case ISD::CopyToReg: 2442 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2443 2444 assert(isTypeLegal(Node->getOperand(2).getValueType()) && 2445 "Register type must be legal!"); 2446 // Legalize the incoming value (must be a legal type). 2447 Tmp2 = LegalizeOp(Node->getOperand(2)); 2448 if (Node->getNumValues() == 1) { 2449 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2); 2450 } else { 2451 assert(Node->getNumValues() == 2 && "Unknown CopyToReg"); 2452 if (Node->getNumOperands() == 4) { 2453 Tmp3 = LegalizeOp(Node->getOperand(3)); 2454 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2, 2455 Tmp3); 2456 } else { 2457 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2); 2458 } 2459 2460 // Since this produces two values, make sure to remember that we legalized 2461 // both of them. 2462 AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); 2463 AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); 2464 return Result; 2465 } 2466 break; 2467 2468 case ISD::RET: 2469 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2470 2471 // Ensure that libcalls are emitted before a return. 2472 Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1, LastCALLSEQ_END); 2473 Tmp1 = LegalizeOp(Tmp1); 2474 LastCALLSEQ_END = DAG.getEntryNode(); 2475 2476 switch (Node->getNumOperands()) { 2477 case 3: // ret val 2478 Tmp2 = Node->getOperand(1); 2479 Tmp3 = Node->getOperand(2); // Signness 2480 switch (getTypeAction(Tmp2.getValueType())) { 2481 case Legal: 2482 Result = DAG.UpdateNodeOperands(Result, Tmp1, LegalizeOp(Tmp2), Tmp3); 2483 break; 2484 case Expand: 2485 if (!Tmp2.getValueType().isVector()) { 2486 SDValue Lo, Hi; 2487 ExpandOp(Tmp2, Lo, Hi); 2488 2489 // Big endian systems want the hi reg first. 2490 if (TLI.isBigEndian()) 2491 std::swap(Lo, Hi); 2492 2493 if (Hi.getNode()) 2494 Result = DAG.getNode(ISD::RET, dl, MVT::Other, 2495 Tmp1, Lo, Tmp3, Hi,Tmp3); 2496 else 2497 Result = DAG.getNode(ISD::RET, dl, MVT::Other, Tmp1, Lo, Tmp3); 2498 Result = LegalizeOp(Result); 2499 } else { 2500 SDNode *InVal = Tmp2.getNode(); 2501 int InIx = Tmp2.getResNo(); 2502 unsigned NumElems = InVal->getValueType(InIx).getVectorNumElements(); 2503 MVT EVT = InVal->getValueType(InIx).getVectorElementType(); 2504 2505 // Figure out if there is a simple type corresponding to this Vector 2506 // type. If so, convert to the vector type. 2507 MVT TVT = MVT::getVectorVT(EVT, NumElems); 2508 if (TLI.isTypeLegal(TVT)) { 2509 // Turn this into a return of the vector type. 2510 Tmp2 = LegalizeOp(Tmp2); 2511 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2512 } else if (NumElems == 1) { 2513 // Turn this into a return of the scalar type. 2514 Tmp2 = ScalarizeVectorOp(Tmp2); 2515 Tmp2 = LegalizeOp(Tmp2); 2516 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2517 2518 // FIXME: Returns of gcc generic vectors smaller than a legal type 2519 // should be returned in integer registers! 2520 2521 // The scalarized value type may not be legal, e.g. it might require 2522 // promotion or expansion. Relegalize the return. 2523 Result = LegalizeOp(Result); 2524 } else { 2525 // FIXME: Returns of gcc generic vectors larger than a legal vector 2526 // type should be returned by reference! 2527 SDValue Lo, Hi; 2528 SplitVectorOp(Tmp2, Lo, Hi); 2529 Result = DAG.getNode(ISD::RET, dl, MVT::Other, 2530 Tmp1, Lo, Tmp3, Hi,Tmp3); 2531 Result = LegalizeOp(Result); 2532 } 2533 } 2534 break; 2535 case Promote: 2536 Tmp2 = PromoteOp(Node->getOperand(1)); 2537 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2538 Result = LegalizeOp(Result); 2539 break; 2540 } 2541 break; 2542 case 1: // ret void 2543 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2544 break; 2545 default: { // ret <values> 2546 SmallVector<SDValue, 8> NewValues; 2547 NewValues.push_back(Tmp1); 2548 for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2) 2549 switch (getTypeAction(Node->getOperand(i).getValueType())) { 2550 case Legal: 2551 NewValues.push_back(LegalizeOp(Node->getOperand(i))); 2552 NewValues.push_back(Node->getOperand(i+1)); 2553 break; 2554 case Expand: { 2555 SDValue Lo, Hi; 2556 assert(!Node->getOperand(i).getValueType().isExtended() && 2557 "FIXME: TODO: implement returning non-legal vector types!"); 2558 ExpandOp(Node->getOperand(i), Lo, Hi); 2559 NewValues.push_back(Lo); 2560 NewValues.push_back(Node->getOperand(i+1)); 2561 if (Hi.getNode()) { 2562 NewValues.push_back(Hi); 2563 NewValues.push_back(Node->getOperand(i+1)); 2564 } 2565 break; 2566 } 2567 case Promote: 2568 assert(0 && "Can't promote multiple return value yet!"); 2569 } 2570 2571 if (NewValues.size() == Node->getNumOperands()) 2572 Result = DAG.UpdateNodeOperands(Result, &NewValues[0],NewValues.size()); 2573 else 2574 Result = DAG.getNode(ISD::RET, dl, MVT::Other, 2575 &NewValues[0], NewValues.size()); 2576 break; 2577 } 2578 } 2579 2580 if (Result.getOpcode() == ISD::RET) { 2581 switch (TLI.getOperationAction(Result.getOpcode(), MVT::Other)) { 2582 default: assert(0 && "This action is not supported yet!"); 2583 case TargetLowering::Legal: break; 2584 case TargetLowering::Custom: 2585 Tmp1 = TLI.LowerOperation(Result, DAG); 2586 if (Tmp1.getNode()) Result = Tmp1; 2587 break; 2588 } 2589 } 2590 break; 2591 case ISD::STORE: { 2592 StoreSDNode *ST = cast<StoreSDNode>(Node); 2593 Tmp1 = LegalizeOp(ST->getChain()); // Legalize the chain. 2594 Tmp2 = LegalizeOp(ST->getBasePtr()); // Legalize the pointer. 2595 int SVOffset = ST->getSrcValueOffset(); 2596 unsigned Alignment = ST->getAlignment(); 2597 bool isVolatile = ST->isVolatile(); 2598 2599 if (!ST->isTruncatingStore()) { 2600 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 2601 // FIXME: We shouldn't do this for TargetConstantFP's. 2602 // FIXME: move this to the DAG Combiner! Note that we can't regress due 2603 // to phase ordering between legalized code and the dag combiner. This 2604 // probably means that we need to integrate dag combiner and legalizer 2605 // together. 2606 // We generally can't do this one for long doubles. 2607 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 2608 if (CFP->getValueType(0) == MVT::f32 && 2609 getTypeAction(MVT::i32) == Legal) { 2610 Tmp3 = DAG.getConstant(CFP->getValueAPF(). 2611 bitcastToAPInt().zextOrTrunc(32), 2612 MVT::i32); 2613 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), 2614 SVOffset, isVolatile, Alignment); 2615 break; 2616 } else if (CFP->getValueType(0) == MVT::f64) { 2617 // If this target supports 64-bit registers, do a single 64-bit store. 2618 if (getTypeAction(MVT::i64) == Legal) { 2619 Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 2620 zextOrTrunc(64), MVT::i64); 2621 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), 2622 SVOffset, isVolatile, Alignment); 2623 break; 2624 } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) { 2625 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 2626 // stores. If the target supports neither 32- nor 64-bits, this 2627 // xform is certainly not worth it. 2628 const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt(); 2629 SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32); 2630 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32); 2631 if (TLI.isBigEndian()) std::swap(Lo, Hi); 2632 2633 Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(), 2634 SVOffset, isVolatile, Alignment); 2635 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 2636 DAG.getIntPtrConstant(4)); 2637 Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), SVOffset+4, 2638 isVolatile, MinAlign(Alignment, 4U)); 2639 2640 Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 2641 break; 2642 } 2643 } 2644 } 2645 2646 switch (getTypeAction(ST->getMemoryVT())) { 2647 case Legal: { 2648 Tmp3 = LegalizeOp(ST->getValue()); 2649 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2, 2650 ST->getOffset()); 2651 2652 MVT VT = Tmp3.getValueType(); 2653 switch (TLI.getOperationAction(ISD::STORE, VT)) { 2654 default: assert(0 && "This action is not supported yet!"); 2655 case TargetLowering::Legal: 2656 // If this is an unaligned store and the target doesn't support it, 2657 // expand it. 2658 if (!TLI.allowsUnalignedMemoryAccesses()) { 2659 unsigned ABIAlignment = TLI.getTargetData()-> 2660 getABITypeAlignment(ST->getMemoryVT().getTypeForMVT()); 2661 if (ST->getAlignment() < ABIAlignment) 2662 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG, 2663 TLI); 2664 } 2665 break; 2666 case TargetLowering::Custom: 2667 Tmp1 = TLI.LowerOperation(Result, DAG); 2668 if (Tmp1.getNode()) Result = Tmp1; 2669 break; 2670 case TargetLowering::Promote: 2671 assert(VT.isVector() && "Unknown legal promote case!"); 2672 Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl, 2673 TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3); 2674 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, 2675 ST->getSrcValue(), SVOffset, isVolatile, 2676 Alignment); 2677 break; 2678 } 2679 break; 2680 } 2681 case Promote: 2682 if (!ST->getMemoryVT().isVector()) { 2683 // Truncate the value and store the result. 2684 Tmp3 = PromoteOp(ST->getValue()); 2685 Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), 2686 SVOffset, ST->getMemoryVT(), 2687 isVolatile, Alignment); 2688 break; 2689 } 2690 // Fall thru to expand for vector 2691 case Expand: { 2692 unsigned IncrementSize = 0; 2693 SDValue Lo, Hi; 2694 2695 // If this is a vector type, then we have to calculate the increment as 2696 // the product of the element size in bytes, and the number of elements 2697 // in the high half of the vector. 2698 if (ST->getValue().getValueType().isVector()) { 2699 SDNode *InVal = ST->getValue().getNode(); 2700 int InIx = ST->getValue().getResNo(); 2701 MVT InVT = InVal->getValueType(InIx); 2702 unsigned NumElems = InVT.getVectorNumElements(); 2703 MVT EVT = InVT.getVectorElementType(); 2704 2705 // Figure out if there is a simple type corresponding to this Vector 2706 // type. If so, convert to the vector type. 2707 MVT TVT = MVT::getVectorVT(EVT, NumElems); 2708 if (TLI.isTypeLegal(TVT)) { 2709 // Turn this into a normal store of the vector type. 2710 Tmp3 = LegalizeOp(ST->getValue()); 2711 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), 2712 SVOffset, isVolatile, Alignment); 2713 Result = LegalizeOp(Result); 2714 break; 2715 } else if (NumElems == 1) { 2716 // Turn this into a normal store of the scalar type. 2717 Tmp3 = ScalarizeVectorOp(ST->getValue()); 2718 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), 2719 SVOffset, isVolatile, Alignment); 2720 // The scalarized value type may not be legal, e.g. it might require 2721 // promotion or expansion. Relegalize the scalar store. 2722 Result = LegalizeOp(Result); 2723 break; 2724 } else { 2725 // Check if we have widen this node with another value 2726 std::map<SDValue, SDValue>::iterator I = 2727 WidenNodes.find(ST->getValue()); 2728 if (I != WidenNodes.end()) { 2729 Result = StoreWidenVectorOp(ST, Tmp1, Tmp2); 2730 break; 2731 } 2732 else { 2733 SplitVectorOp(ST->getValue(), Lo, Hi); 2734 IncrementSize = Lo.getNode()->getValueType(0).getVectorNumElements() * 2735 EVT.getSizeInBits()/8; 2736 } 2737 } 2738 } else { 2739 ExpandOp(ST->getValue(), Lo, Hi); 2740 IncrementSize = Hi.getNode() ? Hi.getValueType().getSizeInBits()/8 : 0; 2741 2742 if (Hi.getNode() && TLI.isBigEndian()) 2743 std::swap(Lo, Hi); 2744 } 2745 2746 Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(), 2747 SVOffset, isVolatile, Alignment); 2748 2749 if (Hi.getNode() == NULL) { 2750 // Must be int <-> float one-to-one expansion. 2751 Result = Lo; 2752 break; 2753 } 2754 2755 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 2756 DAG.getIntPtrConstant(IncrementSize)); 2757 assert(isTypeLegal(Tmp2.getValueType()) && 2758 "Pointers must be legal!"); 2759 SVOffset += IncrementSize; 2760 Alignment = MinAlign(Alignment, IncrementSize); 2761 Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), 2762 SVOffset, isVolatile, Alignment); 2763 Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 2764 break; 2765 } // case Expand 2766 } 2767 } else { 2768 switch (getTypeAction(ST->getValue().getValueType())) { 2769 case Legal: 2770 Tmp3 = LegalizeOp(ST->getValue()); 2771 break; 2772 case Promote: 2773 if (!ST->getValue().getValueType().isVector()) { 2774 // We can promote the value, the truncstore will still take care of it. 2775 Tmp3 = PromoteOp(ST->getValue()); 2776 break; 2777 } 2778 // Vector case falls through to expand 2779 case Expand: 2780 // Just store the low part. This may become a non-trunc store, so make 2781 // sure to use getTruncStore, not UpdateNodeOperands below. 2782 ExpandOp(ST->getValue(), Tmp3, Tmp4); 2783 return DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), 2784 SVOffset, MVT::i8, isVolatile, Alignment); 2785 } 2786 2787 MVT StVT = ST->getMemoryVT(); 2788 unsigned StWidth = StVT.getSizeInBits(); 2789 2790 if (StWidth != StVT.getStoreSizeInBits()) { 2791 // Promote to a byte-sized store with upper bits zero if not 2792 // storing an integral number of bytes. For example, promote 2793 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 2794 MVT NVT = MVT::getIntegerVT(StVT.getStoreSizeInBits()); 2795 Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT); 2796 Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), 2797 SVOffset, NVT, isVolatile, Alignment); 2798 } else if (StWidth & (StWidth - 1)) { 2799 // If not storing a power-of-2 number of bits, expand as two stores. 2800 assert(StVT.isExtended() && !StVT.isVector() && 2801 "Unsupported truncstore!"); 2802 unsigned RoundWidth = 1 << Log2_32(StWidth); 2803 assert(RoundWidth < StWidth); 2804 unsigned ExtraWidth = StWidth - RoundWidth; 2805 assert(ExtraWidth < RoundWidth); 2806 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 2807 "Store size not an integral number of bytes!"); 2808 MVT RoundVT = MVT::getIntegerVT(RoundWidth); 2809 MVT ExtraVT = MVT::getIntegerVT(ExtraWidth); 2810 SDValue Lo, Hi; 2811 unsigned IncrementSize; 2812 2813 if (TLI.isLittleEndian()) { 2814 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 2815 // Store the bottom RoundWidth bits. 2816 Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), 2817 SVOffset, RoundVT, 2818 isVolatile, Alignment); 2819 2820 // Store the remaining ExtraWidth bits. 2821 IncrementSize = RoundWidth / 8; 2822 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 2823 DAG.getIntPtrConstant(IncrementSize)); 2824 Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3, 2825 DAG.getConstant(RoundWidth, TLI.getShiftAmountTy())); 2826 Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), 2827 SVOffset + IncrementSize, ExtraVT, isVolatile, 2828 MinAlign(Alignment, IncrementSize)); 2829 } else { 2830 // Big endian - avoid unaligned stores. 2831 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 2832 // Store the top RoundWidth bits. 2833 Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3, 2834 DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy())); 2835 Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), 2836 SVOffset, RoundVT, isVolatile, Alignment); 2837 2838 // Store the remaining ExtraWidth bits. 2839 IncrementSize = RoundWidth / 8; 2840 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 2841 DAG.getIntPtrConstant(IncrementSize)); 2842 Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), 2843 SVOffset + IncrementSize, ExtraVT, isVolatile, 2844 MinAlign(Alignment, IncrementSize)); 2845 } 2846 2847 // The order of the stores doesn't matter. 2848 Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 2849 } else { 2850 if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() || 2851 Tmp2 != ST->getBasePtr()) 2852 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2, 2853 ST->getOffset()); 2854 2855 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 2856 default: assert(0 && "This action is not supported yet!"); 2857 case TargetLowering::Legal: 2858 // If this is an unaligned store and the target doesn't support it, 2859 // expand it. 2860 if (!TLI.allowsUnalignedMemoryAccesses()) { 2861 unsigned ABIAlignment = TLI.getTargetData()-> 2862 getABITypeAlignment(ST->getMemoryVT().getTypeForMVT()); 2863 if (ST->getAlignment() < ABIAlignment) 2864 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG, 2865 TLI); 2866 } 2867 break; 2868 case TargetLowering::Custom: 2869 Result = TLI.LowerOperation(Result, DAG); 2870 break; 2871 case Expand: 2872 // TRUNCSTORE:i16 i32 -> STORE i16 2873 assert(isTypeLegal(StVT) && "Do not know how to expand this store!"); 2874 Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3); 2875 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), 2876 SVOffset, isVolatile, Alignment); 2877 break; 2878 } 2879 } 2880 } 2881 break; 2882 } 2883 case ISD::PCMARKER: 2884 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2885 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 2886 break; 2887 case ISD::STACKSAVE: 2888 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2889 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2890 Tmp1 = Result.getValue(0); 2891 Tmp2 = Result.getValue(1); 2892 2893 switch (TLI.getOperationAction(ISD::STACKSAVE, MVT::Other)) { 2894 default: assert(0 && "This action is not supported yet!"); 2895 case TargetLowering::Legal: break; 2896 case TargetLowering::Custom: 2897 Tmp3 = TLI.LowerOperation(Result, DAG); 2898 if (Tmp3.getNode()) { 2899 Tmp1 = LegalizeOp(Tmp3); 2900 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 2901 } 2902 break; 2903 case TargetLowering::Expand: 2904 // Expand to CopyFromReg if the target set 2905 // StackPointerRegisterToSaveRestore. 2906 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 2907 Tmp1 = DAG.getCopyFromReg(Result.getOperand(0), dl, SP, 2908 Node->getValueType(0)); 2909 Tmp2 = Tmp1.getValue(1); 2910 } else { 2911 Tmp1 = DAG.getUNDEF(Node->getValueType(0)); 2912 Tmp2 = Node->getOperand(0); 2913 } 2914 break; 2915 } 2916 2917 // Since stacksave produce two values, make sure to remember that we 2918 // legalized both of them. 2919 AddLegalizedOperand(SDValue(Node, 0), Tmp1); 2920 AddLegalizedOperand(SDValue(Node, 1), Tmp2); 2921 return Op.getResNo() ? Tmp2 : Tmp1; 2922 2923 case ISD::STACKRESTORE: 2924 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2925 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 2926 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 2927 2928 switch (TLI.getOperationAction(ISD::STACKRESTORE, MVT::Other)) { 2929 default: assert(0 && "This action is not supported yet!"); 2930 case TargetLowering::Legal: break; 2931 case TargetLowering::Custom: 2932 Tmp1 = TLI.LowerOperation(Result, DAG); 2933 if (Tmp1.getNode()) Result = Tmp1; 2934 break; 2935 case TargetLowering::Expand: 2936 // Expand to CopyToReg if the target set 2937 // StackPointerRegisterToSaveRestore. 2938 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 2939 Result = DAG.getCopyToReg(Tmp1, dl, SP, Tmp2); 2940 } else { 2941 Result = Tmp1; 2942 } 2943 break; 2944 } 2945 break; 2946 2947 case ISD::READCYCLECOUNTER: 2948 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain 2949 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2950 switch (TLI.getOperationAction(ISD::READCYCLECOUNTER, 2951 Node->getValueType(0))) { 2952 default: assert(0 && "This action is not supported yet!"); 2953 case TargetLowering::Legal: 2954 Tmp1 = Result.getValue(0); 2955 Tmp2 = Result.getValue(1); 2956 break; 2957 case TargetLowering::Custom: 2958 Result = TLI.LowerOperation(Result, DAG); 2959 Tmp1 = LegalizeOp(Result.getValue(0)); 2960 Tmp2 = LegalizeOp(Result.getValue(1)); 2961 break; 2962 } 2963 2964 // Since rdcc produce two values, make sure to remember that we legalized 2965 // both of them. 2966 AddLegalizedOperand(SDValue(Node, 0), Tmp1); 2967 AddLegalizedOperand(SDValue(Node, 1), Tmp2); 2968 return Result; 2969 2970 case ISD::SELECT: 2971 switch (getTypeAction(Node->getOperand(0).getValueType())) { 2972 case Expand: assert(0 && "It's impossible to expand bools"); 2973 case Legal: 2974 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the condition. 2975 break; 2976 case Promote: { 2977 assert(!Node->getOperand(0).getValueType().isVector() && "not possible"); 2978 Tmp1 = PromoteOp(Node->getOperand(0)); // Promote the condition. 2979 // Make sure the condition is either zero or one. 2980 unsigned BitWidth = Tmp1.getValueSizeInBits(); 2981 if (!DAG.MaskedValueIsZero(Tmp1, 2982 APInt::getHighBitsSet(BitWidth, BitWidth-1))) 2983 Tmp1 = DAG.getZeroExtendInReg(Tmp1, dl, MVT::i1); 2984 break; 2985 } 2986 } 2987 Tmp2 = LegalizeOp(Node->getOperand(1)); // TrueVal 2988 Tmp3 = LegalizeOp(Node->getOperand(2)); // FalseVal 2989 2990 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2991 2992 switch (TLI.getOperationAction(ISD::SELECT, Tmp2.getValueType())) { 2993 default: assert(0 && "This action is not supported yet!"); 2994 case TargetLowering::Legal: break; 2995 case TargetLowering::Custom: { 2996 Tmp1 = TLI.LowerOperation(Result, DAG); 2997 if (Tmp1.getNode()) Result = Tmp1; 2998 break; 2999 } 3000 case TargetLowering::Expand: 3001 if (Tmp1.getOpcode() == ISD::SETCC) { 3002 Result = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3003 Tmp2, Tmp3, 3004 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3005 } else { 3006 Result = DAG.getSelectCC(dl, Tmp1, 3007 DAG.getConstant(0, Tmp1.getValueType()), 3008 Tmp2, Tmp3, ISD::SETNE); 3009 } 3010 break; 3011 case TargetLowering::Promote: { 3012 MVT NVT = 3013 TLI.getTypeToPromoteTo(ISD::SELECT, Tmp2.getValueType()); 3014 unsigned ExtOp, TruncOp; 3015 if (Tmp2.getValueType().isVector()) { 3016 ExtOp = ISD::BIT_CONVERT; 3017 TruncOp = ISD::BIT_CONVERT; 3018 } else if (Tmp2.getValueType().isInteger()) { 3019 ExtOp = ISD::ANY_EXTEND; 3020 TruncOp = ISD::TRUNCATE; 3021 } else { 3022 ExtOp = ISD::FP_EXTEND; 3023 TruncOp = ISD::FP_ROUND; 3024 } 3025 // Promote each of the values to the new type. 3026 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Tmp2); 3027 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Tmp3); 3028 // Perform the larger operation, then round down. 3029 Result = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2,Tmp3); 3030 if (TruncOp != ISD::FP_ROUND) 3031 Result = DAG.getNode(TruncOp, dl, Node->getValueType(0), Result); 3032 else 3033 Result = DAG.getNode(TruncOp, dl, Node->getValueType(0), Result, 3034 DAG.getIntPtrConstant(0)); 3035 break; 3036 } 3037 } 3038 break; 3039 case ISD::SELECT_CC: { 3040 Tmp1 = Node->getOperand(0); // LHS 3041 Tmp2 = Node->getOperand(1); // RHS 3042 Tmp3 = LegalizeOp(Node->getOperand(2)); // True 3043 Tmp4 = LegalizeOp(Node->getOperand(3)); // False 3044 SDValue CC = Node->getOperand(4); 3045 3046 LegalizeSetCC(TLI.getSetCCResultType(Tmp1.getValueType()), 3047 Tmp1, Tmp2, CC, dl); 3048 3049 // If we didn't get both a LHS and RHS back from LegalizeSetCC, 3050 // the LHS is a legal SETCC itself. In this case, we need to compare 3051 // the result against zero to select between true and false values. 3052 if (Tmp2.getNode() == 0) { 3053 Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); 3054 CC = DAG.getCondCode(ISD::SETNE); 3055 } 3056 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4, CC); 3057 3058 // Everything is legal, see if we should expand this op or something. 3059 switch (TLI.getOperationAction(ISD::SELECT_CC, Tmp3.getValueType())) { 3060 default: assert(0 && "This action is not supported yet!"); 3061 case TargetLowering::Legal: break; 3062 case TargetLowering::Custom: 3063 Tmp1 = TLI.LowerOperation(Result, DAG); 3064 if (Tmp1.getNode()) Result = Tmp1; 3065 break; 3066 } 3067 break; 3068 } 3069 case ISD::SETCC: 3070 Tmp1 = Node->getOperand(0); 3071 Tmp2 = Node->getOperand(1); 3072 Tmp3 = Node->getOperand(2); 3073 LegalizeSetCC(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl); 3074 3075 // If we had to Expand the SetCC operands into a SELECT node, then it may 3076 // not always be possible to return a true LHS & RHS. In this case, just 3077 // return the value we legalized, returned in the LHS 3078 if (Tmp2.getNode() == 0) { 3079 Result = Tmp1; 3080 break; 3081 } 3082 3083 switch (TLI.getOperationAction(ISD::SETCC, Tmp1.getValueType())) { 3084 default: assert(0 && "Cannot handle this action for SETCC yet!"); 3085 case TargetLowering::Custom: 3086 isCustom = true; 3087 // FALLTHROUGH. 3088 case TargetLowering::Legal: 3089 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 3090 if (isCustom) { 3091 Tmp4 = TLI.LowerOperation(Result, DAG); 3092 if (Tmp4.getNode()) Result = Tmp4; 3093 } 3094 break; 3095 case TargetLowering::Promote: { 3096 // First step, figure out the appropriate operation to use. 3097 // Allow SETCC to not be supported for all legal data types 3098 // Mostly this targets FP 3099 MVT NewInTy = Node->getOperand(0).getValueType(); 3100 MVT OldVT = NewInTy; OldVT = OldVT; 3101 3102 // Scan for the appropriate larger type to use. 3103 while (1) { 3104 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT()+1); 3105 3106 assert(NewInTy.isInteger() == OldVT.isInteger() && 3107 "Fell off of the edge of the integer world"); 3108 assert(NewInTy.isFloatingPoint() == OldVT.isFloatingPoint() && 3109 "Fell off of the edge of the floating point world"); 3110 3111 // If the target supports SETCC of this type, use it. 3112 if (TLI.isOperationLegalOrCustom(ISD::SETCC, NewInTy)) 3113 break; 3114 } 3115 if (NewInTy.isInteger()) 3116 assert(0 && "Cannot promote Legal Integer SETCC yet"); 3117 else { 3118 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NewInTy, Tmp1); 3119 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NewInTy, Tmp2); 3120 } 3121 Tmp1 = LegalizeOp(Tmp1); 3122 Tmp2 = LegalizeOp(Tmp2); 3123 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 3124 Result = LegalizeOp(Result); 3125 break; 3126 } 3127 case TargetLowering::Expand: 3128 // Expand a setcc node into a select_cc of the same condition, lhs, and 3129 // rhs that selects between const 1 (true) and const 0 (false). 3130 MVT VT = Node->getValueType(0); 3131 Result = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3132 DAG.getConstant(1, VT), DAG.getConstant(0, VT), 3133 Tmp3); 3134 break; 3135 } 3136 break; 3137 case ISD::VSETCC: { 3138 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3139 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 3140 SDValue CC = Node->getOperand(2); 3141 3142 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, CC); 3143 3144 // Everything is legal, see if we should expand this op or something. 3145 switch (TLI.getOperationAction(ISD::VSETCC, Tmp1.getValueType())) { 3146 default: assert(0 && "This action is not supported yet!"); 3147 case TargetLowering::Legal: break; 3148 case TargetLowering::Custom: 3149 Tmp1 = TLI.LowerOperation(Result, DAG); 3150 if (Tmp1.getNode()) Result = Tmp1; 3151 break; 3152 case TargetLowering::Expand: { 3153 // Unroll into a nasty set of scalar code for now. 3154 MVT VT = Node->getValueType(0); 3155 unsigned NumElems = VT.getVectorNumElements(); 3156 MVT EltVT = VT.getVectorElementType(); 3157 MVT TmpEltVT = Tmp1.getValueType().getVectorElementType(); 3158 SmallVector<SDValue, 8> Ops(NumElems); 3159 for (unsigned i = 0; i < NumElems; ++i) { 3160 SDValue In1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, 3161 Tmp1, DAG.getIntPtrConstant(i)); 3162 Ops[i] = DAG.getNode(ISD::SETCC, dl, TLI.getSetCCResultType(TmpEltVT), 3163 In1, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 3164 TmpEltVT, Tmp2, 3165 DAG.getIntPtrConstant(i)), 3166 CC); 3167 Ops[i] = DAG.getNode(ISD::SELECT, dl, EltVT, Ops[i], DAG.getConstant( 3168 APInt::getAllOnesValue(EltVT.getSizeInBits()), 3169 EltVT), DAG.getConstant(0, EltVT)); 3170 } 3171 Result = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], NumElems); 3172 break; 3173 } 3174 } 3175 break; 3176 } 3177 3178 case ISD::SHL_PARTS: 3179 case ISD::SRA_PARTS: 3180 case ISD::SRL_PARTS: { 3181 SmallVector<SDValue, 8> Ops; 3182 bool Changed = false; 3183 unsigned N = Node->getNumOperands(); 3184 for (unsigned i = 0; i + 1 < N; ++i) { 3185 Ops.push_back(LegalizeOp(Node->getOperand(i))); 3186 Changed |= Ops.back() != Node->getOperand(i); 3187 } 3188 Ops.push_back(LegalizeOp(DAG.getShiftAmountOperand(Node->getOperand(N-1)))); 3189 Changed |= Ops.back() != Node->getOperand(N-1); 3190 if (Changed) 3191 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 3192 3193 switch (TLI.getOperationAction(Node->getOpcode(), 3194 Node->getValueType(0))) { 3195 default: assert(0 && "This action is not supported yet!"); 3196 case TargetLowering::Legal: break; 3197 case TargetLowering::Custom: 3198 Tmp1 = TLI.LowerOperation(Result, DAG); 3199 if (Tmp1.getNode()) { 3200 SDValue Tmp2, RetVal(0, 0); 3201 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { 3202 Tmp2 = LegalizeOp(Tmp1.getValue(i)); 3203 AddLegalizedOperand(SDValue(Node, i), Tmp2); 3204 if (i == Op.getResNo()) 3205 RetVal = Tmp2; 3206 } 3207 assert(RetVal.getNode() && "Illegal result number"); 3208 return RetVal; 3209 } 3210 break; 3211 } 3212 3213 // Since these produce multiple values, make sure to remember that we 3214 // legalized all of them. 3215 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 3216 AddLegalizedOperand(SDValue(Node, i), Result.getValue(i)); 3217 return Result.getValue(Op.getResNo()); 3218 } 3219 3220 // Binary operators 3221 case ISD::ADD: 3222 case ISD::SUB: 3223 case ISD::MUL: 3224 case ISD::MULHS: 3225 case ISD::MULHU: 3226 case ISD::UDIV: 3227 case ISD::SDIV: 3228 case ISD::AND: 3229 case ISD::OR: 3230 case ISD::XOR: 3231 case ISD::SHL: 3232 case ISD::SRL: 3233 case ISD::SRA: 3234 case ISD::FADD: 3235 case ISD::FSUB: 3236 case ISD::FMUL: 3237 case ISD::FDIV: 3238 case ISD::FPOW: 3239 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3240 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 3241 3242 if ((Node->getOpcode() == ISD::SHL || 3243 Node->getOpcode() == ISD::SRL || 3244 Node->getOpcode() == ISD::SRA) && 3245 !Node->getValueType(0).isVector()) 3246 Tmp2 = DAG.getShiftAmountOperand(Tmp2); 3247 3248 switch (getTypeAction(Tmp2.getValueType())) { 3249 case Expand: assert(0 && "Not possible"); 3250 case Legal: 3251 Tmp2 = LegalizeOp(Tmp2); // Legalize the RHS. 3252 break; 3253 case Promote: 3254 Tmp2 = PromoteOp(Tmp2); // Promote the RHS. 3255 break; 3256 } 3257 3258 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3259 3260 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3261 default: assert(0 && "BinOp legalize operation not supported"); 3262 case TargetLowering::Legal: break; 3263 case TargetLowering::Custom: 3264 Tmp1 = TLI.LowerOperation(Result, DAG); 3265 if (Tmp1.getNode()) { 3266 Result = Tmp1; 3267 break; 3268 } 3269 // Fall through if the custom lower can't deal with the operation 3270 case TargetLowering::Expand: { 3271 MVT VT = Op.getValueType(); 3272 3273 // See if multiply or divide can be lowered using two-result operations. 3274 SDVTList VTs = DAG.getVTList(VT, VT); 3275 if (Node->getOpcode() == ISD::MUL) { 3276 // We just need the low half of the multiply; try both the signed 3277 // and unsigned forms. If the target supports both SMUL_LOHI and 3278 // UMUL_LOHI, form a preference by checking which forms of plain 3279 // MULH it supports. 3280 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3281 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3282 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3283 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3284 unsigned OpToUse = 0; 3285 if (HasSMUL_LOHI && !HasMULHS) { 3286 OpToUse = ISD::SMUL_LOHI; 3287 } else if (HasUMUL_LOHI && !HasMULHU) { 3288 OpToUse = ISD::UMUL_LOHI; 3289 } else if (HasSMUL_LOHI) { 3290 OpToUse = ISD::SMUL_LOHI; 3291 } else if (HasUMUL_LOHI) { 3292 OpToUse = ISD::UMUL_LOHI; 3293 } 3294 if (OpToUse) { 3295 Result = SDValue(DAG.getNode(OpToUse, dl, VTs, Tmp1, Tmp2).getNode(), 3296 0); 3297 break; 3298 } 3299 } 3300 if (Node->getOpcode() == ISD::MULHS && 3301 TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 3302 Result = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, 3303 VTs, Tmp1, Tmp2).getNode(), 3304 1); 3305 break; 3306 } 3307 if (Node->getOpcode() == ISD::MULHU && 3308 TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 3309 Result = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, 3310 VTs, Tmp1, Tmp2).getNode(), 3311 1); 3312 break; 3313 } 3314 if (Node->getOpcode() == ISD::SDIV && 3315 TLI.isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 3316 Result = SDValue(DAG.getNode(ISD::SDIVREM, dl, 3317 VTs, Tmp1, Tmp2).getNode(), 3318 0); 3319 break; 3320 } 3321 if (Node->getOpcode() == ISD::UDIV && 3322 TLI.isOperationLegalOrCustom(ISD::UDIVREM, VT)) { 3323 Result = SDValue(DAG.getNode(ISD::UDIVREM, dl, 3324 VTs, Tmp1, Tmp2).getNode(), 3325 0); 3326 break; 3327 } 3328 3329 // Check to see if we have a libcall for this operator. 3330 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3331 bool isSigned = false; 3332 switch (Node->getOpcode()) { 3333 case ISD::UDIV: 3334 case ISD::SDIV: 3335 if (VT == MVT::i32) { 3336 LC = Node->getOpcode() == ISD::UDIV 3337 ? RTLIB::UDIV_I32 : RTLIB::SDIV_I32; 3338 isSigned = Node->getOpcode() == ISD::SDIV; 3339 } 3340 break; 3341 case ISD::MUL: 3342 if (VT == MVT::i32) 3343 LC = RTLIB::MUL_I32; 3344 else if (VT == MVT::i64) 3345 LC = RTLIB::MUL_I64; 3346 break; 3347 case ISD::FPOW: 3348 LC = GetFPLibCall(VT, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, 3349 RTLIB::POW_PPCF128); 3350 break; 3351 case ISD::FDIV: 3352 LC = GetFPLibCall(VT, RTLIB::DIV_F32, RTLIB::DIV_F64, RTLIB::DIV_F80, 3353 RTLIB::DIV_PPCF128); 3354 break; 3355 default: break; 3356 } 3357 if (LC != RTLIB::UNKNOWN_LIBCALL) { 3358 SDValue Dummy; 3359 Result = ExpandLibCall(LC, Node, isSigned, Dummy); 3360 break; 3361 } 3362 3363 assert(Node->getValueType(0).isVector() && 3364 "Cannot expand this binary operator!"); 3365 // Expand the operation into a bunch of nasty scalar code. 3366 Result = LegalizeOp(UnrollVectorOp(Op)); 3367 break; 3368 } 3369 case TargetLowering::Promote: { 3370 switch (Node->getOpcode()) { 3371 default: assert(0 && "Do not know how to promote this BinOp!"); 3372 case ISD::AND: 3373 case ISD::OR: 3374 case ISD::XOR: { 3375 MVT OVT = Node->getValueType(0); 3376 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3377 assert(OVT.isVector() && "Cannot promote this BinOp!"); 3378 // Bit convert each of the values to the new type. 3379 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Tmp1); 3380 Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Tmp2); 3381 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 3382 // Bit convert the result back the original type. 3383 Result = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Result); 3384 break; 3385 } 3386 } 3387 } 3388 } 3389 break; 3390 3391 case ISD::SMUL_LOHI: 3392 case ISD::UMUL_LOHI: 3393 case ISD::SDIVREM: 3394 case ISD::UDIVREM: 3395 // These nodes will only be produced by target-specific lowering, so 3396 // they shouldn't be here if they aren't legal. 3397 assert(TLI.isOperationLegal(Node->getOpcode(), Node->getValueType(0)) && 3398 "This must be legal!"); 3399 3400 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3401 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 3402 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3403 break; 3404 3405 case ISD::FCOPYSIGN: // FCOPYSIGN does not require LHS/RHS to match type! 3406 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3407 switch (getTypeAction(Node->getOperand(1).getValueType())) { 3408 case Expand: assert(0 && "Not possible"); 3409 case Legal: 3410 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the RHS. 3411 break; 3412 case Promote: 3413 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the RHS. 3414 break; 3415 } 3416 3417 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3418 3419 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3420 default: assert(0 && "Operation not supported"); 3421 case TargetLowering::Custom: 3422 Tmp1 = TLI.LowerOperation(Result, DAG); 3423 if (Tmp1.getNode()) Result = Tmp1; 3424 break; 3425 case TargetLowering::Legal: break; 3426 case TargetLowering::Expand: { 3427 // If this target supports fabs/fneg natively and select is cheap, 3428 // do this efficiently. 3429 if (!TLI.isSelectExpensive() && 3430 TLI.getOperationAction(ISD::FABS, Tmp1.getValueType()) == 3431 TargetLowering::Legal && 3432 TLI.getOperationAction(ISD::FNEG, Tmp1.getValueType()) == 3433 TargetLowering::Legal) { 3434 // Get the sign bit of the RHS. 3435 MVT IVT = 3436 Tmp2.getValueType() == MVT::f32 ? MVT::i32 : MVT::i64; 3437 SDValue SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2); 3438 SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(IVT), 3439 SignBit, DAG.getConstant(0, IVT), ISD::SETLT); 3440 // Get the absolute value of the result. 3441 SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1); 3442 // Select between the nabs and abs value based on the sign bit of 3443 // the input. 3444 Result = DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit, 3445 DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), 3446 AbsVal), 3447 AbsVal); 3448 Result = LegalizeOp(Result); 3449 break; 3450 } 3451 3452 // Otherwise, do bitwise ops! 3453 MVT NVT = 3454 Node->getValueType(0) == MVT::f32 ? MVT::i32 : MVT::i64; 3455 Result = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI); 3456 Result = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0), Result); 3457 Result = LegalizeOp(Result); 3458 break; 3459 } 3460 } 3461 break; 3462 3463 case ISD::ADDC: 3464 case ISD::SUBC: 3465 Tmp1 = LegalizeOp(Node->getOperand(0)); 3466 Tmp2 = LegalizeOp(Node->getOperand(1)); 3467 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3468 Tmp3 = Result.getValue(0); 3469 Tmp4 = Result.getValue(1); 3470 3471 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3472 default: assert(0 && "This action is not supported yet!"); 3473 case TargetLowering::Legal: 3474 break; 3475 case TargetLowering::Custom: 3476 Tmp1 = TLI.LowerOperation(Tmp3, DAG); 3477 if (Tmp1.getNode() != NULL) { 3478 Tmp3 = LegalizeOp(Tmp1); 3479 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 3480 } 3481 break; 3482 } 3483 // Since this produces two values, make sure to remember that we legalized 3484 // both of them. 3485 AddLegalizedOperand(SDValue(Node, 0), Tmp3); 3486 AddLegalizedOperand(SDValue(Node, 1), Tmp4); 3487 return Op.getResNo() ? Tmp4 : Tmp3; 3488 3489 case ISD::ADDE: 3490 case ISD::SUBE: 3491 Tmp1 = LegalizeOp(Node->getOperand(0)); 3492 Tmp2 = LegalizeOp(Node->getOperand(1)); 3493 Tmp3 = LegalizeOp(Node->getOperand(2)); 3494 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 3495 Tmp3 = Result.getValue(0); 3496 Tmp4 = Result.getValue(1); 3497 3498 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3499 default: assert(0 && "This action is not supported yet!"); 3500 case TargetLowering::Legal: 3501 break; 3502 case TargetLowering::Custom: 3503 Tmp1 = TLI.LowerOperation(Tmp3, DAG); 3504 if (Tmp1.getNode() != NULL) { 3505 Tmp3 = LegalizeOp(Tmp1); 3506 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 3507 } 3508 break; 3509 } 3510 // Since this produces two values, make sure to remember that we legalized 3511 // both of them. 3512 AddLegalizedOperand(SDValue(Node, 0), Tmp3); 3513 AddLegalizedOperand(SDValue(Node, 1), Tmp4); 3514 return Op.getResNo() ? Tmp4 : Tmp3; 3515 3516 case ISD::BUILD_PAIR: { 3517 MVT PairTy = Node->getValueType(0); 3518 // TODO: handle the case where the Lo and Hi operands are not of legal type 3519 Tmp1 = LegalizeOp(Node->getOperand(0)); // Lo 3520 Tmp2 = LegalizeOp(Node->getOperand(1)); // Hi 3521 switch (TLI.getOperationAction(ISD::BUILD_PAIR, PairTy)) { 3522 case TargetLowering::Promote: 3523 case TargetLowering::Custom: 3524 assert(0 && "Cannot promote/custom this yet!"); 3525 case TargetLowering::Legal: 3526 if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1)) 3527 Result = DAG.getNode(ISD::BUILD_PAIR, dl, PairTy, Tmp1, Tmp2); 3528 break; 3529 case TargetLowering::Expand: 3530 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Tmp1); 3531 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Tmp2); 3532 Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2, 3533 DAG.getConstant(PairTy.getSizeInBits()/2, 3534 TLI.getShiftAmountTy())); 3535 Result = DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2); 3536 break; 3537 } 3538 break; 3539 } 3540 3541 case ISD::UREM: 3542 case ISD::SREM: 3543 case ISD::FREM: 3544 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3545 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 3546 3547 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3548 case TargetLowering::Promote: assert(0 && "Cannot promote this yet!"); 3549 case TargetLowering::Custom: 3550 isCustom = true; 3551 // FALLTHROUGH 3552 case TargetLowering::Legal: 3553 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3554 if (isCustom) { 3555 Tmp1 = TLI.LowerOperation(Result, DAG); 3556 if (Tmp1.getNode()) Result = Tmp1; 3557 } 3558 break; 3559 case TargetLowering::Expand: { 3560 unsigned DivOpc= (Node->getOpcode() == ISD::UREM) ? ISD::UDIV : ISD::SDIV; 3561 bool isSigned = DivOpc == ISD::SDIV; 3562 MVT VT = Node->getValueType(0); 3563 3564 // See if remainder can be lowered using two-result operations. 3565 SDVTList VTs = DAG.getVTList(VT, VT); 3566 if (Node->getOpcode() == ISD::SREM && 3567 TLI.isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 3568 Result = SDValue(DAG.getNode(ISD::SDIVREM, dl, 3569 VTs, Tmp1, Tmp2).getNode(), 1); 3570 break; 3571 } 3572 if (Node->getOpcode() == ISD::UREM && 3573 TLI.isOperationLegalOrCustom(ISD::UDIVREM, VT)) { 3574 Result = SDValue(DAG.getNode(ISD::UDIVREM, dl, 3575 VTs, Tmp1, Tmp2).getNode(), 1); 3576 break; 3577 } 3578 3579 if (VT.isInteger()) { 3580 if (TLI.getOperationAction(DivOpc, VT) == 3581 TargetLowering::Legal) { 3582 // X % Y -> X-X/Y*Y 3583 Result = DAG.getNode(DivOpc, dl, VT, Tmp1, Tmp2); 3584 Result = DAG.getNode(ISD::MUL, dl, VT, Result, Tmp2); 3585 Result = DAG.getNode(ISD::SUB, dl, VT, Tmp1, Result); 3586 } else if (VT.isVector()) { 3587 Result = LegalizeOp(UnrollVectorOp(Op)); 3588 } else { 3589 assert(VT == MVT::i32 && 3590 "Cannot expand this binary operator!"); 3591 RTLIB::Libcall LC = Node->getOpcode() == ISD::UREM 3592 ? RTLIB::UREM_I32 : RTLIB::SREM_I32; 3593 SDValue Dummy; 3594 Result = ExpandLibCall(LC, Node, isSigned, Dummy); 3595 } 3596 } else { 3597 assert(VT.isFloatingPoint() && 3598 "remainder op must have integer or floating-point type"); 3599 if (VT.isVector()) { 3600 Result = LegalizeOp(UnrollVectorOp(Op)); 3601 } else { 3602 // Floating point mod -> fmod libcall. 3603 RTLIB::Libcall LC = GetFPLibCall(VT, RTLIB::REM_F32, RTLIB::REM_F64, 3604 RTLIB::REM_F80, RTLIB::REM_PPCF128); 3605 SDValue Dummy; 3606 Result = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Dummy); 3607 } 3608 } 3609 break; 3610 } 3611 } 3612 break; 3613 case ISD::VAARG: { 3614 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3615 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 3616 3617 MVT VT = Node->getValueType(0); 3618 switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) { 3619 default: assert(0 && "This action is not supported yet!"); 3620 case TargetLowering::Custom: 3621 isCustom = true; 3622 // FALLTHROUGH 3623 case TargetLowering::Legal: 3624 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 3625 Result = Result.getValue(0); 3626 Tmp1 = Result.getValue(1); 3627 3628 if (isCustom) { 3629 Tmp2 = TLI.LowerOperation(Result, DAG); 3630 if (Tmp2.getNode()) { 3631 Result = LegalizeOp(Tmp2); 3632 Tmp1 = LegalizeOp(Tmp2.getValue(1)); 3633 } 3634 } 3635 break; 3636 case TargetLowering::Expand: { 3637 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3638 SDValue VAList = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0); 3639 // Increment the pointer, VAList, to the next vaarg 3640 Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList, 3641 DAG.getConstant(TLI.getTargetData()-> 3642 getTypePaddedSize(VT.getTypeForMVT()), 3643 TLI.getPointerTy())); 3644 // Store the incremented VAList to the legalized pointer 3645 Tmp3 = DAG.getStore(VAList.getValue(1), dl, Tmp3, Tmp2, V, 0); 3646 // Load the actual argument out of the pointer VAList 3647 Result = DAG.getLoad(VT, dl, Tmp3, VAList, NULL, 0); 3648 Tmp1 = LegalizeOp(Result.getValue(1)); 3649 Result = LegalizeOp(Result); 3650 break; 3651 } 3652 } 3653 // Since VAARG produces two values, make sure to remember that we 3654 // legalized both of them. 3655 AddLegalizedOperand(SDValue(Node, 0), Result); 3656 AddLegalizedOperand(SDValue(Node, 1), Tmp1); 3657 return Op.getResNo() ? Tmp1 : Result; 3658 } 3659 3660 case ISD::VACOPY: 3661 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3662 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the dest pointer. 3663 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the source pointer. 3664 3665 switch (TLI.getOperationAction(ISD::VACOPY, MVT::Other)) { 3666 default: assert(0 && "This action is not supported yet!"); 3667 case TargetLowering::Custom: 3668 isCustom = true; 3669 // FALLTHROUGH 3670 case TargetLowering::Legal: 3671 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, 3672 Node->getOperand(3), Node->getOperand(4)); 3673 if (isCustom) { 3674 Tmp1 = TLI.LowerOperation(Result, DAG); 3675 if (Tmp1.getNode()) Result = Tmp1; 3676 } 3677 break; 3678 case TargetLowering::Expand: 3679 // This defaults to loading a pointer from the input and storing it to the 3680 // output, returning the chain. 3681 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 3682 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 3683 Tmp4 = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp3, VS, 0); 3684 Result = DAG.getStore(Tmp4.getValue(1), dl, Tmp4, Tmp2, VD, 0); 3685 break; 3686 } 3687 break; 3688 3689 case ISD::VAEND: 3690 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3691 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 3692 3693 switch (TLI.getOperationAction(ISD::VAEND, MVT::Other)) { 3694 default: assert(0 && "This action is not supported yet!"); 3695 case TargetLowering::Custom: 3696 isCustom = true; 3697 // FALLTHROUGH 3698 case TargetLowering::Legal: 3699 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 3700 if (isCustom) { 3701 Tmp1 = TLI.LowerOperation(Tmp1, DAG); 3702 if (Tmp1.getNode()) Result = Tmp1; 3703 } 3704 break; 3705 case TargetLowering::Expand: 3706 Result = Tmp1; // Default to a no-op, return the chain 3707 break; 3708 } 3709 break; 3710 3711 case ISD::VASTART: 3712 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3713 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 3714 3715 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 3716 3717 switch (TLI.getOperationAction(ISD::VASTART, MVT::Other)) { 3718 default: assert(0 && "This action is not supported yet!"); 3719 case TargetLowering::Legal: break; 3720 case TargetLowering::Custom: 3721 Tmp1 = TLI.LowerOperation(Result, DAG); 3722 if (Tmp1.getNode()) Result = Tmp1; 3723 break; 3724 } 3725 break; 3726 3727 case ISD::ROTL: 3728 case ISD::ROTR: 3729 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3730 Tmp2 = LegalizeOp(DAG.getShiftAmountOperand(Node->getOperand(1))); // RHS 3731 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3732 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3733 default: 3734 assert(0 && "ROTL/ROTR legalize operation not supported"); 3735 break; 3736 case TargetLowering::Legal: 3737 break; 3738 case TargetLowering::Custom: 3739 Tmp1 = TLI.LowerOperation(Result, DAG); 3740 if (Tmp1.getNode()) Result = Tmp1; 3741 break; 3742 case TargetLowering::Promote: 3743 assert(0 && "Do not know how to promote ROTL/ROTR"); 3744 break; 3745 case TargetLowering::Expand: 3746 assert(0 && "Do not know how to expand ROTL/ROTR"); 3747 break; 3748 } 3749 break; 3750 3751 case ISD::BSWAP: 3752 Tmp1 = LegalizeOp(Node->getOperand(0)); // Op 3753 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3754 case TargetLowering::Custom: 3755 assert(0 && "Cannot custom legalize this yet!"); 3756 case TargetLowering::Legal: 3757 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3758 break; 3759 case TargetLowering::Promote: { 3760 MVT OVT = Tmp1.getValueType(); 3761 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3762 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 3763 3764 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Tmp1); 3765 Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1); 3766 Result = DAG.getNode(ISD::SRL, dl, NVT, Tmp1, 3767 DAG.getConstant(DiffBits, TLI.getShiftAmountTy())); 3768 break; 3769 } 3770 case TargetLowering::Expand: 3771 Result = ExpandBSWAP(Tmp1, dl); 3772 break; 3773 } 3774 break; 3775 3776 case ISD::CTPOP: 3777 case ISD::CTTZ: 3778 case ISD::CTLZ: 3779 Tmp1 = LegalizeOp(Node->getOperand(0)); // Op 3780 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3781 case TargetLowering::Custom: 3782 case TargetLowering::Legal: 3783 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3784 if (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)) == 3785 TargetLowering::Custom) { 3786 Tmp1 = TLI.LowerOperation(Result, DAG); 3787 if (Tmp1.getNode()) { 3788 Result = Tmp1; 3789 } 3790 } 3791 break; 3792 case TargetLowering::Promote: { 3793 MVT OVT = Tmp1.getValueType(); 3794 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3795 3796 // Zero extend the argument. 3797 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Tmp1); 3798 // Perform the larger operation, then subtract if needed. 3799 Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Tmp1); 3800 switch (Node->getOpcode()) { 3801 case ISD::CTPOP: 3802 Result = Tmp1; 3803 break; 3804 case ISD::CTTZ: 3805 //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) 3806 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()), 3807 Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT), 3808 ISD::SETEQ); 3809 Result = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, 3810 DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1); 3811 break; 3812 case ISD::CTLZ: 3813 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 3814 Result = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 3815 DAG.getConstant(NVT.getSizeInBits() - 3816 OVT.getSizeInBits(), NVT)); 3817 break; 3818 } 3819 break; 3820 } 3821 case TargetLowering::Expand: 3822 Result = ExpandBitCount(Node->getOpcode(), Tmp1, dl); 3823 break; 3824 } 3825 break; 3826 3827 // Unary operators 3828 case ISD::FABS: 3829 case ISD::FNEG: 3830 case ISD::FSQRT: 3831 case ISD::FSIN: 3832 case ISD::FCOS: 3833 case ISD::FLOG: 3834 case ISD::FLOG2: 3835 case ISD::FLOG10: 3836 case ISD::FEXP: 3837 case ISD::FEXP2: 3838 case ISD::FTRUNC: 3839 case ISD::FFLOOR: 3840 case ISD::FCEIL: 3841 case ISD::FRINT: 3842 case ISD::FNEARBYINT: 3843 Tmp1 = LegalizeOp(Node->getOperand(0)); 3844 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3845 case TargetLowering::Promote: 3846 case TargetLowering::Custom: 3847 isCustom = true; 3848 // FALLTHROUGH 3849 case TargetLowering::Legal: 3850 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3851 if (isCustom) { 3852 Tmp1 = TLI.LowerOperation(Result, DAG); 3853 if (Tmp1.getNode()) Result = Tmp1; 3854 } 3855 break; 3856 case TargetLowering::Expand: 3857 switch (Node->getOpcode()) { 3858 default: assert(0 && "Unreachable!"); 3859 case ISD::FNEG: 3860 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 3861 Tmp2 = DAG.getConstantFP(-0.0, Node->getValueType(0)); 3862 Result = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp2, Tmp1); 3863 break; 3864 case ISD::FABS: { 3865 // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X). 3866 MVT VT = Node->getValueType(0); 3867 Tmp2 = DAG.getConstantFP(0.0, VT); 3868 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()), 3869 Tmp1, Tmp2, ISD::SETUGT); 3870 Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1); 3871 Result = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3); 3872 break; 3873 } 3874 case ISD::FSQRT: 3875 case ISD::FSIN: 3876 case ISD::FCOS: 3877 case ISD::FLOG: 3878 case ISD::FLOG2: 3879 case ISD::FLOG10: 3880 case ISD::FEXP: 3881 case ISD::FEXP2: 3882 case ISD::FTRUNC: 3883 case ISD::FFLOOR: 3884 case ISD::FCEIL: 3885 case ISD::FRINT: 3886 case ISD::FNEARBYINT: { 3887 MVT VT = Node->getValueType(0); 3888 3889 // Expand unsupported unary vector operators by unrolling them. 3890 if (VT.isVector()) { 3891 Result = LegalizeOp(UnrollVectorOp(Op)); 3892 break; 3893 } 3894 3895 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3896 switch(Node->getOpcode()) { 3897 case ISD::FSQRT: 3898 LC = GetFPLibCall(VT, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 3899 RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128); 3900 break; 3901 case ISD::FSIN: 3902 LC = GetFPLibCall(VT, RTLIB::SIN_F32, RTLIB::SIN_F64, 3903 RTLIB::SIN_F80, RTLIB::SIN_PPCF128); 3904 break; 3905 case ISD::FCOS: 3906 LC = GetFPLibCall(VT, RTLIB::COS_F32, RTLIB::COS_F64, 3907 RTLIB::COS_F80, RTLIB::COS_PPCF128); 3908 break; 3909 case ISD::FLOG: 3910 LC = GetFPLibCall(VT, RTLIB::LOG_F32, RTLIB::LOG_F64, 3911 RTLIB::LOG_F80, RTLIB::LOG_PPCF128); 3912 break; 3913 case ISD::FLOG2: 3914 LC = GetFPLibCall(VT, RTLIB::LOG2_F32, RTLIB::LOG2_F64, 3915 RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128); 3916 break; 3917 case ISD::FLOG10: 3918 LC = GetFPLibCall(VT, RTLIB::LOG10_F32, RTLIB::LOG10_F64, 3919 RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128); 3920 break; 3921 case ISD::FEXP: 3922 LC = GetFPLibCall(VT, RTLIB::EXP_F32, RTLIB::EXP_F64, 3923 RTLIB::EXP_F80, RTLIB::EXP_PPCF128); 3924 break; 3925 case ISD::FEXP2: 3926 LC = GetFPLibCall(VT, RTLIB::EXP2_F32, RTLIB::EXP2_F64, 3927 RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128); 3928 break; 3929 case ISD::FTRUNC: 3930 LC = GetFPLibCall(VT, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 3931 RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128); 3932 break; 3933 case ISD::FFLOOR: 3934 LC = GetFPLibCall(VT, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 3935 RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128); 3936 break; 3937 case ISD::FCEIL: 3938 LC = GetFPLibCall(VT, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 3939 RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128); 3940 break; 3941 case ISD::FRINT: 3942 LC = GetFPLibCall(VT, RTLIB::RINT_F32, RTLIB::RINT_F64, 3943 RTLIB::RINT_F80, RTLIB::RINT_PPCF128); 3944 break; 3945 case ISD::FNEARBYINT: 3946 LC = GetFPLibCall(VT, RTLIB::NEARBYINT_F32, RTLIB::NEARBYINT_F64, 3947 RTLIB::NEARBYINT_F80, RTLIB::NEARBYINT_PPCF128); 3948 break; 3949 break; 3950 default: assert(0 && "Unreachable!"); 3951 } 3952 SDValue Dummy; 3953 Result = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Dummy); 3954 break; 3955 } 3956 } 3957 break; 3958 } 3959 break; 3960 case ISD::FPOWI: { 3961 MVT VT = Node->getValueType(0); 3962 3963 // Expand unsupported unary vector operators by unrolling them. 3964 if (VT.isVector()) { 3965 Result = LegalizeOp(UnrollVectorOp(Op)); 3966 break; 3967 } 3968 3969 // We always lower FPOWI into a libcall. No target support for it yet. 3970 RTLIB::Libcall LC = GetFPLibCall(VT, RTLIB::POWI_F32, RTLIB::POWI_F64, 3971 RTLIB::POWI_F80, RTLIB::POWI_PPCF128); 3972 SDValue Dummy; 3973 Result = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Dummy); 3974 break; 3975 } 3976 case ISD::BIT_CONVERT: 3977 if (!isTypeLegal(Node->getOperand(0).getValueType())) { 3978 Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 3979 Node->getValueType(0), dl); 3980 } else if (Op.getOperand(0).getValueType().isVector()) { 3981 // The input has to be a vector type, we have to either scalarize it, pack 3982 // it, or convert it based on whether the input vector type is legal. 3983 SDNode *InVal = Node->getOperand(0).getNode(); 3984 int InIx = Node->getOperand(0).getResNo(); 3985 unsigned NumElems = InVal->getValueType(InIx).getVectorNumElements(); 3986 MVT EVT = InVal->getValueType(InIx).getVectorElementType(); 3987 3988 // Figure out if there is a simple type corresponding to this Vector 3989 // type. If so, convert to the vector type. 3990 MVT TVT = MVT::getVectorVT(EVT, NumElems); 3991 if (TLI.isTypeLegal(TVT)) { 3992 // Turn this into a bit convert of the vector input. 3993 Result = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0), 3994 LegalizeOp(Node->getOperand(0))); 3995 break; 3996 } else if (NumElems == 1) { 3997 // Turn this into a bit convert of the scalar input. 3998 Result = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0), 3999 ScalarizeVectorOp(Node->getOperand(0))); 4000 break; 4001 } else { 4002 // FIXME: UNIMP! Store then reload 4003 assert(0 && "Cast from unsupported vector type not implemented yet!"); 4004 } 4005 } else { 4006 switch (TLI.getOperationAction(ISD::BIT_CONVERT, 4007 Node->getOperand(0).getValueType())) { 4008 default: assert(0 && "Unknown operation action!"); 4009 case TargetLowering::Expand: 4010 Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 4011 Node->getValueType(0), dl); 4012 break; 4013 case TargetLowering::Legal: 4014 Tmp1 = LegalizeOp(Node->getOperand(0)); 4015 Result = DAG.UpdateNodeOperands(Result, Tmp1); 4016 break; 4017 } 4018 } 4019 break; 4020 case ISD::CONVERT_RNDSAT: { 4021 ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(Node)->getCvtCode(); 4022 switch (CvtCode) { 4023 default: assert(0 && "Unknown cvt code!"); 4024 case ISD::CVT_SF: 4025 case ISD::CVT_UF: 4026 case ISD::CVT_FF: 4027 break; 4028 case ISD::CVT_FS: 4029 case ISD::CVT_FU: 4030 case ISD::CVT_SS: 4031 case ISD::CVT_SU: 4032 case ISD::CVT_US: 4033 case ISD::CVT_UU: { 4034 SDValue DTyOp = Node->getOperand(1); 4035 SDValue STyOp = Node->getOperand(2); 4036 SDValue RndOp = Node->getOperand(3); 4037 SDValue SatOp = Node->getOperand(4); 4038 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4039 case Expand: assert(0 && "Shouldn't need to expand other operators here!"); 4040 case Legal: 4041 Tmp1 = LegalizeOp(Node->getOperand(0)); 4042 Result = DAG.UpdateNodeOperands(Result, Tmp1, DTyOp, STyOp, 4043 RndOp, SatOp); 4044 if (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)) == 4045 TargetLowering::Custom) { 4046 Tmp1 = TLI.LowerOperation(Result, DAG); 4047 if (Tmp1.getNode()) Result = Tmp1; 4048 } 4049 break; 4050 case Promote: 4051 Result = PromoteOp(Node->getOperand(0)); 4052 // For FP, make Op1 a i32 4053 4054 Result = DAG.getConvertRndSat(Op.getValueType(), dl, Result, 4055 DTyOp, STyOp, RndOp, SatOp, CvtCode); 4056 break; 4057 } 4058 break; 4059 } 4060 } // end switch CvtCode 4061 break; 4062 } 4063 // Conversion operators. The source and destination have different types. 4064 case ISD::SINT_TO_FP: 4065 case ISD::UINT_TO_FP: { 4066 bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP; 4067 Result = LegalizeINT_TO_FP(Result, isSigned, 4068 Node->getValueType(0), Node->getOperand(0), dl); 4069 break; 4070 } 4071 case ISD::TRUNCATE: 4072 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4073 case Legal: 4074 Tmp1 = LegalizeOp(Node->getOperand(0)); 4075 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 4076 default: assert(0 && "Unknown TRUNCATE legalization operation action!"); 4077 case TargetLowering::Custom: 4078 isCustom = true; 4079 // FALLTHROUGH 4080 case TargetLowering::Legal: 4081 Result = DAG.UpdateNodeOperands(Result, Tmp1); 4082 if (isCustom) { 4083 Tmp1 = TLI.LowerOperation(Result, DAG); 4084 if (Tmp1.getNode()) Result = Tmp1; 4085 } 4086 break; 4087 case TargetLowering::Expand: 4088 assert(Result.getValueType().isVector() && "must be vector type"); 4089 // Unroll the truncate. We should do better. 4090 Result = LegalizeOp(UnrollVectorOp(Result)); 4091 } 4092 break; 4093 case Expand: 4094 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 4095 4096 // Since the result is legal, we should just be able to truncate the low 4097 // part of the source. 4098 Result = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 4099 break; 4100 case Promote: 4101 Result = PromoteOp(Node->getOperand(0)); 4102 Result = DAG.getNode(ISD::TRUNCATE, dl, Op.getValueType(), Result); 4103 break; 4104 } 4105 break; 4106 4107 case ISD::FP_TO_SINT: 4108 case ISD::FP_TO_UINT: 4109 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4110 case Legal: 4111 Tmp1 = LegalizeOp(Node->getOperand(0)); 4112 4113 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))){ 4114 default: assert(0 && "Unknown operation action!"); 4115 case TargetLowering::Custom: 4116 isCustom = true; 4117 // FALLTHROUGH 4118 case TargetLowering::Legal: 4119 Result = DAG.UpdateNodeOperands(Result, Tmp1); 4120 if (isCustom) { 4121 Tmp1 = TLI.LowerOperation(Result, DAG); 4122 if (Tmp1.getNode()) Result = Tmp1; 4123 } 4124 break; 4125 case TargetLowering::Promote: 4126 Result = PromoteLegalFP_TO_INT(Tmp1, Node->getValueType(0), 4127 Node->getOpcode() == ISD::FP_TO_SINT, 4128 dl); 4129 break; 4130 case TargetLowering::Expand: 4131 if (Node->getOpcode() == ISD::FP_TO_UINT) { 4132 SDValue True, False; 4133 MVT VT = Node->getOperand(0).getValueType(); 4134 MVT NVT = Node->getValueType(0); 4135 const uint64_t zero[] = {0, 0}; 4136 APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero)); 4137 APInt x = APInt::getSignBit(NVT.getSizeInBits()); 4138 (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven); 4139 Tmp2 = DAG.getConstantFP(apf, VT); 4140 Tmp3 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), 4141 Node->getOperand(0), 4142 Tmp2, ISD::SETLT); 4143 True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0)); 4144 False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, 4145 DAG.getNode(ISD::FSUB, dl, VT, 4146 Node->getOperand(0), Tmp2)); 4147 False = DAG.getNode(ISD::XOR, dl, NVT, False, 4148 DAG.getConstant(x, NVT)); 4149 Result = DAG.getNode(ISD::SELECT, dl, NVT, Tmp3, True, False); 4150 break; 4151 } else { 4152 assert(0 && "Do not know how to expand FP_TO_SINT yet!"); 4153 } 4154 break; 4155 } 4156 break; 4157 case Expand: { 4158 MVT VT = Op.getValueType(); 4159 MVT OVT = Node->getOperand(0).getValueType(); 4160 // Convert ppcf128 to i32 4161 if (OVT == MVT::ppcf128 && VT == MVT::i32) { 4162 if (Node->getOpcode() == ISD::FP_TO_SINT) { 4163 Result = DAG.getNode(ISD::FP_ROUND_INREG, dl, MVT::ppcf128, 4164 Node->getOperand(0), DAG.getValueType(MVT::f64)); 4165 Result = DAG.getNode(ISD::FP_ROUND, dl, MVT::f64, Result, 4166 DAG.getIntPtrConstant(1)); 4167 Result = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Result); 4168 } else { 4169 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 4170 APFloat apf = APFloat(APInt(128, 2, TwoE31)); 4171 Tmp2 = DAG.getConstantFP(apf, OVT); 4172 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 4173 // FIXME: generated code sucks. 4174 Result = DAG.getNode(ISD::SELECT_CC, dl, VT, Node->getOperand(0), 4175 Tmp2, 4176 DAG.getNode(ISD::ADD, dl, MVT::i32, 4177 DAG.getNode(ISD::FP_TO_SINT, dl, VT, 4178 DAG.getNode(ISD::FSUB, dl, OVT, 4179 Node->getOperand(0), Tmp2)), 4180 DAG.getConstant(0x80000000, MVT::i32)), 4181 DAG.getNode(ISD::FP_TO_SINT, dl, VT, 4182 Node->getOperand(0)), 4183 DAG.getCondCode(ISD::SETGE)); 4184 } 4185 break; 4186 } 4187 // Convert f32 / f64 to i32 / i64 / i128. 4188 RTLIB::Libcall LC = (Node->getOpcode() == ISD::FP_TO_SINT) ? 4189 RTLIB::getFPTOSINT(OVT, VT) : RTLIB::getFPTOUINT(OVT, VT); 4190 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpectd fp-to-int conversion!"); 4191 SDValue Dummy; 4192 Result = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Dummy); 4193 break; 4194 } 4195 case Promote: 4196 Tmp1 = PromoteOp(Node->getOperand(0)); 4197 Result = DAG.UpdateNodeOperands(Result, LegalizeOp(Tmp1)); 4198 Result = LegalizeOp(Result); 4199 break; 4200 } 4201 break; 4202 4203 case ISD::FP_EXTEND: { 4204 MVT DstVT = Op.getValueType(); 4205 MVT SrcVT = Op.getOperand(0).getValueType(); 4206 if (TLI.getConvertAction(SrcVT, DstVT) == TargetLowering::Expand) { 4207 // The only other way we can lower this is to turn it into a STORE, 4208 // LOAD pair, targetting a temporary location (a stack slot). 4209 Result = EmitStackConvert(Node->getOperand(0), SrcVT, DstVT, dl); 4210 break; 4211 } 4212 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4213 case Expand: assert(0 && "Shouldn't need to expand other operators here!"); 4214 case Legal: 4215 Tmp1 = LegalizeOp(Node->getOperand(0)); 4216 Result = DAG.UpdateNodeOperands(Result, Tmp1); 4217 break; 4218 case Promote: 4219 Tmp1 = PromoteOp(Node->getOperand(0)); 4220 Result = DAG.getNode(ISD::FP_EXTEND, dl, Op.getValueType(), Tmp1); 4221 break; 4222 } 4223 break; 4224 } 4225 case ISD::FP_ROUND: { 4226 MVT DstVT = Op.getValueType(); 4227 MVT SrcVT = Op.getOperand(0).getValueType(); 4228 if (TLI.getConvertAction(SrcVT, DstVT) == TargetLowering::Expand) { 4229 if (SrcVT == MVT::ppcf128) { 4230 SDValue Lo; 4231 ExpandOp(Node->getOperand(0), Lo, Result); 4232 // Round it the rest of the way (e.g. to f32) if needed. 4233 if (DstVT!=MVT::f64) 4234 Result = DAG.getNode(ISD::FP_ROUND, dl, 4235 DstVT, Result, Op.getOperand(1)); 4236 break; 4237 } 4238 // The only other way we can lower this is to turn it into a STORE, 4239 // LOAD pair, targetting a temporary location (a stack slot). 4240 Result = EmitStackConvert(Node->getOperand(0), DstVT, DstVT, dl); 4241 break; 4242 } 4243 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4244 case Expand: assert(0 && "Shouldn't need to expand other operators here!"); 4245 case Legal: 4246 Tmp1 = LegalizeOp(Node->getOperand(0)); 4247 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 4248 break; 4249 case Promote: 4250 Tmp1 = PromoteOp(Node->getOperand(0)); 4251 Result = DAG.getNode(ISD::FP_ROUND, dl, Op.getValueType(), Tmp1, 4252 Node->getOperand(1)); 4253 break; 4254 } 4255 break; 4256 } 4257 case ISD::ANY_EXTEND: 4258 case ISD::ZERO_EXTEND: 4259 case ISD::SIGN_EXTEND: 4260 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4261 case Expand: assert(0 && "Shouldn't need to expand other operators here!"); 4262 case Legal: 4263 Tmp1 = LegalizeOp(Node->getOperand(0)); 4264 Result = DAG.UpdateNodeOperands(Result, Tmp1); 4265 if (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)) == 4266 TargetLowering::Custom) { 4267 Tmp1 = TLI.LowerOperation(Result, DAG); 4268 if (Tmp1.getNode()) Result = Tmp1; 4269 } 4270 break; 4271 case Promote: 4272 switch (Node->getOpcode()) { 4273 case ISD::ANY_EXTEND: 4274 Tmp1 = PromoteOp(Node->getOperand(0)); 4275 Result = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), Tmp1); 4276 break; 4277 case ISD::ZERO_EXTEND: 4278 Result = PromoteOp(Node->getOperand(0)); 4279 Result = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), Result); 4280 Result = DAG.getZeroExtendInReg(Result, dl, 4281 Node->getOperand(0).getValueType()); 4282 break; 4283 case ISD::SIGN_EXTEND: 4284 Result = PromoteOp(Node->getOperand(0)); 4285 Result = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), Result); 4286 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Result.getValueType(), 4287 Result, 4288 DAG.getValueType(Node->getOperand(0).getValueType())); 4289 break; 4290 } 4291 } 4292 break; 4293 case ISD::FP_ROUND_INREG: 4294 case ISD::SIGN_EXTEND_INREG: { 4295 Tmp1 = LegalizeOp(Node->getOperand(0)); 4296 MVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 4297 4298 // If this operation is not supported, convert it to a shl/shr or load/store 4299 // pair. 4300 switch (TLI.getOperationAction(Node->getOpcode(), ExtraVT)) { 4301 default: assert(0 && "This action not supported for this op yet!"); 4302 case TargetLowering::Legal: 4303 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 4304 break; 4305 case TargetLowering::Expand: 4306 // If this is an integer extend and shifts are supported, do that. 4307 if (Node->getOpcode() == ISD::SIGN_EXTEND_INREG) { 4308 // NOTE: we could fall back on load/store here too for targets without 4309 // SAR. However, it is doubtful that any exist. 4310 unsigned BitsDiff = Node->getValueType(0).getSizeInBits() - 4311 ExtraVT.getSizeInBits(); 4312 SDValue ShiftCst = DAG.getConstant(BitsDiff, TLI.getShiftAmountTy()); 4313 Result = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 4314 Node->getOperand(0), ShiftCst); 4315 Result = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), 4316 Result, ShiftCst); 4317 } else if (Node->getOpcode() == ISD::FP_ROUND_INREG) { 4318 // The only way we can lower this is to turn it into a TRUNCSTORE, 4319 // EXTLOAD pair, targetting a temporary location (a stack slot). 4320 4321 // NOTE: there is a choice here between constantly creating new stack 4322 // slots and always reusing the same one. We currently always create 4323 // new ones, as reuse may inhibit scheduling. 4324 Result = EmitStackConvert(Node->getOperand(0), ExtraVT, 4325 Node->getValueType(0), dl); 4326 } else { 4327 assert(0 && "Unknown op"); 4328 } 4329 break; 4330 } 4331 break; 4332 } 4333 case ISD::TRAMPOLINE: { 4334 SDValue Ops[6]; 4335 for (unsigned i = 0; i != 6; ++i) 4336 Ops[i] = LegalizeOp(Node->getOperand(i)); 4337 Result = DAG.UpdateNodeOperands(Result, Ops, 6); 4338 // The only option for this node is to custom lower it. 4339 Result = TLI.LowerOperation(Result, DAG); 4340 assert(Result.getNode() && "Should always custom lower!"); 4341 4342 // Since trampoline produces two values, make sure to remember that we 4343 // legalized both of them. 4344 Tmp1 = LegalizeOp(Result.getValue(1)); 4345 Result = LegalizeOp(Result); 4346 AddLegalizedOperand(SDValue(Node, 0), Result); 4347 AddLegalizedOperand(SDValue(Node, 1), Tmp1); 4348 return Op.getResNo() ? Tmp1 : Result; 4349 } 4350 case ISD::FLT_ROUNDS_: { 4351 MVT VT = Node->getValueType(0); 4352 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 4353 default: assert(0 && "This action not supported for this op yet!"); 4354 case TargetLowering::Custom: 4355 Result = TLI.LowerOperation(Op, DAG); 4356 if (Result.getNode()) break; 4357 // Fall Thru 4358 case TargetLowering::Legal: 4359 // If this operation is not supported, lower it to constant 1 4360 Result = DAG.getConstant(1, VT); 4361 break; 4362 } 4363 break; 4364 } 4365 case ISD::TRAP: { 4366 MVT VT = Node->getValueType(0); 4367 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 4368 default: assert(0 && "This action not supported for this op yet!"); 4369 case TargetLowering::Legal: 4370 Tmp1 = LegalizeOp(Node->getOperand(0)); 4371 Result = DAG.UpdateNodeOperands(Result, Tmp1); 4372 break; 4373 case TargetLowering::Custom: 4374 Result = TLI.LowerOperation(Op, DAG); 4375 if (Result.getNode()) break; 4376 // Fall Thru 4377 case TargetLowering::Expand: 4378 // If this operation is not supported, lower it to 'abort()' call 4379 Tmp1 = LegalizeOp(Node->getOperand(0)); 4380 TargetLowering::ArgListTy Args; 4381 std::pair<SDValue,SDValue> CallResult = 4382 TLI.LowerCallTo(Tmp1, Type::VoidTy, 4383 false, false, false, false, CallingConv::C, false, 4384 DAG.getExternalSymbol("abort", TLI.getPointerTy()), 4385 Args, DAG, dl); 4386 Result = CallResult.second; 4387 break; 4388 } 4389 break; 4390 } 4391 4392 case ISD::SADDO: 4393 case ISD::SSUBO: { 4394 MVT VT = Node->getValueType(0); 4395 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 4396 default: assert(0 && "This action not supported for this op yet!"); 4397 case TargetLowering::Custom: 4398 Result = TLI.LowerOperation(Op, DAG); 4399 if (Result.getNode()) break; 4400 // FALLTHROUGH 4401 case TargetLowering::Legal: { 4402 SDValue LHS = LegalizeOp(Node->getOperand(0)); 4403 SDValue RHS = LegalizeOp(Node->getOperand(1)); 4404 4405 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ? 4406 ISD::ADD : ISD::SUB, dl, LHS.getValueType(), 4407 LHS, RHS); 4408 MVT OType = Node->getValueType(1); 4409 4410 SDValue Zero = DAG.getConstant(0, LHS.getValueType()); 4411 4412 // LHSSign -> LHS >= 0 4413 // RHSSign -> RHS >= 0 4414 // SumSign -> Sum >= 0 4415 // 4416 // Add: 4417 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) 4418 // Sub: 4419 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) 4420 // 4421 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE); 4422 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE); 4423 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign, 4424 Node->getOpcode() == ISD::SADDO ? 4425 ISD::SETEQ : ISD::SETNE); 4426 4427 SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE); 4428 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE); 4429 4430 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE); 4431 4432 MVT ValueVTs[] = { LHS.getValueType(), OType }; 4433 SDValue Ops[] = { Sum, Cmp }; 4434 4435 Result = DAG.getNode(ISD::MERGE_VALUES, dl, 4436 DAG.getVTList(&ValueVTs[0], 2), 4437 &Ops[0], 2); 4438 SDNode *RNode = Result.getNode(); 4439 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), SDValue(RNode, 0)); 4440 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(RNode, 1)); 4441 break; 4442 } 4443 } 4444 4445 break; 4446 } 4447 case ISD::UADDO: 4448 case ISD::USUBO: { 4449 MVT VT = Node->getValueType(0); 4450 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 4451 default: assert(0 && "This action not supported for this op yet!"); 4452 case TargetLowering::Custom: 4453 Result = TLI.LowerOperation(Op, DAG); 4454 if (Result.getNode()) break; 4455 // FALLTHROUGH 4456 case TargetLowering::Legal: { 4457 SDValue LHS = LegalizeOp(Node->getOperand(0)); 4458 SDValue RHS = LegalizeOp(Node->getOperand(1)); 4459 4460 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ? 4461 ISD::ADD : ISD::SUB, dl, LHS.getValueType(), 4462 LHS, RHS); 4463 MVT OType = Node->getValueType(1); 4464 SDValue Cmp = DAG.getSetCC(dl, OType, Sum, LHS, 4465 Node->getOpcode () == ISD::UADDO ? 4466 ISD::SETULT : ISD::SETUGT); 4467 4468 MVT ValueVTs[] = { LHS.getValueType(), OType }; 4469 SDValue Ops[] = { Sum, Cmp }; 4470 4471 Result = DAG.getNode(ISD::MERGE_VALUES, dl, 4472 DAG.getVTList(&ValueVTs[0], 2), 4473 &Ops[0], 2); 4474 SDNode *RNode = Result.getNode(); 4475 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), SDValue(RNode, 0)); 4476 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(RNode, 1)); 4477 break; 4478 } 4479 } 4480 4481 break; 4482 } 4483 case ISD::SMULO: 4484 case ISD::UMULO: { 4485 MVT VT = Node->getValueType(0); 4486 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 4487 default: assert(0 && "This action is not supported at all!"); 4488 case TargetLowering::Custom: 4489 Result = TLI.LowerOperation(Op, DAG); 4490 if (Result.getNode()) break; 4491 // Fall Thru 4492 case TargetLowering::Legal: 4493 // FIXME: According to Hacker's Delight, this can be implemented in 4494 // target independent lowering, but it would be inefficient, since it 4495 // requires a division + a branch. 4496 assert(0 && "Target independent lowering is not supported for SMULO/UMULO!"); 4497 break; 4498 } 4499 break; 4500 } 4501 4502 } 4503 4504 assert(Result.getValueType() == Op.getValueType() && 4505 "Bad legalization!"); 4506 4507 // Make sure that the generated code is itself legal. 4508 if (Result != Op) 4509 Result = LegalizeOp(Result); 4510 4511 // Note that LegalizeOp may be reentered even from single-use nodes, which 4512 // means that we always must cache transformed nodes. 4513 AddLegalizedOperand(Op, Result); 4514 return Result; 4515} 4516 4517/// PromoteOp - Given an operation that produces a value in an invalid type, 4518/// promote it to compute the value into a larger type. The produced value will 4519/// have the correct bits for the low portion of the register, but no guarantee 4520/// is made about the top bits: it may be zero, sign-extended, or garbage. 4521SDValue SelectionDAGLegalize::PromoteOp(SDValue Op) { 4522 MVT VT = Op.getValueType(); 4523 MVT NVT = TLI.getTypeToTransformTo(VT); 4524 assert(getTypeAction(VT) == Promote && 4525 "Caller should expand or legalize operands that are not promotable!"); 4526 assert(NVT.bitsGT(VT) && NVT.isInteger() == VT.isInteger() && 4527 "Cannot promote to smaller type!"); 4528 4529 SDValue Tmp1, Tmp2, Tmp3; 4530 SDValue Result; 4531 SDNode *Node = Op.getNode(); 4532 DebugLoc dl = Node->getDebugLoc(); 4533 4534 DenseMap<SDValue, SDValue>::iterator I = PromotedNodes.find(Op); 4535 if (I != PromotedNodes.end()) return I->second; 4536 4537 switch (Node->getOpcode()) { 4538 case ISD::CopyFromReg: 4539 assert(0 && "CopyFromReg must be legal!"); 4540 default: 4541#ifndef NDEBUG 4542 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 4543#endif 4544 assert(0 && "Do not know how to promote this operator!"); 4545 abort(); 4546 case ISD::UNDEF: 4547 Result = DAG.getUNDEF(NVT); 4548 break; 4549 case ISD::Constant: 4550 if (VT != MVT::i1) 4551 Result = DAG.getNode(ISD::SIGN_EXTEND, dl, NVT, Op); 4552 else 4553 Result = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Op); 4554 assert(isa<ConstantSDNode>(Result) && "Didn't constant fold zext?"); 4555 break; 4556 case ISD::ConstantFP: 4557 Result = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op); 4558 assert(isa<ConstantFPSDNode>(Result) && "Didn't constant fold fp_extend?"); 4559 break; 4560 4561 case ISD::SETCC: { 4562 MVT VT0 = Node->getOperand(0).getValueType(); 4563 assert(isTypeLegal(TLI.getSetCCResultType(VT0)) 4564 && "SetCC type is not legal??"); 4565 Result = DAG.getNode(ISD::SETCC, dl, TLI.getSetCCResultType(VT0), 4566 Node->getOperand(0), Node->getOperand(1), 4567 Node->getOperand(2)); 4568 break; 4569 } 4570 case ISD::TRUNCATE: 4571 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4572 case Legal: 4573 Result = LegalizeOp(Node->getOperand(0)); 4574 assert(Result.getValueType().bitsGE(NVT) && 4575 "This truncation doesn't make sense!"); 4576 if (Result.getValueType().bitsGT(NVT)) // Truncate to NVT instead of VT 4577 Result = DAG.getNode(ISD::TRUNCATE, dl, NVT, Result); 4578 break; 4579 case Promote: 4580 // The truncation is not required, because we don't guarantee anything 4581 // about high bits anyway. 4582 Result = PromoteOp(Node->getOperand(0)); 4583 break; 4584 case Expand: 4585 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 4586 // Truncate the low part of the expanded value to the result type 4587 Result = DAG.getNode(ISD::TRUNCATE, dl, NVT, Tmp1); 4588 } 4589 break; 4590 case ISD::SIGN_EXTEND: 4591 case ISD::ZERO_EXTEND: 4592 case ISD::ANY_EXTEND: 4593 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4594 case Expand: assert(0 && "BUG: Smaller reg should have been promoted!"); 4595 case Legal: 4596 // Input is legal? Just do extend all the way to the larger type. 4597 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Node->getOperand(0)); 4598 break; 4599 case Promote: 4600 // Promote the reg if it's smaller. 4601 Result = PromoteOp(Node->getOperand(0)); 4602 // The high bits are not guaranteed to be anything. Insert an extend. 4603 if (Node->getOpcode() == ISD::SIGN_EXTEND) 4604 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Result, 4605 DAG.getValueType(Node->getOperand(0).getValueType())); 4606 else if (Node->getOpcode() == ISD::ZERO_EXTEND) 4607 Result = DAG.getZeroExtendInReg(Result, dl, 4608 Node->getOperand(0).getValueType()); 4609 break; 4610 } 4611 break; 4612 case ISD::CONVERT_RNDSAT: { 4613 ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(Node)->getCvtCode(); 4614 assert ((CvtCode == ISD::CVT_SS || CvtCode == ISD::CVT_SU || 4615 CvtCode == ISD::CVT_US || CvtCode == ISD::CVT_UU || 4616 CvtCode == ISD::CVT_SF || CvtCode == ISD::CVT_UF) && 4617 "can only promote integers"); 4618 Result = DAG.getConvertRndSat(NVT, dl, Node->getOperand(0), 4619 Node->getOperand(1), Node->getOperand(2), 4620 Node->getOperand(3), Node->getOperand(4), 4621 CvtCode); 4622 break; 4623 4624 } 4625 case ISD::BIT_CONVERT: 4626 Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 4627 Node->getValueType(0), dl); 4628 Result = PromoteOp(Result); 4629 break; 4630 4631 case ISD::FP_EXTEND: 4632 assert(0 && "Case not implemented. Dynamically dead with 2 FP types!"); 4633 case ISD::FP_ROUND: 4634 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4635 case Expand: assert(0 && "BUG: Cannot expand FP regs!"); 4636 case Promote: assert(0 && "Unreachable with 2 FP types!"); 4637 case Legal: 4638 if (Node->getConstantOperandVal(1) == 0) { 4639 // Input is legal? Do an FP_ROUND_INREG. 4640 Result = DAG.getNode(ISD::FP_ROUND_INREG, dl, NVT, Node->getOperand(0), 4641 DAG.getValueType(VT)); 4642 } else { 4643 // Just remove the truncate, it isn't affecting the value. 4644 Result = DAG.getNode(ISD::FP_ROUND, dl, NVT, Node->getOperand(0), 4645 Node->getOperand(1)); 4646 } 4647 break; 4648 } 4649 break; 4650 case ISD::SINT_TO_FP: 4651 case ISD::UINT_TO_FP: 4652 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4653 case Legal: 4654 // No extra round required here. 4655 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Node->getOperand(0)); 4656 break; 4657 4658 case Promote: 4659 Result = PromoteOp(Node->getOperand(0)); 4660 if (Node->getOpcode() == ISD::SINT_TO_FP) 4661 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Result.getValueType(), 4662 Result, 4663 DAG.getValueType(Node->getOperand(0).getValueType())); 4664 else 4665 Result = DAG.getZeroExtendInReg(Result, dl, 4666 Node->getOperand(0).getValueType()); 4667 // No extra round required here. 4668 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Result); 4669 break; 4670 case Expand: 4671 Result = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, NVT, 4672 Node->getOperand(0), dl); 4673 // Round if we cannot tolerate excess precision. 4674 if (NoExcessFPPrecision) 4675 Result = DAG.getNode(ISD::FP_ROUND_INREG, dl, NVT, Result, 4676 DAG.getValueType(VT)); 4677 break; 4678 } 4679 break; 4680 4681 case ISD::SIGN_EXTEND_INREG: 4682 Result = PromoteOp(Node->getOperand(0)); 4683 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Result, 4684 Node->getOperand(1)); 4685 break; 4686 case ISD::FP_TO_SINT: 4687 case ISD::FP_TO_UINT: 4688 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4689 case Legal: 4690 case Expand: 4691 Tmp1 = Node->getOperand(0); 4692 break; 4693 case Promote: 4694 // The input result is prerounded, so we don't have to do anything 4695 // special. 4696 Tmp1 = PromoteOp(Node->getOperand(0)); 4697 break; 4698 } 4699 // If we're promoting a UINT to a larger size, check to see if the new node 4700 // will be legal. If it isn't, check to see if FP_TO_SINT is legal, since 4701 // we can use that instead. This allows us to generate better code for 4702 // FP_TO_UINT for small destination sizes on targets where FP_TO_UINT is not 4703 // legal, such as PowerPC. 4704 if (Node->getOpcode() == ISD::FP_TO_UINT && 4705 !TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NVT) && 4706 (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT) || 4707 TLI.getOperationAction(ISD::FP_TO_SINT, NVT)==TargetLowering::Custom)){ 4708 Result = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Tmp1); 4709 } else { 4710 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4711 } 4712 break; 4713 4714 case ISD::FABS: 4715 case ISD::FNEG: 4716 Tmp1 = PromoteOp(Node->getOperand(0)); 4717 assert(Tmp1.getValueType() == NVT); 4718 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4719 // NOTE: we do not have to do any extra rounding here for 4720 // NoExcessFPPrecision, because we know the input will have the appropriate 4721 // precision, and these operations don't modify precision at all. 4722 break; 4723 4724 case ISD::FLOG: 4725 case ISD::FLOG2: 4726 case ISD::FLOG10: 4727 case ISD::FEXP: 4728 case ISD::FEXP2: 4729 case ISD::FSQRT: 4730 case ISD::FSIN: 4731 case ISD::FCOS: 4732 case ISD::FTRUNC: 4733 case ISD::FFLOOR: 4734 case ISD::FCEIL: 4735 case ISD::FRINT: 4736 case ISD::FNEARBYINT: 4737 Tmp1 = PromoteOp(Node->getOperand(0)); 4738 assert(Tmp1.getValueType() == NVT); 4739 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4740 if (NoExcessFPPrecision) 4741 Result = DAG.getNode(ISD::FP_ROUND_INREG, dl, NVT, Result, 4742 DAG.getValueType(VT)); 4743 break; 4744 4745 case ISD::FPOW: 4746 case ISD::FPOWI: { 4747 // Promote f32 pow(i) to f64 pow(i). Note that this could insert a libcall 4748 // directly as well, which may be better. 4749 Tmp1 = PromoteOp(Node->getOperand(0)); 4750 Tmp2 = Node->getOperand(1); 4751 if (Node->getOpcode() == ISD::FPOW) 4752 Tmp2 = PromoteOp(Tmp2); 4753 assert(Tmp1.getValueType() == NVT); 4754 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4755 if (NoExcessFPPrecision) 4756 Result = DAG.getNode(ISD::FP_ROUND_INREG, dl, NVT, Result, 4757 DAG.getValueType(VT)); 4758 break; 4759 } 4760 4761 case ISD::ATOMIC_CMP_SWAP: { 4762 AtomicSDNode* AtomNode = cast<AtomicSDNode>(Node); 4763 Tmp2 = PromoteOp(Node->getOperand(2)); 4764 Tmp3 = PromoteOp(Node->getOperand(3)); 4765 Result = DAG.getAtomic(Node->getOpcode(), dl, AtomNode->getMemoryVT(), 4766 AtomNode->getChain(), 4767 AtomNode->getBasePtr(), Tmp2, Tmp3, 4768 AtomNode->getSrcValue(), 4769 AtomNode->getAlignment()); 4770 // Remember that we legalized the chain. 4771 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 4772 break; 4773 } 4774 case ISD::ATOMIC_LOAD_ADD: 4775 case ISD::ATOMIC_LOAD_SUB: 4776 case ISD::ATOMIC_LOAD_AND: 4777 case ISD::ATOMIC_LOAD_OR: 4778 case ISD::ATOMIC_LOAD_XOR: 4779 case ISD::ATOMIC_LOAD_NAND: 4780 case ISD::ATOMIC_LOAD_MIN: 4781 case ISD::ATOMIC_LOAD_MAX: 4782 case ISD::ATOMIC_LOAD_UMIN: 4783 case ISD::ATOMIC_LOAD_UMAX: 4784 case ISD::ATOMIC_SWAP: { 4785 AtomicSDNode* AtomNode = cast<AtomicSDNode>(Node); 4786 Tmp2 = PromoteOp(Node->getOperand(2)); 4787 Result = DAG.getAtomic(Node->getOpcode(), dl, AtomNode->getMemoryVT(), 4788 AtomNode->getChain(), 4789 AtomNode->getBasePtr(), Tmp2, 4790 AtomNode->getSrcValue(), 4791 AtomNode->getAlignment()); 4792 // Remember that we legalized the chain. 4793 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 4794 break; 4795 } 4796 4797 case ISD::AND: 4798 case ISD::OR: 4799 case ISD::XOR: 4800 case ISD::ADD: 4801 case ISD::SUB: 4802 case ISD::MUL: 4803 // The input may have strange things in the top bits of the registers, but 4804 // these operations don't care. They may have weird bits going out, but 4805 // that too is okay if they are integer operations. 4806 Tmp1 = PromoteOp(Node->getOperand(0)); 4807 Tmp2 = PromoteOp(Node->getOperand(1)); 4808 assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT); 4809 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4810 break; 4811 case ISD::FADD: 4812 case ISD::FSUB: 4813 case ISD::FMUL: 4814 Tmp1 = PromoteOp(Node->getOperand(0)); 4815 Tmp2 = PromoteOp(Node->getOperand(1)); 4816 assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT); 4817 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4818 4819 // Floating point operations will give excess precision that we may not be 4820 // able to tolerate. If we DO allow excess precision, just leave it, 4821 // otherwise excise it. 4822 // FIXME: Why would we need to round FP ops more than integer ones? 4823 // Is Round(Add(Add(A,B),C)) != Round(Add(Round(Add(A,B)), C)) 4824 if (NoExcessFPPrecision) 4825 Result = DAG.getNode(ISD::FP_ROUND_INREG, dl, NVT, Result, 4826 DAG.getValueType(VT)); 4827 break; 4828 4829 case ISD::SDIV: 4830 case ISD::SREM: 4831 // These operators require that their input be sign extended. 4832 Tmp1 = PromoteOp(Node->getOperand(0)); 4833 Tmp2 = PromoteOp(Node->getOperand(1)); 4834 if (NVT.isInteger()) { 4835 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Tmp1, 4836 DAG.getValueType(VT)); 4837 Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Tmp2, 4838 DAG.getValueType(VT)); 4839 } 4840 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4841 4842 // Perform FP_ROUND: this is probably overly pessimistic. 4843 if (NVT.isFloatingPoint() && NoExcessFPPrecision) 4844 Result = DAG.getNode(ISD::FP_ROUND_INREG, dl, NVT, Result, 4845 DAG.getValueType(VT)); 4846 break; 4847 case ISD::FDIV: 4848 case ISD::FREM: 4849 case ISD::FCOPYSIGN: 4850 // These operators require that their input be fp extended. 4851 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4852 case Expand: assert(0 && "not implemented"); 4853 case Legal: Tmp1 = LegalizeOp(Node->getOperand(0)); break; 4854 case Promote: Tmp1 = PromoteOp(Node->getOperand(0)); break; 4855 } 4856 switch (getTypeAction(Node->getOperand(1).getValueType())) { 4857 case Expand: assert(0 && "not implemented"); 4858 case Legal: Tmp2 = LegalizeOp(Node->getOperand(1)); break; 4859 case Promote: Tmp2 = PromoteOp(Node->getOperand(1)); break; 4860 } 4861 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4862 4863 // Perform FP_ROUND: this is probably overly pessimistic. 4864 if (NoExcessFPPrecision && Node->getOpcode() != ISD::FCOPYSIGN) 4865 Result = DAG.getNode(ISD::FP_ROUND_INREG, dl, NVT, Result, 4866 DAG.getValueType(VT)); 4867 break; 4868 4869 case ISD::UDIV: 4870 case ISD::UREM: 4871 // These operators require that their input be zero extended. 4872 Tmp1 = PromoteOp(Node->getOperand(0)); 4873 Tmp2 = PromoteOp(Node->getOperand(1)); 4874 assert(NVT.isInteger() && "Operators don't apply to FP!"); 4875 Tmp1 = DAG.getZeroExtendInReg(Tmp1, dl, VT); 4876 Tmp2 = DAG.getZeroExtendInReg(Tmp2, dl, VT); 4877 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4878 break; 4879 4880 case ISD::SHL: 4881 Tmp1 = PromoteOp(Node->getOperand(0)); 4882 Result = DAG.getNode(ISD::SHL, dl, NVT, Tmp1, Node->getOperand(1)); 4883 break; 4884 case ISD::SRA: 4885 // The input value must be properly sign extended. 4886 Tmp1 = PromoteOp(Node->getOperand(0)); 4887 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Tmp1, 4888 DAG.getValueType(VT)); 4889 Result = DAG.getNode(ISD::SRA, dl, NVT, Tmp1, Node->getOperand(1)); 4890 break; 4891 case ISD::SRL: 4892 // The input value must be properly zero extended. 4893 Tmp1 = PromoteOp(Node->getOperand(0)); 4894 Tmp1 = DAG.getZeroExtendInReg(Tmp1, dl, VT); 4895 Result = DAG.getNode(ISD::SRL, dl, NVT, Tmp1, Node->getOperand(1)); 4896 break; 4897 4898 case ISD::VAARG: 4899 Tmp1 = Node->getOperand(0); // Get the chain. 4900 Tmp2 = Node->getOperand(1); // Get the pointer. 4901 if (TLI.getOperationAction(ISD::VAARG, VT) == TargetLowering::Custom) { 4902 Tmp3 = DAG.getVAArg(VT, dl, Tmp1, Tmp2, Node->getOperand(2)); 4903 Result = TLI.LowerOperation(Tmp3, DAG); 4904 } else { 4905 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 4906 SDValue VAList = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0); 4907 // Increment the pointer, VAList, to the next vaarg 4908 Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList, 4909 DAG.getConstant(VT.getSizeInBits()/8, 4910 TLI.getPointerTy())); 4911 // Store the incremented VAList to the legalized pointer 4912 Tmp3 = DAG.getStore(VAList.getValue(1), dl, Tmp3, Tmp2, V, 0); 4913 // Load the actual argument out of the pointer VAList 4914 Result = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Tmp3, VAList, NULL, 0, VT); 4915 } 4916 // Remember that we legalized the chain. 4917 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 4918 break; 4919 4920 case ISD::LOAD: { 4921 LoadSDNode *LD = cast<LoadSDNode>(Node); 4922 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(Node) 4923 ? ISD::EXTLOAD : LD->getExtensionType(); 4924 Result = DAG.getExtLoad(ExtType, dl, NVT, 4925 LD->getChain(), LD->getBasePtr(), 4926 LD->getSrcValue(), LD->getSrcValueOffset(), 4927 LD->getMemoryVT(), 4928 LD->isVolatile(), 4929 LD->getAlignment()); 4930 // Remember that we legalized the chain. 4931 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 4932 break; 4933 } 4934 case ISD::SELECT: { 4935 Tmp2 = PromoteOp(Node->getOperand(1)); // Legalize the op0 4936 Tmp3 = PromoteOp(Node->getOperand(2)); // Legalize the op1 4937 4938 MVT VT2 = Tmp2.getValueType(); 4939 assert(VT2 == Tmp3.getValueType() 4940 && "PromoteOp SELECT: Operands 2 and 3 ValueTypes don't match"); 4941 // Ensure that the resulting node is at least the same size as the operands' 4942 // value types, because we cannot assume that TLI.getSetCCValueType() is 4943 // constant. 4944 Result = DAG.getNode(ISD::SELECT, dl, VT2, Node->getOperand(0), Tmp2, Tmp3); 4945 break; 4946 } 4947 case ISD::SELECT_CC: 4948 Tmp2 = PromoteOp(Node->getOperand(2)); // True 4949 Tmp3 = PromoteOp(Node->getOperand(3)); // False 4950 Result = DAG.getNode(ISD::SELECT_CC, dl, NVT, Node->getOperand(0), 4951 Node->getOperand(1), Tmp2, Tmp3, Node->getOperand(4)); 4952 break; 4953 case ISD::BSWAP: 4954 Tmp1 = Node->getOperand(0); 4955 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Tmp1); 4956 Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1); 4957 Result = DAG.getNode(ISD::SRL, dl, NVT, Tmp1, 4958 DAG.getConstant(NVT.getSizeInBits() - 4959 VT.getSizeInBits(), 4960 TLI.getShiftAmountTy())); 4961 break; 4962 case ISD::CTPOP: 4963 case ISD::CTTZ: 4964 case ISD::CTLZ: 4965 // Zero extend the argument 4966 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4967 // Perform the larger operation, then subtract if needed. 4968 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4969 switch(Node->getOpcode()) { 4970 case ISD::CTPOP: 4971 Result = Tmp1; 4972 break; 4973 case ISD::CTTZ: 4974 // if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) 4975 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()), Tmp1, 4976 DAG.getConstant(NVT.getSizeInBits(), NVT), 4977 ISD::SETEQ); 4978 Result = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, 4979 DAG.getConstant(VT.getSizeInBits(), NVT), Tmp1); 4980 break; 4981 case ISD::CTLZ: 4982 //Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4983 Result = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 4984 DAG.getConstant(NVT.getSizeInBits() - 4985 VT.getSizeInBits(), NVT)); 4986 break; 4987 } 4988 break; 4989 case ISD::EXTRACT_SUBVECTOR: 4990 Result = PromoteOp(ExpandEXTRACT_SUBVECTOR(Op)); 4991 break; 4992 case ISD::EXTRACT_VECTOR_ELT: 4993 Result = PromoteOp(ExpandEXTRACT_VECTOR_ELT(Op)); 4994 break; 4995 } 4996 4997 assert(Result.getNode() && "Didn't set a result!"); 4998 4999 // Make sure the result is itself legal. 5000 Result = LegalizeOp(Result); 5001 5002 // Remember that we promoted this! 5003 AddPromotedOperand(Op, Result); 5004 return Result; 5005} 5006 5007/// ExpandEXTRACT_VECTOR_ELT - Expand an EXTRACT_VECTOR_ELT operation into 5008/// a legal EXTRACT_VECTOR_ELT operation, scalar code, or memory traffic, 5009/// based on the vector type. The return type of this matches the element type 5010/// of the vector, which may not be legal for the target. 5011SDValue SelectionDAGLegalize::ExpandEXTRACT_VECTOR_ELT(SDValue Op) { 5012 // We know that operand #0 is the Vec vector. If the index is a constant 5013 // or if the invec is a supported hardware type, we can use it. Otherwise, 5014 // lower to a store then an indexed load. 5015 SDValue Vec = Op.getOperand(0); 5016 SDValue Idx = Op.getOperand(1); 5017 DebugLoc dl = Op.getDebugLoc(); 5018 5019 MVT TVT = Vec.getValueType(); 5020 unsigned NumElems = TVT.getVectorNumElements(); 5021 5022 switch (TLI.getOperationAction(ISD::EXTRACT_VECTOR_ELT, TVT)) { 5023 default: assert(0 && "This action is not supported yet!"); 5024 case TargetLowering::Custom: { 5025 Vec = LegalizeOp(Vec); 5026 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 5027 SDValue Tmp3 = TLI.LowerOperation(Op, DAG); 5028 if (Tmp3.getNode()) 5029 return Tmp3; 5030 break; 5031 } 5032 case TargetLowering::Legal: 5033 if (isTypeLegal(TVT)) { 5034 Vec = LegalizeOp(Vec); 5035 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 5036 return Op; 5037 } 5038 break; 5039 case TargetLowering::Promote: 5040 assert(TVT.isVector() && "not vector type"); 5041 // fall thru to expand since vectors are by default are promote 5042 case TargetLowering::Expand: 5043 break; 5044 } 5045 5046 if (NumElems == 1) { 5047 // This must be an access of the only element. Return it. 5048 Op = ScalarizeVectorOp(Vec); 5049 } else if (!TLI.isTypeLegal(TVT) && isa<ConstantSDNode>(Idx)) { 5050 unsigned NumLoElts = 1 << Log2_32(NumElems-1); 5051 ConstantSDNode *CIdx = cast<ConstantSDNode>(Idx); 5052 SDValue Lo, Hi; 5053 SplitVectorOp(Vec, Lo, Hi); 5054 if (CIdx->getZExtValue() < NumLoElts) { 5055 Vec = Lo; 5056 } else { 5057 Vec = Hi; 5058 Idx = DAG.getConstant(CIdx->getZExtValue() - NumLoElts, 5059 Idx.getValueType()); 5060 } 5061 5062 // It's now an extract from the appropriate high or low part. Recurse. 5063 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 5064 Op = ExpandEXTRACT_VECTOR_ELT(Op); 5065 } else { 5066 // Store the value to a temporary stack slot, then LOAD the scalar 5067 // element back out. 5068 SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); 5069 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0); 5070 5071 // Add the offset to the index. 5072 unsigned EltSize = Op.getValueType().getSizeInBits()/8; 5073 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx, 5074 DAG.getConstant(EltSize, Idx.getValueType())); 5075 5076 if (Idx.getValueType().bitsGT(TLI.getPointerTy())) 5077 Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx); 5078 else 5079 Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx); 5080 5081 StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr); 5082 5083 Op = DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, NULL, 0); 5084 } 5085 return Op; 5086} 5087 5088/// ExpandEXTRACT_SUBVECTOR - Expand a EXTRACT_SUBVECTOR operation. For now 5089/// we assume the operation can be split if it is not already legal. 5090SDValue SelectionDAGLegalize::ExpandEXTRACT_SUBVECTOR(SDValue Op) { 5091 // We know that operand #0 is the Vec vector. For now we assume the index 5092 // is a constant and that the extracted result is a supported hardware type. 5093 SDValue Vec = Op.getOperand(0); 5094 SDValue Idx = LegalizeOp(Op.getOperand(1)); 5095 5096 unsigned NumElems = Vec.getValueType().getVectorNumElements(); 5097 5098 if (NumElems == Op.getValueType().getVectorNumElements()) { 5099 // This must be an access of the desired vector length. Return it. 5100 return Vec; 5101 } 5102 5103 ConstantSDNode *CIdx = cast<ConstantSDNode>(Idx); 5104 SDValue Lo, Hi; 5105 SplitVectorOp(Vec, Lo, Hi); 5106 if (CIdx->getZExtValue() < NumElems/2) { 5107 Vec = Lo; 5108 } else { 5109 Vec = Hi; 5110 Idx = DAG.getConstant(CIdx->getZExtValue() - NumElems/2, 5111 Idx.getValueType()); 5112 } 5113 5114 // It's now an extract from the appropriate high or low part. Recurse. 5115 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 5116 return ExpandEXTRACT_SUBVECTOR(Op); 5117} 5118 5119/// LegalizeSetCCOperands - Attempts to create a legal LHS and RHS for a SETCC 5120/// with condition CC on the current target. This usually involves legalizing 5121/// or promoting the arguments. In the case where LHS and RHS must be expanded, 5122/// there may be no choice but to create a new SetCC node to represent the 5123/// legalized value of setcc lhs, rhs. In this case, the value is returned in 5124/// LHS, and the SDValue returned in RHS has a nil SDNode value. 5125void SelectionDAGLegalize::LegalizeSetCCOperands(SDValue &LHS, 5126 SDValue &RHS, 5127 SDValue &CC, 5128 DebugLoc dl) { 5129 SDValue Tmp1, Tmp2, Tmp3, Result; 5130 5131 switch (getTypeAction(LHS.getValueType())) { 5132 case Legal: 5133 Tmp1 = LegalizeOp(LHS); // LHS 5134 Tmp2 = LegalizeOp(RHS); // RHS 5135 break; 5136 case Promote: 5137 Tmp1 = PromoteOp(LHS); // LHS 5138 Tmp2 = PromoteOp(RHS); // RHS 5139 5140 // If this is an FP compare, the operands have already been extended. 5141 if (LHS.getValueType().isInteger()) { 5142 MVT VT = LHS.getValueType(); 5143 MVT NVT = TLI.getTypeToTransformTo(VT); 5144 5145 // Otherwise, we have to insert explicit sign or zero extends. Note 5146 // that we could insert sign extends for ALL conditions, but zero extend 5147 // is cheaper on many machines (an AND instead of two shifts), so prefer 5148 // it. 5149 switch (cast<CondCodeSDNode>(CC)->get()) { 5150 default: assert(0 && "Unknown integer comparison!"); 5151 case ISD::SETEQ: 5152 case ISD::SETNE: 5153 case ISD::SETUGE: 5154 case ISD::SETUGT: 5155 case ISD::SETULE: 5156 case ISD::SETULT: 5157 // ALL of these operations will work if we either sign or zero extend 5158 // the operands (including the unsigned comparisons!). Zero extend is 5159 // usually a simpler/cheaper operation, so prefer it. 5160 Tmp1 = DAG.getZeroExtendInReg(Tmp1, dl, VT); 5161 Tmp2 = DAG.getZeroExtendInReg(Tmp2, dl, VT); 5162 break; 5163 case ISD::SETGE: 5164 case ISD::SETGT: 5165 case ISD::SETLT: 5166 case ISD::SETLE: 5167 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Tmp1, 5168 DAG.getValueType(VT)); 5169 Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Tmp2, 5170 DAG.getValueType(VT)); 5171 Tmp1 = LegalizeOp(Tmp1); // Relegalize new nodes. 5172 Tmp2 = LegalizeOp(Tmp2); // Relegalize new nodes. 5173 break; 5174 } 5175 } 5176 break; 5177 case Expand: { 5178 MVT VT = LHS.getValueType(); 5179 if (VT == MVT::f32 || VT == MVT::f64) { 5180 // Expand into one or more soft-fp libcall(s). 5181 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 5182 switch (cast<CondCodeSDNode>(CC)->get()) { 5183 case ISD::SETEQ: 5184 case ISD::SETOEQ: 5185 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64; 5186 break; 5187 case ISD::SETNE: 5188 case ISD::SETUNE: 5189 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : RTLIB::UNE_F64; 5190 break; 5191 case ISD::SETGE: 5192 case ISD::SETOGE: 5193 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64; 5194 break; 5195 case ISD::SETLT: 5196 case ISD::SETOLT: 5197 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 5198 break; 5199 case ISD::SETLE: 5200 case ISD::SETOLE: 5201 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64; 5202 break; 5203 case ISD::SETGT: 5204 case ISD::SETOGT: 5205 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64; 5206 break; 5207 case ISD::SETUO: 5208 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64; 5209 break; 5210 case ISD::SETO: 5211 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : RTLIB::O_F64; 5212 break; 5213 default: 5214 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64; 5215 switch (cast<CondCodeSDNode>(CC)->get()) { 5216 case ISD::SETONE: 5217 // SETONE = SETOLT | SETOGT 5218 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 5219 // Fallthrough 5220 case ISD::SETUGT: 5221 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64; 5222 break; 5223 case ISD::SETUGE: 5224 LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64; 5225 break; 5226 case ISD::SETULT: 5227 LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 5228 break; 5229 case ISD::SETULE: 5230 LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64; 5231 break; 5232 case ISD::SETUEQ: 5233 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64; 5234 break; 5235 default: assert(0 && "Unsupported FP setcc!"); 5236 } 5237 } 5238 5239 SDValue Dummy; 5240 SDValue Ops[2] = { LHS, RHS }; 5241 Tmp1 = ExpandLibCall(LC1, DAG.getMergeValues(Ops, 2, dl).getNode(), 5242 false /*sign irrelevant*/, Dummy); 5243 Tmp2 = DAG.getConstant(0, MVT::i32); 5244 CC = DAG.getCondCode(TLI.getCmpLibcallCC(LC1)); 5245 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 5246 Tmp1 = DAG.getNode(ISD::SETCC, dl, 5247 TLI.getSetCCResultType(Tmp1.getValueType()), 5248 Tmp1, Tmp2, CC); 5249 LHS = ExpandLibCall(LC2, DAG.getMergeValues(Ops, 2, dl).getNode(), 5250 false /*sign irrelevant*/, Dummy); 5251 Tmp2 = DAG.getNode(ISD::SETCC, dl, 5252 TLI.getSetCCResultType(LHS.getValueType()), LHS, 5253 Tmp2, DAG.getCondCode(TLI.getCmpLibcallCC(LC2))); 5254 Tmp1 = DAG.getNode(ISD::OR, dl, Tmp1.getValueType(), Tmp1, Tmp2); 5255 Tmp2 = SDValue(); 5256 } 5257 LHS = LegalizeOp(Tmp1); 5258 RHS = Tmp2; 5259 return; 5260 } 5261 5262 SDValue LHSLo, LHSHi, RHSLo, RHSHi; 5263 ExpandOp(LHS, LHSLo, LHSHi); 5264 ExpandOp(RHS, RHSLo, RHSHi); 5265 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 5266 5267 if (VT==MVT::ppcf128) { 5268 // FIXME: This generated code sucks. We want to generate 5269 // FCMPU crN, hi1, hi2 5270 // BNE crN, L: 5271 // FCMPU crN, lo1, lo2 5272 // The following can be improved, but not that much. 5273 Tmp1 = DAG.getSetCC(dl, TLI.getSetCCResultType(LHSHi.getValueType()), 5274 LHSHi, RHSHi, ISD::SETOEQ); 5275 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(LHSLo.getValueType()), 5276 LHSLo, RHSLo, CCCode); 5277 Tmp3 = DAG.getNode(ISD::AND, dl, Tmp1.getValueType(), Tmp1, Tmp2); 5278 Tmp1 = DAG.getSetCC(dl, TLI.getSetCCResultType(LHSHi.getValueType()), 5279 LHSHi, RHSHi, ISD::SETUNE); 5280 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(LHSHi.getValueType()), 5281 LHSHi, RHSHi, CCCode); 5282 Tmp1 = DAG.getNode(ISD::AND, dl, Tmp1.getValueType(), Tmp1, Tmp2); 5283 Tmp1 = DAG.getNode(ISD::OR, dl, Tmp1.getValueType(), Tmp1, Tmp3); 5284 Tmp2 = SDValue(); 5285 break; 5286 } 5287 5288 switch (CCCode) { 5289 case ISD::SETEQ: 5290 case ISD::SETNE: 5291 if (RHSLo == RHSHi) 5292 if (ConstantSDNode *RHSCST = dyn_cast<ConstantSDNode>(RHSLo)) 5293 if (RHSCST->isAllOnesValue()) { 5294 // Comparison to -1. 5295 Tmp1 = DAG.getNode(ISD::AND, dl,LHSLo.getValueType(), LHSLo, LHSHi); 5296 Tmp2 = RHSLo; 5297 break; 5298 } 5299 5300 Tmp1 = DAG.getNode(ISD::XOR, dl, LHSLo.getValueType(), LHSLo, RHSLo); 5301 Tmp2 = DAG.getNode(ISD::XOR, dl, LHSLo.getValueType(), LHSHi, RHSHi); 5302 Tmp1 = DAG.getNode(ISD::OR, dl, Tmp1.getValueType(), Tmp1, Tmp2); 5303 Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); 5304 break; 5305 default: 5306 // If this is a comparison of the sign bit, just look at the top part. 5307 // X > -1, x < 0 5308 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(RHS)) 5309 if ((cast<CondCodeSDNode>(CC)->get() == ISD::SETLT && 5310 CST->isNullValue()) || // X < 0 5311 (cast<CondCodeSDNode>(CC)->get() == ISD::SETGT && 5312 CST->isAllOnesValue())) { // X > -1 5313 Tmp1 = LHSHi; 5314 Tmp2 = RHSHi; 5315 break; 5316 } 5317 5318 // FIXME: This generated code sucks. 5319 ISD::CondCode LowCC; 5320 switch (CCCode) { 5321 default: assert(0 && "Unknown integer setcc!"); 5322 case ISD::SETLT: 5323 case ISD::SETULT: LowCC = ISD::SETULT; break; 5324 case ISD::SETGT: 5325 case ISD::SETUGT: LowCC = ISD::SETUGT; break; 5326 case ISD::SETLE: 5327 case ISD::SETULE: LowCC = ISD::SETULE; break; 5328 case ISD::SETGE: 5329 case ISD::SETUGE: LowCC = ISD::SETUGE; break; 5330 } 5331 5332 // Tmp1 = lo(op1) < lo(op2) // Always unsigned comparison 5333 // Tmp2 = hi(op1) < hi(op2) // Signedness depends on operands 5334 // dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2; 5335 5336 // NOTE: on targets without efficient SELECT of bools, we can always use 5337 // this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3) 5338 TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, false, true, NULL); 5339 Tmp1 = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSLo.getValueType()), 5340 LHSLo, RHSLo, LowCC, false, DagCombineInfo, dl); 5341 if (!Tmp1.getNode()) 5342 Tmp1 = DAG.getSetCC(dl, TLI.getSetCCResultType(LHSLo.getValueType()), 5343 LHSLo, RHSLo, LowCC); 5344 Tmp2 = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSHi.getValueType()), 5345 LHSHi, RHSHi, CCCode, false, DagCombineInfo, dl); 5346 if (!Tmp2.getNode()) 5347 Tmp2 = DAG.getNode(ISD::SETCC, dl, 5348 TLI.getSetCCResultType(LHSHi.getValueType()), 5349 LHSHi, RHSHi,CC); 5350 5351 ConstantSDNode *Tmp1C = dyn_cast<ConstantSDNode>(Tmp1.getNode()); 5352 ConstantSDNode *Tmp2C = dyn_cast<ConstantSDNode>(Tmp2.getNode()); 5353 if ((Tmp1C && Tmp1C->isNullValue()) || 5354 (Tmp2C && Tmp2C->isNullValue() && 5355 (CCCode == ISD::SETLE || CCCode == ISD::SETGE || 5356 CCCode == ISD::SETUGE || CCCode == ISD::SETULE)) || 5357 (Tmp2C && Tmp2C->getAPIntValue() == 1 && 5358 (CCCode == ISD::SETLT || CCCode == ISD::SETGT || 5359 CCCode == ISD::SETUGT || CCCode == ISD::SETULT))) { 5360 // low part is known false, returns high part. 5361 // For LE / GE, if high part is known false, ignore the low part. 5362 // For LT / GT, if high part is known true, ignore the low part. 5363 Tmp1 = Tmp2; 5364 Tmp2 = SDValue(); 5365 } else { 5366 Result = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSHi.getValueType()), 5367 LHSHi, RHSHi, ISD::SETEQ, false, 5368 DagCombineInfo, dl); 5369 if (!Result.getNode()) 5370 Result=DAG.getSetCC(dl, TLI.getSetCCResultType(LHSHi.getValueType()), 5371 LHSHi, RHSHi, ISD::SETEQ); 5372 Result = LegalizeOp(DAG.getNode(ISD::SELECT, dl, Tmp1.getValueType(), 5373 Result, Tmp1, Tmp2)); 5374 Tmp1 = Result; 5375 Tmp2 = SDValue(); 5376 } 5377 } 5378 } 5379 } 5380 LHS = Tmp1; 5381 RHS = Tmp2; 5382} 5383 5384/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and 5385/// condition code CC on the current target. This routine assumes LHS and rHS 5386/// have already been legalized by LegalizeSetCCOperands. It expands SETCC with 5387/// illegal condition code into AND / OR of multiple SETCC values. 5388void SelectionDAGLegalize::LegalizeSetCCCondCode(MVT VT, 5389 SDValue &LHS, SDValue &RHS, 5390 SDValue &CC, 5391 DebugLoc dl) { 5392 MVT OpVT = LHS.getValueType(); 5393 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 5394 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 5395 default: assert(0 && "Unknown condition code action!"); 5396 case TargetLowering::Legal: 5397 // Nothing to do. 5398 break; 5399 case TargetLowering::Expand: { 5400 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 5401 unsigned Opc = 0; 5402 switch (CCCode) { 5403 default: assert(0 && "Don't know how to expand this condition!"); abort(); 5404 case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO; Opc = ISD::AND; break; 5405 case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO; Opc = ISD::AND; break; 5406 case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO; Opc = ISD::AND; break; 5407 case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO; Opc = ISD::AND; break; 5408 case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO; Opc = ISD::AND; break; 5409 case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO; Opc = ISD::AND; break; 5410 case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR; break; 5411 case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR; break; 5412 case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR; break; 5413 case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR; break; 5414 case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR; break; 5415 case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR; break; 5416 // FIXME: Implement more expansions. 5417 } 5418 5419 SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1); 5420 SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2); 5421 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 5422 RHS = SDValue(); 5423 CC = SDValue(); 5424 break; 5425 } 5426 } 5427} 5428 5429/// EmitStackConvert - Emit a store/load combination to the stack. This stores 5430/// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 5431/// a load from the stack slot to DestVT, extending it if needed. 5432/// The resultant code need not be legal. 5433SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, 5434 MVT SlotVT, 5435 MVT DestVT, 5436 DebugLoc dl) { 5437 // Create the stack frame object. 5438 unsigned SrcAlign = TLI.getTargetData()->getPrefTypeAlignment( 5439 SrcOp.getValueType().getTypeForMVT()); 5440 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); 5441 5442 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 5443 int SPFI = StackPtrFI->getIndex(); 5444 const Value *SV = PseudoSourceValue::getFixedStack(SPFI); 5445 5446 unsigned SrcSize = SrcOp.getValueType().getSizeInBits(); 5447 unsigned SlotSize = SlotVT.getSizeInBits(); 5448 unsigned DestSize = DestVT.getSizeInBits(); 5449 unsigned DestAlign = TLI.getTargetData()->getPrefTypeAlignment( 5450 DestVT.getTypeForMVT()); 5451 5452 // Emit a store to the stack slot. Use a truncstore if the input value is 5453 // later than DestVT. 5454 SDValue Store; 5455 5456 if (SrcSize > SlotSize) 5457 Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, 5458 SV, 0, SlotVT, false, SrcAlign); 5459 else { 5460 assert(SrcSize == SlotSize && "Invalid store"); 5461 Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, 5462 SV, 0, false, SrcAlign); 5463 } 5464 5465 // Result is a load from the stack slot. 5466 if (SlotSize == DestSize) 5467 return DAG.getLoad(DestVT, dl, Store, FIPtr, SV, 0, false, DestAlign); 5468 5469 assert(SlotSize < DestSize && "Unknown extension!"); 5470 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, SV, 0, SlotVT, 5471 false, DestAlign); 5472} 5473 5474SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 5475 DebugLoc dl = Node->getDebugLoc(); 5476 // Create a vector sized/aligned stack slot, store the value to element #0, 5477 // then load the whole vector back out. 5478 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 5479 5480 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 5481 int SPFI = StackPtrFI->getIndex(); 5482 5483 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(0), 5484 StackPtr, 5485 PseudoSourceValue::getFixedStack(SPFI), 0); 5486 return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr, 5487 PseudoSourceValue::getFixedStack(SPFI), 0); 5488} 5489 5490 5491/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't 5492/// support the operation, but do support the resultant vector type. 5493SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 5494 5495 // If the only non-undef value is the low element, turn this into a 5496 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 5497 unsigned NumElems = Node->getNumOperands(); 5498 bool isOnlyLowElement = true; 5499 SDValue SplatValue = Node->getOperand(0); 5500 DebugLoc dl = Node->getDebugLoc(); 5501 5502 // FIXME: it would be far nicer to change this into map<SDValue,uint64_t> 5503 // and use a bitmask instead of a list of elements. 5504 std::map<SDValue, std::vector<unsigned> > Values; 5505 Values[SplatValue].push_back(0); 5506 bool isConstant = true; 5507 if (!isa<ConstantFPSDNode>(SplatValue) && !isa<ConstantSDNode>(SplatValue) && 5508 SplatValue.getOpcode() != ISD::UNDEF) 5509 isConstant = false; 5510 5511 for (unsigned i = 1; i < NumElems; ++i) { 5512 SDValue V = Node->getOperand(i); 5513 Values[V].push_back(i); 5514 if (V.getOpcode() != ISD::UNDEF) 5515 isOnlyLowElement = false; 5516 if (SplatValue != V) 5517 SplatValue = SDValue(0,0); 5518 5519 // If this isn't a constant element or an undef, we can't use a constant 5520 // pool load. 5521 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V) && 5522 V.getOpcode() != ISD::UNDEF) 5523 isConstant = false; 5524 } 5525 5526 if (isOnlyLowElement) { 5527 // If the low element is an undef too, then this whole things is an undef. 5528 if (Node->getOperand(0).getOpcode() == ISD::UNDEF) 5529 return DAG.getUNDEF(Node->getValueType(0)); 5530 // Otherwise, turn this into a scalar_to_vector node. 5531 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, Node->getValueType(0), 5532 Node->getOperand(0)); 5533 } 5534 5535 // If all elements are constants, create a load from the constant pool. 5536 if (isConstant) { 5537 MVT VT = Node->getValueType(0); 5538 std::vector<Constant*> CV; 5539 for (unsigned i = 0, e = NumElems; i != e; ++i) { 5540 if (ConstantFPSDNode *V = 5541 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 5542 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 5543 } else if (ConstantSDNode *V = 5544 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 5545 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 5546 } else { 5547 assert(Node->getOperand(i).getOpcode() == ISD::UNDEF); 5548 const Type *OpNTy = 5549 Node->getOperand(0).getValueType().getTypeForMVT(); 5550 CV.push_back(UndefValue::get(OpNTy)); 5551 } 5552 } 5553 Constant *CP = ConstantVector::get(CV); 5554 SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy()); 5555 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 5556 return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, 5557 PseudoSourceValue::getConstantPool(), 0, 5558 false, Alignment); 5559 } 5560 5561 if (SplatValue.getNode()) { // Splat of one value? 5562 // Build the shuffle constant vector: <0, 0, 0, 0> 5563 MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems); 5564 SDValue Zero = DAG.getConstant(0, MaskVT.getVectorElementType()); 5565 std::vector<SDValue> ZeroVec(NumElems, Zero); 5566 SDValue SplatMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT, 5567 &ZeroVec[0], ZeroVec.size()); 5568 5569 // If the target supports VECTOR_SHUFFLE and this shuffle mask, use it. 5570 if (isShuffleLegal(Node->getValueType(0), SplatMask)) { 5571 // Get the splatted value into the low element of a vector register. 5572 SDValue LowValVec = 5573 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 5574 Node->getValueType(0), SplatValue); 5575 5576 // Return shuffle(LowValVec, undef, <0,0,0,0>) 5577 return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, 5578 Node->getValueType(0), LowValVec, 5579 DAG.getUNDEF(Node->getValueType(0)), 5580 SplatMask); 5581 } 5582 } 5583 5584 // If there are only two unique elements, we may be able to turn this into a 5585 // vector shuffle. 5586 if (Values.size() == 2) { 5587 // Get the two values in deterministic order. 5588 SDValue Val1 = Node->getOperand(1); 5589 SDValue Val2; 5590 std::map<SDValue, std::vector<unsigned> >::iterator MI = Values.begin(); 5591 if (MI->first != Val1) 5592 Val2 = MI->first; 5593 else 5594 Val2 = (++MI)->first; 5595 5596 // If Val1 is an undef, make sure end ends up as Val2, to ensure that our 5597 // vector shuffle has the undef vector on the RHS. 5598 if (Val1.getOpcode() == ISD::UNDEF) 5599 std::swap(Val1, Val2); 5600 5601 // Build the shuffle constant vector: e.g. <0, 4, 0, 4> 5602 MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems); 5603 MVT MaskEltVT = MaskVT.getVectorElementType(); 5604 std::vector<SDValue> MaskVec(NumElems); 5605 5606 // Set elements of the shuffle mask for Val1. 5607 std::vector<unsigned> &Val1Elts = Values[Val1]; 5608 for (unsigned i = 0, e = Val1Elts.size(); i != e; ++i) 5609 MaskVec[Val1Elts[i]] = DAG.getConstant(0, MaskEltVT); 5610 5611 // Set elements of the shuffle mask for Val2. 5612 std::vector<unsigned> &Val2Elts = Values[Val2]; 5613 for (unsigned i = 0, e = Val2Elts.size(); i != e; ++i) 5614 if (Val2.getOpcode() != ISD::UNDEF) 5615 MaskVec[Val2Elts[i]] = DAG.getConstant(NumElems, MaskEltVT); 5616 else 5617 MaskVec[Val2Elts[i]] = DAG.getUNDEF(MaskEltVT); 5618 5619 SDValue ShuffleMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT, 5620 &MaskVec[0], MaskVec.size()); 5621 5622 // If the target supports SCALAR_TO_VECTOR and this shuffle mask, use it. 5623 if (TLI.isOperationLegalOrCustom(ISD::SCALAR_TO_VECTOR, 5624 Node->getValueType(0)) && 5625 isShuffleLegal(Node->getValueType(0), ShuffleMask)) { 5626 Val1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,Node->getValueType(0), Val1); 5627 Val2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,Node->getValueType(0), Val2); 5628 SDValue Ops[] = { Val1, Val2, ShuffleMask }; 5629 5630 // Return shuffle(LoValVec, HiValVec, <0,1,0,1>) 5631 return DAG.getNode(ISD::VECTOR_SHUFFLE, dl,Node->getValueType(0), Ops, 3); 5632 } 5633 } 5634 5635 // Otherwise, we can't handle this case efficiently. Allocate a sufficiently 5636 // aligned object on the stack, store each element into it, then load 5637 // the result as a vector. 5638 MVT VT = Node->getValueType(0); 5639 // Create the stack frame object. 5640 SDValue FIPtr = DAG.CreateStackTemporary(VT); 5641 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 5642 const Value *SV = PseudoSourceValue::getFixedStack(FI); 5643 5644 // Emit a store of each element to the stack slot. 5645 SmallVector<SDValue, 8> Stores; 5646 unsigned TypeByteSize = Node->getOperand(0).getValueType().getSizeInBits()/8; 5647 // Store (in the right endianness) the elements to memory. 5648 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 5649 // Ignore undef elements. 5650 if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue; 5651 5652 unsigned Offset = TypeByteSize*i; 5653 5654 SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType()); 5655 Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx); 5656 5657 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), 5658 Idx, SV, Offset)); 5659 } 5660 5661 SDValue StoreChain; 5662 if (!Stores.empty()) // Not all undef elements? 5663 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 5664 &Stores[0], Stores.size()); 5665 else 5666 StoreChain = DAG.getEntryNode(); 5667 5668 // Result is a load from the stack slot. 5669 return DAG.getLoad(VT, dl, StoreChain, FIPtr, SV, 0); 5670} 5671 5672void SelectionDAGLegalize::ExpandShiftParts(unsigned NodeOp, 5673 SDValue Op, SDValue Amt, 5674 SDValue &Lo, SDValue &Hi, 5675 DebugLoc dl) { 5676 // Expand the subcomponents. 5677 SDValue LHSL, LHSH; 5678 ExpandOp(Op, LHSL, LHSH); 5679 5680 SDValue Ops[] = { LHSL, LHSH, Amt }; 5681 MVT VT = LHSL.getValueType(); 5682 Lo = DAG.getNode(NodeOp, dl, DAG.getNodeValueTypes(VT, VT), 2, Ops, 3); 5683 Hi = Lo.getValue(1); 5684} 5685 5686 5687/// ExpandShift - Try to find a clever way to expand this shift operation out to 5688/// smaller elements. If we can't find a way that is more efficient than a 5689/// libcall on this target, return false. Otherwise, return true with the 5690/// low-parts expanded into Lo and Hi. 5691bool SelectionDAGLegalize::ExpandShift(unsigned Opc, SDValue Op,SDValue Amt, 5692 SDValue &Lo, SDValue &Hi, 5693 DebugLoc dl) { 5694 assert((Opc == ISD::SHL || Opc == ISD::SRA || Opc == ISD::SRL) && 5695 "This is not a shift!"); 5696 5697 MVT NVT = TLI.getTypeToTransformTo(Op.getValueType()); 5698 SDValue ShAmt = LegalizeOp(Amt); 5699 MVT ShTy = ShAmt.getValueType(); 5700 unsigned ShBits = ShTy.getSizeInBits(); 5701 unsigned VTBits = Op.getValueType().getSizeInBits(); 5702 unsigned NVTBits = NVT.getSizeInBits(); 5703 5704 // Handle the case when Amt is an immediate. 5705 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Amt.getNode())) { 5706 unsigned Cst = CN->getZExtValue(); 5707 // Expand the incoming operand to be shifted, so that we have its parts 5708 SDValue InL, InH; 5709 ExpandOp(Op, InL, InH); 5710 switch(Opc) { 5711 case ISD::SHL: 5712 if (Cst > VTBits) { 5713 Lo = DAG.getConstant(0, NVT); 5714 Hi = DAG.getConstant(0, NVT); 5715 } else if (Cst > NVTBits) { 5716 Lo = DAG.getConstant(0, NVT); 5717 Hi = DAG.getNode(ISD::SHL, dl, 5718 NVT, InL, DAG.getConstant(Cst-NVTBits,ShTy)); 5719 } else if (Cst == NVTBits) { 5720 Lo = DAG.getConstant(0, NVT); 5721 Hi = InL; 5722 } else { 5723 Lo = DAG.getNode(ISD::SHL, dl, NVT, InL, DAG.getConstant(Cst, ShTy)); 5724 Hi = DAG.getNode(ISD::OR, dl, NVT, 5725 DAG.getNode(ISD::SHL, dl, NVT, InH, DAG.getConstant(Cst, ShTy)), 5726 DAG.getNode(ISD::SRL, dl, NVT, InL, 5727 DAG.getConstant(NVTBits-Cst, ShTy))); 5728 } 5729 return true; 5730 case ISD::SRL: 5731 if (Cst > VTBits) { 5732 Lo = DAG.getConstant(0, NVT); 5733 Hi = DAG.getConstant(0, NVT); 5734 } else if (Cst > NVTBits) { 5735 Lo = DAG.getNode(ISD::SRL, dl, NVT, 5736 InH, DAG.getConstant(Cst-NVTBits,ShTy)); 5737 Hi = DAG.getConstant(0, NVT); 5738 } else if (Cst == NVTBits) { 5739 Lo = InH; 5740 Hi = DAG.getConstant(0, NVT); 5741 } else { 5742 Lo = DAG.getNode(ISD::OR, dl, NVT, 5743 DAG.getNode(ISD::SRL, dl, NVT, InL, DAG.getConstant(Cst, ShTy)), 5744 DAG.getNode(ISD::SHL, dl, NVT, InH, 5745 DAG.getConstant(NVTBits-Cst, ShTy))); 5746 Hi = DAG.getNode(ISD::SRL, dl, NVT, InH, DAG.getConstant(Cst, ShTy)); 5747 } 5748 return true; 5749 case ISD::SRA: 5750 if (Cst > VTBits) { 5751 Hi = Lo = DAG.getNode(ISD::SRA, dl, NVT, InH, 5752 DAG.getConstant(NVTBits-1, ShTy)); 5753 } else if (Cst > NVTBits) { 5754 Lo = DAG.getNode(ISD::SRA, dl, NVT, InH, 5755 DAG.getConstant(Cst-NVTBits, ShTy)); 5756 Hi = DAG.getNode(ISD::SRA, dl, NVT, InH, 5757 DAG.getConstant(NVTBits-1, ShTy)); 5758 } else if (Cst == NVTBits) { 5759 Lo = InH; 5760 Hi = DAG.getNode(ISD::SRA, dl, NVT, InH, 5761 DAG.getConstant(NVTBits-1, ShTy)); 5762 } else { 5763 Lo = DAG.getNode(ISD::OR, dl, NVT, 5764 DAG.getNode(ISD::SRL, dl, NVT, InL, DAG.getConstant(Cst, ShTy)), 5765 DAG.getNode(ISD::SHL, dl, 5766 NVT, InH, DAG.getConstant(NVTBits-Cst, ShTy))); 5767 Hi = DAG.getNode(ISD::SRA, dl, NVT, InH, DAG.getConstant(Cst, ShTy)); 5768 } 5769 return true; 5770 } 5771 } 5772 5773 // Okay, the shift amount isn't constant. However, if we can tell that it is 5774 // >= 32 or < 32, we can still simplify it, without knowing the actual value. 5775 APInt Mask = APInt::getHighBitsSet(ShBits, ShBits - Log2_32(NVTBits)); 5776 APInt KnownZero, KnownOne; 5777 DAG.ComputeMaskedBits(Amt, Mask, KnownZero, KnownOne); 5778 5779 // If we know that if any of the high bits of the shift amount are one, then 5780 // we can do this as a couple of simple shifts. 5781 if (KnownOne.intersects(Mask)) { 5782 // Mask out the high bit, which we know is set. 5783 Amt = DAG.getNode(ISD::AND, dl, Amt.getValueType(), Amt, 5784 DAG.getConstant(~Mask, Amt.getValueType())); 5785 5786 // Expand the incoming operand to be shifted, so that we have its parts 5787 SDValue InL, InH; 5788 ExpandOp(Op, InL, InH); 5789 switch(Opc) { 5790 case ISD::SHL: 5791 Lo = DAG.getConstant(0, NVT); // Low part is zero. 5792 Hi = DAG.getNode(ISD::SHL, dl, NVT, InL, Amt); // High part from Lo part. 5793 return true; 5794 case ISD::SRL: 5795 Hi = DAG.getConstant(0, NVT); // Hi part is zero. 5796 Lo = DAG.getNode(ISD::SRL, dl, NVT, InH, Amt); // Lo part from Hi part. 5797 return true; 5798 case ISD::SRA: 5799 Hi = DAG.getNode(ISD::SRA, dl, NVT, InH, // Sign extend high part. 5800 DAG.getConstant(NVTBits-1, Amt.getValueType())); 5801 Lo = DAG.getNode(ISD::SRA, dl, NVT, InH, Amt); // Lo part from Hi part. 5802 return true; 5803 } 5804 } 5805 5806 // If we know that the high bits of the shift amount are all zero, then we can 5807 // do this as a couple of simple shifts. 5808 if ((KnownZero & Mask) == Mask) { 5809 // Compute 32-amt. 5810 SDValue Amt2 = DAG.getNode(ISD::SUB, dl, Amt.getValueType(), 5811 DAG.getConstant(NVTBits, Amt.getValueType()), 5812 Amt); 5813 5814 // Expand the incoming operand to be shifted, so that we have its parts 5815 SDValue InL, InH; 5816 ExpandOp(Op, InL, InH); 5817 switch(Opc) { 5818 case ISD::SHL: 5819 Lo = DAG.getNode(ISD::SHL, dl, NVT, InL, Amt); 5820 Hi = DAG.getNode(ISD::OR, dl, NVT, 5821 DAG.getNode(ISD::SHL, dl, NVT, InH, Amt), 5822 DAG.getNode(ISD::SRL, dl, NVT, InL, Amt2)); 5823 return true; 5824 case ISD::SRL: 5825 Hi = DAG.getNode(ISD::SRL, dl, NVT, InH, Amt); 5826 Lo = DAG.getNode(ISD::OR, dl, NVT, 5827 DAG.getNode(ISD::SRL, dl, NVT, InL, Amt), 5828 DAG.getNode(ISD::SHL, dl, NVT, InH, Amt2)); 5829 return true; 5830 case ISD::SRA: 5831 Hi = DAG.getNode(ISD::SRA, dl, NVT, InH, Amt); 5832 Lo = DAG.getNode(ISD::OR, dl, NVT, 5833 DAG.getNode(ISD::SRL, dl, NVT, InL, Amt), 5834 DAG.getNode(ISD::SHL, dl, NVT, InH, Amt2)); 5835 return true; 5836 } 5837 } 5838 5839 return false; 5840} 5841 5842 5843// ExpandLibCall - Expand a node into a call to a libcall. If the result value 5844// does not fit into a register, return the lo part and set the hi part to the 5845// by-reg argument. If it does fit into a single register, return the result 5846// and leave the Hi part unset. 5847SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 5848 bool isSigned, SDValue &Hi) { 5849 assert(!IsLegalizingCall && "Cannot overlap legalization of calls!"); 5850 // The input chain to this libcall is the entry node of the function. 5851 // Legalizing the call will automatically add the previous call to the 5852 // dependence. 5853 SDValue InChain = DAG.getEntryNode(); 5854 5855 TargetLowering::ArgListTy Args; 5856 TargetLowering::ArgListEntry Entry; 5857 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 5858 MVT ArgVT = Node->getOperand(i).getValueType(); 5859 const Type *ArgTy = ArgVT.getTypeForMVT(); 5860 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; 5861 Entry.isSExt = isSigned; 5862 Entry.isZExt = !isSigned; 5863 Args.push_back(Entry); 5864 } 5865 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 5866 TLI.getPointerTy()); 5867 5868 // Splice the libcall in wherever FindInputOutputChains tells us to. 5869 const Type *RetTy = Node->getValueType(0).getTypeForMVT(); 5870 std::pair<SDValue,SDValue> CallInfo = 5871 TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false, 5872 CallingConv::C, false, Callee, Args, DAG, 5873 Node->getDebugLoc()); 5874 5875 // Legalize the call sequence, starting with the chain. This will advance 5876 // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that 5877 // was added by LowerCallTo (guaranteeing proper serialization of calls). 5878 LegalizeOp(CallInfo.second); 5879 SDValue Result; 5880 switch (getTypeAction(CallInfo.first.getValueType())) { 5881 default: assert(0 && "Unknown thing"); 5882 case Legal: 5883 Result = CallInfo.first; 5884 break; 5885 case Expand: 5886 ExpandOp(CallInfo.first, Result, Hi); 5887 break; 5888 } 5889 return Result; 5890} 5891 5892/// LegalizeINT_TO_FP - Legalize a [US]INT_TO_FP operation. 5893/// 5894SDValue SelectionDAGLegalize:: 5895LegalizeINT_TO_FP(SDValue Result, bool isSigned, MVT DestTy, SDValue Op, 5896 DebugLoc dl) { 5897 bool isCustom = false; 5898 SDValue Tmp1; 5899 switch (getTypeAction(Op.getValueType())) { 5900 case Legal: 5901 switch (TLI.getOperationAction(isSigned ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 5902 Op.getValueType())) { 5903 default: assert(0 && "Unknown operation action!"); 5904 case TargetLowering::Custom: 5905 isCustom = true; 5906 // FALLTHROUGH 5907 case TargetLowering::Legal: 5908 Tmp1 = LegalizeOp(Op); 5909 if (Result.getNode()) 5910 Result = DAG.UpdateNodeOperands(Result, Tmp1); 5911 else 5912 Result = DAG.getNode(isSigned ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, dl, 5913 DestTy, Tmp1); 5914 if (isCustom) { 5915 Tmp1 = TLI.LowerOperation(Result, DAG); 5916 if (Tmp1.getNode()) Result = Tmp1; 5917 } 5918 break; 5919 case TargetLowering::Expand: 5920 Result = ExpandLegalINT_TO_FP(isSigned, LegalizeOp(Op), DestTy, dl); 5921 break; 5922 case TargetLowering::Promote: 5923 Result = PromoteLegalINT_TO_FP(LegalizeOp(Op), DestTy, isSigned, dl); 5924 break; 5925 } 5926 break; 5927 case Expand: 5928 Result = ExpandIntToFP(isSigned, DestTy, Op, dl) ; 5929 break; 5930 case Promote: 5931 Tmp1 = PromoteOp(Op); 5932 if (isSigned) { 5933 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Tmp1.getValueType(), 5934 Tmp1, DAG.getValueType(Op.getValueType())); 5935 } else { 5936 Tmp1 = DAG.getZeroExtendInReg(Tmp1, dl, 5937 Op.getValueType()); 5938 } 5939 if (Result.getNode()) 5940 Result = DAG.UpdateNodeOperands(Result, Tmp1); 5941 else 5942 Result = DAG.getNode(isSigned ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, dl, 5943 DestTy, Tmp1); 5944 Result = LegalizeOp(Result); // The 'op' is not necessarily legal! 5945 break; 5946 } 5947 return Result; 5948} 5949 5950/// ExpandIntToFP - Expand a [US]INT_TO_FP operation. 5951/// 5952SDValue SelectionDAGLegalize:: 5953ExpandIntToFP(bool isSigned, MVT DestTy, SDValue Source, DebugLoc dl) { 5954 MVT SourceVT = Source.getValueType(); 5955 bool ExpandSource = getTypeAction(SourceVT) == Expand; 5956 5957 // Expand unsupported int-to-fp vector casts by unrolling them. 5958 if (DestTy.isVector()) { 5959 if (!ExpandSource) 5960 return LegalizeOp(UnrollVectorOp(Source)); 5961 MVT DestEltTy = DestTy.getVectorElementType(); 5962 if (DestTy.getVectorNumElements() == 1) { 5963 SDValue Scalar = ScalarizeVectorOp(Source); 5964 SDValue Result = LegalizeINT_TO_FP(SDValue(), isSigned, 5965 DestEltTy, Scalar, dl); 5966 return DAG.getNode(ISD::BUILD_VECTOR, dl, DestTy, Result); 5967 } 5968 SDValue Lo, Hi; 5969 SplitVectorOp(Source, Lo, Hi); 5970 MVT SplitDestTy = MVT::getVectorVT(DestEltTy, 5971 DestTy.getVectorNumElements() / 2); 5972 SDValue LoResult = LegalizeINT_TO_FP(SDValue(), isSigned, SplitDestTy, 5973 Lo, dl); 5974 SDValue HiResult = LegalizeINT_TO_FP(SDValue(), isSigned, SplitDestTy, 5975 Hi, dl); 5976 return LegalizeOp(DAG.getNode(ISD::CONCAT_VECTORS, dl, DestTy, LoResult, 5977 HiResult)); 5978 } 5979 5980 // Special case for i32 source to take advantage of UINTTOFP_I32_F32, etc. 5981 if (!isSigned && SourceVT != MVT::i32) { 5982 // The integer value loaded will be incorrectly if the 'sign bit' of the 5983 // incoming integer is set. To handle this, we dynamically test to see if 5984 // it is set, and, if so, add a fudge factor. 5985 SDValue Hi; 5986 if (ExpandSource) { 5987 SDValue Lo; 5988 ExpandOp(Source, Lo, Hi); 5989 Source = DAG.getNode(ISD::BUILD_PAIR, dl, SourceVT, Lo, Hi); 5990 } else { 5991 // The comparison for the sign bit will use the entire operand. 5992 Hi = Source; 5993 } 5994 5995 // Check to see if the target has a custom way to lower this. If so, use 5996 // it. (Note we've already expanded the operand in this case.) 5997 switch (TLI.getOperationAction(ISD::UINT_TO_FP, SourceVT)) { 5998 default: assert(0 && "This action not implemented for this operation!"); 5999 case TargetLowering::Legal: 6000 case TargetLowering::Expand: 6001 break; // This case is handled below. 6002 case TargetLowering::Custom: { 6003 SDValue NV = TLI.LowerOperation(DAG.getNode(ISD::UINT_TO_FP, dl, DestTy, 6004 Source), DAG); 6005 if (NV.getNode()) 6006 return LegalizeOp(NV); 6007 break; // The target decided this was legal after all 6008 } 6009 } 6010 6011 // If this is unsigned, and not supported, first perform the conversion to 6012 // signed, then adjust the result if the sign bit is set. 6013 SDValue SignedConv = ExpandIntToFP(true, DestTy, Source, dl); 6014 6015 SDValue SignSet = DAG.getSetCC(dl, 6016 TLI.getSetCCResultType(Hi.getValueType()), 6017 Hi, DAG.getConstant(0, Hi.getValueType()), 6018 ISD::SETLT); 6019 SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); 6020 SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), 6021 SignSet, Four, Zero); 6022 uint64_t FF = 0x5f800000ULL; 6023 if (TLI.isLittleEndian()) FF <<= 32; 6024 Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF); 6025 6026 SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); 6027 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 6028 CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset); 6029 Alignment = std::min(Alignment, 4u); 6030 SDValue FudgeInReg; 6031 if (DestTy == MVT::f32) 6032 FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx, 6033 PseudoSourceValue::getConstantPool(), 0, 6034 false, Alignment); 6035 else if (DestTy.bitsGT(MVT::f32)) 6036 // FIXME: Avoid the extend by construction the right constantpool? 6037 FudgeInReg = DAG.getExtLoad(ISD::EXTLOAD, dl, DestTy, DAG.getEntryNode(), 6038 CPIdx, 6039 PseudoSourceValue::getConstantPool(), 0, 6040 MVT::f32, false, Alignment); 6041 else 6042 assert(0 && "Unexpected conversion"); 6043 6044 MVT SCVT = SignedConv.getValueType(); 6045 if (SCVT != DestTy) { 6046 // Destination type needs to be expanded as well. The FADD now we are 6047 // constructing will be expanded into a libcall. 6048 if (SCVT.getSizeInBits() != DestTy.getSizeInBits()) { 6049 assert(SCVT.getSizeInBits() * 2 == DestTy.getSizeInBits()); 6050 SignedConv = DAG.getNode(ISD::BUILD_PAIR, dl, DestTy, 6051 SignedConv, SignedConv.getValue(1)); 6052 } 6053 SignedConv = DAG.getNode(ISD::BIT_CONVERT, dl, DestTy, SignedConv); 6054 } 6055 return DAG.getNode(ISD::FADD, dl, DestTy, SignedConv, FudgeInReg); 6056 } 6057 6058 // Check to see if the target has a custom way to lower this. If so, use it. 6059 switch (TLI.getOperationAction(ISD::SINT_TO_FP, SourceVT)) { 6060 default: assert(0 && "This action not implemented for this operation!"); 6061 case TargetLowering::Legal: 6062 case TargetLowering::Expand: 6063 break; // This case is handled below. 6064 case TargetLowering::Custom: { 6065 SDValue NV = TLI.LowerOperation(DAG.getNode(ISD::SINT_TO_FP, dl, DestTy, 6066 Source), DAG); 6067 if (NV.getNode()) 6068 return LegalizeOp(NV); 6069 break; // The target decided this was legal after all 6070 } 6071 } 6072 6073 // Expand the source, then glue it back together for the call. We must expand 6074 // the source in case it is shared (this pass of legalize must traverse it). 6075 if (ExpandSource) { 6076 SDValue SrcLo, SrcHi; 6077 ExpandOp(Source, SrcLo, SrcHi); 6078 Source = DAG.getNode(ISD::BUILD_PAIR, dl, SourceVT, SrcLo, SrcHi); 6079 } 6080 6081 RTLIB::Libcall LC = isSigned ? 6082 RTLIB::getSINTTOFP(SourceVT, DestTy) : 6083 RTLIB::getUINTTOFP(SourceVT, DestTy); 6084 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unknown int value type"); 6085 6086 Source = DAG.getNode(ISD::SINT_TO_FP, dl, DestTy, Source); 6087 SDValue HiPart; 6088 SDValue Result = ExpandLibCall(LC, Source.getNode(), isSigned, HiPart); 6089 if (Result.getValueType() != DestTy && HiPart.getNode()) 6090 Result = DAG.getNode(ISD::BUILD_PAIR, dl, DestTy, Result, HiPart); 6091 return Result; 6092} 6093 6094/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a 6095/// INT_TO_FP operation of the specified operand when the target requests that 6096/// we expand it. At this point, we know that the result and operand types are 6097/// legal for the target. 6098SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, 6099 SDValue Op0, 6100 MVT DestVT, 6101 DebugLoc dl) { 6102 if (Op0.getValueType() == MVT::i32) { 6103 // simple 32-bit [signed|unsigned] integer to float/double expansion 6104 6105 // Get the stack frame index of a 8 byte buffer. 6106 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 6107 6108 // word offset constant for Hi/Lo address computation 6109 SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy()); 6110 // set up Hi and Lo (into buffer) address based on endian 6111 SDValue Hi = StackSlot; 6112 SDValue Lo = DAG.getNode(ISD::ADD, dl, 6113 TLI.getPointerTy(), StackSlot,WordOff); 6114 if (TLI.isLittleEndian()) 6115 std::swap(Hi, Lo); 6116 6117 // if signed map to unsigned space 6118 SDValue Op0Mapped; 6119 if (isSigned) { 6120 // constant used to invert sign bit (signed to unsigned mapping) 6121 SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32); 6122 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit); 6123 } else { 6124 Op0Mapped = Op0; 6125 } 6126 // store the lo of the constructed double - based on integer input 6127 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, 6128 Op0Mapped, Lo, NULL, 0); 6129 // initial hi portion of constructed double 6130 SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32); 6131 // store the hi of the constructed double - biased exponent 6132 SDValue Store2=DAG.getStore(Store1, dl, InitialHi, Hi, NULL, 0); 6133 // load the constructed double 6134 SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, NULL, 0); 6135 // FP constant to bias correct the final result 6136 SDValue Bias = DAG.getConstantFP(isSigned ? 6137 BitsToDouble(0x4330000080000000ULL) 6138 : BitsToDouble(0x4330000000000000ULL), 6139 MVT::f64); 6140 // subtract the bias 6141 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 6142 // final result 6143 SDValue Result; 6144 // handle final rounding 6145 if (DestVT == MVT::f64) { 6146 // do nothing 6147 Result = Sub; 6148 } else if (DestVT.bitsLT(MVT::f64)) { 6149 Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub, 6150 DAG.getIntPtrConstant(0)); 6151 } else if (DestVT.bitsGT(MVT::f64)) { 6152 Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub); 6153 } 6154 return Result; 6155 } 6156 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 6157 SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 6158 6159 SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()), 6160 Op0, DAG.getConstant(0, Op0.getValueType()), 6161 ISD::SETLT); 6162 SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); 6163 SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), 6164 SignSet, Four, Zero); 6165 6166 // If the sign bit of the integer is set, the large number will be treated 6167 // as a negative number. To counteract this, the dynamic code adds an 6168 // offset depending on the data type. 6169 uint64_t FF; 6170 switch (Op0.getValueType().getSimpleVT()) { 6171 default: assert(0 && "Unsupported integer type!"); 6172 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 6173 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 6174 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 6175 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 6176 } 6177 if (TLI.isLittleEndian()) FF <<= 32; 6178 Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF); 6179 6180 SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); 6181 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 6182 CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset); 6183 Alignment = std::min(Alignment, 4u); 6184 SDValue FudgeInReg; 6185 if (DestVT == MVT::f32) 6186 FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx, 6187 PseudoSourceValue::getConstantPool(), 0, 6188 false, Alignment); 6189 else { 6190 FudgeInReg = 6191 LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, 6192 DAG.getEntryNode(), CPIdx, 6193 PseudoSourceValue::getConstantPool(), 0, 6194 MVT::f32, false, Alignment)); 6195 } 6196 6197 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 6198} 6199 6200/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a 6201/// *INT_TO_FP operation of the specified operand when the target requests that 6202/// we promote it. At this point, we know that the result and operand types are 6203/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 6204/// operation that takes a larger input. 6205SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, 6206 MVT DestVT, 6207 bool isSigned, 6208 DebugLoc dl) { 6209 // First step, figure out the appropriate *INT_TO_FP operation to use. 6210 MVT NewInTy = LegalOp.getValueType(); 6211 6212 unsigned OpToUse = 0; 6213 6214 // Scan for the appropriate larger type to use. 6215 while (1) { 6216 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT()+1); 6217 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 6218 6219 // If the target supports SINT_TO_FP of this type, use it. 6220 switch (TLI.getOperationAction(ISD::SINT_TO_FP, NewInTy)) { 6221 default: break; 6222 case TargetLowering::Legal: 6223 if (!TLI.isTypeLegal(NewInTy)) 6224 break; // Can't use this datatype. 6225 // FALL THROUGH. 6226 case TargetLowering::Custom: 6227 OpToUse = ISD::SINT_TO_FP; 6228 break; 6229 } 6230 if (OpToUse) break; 6231 if (isSigned) continue; 6232 6233 // If the target supports UINT_TO_FP of this type, use it. 6234 switch (TLI.getOperationAction(ISD::UINT_TO_FP, NewInTy)) { 6235 default: break; 6236 case TargetLowering::Legal: 6237 if (!TLI.isTypeLegal(NewInTy)) 6238 break; // Can't use this datatype. 6239 // FALL THROUGH. 6240 case TargetLowering::Custom: 6241 OpToUse = ISD::UINT_TO_FP; 6242 break; 6243 } 6244 if (OpToUse) break; 6245 6246 // Otherwise, try a larger type. 6247 } 6248 6249 // Okay, we found the operation and type to use. Zero extend our input to the 6250 // desired type then run the operation on it. 6251 return DAG.getNode(OpToUse, dl, DestVT, 6252 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 6253 dl, NewInTy, LegalOp)); 6254} 6255 6256/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a 6257/// FP_TO_*INT operation of the specified operand when the target requests that 6258/// we promote it. At this point, we know that the result and operand types are 6259/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 6260/// operation that returns a larger result. 6261SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, 6262 MVT DestVT, 6263 bool isSigned, 6264 DebugLoc dl) { 6265 // First step, figure out the appropriate FP_TO*INT operation to use. 6266 MVT NewOutTy = DestVT; 6267 6268 unsigned OpToUse = 0; 6269 6270 // Scan for the appropriate larger type to use. 6271 while (1) { 6272 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT()+1); 6273 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 6274 6275 // If the target supports FP_TO_SINT returning this type, use it. 6276 switch (TLI.getOperationAction(ISD::FP_TO_SINT, NewOutTy)) { 6277 default: break; 6278 case TargetLowering::Legal: 6279 if (!TLI.isTypeLegal(NewOutTy)) 6280 break; // Can't use this datatype. 6281 // FALL THROUGH. 6282 case TargetLowering::Custom: 6283 OpToUse = ISD::FP_TO_SINT; 6284 break; 6285 } 6286 if (OpToUse) break; 6287 6288 // If the target supports FP_TO_UINT of this type, use it. 6289 switch (TLI.getOperationAction(ISD::FP_TO_UINT, NewOutTy)) { 6290 default: break; 6291 case TargetLowering::Legal: 6292 if (!TLI.isTypeLegal(NewOutTy)) 6293 break; // Can't use this datatype. 6294 // FALL THROUGH. 6295 case TargetLowering::Custom: 6296 OpToUse = ISD::FP_TO_UINT; 6297 break; 6298 } 6299 if (OpToUse) break; 6300 6301 // Otherwise, try a larger type. 6302 } 6303 6304 6305 // Okay, we found the operation and type to use. 6306 SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 6307 6308 // If the operation produces an invalid type, it must be custom lowered. Use 6309 // the target lowering hooks to expand it. Just keep the low part of the 6310 // expanded operation, we know that we're truncating anyway. 6311 if (getTypeAction(NewOutTy) == Expand) { 6312 SmallVector<SDValue, 2> Results; 6313 TLI.ReplaceNodeResults(Operation.getNode(), Results, DAG); 6314 assert(Results.size() == 1 && "Incorrect FP_TO_XINT lowering!"); 6315 Operation = Results[0]; 6316 } 6317 6318 // Truncate the result of the extended FP_TO_*INT operation to the desired 6319 // size. 6320 return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 6321} 6322 6323/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation. 6324/// 6325SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) { 6326 MVT VT = Op.getValueType(); 6327 MVT SHVT = TLI.getShiftAmountTy(); 6328 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 6329 switch (VT.getSimpleVT()) { 6330 default: assert(0 && "Unhandled Expand type in BSWAP!"); abort(); 6331 case MVT::i16: 6332 Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); 6333 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); 6334 return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); 6335 case MVT::i32: 6336 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT)); 6337 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); 6338 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); 6339 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT)); 6340 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT)); 6341 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT)); 6342 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 6343 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 6344 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 6345 case MVT::i64: 6346 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT)); 6347 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT)); 6348 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT)); 6349 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); 6350 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); 6351 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT)); 6352 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT)); 6353 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT)); 6354 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT)); 6355 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT)); 6356 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT)); 6357 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT)); 6358 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT)); 6359 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT)); 6360 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 6361 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 6362 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 6363 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 6364 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 6365 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 6366 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 6367 } 6368} 6369 6370/// ExpandBitCount - Expand the specified bitcount instruction into operations. 6371/// 6372SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op, 6373 DebugLoc dl) { 6374 switch (Opc) { 6375 default: assert(0 && "Cannot expand this yet!"); 6376 case ISD::CTPOP: { 6377 static const uint64_t mask[6] = { 6378 0x5555555555555555ULL, 0x3333333333333333ULL, 6379 0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL, 6380 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL 6381 }; 6382 MVT VT = Op.getValueType(); 6383 MVT ShVT = TLI.getShiftAmountTy(); 6384 unsigned len = VT.getSizeInBits(); 6385 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 6386 //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8]) 6387 unsigned EltSize = VT.isVector() ? 6388 VT.getVectorElementType().getSizeInBits() : len; 6389 SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT); 6390 SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT); 6391 Op = DAG.getNode(ISD::ADD, dl, VT, 6392 DAG.getNode(ISD::AND, dl, VT, Op, Tmp2), 6393 DAG.getNode(ISD::AND, dl, VT, 6394 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3), 6395 Tmp2)); 6396 } 6397 return Op; 6398 } 6399 case ISD::CTLZ: { 6400 // for now, we do this: 6401 // x = x | (x >> 1); 6402 // x = x | (x >> 2); 6403 // ... 6404 // x = x | (x >>16); 6405 // x = x | (x >>32); // for 64-bit input 6406 // return popcount(~x); 6407 // 6408 // but see also: http://www.hackersdelight.org/HDcode/nlz.cc 6409 MVT VT = Op.getValueType(); 6410 MVT ShVT = TLI.getShiftAmountTy(); 6411 unsigned len = VT.getSizeInBits(); 6412 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 6413 SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT); 6414 Op = DAG.getNode(ISD::OR, dl, VT, Op, 6415 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3)); 6416 } 6417 Op = DAG.getNOT(dl, Op, VT); 6418 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 6419 } 6420 case ISD::CTTZ: { 6421 // for now, we use: { return popcount(~x & (x - 1)); } 6422 // unless the target has ctlz but not ctpop, in which case we use: 6423 // { return 32 - nlz(~x & (x-1)); } 6424 // see also http://www.hackersdelight.org/HDcode/ntz.cc 6425 MVT VT = Op.getValueType(); 6426 SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT, 6427 DAG.getNOT(dl, Op, VT), 6428 DAG.getNode(ISD::SUB, dl, VT, Op, 6429 DAG.getConstant(1, VT))); 6430 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 6431 if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) && 6432 TLI.isOperationLegalOrCustom(ISD::CTLZ, VT)) 6433 return DAG.getNode(ISD::SUB, dl, VT, 6434 DAG.getConstant(VT.getSizeInBits(), VT), 6435 DAG.getNode(ISD::CTLZ, dl, VT, Tmp3)); 6436 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3); 6437 } 6438 } 6439} 6440 6441/// ExpandOp - Expand the specified SDValue into its two component pieces 6442/// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, the 6443/// LegalizedNodes map is filled in for any results that are not expanded, the 6444/// ExpandedNodes map is filled in for any results that are expanded, and the 6445/// Lo/Hi values are returned. 6446void SelectionDAGLegalize::ExpandOp(SDValue Op, SDValue &Lo, SDValue &Hi){ 6447 MVT VT = Op.getValueType(); 6448 MVT NVT = TLI.getTypeToTransformTo(VT); 6449 SDNode *Node = Op.getNode(); 6450 DebugLoc dl = Node->getDebugLoc(); 6451 assert(getTypeAction(VT) == Expand && "Not an expanded type!"); 6452 assert(((NVT.isInteger() && NVT.bitsLT(VT)) || VT.isFloatingPoint() || 6453 VT.isVector()) && "Cannot expand to FP value or to larger int value!"); 6454 6455 // See if we already expanded it. 6456 DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator I 6457 = ExpandedNodes.find(Op); 6458 if (I != ExpandedNodes.end()) { 6459 Lo = I->second.first; 6460 Hi = I->second.second; 6461 return; 6462 } 6463 6464 switch (Node->getOpcode()) { 6465 case ISD::CopyFromReg: 6466 assert(0 && "CopyFromReg must be legal!"); 6467 case ISD::FP_ROUND_INREG: 6468 if (VT == MVT::ppcf128 && 6469 TLI.getOperationAction(ISD::FP_ROUND_INREG, VT) == 6470 TargetLowering::Custom) { 6471 SDValue SrcLo, SrcHi, Src; 6472 ExpandOp(Op.getOperand(0), SrcLo, SrcHi); 6473 Src = DAG.getNode(ISD::BUILD_PAIR, dl, VT, SrcLo, SrcHi); 6474 SDValue Result = TLI.LowerOperation( 6475 DAG.getNode(ISD::FP_ROUND_INREG, dl, VT, Src, Op.getOperand(1)), DAG); 6476 assert(Result.getNode()->getOpcode() == ISD::BUILD_PAIR); 6477 Lo = Result.getNode()->getOperand(0); 6478 Hi = Result.getNode()->getOperand(1); 6479 break; 6480 } 6481 // fall through 6482 default: 6483#ifndef NDEBUG 6484 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 6485#endif 6486 assert(0 && "Do not know how to expand this operator!"); 6487 abort(); 6488 case ISD::EXTRACT_ELEMENT: 6489 ExpandOp(Node->getOperand(0), Lo, Hi); 6490 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) 6491 return ExpandOp(Hi, Lo, Hi); 6492 return ExpandOp(Lo, Lo, Hi); 6493 case ISD::EXTRACT_VECTOR_ELT: 6494 // ExpandEXTRACT_VECTOR_ELT tolerates invalid result types. 6495 Lo = ExpandEXTRACT_VECTOR_ELT(Op); 6496 return ExpandOp(Lo, Lo, Hi); 6497 case ISD::UNDEF: 6498 Lo = DAG.getUNDEF(NVT); 6499 Hi = DAG.getUNDEF(NVT); 6500 break; 6501 case ISD::Constant: { 6502 unsigned NVTBits = NVT.getSizeInBits(); 6503 const APInt &Cst = cast<ConstantSDNode>(Node)->getAPIntValue(); 6504 Lo = DAG.getConstant(APInt(Cst).trunc(NVTBits), NVT); 6505 Hi = DAG.getConstant(Cst.lshr(NVTBits).trunc(NVTBits), NVT); 6506 break; 6507 } 6508 case ISD::ConstantFP: { 6509 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 6510 if (CFP->getValueType(0) == MVT::ppcf128) { 6511 APInt api = CFP->getValueAPF().bitcastToAPInt(); 6512 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &api.getRawData()[1])), 6513 MVT::f64); 6514 Hi = DAG.getConstantFP(APFloat(APInt(64, 1, &api.getRawData()[0])), 6515 MVT::f64); 6516 break; 6517 } 6518 Lo = ExpandConstantFP(CFP, false, DAG, TLI); 6519 if (getTypeAction(Lo.getValueType()) == Expand) 6520 ExpandOp(Lo, Lo, Hi); 6521 break; 6522 } 6523 case ISD::BUILD_PAIR: 6524 // Return the operands. 6525 Lo = Node->getOperand(0); 6526 Hi = Node->getOperand(1); 6527 break; 6528 6529 case ISD::MERGE_VALUES: 6530 if (Node->getNumValues() == 1) { 6531 ExpandOp(Op.getOperand(0), Lo, Hi); 6532 break; 6533 } 6534 // FIXME: For now only expand i64,chain = MERGE_VALUES (x, y) 6535 assert(Op.getResNo() == 0 && Node->getNumValues() == 2 && 6536 Op.getValue(1).getValueType() == MVT::Other && 6537 "unhandled MERGE_VALUES"); 6538 ExpandOp(Op.getOperand(0), Lo, Hi); 6539 // Remember that we legalized the chain. 6540 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Op.getOperand(1))); 6541 break; 6542 6543 case ISD::SIGN_EXTEND_INREG: 6544 ExpandOp(Node->getOperand(0), Lo, Hi); 6545 // sext_inreg the low part if needed. 6546 Lo = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Lo, Node->getOperand(1)); 6547 6548 // The high part gets the sign extension from the lo-part. This handles 6549 // things like sextinreg V:i64 from i8. 6550 Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo, 6551 DAG.getConstant(NVT.getSizeInBits()-1, 6552 TLI.getShiftAmountTy())); 6553 break; 6554 6555 case ISD::BSWAP: { 6556 ExpandOp(Node->getOperand(0), Lo, Hi); 6557 SDValue TempLo = DAG.getNode(ISD::BSWAP, dl, NVT, Hi); 6558 Hi = DAG.getNode(ISD::BSWAP, dl, NVT, Lo); 6559 Lo = TempLo; 6560 break; 6561 } 6562 6563 case ISD::CTPOP: 6564 ExpandOp(Node->getOperand(0), Lo, Hi); 6565 Lo = DAG.getNode(ISD::ADD, dl, NVT, // ctpop(HL) -> ctpop(H)+ctpop(L) 6566 DAG.getNode(ISD::CTPOP, dl, NVT, Lo), 6567 DAG.getNode(ISD::CTPOP, dl, NVT, Hi)); 6568 Hi = DAG.getConstant(0, NVT); 6569 break; 6570 6571 case ISD::CTLZ: { 6572 // ctlz (HL) -> ctlz(H) != 32 ? ctlz(H) : (ctlz(L)+32) 6573 ExpandOp(Node->getOperand(0), Lo, Hi); 6574 SDValue BitsC = DAG.getConstant(NVT.getSizeInBits(), NVT); 6575 SDValue HLZ = DAG.getNode(ISD::CTLZ, dl, NVT, Hi); 6576 SDValue TopNotZero = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), HLZ, 6577 BitsC, ISD::SETNE); 6578 SDValue LowPart = DAG.getNode(ISD::CTLZ, dl, NVT, Lo); 6579 LowPart = DAG.getNode(ISD::ADD, dl, NVT, LowPart, BitsC); 6580 6581 Lo = DAG.getNode(ISD::SELECT, dl, NVT, TopNotZero, HLZ, LowPart); 6582 Hi = DAG.getConstant(0, NVT); 6583 break; 6584 } 6585 6586 case ISD::CTTZ: { 6587 // cttz (HL) -> cttz(L) != 32 ? cttz(L) : (cttz(H)+32) 6588 ExpandOp(Node->getOperand(0), Lo, Hi); 6589 SDValue BitsC = DAG.getConstant(NVT.getSizeInBits(), NVT); 6590 SDValue LTZ = DAG.getNode(ISD::CTTZ, dl, NVT, Lo); 6591 SDValue BotNotZero = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), LTZ, 6592 BitsC, ISD::SETNE); 6593 SDValue HiPart = DAG.getNode(ISD::CTTZ, dl, NVT, Hi); 6594 HiPart = DAG.getNode(ISD::ADD, dl, NVT, HiPart, BitsC); 6595 6596 Lo = DAG.getNode(ISD::SELECT, dl, NVT, BotNotZero, LTZ, HiPart); 6597 Hi = DAG.getConstant(0, NVT); 6598 break; 6599 } 6600 6601 case ISD::VAARG: { 6602 SDValue Ch = Node->getOperand(0); // Legalize the chain. 6603 SDValue Ptr = Node->getOperand(1); // Legalize the pointer. 6604 Lo = DAG.getVAArg(NVT, dl, Ch, Ptr, Node->getOperand(2)); 6605 Hi = DAG.getVAArg(NVT, dl, Lo.getValue(1), Ptr, Node->getOperand(2)); 6606 6607 // Remember that we legalized the chain. 6608 Hi = LegalizeOp(Hi); 6609 AddLegalizedOperand(Op.getValue(1), Hi.getValue(1)); 6610 if (TLI.isBigEndian()) 6611 std::swap(Lo, Hi); 6612 break; 6613 } 6614 6615 case ISD::LOAD: { 6616 LoadSDNode *LD = cast<LoadSDNode>(Node); 6617 SDValue Ch = LD->getChain(); // Legalize the chain. 6618 SDValue Ptr = LD->getBasePtr(); // Legalize the pointer. 6619 ISD::LoadExtType ExtType = LD->getExtensionType(); 6620 const Value *SV = LD->getSrcValue(); 6621 int SVOffset = LD->getSrcValueOffset(); 6622 unsigned Alignment = LD->getAlignment(); 6623 bool isVolatile = LD->isVolatile(); 6624 6625 if (ExtType == ISD::NON_EXTLOAD) { 6626 Lo = DAG.getLoad(NVT, dl, Ch, Ptr, SV, SVOffset, 6627 isVolatile, Alignment); 6628 if (VT == MVT::f32 || VT == MVT::f64) { 6629 // f32->i32 or f64->i64 one to one expansion. 6630 // Remember that we legalized the chain. 6631 AddLegalizedOperand(SDValue(Node, 1), LegalizeOp(Lo.getValue(1))); 6632 // Recursively expand the new load. 6633 if (getTypeAction(NVT) == Expand) 6634 ExpandOp(Lo, Lo, Hi); 6635 break; 6636 } 6637 6638 // Increment the pointer to the other half. 6639 unsigned IncrementSize = Lo.getValueType().getSizeInBits()/8; 6640 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 6641 DAG.getIntPtrConstant(IncrementSize)); 6642 SVOffset += IncrementSize; 6643 Alignment = MinAlign(Alignment, IncrementSize); 6644 Hi = DAG.getLoad(NVT, dl, Ch, Ptr, SV, SVOffset, 6645 isVolatile, Alignment); 6646 6647 // Build a factor node to remember that this load is independent of the 6648 // other one. 6649 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 6650 Hi.getValue(1)); 6651 6652 // Remember that we legalized the chain. 6653 AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF)); 6654 if (TLI.isBigEndian()) 6655 std::swap(Lo, Hi); 6656 } else { 6657 MVT EVT = LD->getMemoryVT(); 6658 6659 if ((VT == MVT::f64 && EVT == MVT::f32) || 6660 (VT == MVT::ppcf128 && (EVT==MVT::f64 || EVT==MVT::f32))) { 6661 // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND 6662 SDValue Load = DAG.getLoad(EVT, dl, Ch, Ptr, SV, 6663 SVOffset, isVolatile, Alignment); 6664 // Remember that we legalized the chain. 6665 AddLegalizedOperand(SDValue(Node, 1), LegalizeOp(Load.getValue(1))); 6666 ExpandOp(DAG.getNode(ISD::FP_EXTEND, dl, VT, Load), Lo, Hi); 6667 break; 6668 } 6669 6670 if (EVT == NVT) 6671 Lo = DAG.getLoad(NVT, dl, Ch, Ptr, SV, 6672 SVOffset, isVolatile, Alignment); 6673 else 6674 Lo = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr, SV, 6675 SVOffset, EVT, isVolatile, 6676 Alignment); 6677 6678 // Remember that we legalized the chain. 6679 AddLegalizedOperand(SDValue(Node, 1), LegalizeOp(Lo.getValue(1))); 6680 6681 if (ExtType == ISD::SEXTLOAD) { 6682 // The high part is obtained by SRA'ing all but one of the bits of the 6683 // lo part. 6684 unsigned LoSize = Lo.getValueType().getSizeInBits(); 6685 Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo, 6686 DAG.getConstant(LoSize-1, TLI.getShiftAmountTy())); 6687 } else if (ExtType == ISD::ZEXTLOAD) { 6688 // The high part is just a zero. 6689 Hi = DAG.getConstant(0, NVT); 6690 } else /* if (ExtType == ISD::EXTLOAD) */ { 6691 // The high part is undefined. 6692 Hi = DAG.getUNDEF(NVT); 6693 } 6694 } 6695 break; 6696 } 6697 case ISD::AND: 6698 case ISD::OR: 6699 case ISD::XOR: { // Simple logical operators -> two trivial pieces. 6700 SDValue LL, LH, RL, RH; 6701 ExpandOp(Node->getOperand(0), LL, LH); 6702 ExpandOp(Node->getOperand(1), RL, RH); 6703 Lo = DAG.getNode(Node->getOpcode(), dl, NVT, LL, RL); 6704 Hi = DAG.getNode(Node->getOpcode(), dl, NVT, LH, RH); 6705 break; 6706 } 6707 case ISD::SELECT: { 6708 SDValue LL, LH, RL, RH; 6709 ExpandOp(Node->getOperand(1), LL, LH); 6710 ExpandOp(Node->getOperand(2), RL, RH); 6711 if (getTypeAction(NVT) == Expand) 6712 NVT = TLI.getTypeToExpandTo(NVT); 6713 Lo = DAG.getNode(ISD::SELECT, dl, NVT, Node->getOperand(0), LL, RL); 6714 if (VT != MVT::f32) 6715 Hi = DAG.getNode(ISD::SELECT, dl, NVT, Node->getOperand(0), LH, RH); 6716 break; 6717 } 6718 case ISD::SELECT_CC: { 6719 SDValue TL, TH, FL, FH; 6720 ExpandOp(Node->getOperand(2), TL, TH); 6721 ExpandOp(Node->getOperand(3), FL, FH); 6722 if (getTypeAction(NVT) == Expand) 6723 NVT = TLI.getTypeToExpandTo(NVT); 6724 Lo = DAG.getNode(ISD::SELECT_CC, dl, NVT, Node->getOperand(0), 6725 Node->getOperand(1), TL, FL, Node->getOperand(4)); 6726 if (VT != MVT::f32) 6727 Hi = DAG.getNode(ISD::SELECT_CC, dl, NVT, Node->getOperand(0), 6728 Node->getOperand(1), TH, FH, Node->getOperand(4)); 6729 break; 6730 } 6731 case ISD::ANY_EXTEND: 6732 // The low part is any extension of the input (which degenerates to a copy). 6733 Lo = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0)); 6734 // The high part is undefined. 6735 Hi = DAG.getUNDEF(NVT); 6736 break; 6737 case ISD::SIGN_EXTEND: { 6738 // The low part is just a sign extension of the input (which degenerates to 6739 // a copy). 6740 Lo = DAG.getNode(ISD::SIGN_EXTEND, dl, NVT, Node->getOperand(0)); 6741 6742 // The high part is obtained by SRA'ing all but one of the bits of the lo 6743 // part. 6744 unsigned LoSize = Lo.getValueType().getSizeInBits(); 6745 Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo, 6746 DAG.getConstant(LoSize-1, TLI.getShiftAmountTy())); 6747 break; 6748 } 6749 case ISD::ZERO_EXTEND: 6750 // The low part is just a zero extension of the input (which degenerates to 6751 // a copy). 6752 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 6753 6754 // The high part is just a zero. 6755 Hi = DAG.getConstant(0, NVT); 6756 break; 6757 6758 case ISD::TRUNCATE: { 6759 // The input value must be larger than this value. Expand *it*. 6760 SDValue NewLo; 6761 ExpandOp(Node->getOperand(0), NewLo, Hi); 6762 6763 // The low part is now either the right size, or it is closer. If not the 6764 // right size, make an illegal truncate so we recursively expand it. 6765 if (NewLo.getValueType() != Node->getValueType(0)) 6766 NewLo = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), NewLo); 6767 ExpandOp(NewLo, Lo, Hi); 6768 break; 6769 } 6770 6771 case ISD::BIT_CONVERT: { 6772 SDValue Tmp; 6773 if (TLI.getOperationAction(ISD::BIT_CONVERT, VT) == TargetLowering::Custom){ 6774 // If the target wants to, allow it to lower this itself. 6775 switch (getTypeAction(Node->getOperand(0).getValueType())) { 6776 case Expand: assert(0 && "cannot expand FP!"); 6777 case Legal: Tmp = LegalizeOp(Node->getOperand(0)); break; 6778 case Promote: Tmp = PromoteOp (Node->getOperand(0)); break; 6779 } 6780 Tmp = TLI.LowerOperation(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp), DAG); 6781 } 6782 6783 // f32 / f64 must be expanded to i32 / i64. 6784 if (VT == MVT::f32 || VT == MVT::f64) { 6785 Lo = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0)); 6786 if (getTypeAction(NVT) == Expand) 6787 ExpandOp(Lo, Lo, Hi); 6788 break; 6789 } 6790 6791 // If source operand will be expanded to the same type as VT, i.e. 6792 // i64 <- f64, i32 <- f32, expand the source operand instead. 6793 MVT VT0 = Node->getOperand(0).getValueType(); 6794 if (getTypeAction(VT0) == Expand && TLI.getTypeToTransformTo(VT0) == VT) { 6795 ExpandOp(Node->getOperand(0), Lo, Hi); 6796 break; 6797 } 6798 6799 // Turn this into a load/store pair by default. 6800 if (Tmp.getNode() == 0) 6801 Tmp = EmitStackConvert(Node->getOperand(0), VT, VT, dl); 6802 6803 ExpandOp(Tmp, Lo, Hi); 6804 break; 6805 } 6806 6807 case ISD::READCYCLECOUNTER: { 6808 assert(TLI.getOperationAction(ISD::READCYCLECOUNTER, VT) == 6809 TargetLowering::Custom && 6810 "Must custom expand ReadCycleCounter"); 6811 SDValue Tmp = TLI.LowerOperation(Op, DAG); 6812 assert(Tmp.getNode() && "Node must be custom expanded!"); 6813 ExpandOp(Tmp.getValue(0), Lo, Hi); 6814 AddLegalizedOperand(SDValue(Node, 1), // Remember we legalized the chain. 6815 LegalizeOp(Tmp.getValue(1))); 6816 break; 6817 } 6818 6819 case ISD::ATOMIC_CMP_SWAP: { 6820 // This operation does not need a loop. 6821 SDValue Tmp = TLI.LowerOperation(Op, DAG); 6822 assert(Tmp.getNode() && "Node must be custom expanded!"); 6823 ExpandOp(Tmp.getValue(0), Lo, Hi); 6824 AddLegalizedOperand(SDValue(Node, 1), // Remember we legalized the chain. 6825 LegalizeOp(Tmp.getValue(1))); 6826 break; 6827 } 6828 6829 case ISD::ATOMIC_LOAD_ADD: 6830 case ISD::ATOMIC_LOAD_SUB: 6831 case ISD::ATOMIC_LOAD_AND: 6832 case ISD::ATOMIC_LOAD_OR: 6833 case ISD::ATOMIC_LOAD_XOR: 6834 case ISD::ATOMIC_LOAD_NAND: 6835 case ISD::ATOMIC_SWAP: { 6836 // These operations require a loop to be generated. We can't do that yet, 6837 // so substitute a target-dependent pseudo and expand that later. 6838 SDValue In2Lo, In2Hi, In2; 6839 ExpandOp(Op.getOperand(2), In2Lo, In2Hi); 6840 In2 = DAG.getNode(ISD::BUILD_PAIR, dl, VT, In2Lo, In2Hi); 6841 AtomicSDNode* Anode = cast<AtomicSDNode>(Node); 6842 SDValue Replace = 6843 DAG.getAtomic(Op.getOpcode(), dl, Anode->getMemoryVT(), 6844 Op.getOperand(0), Op.getOperand(1), In2, 6845 Anode->getSrcValue(), Anode->getAlignment()); 6846 SDValue Result = TLI.LowerOperation(Replace, DAG); 6847 ExpandOp(Result.getValue(0), Lo, Hi); 6848 // Remember that we legalized the chain. 6849 AddLegalizedOperand(SDValue(Node,1), LegalizeOp(Result.getValue(1))); 6850 break; 6851 } 6852 6853 // These operators cannot be expanded directly, emit them as calls to 6854 // library functions. 6855 case ISD::FP_TO_SINT: { 6856 if (TLI.getOperationAction(ISD::FP_TO_SINT, VT) == TargetLowering::Custom) { 6857 SDValue Op; 6858 switch (getTypeAction(Node->getOperand(0).getValueType())) { 6859 case Expand: assert(0 && "cannot expand FP!"); 6860 case Legal: Op = LegalizeOp(Node->getOperand(0)); break; 6861 case Promote: Op = PromoteOp (Node->getOperand(0)); break; 6862 } 6863 6864 Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op), DAG); 6865 6866 // Now that the custom expander is done, expand the result, which is still 6867 // VT. 6868 if (Op.getNode()) { 6869 ExpandOp(Op, Lo, Hi); 6870 break; 6871 } 6872 } 6873 6874 RTLIB::Libcall LC = RTLIB::getFPTOSINT(Node->getOperand(0).getValueType(), 6875 VT); 6876 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected uint-to-fp conversion!"); 6877 Lo = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Hi); 6878 break; 6879 } 6880 6881 case ISD::FP_TO_UINT: { 6882 if (TLI.getOperationAction(ISD::FP_TO_UINT, VT) == TargetLowering::Custom) { 6883 SDValue Op; 6884 switch (getTypeAction(Node->getOperand(0).getValueType())) { 6885 case Expand: assert(0 && "cannot expand FP!"); 6886 case Legal: Op = LegalizeOp(Node->getOperand(0)); break; 6887 case Promote: Op = PromoteOp (Node->getOperand(0)); break; 6888 } 6889 6890 Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_UINT, dl, VT, Op), DAG); 6891 6892 // Now that the custom expander is done, expand the result. 6893 if (Op.getNode()) { 6894 ExpandOp(Op, Lo, Hi); 6895 break; 6896 } 6897 } 6898 6899 RTLIB::Libcall LC = RTLIB::getFPTOUINT(Node->getOperand(0).getValueType(), 6900 VT); 6901 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-uint conversion!"); 6902 Lo = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Hi); 6903 break; 6904 } 6905 6906 case ISD::SHL: { 6907 // If the target wants custom lowering, do so. 6908 SDValue ShiftAmt = LegalizeOp(Node->getOperand(1)); 6909 if (TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Custom) { 6910 SDValue Op = DAG.getNode(ISD::SHL, dl, VT, Node->getOperand(0), ShiftAmt); 6911 Op = TLI.LowerOperation(Op, DAG); 6912 if (Op.getNode()) { 6913 // Now that the custom expander is done, expand the result, which is 6914 // still VT. 6915 ExpandOp(Op, Lo, Hi); 6916 break; 6917 } 6918 } 6919 6920 // If ADDC/ADDE are supported and if the shift amount is a constant 1, emit 6921 // this X << 1 as X+X. 6922 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(ShiftAmt)) { 6923 if (ShAmt->getAPIntValue() == 1 && 6924 TLI.isOperationLegalOrCustom(ISD::ADDC, NVT) && 6925 TLI.isOperationLegalOrCustom(ISD::ADDE, NVT)) { 6926 SDValue LoOps[2], HiOps[3]; 6927 ExpandOp(Node->getOperand(0), LoOps[0], HiOps[0]); 6928 SDVTList VTList = DAG.getVTList(LoOps[0].getValueType(), MVT::Flag); 6929 LoOps[1] = LoOps[0]; 6930 Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps, 2); 6931 6932 HiOps[1] = HiOps[0]; 6933 HiOps[2] = Lo.getValue(1); 6934 Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps, 3); 6935 break; 6936 } 6937 } 6938 6939 // If we can emit an efficient shift operation, do so now. 6940 if (ExpandShift(ISD::SHL, Node->getOperand(0), ShiftAmt, Lo, Hi, dl)) 6941 break; 6942 6943 // If this target supports SHL_PARTS, use it. 6944 TargetLowering::LegalizeAction Action = 6945 TLI.getOperationAction(ISD::SHL_PARTS, NVT); 6946 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 6947 Action == TargetLowering::Custom) { 6948 ExpandShiftParts(ISD::SHL_PARTS, Node->getOperand(0), 6949 ShiftAmt, Lo, Hi, dl); 6950 break; 6951 } 6952 6953 // Otherwise, emit a libcall. 6954 Lo = ExpandLibCall(RTLIB::SHL_I64, Node, false/*left shift=unsigned*/, Hi); 6955 break; 6956 } 6957 6958 case ISD::SRA: { 6959 // If the target wants custom lowering, do so. 6960 SDValue ShiftAmt = LegalizeOp(Node->getOperand(1)); 6961 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Custom) { 6962 SDValue Op = DAG.getNode(ISD::SRA, dl, VT, Node->getOperand(0), ShiftAmt); 6963 Op = TLI.LowerOperation(Op, DAG); 6964 if (Op.getNode()) { 6965 // Now that the custom expander is done, expand the result, which is 6966 // still VT. 6967 ExpandOp(Op, Lo, Hi); 6968 break; 6969 } 6970 } 6971 6972 // If we can emit an efficient shift operation, do so now. 6973 if (ExpandShift(ISD::SRA, Node->getOperand(0), ShiftAmt, Lo, Hi, dl)) 6974 break; 6975 6976 // If this target supports SRA_PARTS, use it. 6977 TargetLowering::LegalizeAction Action = 6978 TLI.getOperationAction(ISD::SRA_PARTS, NVT); 6979 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 6980 Action == TargetLowering::Custom) { 6981 ExpandShiftParts(ISD::SRA_PARTS, Node->getOperand(0), 6982 ShiftAmt, Lo, Hi, dl); 6983 break; 6984 } 6985 6986 // Otherwise, emit a libcall. 6987 Lo = ExpandLibCall(RTLIB::SRA_I64, Node, true/*ashr is signed*/, Hi); 6988 break; 6989 } 6990 6991 case ISD::SRL: { 6992 // If the target wants custom lowering, do so. 6993 SDValue ShiftAmt = LegalizeOp(Node->getOperand(1)); 6994 if (TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Custom) { 6995 SDValue Op = DAG.getNode(ISD::SRL, dl, VT, Node->getOperand(0), ShiftAmt); 6996 Op = TLI.LowerOperation(Op, DAG); 6997 if (Op.getNode()) { 6998 // Now that the custom expander is done, expand the result, which is 6999 // still VT. 7000 ExpandOp(Op, Lo, Hi); 7001 break; 7002 } 7003 } 7004 7005 // If we can emit an efficient shift operation, do so now. 7006 if (ExpandShift(ISD::SRL, Node->getOperand(0), ShiftAmt, Lo, Hi, dl)) 7007 break; 7008 7009 // If this target supports SRL_PARTS, use it. 7010 TargetLowering::LegalizeAction Action = 7011 TLI.getOperationAction(ISD::SRL_PARTS, NVT); 7012 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 7013 Action == TargetLowering::Custom) { 7014 ExpandShiftParts(ISD::SRL_PARTS, 7015 Node->getOperand(0), ShiftAmt, Lo, Hi, dl); 7016 break; 7017 } 7018 7019 // Otherwise, emit a libcall. 7020 Lo = ExpandLibCall(RTLIB::SRL_I64, Node, false/*lshr is unsigned*/, Hi); 7021 break; 7022 } 7023 7024 case ISD::ADD: 7025 case ISD::SUB: { 7026 // If the target wants to custom expand this, let them. 7027 if (TLI.getOperationAction(Node->getOpcode(), VT) == 7028 TargetLowering::Custom) { 7029 SDValue Result = TLI.LowerOperation(Op, DAG); 7030 if (Result.getNode()) { 7031 ExpandOp(Result, Lo, Hi); 7032 break; 7033 } 7034 } 7035 // Expand the subcomponents. 7036 SDValue LHSL, LHSH, RHSL, RHSH; 7037 ExpandOp(Node->getOperand(0), LHSL, LHSH); 7038 ExpandOp(Node->getOperand(1), RHSL, RHSH); 7039 SDValue LoOps[2], HiOps[3]; 7040 LoOps[0] = LHSL; 7041 LoOps[1] = RHSL; 7042 HiOps[0] = LHSH; 7043 HiOps[1] = RHSH; 7044 7045 //cascaded check to see if any smaller size has a a carry flag. 7046 unsigned OpV = Node->getOpcode() == ISD::ADD ? ISD::ADDC : ISD::SUBC; 7047 bool hasCarry = false; 7048 for (unsigned BitSize = NVT.getSizeInBits(); BitSize != 0; BitSize /= 2) { 7049 MVT AVT = MVT::getIntegerVT(BitSize); 7050 if (TLI.isOperationLegalOrCustom(OpV, AVT)) { 7051 hasCarry = true; 7052 break; 7053 } 7054 } 7055 7056 if(hasCarry) { 7057 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 7058 if (Node->getOpcode() == ISD::ADD) { 7059 Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps, 2); 7060 HiOps[2] = Lo.getValue(1); 7061 Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps, 3); 7062 } else { 7063 Lo = DAG.getNode(ISD::SUBC, dl, VTList, LoOps, 2); 7064 HiOps[2] = Lo.getValue(1); 7065 Hi = DAG.getNode(ISD::SUBE, dl, VTList, HiOps, 3); 7066 } 7067 break; 7068 } else { 7069 if (Node->getOpcode() == ISD::ADD) { 7070 Lo = DAG.getNode(ISD::ADD, dl, NVT, LoOps, 2); 7071 Hi = DAG.getNode(ISD::ADD, dl, NVT, HiOps, 2); 7072 SDValue Cmp1 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), 7073 Lo, LoOps[0], ISD::SETULT); 7074 SDValue Carry1 = DAG.getNode(ISD::SELECT, dl, NVT, Cmp1, 7075 DAG.getConstant(1, NVT), 7076 DAG.getConstant(0, NVT)); 7077 SDValue Cmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), 7078 Lo, LoOps[1], ISD::SETULT); 7079 SDValue Carry2 = DAG.getNode(ISD::SELECT, dl, NVT, Cmp2, 7080 DAG.getConstant(1, NVT), 7081 Carry1); 7082 Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, Carry2); 7083 } else { 7084 Lo = DAG.getNode(ISD::SUB, dl, NVT, LoOps, 2); 7085 Hi = DAG.getNode(ISD::SUB, dl, NVT, HiOps, 2); 7086 SDValue Cmp = DAG.getSetCC(dl, NVT, LoOps[0], LoOps[1], ISD::SETULT); 7087 SDValue Borrow = DAG.getNode(ISD::SELECT, dl, NVT, Cmp, 7088 DAG.getConstant(1, NVT), 7089 DAG.getConstant(0, NVT)); 7090 Hi = DAG.getNode(ISD::SUB, dl, NVT, Hi, Borrow); 7091 } 7092 break; 7093 } 7094 } 7095 7096 case ISD::ADDC: 7097 case ISD::SUBC: { 7098 // Expand the subcomponents. 7099 SDValue LHSL, LHSH, RHSL, RHSH; 7100 ExpandOp(Node->getOperand(0), LHSL, LHSH); 7101 ExpandOp(Node->getOperand(1), RHSL, RHSH); 7102 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 7103 SDValue LoOps[2] = { LHSL, RHSL }; 7104 SDValue HiOps[3] = { LHSH, RHSH }; 7105 7106 if (Node->getOpcode() == ISD::ADDC) { 7107 Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps, 2); 7108 HiOps[2] = Lo.getValue(1); 7109 Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps, 3); 7110 } else { 7111 Lo = DAG.getNode(ISD::SUBC, dl, VTList, LoOps, 2); 7112 HiOps[2] = Lo.getValue(1); 7113 Hi = DAG.getNode(ISD::SUBE, dl, VTList, HiOps, 3); 7114 } 7115 // Remember that we legalized the flag. 7116 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1))); 7117 break; 7118 } 7119 case ISD::ADDE: 7120 case ISD::SUBE: { 7121 // Expand the subcomponents. 7122 SDValue LHSL, LHSH, RHSL, RHSH; 7123 ExpandOp(Node->getOperand(0), LHSL, LHSH); 7124 ExpandOp(Node->getOperand(1), RHSL, RHSH); 7125 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 7126 SDValue LoOps[3] = { LHSL, RHSL, Node->getOperand(2) }; 7127 SDValue HiOps[3] = { LHSH, RHSH }; 7128 7129 Lo = DAG.getNode(Node->getOpcode(), dl, VTList, LoOps, 3); 7130 HiOps[2] = Lo.getValue(1); 7131 Hi = DAG.getNode(Node->getOpcode(), dl, VTList, HiOps, 3); 7132 7133 // Remember that we legalized the flag. 7134 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1))); 7135 break; 7136 } 7137 case ISD::MUL: { 7138 // If the target wants to custom expand this, let them. 7139 if (TLI.getOperationAction(ISD::MUL, VT) == TargetLowering::Custom) { 7140 SDValue New = TLI.LowerOperation(Op, DAG); 7141 if (New.getNode()) { 7142 ExpandOp(New, Lo, Hi); 7143 break; 7144 } 7145 } 7146 7147 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, NVT); 7148 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, NVT); 7149 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, NVT); 7150 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, NVT); 7151 if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) { 7152 SDValue LL, LH, RL, RH; 7153 ExpandOp(Node->getOperand(0), LL, LH); 7154 ExpandOp(Node->getOperand(1), RL, RH); 7155 unsigned OuterBitSize = Op.getValueSizeInBits(); 7156 unsigned InnerBitSize = RH.getValueSizeInBits(); 7157 unsigned LHSSB = DAG.ComputeNumSignBits(Op.getOperand(0)); 7158 unsigned RHSSB = DAG.ComputeNumSignBits(Op.getOperand(1)); 7159 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 7160 if (DAG.MaskedValueIsZero(Node->getOperand(0), HighMask) && 7161 DAG.MaskedValueIsZero(Node->getOperand(1), HighMask)) { 7162 // The inputs are both zero-extended. 7163 if (HasUMUL_LOHI) { 7164 // We can emit a umul_lohi. 7165 Lo = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(NVT, NVT), LL, RL); 7166 Hi = SDValue(Lo.getNode(), 1); 7167 break; 7168 } 7169 if (HasMULHU) { 7170 // We can emit a mulhu+mul. 7171 Lo = DAG.getNode(ISD::MUL, dl, NVT, LL, RL); 7172 Hi = DAG.getNode(ISD::MULHU, dl, NVT, LL, RL); 7173 break; 7174 } 7175 } 7176 if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) { 7177 // The input values are both sign-extended. 7178 if (HasSMUL_LOHI) { 7179 // We can emit a smul_lohi. 7180 Lo = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(NVT, NVT), LL, RL); 7181 Hi = SDValue(Lo.getNode(), 1); 7182 break; 7183 } 7184 if (HasMULHS) { 7185 // We can emit a mulhs+mul. 7186 Lo = DAG.getNode(ISD::MUL, dl, NVT, LL, RL); 7187 Hi = DAG.getNode(ISD::MULHS, dl, NVT, LL, RL); 7188 break; 7189 } 7190 } 7191 if (HasUMUL_LOHI) { 7192 // Lo,Hi = umul LHS, RHS. 7193 SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl, 7194 DAG.getVTList(NVT, NVT), LL, RL); 7195 Lo = UMulLOHI; 7196 Hi = UMulLOHI.getValue(1); 7197 RH = DAG.getNode(ISD::MUL, dl, NVT, LL, RH); 7198 LH = DAG.getNode(ISD::MUL, dl, NVT, LH, RL); 7199 Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, RH); 7200 Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, LH); 7201 break; 7202 } 7203 if (HasMULHU) { 7204 Lo = DAG.getNode(ISD::MUL, dl, NVT, LL, RL); 7205 Hi = DAG.getNode(ISD::MULHU, dl, NVT, LL, RL); 7206 RH = DAG.getNode(ISD::MUL, dl, NVT, LL, RH); 7207 LH = DAG.getNode(ISD::MUL, dl, NVT, LH, RL); 7208 Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, RH); 7209 Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, LH); 7210 break; 7211 } 7212 } 7213 7214 // If nothing else, we can make a libcall. 7215 Lo = ExpandLibCall(RTLIB::MUL_I64, Node, false/*sign irrelevant*/, Hi); 7216 break; 7217 } 7218 case ISD::SDIV: 7219 Lo = ExpandLibCall(RTLIB::SDIV_I64, Node, true, Hi); 7220 break; 7221 case ISD::UDIV: 7222 Lo = ExpandLibCall(RTLIB::UDIV_I64, Node, true, Hi); 7223 break; 7224 case ISD::SREM: 7225 Lo = ExpandLibCall(RTLIB::SREM_I64, Node, true, Hi); 7226 break; 7227 case ISD::UREM: 7228 Lo = ExpandLibCall(RTLIB::UREM_I64, Node, true, Hi); 7229 break; 7230 7231 case ISD::FADD: 7232 Lo = ExpandLibCall(GetFPLibCall(VT, RTLIB::ADD_F32, 7233 RTLIB::ADD_F64, 7234 RTLIB::ADD_F80, 7235 RTLIB::ADD_PPCF128), 7236 Node, false, Hi); 7237 break; 7238 case ISD::FSUB: 7239 Lo = ExpandLibCall(GetFPLibCall(VT, RTLIB::SUB_F32, 7240 RTLIB::SUB_F64, 7241 RTLIB::SUB_F80, 7242 RTLIB::SUB_PPCF128), 7243 Node, false, Hi); 7244 break; 7245 case ISD::FMUL: 7246 Lo = ExpandLibCall(GetFPLibCall(VT, RTLIB::MUL_F32, 7247 RTLIB::MUL_F64, 7248 RTLIB::MUL_F80, 7249 RTLIB::MUL_PPCF128), 7250 Node, false, Hi); 7251 break; 7252 case ISD::FDIV: 7253 Lo = ExpandLibCall(GetFPLibCall(VT, RTLIB::DIV_F32, 7254 RTLIB::DIV_F64, 7255 RTLIB::DIV_F80, 7256 RTLIB::DIV_PPCF128), 7257 Node, false, Hi); 7258 break; 7259 case ISD::FP_EXTEND: { 7260 if (VT == MVT::ppcf128) { 7261 assert(Node->getOperand(0).getValueType()==MVT::f32 || 7262 Node->getOperand(0).getValueType()==MVT::f64); 7263 const uint64_t zero = 0; 7264 if (Node->getOperand(0).getValueType()==MVT::f32) 7265 Hi = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Node->getOperand(0)); 7266 else 7267 Hi = Node->getOperand(0); 7268 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); 7269 break; 7270 } 7271 RTLIB::Libcall LC = RTLIB::getFPEXT(Node->getOperand(0).getValueType(), VT); 7272 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_EXTEND!"); 7273 Lo = ExpandLibCall(LC, Node, true, Hi); 7274 break; 7275 } 7276 case ISD::FP_ROUND: { 7277 RTLIB::Libcall LC = RTLIB::getFPROUND(Node->getOperand(0).getValueType(), 7278 VT); 7279 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_ROUND!"); 7280 Lo = ExpandLibCall(LC, Node, true, Hi); 7281 break; 7282 } 7283 case ISD::FSQRT: 7284 case ISD::FSIN: 7285 case ISD::FCOS: 7286 case ISD::FLOG: 7287 case ISD::FLOG2: 7288 case ISD::FLOG10: 7289 case ISD::FEXP: 7290 case ISD::FEXP2: 7291 case ISD::FTRUNC: 7292 case ISD::FFLOOR: 7293 case ISD::FCEIL: 7294 case ISD::FRINT: 7295 case ISD::FNEARBYINT: 7296 case ISD::FPOW: 7297 case ISD::FPOWI: { 7298 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 7299 switch(Node->getOpcode()) { 7300 case ISD::FSQRT: 7301 LC = GetFPLibCall(VT, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 7302 RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128); 7303 break; 7304 case ISD::FSIN: 7305 LC = GetFPLibCall(VT, RTLIB::SIN_F32, RTLIB::SIN_F64, 7306 RTLIB::SIN_F80, RTLIB::SIN_PPCF128); 7307 break; 7308 case ISD::FCOS: 7309 LC = GetFPLibCall(VT, RTLIB::COS_F32, RTLIB::COS_F64, 7310 RTLIB::COS_F80, RTLIB::COS_PPCF128); 7311 break; 7312 case ISD::FLOG: 7313 LC = GetFPLibCall(VT, RTLIB::LOG_F32, RTLIB::LOG_F64, 7314 RTLIB::LOG_F80, RTLIB::LOG_PPCF128); 7315 break; 7316 case ISD::FLOG2: 7317 LC = GetFPLibCall(VT, RTLIB::LOG2_F32, RTLIB::LOG2_F64, 7318 RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128); 7319 break; 7320 case ISD::FLOG10: 7321 LC = GetFPLibCall(VT, RTLIB::LOG10_F32, RTLIB::LOG10_F64, 7322 RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128); 7323 break; 7324 case ISD::FEXP: 7325 LC = GetFPLibCall(VT, RTLIB::EXP_F32, RTLIB::EXP_F64, 7326 RTLIB::EXP_F80, RTLIB::EXP_PPCF128); 7327 break; 7328 case ISD::FEXP2: 7329 LC = GetFPLibCall(VT, RTLIB::EXP2_F32, RTLIB::EXP2_F64, 7330 RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128); 7331 break; 7332 case ISD::FTRUNC: 7333 LC = GetFPLibCall(VT, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 7334 RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128); 7335 break; 7336 case ISD::FFLOOR: 7337 LC = GetFPLibCall(VT, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 7338 RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128); 7339 break; 7340 case ISD::FCEIL: 7341 LC = GetFPLibCall(VT, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 7342 RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128); 7343 break; 7344 case ISD::FRINT: 7345 LC = GetFPLibCall(VT, RTLIB::RINT_F32, RTLIB::RINT_F64, 7346 RTLIB::RINT_F80, RTLIB::RINT_PPCF128); 7347 break; 7348 case ISD::FNEARBYINT: 7349 LC = GetFPLibCall(VT, RTLIB::NEARBYINT_F32, RTLIB::NEARBYINT_F64, 7350 RTLIB::NEARBYINT_F80, RTLIB::NEARBYINT_PPCF128); 7351 break; 7352 case ISD::FPOW: 7353 LC = GetFPLibCall(VT, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, 7354 RTLIB::POW_PPCF128); 7355 break; 7356 case ISD::FPOWI: 7357 LC = GetFPLibCall(VT, RTLIB::POWI_F32, RTLIB::POWI_F64, RTLIB::POWI_F80, 7358 RTLIB::POWI_PPCF128); 7359 break; 7360 default: assert(0 && "Unreachable!"); 7361 } 7362 Lo = ExpandLibCall(LC, Node, false, Hi); 7363 break; 7364 } 7365 case ISD::FABS: { 7366 if (VT == MVT::ppcf128) { 7367 SDValue Tmp; 7368 ExpandOp(Node->getOperand(0), Lo, Tmp); 7369 Hi = DAG.getNode(ISD::FABS, dl, NVT, Tmp); 7370 // lo = hi==fabs(hi) ? lo : -lo; 7371 Lo = DAG.getNode(ISD::SELECT_CC, dl, NVT, Hi, Tmp, 7372 Lo, DAG.getNode(ISD::FNEG, dl, NVT, Lo), 7373 DAG.getCondCode(ISD::SETEQ)); 7374 break; 7375 } 7376 SDValue Mask = (VT == MVT::f64) 7377 ? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT) 7378 : DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT); 7379 Mask = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Mask); 7380 Lo = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0)); 7381 Lo = DAG.getNode(ISD::AND, dl, NVT, Lo, Mask); 7382 if (getTypeAction(NVT) == Expand) 7383 ExpandOp(Lo, Lo, Hi); 7384 break; 7385 } 7386 case ISD::FNEG: { 7387 if (VT == MVT::ppcf128) { 7388 ExpandOp(Node->getOperand(0), Lo, Hi); 7389 Lo = DAG.getNode(ISD::FNEG, dl, MVT::f64, Lo); 7390 Hi = DAG.getNode(ISD::FNEG, dl, MVT::f64, Hi); 7391 break; 7392 } 7393 SDValue Mask = (VT == MVT::f64) 7394 ? DAG.getConstantFP(BitsToDouble(1ULL << 63), VT) 7395 : DAG.getConstantFP(BitsToFloat(1U << 31), VT); 7396 Mask = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Mask); 7397 Lo = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0)); 7398 Lo = DAG.getNode(ISD::XOR, dl, NVT, Lo, Mask); 7399 if (getTypeAction(NVT) == Expand) 7400 ExpandOp(Lo, Lo, Hi); 7401 break; 7402 } 7403 case ISD::FCOPYSIGN: { 7404 Lo = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI); 7405 if (getTypeAction(NVT) == Expand) 7406 ExpandOp(Lo, Lo, Hi); 7407 break; 7408 } 7409 case ISD::SINT_TO_FP: 7410 case ISD::UINT_TO_FP: { 7411 bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP; 7412 MVT SrcVT = Node->getOperand(0).getValueType(); 7413 7414 // Promote the operand if needed. Do this before checking for 7415 // ppcf128 so conversions of i16 and i8 work. 7416 if (getTypeAction(SrcVT) == Promote) { 7417 SDValue Tmp = PromoteOp(Node->getOperand(0)); 7418 Tmp = isSigned 7419 ? DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Tmp.getValueType(), Tmp, 7420 DAG.getValueType(SrcVT)) 7421 : DAG.getZeroExtendInReg(Tmp, dl, SrcVT); 7422 Node = DAG.UpdateNodeOperands(Op, Tmp).getNode(); 7423 SrcVT = Node->getOperand(0).getValueType(); 7424 } 7425 7426 if (VT == MVT::ppcf128 && SrcVT == MVT::i32) { 7427 static const uint64_t zero = 0; 7428 if (isSigned) { 7429 Hi = LegalizeOp(DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f64, 7430 Node->getOperand(0))); 7431 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); 7432 } else { 7433 static const uint64_t TwoE32[] = { 0x41f0000000000000LL, 0 }; 7434 Hi = LegalizeOp(DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f64, 7435 Node->getOperand(0))); 7436 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); 7437 Hi = DAG.getNode(ISD::BUILD_PAIR, dl, VT, Lo, Hi); 7438 // X>=0 ? {(f64)x, 0} : {(f64)x, 0} + 2^32 7439 ExpandOp(DAG.getNode(ISD::SELECT_CC, dl, 7440 MVT::ppcf128, Node->getOperand(0), 7441 DAG.getConstant(0, MVT::i32), 7442 DAG.getNode(ISD::FADD, dl, MVT::ppcf128, Hi, 7443 DAG.getConstantFP( 7444 APFloat(APInt(128, 2, TwoE32)), 7445 MVT::ppcf128)), 7446 Hi, 7447 DAG.getCondCode(ISD::SETLT)), 7448 Lo, Hi); 7449 } 7450 break; 7451 } 7452 if (VT == MVT::ppcf128 && SrcVT == MVT::i64 && !isSigned) { 7453 // si64->ppcf128 done by libcall, below 7454 static const uint64_t TwoE64[] = { 0x43f0000000000000LL, 0 }; 7455 ExpandOp(DAG.getNode(ISD::SINT_TO_FP, dl, MVT::ppcf128, 7456 Node->getOperand(0)), Lo, Hi); 7457 Hi = DAG.getNode(ISD::BUILD_PAIR, dl, VT, Lo, Hi); 7458 // x>=0 ? (ppcf128)(i64)x : (ppcf128)(i64)x + 2^64 7459 ExpandOp(DAG.getNode(ISD::SELECT_CC, dl, MVT::ppcf128, 7460 Node->getOperand(0), 7461 DAG.getConstant(0, MVT::i64), 7462 DAG.getNode(ISD::FADD, dl, MVT::ppcf128, Hi, 7463 DAG.getConstantFP( 7464 APFloat(APInt(128, 2, TwoE64)), 7465 MVT::ppcf128)), 7466 Hi, 7467 DAG.getCondCode(ISD::SETLT)), 7468 Lo, Hi); 7469 break; 7470 } 7471 7472 Lo = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, VT, 7473 Node->getOperand(0), dl); 7474 if (getTypeAction(Lo.getValueType()) == Expand) 7475 // float to i32 etc. can be 'expanded' to a single node. 7476 ExpandOp(Lo, Lo, Hi); 7477 break; 7478 } 7479 } 7480 7481 // Make sure the resultant values have been legalized themselves, unless this 7482 // is a type that requires multi-step expansion. 7483 if (getTypeAction(NVT) != Expand && NVT != MVT::isVoid) { 7484 Lo = LegalizeOp(Lo); 7485 if (Hi.getNode()) 7486 // Don't legalize the high part if it is expanded to a single node. 7487 Hi = LegalizeOp(Hi); 7488 } 7489 7490 // Remember in a map if the values will be reused later. 7491 bool isNew = 7492 ExpandedNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi))).second; 7493 assert(isNew && "Value already expanded?!?"); 7494 isNew = isNew; 7495} 7496 7497/// SplitVectorOp - Given an operand of vector type, break it down into 7498/// two smaller values, still of vector type. 7499void SelectionDAGLegalize::SplitVectorOp(SDValue Op, SDValue &Lo, 7500 SDValue &Hi) { 7501 assert(Op.getValueType().isVector() && "Cannot split non-vector type!"); 7502 SDNode *Node = Op.getNode(); 7503 DebugLoc dl = Node->getDebugLoc(); 7504 unsigned NumElements = Op.getValueType().getVectorNumElements(); 7505 assert(NumElements > 1 && "Cannot split a single element vector!"); 7506 7507 MVT NewEltVT = Op.getValueType().getVectorElementType(); 7508 7509 unsigned NewNumElts_Lo = 1 << Log2_32(NumElements-1); 7510 unsigned NewNumElts_Hi = NumElements - NewNumElts_Lo; 7511 7512 MVT NewVT_Lo = MVT::getVectorVT(NewEltVT, NewNumElts_Lo); 7513 MVT NewVT_Hi = MVT::getVectorVT(NewEltVT, NewNumElts_Hi); 7514 7515 // See if we already split it. 7516 std::map<SDValue, std::pair<SDValue, SDValue> >::iterator I 7517 = SplitNodes.find(Op); 7518 if (I != SplitNodes.end()) { 7519 Lo = I->second.first; 7520 Hi = I->second.second; 7521 return; 7522 } 7523 7524 switch (Node->getOpcode()) { 7525 default: 7526#ifndef NDEBUG 7527 Node->dump(&DAG); 7528#endif 7529 assert(0 && "Unhandled operation in SplitVectorOp!"); 7530 case ISD::UNDEF: 7531 Lo = DAG.getUNDEF(NewVT_Lo); 7532 Hi = DAG.getUNDEF(NewVT_Hi); 7533 break; 7534 case ISD::BUILD_PAIR: 7535 Lo = Node->getOperand(0); 7536 Hi = Node->getOperand(1); 7537 break; 7538 case ISD::INSERT_VECTOR_ELT: { 7539 if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Node->getOperand(2))) { 7540 SplitVectorOp(Node->getOperand(0), Lo, Hi); 7541 unsigned Index = Idx->getZExtValue(); 7542 SDValue ScalarOp = Node->getOperand(1); 7543 if (Index < NewNumElts_Lo) 7544 Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NewVT_Lo, Lo, ScalarOp, 7545 DAG.getIntPtrConstant(Index)); 7546 else 7547 Hi = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NewVT_Hi, Hi, ScalarOp, 7548 DAG.getIntPtrConstant(Index - NewNumElts_Lo)); 7549 break; 7550 } 7551 SDValue Tmp = PerformInsertVectorEltInMemory(Node->getOperand(0), 7552 Node->getOperand(1), 7553 Node->getOperand(2), dl); 7554 SplitVectorOp(Tmp, Lo, Hi); 7555 break; 7556 } 7557 case ISD::VECTOR_SHUFFLE: { 7558 // Build the low part. 7559 SDValue Mask = Node->getOperand(2); 7560 SmallVector<SDValue, 8> Ops; 7561 MVT PtrVT = TLI.getPointerTy(); 7562 7563 // Insert all of the elements from the input that are needed. We use 7564 // buildvector of extractelement here because the input vectors will have 7565 // to be legalized, so this makes the code simpler. 7566 for (unsigned i = 0; i != NewNumElts_Lo; ++i) { 7567 SDValue IdxNode = Mask.getOperand(i); 7568 if (IdxNode.getOpcode() == ISD::UNDEF) { 7569 Ops.push_back(DAG.getUNDEF(NewEltVT)); 7570 continue; 7571 } 7572 unsigned Idx = cast<ConstantSDNode>(IdxNode)->getZExtValue(); 7573 SDValue InVec = Node->getOperand(0); 7574 if (Idx >= NumElements) { 7575 InVec = Node->getOperand(1); 7576 Idx -= NumElements; 7577 } 7578 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NewEltVT, InVec, 7579 DAG.getConstant(Idx, PtrVT))); 7580 } 7581 Lo = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT_Lo, &Ops[0], Ops.size()); 7582 Ops.clear(); 7583 7584 for (unsigned i = NewNumElts_Lo; i != NumElements; ++i) { 7585 SDValue IdxNode = Mask.getOperand(i); 7586 if (IdxNode.getOpcode() == ISD::UNDEF) { 7587 Ops.push_back(DAG.getUNDEF(NewEltVT)); 7588 continue; 7589 } 7590 unsigned Idx = cast<ConstantSDNode>(IdxNode)->getZExtValue(); 7591 SDValue InVec = Node->getOperand(0); 7592 if (Idx >= NumElements) { 7593 InVec = Node->getOperand(1); 7594 Idx -= NumElements; 7595 } 7596 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NewEltVT, InVec, 7597 DAG.getConstant(Idx, PtrVT))); 7598 } 7599 Hi = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT_Hi, &Ops[0], Ops.size()); 7600 break; 7601 } 7602 case ISD::BUILD_VECTOR: { 7603 SmallVector<SDValue, 8> LoOps(Node->op_begin(), 7604 Node->op_begin()+NewNumElts_Lo); 7605 Lo = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT_Lo, &LoOps[0], LoOps.size()); 7606 7607 SmallVector<SDValue, 8> HiOps(Node->op_begin()+NewNumElts_Lo, 7608 Node->op_end()); 7609 Hi = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT_Hi, &HiOps[0], HiOps.size()); 7610 break; 7611 } 7612 case ISD::CONCAT_VECTORS: { 7613 // FIXME: Handle non-power-of-two vectors? 7614 unsigned NewNumSubvectors = Node->getNumOperands() / 2; 7615 if (NewNumSubvectors == 1) { 7616 Lo = Node->getOperand(0); 7617 Hi = Node->getOperand(1); 7618 } else { 7619 SmallVector<SDValue, 8> LoOps(Node->op_begin(), 7620 Node->op_begin()+NewNumSubvectors); 7621 Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewVT_Lo, 7622 &LoOps[0], LoOps.size()); 7623 7624 SmallVector<SDValue, 8> HiOps(Node->op_begin()+NewNumSubvectors, 7625 Node->op_end()); 7626 Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewVT_Hi, 7627 &HiOps[0], HiOps.size()); 7628 } 7629 break; 7630 } 7631 case ISD::EXTRACT_SUBVECTOR: { 7632 SDValue Vec = Op.getOperand(0); 7633 SDValue Idx = Op.getOperand(1); 7634 MVT IdxVT = Idx.getValueType(); 7635 7636 Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NewVT_Lo, Vec, Idx); 7637 ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx); 7638 if (CIdx) { 7639 Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NewVT_Hi, Vec, 7640 DAG.getConstant(CIdx->getZExtValue() + NewNumElts_Lo, 7641 IdxVT)); 7642 } else { 7643 Idx = DAG.getNode(ISD::ADD, dl, IdxVT, Idx, 7644 DAG.getConstant(NewNumElts_Lo, IdxVT)); 7645 Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NewVT_Hi, Vec, Idx); 7646 } 7647 break; 7648 } 7649 case ISD::SELECT: { 7650 SDValue Cond = Node->getOperand(0); 7651 7652 SDValue LL, LH, RL, RH; 7653 SplitVectorOp(Node->getOperand(1), LL, LH); 7654 SplitVectorOp(Node->getOperand(2), RL, RH); 7655 7656 if (Cond.getValueType().isVector()) { 7657 // Handle a vector merge. 7658 SDValue CL, CH; 7659 SplitVectorOp(Cond, CL, CH); 7660 Lo = DAG.getNode(Node->getOpcode(), dl, NewVT_Lo, CL, LL, RL); 7661 Hi = DAG.getNode(Node->getOpcode(), dl, NewVT_Hi, CH, LH, RH); 7662 } else { 7663 // Handle a simple select with vector operands. 7664 Lo = DAG.getNode(Node->getOpcode(), dl, NewVT_Lo, Cond, LL, RL); 7665 Hi = DAG.getNode(Node->getOpcode(), dl, NewVT_Hi, Cond, LH, RH); 7666 } 7667 break; 7668 } 7669 case ISD::SELECT_CC: { 7670 SDValue CondLHS = Node->getOperand(0); 7671 SDValue CondRHS = Node->getOperand(1); 7672 SDValue CondCode = Node->getOperand(4); 7673 7674 SDValue LL, LH, RL, RH; 7675 SplitVectorOp(Node->getOperand(2), LL, LH); 7676 SplitVectorOp(Node->getOperand(3), RL, RH); 7677 7678 // Handle a simple select with vector operands. 7679 Lo = DAG.getNode(ISD::SELECT_CC, dl, NewVT_Lo, CondLHS, CondRHS, 7680 LL, RL, CondCode); 7681 Hi = DAG.getNode(ISD::SELECT_CC, dl, NewVT_Hi, CondLHS, CondRHS, 7682 LH, RH, CondCode); 7683 break; 7684 } 7685 case ISD::VSETCC: { 7686 SDValue LL, LH, RL, RH; 7687 SplitVectorOp(Node->getOperand(0), LL, LH); 7688 SplitVectorOp(Node->getOperand(1), RL, RH); 7689 Lo = DAG.getNode(ISD::VSETCC, dl, NewVT_Lo, LL, RL, Node->getOperand(2)); 7690 Hi = DAG.getNode(ISD::VSETCC, dl, NewVT_Hi, LH, RH, Node->getOperand(2)); 7691 break; 7692 } 7693 case ISD::ADD: 7694 case ISD::SUB: 7695 case ISD::MUL: 7696 case ISD::FADD: 7697 case ISD::FSUB: 7698 case ISD::FMUL: 7699 case ISD::SDIV: 7700 case ISD::UDIV: 7701 case ISD::FDIV: 7702 case ISD::FPOW: 7703 case ISD::AND: 7704 case ISD::OR: 7705 case ISD::XOR: 7706 case ISD::UREM: 7707 case ISD::SREM: 7708 case ISD::FREM: 7709 case ISD::SHL: 7710 case ISD::SRA: 7711 case ISD::SRL: { 7712 SDValue LL, LH, RL, RH; 7713 SplitVectorOp(Node->getOperand(0), LL, LH); 7714 SplitVectorOp(Node->getOperand(1), RL, RH); 7715 7716 Lo = DAG.getNode(Node->getOpcode(), dl, NewVT_Lo, LL, RL); 7717 Hi = DAG.getNode(Node->getOpcode(), dl, NewVT_Hi, LH, RH); 7718 break; 7719 } 7720 case ISD::FP_ROUND: 7721 case ISD::FPOWI: { 7722 SDValue L, H; 7723 SplitVectorOp(Node->getOperand(0), L, H); 7724 7725 Lo = DAG.getNode(Node->getOpcode(), dl, NewVT_Lo, L, Node->getOperand(1)); 7726 Hi = DAG.getNode(Node->getOpcode(), dl, NewVT_Hi, H, Node->getOperand(1)); 7727 break; 7728 } 7729 case ISD::CTTZ: 7730 case ISD::CTLZ: 7731 case ISD::CTPOP: 7732 case ISD::FNEG: 7733 case ISD::FABS: 7734 case ISD::FSQRT: 7735 case ISD::FSIN: 7736 case ISD::FCOS: 7737 case ISD::FLOG: 7738 case ISD::FLOG2: 7739 case ISD::FLOG10: 7740 case ISD::FEXP: 7741 case ISD::FEXP2: 7742 case ISD::FP_TO_SINT: 7743 case ISD::FP_TO_UINT: 7744 case ISD::SINT_TO_FP: 7745 case ISD::UINT_TO_FP: 7746 case ISD::TRUNCATE: 7747 case ISD::ANY_EXTEND: 7748 case ISD::SIGN_EXTEND: 7749 case ISD::ZERO_EXTEND: 7750 case ISD::FP_EXTEND: { 7751 SDValue L, H; 7752 SplitVectorOp(Node->getOperand(0), L, H); 7753 7754 Lo = DAG.getNode(Node->getOpcode(), dl, NewVT_Lo, L); 7755 Hi = DAG.getNode(Node->getOpcode(), dl, NewVT_Hi, H); 7756 break; 7757 } 7758 case ISD::CONVERT_RNDSAT: { 7759 ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(Node)->getCvtCode(); 7760 SDValue L, H; 7761 SplitVectorOp(Node->getOperand(0), L, H); 7762 SDValue DTyOpL = DAG.getValueType(NewVT_Lo); 7763 SDValue DTyOpH = DAG.getValueType(NewVT_Hi); 7764 SDValue STyOpL = DAG.getValueType(L.getValueType()); 7765 SDValue STyOpH = DAG.getValueType(H.getValueType()); 7766 7767 SDValue RndOp = Node->getOperand(3); 7768 SDValue SatOp = Node->getOperand(4); 7769 7770 Lo = DAG.getConvertRndSat(NewVT_Lo, dl, L, DTyOpL, STyOpL, 7771 RndOp, SatOp, CvtCode); 7772 Hi = DAG.getConvertRndSat(NewVT_Hi, dl, H, DTyOpH, STyOpH, 7773 RndOp, SatOp, CvtCode); 7774 break; 7775 } 7776 case ISD::LOAD: { 7777 LoadSDNode *LD = cast<LoadSDNode>(Node); 7778 SDValue Ch = LD->getChain(); 7779 SDValue Ptr = LD->getBasePtr(); 7780 ISD::LoadExtType ExtType = LD->getExtensionType(); 7781 const Value *SV = LD->getSrcValue(); 7782 int SVOffset = LD->getSrcValueOffset(); 7783 MVT MemoryVT = LD->getMemoryVT(); 7784 unsigned Alignment = LD->getAlignment(); 7785 bool isVolatile = LD->isVolatile(); 7786 7787 assert(LD->isUnindexed() && "Indexed vector loads are not supported yet!"); 7788 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 7789 7790 MVT MemNewEltVT = MemoryVT.getVectorElementType(); 7791 MVT MemNewVT_Lo = MVT::getVectorVT(MemNewEltVT, NewNumElts_Lo); 7792 MVT MemNewVT_Hi = MVT::getVectorVT(MemNewEltVT, NewNumElts_Hi); 7793 7794 Lo = DAG.getLoad(ISD::UNINDEXED, dl, ExtType, 7795 NewVT_Lo, Ch, Ptr, Offset, 7796 SV, SVOffset, MemNewVT_Lo, isVolatile, Alignment); 7797 unsigned IncrementSize = NewNumElts_Lo * MemNewEltVT.getSizeInBits()/8; 7798 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 7799 DAG.getIntPtrConstant(IncrementSize)); 7800 SVOffset += IncrementSize; 7801 Alignment = MinAlign(Alignment, IncrementSize); 7802 Hi = DAG.getLoad(ISD::UNINDEXED, dl, ExtType, 7803 NewVT_Hi, Ch, Ptr, Offset, 7804 SV, SVOffset, MemNewVT_Hi, isVolatile, Alignment); 7805 7806 // Build a factor node to remember that this load is independent of the 7807 // other one. 7808 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 7809 Hi.getValue(1)); 7810 7811 // Remember that we legalized the chain. 7812 AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF)); 7813 break; 7814 } 7815 case ISD::BIT_CONVERT: { 7816 // We know the result is a vector. The input may be either a vector or a 7817 // scalar value. 7818 SDValue InOp = Node->getOperand(0); 7819 if (!InOp.getValueType().isVector() || 7820 InOp.getValueType().getVectorNumElements() == 1) { 7821 // The input is a scalar or single-element vector. 7822 // Lower to a store/load so that it can be split. 7823 // FIXME: this could be improved probably. 7824 unsigned LdAlign = TLI.getTargetData()->getPrefTypeAlignment( 7825 Op.getValueType().getTypeForMVT()); 7826 SDValue Ptr = DAG.CreateStackTemporary(InOp.getValueType(), LdAlign); 7827 int FI = cast<FrameIndexSDNode>(Ptr.getNode())->getIndex(); 7828 7829 SDValue St = DAG.getStore(DAG.getEntryNode(), dl, 7830 InOp, Ptr, 7831 PseudoSourceValue::getFixedStack(FI), 0); 7832 InOp = DAG.getLoad(Op.getValueType(), dl, St, Ptr, 7833 PseudoSourceValue::getFixedStack(FI), 0); 7834 } 7835 // Split the vector and convert each of the pieces now. 7836 SplitVectorOp(InOp, Lo, Hi); 7837 Lo = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT_Lo, Lo); 7838 Hi = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT_Hi, Hi); 7839 break; 7840 } 7841 } 7842 7843 // Remember in a map if the values will be reused later. 7844 bool isNew = 7845 SplitNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi))).second; 7846 assert(isNew && "Value already split?!?"); 7847 isNew = isNew; 7848} 7849 7850 7851/// ScalarizeVectorOp - Given an operand of single-element vector type 7852/// (e.g. v1f32), convert it into the equivalent operation that returns a 7853/// scalar (e.g. f32) value. 7854SDValue SelectionDAGLegalize::ScalarizeVectorOp(SDValue Op) { 7855 assert(Op.getValueType().isVector() && "Bad ScalarizeVectorOp invocation!"); 7856 SDNode *Node = Op.getNode(); 7857 DebugLoc dl = Node->getDebugLoc(); 7858 MVT NewVT = Op.getValueType().getVectorElementType(); 7859 assert(Op.getValueType().getVectorNumElements() == 1); 7860 7861 // See if we already scalarized it. 7862 std::map<SDValue, SDValue>::iterator I = ScalarizedNodes.find(Op); 7863 if (I != ScalarizedNodes.end()) return I->second; 7864 7865 SDValue Result; 7866 switch (Node->getOpcode()) { 7867 default: 7868#ifndef NDEBUG 7869 Node->dump(&DAG); cerr << "\n"; 7870#endif 7871 assert(0 && "Unknown vector operation in ScalarizeVectorOp!"); 7872 case ISD::ADD: 7873 case ISD::FADD: 7874 case ISD::SUB: 7875 case ISD::FSUB: 7876 case ISD::MUL: 7877 case ISD::FMUL: 7878 case ISD::SDIV: 7879 case ISD::UDIV: 7880 case ISD::FDIV: 7881 case ISD::SREM: 7882 case ISD::UREM: 7883 case ISD::FREM: 7884 case ISD::FPOW: 7885 case ISD::AND: 7886 case ISD::OR: 7887 case ISD::XOR: 7888 Result = DAG.getNode(Node->getOpcode(), dl, 7889 NewVT, 7890 ScalarizeVectorOp(Node->getOperand(0)), 7891 ScalarizeVectorOp(Node->getOperand(1))); 7892 break; 7893 case ISD::FNEG: 7894 case ISD::FABS: 7895 case ISD::FSQRT: 7896 case ISD::FSIN: 7897 case ISD::FCOS: 7898 case ISD::FLOG: 7899 case ISD::FLOG2: 7900 case ISD::FLOG10: 7901 case ISD::FEXP: 7902 case ISD::FEXP2: 7903 case ISD::FP_TO_SINT: 7904 case ISD::FP_TO_UINT: 7905 case ISD::SINT_TO_FP: 7906 case ISD::UINT_TO_FP: 7907 case ISD::SIGN_EXTEND: 7908 case ISD::ZERO_EXTEND: 7909 case ISD::ANY_EXTEND: 7910 case ISD::TRUNCATE: 7911 case ISD::FP_EXTEND: 7912 Result = DAG.getNode(Node->getOpcode(), dl, 7913 NewVT, 7914 ScalarizeVectorOp(Node->getOperand(0))); 7915 break; 7916 case ISD::CONVERT_RNDSAT: { 7917 SDValue Op0 = ScalarizeVectorOp(Node->getOperand(0)); 7918 Result = DAG.getConvertRndSat(NewVT, dl, Op0, 7919 DAG.getValueType(NewVT), 7920 DAG.getValueType(Op0.getValueType()), 7921 Node->getOperand(3), 7922 Node->getOperand(4), 7923 cast<CvtRndSatSDNode>(Node)->getCvtCode()); 7924 break; 7925 } 7926 case ISD::FPOWI: 7927 case ISD::FP_ROUND: 7928 Result = DAG.getNode(Node->getOpcode(), dl, 7929 NewVT, 7930 ScalarizeVectorOp(Node->getOperand(0)), 7931 Node->getOperand(1)); 7932 break; 7933 case ISD::LOAD: { 7934 LoadSDNode *LD = cast<LoadSDNode>(Node); 7935 SDValue Ch = LegalizeOp(LD->getChain()); // Legalize the chain. 7936 SDValue Ptr = LegalizeOp(LD->getBasePtr()); // Legalize the pointer. 7937 ISD::LoadExtType ExtType = LD->getExtensionType(); 7938 const Value *SV = LD->getSrcValue(); 7939 int SVOffset = LD->getSrcValueOffset(); 7940 MVT MemoryVT = LD->getMemoryVT(); 7941 unsigned Alignment = LD->getAlignment(); 7942 bool isVolatile = LD->isVolatile(); 7943 7944 assert(LD->isUnindexed() && "Indexed vector loads are not supported yet!"); 7945 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 7946 7947 Result = DAG.getLoad(ISD::UNINDEXED, dl, ExtType, 7948 NewVT, Ch, Ptr, Offset, SV, SVOffset, 7949 MemoryVT.getVectorElementType(), 7950 isVolatile, Alignment); 7951 7952 // Remember that we legalized the chain. 7953 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 7954 break; 7955 } 7956 case ISD::BUILD_VECTOR: 7957 Result = Node->getOperand(0); 7958 break; 7959 case ISD::INSERT_VECTOR_ELT: 7960 // Returning the inserted scalar element. 7961 Result = Node->getOperand(1); 7962 break; 7963 case ISD::CONCAT_VECTORS: 7964 assert(Node->getOperand(0).getValueType() == NewVT && 7965 "Concat of non-legal vectors not yet supported!"); 7966 Result = Node->getOperand(0); 7967 break; 7968 case ISD::VECTOR_SHUFFLE: { 7969 // Figure out if the scalar is the LHS or RHS and return it. 7970 SDValue EltNum = Node->getOperand(2).getOperand(0); 7971 if (cast<ConstantSDNode>(EltNum)->getZExtValue()) 7972 Result = ScalarizeVectorOp(Node->getOperand(1)); 7973 else 7974 Result = ScalarizeVectorOp(Node->getOperand(0)); 7975 break; 7976 } 7977 case ISD::EXTRACT_SUBVECTOR: 7978 Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NewVT, 7979 Node->getOperand(0), Node->getOperand(1)); 7980 break; 7981 case ISD::BIT_CONVERT: { 7982 SDValue Op0 = Op.getOperand(0); 7983 if (Op0.getValueType().getVectorNumElements() == 1) 7984 Op0 = ScalarizeVectorOp(Op0); 7985 Result = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, Op0); 7986 break; 7987 } 7988 case ISD::SELECT: 7989 Result = DAG.getNode(ISD::SELECT, dl, NewVT, Op.getOperand(0), 7990 ScalarizeVectorOp(Op.getOperand(1)), 7991 ScalarizeVectorOp(Op.getOperand(2))); 7992 break; 7993 case ISD::SELECT_CC: 7994 Result = DAG.getNode(ISD::SELECT_CC, dl, NewVT, Node->getOperand(0), 7995 Node->getOperand(1), 7996 ScalarizeVectorOp(Op.getOperand(2)), 7997 ScalarizeVectorOp(Op.getOperand(3)), 7998 Node->getOperand(4)); 7999 break; 8000 case ISD::VSETCC: { 8001 SDValue Op0 = ScalarizeVectorOp(Op.getOperand(0)); 8002 SDValue Op1 = ScalarizeVectorOp(Op.getOperand(1)); 8003 Result = DAG.getNode(ISD::SETCC, dl, 8004 TLI.getSetCCResultType(Op0.getValueType()), 8005 Op0, Op1, Op.getOperand(2)); 8006 Result = DAG.getNode(ISD::SELECT, dl, NewVT, Result, 8007 DAG.getConstant(-1ULL, NewVT), 8008 DAG.getConstant(0ULL, NewVT)); 8009 break; 8010 } 8011 } 8012 8013 if (TLI.isTypeLegal(NewVT)) 8014 Result = LegalizeOp(Result); 8015 bool isNew = ScalarizedNodes.insert(std::make_pair(Op, Result)).second; 8016 assert(isNew && "Value already scalarized?"); 8017 isNew = isNew; 8018 return Result; 8019} 8020 8021 8022SDValue SelectionDAGLegalize::WidenVectorOp(SDValue Op, MVT WidenVT) { 8023 std::map<SDValue, SDValue>::iterator I = WidenNodes.find(Op); 8024 if (I != WidenNodes.end()) return I->second; 8025 8026 MVT VT = Op.getValueType(); 8027 assert(VT.isVector() && "Cannot widen non-vector type!"); 8028 8029 SDValue Result; 8030 SDNode *Node = Op.getNode(); 8031 DebugLoc dl = Node->getDebugLoc(); 8032 MVT EVT = VT.getVectorElementType(); 8033 8034 unsigned NumElts = VT.getVectorNumElements(); 8035 unsigned NewNumElts = WidenVT.getVectorNumElements(); 8036 assert(NewNumElts > NumElts && "Cannot widen to smaller type!"); 8037 assert(NewNumElts < 17); 8038 8039 // When widen is called, it is assumed that it is more efficient to use a 8040 // wide type. The default action is to widen to operation to a wider legal 8041 // vector type and then do the operation if it is legal by calling LegalizeOp 8042 // again. If there is no vector equivalent, we will unroll the operation, do 8043 // it, and rebuild the vector. If most of the operations are vectorizible to 8044 // the legal type, the resulting code will be more efficient. If this is not 8045 // the case, the resulting code will preform badly as we end up generating 8046 // code to pack/unpack the results. It is the function that calls widen 8047 // that is responsible for seeing this doesn't happen. 8048 switch (Node->getOpcode()) { 8049 default: 8050#ifndef NDEBUG 8051 Node->dump(&DAG); 8052#endif 8053 assert(0 && "Unexpected operation in WidenVectorOp!"); 8054 break; 8055 case ISD::CopyFromReg: 8056 assert(0 && "CopyFromReg doesn't need widening!"); 8057 case ISD::Constant: 8058 case ISD::ConstantFP: 8059 // To build a vector of these elements, clients should call BuildVector 8060 // and with each element instead of creating a node with a vector type 8061 assert(0 && "Unexpected operation in WidenVectorOp!"); 8062 case ISD::VAARG: 8063 // Variable Arguments with vector types doesn't make any sense to me 8064 assert(0 && "Unexpected operation in WidenVectorOp!"); 8065 break; 8066 case ISD::UNDEF: 8067 Result = DAG.getUNDEF(WidenVT); 8068 break; 8069 case ISD::BUILD_VECTOR: { 8070 // Build a vector with undefined for the new nodes 8071 SDValueVector NewOps(Node->op_begin(), Node->op_end()); 8072 for (unsigned i = NumElts; i < NewNumElts; ++i) { 8073 NewOps.push_back(DAG.getUNDEF(EVT)); 8074 } 8075 Result = DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, 8076 &NewOps[0], NewOps.size()); 8077 break; 8078 } 8079 case ISD::INSERT_VECTOR_ELT: { 8080 SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT); 8081 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, WidenVT, Tmp1, 8082 Node->getOperand(1), Node->getOperand(2)); 8083 break; 8084 } 8085 case ISD::VECTOR_SHUFFLE: { 8086 SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT); 8087 SDValue Tmp2 = WidenVectorOp(Node->getOperand(1), WidenVT); 8088 // VECTOR_SHUFFLE 3rd operand must be a constant build vector that is 8089 // used as permutation array. We build the vector here instead of widening 8090 // because we don't want to legalize and have it turned to something else. 8091 SDValue PermOp = Node->getOperand(2); 8092 SDValueVector NewOps; 8093 MVT PVT = PermOp.getValueType().getVectorElementType(); 8094 for (unsigned i = 0; i < NumElts; ++i) { 8095 if (PermOp.getOperand(i).getOpcode() == ISD::UNDEF) { 8096 NewOps.push_back(PermOp.getOperand(i)); 8097 } else { 8098 unsigned Idx = 8099 cast<ConstantSDNode>(PermOp.getOperand(i))->getZExtValue(); 8100 if (Idx < NumElts) { 8101 NewOps.push_back(PermOp.getOperand(i)); 8102 } 8103 else { 8104 NewOps.push_back(DAG.getConstant(Idx + NewNumElts - NumElts, 8105 PermOp.getOperand(i).getValueType())); 8106 } 8107 } 8108 } 8109 for (unsigned i = NumElts; i < NewNumElts; ++i) { 8110 NewOps.push_back(DAG.getUNDEF(PVT)); 8111 } 8112 8113 SDValue Tmp3 = DAG.getNode(ISD::BUILD_VECTOR, dl, 8114 MVT::getVectorVT(PVT, NewOps.size()), 8115 &NewOps[0], NewOps.size()); 8116 8117 Result = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, WidenVT, Tmp1, Tmp2, Tmp3); 8118 break; 8119 } 8120 case ISD::LOAD: { 8121 // If the load widen returns true, we can use a single load for the 8122 // vector. Otherwise, it is returning a token factor for multiple 8123 // loads. 8124 SDValue TFOp; 8125 if (LoadWidenVectorOp(Result, TFOp, Op, WidenVT)) 8126 AddLegalizedOperand(Op.getValue(1), LegalizeOp(TFOp.getValue(1))); 8127 else 8128 AddLegalizedOperand(Op.getValue(1), LegalizeOp(TFOp.getValue(0))); 8129 break; 8130 } 8131 8132 case ISD::BIT_CONVERT: { 8133 SDValue Tmp1 = Node->getOperand(0); 8134 // Converts between two different types so we need to determine 8135 // the correct widen type for the input operand. 8136 MVT InVT = Tmp1.getValueType(); 8137 unsigned WidenSize = WidenVT.getSizeInBits(); 8138 if (InVT.isVector()) { 8139 MVT InEltVT = InVT.getVectorElementType(); 8140 unsigned InEltSize = InEltVT.getSizeInBits(); 8141 assert(WidenSize % InEltSize == 0 && 8142 "can not widen bit convert that are not multiple of element type"); 8143 MVT NewInWidenVT = MVT::getVectorVT(InEltVT, WidenSize / InEltSize); 8144 Tmp1 = WidenVectorOp(Tmp1, NewInWidenVT); 8145 assert(Tmp1.getValueType().getSizeInBits() == WidenVT.getSizeInBits()); 8146 Result = DAG.getNode(ISD::BIT_CONVERT, dl, WidenVT, Tmp1); 8147 } else { 8148 // If the result size is a multiple of the input size, widen the input 8149 // and then convert. 8150 unsigned InSize = InVT.getSizeInBits(); 8151 assert(WidenSize % InSize == 0 && 8152 "can not widen bit convert that are not multiple of element type"); 8153 unsigned NewNumElts = WidenSize / InSize; 8154 SmallVector<SDValue, 16> Ops(NewNumElts); 8155 SDValue UndefVal = DAG.getUNDEF(InVT); 8156 Ops[0] = Tmp1; 8157 for (unsigned i = 1; i < NewNumElts; ++i) 8158 Ops[i] = UndefVal; 8159 8160 MVT NewInVT = MVT::getVectorVT(InVT, NewNumElts); 8161 Result = DAG.getNode(ISD::BUILD_VECTOR, dl, NewInVT, &Ops[0], NewNumElts); 8162 Result = DAG.getNode(ISD::BIT_CONVERT, dl, WidenVT, Result); 8163 } 8164 break; 8165 } 8166 8167 case ISD::SINT_TO_FP: 8168 case ISD::UINT_TO_FP: 8169 case ISD::FP_TO_SINT: 8170 case ISD::FP_TO_UINT: 8171 case ISD::FP_ROUND: { 8172 SDValue Tmp1 = Node->getOperand(0); 8173 // Converts between two different types so we need to determine 8174 // the correct widen type for the input operand. 8175 MVT TVT = Tmp1.getValueType(); 8176 assert(TVT.isVector() && "can not widen non vector type"); 8177 MVT TEVT = TVT.getVectorElementType(); 8178 MVT TWidenVT = MVT::getVectorVT(TEVT, NewNumElts); 8179 Tmp1 = WidenVectorOp(Tmp1, TWidenVT); 8180 assert(Tmp1.getValueType().getVectorNumElements() == NewNumElts); 8181 Result = DAG.getNode(Node->getOpcode(), dl, WidenVT, Tmp1); 8182 break; 8183 } 8184 8185 case ISD::FP_EXTEND: 8186 assert(0 && "Case not implemented. Dynamically dead with 2 FP types!"); 8187 case ISD::TRUNCATE: 8188 case ISD::SIGN_EXTEND: 8189 case ISD::ZERO_EXTEND: 8190 case ISD::ANY_EXTEND: 8191 case ISD::SIGN_EXTEND_INREG: 8192 case ISD::FABS: 8193 case ISD::FNEG: 8194 case ISD::FSQRT: 8195 case ISD::FSIN: 8196 case ISD::FCOS: 8197 case ISD::CTPOP: 8198 case ISD::CTTZ: 8199 case ISD::CTLZ: { 8200 // Unary op widening 8201 SDValue Tmp1; 8202 Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT); 8203 assert(Tmp1.getValueType() == WidenVT); 8204 Result = DAG.getNode(Node->getOpcode(), dl, WidenVT, Tmp1); 8205 break; 8206 } 8207 case ISD::CONVERT_RNDSAT: { 8208 SDValue RndOp = Node->getOperand(3); 8209 SDValue SatOp = Node->getOperand(4); 8210 SDValue SrcOp = Node->getOperand(0); 8211 8212 // Converts between two different types so we need to determine 8213 // the correct widen type for the input operand. 8214 MVT SVT = SrcOp.getValueType(); 8215 assert(SVT.isVector() && "can not widen non vector type"); 8216 MVT SEVT = SVT.getVectorElementType(); 8217 MVT SWidenVT = MVT::getVectorVT(SEVT, NewNumElts); 8218 8219 SrcOp = WidenVectorOp(SrcOp, SWidenVT); 8220 assert(SrcOp.getValueType() == WidenVT); 8221 SDValue DTyOp = DAG.getValueType(WidenVT); 8222 SDValue STyOp = DAG.getValueType(SrcOp.getValueType()); 8223 ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(Node)->getCvtCode(); 8224 8225 Result = DAG.getConvertRndSat(WidenVT, dl, SrcOp, DTyOp, STyOp, 8226 RndOp, SatOp, CvtCode); 8227 break; 8228 } 8229 case ISD::FPOW: 8230 case ISD::FPOWI: 8231 case ISD::ADD: 8232 case ISD::SUB: 8233 case ISD::MUL: 8234 case ISD::MULHS: 8235 case ISD::MULHU: 8236 case ISD::AND: 8237 case ISD::OR: 8238 case ISD::XOR: 8239 case ISD::FADD: 8240 case ISD::FSUB: 8241 case ISD::FMUL: 8242 case ISD::SDIV: 8243 case ISD::SREM: 8244 case ISD::FDIV: 8245 case ISD::FREM: 8246 case ISD::FCOPYSIGN: 8247 case ISD::UDIV: 8248 case ISD::UREM: 8249 case ISD::BSWAP: { 8250 // Binary op widening 8251 SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT); 8252 SDValue Tmp2 = WidenVectorOp(Node->getOperand(1), WidenVT); 8253 assert(Tmp1.getValueType() == WidenVT && Tmp2.getValueType() == WidenVT); 8254 Result = DAG.getNode(Node->getOpcode(), dl, WidenVT, Tmp1, Tmp2); 8255 break; 8256 } 8257 8258 case ISD::SHL: 8259 case ISD::SRA: 8260 case ISD::SRL: { 8261 SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT); 8262 assert(Tmp1.getValueType() == WidenVT); 8263 SDValue ShOp = Node->getOperand(1); 8264 MVT ShVT = ShOp.getValueType(); 8265 MVT NewShVT = MVT::getVectorVT(ShVT.getVectorElementType(), 8266 WidenVT.getVectorNumElements()); 8267 ShOp = WidenVectorOp(ShOp, NewShVT); 8268 assert(ShOp.getValueType() == NewShVT); 8269 Result = DAG.getNode(Node->getOpcode(), dl, WidenVT, Tmp1, ShOp); 8270 break; 8271 } 8272 8273 case ISD::EXTRACT_VECTOR_ELT: { 8274 SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT); 8275 assert(Tmp1.getValueType() == WidenVT); 8276 Result = DAG.getNode(Node->getOpcode(), dl, EVT, Tmp1, Node->getOperand(1)); 8277 break; 8278 } 8279 case ISD::CONCAT_VECTORS: { 8280 // We concurrently support only widen on a multiple of the incoming vector. 8281 // We could widen on a multiple of the incoming operand if necessary. 8282 unsigned NumConcat = NewNumElts / NumElts; 8283 assert(NewNumElts % NumElts == 0 && "Can widen only a multiple of vector"); 8284 SDValue UndefVal = DAG.getUNDEF(VT); 8285 SmallVector<SDValue, 8> MOps; 8286 MOps.push_back(Op); 8287 for (unsigned i = 1; i != NumConcat; ++i) { 8288 MOps.push_back(UndefVal); 8289 } 8290 Result = LegalizeOp(DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, 8291 &MOps[0], MOps.size())); 8292 break; 8293 } 8294 case ISD::EXTRACT_SUBVECTOR: { 8295 SDValue Tmp1 = Node->getOperand(0); 8296 SDValue Idx = Node->getOperand(1); 8297 ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx); 8298 if (CIdx && CIdx->getZExtValue() == 0) { 8299 // Since we are access the start of the vector, the incoming 8300 // vector type might be the proper. 8301 MVT Tmp1VT = Tmp1.getValueType(); 8302 if (Tmp1VT == WidenVT) 8303 return Tmp1; 8304 else { 8305 unsigned Tmp1VTNumElts = Tmp1VT.getVectorNumElements(); 8306 if (Tmp1VTNumElts < NewNumElts) 8307 Result = WidenVectorOp(Tmp1, WidenVT); 8308 else 8309 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, WidenVT, Tmp1, Idx); 8310 } 8311 } else if (NewNumElts % NumElts == 0) { 8312 // Widen the extracted subvector. 8313 unsigned NumConcat = NewNumElts / NumElts; 8314 SDValue UndefVal = DAG.getUNDEF(VT); 8315 SmallVector<SDValue, 8> MOps; 8316 MOps.push_back(Op); 8317 for (unsigned i = 1; i != NumConcat; ++i) { 8318 MOps.push_back(UndefVal); 8319 } 8320 Result = LegalizeOp(DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, 8321 &MOps[0], MOps.size())); 8322 } else { 8323 assert(0 && "can not widen extract subvector"); 8324 // This could be implemented using insert and build vector but I would 8325 // like to see when this happens. 8326 } 8327 break; 8328 } 8329 8330 case ISD::SELECT: { 8331 // Determine new condition widen type and widen 8332 SDValue Cond1 = Node->getOperand(0); 8333 MVT CondVT = Cond1.getValueType(); 8334 assert(CondVT.isVector() && "can not widen non vector type"); 8335 MVT CondEVT = CondVT.getVectorElementType(); 8336 MVT CondWidenVT = MVT::getVectorVT(CondEVT, NewNumElts); 8337 Cond1 = WidenVectorOp(Cond1, CondWidenVT); 8338 assert(Cond1.getValueType() == CondWidenVT && "Condition not widen"); 8339 8340 SDValue Tmp1 = WidenVectorOp(Node->getOperand(1), WidenVT); 8341 SDValue Tmp2 = WidenVectorOp(Node->getOperand(2), WidenVT); 8342 assert(Tmp1.getValueType() == WidenVT && Tmp2.getValueType() == WidenVT); 8343 Result = DAG.getNode(Node->getOpcode(), dl, WidenVT, Cond1, Tmp1, Tmp2); 8344 break; 8345 } 8346 8347 case ISD::SELECT_CC: { 8348 // Determine new condition widen type and widen 8349 SDValue Cond1 = Node->getOperand(0); 8350 SDValue Cond2 = Node->getOperand(1); 8351 MVT CondVT = Cond1.getValueType(); 8352 assert(CondVT.isVector() && "can not widen non vector type"); 8353 assert(CondVT == Cond2.getValueType() && "mismatch lhs/rhs"); 8354 MVT CondEVT = CondVT.getVectorElementType(); 8355 MVT CondWidenVT = MVT::getVectorVT(CondEVT, NewNumElts); 8356 Cond1 = WidenVectorOp(Cond1, CondWidenVT); 8357 Cond2 = WidenVectorOp(Cond2, CondWidenVT); 8358 assert(Cond1.getValueType() == CondWidenVT && 8359 Cond2.getValueType() == CondWidenVT && "condition not widen"); 8360 8361 SDValue Tmp1 = WidenVectorOp(Node->getOperand(2), WidenVT); 8362 SDValue Tmp2 = WidenVectorOp(Node->getOperand(3), WidenVT); 8363 assert(Tmp1.getValueType() == WidenVT && Tmp2.getValueType() == WidenVT && 8364 "operands not widen"); 8365 Result = DAG.getNode(Node->getOpcode(), dl, WidenVT, Cond1, Cond2, Tmp1, 8366 Tmp2, Node->getOperand(4)); 8367 break; 8368 } 8369 case ISD::VSETCC: { 8370 // Determine widen for the operand 8371 SDValue Tmp1 = Node->getOperand(0); 8372 MVT TmpVT = Tmp1.getValueType(); 8373 assert(TmpVT.isVector() && "can not widen non vector type"); 8374 MVT TmpEVT = TmpVT.getVectorElementType(); 8375 MVT TmpWidenVT = MVT::getVectorVT(TmpEVT, NewNumElts); 8376 Tmp1 = WidenVectorOp(Tmp1, TmpWidenVT); 8377 SDValue Tmp2 = WidenVectorOp(Node->getOperand(1), TmpWidenVT); 8378 Result = DAG.getNode(Node->getOpcode(), dl, WidenVT, Tmp1, Tmp2, 8379 Node->getOperand(2)); 8380 break; 8381 } 8382 case ISD::ATOMIC_CMP_SWAP: 8383 case ISD::ATOMIC_LOAD_ADD: 8384 case ISD::ATOMIC_LOAD_SUB: 8385 case ISD::ATOMIC_LOAD_AND: 8386 case ISD::ATOMIC_LOAD_OR: 8387 case ISD::ATOMIC_LOAD_XOR: 8388 case ISD::ATOMIC_LOAD_NAND: 8389 case ISD::ATOMIC_LOAD_MIN: 8390 case ISD::ATOMIC_LOAD_MAX: 8391 case ISD::ATOMIC_LOAD_UMIN: 8392 case ISD::ATOMIC_LOAD_UMAX: 8393 case ISD::ATOMIC_SWAP: { 8394 // For now, we assume that using vectors for these operations don't make 8395 // much sense so we just split it. We return an empty result 8396 SDValue X, Y; 8397 SplitVectorOp(Op, X, Y); 8398 return Result; 8399 break; 8400 } 8401 8402 } // end switch (Node->getOpcode()) 8403 8404 assert(Result.getNode() && "Didn't set a result!"); 8405 if (Result != Op) 8406 Result = LegalizeOp(Result); 8407 8408 AddWidenedOperand(Op, Result); 8409 return Result; 8410} 8411 8412// Utility function to find a legal vector type and its associated element 8413// type from a preferred width and whose vector type must be the same size 8414// as the VVT. 8415// TLI: Target lowering used to determine legal types 8416// Width: Preferred width of element type 8417// VVT: Vector value type whose size we must match. 8418// Returns VecEVT and EVT - the vector type and its associated element type 8419static void FindWidenVecType(const TargetLowering &TLI, unsigned Width, MVT VVT, 8420 MVT& EVT, MVT& VecEVT) { 8421 // We start with the preferred width, make it a power of 2 and see if 8422 // we can find a vector type of that width. If not, we reduce it by 8423 // another power of 2. If we have widen the type, a vector of bytes should 8424 // always be legal. 8425 assert(TLI.isTypeLegal(VVT)); 8426 unsigned EWidth = Width + 1; 8427 do { 8428 assert(EWidth > 0); 8429 EWidth = (1 << Log2_32(EWidth-1)); 8430 EVT = MVT::getIntegerVT(EWidth); 8431 unsigned NumEVT = VVT.getSizeInBits()/EWidth; 8432 VecEVT = MVT::getVectorVT(EVT, NumEVT); 8433 } while (!TLI.isTypeLegal(VecEVT) || 8434 VVT.getSizeInBits() != VecEVT.getSizeInBits()); 8435} 8436 8437SDValue SelectionDAGLegalize::genWidenVectorLoads(SDValueVector& LdChain, 8438 SDValue Chain, 8439 SDValue BasePtr, 8440 const Value *SV, 8441 int SVOffset, 8442 unsigned Alignment, 8443 bool isVolatile, 8444 unsigned LdWidth, 8445 MVT ResType, 8446 DebugLoc dl) { 8447 // We assume that we have good rules to handle loading power of two loads so 8448 // we break down the operations to power of 2 loads. The strategy is to 8449 // load the largest power of 2 that we can easily transform to a legal vector 8450 // and then insert into that vector, and the cast the result into the legal 8451 // vector that we want. This avoids unnecessary stack converts. 8452 // TODO: If the Ldwidth is legal, alignment is the same as the LdWidth, and 8453 // the load is nonvolatile, we an use a wider load for the value. 8454 // Find a vector length we can load a large chunk 8455 MVT EVT, VecEVT; 8456 unsigned EVTWidth; 8457 FindWidenVecType(TLI, LdWidth, ResType, EVT, VecEVT); 8458 EVTWidth = EVT.getSizeInBits(); 8459 8460 SDValue LdOp = DAG.getLoad(EVT, dl, Chain, BasePtr, SV, SVOffset, 8461 isVolatile, Alignment); 8462 SDValue VecOp = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecEVT, LdOp); 8463 LdChain.push_back(LdOp.getValue(1)); 8464 8465 // Check if we can load the element with one instruction 8466 if (LdWidth == EVTWidth) { 8467 return DAG.getNode(ISD::BIT_CONVERT, dl, ResType, VecOp); 8468 } 8469 8470 // The vector element order is endianness dependent. 8471 unsigned Idx = 1; 8472 LdWidth -= EVTWidth; 8473 unsigned Offset = 0; 8474 8475 while (LdWidth > 0) { 8476 unsigned Increment = EVTWidth / 8; 8477 Offset += Increment; 8478 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 8479 DAG.getIntPtrConstant(Increment)); 8480 8481 if (LdWidth < EVTWidth) { 8482 // Our current type we are using is too large, use a smaller size by 8483 // using a smaller power of 2 8484 unsigned oEVTWidth = EVTWidth; 8485 FindWidenVecType(TLI, LdWidth, ResType, EVT, VecEVT); 8486 EVTWidth = EVT.getSizeInBits(); 8487 // Readjust position and vector position based on new load type 8488 Idx = Idx * (oEVTWidth/EVTWidth); 8489 VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, VecEVT, VecOp); 8490 } 8491 8492 SDValue LdOp = DAG.getLoad(EVT, dl, Chain, BasePtr, SV, 8493 SVOffset+Offset, isVolatile, 8494 MinAlign(Alignment, Offset)); 8495 LdChain.push_back(LdOp.getValue(1)); 8496 VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecEVT, VecOp, LdOp, 8497 DAG.getIntPtrConstant(Idx++)); 8498 8499 LdWidth -= EVTWidth; 8500 } 8501 8502 return DAG.getNode(ISD::BIT_CONVERT, dl, ResType, VecOp); 8503} 8504 8505bool SelectionDAGLegalize::LoadWidenVectorOp(SDValue& Result, 8506 SDValue& TFOp, 8507 SDValue Op, 8508 MVT NVT) { 8509 // TODO: Add support for ConcatVec and the ability to load many vector 8510 // types (e.g., v4i8). This will not work when a vector register 8511 // to memory mapping is strange (e.g., vector elements are not 8512 // stored in some sequential order). 8513 8514 // It must be true that the widen vector type is bigger than where 8515 // we need to load from. 8516 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 8517 MVT LdVT = LD->getMemoryVT(); 8518 DebugLoc dl = LD->getDebugLoc(); 8519 assert(LdVT.isVector() && NVT.isVector()); 8520 assert(LdVT.getVectorElementType() == NVT.getVectorElementType()); 8521 8522 // Load information 8523 SDValue Chain = LD->getChain(); 8524 SDValue BasePtr = LD->getBasePtr(); 8525 int SVOffset = LD->getSrcValueOffset(); 8526 unsigned Alignment = LD->getAlignment(); 8527 bool isVolatile = LD->isVolatile(); 8528 const Value *SV = LD->getSrcValue(); 8529 unsigned int LdWidth = LdVT.getSizeInBits(); 8530 8531 // Load value as a large register 8532 SDValueVector LdChain; 8533 Result = genWidenVectorLoads(LdChain, Chain, BasePtr, SV, SVOffset, 8534 Alignment, isVolatile, LdWidth, NVT, dl); 8535 8536 if (LdChain.size() == 1) { 8537 TFOp = LdChain[0]; 8538 return true; 8539 } 8540 else { 8541 TFOp=DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 8542 &LdChain[0], LdChain.size()); 8543 return false; 8544 } 8545} 8546 8547 8548void SelectionDAGLegalize::genWidenVectorStores(SDValueVector& StChain, 8549 SDValue Chain, 8550 SDValue BasePtr, 8551 const Value *SV, 8552 int SVOffset, 8553 unsigned Alignment, 8554 bool isVolatile, 8555 SDValue ValOp, 8556 unsigned StWidth, 8557 DebugLoc dl) { 8558 // Breaks the stores into a series of power of 2 width stores. For any 8559 // width, we convert the vector to the vector of element size that we 8560 // want to store. This avoids requiring a stack convert. 8561 8562 // Find a width of the element type we can store with 8563 MVT VVT = ValOp.getValueType(); 8564 MVT EVT, VecEVT; 8565 unsigned EVTWidth; 8566 FindWidenVecType(TLI, StWidth, VVT, EVT, VecEVT); 8567 EVTWidth = EVT.getSizeInBits(); 8568 8569 SDValue VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, VecEVT, ValOp); 8570 SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EVT, VecOp, 8571 DAG.getIntPtrConstant(0)); 8572 SDValue StOp = DAG.getStore(Chain, dl, EOp, BasePtr, SV, SVOffset, 8573 isVolatile, Alignment); 8574 StChain.push_back(StOp); 8575 8576 // Check if we are done 8577 if (StWidth == EVTWidth) { 8578 return; 8579 } 8580 8581 unsigned Idx = 1; 8582 StWidth -= EVTWidth; 8583 unsigned Offset = 0; 8584 8585 while (StWidth > 0) { 8586 unsigned Increment = EVTWidth / 8; 8587 Offset += Increment; 8588 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 8589 DAG.getIntPtrConstant(Increment)); 8590 8591 if (StWidth < EVTWidth) { 8592 // Our current type we are using is too large, use a smaller size by 8593 // using a smaller power of 2 8594 unsigned oEVTWidth = EVTWidth; 8595 FindWidenVecType(TLI, StWidth, VVT, EVT, VecEVT); 8596 EVTWidth = EVT.getSizeInBits(); 8597 // Readjust position and vector position based on new load type 8598 Idx = Idx * (oEVTWidth/EVTWidth); 8599 VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, VecEVT, VecOp); 8600 } 8601 8602 EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EVT, VecOp, 8603 DAG.getIntPtrConstant(Idx++)); 8604 StChain.push_back(DAG.getStore(Chain, dl, EOp, BasePtr, SV, 8605 SVOffset + Offset, isVolatile, 8606 MinAlign(Alignment, Offset))); 8607 StWidth -= EVTWidth; 8608 } 8609} 8610 8611 8612SDValue SelectionDAGLegalize::StoreWidenVectorOp(StoreSDNode *ST, 8613 SDValue Chain, 8614 SDValue BasePtr) { 8615 // TODO: It might be cleaner if we can use SplitVector and have more legal 8616 // vector types that can be stored into memory (e.g., v4xi8 can 8617 // be stored as a word). This will not work when a vector register 8618 // to memory mapping is strange (e.g., vector elements are not 8619 // stored in some sequential order). 8620 8621 MVT StVT = ST->getMemoryVT(); 8622 SDValue ValOp = ST->getValue(); 8623 DebugLoc dl = ST->getDebugLoc(); 8624 8625 // Check if we have widen this node with another value 8626 std::map<SDValue, SDValue>::iterator I = WidenNodes.find(ValOp); 8627 if (I != WidenNodes.end()) 8628 ValOp = I->second; 8629 8630 MVT VVT = ValOp.getValueType(); 8631 8632 // It must be true that we the widen vector type is bigger than where 8633 // we need to store. 8634 assert(StVT.isVector() && VVT.isVector()); 8635 assert(StVT.bitsLT(VVT)); 8636 assert(StVT.getVectorElementType() == VVT.getVectorElementType()); 8637 8638 // Store value 8639 SDValueVector StChain; 8640 genWidenVectorStores(StChain, Chain, BasePtr, ST->getSrcValue(), 8641 ST->getSrcValueOffset(), ST->getAlignment(), 8642 ST->isVolatile(), ValOp, StVT.getSizeInBits(), dl); 8643 if (StChain.size() == 1) 8644 return StChain[0]; 8645 else 8646 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 8647 &StChain[0], StChain.size()); 8648} 8649 8650 8651// SelectionDAG::Legalize - This is the entry point for the file. 8652// 8653void SelectionDAG::Legalize(bool TypesNeedLegalizing, bool Fast) { 8654 /// run - This is the main entry point to this class. 8655 /// 8656 SelectionDAGLegalize(*this, TypesNeedLegalizing, Fast).LegalizeDAG(); 8657} 8658 8659