LegalizeDAG.cpp revision b625f2f8960de32bc973092aaee8ac62863006fe
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the SelectionDAG::Legalize method. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/SelectionDAG.h" 15#include "llvm/CodeGen/MachineFunction.h" 16#include "llvm/CodeGen/MachineFrameInfo.h" 17#include "llvm/CodeGen/MachineJumpTableInfo.h" 18#include "llvm/CodeGen/MachineModuleInfo.h" 19#include "llvm/Target/TargetFrameInfo.h" 20#include "llvm/Target/TargetLowering.h" 21#include "llvm/Target/TargetData.h" 22#include "llvm/Target/TargetMachine.h" 23#include "llvm/Target/TargetOptions.h" 24#include "llvm/CallingConv.h" 25#include "llvm/Constants.h" 26#include "llvm/DerivedTypes.h" 27#include "llvm/Support/CommandLine.h" 28#include "llvm/Support/Compiler.h" 29#include "llvm/Support/MathExtras.h" 30#include "llvm/ADT/DenseMap.h" 31#include "llvm/ADT/SmallVector.h" 32#include "llvm/ADT/SmallPtrSet.h" 33#include <map> 34using namespace llvm; 35 36#ifndef NDEBUG 37static cl::opt<bool> 38ViewLegalizeDAGs("view-legalize-dags", cl::Hidden, 39 cl::desc("Pop up a window to show dags before legalize")); 40#else 41static const bool ViewLegalizeDAGs = 0; 42#endif 43 44//===----------------------------------------------------------------------===// 45/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and 46/// hacks on it until the target machine can handle it. This involves 47/// eliminating value sizes the machine cannot handle (promoting small sizes to 48/// large sizes or splitting up large values into small values) as well as 49/// eliminating operations the machine cannot handle. 50/// 51/// This code also does a small amount of optimization and recognition of idioms 52/// as part of its processing. For example, if a target does not support a 53/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 54/// will attempt merge setcc and brc instructions into brcc's. 55/// 56namespace { 57class VISIBILITY_HIDDEN SelectionDAGLegalize { 58 TargetLowering &TLI; 59 SelectionDAG &DAG; 60 61 // Libcall insertion helpers. 62 63 /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been 64 /// legalized. We use this to ensure that calls are properly serialized 65 /// against each other, including inserted libcalls. 66 SDOperand LastCALLSEQ_END; 67 68 /// IsLegalizingCall - This member is used *only* for purposes of providing 69 /// helpful assertions that a libcall isn't created while another call is 70 /// being legalized (which could lead to non-serialized call sequences). 71 bool IsLegalizingCall; 72 73 enum LegalizeAction { 74 Legal, // The target natively supports this operation. 75 Promote, // This operation should be executed in a larger type. 76 Expand // Try to expand this to other ops, otherwise use a libcall. 77 }; 78 79 /// ValueTypeActions - This is a bitvector that contains two bits for each 80 /// value type, where the two bits correspond to the LegalizeAction enum. 81 /// This can be queried with "getTypeAction(VT)". 82 TargetLowering::ValueTypeActionImpl ValueTypeActions; 83 84 /// LegalizedNodes - For nodes that are of legal width, and that have more 85 /// than one use, this map indicates what regularized operand to use. This 86 /// allows us to avoid legalizing the same thing more than once. 87 DenseMap<SDOperand, SDOperand> LegalizedNodes; 88 89 /// PromotedNodes - For nodes that are below legal width, and that have more 90 /// than one use, this map indicates what promoted value to use. This allows 91 /// us to avoid promoting the same thing more than once. 92 DenseMap<SDOperand, SDOperand> PromotedNodes; 93 94 /// ExpandedNodes - For nodes that need to be expanded this map indicates 95 /// which which operands are the expanded version of the input. This allows 96 /// us to avoid expanding the same node more than once. 97 DenseMap<SDOperand, std::pair<SDOperand, SDOperand> > ExpandedNodes; 98 99 /// SplitNodes - For vector nodes that need to be split, this map indicates 100 /// which which operands are the split version of the input. This allows us 101 /// to avoid splitting the same node more than once. 102 std::map<SDOperand, std::pair<SDOperand, SDOperand> > SplitNodes; 103 104 /// ScalarizedNodes - For nodes that need to be converted from vector types to 105 /// scalar types, this contains the mapping of ones we have already 106 /// processed to the result. 107 std::map<SDOperand, SDOperand> ScalarizedNodes; 108 109 void AddLegalizedOperand(SDOperand From, SDOperand To) { 110 LegalizedNodes.insert(std::make_pair(From, To)); 111 // If someone requests legalization of the new node, return itself. 112 if (From != To) 113 LegalizedNodes.insert(std::make_pair(To, To)); 114 } 115 void AddPromotedOperand(SDOperand From, SDOperand To) { 116 bool isNew = PromotedNodes.insert(std::make_pair(From, To)); 117 assert(isNew && "Got into the map somehow?"); 118 // If someone requests legalization of the new node, return itself. 119 LegalizedNodes.insert(std::make_pair(To, To)); 120 } 121 122public: 123 124 SelectionDAGLegalize(SelectionDAG &DAG); 125 126 /// getTypeAction - Return how we should legalize values of this type, either 127 /// it is already legal or we need to expand it into multiple registers of 128 /// smaller integer type, or we need to promote it to a larger type. 129 LegalizeAction getTypeAction(MVT::ValueType VT) const { 130 return (LegalizeAction)ValueTypeActions.getTypeAction(VT); 131 } 132 133 /// isTypeLegal - Return true if this type is legal on this target. 134 /// 135 bool isTypeLegal(MVT::ValueType VT) const { 136 return getTypeAction(VT) == Legal; 137 } 138 139 void LegalizeDAG(); 140 141private: 142 /// HandleOp - Legalize, Promote, or Expand the specified operand as 143 /// appropriate for its type. 144 void HandleOp(SDOperand Op); 145 146 /// LegalizeOp - We know that the specified value has a legal type. 147 /// Recursively ensure that the operands have legal types, then return the 148 /// result. 149 SDOperand LegalizeOp(SDOperand O); 150 151 /// UnrollVectorOp - We know that the given vector has a legal type, however 152 /// the operation it performs is not legal and is an operation that we have 153 /// no way of lowering. "Unroll" the vector, splitting out the scalars and 154 /// operating on each element individually. 155 SDOperand UnrollVectorOp(SDOperand O); 156 157 /// PromoteOp - Given an operation that produces a value in an invalid type, 158 /// promote it to compute the value into a larger type. The produced value 159 /// will have the correct bits for the low portion of the register, but no 160 /// guarantee is made about the top bits: it may be zero, sign-extended, or 161 /// garbage. 162 SDOperand PromoteOp(SDOperand O); 163 164 /// ExpandOp - Expand the specified SDOperand into its two component pieces 165 /// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, 166 /// the LegalizeNodes map is filled in for any results that are not expanded, 167 /// the ExpandedNodes map is filled in for any results that are expanded, and 168 /// the Lo/Hi values are returned. This applies to integer types and Vector 169 /// types. 170 void ExpandOp(SDOperand O, SDOperand &Lo, SDOperand &Hi); 171 172 /// SplitVectorOp - Given an operand of vector type, break it down into 173 /// two smaller values. 174 void SplitVectorOp(SDOperand O, SDOperand &Lo, SDOperand &Hi); 175 176 /// ScalarizeVectorOp - Given an operand of single-element vector type 177 /// (e.g. v1f32), convert it into the equivalent operation that returns a 178 /// scalar (e.g. f32) value. 179 SDOperand ScalarizeVectorOp(SDOperand O); 180 181 /// isShuffleLegal - Return true if a vector shuffle is legal with the 182 /// specified mask and type. Targets can specify exactly which masks they 183 /// support and the code generator is tasked with not creating illegal masks. 184 /// 185 /// Note that this will also return true for shuffles that are promoted to a 186 /// different type. 187 /// 188 /// If this is a legal shuffle, this method returns the (possibly promoted) 189 /// build_vector Mask. If it's not a legal shuffle, it returns null. 190 SDNode *isShuffleLegal(MVT::ValueType VT, SDOperand Mask) const; 191 192 bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, 193 SmallPtrSet<SDNode*, 32> &NodesLeadingTo); 194 195 void LegalizeSetCCOperands(SDOperand &LHS, SDOperand &RHS, SDOperand &CC); 196 197 SDOperand ExpandLibCall(const char *Name, SDNode *Node, bool isSigned, 198 SDOperand &Hi); 199 SDOperand ExpandIntToFP(bool isSigned, MVT::ValueType DestTy, 200 SDOperand Source); 201 202 SDOperand EmitStackConvert(SDOperand SrcOp, MVT::ValueType SlotVT, 203 MVT::ValueType DestVT); 204 SDOperand ExpandBUILD_VECTOR(SDNode *Node); 205 SDOperand ExpandSCALAR_TO_VECTOR(SDNode *Node); 206 SDOperand ExpandLegalINT_TO_FP(bool isSigned, 207 SDOperand LegalOp, 208 MVT::ValueType DestVT); 209 SDOperand PromoteLegalINT_TO_FP(SDOperand LegalOp, MVT::ValueType DestVT, 210 bool isSigned); 211 SDOperand PromoteLegalFP_TO_INT(SDOperand LegalOp, MVT::ValueType DestVT, 212 bool isSigned); 213 214 SDOperand ExpandBSWAP(SDOperand Op); 215 SDOperand ExpandBitCount(unsigned Opc, SDOperand Op); 216 bool ExpandShift(unsigned Opc, SDOperand Op, SDOperand Amt, 217 SDOperand &Lo, SDOperand &Hi); 218 void ExpandShiftParts(unsigned NodeOp, SDOperand Op, SDOperand Amt, 219 SDOperand &Lo, SDOperand &Hi); 220 221 SDOperand ExpandEXTRACT_SUBVECTOR(SDOperand Op); 222 SDOperand ExpandEXTRACT_VECTOR_ELT(SDOperand Op); 223}; 224} 225 226/// isVectorShuffleLegal - Return true if a vector shuffle is legal with the 227/// specified mask and type. Targets can specify exactly which masks they 228/// support and the code generator is tasked with not creating illegal masks. 229/// 230/// Note that this will also return true for shuffles that are promoted to a 231/// different type. 232SDNode *SelectionDAGLegalize::isShuffleLegal(MVT::ValueType VT, 233 SDOperand Mask) const { 234 switch (TLI.getOperationAction(ISD::VECTOR_SHUFFLE, VT)) { 235 default: return 0; 236 case TargetLowering::Legal: 237 case TargetLowering::Custom: 238 break; 239 case TargetLowering::Promote: { 240 // If this is promoted to a different type, convert the shuffle mask and 241 // ask if it is legal in the promoted type! 242 MVT::ValueType NVT = TLI.getTypeToPromoteTo(ISD::VECTOR_SHUFFLE, VT); 243 244 // If we changed # elements, change the shuffle mask. 245 unsigned NumEltsGrowth = 246 MVT::getVectorNumElements(NVT) / MVT::getVectorNumElements(VT); 247 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 248 if (NumEltsGrowth > 1) { 249 // Renumber the elements. 250 SmallVector<SDOperand, 8> Ops; 251 for (unsigned i = 0, e = Mask.getNumOperands(); i != e; ++i) { 252 SDOperand InOp = Mask.getOperand(i); 253 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 254 if (InOp.getOpcode() == ISD::UNDEF) 255 Ops.push_back(DAG.getNode(ISD::UNDEF, MVT::i32)); 256 else { 257 unsigned InEltNo = cast<ConstantSDNode>(InOp)->getValue(); 258 Ops.push_back(DAG.getConstant(InEltNo*NumEltsGrowth+j, MVT::i32)); 259 } 260 } 261 } 262 Mask = DAG.getNode(ISD::BUILD_VECTOR, NVT, &Ops[0], Ops.size()); 263 } 264 VT = NVT; 265 break; 266 } 267 } 268 return TLI.isShuffleMaskLegal(Mask, VT) ? Mask.Val : 0; 269} 270 271SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag) 272 : TLI(dag.getTargetLoweringInfo()), DAG(dag), 273 ValueTypeActions(TLI.getValueTypeActions()) { 274 assert(MVT::LAST_VALUETYPE <= 32 && 275 "Too many value types for ValueTypeActions to hold!"); 276} 277 278/// ComputeTopDownOrdering - Compute a top-down ordering of the dag, where Order 279/// contains all of a nodes operands before it contains the node. 280static void ComputeTopDownOrdering(SelectionDAG &DAG, 281 SmallVector<SDNode*, 64> &Order) { 282 283 DenseMap<SDNode*, unsigned> Visited; 284 std::vector<SDNode*> Worklist; 285 Worklist.reserve(128); 286 287 // Compute ordering from all of the leaves in the graphs, those (like the 288 // entry node) that have no operands. 289 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 290 E = DAG.allnodes_end(); I != E; ++I) { 291 if (I->getNumOperands() == 0) { 292 Visited[I] = 0 - 1U; 293 Worklist.push_back(I); 294 } 295 } 296 297 while (!Worklist.empty()) { 298 SDNode *N = Worklist.back(); 299 Worklist.pop_back(); 300 301 if (++Visited[N] != N->getNumOperands()) 302 continue; // Haven't visited all operands yet 303 304 Order.push_back(N); 305 306 // Now that we have N in, add anything that uses it if all of their operands 307 // are now done. 308 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 309 UI != E; ++UI) 310 Worklist.push_back(*UI); 311 } 312 313 assert(Order.size() == Visited.size() && 314 Order.size() == 315 (unsigned)std::distance(DAG.allnodes_begin(), DAG.allnodes_end()) && 316 "Error: DAG is cyclic!"); 317} 318 319 320void SelectionDAGLegalize::LegalizeDAG() { 321 LastCALLSEQ_END = DAG.getEntryNode(); 322 IsLegalizingCall = false; 323 324 // The legalize process is inherently a bottom-up recursive process (users 325 // legalize their uses before themselves). Given infinite stack space, we 326 // could just start legalizing on the root and traverse the whole graph. In 327 // practice however, this causes us to run out of stack space on large basic 328 // blocks. To avoid this problem, compute an ordering of the nodes where each 329 // node is only legalized after all of its operands are legalized. 330 SmallVector<SDNode*, 64> Order; 331 ComputeTopDownOrdering(DAG, Order); 332 333 for (unsigned i = 0, e = Order.size(); i != e; ++i) 334 HandleOp(SDOperand(Order[i], 0)); 335 336 // Finally, it's possible the root changed. Get the new root. 337 SDOperand OldRoot = DAG.getRoot(); 338 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 339 DAG.setRoot(LegalizedNodes[OldRoot]); 340 341 ExpandedNodes.clear(); 342 LegalizedNodes.clear(); 343 PromotedNodes.clear(); 344 SplitNodes.clear(); 345 ScalarizedNodes.clear(); 346 347 // Remove dead nodes now. 348 DAG.RemoveDeadNodes(); 349} 350 351 352/// FindCallEndFromCallStart - Given a chained node that is part of a call 353/// sequence, find the CALLSEQ_END node that terminates the call sequence. 354static SDNode *FindCallEndFromCallStart(SDNode *Node) { 355 if (Node->getOpcode() == ISD::CALLSEQ_END) 356 return Node; 357 if (Node->use_empty()) 358 return 0; // No CallSeqEnd 359 360 // The chain is usually at the end. 361 SDOperand TheChain(Node, Node->getNumValues()-1); 362 if (TheChain.getValueType() != MVT::Other) { 363 // Sometimes it's at the beginning. 364 TheChain = SDOperand(Node, 0); 365 if (TheChain.getValueType() != MVT::Other) { 366 // Otherwise, hunt for it. 367 for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i) 368 if (Node->getValueType(i) == MVT::Other) { 369 TheChain = SDOperand(Node, i); 370 break; 371 } 372 373 // Otherwise, we walked into a node without a chain. 374 if (TheChain.getValueType() != MVT::Other) 375 return 0; 376 } 377 } 378 379 for (SDNode::use_iterator UI = Node->use_begin(), 380 E = Node->use_end(); UI != E; ++UI) { 381 382 // Make sure to only follow users of our token chain. 383 SDNode *User = *UI; 384 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) 385 if (User->getOperand(i) == TheChain) 386 if (SDNode *Result = FindCallEndFromCallStart(User)) 387 return Result; 388 } 389 return 0; 390} 391 392/// FindCallStartFromCallEnd - Given a chained node that is part of a call 393/// sequence, find the CALLSEQ_START node that initiates the call sequence. 394static SDNode *FindCallStartFromCallEnd(SDNode *Node) { 395 assert(Node && "Didn't find callseq_start for a call??"); 396 if (Node->getOpcode() == ISD::CALLSEQ_START) return Node; 397 398 assert(Node->getOperand(0).getValueType() == MVT::Other && 399 "Node doesn't have a token chain argument!"); 400 return FindCallStartFromCallEnd(Node->getOperand(0).Val); 401} 402 403/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to 404/// see if any uses can reach Dest. If no dest operands can get to dest, 405/// legalize them, legalize ourself, and return false, otherwise, return true. 406/// 407/// Keep track of the nodes we fine that actually do lead to Dest in 408/// NodesLeadingTo. This avoids retraversing them exponential number of times. 409/// 410bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, 411 SmallPtrSet<SDNode*, 32> &NodesLeadingTo) { 412 if (N == Dest) return true; // N certainly leads to Dest :) 413 414 // If we've already processed this node and it does lead to Dest, there is no 415 // need to reprocess it. 416 if (NodesLeadingTo.count(N)) return true; 417 418 // If the first result of this node has been already legalized, then it cannot 419 // reach N. 420 switch (getTypeAction(N->getValueType(0))) { 421 case Legal: 422 if (LegalizedNodes.count(SDOperand(N, 0))) return false; 423 break; 424 case Promote: 425 if (PromotedNodes.count(SDOperand(N, 0))) return false; 426 break; 427 case Expand: 428 if (ExpandedNodes.count(SDOperand(N, 0))) return false; 429 break; 430 } 431 432 // Okay, this node has not already been legalized. Check and legalize all 433 // operands. If none lead to Dest, then we can legalize this node. 434 bool OperandsLeadToDest = false; 435 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 436 OperandsLeadToDest |= // If an operand leads to Dest, so do we. 437 LegalizeAllNodesNotLeadingTo(N->getOperand(i).Val, Dest, NodesLeadingTo); 438 439 if (OperandsLeadToDest) { 440 NodesLeadingTo.insert(N); 441 return true; 442 } 443 444 // Okay, this node looks safe, legalize it and return false. 445 HandleOp(SDOperand(N, 0)); 446 return false; 447} 448 449/// HandleOp - Legalize, Promote, or Expand the specified operand as 450/// appropriate for its type. 451void SelectionDAGLegalize::HandleOp(SDOperand Op) { 452 MVT::ValueType VT = Op.getValueType(); 453 switch (getTypeAction(VT)) { 454 default: assert(0 && "Bad type action!"); 455 case Legal: (void)LegalizeOp(Op); break; 456 case Promote: (void)PromoteOp(Op); break; 457 case Expand: 458 if (!MVT::isVector(VT)) { 459 // If this is an illegal scalar, expand it into its two component 460 // pieces. 461 SDOperand X, Y; 462 if (Op.getOpcode() == ISD::TargetConstant) 463 break; // Allow illegal target nodes. 464 ExpandOp(Op, X, Y); 465 } else if (MVT::getVectorNumElements(VT) == 1) { 466 // If this is an illegal single element vector, convert it to a 467 // scalar operation. 468 (void)ScalarizeVectorOp(Op); 469 } else { 470 // Otherwise, this is an illegal multiple element vector. 471 // Split it in half and legalize both parts. 472 SDOperand X, Y; 473 SplitVectorOp(Op, X, Y); 474 } 475 break; 476 } 477} 478 479/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or 480/// a load from the constant pool. 481static SDOperand ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP, 482 SelectionDAG &DAG, TargetLowering &TLI) { 483 bool Extend = false; 484 485 // If a FP immediate is precise when represented as a float and if the 486 // target can do an extending load from float to double, we put it into 487 // the constant pool as a float, even if it's is statically typed as a 488 // double. 489 MVT::ValueType VT = CFP->getValueType(0); 490 bool isDouble = VT == MVT::f64; 491 ConstantFP *LLVMC = ConstantFP::get(MVT::getTypeForValueType(VT), 492 CFP->getValueAPF()); 493 if (!UseCP) { 494 if (VT!=MVT::f64 && VT!=MVT::f32) 495 assert(0 && "Invalid type expansion"); 496 return DAG.getConstant(LLVMC->getValueAPF().convertToAPInt().getZExtValue(), 497 isDouble ? MVT::i64 : MVT::i32); 498 } 499 500 if (isDouble && CFP->isValueValidForType(MVT::f32, CFP->getValueAPF()) && 501 // Only do this if the target has a native EXTLOAD instruction from f32. 502 // Do not try to be clever about long doubles (so far) 503 TLI.isLoadXLegal(ISD::EXTLOAD, MVT::f32)) { 504 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC,Type::FloatTy)); 505 VT = MVT::f32; 506 Extend = true; 507 } 508 509 SDOperand CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy()); 510 if (Extend) { 511 return DAG.getExtLoad(ISD::EXTLOAD, MVT::f64, DAG.getEntryNode(), 512 CPIdx, NULL, 0, MVT::f32); 513 } else { 514 return DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0); 515 } 516} 517 518 519/// ExpandFCOPYSIGNToBitwiseOps - Expands fcopysign to a series of bitwise 520/// operations. 521static 522SDOperand ExpandFCOPYSIGNToBitwiseOps(SDNode *Node, MVT::ValueType NVT, 523 SelectionDAG &DAG, TargetLowering &TLI) { 524 MVT::ValueType VT = Node->getValueType(0); 525 MVT::ValueType SrcVT = Node->getOperand(1).getValueType(); 526 assert((SrcVT == MVT::f32 || SrcVT == MVT::f64) && 527 "fcopysign expansion only supported for f32 and f64"); 528 MVT::ValueType SrcNVT = (SrcVT == MVT::f64) ? MVT::i64 : MVT::i32; 529 530 // First get the sign bit of second operand. 531 SDOperand Mask1 = (SrcVT == MVT::f64) 532 ? DAG.getConstantFP(BitsToDouble(1ULL << 63), SrcVT) 533 : DAG.getConstantFP(BitsToFloat(1U << 31), SrcVT); 534 Mask1 = DAG.getNode(ISD::BIT_CONVERT, SrcNVT, Mask1); 535 SDOperand SignBit= DAG.getNode(ISD::BIT_CONVERT, SrcNVT, Node->getOperand(1)); 536 SignBit = DAG.getNode(ISD::AND, SrcNVT, SignBit, Mask1); 537 // Shift right or sign-extend it if the two operands have different types. 538 int SizeDiff = MVT::getSizeInBits(SrcNVT) - MVT::getSizeInBits(NVT); 539 if (SizeDiff > 0) { 540 SignBit = DAG.getNode(ISD::SRL, SrcNVT, SignBit, 541 DAG.getConstant(SizeDiff, TLI.getShiftAmountTy())); 542 SignBit = DAG.getNode(ISD::TRUNCATE, NVT, SignBit); 543 } else if (SizeDiff < 0) 544 SignBit = DAG.getNode(ISD::SIGN_EXTEND, NVT, SignBit); 545 546 // Clear the sign bit of first operand. 547 SDOperand Mask2 = (VT == MVT::f64) 548 ? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT) 549 : DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT); 550 Mask2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask2); 551 SDOperand Result = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 552 Result = DAG.getNode(ISD::AND, NVT, Result, Mask2); 553 554 // Or the value with the sign bit. 555 Result = DAG.getNode(ISD::OR, NVT, Result, SignBit); 556 return Result; 557} 558 559/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores. 560static 561SDOperand ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG, 562 TargetLowering &TLI) { 563 SDOperand Chain = ST->getChain(); 564 SDOperand Ptr = ST->getBasePtr(); 565 SDOperand Val = ST->getValue(); 566 MVT::ValueType VT = Val.getValueType(); 567 int Alignment = ST->getAlignment(); 568 int SVOffset = ST->getSrcValueOffset(); 569 if (MVT::isFloatingPoint(ST->getMemoryVT())) { 570 // Expand to a bitconvert of the value to the integer type of the 571 // same size, then a (misaligned) int store. 572 MVT::ValueType intVT; 573 if (VT==MVT::f64) 574 intVT = MVT::i64; 575 else if (VT==MVT::f32) 576 intVT = MVT::i32; 577 else 578 assert(0 && "Unaligned load of unsupported floating point type"); 579 580 SDOperand Result = DAG.getNode(ISD::BIT_CONVERT, intVT, Val); 581 return DAG.getStore(Chain, Result, Ptr, ST->getSrcValue(), 582 SVOffset, ST->isVolatile(), Alignment); 583 } 584 assert(MVT::isInteger(ST->getMemoryVT()) && 585 "Unaligned store of unknown type."); 586 // Get the half-size VT 587 MVT::ValueType NewStoredVT = ST->getMemoryVT() - 1; 588 int NumBits = MVT::getSizeInBits(NewStoredVT); 589 int IncrementSize = NumBits / 8; 590 591 // Divide the stored value in two parts. 592 SDOperand ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy()); 593 SDOperand Lo = Val; 594 SDOperand Hi = DAG.getNode(ISD::SRL, VT, Val, ShiftAmount); 595 596 // Store the two parts 597 SDOperand Store1, Store2; 598 Store1 = DAG.getTruncStore(Chain, TLI.isLittleEndian()?Lo:Hi, Ptr, 599 ST->getSrcValue(), SVOffset, NewStoredVT, 600 ST->isVolatile(), Alignment); 601 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 602 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 603 Alignment = MinAlign(Alignment, IncrementSize); 604 Store2 = DAG.getTruncStore(Chain, TLI.isLittleEndian()?Hi:Lo, Ptr, 605 ST->getSrcValue(), SVOffset + IncrementSize, 606 NewStoredVT, ST->isVolatile(), Alignment); 607 608 return DAG.getNode(ISD::TokenFactor, MVT::Other, Store1, Store2); 609} 610 611/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads. 612static 613SDOperand ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG, 614 TargetLowering &TLI) { 615 int SVOffset = LD->getSrcValueOffset(); 616 SDOperand Chain = LD->getChain(); 617 SDOperand Ptr = LD->getBasePtr(); 618 MVT::ValueType VT = LD->getValueType(0); 619 MVT::ValueType LoadedVT = LD->getMemoryVT(); 620 if (MVT::isFloatingPoint(VT) && !MVT::isVector(VT)) { 621 // Expand to a (misaligned) integer load of the same size, 622 // then bitconvert to floating point. 623 MVT::ValueType intVT; 624 if (LoadedVT == MVT::f64) 625 intVT = MVT::i64; 626 else if (LoadedVT == MVT::f32) 627 intVT = MVT::i32; 628 else 629 assert(0 && "Unaligned load of unsupported floating point type"); 630 631 SDOperand newLoad = DAG.getLoad(intVT, Chain, Ptr, LD->getSrcValue(), 632 SVOffset, LD->isVolatile(), 633 LD->getAlignment()); 634 SDOperand Result = DAG.getNode(ISD::BIT_CONVERT, LoadedVT, newLoad); 635 if (LoadedVT != VT) 636 Result = DAG.getNode(ISD::FP_EXTEND, VT, Result); 637 638 SDOperand Ops[] = { Result, Chain }; 639 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), 640 Ops, 2); 641 } 642 assert((MVT::isInteger(LoadedVT) || MVT::isVector(LoadedVT)) && 643 "Unaligned load of unsupported type."); 644 645 // Compute the new VT that is half the size of the old one. We either have an 646 // integer MVT or we have a vector MVT. 647 unsigned NumBits = MVT::getSizeInBits(LoadedVT); 648 MVT::ValueType NewLoadedVT; 649 if (!MVT::isVector(LoadedVT)) { 650 NewLoadedVT = MVT::getIntegerType(NumBits/2); 651 } else { 652 // FIXME: This is not right for <1 x anything> it is also not right for 653 // non-power-of-two vectors. 654 NewLoadedVT = MVT::getVectorType(MVT::getVectorElementType(LoadedVT), 655 MVT::getVectorNumElements(LoadedVT)/2); 656 } 657 NumBits >>= 1; 658 659 unsigned Alignment = LD->getAlignment(); 660 unsigned IncrementSize = NumBits / 8; 661 ISD::LoadExtType HiExtType = LD->getExtensionType(); 662 663 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 664 if (HiExtType == ISD::NON_EXTLOAD) 665 HiExtType = ISD::ZEXTLOAD; 666 667 // Load the value in two parts 668 SDOperand Lo, Hi; 669 if (TLI.isLittleEndian()) { 670 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, Chain, Ptr, LD->getSrcValue(), 671 SVOffset, NewLoadedVT, LD->isVolatile(), Alignment); 672 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 673 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 674 Hi = DAG.getExtLoad(HiExtType, VT, Chain, Ptr, LD->getSrcValue(), 675 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(), 676 MinAlign(Alignment, IncrementSize)); 677 } else { 678 Hi = DAG.getExtLoad(HiExtType, VT, Chain, Ptr, LD->getSrcValue(), SVOffset, 679 NewLoadedVT,LD->isVolatile(), Alignment); 680 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 681 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 682 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, Chain, Ptr, LD->getSrcValue(), 683 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(), 684 MinAlign(Alignment, IncrementSize)); 685 } 686 687 // aggregate the two parts 688 SDOperand ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy()); 689 SDOperand Result = DAG.getNode(ISD::SHL, VT, Hi, ShiftAmount); 690 Result = DAG.getNode(ISD::OR, VT, Result, Lo); 691 692 SDOperand TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 693 Hi.getValue(1)); 694 695 SDOperand Ops[] = { Result, TF }; 696 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), Ops, 2); 697} 698 699/// UnrollVectorOp - We know that the given vector has a legal type, however 700/// the operation it performs is not legal and is an operation that we have 701/// no way of lowering. "Unroll" the vector, splitting out the scalars and 702/// operating on each element individually. 703SDOperand SelectionDAGLegalize::UnrollVectorOp(SDOperand Op) { 704 MVT::ValueType VT = Op.getValueType(); 705 assert(isTypeLegal(VT) && 706 "Caller should expand or promote operands that are not legal!"); 707 assert(Op.Val->getNumValues() == 1 && 708 "Can't unroll a vector with multiple results!"); 709 unsigned NE = MVT::getVectorNumElements(VT); 710 MVT::ValueType EltVT = MVT::getVectorElementType(VT); 711 712 SmallVector<SDOperand, 8> Scalars; 713 SmallVector<SDOperand, 4> Operands(Op.getNumOperands()); 714 for (unsigned i = 0; i != NE; ++i) { 715 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 716 SDOperand Operand = Op.getOperand(j); 717 MVT::ValueType OperandVT = Operand.getValueType(); 718 if (MVT::isVector(OperandVT)) { 719 // A vector operand; extract a single element. 720 MVT::ValueType OperandEltVT = MVT::getVectorElementType(OperandVT); 721 Operands[j] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, 722 OperandEltVT, 723 Operand, 724 DAG.getConstant(i, MVT::i32)); 725 } else { 726 // A scalar operand; just use it as is. 727 Operands[j] = Operand; 728 } 729 } 730 Scalars.push_back(DAG.getNode(Op.getOpcode(), EltVT, 731 &Operands[0], Operands.size())); 732 } 733 734 return DAG.getNode(ISD::BUILD_VECTOR, VT, &Scalars[0], Scalars.size()); 735} 736 737/// GetFPLibCall - Return the right libcall for the given floating point type. 738static RTLIB::Libcall GetFPLibCall(MVT::ValueType VT, 739 RTLIB::Libcall Call_F32, 740 RTLIB::Libcall Call_F64, 741 RTLIB::Libcall Call_F80, 742 RTLIB::Libcall Call_PPCF128) { 743 return 744 VT == MVT::f32 ? Call_F32 : 745 VT == MVT::f64 ? Call_F64 : 746 VT == MVT::f80 ? Call_F80 : 747 VT == MVT::ppcf128 ? Call_PPCF128 : 748 RTLIB::UNKNOWN_LIBCALL; 749} 750 751/// LegalizeOp - We know that the specified value has a legal type, and 752/// that its operands are legal. Now ensure that the operation itself 753/// is legal, recursively ensuring that the operands' operations remain 754/// legal. 755SDOperand SelectionDAGLegalize::LegalizeOp(SDOperand Op) { 756 if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes. 757 return Op; 758 759 assert(isTypeLegal(Op.getValueType()) && 760 "Caller should expand or promote operands that are not legal!"); 761 SDNode *Node = Op.Val; 762 763 // If this operation defines any values that cannot be represented in a 764 // register on this target, make sure to expand or promote them. 765 if (Node->getNumValues() > 1) { 766 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 767 if (getTypeAction(Node->getValueType(i)) != Legal) { 768 HandleOp(Op.getValue(i)); 769 assert(LegalizedNodes.count(Op) && 770 "Handling didn't add legal operands!"); 771 return LegalizedNodes[Op]; 772 } 773 } 774 775 // Note that LegalizeOp may be reentered even from single-use nodes, which 776 // means that we always must cache transformed nodes. 777 DenseMap<SDOperand, SDOperand>::iterator I = LegalizedNodes.find(Op); 778 if (I != LegalizedNodes.end()) return I->second; 779 780 SDOperand Tmp1, Tmp2, Tmp3, Tmp4; 781 SDOperand Result = Op; 782 bool isCustom = false; 783 784 switch (Node->getOpcode()) { 785 case ISD::FrameIndex: 786 case ISD::EntryToken: 787 case ISD::Register: 788 case ISD::BasicBlock: 789 case ISD::TargetFrameIndex: 790 case ISD::TargetJumpTable: 791 case ISD::TargetConstant: 792 case ISD::TargetConstantFP: 793 case ISD::TargetConstantPool: 794 case ISD::TargetGlobalAddress: 795 case ISD::TargetGlobalTLSAddress: 796 case ISD::TargetExternalSymbol: 797 case ISD::VALUETYPE: 798 case ISD::SRCVALUE: 799 case ISD::STRING: 800 case ISD::CONDCODE: 801 // Primitives must all be legal. 802 assert(TLI.isOperationLegal(Node->getOpcode(), Node->getValueType(0)) && 803 "This must be legal!"); 804 break; 805 default: 806 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 807 // If this is a target node, legalize it by legalizing the operands then 808 // passing it through. 809 SmallVector<SDOperand, 8> Ops; 810 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 811 Ops.push_back(LegalizeOp(Node->getOperand(i))); 812 813 Result = DAG.UpdateNodeOperands(Result.getValue(0), &Ops[0], Ops.size()); 814 815 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 816 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 817 return Result.getValue(Op.ResNo); 818 } 819 // Otherwise this is an unhandled builtin node. splat. 820#ifndef NDEBUG 821 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 822#endif 823 assert(0 && "Do not know how to legalize this operator!"); 824 abort(); 825 case ISD::GLOBAL_OFFSET_TABLE: 826 case ISD::GlobalAddress: 827 case ISD::GlobalTLSAddress: 828 case ISD::ExternalSymbol: 829 case ISD::ConstantPool: 830 case ISD::JumpTable: // Nothing to do. 831 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 832 default: assert(0 && "This action is not supported yet!"); 833 case TargetLowering::Custom: 834 Tmp1 = TLI.LowerOperation(Op, DAG); 835 if (Tmp1.Val) Result = Tmp1; 836 // FALLTHROUGH if the target doesn't want to lower this op after all. 837 case TargetLowering::Legal: 838 break; 839 } 840 break; 841 case ISD::FRAMEADDR: 842 case ISD::RETURNADDR: 843 // The only option for these nodes is to custom lower them. If the target 844 // does not custom lower them, then return zero. 845 Tmp1 = TLI.LowerOperation(Op, DAG); 846 if (Tmp1.Val) 847 Result = Tmp1; 848 else 849 Result = DAG.getConstant(0, TLI.getPointerTy()); 850 break; 851 case ISD::FRAME_TO_ARGS_OFFSET: { 852 MVT::ValueType VT = Node->getValueType(0); 853 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 854 default: assert(0 && "This action is not supported yet!"); 855 case TargetLowering::Custom: 856 Result = TLI.LowerOperation(Op, DAG); 857 if (Result.Val) break; 858 // Fall Thru 859 case TargetLowering::Legal: 860 Result = DAG.getConstant(0, VT); 861 break; 862 } 863 } 864 break; 865 case ISD::EXCEPTIONADDR: { 866 Tmp1 = LegalizeOp(Node->getOperand(0)); 867 MVT::ValueType VT = Node->getValueType(0); 868 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 869 default: assert(0 && "This action is not supported yet!"); 870 case TargetLowering::Expand: { 871 unsigned Reg = TLI.getExceptionAddressRegister(); 872 Result = DAG.getCopyFromReg(Tmp1, Reg, VT); 873 } 874 break; 875 case TargetLowering::Custom: 876 Result = TLI.LowerOperation(Op, DAG); 877 if (Result.Val) break; 878 // Fall Thru 879 case TargetLowering::Legal: { 880 SDOperand Ops[] = { DAG.getConstant(0, VT), Tmp1 }; 881 Result = DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), 882 Ops, 2); 883 break; 884 } 885 } 886 } 887 if (Result.Val->getNumValues() == 1) break; 888 889 assert(Result.Val->getNumValues() == 2 && 890 "Cannot return more than two values!"); 891 892 // Since we produced two values, make sure to remember that we 893 // legalized both of them. 894 Tmp1 = LegalizeOp(Result); 895 Tmp2 = LegalizeOp(Result.getValue(1)); 896 AddLegalizedOperand(Op.getValue(0), Tmp1); 897 AddLegalizedOperand(Op.getValue(1), Tmp2); 898 return Op.ResNo ? Tmp2 : Tmp1; 899 case ISD::EHSELECTION: { 900 Tmp1 = LegalizeOp(Node->getOperand(0)); 901 Tmp2 = LegalizeOp(Node->getOperand(1)); 902 MVT::ValueType VT = Node->getValueType(0); 903 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 904 default: assert(0 && "This action is not supported yet!"); 905 case TargetLowering::Expand: { 906 unsigned Reg = TLI.getExceptionSelectorRegister(); 907 Result = DAG.getCopyFromReg(Tmp2, Reg, VT); 908 } 909 break; 910 case TargetLowering::Custom: 911 Result = TLI.LowerOperation(Op, DAG); 912 if (Result.Val) break; 913 // Fall Thru 914 case TargetLowering::Legal: { 915 SDOperand Ops[] = { DAG.getConstant(0, VT), Tmp2 }; 916 Result = DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), 917 Ops, 2); 918 break; 919 } 920 } 921 } 922 if (Result.Val->getNumValues() == 1) break; 923 924 assert(Result.Val->getNumValues() == 2 && 925 "Cannot return more than two values!"); 926 927 // Since we produced two values, make sure to remember that we 928 // legalized both of them. 929 Tmp1 = LegalizeOp(Result); 930 Tmp2 = LegalizeOp(Result.getValue(1)); 931 AddLegalizedOperand(Op.getValue(0), Tmp1); 932 AddLegalizedOperand(Op.getValue(1), Tmp2); 933 return Op.ResNo ? Tmp2 : Tmp1; 934 case ISD::EH_RETURN: { 935 MVT::ValueType VT = Node->getValueType(0); 936 // The only "good" option for this node is to custom lower it. 937 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 938 default: assert(0 && "This action is not supported at all!"); 939 case TargetLowering::Custom: 940 Result = TLI.LowerOperation(Op, DAG); 941 if (Result.Val) break; 942 // Fall Thru 943 case TargetLowering::Legal: 944 // Target does not know, how to lower this, lower to noop 945 Result = LegalizeOp(Node->getOperand(0)); 946 break; 947 } 948 } 949 break; 950 case ISD::AssertSext: 951 case ISD::AssertZext: 952 Tmp1 = LegalizeOp(Node->getOperand(0)); 953 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 954 break; 955 case ISD::MERGE_VALUES: 956 // Legalize eliminates MERGE_VALUES nodes. 957 Result = Node->getOperand(Op.ResNo); 958 break; 959 case ISD::CopyFromReg: 960 Tmp1 = LegalizeOp(Node->getOperand(0)); 961 Result = Op.getValue(0); 962 if (Node->getNumValues() == 2) { 963 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 964 } else { 965 assert(Node->getNumValues() == 3 && "Invalid copyfromreg!"); 966 if (Node->getNumOperands() == 3) { 967 Tmp2 = LegalizeOp(Node->getOperand(2)); 968 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2); 969 } else { 970 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 971 } 972 AddLegalizedOperand(Op.getValue(2), Result.getValue(2)); 973 } 974 // Since CopyFromReg produces two values, make sure to remember that we 975 // legalized both of them. 976 AddLegalizedOperand(Op.getValue(0), Result); 977 AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); 978 return Result.getValue(Op.ResNo); 979 case ISD::UNDEF: { 980 MVT::ValueType VT = Op.getValueType(); 981 switch (TLI.getOperationAction(ISD::UNDEF, VT)) { 982 default: assert(0 && "This action is not supported yet!"); 983 case TargetLowering::Expand: 984 if (MVT::isInteger(VT)) 985 Result = DAG.getConstant(0, VT); 986 else if (MVT::isFloatingPoint(VT)) 987 Result = DAG.getConstantFP(APFloat(APInt(MVT::getSizeInBits(VT), 0)), 988 VT); 989 else 990 assert(0 && "Unknown value type!"); 991 break; 992 case TargetLowering::Legal: 993 break; 994 } 995 break; 996 } 997 998 case ISD::INTRINSIC_W_CHAIN: 999 case ISD::INTRINSIC_WO_CHAIN: 1000 case ISD::INTRINSIC_VOID: { 1001 SmallVector<SDOperand, 8> Ops; 1002 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 1003 Ops.push_back(LegalizeOp(Node->getOperand(i))); 1004 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1005 1006 // Allow the target to custom lower its intrinsics if it wants to. 1007 if (TLI.getOperationAction(Node->getOpcode(), MVT::Other) == 1008 TargetLowering::Custom) { 1009 Tmp3 = TLI.LowerOperation(Result, DAG); 1010 if (Tmp3.Val) Result = Tmp3; 1011 } 1012 1013 if (Result.Val->getNumValues() == 1) break; 1014 1015 // Must have return value and chain result. 1016 assert(Result.Val->getNumValues() == 2 && 1017 "Cannot return more than two values!"); 1018 1019 // Since loads produce two values, make sure to remember that we 1020 // legalized both of them. 1021 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 1022 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 1023 return Result.getValue(Op.ResNo); 1024 } 1025 1026 case ISD::LOCATION: 1027 assert(Node->getNumOperands() == 5 && "Invalid LOCATION node!"); 1028 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the input chain. 1029 1030 switch (TLI.getOperationAction(ISD::LOCATION, MVT::Other)) { 1031 case TargetLowering::Promote: 1032 default: assert(0 && "This action is not supported yet!"); 1033 case TargetLowering::Expand: { 1034 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 1035 bool useDEBUG_LOC = TLI.isOperationLegal(ISD::DEBUG_LOC, MVT::Other); 1036 bool useLABEL = TLI.isOperationLegal(ISD::LABEL, MVT::Other); 1037 1038 if (MMI && (useDEBUG_LOC || useLABEL)) { 1039 const std::string &FName = 1040 cast<StringSDNode>(Node->getOperand(3))->getValue(); 1041 const std::string &DirName = 1042 cast<StringSDNode>(Node->getOperand(4))->getValue(); 1043 unsigned SrcFile = MMI->RecordSource(DirName, FName); 1044 1045 SmallVector<SDOperand, 8> Ops; 1046 Ops.push_back(Tmp1); // chain 1047 SDOperand LineOp = Node->getOperand(1); 1048 SDOperand ColOp = Node->getOperand(2); 1049 1050 if (useDEBUG_LOC) { 1051 Ops.push_back(LineOp); // line # 1052 Ops.push_back(ColOp); // col # 1053 Ops.push_back(DAG.getConstant(SrcFile, MVT::i32)); // source file id 1054 Result = DAG.getNode(ISD::DEBUG_LOC, MVT::Other, &Ops[0], Ops.size()); 1055 } else { 1056 unsigned Line = cast<ConstantSDNode>(LineOp)->getValue(); 1057 unsigned Col = cast<ConstantSDNode>(ColOp)->getValue(); 1058 unsigned ID = MMI->RecordLabel(Line, Col, SrcFile); 1059 Ops.push_back(DAG.getConstant(ID, MVT::i32)); 1060 Result = DAG.getNode(ISD::LABEL, MVT::Other,&Ops[0],Ops.size()); 1061 } 1062 } else { 1063 Result = Tmp1; // chain 1064 } 1065 break; 1066 } 1067 case TargetLowering::Legal: 1068 if (Tmp1 != Node->getOperand(0) || 1069 getTypeAction(Node->getOperand(1).getValueType()) == Promote) { 1070 SmallVector<SDOperand, 8> Ops; 1071 Ops.push_back(Tmp1); 1072 if (getTypeAction(Node->getOperand(1).getValueType()) == Legal) { 1073 Ops.push_back(Node->getOperand(1)); // line # must be legal. 1074 Ops.push_back(Node->getOperand(2)); // col # must be legal. 1075 } else { 1076 // Otherwise promote them. 1077 Ops.push_back(PromoteOp(Node->getOperand(1))); 1078 Ops.push_back(PromoteOp(Node->getOperand(2))); 1079 } 1080 Ops.push_back(Node->getOperand(3)); // filename must be legal. 1081 Ops.push_back(Node->getOperand(4)); // working dir # must be legal. 1082 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1083 } 1084 break; 1085 } 1086 break; 1087 1088 case ISD::DEBUG_LOC: 1089 assert(Node->getNumOperands() == 4 && "Invalid DEBUG_LOC node!"); 1090 switch (TLI.getOperationAction(ISD::DEBUG_LOC, MVT::Other)) { 1091 default: assert(0 && "This action is not supported yet!"); 1092 case TargetLowering::Legal: 1093 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1094 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the line #. 1095 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the col #. 1096 Tmp4 = LegalizeOp(Node->getOperand(3)); // Legalize the source file id. 1097 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4); 1098 break; 1099 } 1100 break; 1101 1102 case ISD::LABEL: 1103 assert(Node->getNumOperands() == 2 && "Invalid LABEL node!"); 1104 switch (TLI.getOperationAction(ISD::LABEL, MVT::Other)) { 1105 default: assert(0 && "This action is not supported yet!"); 1106 case TargetLowering::Legal: 1107 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1108 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the label id. 1109 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1110 break; 1111 case TargetLowering::Expand: 1112 Result = LegalizeOp(Node->getOperand(0)); 1113 break; 1114 } 1115 break; 1116 1117 case ISD::Constant: { 1118 ConstantSDNode *CN = cast<ConstantSDNode>(Node); 1119 unsigned opAction = 1120 TLI.getOperationAction(ISD::Constant, CN->getValueType(0)); 1121 1122 // We know we don't need to expand constants here, constants only have one 1123 // value and we check that it is fine above. 1124 1125 if (opAction == TargetLowering::Custom) { 1126 Tmp1 = TLI.LowerOperation(Result, DAG); 1127 if (Tmp1.Val) 1128 Result = Tmp1; 1129 } 1130 break; 1131 } 1132 case ISD::ConstantFP: { 1133 // Spill FP immediates to the constant pool if the target cannot directly 1134 // codegen them. Targets often have some immediate values that can be 1135 // efficiently generated into an FP register without a load. We explicitly 1136 // leave these constants as ConstantFP nodes for the target to deal with. 1137 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 1138 1139 // Check to see if this FP immediate is already legal. 1140 bool isLegal = false; 1141 for (TargetLowering::legal_fpimm_iterator I = TLI.legal_fpimm_begin(), 1142 E = TLI.legal_fpimm_end(); I != E; ++I) 1143 if (CFP->isExactlyValue(*I)) { 1144 isLegal = true; 1145 break; 1146 } 1147 1148 // If this is a legal constant, turn it into a TargetConstantFP node. 1149 if (isLegal) { 1150 Result = DAG.getTargetConstantFP(CFP->getValueAPF(), 1151 CFP->getValueType(0)); 1152 break; 1153 } 1154 1155 switch (TLI.getOperationAction(ISD::ConstantFP, CFP->getValueType(0))) { 1156 default: assert(0 && "This action is not supported yet!"); 1157 case TargetLowering::Custom: 1158 Tmp3 = TLI.LowerOperation(Result, DAG); 1159 if (Tmp3.Val) { 1160 Result = Tmp3; 1161 break; 1162 } 1163 // FALLTHROUGH 1164 case TargetLowering::Expand: 1165 Result = ExpandConstantFP(CFP, true, DAG, TLI); 1166 } 1167 break; 1168 } 1169 case ISD::TokenFactor: 1170 if (Node->getNumOperands() == 2) { 1171 Tmp1 = LegalizeOp(Node->getOperand(0)); 1172 Tmp2 = LegalizeOp(Node->getOperand(1)); 1173 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1174 } else if (Node->getNumOperands() == 3) { 1175 Tmp1 = LegalizeOp(Node->getOperand(0)); 1176 Tmp2 = LegalizeOp(Node->getOperand(1)); 1177 Tmp3 = LegalizeOp(Node->getOperand(2)); 1178 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1179 } else { 1180 SmallVector<SDOperand, 8> Ops; 1181 // Legalize the operands. 1182 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 1183 Ops.push_back(LegalizeOp(Node->getOperand(i))); 1184 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1185 } 1186 break; 1187 1188 case ISD::FORMAL_ARGUMENTS: 1189 case ISD::CALL: 1190 // The only option for this is to custom lower it. 1191 Tmp3 = TLI.LowerOperation(Result.getValue(0), DAG); 1192 assert(Tmp3.Val && "Target didn't custom lower this node!"); 1193 1194 // The number of incoming and outgoing values should match; unless the final 1195 // outgoing value is a flag. 1196 assert((Tmp3.Val->getNumValues() == Result.Val->getNumValues() || 1197 (Tmp3.Val->getNumValues() == Result.Val->getNumValues() + 1 && 1198 Tmp3.Val->getValueType(Tmp3.Val->getNumValues() - 1) == 1199 MVT::Flag)) && 1200 "Lowering call/formal_arguments produced unexpected # results!"); 1201 1202 // Since CALL/FORMAL_ARGUMENTS nodes produce multiple values, make sure to 1203 // remember that we legalized all of them, so it doesn't get relegalized. 1204 for (unsigned i = 0, e = Tmp3.Val->getNumValues(); i != e; ++i) { 1205 if (Tmp3.Val->getValueType(i) == MVT::Flag) 1206 continue; 1207 Tmp1 = LegalizeOp(Tmp3.getValue(i)); 1208 if (Op.ResNo == i) 1209 Tmp2 = Tmp1; 1210 AddLegalizedOperand(SDOperand(Node, i), Tmp1); 1211 } 1212 return Tmp2; 1213 case ISD::EXTRACT_SUBREG: { 1214 Tmp1 = LegalizeOp(Node->getOperand(0)); 1215 ConstantSDNode *idx = dyn_cast<ConstantSDNode>(Node->getOperand(1)); 1216 assert(idx && "Operand must be a constant"); 1217 Tmp2 = DAG.getTargetConstant(idx->getValue(), idx->getValueType(0)); 1218 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1219 } 1220 break; 1221 case ISD::INSERT_SUBREG: { 1222 Tmp1 = LegalizeOp(Node->getOperand(0)); 1223 Tmp2 = LegalizeOp(Node->getOperand(1)); 1224 ConstantSDNode *idx = dyn_cast<ConstantSDNode>(Node->getOperand(2)); 1225 assert(idx && "Operand must be a constant"); 1226 Tmp3 = DAG.getTargetConstant(idx->getValue(), idx->getValueType(0)); 1227 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1228 } 1229 break; 1230 case ISD::BUILD_VECTOR: 1231 switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) { 1232 default: assert(0 && "This action is not supported yet!"); 1233 case TargetLowering::Custom: 1234 Tmp3 = TLI.LowerOperation(Result, DAG); 1235 if (Tmp3.Val) { 1236 Result = Tmp3; 1237 break; 1238 } 1239 // FALLTHROUGH 1240 case TargetLowering::Expand: 1241 Result = ExpandBUILD_VECTOR(Result.Val); 1242 break; 1243 } 1244 break; 1245 case ISD::INSERT_VECTOR_ELT: 1246 Tmp1 = LegalizeOp(Node->getOperand(0)); // InVec 1247 Tmp2 = LegalizeOp(Node->getOperand(1)); // InVal 1248 Tmp3 = LegalizeOp(Node->getOperand(2)); // InEltNo 1249 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1250 1251 switch (TLI.getOperationAction(ISD::INSERT_VECTOR_ELT, 1252 Node->getValueType(0))) { 1253 default: assert(0 && "This action is not supported yet!"); 1254 case TargetLowering::Legal: 1255 break; 1256 case TargetLowering::Custom: 1257 Tmp4 = TLI.LowerOperation(Result, DAG); 1258 if (Tmp4.Val) { 1259 Result = Tmp4; 1260 break; 1261 } 1262 // FALLTHROUGH 1263 case TargetLowering::Expand: { 1264 // If the insert index is a constant, codegen this as a scalar_to_vector, 1265 // then a shuffle that inserts it into the right position in the vector. 1266 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Tmp3)) { 1267 SDOperand ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, 1268 Tmp1.getValueType(), Tmp2); 1269 1270 unsigned NumElts = MVT::getVectorNumElements(Tmp1.getValueType()); 1271 MVT::ValueType ShufMaskVT = MVT::getIntVectorWithNumElements(NumElts); 1272 MVT::ValueType ShufMaskEltVT = MVT::getVectorElementType(ShufMaskVT); 1273 1274 // We generate a shuffle of InVec and ScVec, so the shuffle mask should 1275 // be 0,1,2,3,4,5... with the appropriate element replaced with elt 0 of 1276 // the RHS. 1277 SmallVector<SDOperand, 8> ShufOps; 1278 for (unsigned i = 0; i != NumElts; ++i) { 1279 if (i != InsertPos->getValue()) 1280 ShufOps.push_back(DAG.getConstant(i, ShufMaskEltVT)); 1281 else 1282 ShufOps.push_back(DAG.getConstant(NumElts, ShufMaskEltVT)); 1283 } 1284 SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, ShufMaskVT, 1285 &ShufOps[0], ShufOps.size()); 1286 1287 Result = DAG.getNode(ISD::VECTOR_SHUFFLE, Tmp1.getValueType(), 1288 Tmp1, ScVec, ShufMask); 1289 Result = LegalizeOp(Result); 1290 break; 1291 } 1292 1293 // If the target doesn't support this, we have to spill the input vector 1294 // to a temporary stack slot, update the element, then reload it. This is 1295 // badness. We could also load the value into a vector register (either 1296 // with a "move to register" or "extload into register" instruction, then 1297 // permute it into place, if the idx is a constant and if the idx is 1298 // supported by the target. 1299 MVT::ValueType VT = Tmp1.getValueType(); 1300 MVT::ValueType EltVT = Tmp2.getValueType(); 1301 MVT::ValueType IdxVT = Tmp3.getValueType(); 1302 MVT::ValueType PtrVT = TLI.getPointerTy(); 1303 SDOperand StackPtr = DAG.CreateStackTemporary(VT); 1304 // Store the vector. 1305 SDOperand Ch = DAG.getStore(DAG.getEntryNode(), Tmp1, StackPtr, NULL, 0); 1306 1307 // Truncate or zero extend offset to target pointer type. 1308 unsigned CastOpc = (IdxVT > PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND; 1309 Tmp3 = DAG.getNode(CastOpc, PtrVT, Tmp3); 1310 // Add the offset to the index. 1311 unsigned EltSize = MVT::getSizeInBits(EltVT)/8; 1312 Tmp3 = DAG.getNode(ISD::MUL, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT)); 1313 SDOperand StackPtr2 = DAG.getNode(ISD::ADD, IdxVT, Tmp3, StackPtr); 1314 // Store the scalar value. 1315 Ch = DAG.getStore(Ch, Tmp2, StackPtr2, NULL, 0); 1316 // Load the updated vector. 1317 Result = DAG.getLoad(VT, Ch, StackPtr, NULL, 0); 1318 break; 1319 } 1320 } 1321 break; 1322 case ISD::SCALAR_TO_VECTOR: 1323 if (!TLI.isTypeLegal(Node->getOperand(0).getValueType())) { 1324 Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node)); 1325 break; 1326 } 1327 1328 Tmp1 = LegalizeOp(Node->getOperand(0)); // InVal 1329 Result = DAG.UpdateNodeOperands(Result, Tmp1); 1330 switch (TLI.getOperationAction(ISD::SCALAR_TO_VECTOR, 1331 Node->getValueType(0))) { 1332 default: assert(0 && "This action is not supported yet!"); 1333 case TargetLowering::Legal: 1334 break; 1335 case TargetLowering::Custom: 1336 Tmp3 = TLI.LowerOperation(Result, DAG); 1337 if (Tmp3.Val) { 1338 Result = Tmp3; 1339 break; 1340 } 1341 // FALLTHROUGH 1342 case TargetLowering::Expand: 1343 Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node)); 1344 break; 1345 } 1346 break; 1347 case ISD::VECTOR_SHUFFLE: 1348 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the input vectors, 1349 Tmp2 = LegalizeOp(Node->getOperand(1)); // but not the shuffle mask. 1350 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 1351 1352 // Allow targets to custom lower the SHUFFLEs they support. 1353 switch (TLI.getOperationAction(ISD::VECTOR_SHUFFLE,Result.getValueType())) { 1354 default: assert(0 && "Unknown operation action!"); 1355 case TargetLowering::Legal: 1356 assert(isShuffleLegal(Result.getValueType(), Node->getOperand(2)) && 1357 "vector shuffle should not be created if not legal!"); 1358 break; 1359 case TargetLowering::Custom: 1360 Tmp3 = TLI.LowerOperation(Result, DAG); 1361 if (Tmp3.Val) { 1362 Result = Tmp3; 1363 break; 1364 } 1365 // FALLTHROUGH 1366 case TargetLowering::Expand: { 1367 MVT::ValueType VT = Node->getValueType(0); 1368 MVT::ValueType EltVT = MVT::getVectorElementType(VT); 1369 MVT::ValueType PtrVT = TLI.getPointerTy(); 1370 SDOperand Mask = Node->getOperand(2); 1371 unsigned NumElems = Mask.getNumOperands(); 1372 SmallVector<SDOperand,8> Ops; 1373 for (unsigned i = 0; i != NumElems; ++i) { 1374 SDOperand Arg = Mask.getOperand(i); 1375 if (Arg.getOpcode() == ISD::UNDEF) { 1376 Ops.push_back(DAG.getNode(ISD::UNDEF, EltVT)); 1377 } else { 1378 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 1379 unsigned Idx = cast<ConstantSDNode>(Arg)->getValue(); 1380 if (Idx < NumElems) 1381 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Tmp1, 1382 DAG.getConstant(Idx, PtrVT))); 1383 else 1384 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Tmp2, 1385 DAG.getConstant(Idx - NumElems, PtrVT))); 1386 } 1387 } 1388 Result = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()); 1389 break; 1390 } 1391 case TargetLowering::Promote: { 1392 // Change base type to a different vector type. 1393 MVT::ValueType OVT = Node->getValueType(0); 1394 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 1395 1396 // Cast the two input vectors. 1397 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp1); 1398 Tmp2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp2); 1399 1400 // Convert the shuffle mask to the right # elements. 1401 Tmp3 = SDOperand(isShuffleLegal(OVT, Node->getOperand(2)), 0); 1402 assert(Tmp3.Val && "Shuffle not legal?"); 1403 Result = DAG.getNode(ISD::VECTOR_SHUFFLE, NVT, Tmp1, Tmp2, Tmp3); 1404 Result = DAG.getNode(ISD::BIT_CONVERT, OVT, Result); 1405 break; 1406 } 1407 } 1408 break; 1409 1410 case ISD::EXTRACT_VECTOR_ELT: 1411 Tmp1 = Node->getOperand(0); 1412 Tmp2 = LegalizeOp(Node->getOperand(1)); 1413 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1414 Result = ExpandEXTRACT_VECTOR_ELT(Result); 1415 break; 1416 1417 case ISD::EXTRACT_SUBVECTOR: 1418 Tmp1 = Node->getOperand(0); 1419 Tmp2 = LegalizeOp(Node->getOperand(1)); 1420 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1421 Result = ExpandEXTRACT_SUBVECTOR(Result); 1422 break; 1423 1424 case ISD::CALLSEQ_START: { 1425 SDNode *CallEnd = FindCallEndFromCallStart(Node); 1426 1427 // Recursively Legalize all of the inputs of the call end that do not lead 1428 // to this call start. This ensures that any libcalls that need be inserted 1429 // are inserted *before* the CALLSEQ_START. 1430 {SmallPtrSet<SDNode*, 32> NodesLeadingTo; 1431 for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i) 1432 LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).Val, Node, 1433 NodesLeadingTo); 1434 } 1435 1436 // Now that we legalized all of the inputs (which may have inserted 1437 // libcalls) create the new CALLSEQ_START node. 1438 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1439 1440 // Merge in the last call, to ensure that this call start after the last 1441 // call ended. 1442 if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) { 1443 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1444 Tmp1 = LegalizeOp(Tmp1); 1445 } 1446 1447 // Do not try to legalize the target-specific arguments (#1+). 1448 if (Tmp1 != Node->getOperand(0)) { 1449 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1450 Ops[0] = Tmp1; 1451 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1452 } 1453 1454 // Remember that the CALLSEQ_START is legalized. 1455 AddLegalizedOperand(Op.getValue(0), Result); 1456 if (Node->getNumValues() == 2) // If this has a flag result, remember it. 1457 AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); 1458 1459 // Now that the callseq_start and all of the non-call nodes above this call 1460 // sequence have been legalized, legalize the call itself. During this 1461 // process, no libcalls can/will be inserted, guaranteeing that no calls 1462 // can overlap. 1463 assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!"); 1464 SDOperand InCallSEQ = LastCALLSEQ_END; 1465 // Note that we are selecting this call! 1466 LastCALLSEQ_END = SDOperand(CallEnd, 0); 1467 IsLegalizingCall = true; 1468 1469 // Legalize the call, starting from the CALLSEQ_END. 1470 LegalizeOp(LastCALLSEQ_END); 1471 assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!"); 1472 return Result; 1473 } 1474 case ISD::CALLSEQ_END: 1475 // If the CALLSEQ_START node hasn't been legalized first, legalize it. This 1476 // will cause this node to be legalized as well as handling libcalls right. 1477 if (LastCALLSEQ_END.Val != Node) { 1478 LegalizeOp(SDOperand(FindCallStartFromCallEnd(Node), 0)); 1479 DenseMap<SDOperand, SDOperand>::iterator I = LegalizedNodes.find(Op); 1480 assert(I != LegalizedNodes.end() && 1481 "Legalizing the call start should have legalized this node!"); 1482 return I->second; 1483 } 1484 1485 // Otherwise, the call start has been legalized and everything is going 1486 // according to plan. Just legalize ourselves normally here. 1487 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1488 // Do not try to legalize the target-specific arguments (#1+), except for 1489 // an optional flag input. 1490 if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){ 1491 if (Tmp1 != Node->getOperand(0)) { 1492 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1493 Ops[0] = Tmp1; 1494 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1495 } 1496 } else { 1497 Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1)); 1498 if (Tmp1 != Node->getOperand(0) || 1499 Tmp2 != Node->getOperand(Node->getNumOperands()-1)) { 1500 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1501 Ops[0] = Tmp1; 1502 Ops.back() = Tmp2; 1503 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1504 } 1505 } 1506 assert(IsLegalizingCall && "Call sequence imbalance between start/end?"); 1507 // This finishes up call legalization. 1508 IsLegalizingCall = false; 1509 1510 // If the CALLSEQ_END node has a flag, remember that we legalized it. 1511 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 1512 if (Node->getNumValues() == 2) 1513 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 1514 return Result.getValue(Op.ResNo); 1515 case ISD::DYNAMIC_STACKALLOC: { 1516 MVT::ValueType VT = Node->getValueType(0); 1517 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1518 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the size. 1519 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the alignment. 1520 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1521 1522 Tmp1 = Result.getValue(0); 1523 Tmp2 = Result.getValue(1); 1524 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1525 default: assert(0 && "This action is not supported yet!"); 1526 case TargetLowering::Expand: { 1527 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1528 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1529 " not tell us which reg is the stack pointer!"); 1530 SDOperand Chain = Tmp1.getOperand(0); 1531 1532 // Chain the dynamic stack allocation so that it doesn't modify the stack 1533 // pointer when other instructions are using the stack. 1534 Chain = DAG.getCALLSEQ_START(Chain, 1535 DAG.getConstant(0, TLI.getPointerTy())); 1536 1537 SDOperand Size = Tmp2.getOperand(1); 1538 SDOperand SP = DAG.getCopyFromReg(Chain, SPReg, VT); 1539 Chain = SP.getValue(1); 1540 unsigned Align = cast<ConstantSDNode>(Tmp3)->getValue(); 1541 unsigned StackAlign = 1542 TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); 1543 if (Align > StackAlign) 1544 SP = DAG.getNode(ISD::AND, VT, SP, 1545 DAG.getConstant(-(uint64_t)Align, VT)); 1546 Tmp1 = DAG.getNode(ISD::SUB, VT, SP, Size); // Value 1547 Chain = DAG.getCopyToReg(Chain, SPReg, Tmp1); // Output chain 1548 1549 Tmp2 = 1550 DAG.getCALLSEQ_END(Chain, 1551 DAG.getConstant(0, TLI.getPointerTy()), 1552 DAG.getConstant(0, TLI.getPointerTy()), 1553 SDOperand()); 1554 1555 Tmp1 = LegalizeOp(Tmp1); 1556 Tmp2 = LegalizeOp(Tmp2); 1557 break; 1558 } 1559 case TargetLowering::Custom: 1560 Tmp3 = TLI.LowerOperation(Tmp1, DAG); 1561 if (Tmp3.Val) { 1562 Tmp1 = LegalizeOp(Tmp3); 1563 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 1564 } 1565 break; 1566 case TargetLowering::Legal: 1567 break; 1568 } 1569 // Since this op produce two values, make sure to remember that we 1570 // legalized both of them. 1571 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 1572 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 1573 return Op.ResNo ? Tmp2 : Tmp1; 1574 } 1575 case ISD::INLINEASM: { 1576 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1577 bool Changed = false; 1578 // Legalize all of the operands of the inline asm, in case they are nodes 1579 // that need to be expanded or something. Note we skip the asm string and 1580 // all of the TargetConstant flags. 1581 SDOperand Op = LegalizeOp(Ops[0]); 1582 Changed = Op != Ops[0]; 1583 Ops[0] = Op; 1584 1585 bool HasInFlag = Ops.back().getValueType() == MVT::Flag; 1586 for (unsigned i = 2, e = Ops.size()-HasInFlag; i < e; ) { 1587 unsigned NumVals = cast<ConstantSDNode>(Ops[i])->getValue() >> 3; 1588 for (++i; NumVals; ++i, --NumVals) { 1589 SDOperand Op = LegalizeOp(Ops[i]); 1590 if (Op != Ops[i]) { 1591 Changed = true; 1592 Ops[i] = Op; 1593 } 1594 } 1595 } 1596 1597 if (HasInFlag) { 1598 Op = LegalizeOp(Ops.back()); 1599 Changed |= Op != Ops.back(); 1600 Ops.back() = Op; 1601 } 1602 1603 if (Changed) 1604 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1605 1606 // INLINE asm returns a chain and flag, make sure to add both to the map. 1607 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 1608 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 1609 return Result.getValue(Op.ResNo); 1610 } 1611 case ISD::BR: 1612 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1613 // Ensure that libcalls are emitted before a branch. 1614 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1615 Tmp1 = LegalizeOp(Tmp1); 1616 LastCALLSEQ_END = DAG.getEntryNode(); 1617 1618 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 1619 break; 1620 case ISD::BRIND: 1621 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1622 // Ensure that libcalls are emitted before a branch. 1623 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1624 Tmp1 = LegalizeOp(Tmp1); 1625 LastCALLSEQ_END = DAG.getEntryNode(); 1626 1627 switch (getTypeAction(Node->getOperand(1).getValueType())) { 1628 default: assert(0 && "Indirect target must be legal type (pointer)!"); 1629 case Legal: 1630 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition. 1631 break; 1632 } 1633 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1634 break; 1635 case ISD::BR_JT: 1636 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1637 // Ensure that libcalls are emitted before a branch. 1638 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1639 Tmp1 = LegalizeOp(Tmp1); 1640 LastCALLSEQ_END = DAG.getEntryNode(); 1641 1642 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the jumptable node. 1643 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 1644 1645 switch (TLI.getOperationAction(ISD::BR_JT, MVT::Other)) { 1646 default: assert(0 && "This action is not supported yet!"); 1647 case TargetLowering::Legal: break; 1648 case TargetLowering::Custom: 1649 Tmp1 = TLI.LowerOperation(Result, DAG); 1650 if (Tmp1.Val) Result = Tmp1; 1651 break; 1652 case TargetLowering::Expand: { 1653 SDOperand Chain = Result.getOperand(0); 1654 SDOperand Table = Result.getOperand(1); 1655 SDOperand Index = Result.getOperand(2); 1656 1657 MVT::ValueType PTy = TLI.getPointerTy(); 1658 MachineFunction &MF = DAG.getMachineFunction(); 1659 unsigned EntrySize = MF.getJumpTableInfo()->getEntrySize(); 1660 Index= DAG.getNode(ISD::MUL, PTy, Index, DAG.getConstant(EntrySize, PTy)); 1661 SDOperand Addr = DAG.getNode(ISD::ADD, PTy, Index, Table); 1662 1663 SDOperand LD; 1664 switch (EntrySize) { 1665 default: assert(0 && "Size of jump table not supported yet."); break; 1666 case 4: LD = DAG.getLoad(MVT::i32, Chain, Addr, NULL, 0); break; 1667 case 8: LD = DAG.getLoad(MVT::i64, Chain, Addr, NULL, 0); break; 1668 } 1669 1670 Addr = LD; 1671 if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) { 1672 // For PIC, the sequence is: 1673 // BRIND(load(Jumptable + index) + RelocBase) 1674 // RelocBase can be JumpTable, GOT or some sort of global base. 1675 if (PTy != MVT::i32) 1676 Addr = DAG.getNode(ISD::SIGN_EXTEND, PTy, Addr); 1677 Addr = DAG.getNode(ISD::ADD, PTy, Addr, 1678 TLI.getPICJumpTableRelocBase(Table, DAG)); 1679 } 1680 Result = DAG.getNode(ISD::BRIND, MVT::Other, LD.getValue(1), Addr); 1681 } 1682 } 1683 break; 1684 case ISD::BRCOND: 1685 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1686 // Ensure that libcalls are emitted before a return. 1687 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1688 Tmp1 = LegalizeOp(Tmp1); 1689 LastCALLSEQ_END = DAG.getEntryNode(); 1690 1691 switch (getTypeAction(Node->getOperand(1).getValueType())) { 1692 case Expand: assert(0 && "It's impossible to expand bools"); 1693 case Legal: 1694 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition. 1695 break; 1696 case Promote: 1697 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the condition. 1698 1699 // The top bits of the promoted condition are not necessarily zero, ensure 1700 // that the value is properly zero extended. 1701 if (!DAG.MaskedValueIsZero(Tmp2, 1702 MVT::getIntVTBitMask(Tmp2.getValueType())^1)) 1703 Tmp2 = DAG.getZeroExtendInReg(Tmp2, MVT::i1); 1704 break; 1705 } 1706 1707 // Basic block destination (Op#2) is always legal. 1708 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 1709 1710 switch (TLI.getOperationAction(ISD::BRCOND, MVT::Other)) { 1711 default: assert(0 && "This action is not supported yet!"); 1712 case TargetLowering::Legal: break; 1713 case TargetLowering::Custom: 1714 Tmp1 = TLI.LowerOperation(Result, DAG); 1715 if (Tmp1.Val) Result = Tmp1; 1716 break; 1717 case TargetLowering::Expand: 1718 // Expand brcond's setcc into its constituent parts and create a BR_CC 1719 // Node. 1720 if (Tmp2.getOpcode() == ISD::SETCC) { 1721 Result = DAG.getNode(ISD::BR_CC, MVT::Other, Tmp1, Tmp2.getOperand(2), 1722 Tmp2.getOperand(0), Tmp2.getOperand(1), 1723 Node->getOperand(2)); 1724 } else { 1725 Result = DAG.getNode(ISD::BR_CC, MVT::Other, Tmp1, 1726 DAG.getCondCode(ISD::SETNE), Tmp2, 1727 DAG.getConstant(0, Tmp2.getValueType()), 1728 Node->getOperand(2)); 1729 } 1730 break; 1731 } 1732 break; 1733 case ISD::BR_CC: 1734 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1735 // Ensure that libcalls are emitted before a branch. 1736 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1737 Tmp1 = LegalizeOp(Tmp1); 1738 Tmp2 = Node->getOperand(2); // LHS 1739 Tmp3 = Node->getOperand(3); // RHS 1740 Tmp4 = Node->getOperand(1); // CC 1741 1742 LegalizeSetCCOperands(Tmp2, Tmp3, Tmp4); 1743 LastCALLSEQ_END = DAG.getEntryNode(); 1744 1745 // If we didn't get both a LHS and RHS back from LegalizeSetCCOperands, 1746 // the LHS is a legal SETCC itself. In this case, we need to compare 1747 // the result against zero to select between true and false values. 1748 if (Tmp3.Val == 0) { 1749 Tmp3 = DAG.getConstant(0, Tmp2.getValueType()); 1750 Tmp4 = DAG.getCondCode(ISD::SETNE); 1751 } 1752 1753 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp4, Tmp2, Tmp3, 1754 Node->getOperand(4)); 1755 1756 switch (TLI.getOperationAction(ISD::BR_CC, Tmp3.getValueType())) { 1757 default: assert(0 && "Unexpected action for BR_CC!"); 1758 case TargetLowering::Legal: break; 1759 case TargetLowering::Custom: 1760 Tmp4 = TLI.LowerOperation(Result, DAG); 1761 if (Tmp4.Val) Result = Tmp4; 1762 break; 1763 } 1764 break; 1765 case ISD::LOAD: { 1766 LoadSDNode *LD = cast<LoadSDNode>(Node); 1767 Tmp1 = LegalizeOp(LD->getChain()); // Legalize the chain. 1768 Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer. 1769 1770 ISD::LoadExtType ExtType = LD->getExtensionType(); 1771 if (ExtType == ISD::NON_EXTLOAD) { 1772 MVT::ValueType VT = Node->getValueType(0); 1773 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset()); 1774 Tmp3 = Result.getValue(0); 1775 Tmp4 = Result.getValue(1); 1776 1777 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1778 default: assert(0 && "This action is not supported yet!"); 1779 case TargetLowering::Legal: 1780 // If this is an unaligned load and the target doesn't support it, 1781 // expand it. 1782 if (!TLI.allowsUnalignedMemoryAccesses()) { 1783 unsigned ABIAlignment = TLI.getTargetData()-> 1784 getABITypeAlignment(MVT::getTypeForValueType(LD->getMemoryVT())); 1785 if (LD->getAlignment() < ABIAlignment){ 1786 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.Val), DAG, 1787 TLI); 1788 Tmp3 = Result.getOperand(0); 1789 Tmp4 = Result.getOperand(1); 1790 Tmp3 = LegalizeOp(Tmp3); 1791 Tmp4 = LegalizeOp(Tmp4); 1792 } 1793 } 1794 break; 1795 case TargetLowering::Custom: 1796 Tmp1 = TLI.LowerOperation(Tmp3, DAG); 1797 if (Tmp1.Val) { 1798 Tmp3 = LegalizeOp(Tmp1); 1799 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 1800 } 1801 break; 1802 case TargetLowering::Promote: { 1803 // Only promote a load of vector type to another. 1804 assert(MVT::isVector(VT) && "Cannot promote this load!"); 1805 // Change base type to a different vector type. 1806 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 1807 1808 Tmp1 = DAG.getLoad(NVT, Tmp1, Tmp2, LD->getSrcValue(), 1809 LD->getSrcValueOffset(), 1810 LD->isVolatile(), LD->getAlignment()); 1811 Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, VT, Tmp1)); 1812 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 1813 break; 1814 } 1815 } 1816 // Since loads produce two values, make sure to remember that we 1817 // legalized both of them. 1818 AddLegalizedOperand(SDOperand(Node, 0), Tmp3); 1819 AddLegalizedOperand(SDOperand(Node, 1), Tmp4); 1820 return Op.ResNo ? Tmp4 : Tmp3; 1821 } else { 1822 MVT::ValueType SrcVT = LD->getMemoryVT(); 1823 unsigned SrcWidth = MVT::getSizeInBits(SrcVT); 1824 int SVOffset = LD->getSrcValueOffset(); 1825 unsigned Alignment = LD->getAlignment(); 1826 bool isVolatile = LD->isVolatile(); 1827 1828 if (SrcWidth != MVT::getStoreSizeInBits(SrcVT) && 1829 // Some targets pretend to have an i1 loading operation, and actually 1830 // load an i8. This trick is correct for ZEXTLOAD because the top 7 1831 // bits are guaranteed to be zero; it helps the optimizers understand 1832 // that these bits are zero. It is also useful for EXTLOAD, since it 1833 // tells the optimizers that those bits are undefined. It would be 1834 // nice to have an effective generic way of getting these benefits... 1835 // Until such a way is found, don't insist on promoting i1 here. 1836 (SrcVT != MVT::i1 || 1837 TLI.getLoadXAction(ExtType, MVT::i1) == TargetLowering::Promote)) { 1838 // Promote to a byte-sized load if not loading an integral number of 1839 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 1840 unsigned NewWidth = MVT::getStoreSizeInBits(SrcVT); 1841 MVT::ValueType NVT = MVT::getIntegerType(NewWidth); 1842 SDOperand Ch; 1843 1844 // The extra bits are guaranteed to be zero, since we stored them that 1845 // way. A zext load from NVT thus automatically gives zext from SrcVT. 1846 1847 ISD::LoadExtType NewExtType = 1848 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 1849 1850 Result = DAG.getExtLoad(NewExtType, Node->getValueType(0), 1851 Tmp1, Tmp2, LD->getSrcValue(), SVOffset, 1852 NVT, isVolatile, Alignment); 1853 1854 Ch = Result.getValue(1); // The chain. 1855 1856 if (ExtType == ISD::SEXTLOAD) 1857 // Having the top bits zero doesn't help when sign extending. 1858 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 1859 Result, DAG.getValueType(SrcVT)); 1860 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 1861 // All the top bits are guaranteed to be zero - inform the optimizers. 1862 Result = DAG.getNode(ISD::AssertZext, Result.getValueType(), Result, 1863 DAG.getValueType(SrcVT)); 1864 1865 Tmp1 = LegalizeOp(Result); 1866 Tmp2 = LegalizeOp(Ch); 1867 } else if (SrcWidth & (SrcWidth - 1)) { 1868 // If not loading a power-of-2 number of bits, expand as two loads. 1869 assert(MVT::isExtendedVT(SrcVT) && !MVT::isVector(SrcVT) && 1870 "Unsupported extload!"); 1871 unsigned RoundWidth = 1 << Log2_32(SrcWidth); 1872 assert(RoundWidth < SrcWidth); 1873 unsigned ExtraWidth = SrcWidth - RoundWidth; 1874 assert(ExtraWidth < RoundWidth); 1875 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 1876 "Load size not an integral number of bytes!"); 1877 MVT::ValueType RoundVT = MVT::getIntegerType(RoundWidth); 1878 MVT::ValueType ExtraVT = MVT::getIntegerType(ExtraWidth); 1879 SDOperand Lo, Hi, Ch; 1880 unsigned IncrementSize; 1881 1882 if (TLI.isLittleEndian()) { 1883 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 1884 // Load the bottom RoundWidth bits. 1885 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, Node->getValueType(0), Tmp1, Tmp2, 1886 LD->getSrcValue(), SVOffset, RoundVT, isVolatile, 1887 Alignment); 1888 1889 // Load the remaining ExtraWidth bits. 1890 IncrementSize = RoundWidth / 8; 1891 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 1892 DAG.getIntPtrConstant(IncrementSize)); 1893 Hi = DAG.getExtLoad(ExtType, Node->getValueType(0), Tmp1, Tmp2, 1894 LD->getSrcValue(), SVOffset + IncrementSize, 1895 ExtraVT, isVolatile, 1896 MinAlign(Alignment, IncrementSize)); 1897 1898 // Build a factor node to remember that this load is independent of the 1899 // other one. 1900 Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 1901 Hi.getValue(1)); 1902 1903 // Move the top bits to the right place. 1904 Hi = DAG.getNode(ISD::SHL, Hi.getValueType(), Hi, 1905 DAG.getConstant(RoundWidth, TLI.getShiftAmountTy())); 1906 1907 // Join the hi and lo parts. 1908 Result = DAG.getNode(ISD::OR, Node->getValueType(0), Lo, Hi); 1909 } else { 1910 // Big endian - avoid unaligned loads. 1911 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 1912 // Load the top RoundWidth bits. 1913 Hi = DAG.getExtLoad(ExtType, Node->getValueType(0), Tmp1, Tmp2, 1914 LD->getSrcValue(), SVOffset, RoundVT, isVolatile, 1915 Alignment); 1916 1917 // Load the remaining ExtraWidth bits. 1918 IncrementSize = RoundWidth / 8; 1919 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 1920 DAG.getIntPtrConstant(IncrementSize)); 1921 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, Node->getValueType(0), Tmp1, Tmp2, 1922 LD->getSrcValue(), SVOffset + IncrementSize, 1923 ExtraVT, isVolatile, 1924 MinAlign(Alignment, IncrementSize)); 1925 1926 // Build a factor node to remember that this load is independent of the 1927 // other one. 1928 Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 1929 Hi.getValue(1)); 1930 1931 // Move the top bits to the right place. 1932 Hi = DAG.getNode(ISD::SHL, Hi.getValueType(), Hi, 1933 DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy())); 1934 1935 // Join the hi and lo parts. 1936 Result = DAG.getNode(ISD::OR, Node->getValueType(0), Lo, Hi); 1937 } 1938 1939 Tmp1 = LegalizeOp(Result); 1940 Tmp2 = LegalizeOp(Ch); 1941 } else { 1942 switch (TLI.getLoadXAction(ExtType, SrcVT)) { 1943 default: assert(0 && "This action is not supported yet!"); 1944 case TargetLowering::Custom: 1945 isCustom = true; 1946 // FALLTHROUGH 1947 case TargetLowering::Legal: 1948 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset()); 1949 Tmp1 = Result.getValue(0); 1950 Tmp2 = Result.getValue(1); 1951 1952 if (isCustom) { 1953 Tmp3 = TLI.LowerOperation(Result, DAG); 1954 if (Tmp3.Val) { 1955 Tmp1 = LegalizeOp(Tmp3); 1956 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 1957 } 1958 } else { 1959 // If this is an unaligned load and the target doesn't support it, 1960 // expand it. 1961 if (!TLI.allowsUnalignedMemoryAccesses()) { 1962 unsigned ABIAlignment = TLI.getTargetData()-> 1963 getABITypeAlignment(MVT::getTypeForValueType(LD->getMemoryVT())); 1964 if (LD->getAlignment() < ABIAlignment){ 1965 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.Val), DAG, 1966 TLI); 1967 Tmp1 = Result.getOperand(0); 1968 Tmp2 = Result.getOperand(1); 1969 Tmp1 = LegalizeOp(Tmp1); 1970 Tmp2 = LegalizeOp(Tmp2); 1971 } 1972 } 1973 } 1974 break; 1975 case TargetLowering::Expand: 1976 // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND 1977 if (SrcVT == MVT::f32 && Node->getValueType(0) == MVT::f64) { 1978 SDOperand Load = DAG.getLoad(SrcVT, Tmp1, Tmp2, LD->getSrcValue(), 1979 LD->getSrcValueOffset(), 1980 LD->isVolatile(), LD->getAlignment()); 1981 Result = DAG.getNode(ISD::FP_EXTEND, Node->getValueType(0), Load); 1982 Tmp1 = LegalizeOp(Result); // Relegalize new nodes. 1983 Tmp2 = LegalizeOp(Load.getValue(1)); 1984 break; 1985 } 1986 assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!"); 1987 // Turn the unsupported load into an EXTLOAD followed by an explicit 1988 // zero/sign extend inreg. 1989 Result = DAG.getExtLoad(ISD::EXTLOAD, Node->getValueType(0), 1990 Tmp1, Tmp2, LD->getSrcValue(), 1991 LD->getSrcValueOffset(), SrcVT, 1992 LD->isVolatile(), LD->getAlignment()); 1993 SDOperand ValRes; 1994 if (ExtType == ISD::SEXTLOAD) 1995 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 1996 Result, DAG.getValueType(SrcVT)); 1997 else 1998 ValRes = DAG.getZeroExtendInReg(Result, SrcVT); 1999 Tmp1 = LegalizeOp(ValRes); // Relegalize new nodes. 2000 Tmp2 = LegalizeOp(Result.getValue(1)); // Relegalize new nodes. 2001 break; 2002 } 2003 } 2004 2005 // Since loads produce two values, make sure to remember that we legalized 2006 // both of them. 2007 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 2008 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 2009 return Op.ResNo ? Tmp2 : Tmp1; 2010 } 2011 } 2012 case ISD::EXTRACT_ELEMENT: { 2013 MVT::ValueType OpTy = Node->getOperand(0).getValueType(); 2014 switch (getTypeAction(OpTy)) { 2015 default: assert(0 && "EXTRACT_ELEMENT action for type unimplemented!"); 2016 case Legal: 2017 if (cast<ConstantSDNode>(Node->getOperand(1))->getValue()) { 2018 // 1 -> Hi 2019 Result = DAG.getNode(ISD::SRL, OpTy, Node->getOperand(0), 2020 DAG.getConstant(MVT::getSizeInBits(OpTy)/2, 2021 TLI.getShiftAmountTy())); 2022 Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), Result); 2023 } else { 2024 // 0 -> Lo 2025 Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), 2026 Node->getOperand(0)); 2027 } 2028 break; 2029 case Expand: 2030 // Get both the low and high parts. 2031 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 2032 if (cast<ConstantSDNode>(Node->getOperand(1))->getValue()) 2033 Result = Tmp2; // 1 -> Hi 2034 else 2035 Result = Tmp1; // 0 -> Lo 2036 break; 2037 } 2038 break; 2039 } 2040 2041 case ISD::CopyToReg: 2042 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2043 2044 assert(isTypeLegal(Node->getOperand(2).getValueType()) && 2045 "Register type must be legal!"); 2046 // Legalize the incoming value (must be a legal type). 2047 Tmp2 = LegalizeOp(Node->getOperand(2)); 2048 if (Node->getNumValues() == 1) { 2049 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2); 2050 } else { 2051 assert(Node->getNumValues() == 2 && "Unknown CopyToReg"); 2052 if (Node->getNumOperands() == 4) { 2053 Tmp3 = LegalizeOp(Node->getOperand(3)); 2054 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2, 2055 Tmp3); 2056 } else { 2057 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2); 2058 } 2059 2060 // Since this produces two values, make sure to remember that we legalized 2061 // both of them. 2062 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 2063 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 2064 return Result; 2065 } 2066 break; 2067 2068 case ISD::RET: 2069 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2070 2071 // Ensure that libcalls are emitted before a return. 2072 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 2073 Tmp1 = LegalizeOp(Tmp1); 2074 LastCALLSEQ_END = DAG.getEntryNode(); 2075 2076 switch (Node->getNumOperands()) { 2077 case 3: // ret val 2078 Tmp2 = Node->getOperand(1); 2079 Tmp3 = Node->getOperand(2); // Signness 2080 switch (getTypeAction(Tmp2.getValueType())) { 2081 case Legal: 2082 Result = DAG.UpdateNodeOperands(Result, Tmp1, LegalizeOp(Tmp2), Tmp3); 2083 break; 2084 case Expand: 2085 if (!MVT::isVector(Tmp2.getValueType())) { 2086 SDOperand Lo, Hi; 2087 ExpandOp(Tmp2, Lo, Hi); 2088 2089 // Big endian systems want the hi reg first. 2090 if (!TLI.isLittleEndian()) 2091 std::swap(Lo, Hi); 2092 2093 if (Hi.Val) 2094 Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3, Hi,Tmp3); 2095 else 2096 Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3); 2097 Result = LegalizeOp(Result); 2098 } else { 2099 SDNode *InVal = Tmp2.Val; 2100 int InIx = Tmp2.ResNo; 2101 unsigned NumElems = MVT::getVectorNumElements(InVal->getValueType(InIx)); 2102 MVT::ValueType EVT = MVT::getVectorElementType(InVal->getValueType(InIx)); 2103 2104 // Figure out if there is a simple type corresponding to this Vector 2105 // type. If so, convert to the vector type. 2106 MVT::ValueType TVT = MVT::getVectorType(EVT, NumElems); 2107 if (TLI.isTypeLegal(TVT)) { 2108 // Turn this into a return of the vector type. 2109 Tmp2 = LegalizeOp(Tmp2); 2110 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2111 } else if (NumElems == 1) { 2112 // Turn this into a return of the scalar type. 2113 Tmp2 = ScalarizeVectorOp(Tmp2); 2114 Tmp2 = LegalizeOp(Tmp2); 2115 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2116 2117 // FIXME: Returns of gcc generic vectors smaller than a legal type 2118 // should be returned in integer registers! 2119 2120 // The scalarized value type may not be legal, e.g. it might require 2121 // promotion or expansion. Relegalize the return. 2122 Result = LegalizeOp(Result); 2123 } else { 2124 // FIXME: Returns of gcc generic vectors larger than a legal vector 2125 // type should be returned by reference! 2126 SDOperand Lo, Hi; 2127 SplitVectorOp(Tmp2, Lo, Hi); 2128 Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3, Hi,Tmp3); 2129 Result = LegalizeOp(Result); 2130 } 2131 } 2132 break; 2133 case Promote: 2134 Tmp2 = PromoteOp(Node->getOperand(1)); 2135 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2136 Result = LegalizeOp(Result); 2137 break; 2138 } 2139 break; 2140 case 1: // ret void 2141 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2142 break; 2143 default: { // ret <values> 2144 SmallVector<SDOperand, 8> NewValues; 2145 NewValues.push_back(Tmp1); 2146 for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2) 2147 switch (getTypeAction(Node->getOperand(i).getValueType())) { 2148 case Legal: 2149 NewValues.push_back(LegalizeOp(Node->getOperand(i))); 2150 NewValues.push_back(Node->getOperand(i+1)); 2151 break; 2152 case Expand: { 2153 SDOperand Lo, Hi; 2154 assert(!MVT::isExtendedVT(Node->getOperand(i).getValueType()) && 2155 "FIXME: TODO: implement returning non-legal vector types!"); 2156 ExpandOp(Node->getOperand(i), Lo, Hi); 2157 NewValues.push_back(Lo); 2158 NewValues.push_back(Node->getOperand(i+1)); 2159 if (Hi.Val) { 2160 NewValues.push_back(Hi); 2161 NewValues.push_back(Node->getOperand(i+1)); 2162 } 2163 break; 2164 } 2165 case Promote: 2166 assert(0 && "Can't promote multiple return value yet!"); 2167 } 2168 2169 if (NewValues.size() == Node->getNumOperands()) 2170 Result = DAG.UpdateNodeOperands(Result, &NewValues[0],NewValues.size()); 2171 else 2172 Result = DAG.getNode(ISD::RET, MVT::Other, 2173 &NewValues[0], NewValues.size()); 2174 break; 2175 } 2176 } 2177 2178 if (Result.getOpcode() == ISD::RET) { 2179 switch (TLI.getOperationAction(Result.getOpcode(), MVT::Other)) { 2180 default: assert(0 && "This action is not supported yet!"); 2181 case TargetLowering::Legal: break; 2182 case TargetLowering::Custom: 2183 Tmp1 = TLI.LowerOperation(Result, DAG); 2184 if (Tmp1.Val) Result = Tmp1; 2185 break; 2186 } 2187 } 2188 break; 2189 case ISD::STORE: { 2190 StoreSDNode *ST = cast<StoreSDNode>(Node); 2191 Tmp1 = LegalizeOp(ST->getChain()); // Legalize the chain. 2192 Tmp2 = LegalizeOp(ST->getBasePtr()); // Legalize the pointer. 2193 int SVOffset = ST->getSrcValueOffset(); 2194 unsigned Alignment = ST->getAlignment(); 2195 bool isVolatile = ST->isVolatile(); 2196 2197 if (!ST->isTruncatingStore()) { 2198 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 2199 // FIXME: We shouldn't do this for TargetConstantFP's. 2200 // FIXME: move this to the DAG Combiner! Note that we can't regress due 2201 // to phase ordering between legalized code and the dag combiner. This 2202 // probably means that we need to integrate dag combiner and legalizer 2203 // together. 2204 // We generally can't do this one for long doubles. 2205 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 2206 if (CFP->getValueType(0) == MVT::f32 && 2207 getTypeAction(MVT::i32) == Legal) { 2208 Tmp3 = DAG.getConstant((uint32_t)CFP->getValueAPF(). 2209 convertToAPInt().getZExtValue(), 2210 MVT::i32); 2211 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2212 SVOffset, isVolatile, Alignment); 2213 break; 2214 } else if (CFP->getValueType(0) == MVT::f64) { 2215 // If this target supports 64-bit registers, do a single 64-bit store. 2216 if (getTypeAction(MVT::i64) == Legal) { 2217 Tmp3 = DAG.getConstant(CFP->getValueAPF().convertToAPInt(). 2218 getZExtValue(), MVT::i64); 2219 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2220 SVOffset, isVolatile, Alignment); 2221 break; 2222 } else if (getTypeAction(MVT::i32) == Legal) { 2223 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 2224 // stores. If the target supports neither 32- nor 64-bits, this 2225 // xform is certainly not worth it. 2226 uint64_t IntVal =CFP->getValueAPF().convertToAPInt().getZExtValue(); 2227 SDOperand Lo = DAG.getConstant(uint32_t(IntVal), MVT::i32); 2228 SDOperand Hi = DAG.getConstant(uint32_t(IntVal >>32), MVT::i32); 2229 if (!TLI.isLittleEndian()) std::swap(Lo, Hi); 2230 2231 Lo = DAG.getStore(Tmp1, Lo, Tmp2, ST->getSrcValue(), 2232 SVOffset, isVolatile, Alignment); 2233 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2234 DAG.getIntPtrConstant(4)); 2235 Hi = DAG.getStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), SVOffset+4, 2236 isVolatile, MinAlign(Alignment, 4U)); 2237 2238 Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); 2239 break; 2240 } 2241 } 2242 } 2243 2244 switch (getTypeAction(ST->getMemoryVT())) { 2245 case Legal: { 2246 Tmp3 = LegalizeOp(ST->getValue()); 2247 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2, 2248 ST->getOffset()); 2249 2250 MVT::ValueType VT = Tmp3.getValueType(); 2251 switch (TLI.getOperationAction(ISD::STORE, VT)) { 2252 default: assert(0 && "This action is not supported yet!"); 2253 case TargetLowering::Legal: 2254 // If this is an unaligned store and the target doesn't support it, 2255 // expand it. 2256 if (!TLI.allowsUnalignedMemoryAccesses()) { 2257 unsigned ABIAlignment = TLI.getTargetData()-> 2258 getABITypeAlignment(MVT::getTypeForValueType(ST->getMemoryVT())); 2259 if (ST->getAlignment() < ABIAlignment) 2260 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.Val), DAG, 2261 TLI); 2262 } 2263 break; 2264 case TargetLowering::Custom: 2265 Tmp1 = TLI.LowerOperation(Result, DAG); 2266 if (Tmp1.Val) Result = Tmp1; 2267 break; 2268 case TargetLowering::Promote: 2269 assert(MVT::isVector(VT) && "Unknown legal promote case!"); 2270 Tmp3 = DAG.getNode(ISD::BIT_CONVERT, 2271 TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3); 2272 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, 2273 ST->getSrcValue(), SVOffset, isVolatile, 2274 Alignment); 2275 break; 2276 } 2277 break; 2278 } 2279 case Promote: 2280 // Truncate the value and store the result. 2281 Tmp3 = PromoteOp(ST->getValue()); 2282 Result = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2283 SVOffset, ST->getMemoryVT(), 2284 isVolatile, Alignment); 2285 break; 2286 2287 case Expand: 2288 unsigned IncrementSize = 0; 2289 SDOperand Lo, Hi; 2290 2291 // If this is a vector type, then we have to calculate the increment as 2292 // the product of the element size in bytes, and the number of elements 2293 // in the high half of the vector. 2294 if (MVT::isVector(ST->getValue().getValueType())) { 2295 SDNode *InVal = ST->getValue().Val; 2296 int InIx = ST->getValue().ResNo; 2297 MVT::ValueType InVT = InVal->getValueType(InIx); 2298 unsigned NumElems = MVT::getVectorNumElements(InVT); 2299 MVT::ValueType EVT = MVT::getVectorElementType(InVT); 2300 2301 // Figure out if there is a simple type corresponding to this Vector 2302 // type. If so, convert to the vector type. 2303 MVT::ValueType TVT = MVT::getVectorType(EVT, NumElems); 2304 if (TLI.isTypeLegal(TVT)) { 2305 // Turn this into a normal store of the vector type. 2306 Tmp3 = LegalizeOp(Node->getOperand(1)); 2307 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2308 SVOffset, isVolatile, Alignment); 2309 Result = LegalizeOp(Result); 2310 break; 2311 } else if (NumElems == 1) { 2312 // Turn this into a normal store of the scalar type. 2313 Tmp3 = ScalarizeVectorOp(Node->getOperand(1)); 2314 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2315 SVOffset, isVolatile, Alignment); 2316 // The scalarized value type may not be legal, e.g. it might require 2317 // promotion or expansion. Relegalize the scalar store. 2318 Result = LegalizeOp(Result); 2319 break; 2320 } else { 2321 SplitVectorOp(Node->getOperand(1), Lo, Hi); 2322 IncrementSize = MVT::getVectorNumElements(Lo.Val->getValueType(0)) * 2323 MVT::getSizeInBits(EVT)/8; 2324 } 2325 } else { 2326 ExpandOp(Node->getOperand(1), Lo, Hi); 2327 IncrementSize = Hi.Val ? MVT::getSizeInBits(Hi.getValueType())/8 : 0; 2328 2329 if (!TLI.isLittleEndian()) 2330 std::swap(Lo, Hi); 2331 } 2332 2333 Lo = DAG.getStore(Tmp1, Lo, Tmp2, ST->getSrcValue(), 2334 SVOffset, isVolatile, Alignment); 2335 2336 if (Hi.Val == NULL) { 2337 // Must be int <-> float one-to-one expansion. 2338 Result = Lo; 2339 break; 2340 } 2341 2342 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2343 DAG.getIntPtrConstant(IncrementSize)); 2344 assert(isTypeLegal(Tmp2.getValueType()) && 2345 "Pointers must be legal!"); 2346 SVOffset += IncrementSize; 2347 Alignment = MinAlign(Alignment, IncrementSize); 2348 Hi = DAG.getStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), 2349 SVOffset, isVolatile, Alignment); 2350 Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); 2351 break; 2352 } 2353 } else { 2354 switch (getTypeAction(ST->getValue().getValueType())) { 2355 case Legal: 2356 Tmp3 = LegalizeOp(ST->getValue()); 2357 break; 2358 case Promote: 2359 // We can promote the value, the truncstore will still take care of it. 2360 Tmp3 = PromoteOp(ST->getValue()); 2361 break; 2362 case Expand: 2363 // Just store the low part. This may become a non-trunc store, so make 2364 // sure to use getTruncStore, not UpdateNodeOperands below. 2365 ExpandOp(ST->getValue(), Tmp3, Tmp4); 2366 return DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2367 SVOffset, MVT::i8, isVolatile, Alignment); 2368 } 2369 2370 MVT::ValueType StVT = ST->getMemoryVT(); 2371 unsigned StWidth = MVT::getSizeInBits(StVT); 2372 2373 if (StWidth != MVT::getStoreSizeInBits(StVT)) { 2374 // Promote to a byte-sized store with upper bits zero if not 2375 // storing an integral number of bytes. For example, promote 2376 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 2377 MVT::ValueType NVT = MVT::getIntegerType(MVT::getStoreSizeInBits(StVT)); 2378 Tmp3 = DAG.getZeroExtendInReg(Tmp3, StVT); 2379 Result = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2380 SVOffset, NVT, isVolatile, Alignment); 2381 } else if (StWidth & (StWidth - 1)) { 2382 // If not storing a power-of-2 number of bits, expand as two stores. 2383 assert(MVT::isExtendedVT(StVT) && !MVT::isVector(StVT) && 2384 "Unsupported truncstore!"); 2385 unsigned RoundWidth = 1 << Log2_32(StWidth); 2386 assert(RoundWidth < StWidth); 2387 unsigned ExtraWidth = StWidth - RoundWidth; 2388 assert(ExtraWidth < RoundWidth); 2389 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 2390 "Store size not an integral number of bytes!"); 2391 MVT::ValueType RoundVT = MVT::getIntegerType(RoundWidth); 2392 MVT::ValueType ExtraVT = MVT::getIntegerType(ExtraWidth); 2393 SDOperand Lo, Hi; 2394 unsigned IncrementSize; 2395 2396 if (TLI.isLittleEndian()) { 2397 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 2398 // Store the bottom RoundWidth bits. 2399 Lo = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2400 SVOffset, RoundVT, 2401 isVolatile, Alignment); 2402 2403 // Store the remaining ExtraWidth bits. 2404 IncrementSize = RoundWidth / 8; 2405 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2406 DAG.getIntPtrConstant(IncrementSize)); 2407 Hi = DAG.getNode(ISD::SRL, Tmp3.getValueType(), Tmp3, 2408 DAG.getConstant(RoundWidth, TLI.getShiftAmountTy())); 2409 Hi = DAG.getTruncStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), 2410 SVOffset + IncrementSize, ExtraVT, isVolatile, 2411 MinAlign(Alignment, IncrementSize)); 2412 } else { 2413 // Big endian - avoid unaligned stores. 2414 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 2415 // Store the top RoundWidth bits. 2416 Hi = DAG.getNode(ISD::SRL, Tmp3.getValueType(), Tmp3, 2417 DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy())); 2418 Hi = DAG.getTruncStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), SVOffset, 2419 RoundVT, isVolatile, Alignment); 2420 2421 // Store the remaining ExtraWidth bits. 2422 IncrementSize = RoundWidth / 8; 2423 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2424 DAG.getIntPtrConstant(IncrementSize)); 2425 Lo = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2426 SVOffset + IncrementSize, ExtraVT, isVolatile, 2427 MinAlign(Alignment, IncrementSize)); 2428 } 2429 2430 // The order of the stores doesn't matter. 2431 Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); 2432 } else { 2433 if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() || 2434 Tmp2 != ST->getBasePtr()) 2435 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2, 2436 ST->getOffset()); 2437 2438 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 2439 default: assert(0 && "This action is not supported yet!"); 2440 case TargetLowering::Legal: 2441 // If this is an unaligned store and the target doesn't support it, 2442 // expand it. 2443 if (!TLI.allowsUnalignedMemoryAccesses()) { 2444 unsigned ABIAlignment = TLI.getTargetData()-> 2445 getABITypeAlignment(MVT::getTypeForValueType(ST->getMemoryVT())); 2446 if (ST->getAlignment() < ABIAlignment) 2447 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.Val), DAG, 2448 TLI); 2449 } 2450 break; 2451 case TargetLowering::Custom: 2452 Result = TLI.LowerOperation(Result, DAG); 2453 break; 2454 case Expand: 2455 // TRUNCSTORE:i16 i32 -> STORE i16 2456 assert(isTypeLegal(StVT) && "Do not know how to expand this store!"); 2457 Tmp3 = DAG.getNode(ISD::TRUNCATE, StVT, Tmp3); 2458 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), SVOffset, 2459 isVolatile, Alignment); 2460 break; 2461 } 2462 } 2463 } 2464 break; 2465 } 2466 case ISD::PCMARKER: 2467 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2468 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 2469 break; 2470 case ISD::STACKSAVE: 2471 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2472 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2473 Tmp1 = Result.getValue(0); 2474 Tmp2 = Result.getValue(1); 2475 2476 switch (TLI.getOperationAction(ISD::STACKSAVE, MVT::Other)) { 2477 default: assert(0 && "This action is not supported yet!"); 2478 case TargetLowering::Legal: break; 2479 case TargetLowering::Custom: 2480 Tmp3 = TLI.LowerOperation(Result, DAG); 2481 if (Tmp3.Val) { 2482 Tmp1 = LegalizeOp(Tmp3); 2483 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 2484 } 2485 break; 2486 case TargetLowering::Expand: 2487 // Expand to CopyFromReg if the target set 2488 // StackPointerRegisterToSaveRestore. 2489 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 2490 Tmp1 = DAG.getCopyFromReg(Result.getOperand(0), SP, 2491 Node->getValueType(0)); 2492 Tmp2 = Tmp1.getValue(1); 2493 } else { 2494 Tmp1 = DAG.getNode(ISD::UNDEF, Node->getValueType(0)); 2495 Tmp2 = Node->getOperand(0); 2496 } 2497 break; 2498 } 2499 2500 // Since stacksave produce two values, make sure to remember that we 2501 // legalized both of them. 2502 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 2503 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 2504 return Op.ResNo ? Tmp2 : Tmp1; 2505 2506 case ISD::STACKRESTORE: 2507 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2508 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 2509 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 2510 2511 switch (TLI.getOperationAction(ISD::STACKRESTORE, MVT::Other)) { 2512 default: assert(0 && "This action is not supported yet!"); 2513 case TargetLowering::Legal: break; 2514 case TargetLowering::Custom: 2515 Tmp1 = TLI.LowerOperation(Result, DAG); 2516 if (Tmp1.Val) Result = Tmp1; 2517 break; 2518 case TargetLowering::Expand: 2519 // Expand to CopyToReg if the target set 2520 // StackPointerRegisterToSaveRestore. 2521 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 2522 Result = DAG.getCopyToReg(Tmp1, SP, Tmp2); 2523 } else { 2524 Result = Tmp1; 2525 } 2526 break; 2527 } 2528 break; 2529 2530 case ISD::READCYCLECOUNTER: 2531 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain 2532 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2533 switch (TLI.getOperationAction(ISD::READCYCLECOUNTER, 2534 Node->getValueType(0))) { 2535 default: assert(0 && "This action is not supported yet!"); 2536 case TargetLowering::Legal: 2537 Tmp1 = Result.getValue(0); 2538 Tmp2 = Result.getValue(1); 2539 break; 2540 case TargetLowering::Custom: 2541 Result = TLI.LowerOperation(Result, DAG); 2542 Tmp1 = LegalizeOp(Result.getValue(0)); 2543 Tmp2 = LegalizeOp(Result.getValue(1)); 2544 break; 2545 } 2546 2547 // Since rdcc produce two values, make sure to remember that we legalized 2548 // both of them. 2549 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 2550 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 2551 return Result; 2552 2553 case ISD::SELECT: 2554 switch (getTypeAction(Node->getOperand(0).getValueType())) { 2555 case Expand: assert(0 && "It's impossible to expand bools"); 2556 case Legal: 2557 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the condition. 2558 break; 2559 case Promote: 2560 Tmp1 = PromoteOp(Node->getOperand(0)); // Promote the condition. 2561 // Make sure the condition is either zero or one. 2562 if (!DAG.MaskedValueIsZero(Tmp1, 2563 MVT::getIntVTBitMask(Tmp1.getValueType())^1)) 2564 Tmp1 = DAG.getZeroExtendInReg(Tmp1, MVT::i1); 2565 break; 2566 } 2567 Tmp2 = LegalizeOp(Node->getOperand(1)); // TrueVal 2568 Tmp3 = LegalizeOp(Node->getOperand(2)); // FalseVal 2569 2570 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2571 2572 switch (TLI.getOperationAction(ISD::SELECT, Tmp2.getValueType())) { 2573 default: assert(0 && "This action is not supported yet!"); 2574 case TargetLowering::Legal: break; 2575 case TargetLowering::Custom: { 2576 Tmp1 = TLI.LowerOperation(Result, DAG); 2577 if (Tmp1.Val) Result = Tmp1; 2578 break; 2579 } 2580 case TargetLowering::Expand: 2581 if (Tmp1.getOpcode() == ISD::SETCC) { 2582 Result = DAG.getSelectCC(Tmp1.getOperand(0), Tmp1.getOperand(1), 2583 Tmp2, Tmp3, 2584 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 2585 } else { 2586 Result = DAG.getSelectCC(Tmp1, 2587 DAG.getConstant(0, Tmp1.getValueType()), 2588 Tmp2, Tmp3, ISD::SETNE); 2589 } 2590 break; 2591 case TargetLowering::Promote: { 2592 MVT::ValueType NVT = 2593 TLI.getTypeToPromoteTo(ISD::SELECT, Tmp2.getValueType()); 2594 unsigned ExtOp, TruncOp; 2595 if (MVT::isVector(Tmp2.getValueType())) { 2596 ExtOp = ISD::BIT_CONVERT; 2597 TruncOp = ISD::BIT_CONVERT; 2598 } else if (MVT::isInteger(Tmp2.getValueType())) { 2599 ExtOp = ISD::ANY_EXTEND; 2600 TruncOp = ISD::TRUNCATE; 2601 } else { 2602 ExtOp = ISD::FP_EXTEND; 2603 TruncOp = ISD::FP_ROUND; 2604 } 2605 // Promote each of the values to the new type. 2606 Tmp2 = DAG.getNode(ExtOp, NVT, Tmp2); 2607 Tmp3 = DAG.getNode(ExtOp, NVT, Tmp3); 2608 // Perform the larger operation, then round down. 2609 Result = DAG.getNode(ISD::SELECT, NVT, Tmp1, Tmp2,Tmp3); 2610 if (TruncOp != ISD::FP_ROUND) 2611 Result = DAG.getNode(TruncOp, Node->getValueType(0), Result); 2612 else 2613 Result = DAG.getNode(TruncOp, Node->getValueType(0), Result, 2614 DAG.getIntPtrConstant(0)); 2615 break; 2616 } 2617 } 2618 break; 2619 case ISD::SELECT_CC: { 2620 Tmp1 = Node->getOperand(0); // LHS 2621 Tmp2 = Node->getOperand(1); // RHS 2622 Tmp3 = LegalizeOp(Node->getOperand(2)); // True 2623 Tmp4 = LegalizeOp(Node->getOperand(3)); // False 2624 SDOperand CC = Node->getOperand(4); 2625 2626 LegalizeSetCCOperands(Tmp1, Tmp2, CC); 2627 2628 // If we didn't get both a LHS and RHS back from LegalizeSetCCOperands, 2629 // the LHS is a legal SETCC itself. In this case, we need to compare 2630 // the result against zero to select between true and false values. 2631 if (Tmp2.Val == 0) { 2632 Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); 2633 CC = DAG.getCondCode(ISD::SETNE); 2634 } 2635 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4, CC); 2636 2637 // Everything is legal, see if we should expand this op or something. 2638 switch (TLI.getOperationAction(ISD::SELECT_CC, Tmp3.getValueType())) { 2639 default: assert(0 && "This action is not supported yet!"); 2640 case TargetLowering::Legal: break; 2641 case TargetLowering::Custom: 2642 Tmp1 = TLI.LowerOperation(Result, DAG); 2643 if (Tmp1.Val) Result = Tmp1; 2644 break; 2645 } 2646 break; 2647 } 2648 case ISD::SETCC: 2649 Tmp1 = Node->getOperand(0); 2650 Tmp2 = Node->getOperand(1); 2651 Tmp3 = Node->getOperand(2); 2652 LegalizeSetCCOperands(Tmp1, Tmp2, Tmp3); 2653 2654 // If we had to Expand the SetCC operands into a SELECT node, then it may 2655 // not always be possible to return a true LHS & RHS. In this case, just 2656 // return the value we legalized, returned in the LHS 2657 if (Tmp2.Val == 0) { 2658 Result = Tmp1; 2659 break; 2660 } 2661 2662 switch (TLI.getOperationAction(ISD::SETCC, Tmp1.getValueType())) { 2663 default: assert(0 && "Cannot handle this action for SETCC yet!"); 2664 case TargetLowering::Custom: 2665 isCustom = true; 2666 // FALLTHROUGH. 2667 case TargetLowering::Legal: 2668 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2669 if (isCustom) { 2670 Tmp4 = TLI.LowerOperation(Result, DAG); 2671 if (Tmp4.Val) Result = Tmp4; 2672 } 2673 break; 2674 case TargetLowering::Promote: { 2675 // First step, figure out the appropriate operation to use. 2676 // Allow SETCC to not be supported for all legal data types 2677 // Mostly this targets FP 2678 MVT::ValueType NewInTy = Node->getOperand(0).getValueType(); 2679 MVT::ValueType OldVT = NewInTy; OldVT = OldVT; 2680 2681 // Scan for the appropriate larger type to use. 2682 while (1) { 2683 NewInTy = (MVT::ValueType)(NewInTy+1); 2684 2685 assert(MVT::isInteger(NewInTy) == MVT::isInteger(OldVT) && 2686 "Fell off of the edge of the integer world"); 2687 assert(MVT::isFloatingPoint(NewInTy) == MVT::isFloatingPoint(OldVT) && 2688 "Fell off of the edge of the floating point world"); 2689 2690 // If the target supports SETCC of this type, use it. 2691 if (TLI.isOperationLegal(ISD::SETCC, NewInTy)) 2692 break; 2693 } 2694 if (MVT::isInteger(NewInTy)) 2695 assert(0 && "Cannot promote Legal Integer SETCC yet"); 2696 else { 2697 Tmp1 = DAG.getNode(ISD::FP_EXTEND, NewInTy, Tmp1); 2698 Tmp2 = DAG.getNode(ISD::FP_EXTEND, NewInTy, Tmp2); 2699 } 2700 Tmp1 = LegalizeOp(Tmp1); 2701 Tmp2 = LegalizeOp(Tmp2); 2702 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2703 Result = LegalizeOp(Result); 2704 break; 2705 } 2706 case TargetLowering::Expand: 2707 // Expand a setcc node into a select_cc of the same condition, lhs, and 2708 // rhs that selects between const 1 (true) and const 0 (false). 2709 MVT::ValueType VT = Node->getValueType(0); 2710 Result = DAG.getNode(ISD::SELECT_CC, VT, Tmp1, Tmp2, 2711 DAG.getConstant(1, VT), DAG.getConstant(0, VT), 2712 Tmp3); 2713 break; 2714 } 2715 break; 2716 case ISD::MEMSET: 2717 case ISD::MEMCPY: 2718 case ISD::MEMMOVE: { 2719 Tmp1 = LegalizeOp(Node->getOperand(0)); // Chain 2720 Tmp2 = LegalizeOp(Node->getOperand(1)); // Pointer 2721 2722 if (Node->getOpcode() == ISD::MEMSET) { // memset = ubyte 2723 switch (getTypeAction(Node->getOperand(2).getValueType())) { 2724 case Expand: assert(0 && "Cannot expand a byte!"); 2725 case Legal: 2726 Tmp3 = LegalizeOp(Node->getOperand(2)); 2727 break; 2728 case Promote: 2729 Tmp3 = PromoteOp(Node->getOperand(2)); 2730 break; 2731 } 2732 } else { 2733 Tmp3 = LegalizeOp(Node->getOperand(2)); // memcpy/move = pointer, 2734 } 2735 2736 SDOperand Tmp4; 2737 switch (getTypeAction(Node->getOperand(3).getValueType())) { 2738 case Expand: { 2739 // Length is too big, just take the lo-part of the length. 2740 SDOperand HiPart; 2741 ExpandOp(Node->getOperand(3), Tmp4, HiPart); 2742 break; 2743 } 2744 case Legal: 2745 Tmp4 = LegalizeOp(Node->getOperand(3)); 2746 break; 2747 case Promote: 2748 Tmp4 = PromoteOp(Node->getOperand(3)); 2749 break; 2750 } 2751 2752 SDOperand Tmp5; 2753 switch (getTypeAction(Node->getOperand(4).getValueType())) { // uint 2754 case Expand: assert(0 && "Cannot expand this yet!"); 2755 case Legal: 2756 Tmp5 = LegalizeOp(Node->getOperand(4)); 2757 break; 2758 case Promote: 2759 Tmp5 = PromoteOp(Node->getOperand(4)); 2760 break; 2761 } 2762 2763 SDOperand Tmp6; 2764 switch (getTypeAction(Node->getOperand(5).getValueType())) { // bool 2765 case Expand: assert(0 && "Cannot expand this yet!"); 2766 case Legal: 2767 Tmp6 = LegalizeOp(Node->getOperand(5)); 2768 break; 2769 case Promote: 2770 Tmp6 = PromoteOp(Node->getOperand(5)); 2771 break; 2772 } 2773 2774 switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) { 2775 default: assert(0 && "This action not implemented for this operation!"); 2776 case TargetLowering::Custom: 2777 isCustom = true; 2778 // FALLTHROUGH 2779 case TargetLowering::Legal: { 2780 SDOperand Ops[] = { Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6 }; 2781 Result = DAG.UpdateNodeOperands(Result, Ops, 6); 2782 if (isCustom) { 2783 Tmp1 = TLI.LowerOperation(Result, DAG); 2784 if (Tmp1.Val) Result = Tmp1; 2785 } 2786 break; 2787 } 2788 case TargetLowering::Expand: { 2789 // Otherwise, the target does not support this operation. Lower the 2790 // operation to an explicit libcall as appropriate. 2791 MVT::ValueType IntPtr = TLI.getPointerTy(); 2792 const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(); 2793 TargetLowering::ArgListTy Args; 2794 TargetLowering::ArgListEntry Entry; 2795 2796 const char *FnName = 0; 2797 if (Node->getOpcode() == ISD::MEMSET) { 2798 Entry.Node = Tmp2; Entry.Ty = IntPtrTy; 2799 Args.push_back(Entry); 2800 // Extend the (previously legalized) ubyte argument to be an int value 2801 // for the call. 2802 if (Tmp3.getValueType() > MVT::i32) 2803 Tmp3 = DAG.getNode(ISD::TRUNCATE, MVT::i32, Tmp3); 2804 else 2805 Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Tmp3); 2806 Entry.Node = Tmp3; Entry.Ty = Type::Int32Ty; Entry.isSExt = true; 2807 Args.push_back(Entry); 2808 Entry.Node = Tmp4; Entry.Ty = IntPtrTy; Entry.isSExt = false; 2809 Args.push_back(Entry); 2810 2811 FnName = "memset"; 2812 } else if (Node->getOpcode() == ISD::MEMCPY || 2813 Node->getOpcode() == ISD::MEMMOVE) { 2814 Entry.Ty = IntPtrTy; 2815 Entry.Node = Tmp2; Args.push_back(Entry); 2816 Entry.Node = Tmp3; Args.push_back(Entry); 2817 Entry.Node = Tmp4; Args.push_back(Entry); 2818 FnName = Node->getOpcode() == ISD::MEMMOVE ? "memmove" : "memcpy"; 2819 } else { 2820 assert(0 && "Unknown op!"); 2821 } 2822 2823 std::pair<SDOperand,SDOperand> CallResult = 2824 TLI.LowerCallTo(Tmp1, Type::VoidTy, false, false, CallingConv::C, false, 2825 DAG.getExternalSymbol(FnName, IntPtr), Args, DAG); 2826 Result = CallResult.second; 2827 break; 2828 } 2829 } 2830 break; 2831 } 2832 2833 case ISD::SHL_PARTS: 2834 case ISD::SRA_PARTS: 2835 case ISD::SRL_PARTS: { 2836 SmallVector<SDOperand, 8> Ops; 2837 bool Changed = false; 2838 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 2839 Ops.push_back(LegalizeOp(Node->getOperand(i))); 2840 Changed |= Ops.back() != Node->getOperand(i); 2841 } 2842 if (Changed) 2843 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 2844 2845 switch (TLI.getOperationAction(Node->getOpcode(), 2846 Node->getValueType(0))) { 2847 default: assert(0 && "This action is not supported yet!"); 2848 case TargetLowering::Legal: break; 2849 case TargetLowering::Custom: 2850 Tmp1 = TLI.LowerOperation(Result, DAG); 2851 if (Tmp1.Val) { 2852 SDOperand Tmp2, RetVal(0, 0); 2853 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { 2854 Tmp2 = LegalizeOp(Tmp1.getValue(i)); 2855 AddLegalizedOperand(SDOperand(Node, i), Tmp2); 2856 if (i == Op.ResNo) 2857 RetVal = Tmp2; 2858 } 2859 assert(RetVal.Val && "Illegal result number"); 2860 return RetVal; 2861 } 2862 break; 2863 } 2864 2865 // Since these produce multiple values, make sure to remember that we 2866 // legalized all of them. 2867 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 2868 AddLegalizedOperand(SDOperand(Node, i), Result.getValue(i)); 2869 return Result.getValue(Op.ResNo); 2870 } 2871 2872 // Binary operators 2873 case ISD::ADD: 2874 case ISD::SUB: 2875 case ISD::MUL: 2876 case ISD::MULHS: 2877 case ISD::MULHU: 2878 case ISD::UDIV: 2879 case ISD::SDIV: 2880 case ISD::AND: 2881 case ISD::OR: 2882 case ISD::XOR: 2883 case ISD::SHL: 2884 case ISD::SRL: 2885 case ISD::SRA: 2886 case ISD::FADD: 2887 case ISD::FSUB: 2888 case ISD::FMUL: 2889 case ISD::FDIV: 2890 case ISD::FPOW: 2891 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 2892 switch (getTypeAction(Node->getOperand(1).getValueType())) { 2893 case Expand: assert(0 && "Not possible"); 2894 case Legal: 2895 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the RHS. 2896 break; 2897 case Promote: 2898 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the RHS. 2899 break; 2900 } 2901 2902 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 2903 2904 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 2905 default: assert(0 && "BinOp legalize operation not supported"); 2906 case TargetLowering::Legal: break; 2907 case TargetLowering::Custom: 2908 Tmp1 = TLI.LowerOperation(Result, DAG); 2909 if (Tmp1.Val) Result = Tmp1; 2910 break; 2911 case TargetLowering::Expand: { 2912 MVT::ValueType VT = Op.getValueType(); 2913 2914 // See if multiply or divide can be lowered using two-result operations. 2915 SDVTList VTs = DAG.getVTList(VT, VT); 2916 if (Node->getOpcode() == ISD::MUL) { 2917 // We just need the low half of the multiply; try both the signed 2918 // and unsigned forms. If the target supports both SMUL_LOHI and 2919 // UMUL_LOHI, form a preference by checking which forms of plain 2920 // MULH it supports. 2921 bool HasSMUL_LOHI = TLI.isOperationLegal(ISD::SMUL_LOHI, VT); 2922 bool HasUMUL_LOHI = TLI.isOperationLegal(ISD::UMUL_LOHI, VT); 2923 bool HasMULHS = TLI.isOperationLegal(ISD::MULHS, VT); 2924 bool HasMULHU = TLI.isOperationLegal(ISD::MULHU, VT); 2925 unsigned OpToUse = 0; 2926 if (HasSMUL_LOHI && !HasMULHS) { 2927 OpToUse = ISD::SMUL_LOHI; 2928 } else if (HasUMUL_LOHI && !HasMULHU) { 2929 OpToUse = ISD::UMUL_LOHI; 2930 } else if (HasSMUL_LOHI) { 2931 OpToUse = ISD::SMUL_LOHI; 2932 } else if (HasUMUL_LOHI) { 2933 OpToUse = ISD::UMUL_LOHI; 2934 } 2935 if (OpToUse) { 2936 Result = SDOperand(DAG.getNode(OpToUse, VTs, Tmp1, Tmp2).Val, 0); 2937 break; 2938 } 2939 } 2940 if (Node->getOpcode() == ISD::MULHS && 2941 TLI.isOperationLegal(ISD::SMUL_LOHI, VT)) { 2942 Result = SDOperand(DAG.getNode(ISD::SMUL_LOHI, VTs, Tmp1, Tmp2).Val, 1); 2943 break; 2944 } 2945 if (Node->getOpcode() == ISD::MULHU && 2946 TLI.isOperationLegal(ISD::UMUL_LOHI, VT)) { 2947 Result = SDOperand(DAG.getNode(ISD::UMUL_LOHI, VTs, Tmp1, Tmp2).Val, 1); 2948 break; 2949 } 2950 if (Node->getOpcode() == ISD::SDIV && 2951 TLI.isOperationLegal(ISD::SDIVREM, VT)) { 2952 Result = SDOperand(DAG.getNode(ISD::SDIVREM, VTs, Tmp1, Tmp2).Val, 0); 2953 break; 2954 } 2955 if (Node->getOpcode() == ISD::UDIV && 2956 TLI.isOperationLegal(ISD::UDIVREM, VT)) { 2957 Result = SDOperand(DAG.getNode(ISD::UDIVREM, VTs, Tmp1, Tmp2).Val, 0); 2958 break; 2959 } 2960 2961 // Check to see if we have a libcall for this operator. 2962 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 2963 bool isSigned = false; 2964 switch (Node->getOpcode()) { 2965 case ISD::UDIV: 2966 case ISD::SDIV: 2967 if (VT == MVT::i32) { 2968 LC = Node->getOpcode() == ISD::UDIV 2969 ? RTLIB::UDIV_I32 : RTLIB::SDIV_I32; 2970 isSigned = Node->getOpcode() == ISD::SDIV; 2971 } 2972 break; 2973 case ISD::FPOW: 2974 LC = GetFPLibCall(VT, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, 2975 RTLIB::POW_PPCF128); 2976 break; 2977 default: break; 2978 } 2979 if (LC != RTLIB::UNKNOWN_LIBCALL) { 2980 SDOperand Dummy; 2981 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, isSigned, Dummy); 2982 break; 2983 } 2984 2985 assert(MVT::isVector(Node->getValueType(0)) && 2986 "Cannot expand this binary operator!"); 2987 // Expand the operation into a bunch of nasty scalar code. 2988 Result = LegalizeOp(UnrollVectorOp(Op)); 2989 break; 2990 } 2991 case TargetLowering::Promote: { 2992 switch (Node->getOpcode()) { 2993 default: assert(0 && "Do not know how to promote this BinOp!"); 2994 case ISD::AND: 2995 case ISD::OR: 2996 case ISD::XOR: { 2997 MVT::ValueType OVT = Node->getValueType(0); 2998 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 2999 assert(MVT::isVector(OVT) && "Cannot promote this BinOp!"); 3000 // Bit convert each of the values to the new type. 3001 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp1); 3002 Tmp2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp2); 3003 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 3004 // Bit convert the result back the original type. 3005 Result = DAG.getNode(ISD::BIT_CONVERT, OVT, Result); 3006 break; 3007 } 3008 } 3009 } 3010 } 3011 break; 3012 3013 case ISD::SMUL_LOHI: 3014 case ISD::UMUL_LOHI: 3015 case ISD::SDIVREM: 3016 case ISD::UDIVREM: 3017 // These nodes will only be produced by target-specific lowering, so 3018 // they shouldn't be here if they aren't legal. 3019 assert(TLI.isOperationLegal(Node->getOpcode(), Node->getValueType(0)) && 3020 "This must be legal!"); 3021 3022 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3023 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 3024 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3025 break; 3026 3027 case ISD::FCOPYSIGN: // FCOPYSIGN does not require LHS/RHS to match type! 3028 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3029 switch (getTypeAction(Node->getOperand(1).getValueType())) { 3030 case Expand: assert(0 && "Not possible"); 3031 case Legal: 3032 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the RHS. 3033 break; 3034 case Promote: 3035 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the RHS. 3036 break; 3037 } 3038 3039 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3040 3041 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3042 default: assert(0 && "Operation not supported"); 3043 case TargetLowering::Custom: 3044 Tmp1 = TLI.LowerOperation(Result, DAG); 3045 if (Tmp1.Val) Result = Tmp1; 3046 break; 3047 case TargetLowering::Legal: break; 3048 case TargetLowering::Expand: { 3049 // If this target supports fabs/fneg natively and select is cheap, 3050 // do this efficiently. 3051 if (!TLI.isSelectExpensive() && 3052 TLI.getOperationAction(ISD::FABS, Tmp1.getValueType()) == 3053 TargetLowering::Legal && 3054 TLI.getOperationAction(ISD::FNEG, Tmp1.getValueType()) == 3055 TargetLowering::Legal) { 3056 // Get the sign bit of the RHS. 3057 MVT::ValueType IVT = 3058 Tmp2.getValueType() == MVT::f32 ? MVT::i32 : MVT::i64; 3059 SDOperand SignBit = DAG.getNode(ISD::BIT_CONVERT, IVT, Tmp2); 3060 SignBit = DAG.getSetCC(TLI.getSetCCResultTy(), 3061 SignBit, DAG.getConstant(0, IVT), ISD::SETLT); 3062 // Get the absolute value of the result. 3063 SDOperand AbsVal = DAG.getNode(ISD::FABS, Tmp1.getValueType(), Tmp1); 3064 // Select between the nabs and abs value based on the sign bit of 3065 // the input. 3066 Result = DAG.getNode(ISD::SELECT, AbsVal.getValueType(), SignBit, 3067 DAG.getNode(ISD::FNEG, AbsVal.getValueType(), 3068 AbsVal), 3069 AbsVal); 3070 Result = LegalizeOp(Result); 3071 break; 3072 } 3073 3074 // Otherwise, do bitwise ops! 3075 MVT::ValueType NVT = 3076 Node->getValueType(0) == MVT::f32 ? MVT::i32 : MVT::i64; 3077 Result = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI); 3078 Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), Result); 3079 Result = LegalizeOp(Result); 3080 break; 3081 } 3082 } 3083 break; 3084 3085 case ISD::ADDC: 3086 case ISD::SUBC: 3087 Tmp1 = LegalizeOp(Node->getOperand(0)); 3088 Tmp2 = LegalizeOp(Node->getOperand(1)); 3089 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3090 // Since this produces two values, make sure to remember that we legalized 3091 // both of them. 3092 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 3093 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 3094 return Result; 3095 3096 case ISD::ADDE: 3097 case ISD::SUBE: 3098 Tmp1 = LegalizeOp(Node->getOperand(0)); 3099 Tmp2 = LegalizeOp(Node->getOperand(1)); 3100 Tmp3 = LegalizeOp(Node->getOperand(2)); 3101 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 3102 // Since this produces two values, make sure to remember that we legalized 3103 // both of them. 3104 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 3105 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 3106 return Result; 3107 3108 case ISD::BUILD_PAIR: { 3109 MVT::ValueType PairTy = Node->getValueType(0); 3110 // TODO: handle the case where the Lo and Hi operands are not of legal type 3111 Tmp1 = LegalizeOp(Node->getOperand(0)); // Lo 3112 Tmp2 = LegalizeOp(Node->getOperand(1)); // Hi 3113 switch (TLI.getOperationAction(ISD::BUILD_PAIR, PairTy)) { 3114 case TargetLowering::Promote: 3115 case TargetLowering::Custom: 3116 assert(0 && "Cannot promote/custom this yet!"); 3117 case TargetLowering::Legal: 3118 if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1)) 3119 Result = DAG.getNode(ISD::BUILD_PAIR, PairTy, Tmp1, Tmp2); 3120 break; 3121 case TargetLowering::Expand: 3122 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, PairTy, Tmp1); 3123 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, PairTy, Tmp2); 3124 Tmp2 = DAG.getNode(ISD::SHL, PairTy, Tmp2, 3125 DAG.getConstant(MVT::getSizeInBits(PairTy)/2, 3126 TLI.getShiftAmountTy())); 3127 Result = DAG.getNode(ISD::OR, PairTy, Tmp1, Tmp2); 3128 break; 3129 } 3130 break; 3131 } 3132 3133 case ISD::UREM: 3134 case ISD::SREM: 3135 case ISD::FREM: 3136 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3137 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 3138 3139 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3140 case TargetLowering::Promote: assert(0 && "Cannot promote this yet!"); 3141 case TargetLowering::Custom: 3142 isCustom = true; 3143 // FALLTHROUGH 3144 case TargetLowering::Legal: 3145 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3146 if (isCustom) { 3147 Tmp1 = TLI.LowerOperation(Result, DAG); 3148 if (Tmp1.Val) Result = Tmp1; 3149 } 3150 break; 3151 case TargetLowering::Expand: { 3152 unsigned DivOpc= (Node->getOpcode() == ISD::UREM) ? ISD::UDIV : ISD::SDIV; 3153 bool isSigned = DivOpc == ISD::SDIV; 3154 MVT::ValueType VT = Node->getValueType(0); 3155 3156 // See if remainder can be lowered using two-result operations. 3157 SDVTList VTs = DAG.getVTList(VT, VT); 3158 if (Node->getOpcode() == ISD::SREM && 3159 TLI.isOperationLegal(ISD::SDIVREM, VT)) { 3160 Result = SDOperand(DAG.getNode(ISD::SDIVREM, VTs, Tmp1, Tmp2).Val, 1); 3161 break; 3162 } 3163 if (Node->getOpcode() == ISD::UREM && 3164 TLI.isOperationLegal(ISD::UDIVREM, VT)) { 3165 Result = SDOperand(DAG.getNode(ISD::UDIVREM, VTs, Tmp1, Tmp2).Val, 1); 3166 break; 3167 } 3168 3169 if (MVT::isInteger(VT)) { 3170 if (TLI.getOperationAction(DivOpc, VT) == 3171 TargetLowering::Legal) { 3172 // X % Y -> X-X/Y*Y 3173 Result = DAG.getNode(DivOpc, VT, Tmp1, Tmp2); 3174 Result = DAG.getNode(ISD::MUL, VT, Result, Tmp2); 3175 Result = DAG.getNode(ISD::SUB, VT, Tmp1, Result); 3176 } else if (MVT::isVector(VT)) { 3177 Result = LegalizeOp(UnrollVectorOp(Op)); 3178 } else { 3179 assert(VT == MVT::i32 && 3180 "Cannot expand this binary operator!"); 3181 RTLIB::Libcall LC = Node->getOpcode() == ISD::UREM 3182 ? RTLIB::UREM_I32 : RTLIB::SREM_I32; 3183 SDOperand Dummy; 3184 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, isSigned, Dummy); 3185 } 3186 } else { 3187 assert(MVT::isFloatingPoint(VT) && 3188 "remainder op must have integer or floating-point type"); 3189 if (MVT::isVector(VT)) { 3190 Result = LegalizeOp(UnrollVectorOp(Op)); 3191 } else { 3192 // Floating point mod -> fmod libcall. 3193 RTLIB::Libcall LC = GetFPLibCall(VT, RTLIB::REM_F32, RTLIB::REM_F64, 3194 RTLIB::REM_F80, RTLIB::REM_PPCF128); 3195 SDOperand Dummy; 3196 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 3197 false/*sign irrelevant*/, Dummy); 3198 } 3199 } 3200 break; 3201 } 3202 } 3203 break; 3204 case ISD::VAARG: { 3205 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3206 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 3207 3208 MVT::ValueType VT = Node->getValueType(0); 3209 switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) { 3210 default: assert(0 && "This action is not supported yet!"); 3211 case TargetLowering::Custom: 3212 isCustom = true; 3213 // FALLTHROUGH 3214 case TargetLowering::Legal: 3215 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 3216 Result = Result.getValue(0); 3217 Tmp1 = Result.getValue(1); 3218 3219 if (isCustom) { 3220 Tmp2 = TLI.LowerOperation(Result, DAG); 3221 if (Tmp2.Val) { 3222 Result = LegalizeOp(Tmp2); 3223 Tmp1 = LegalizeOp(Tmp2.getValue(1)); 3224 } 3225 } 3226 break; 3227 case TargetLowering::Expand: { 3228 SrcValueSDNode *SV = cast<SrcValueSDNode>(Node->getOperand(2)); 3229 SDOperand VAList = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp2, 3230 SV->getValue(), SV->getOffset()); 3231 // Increment the pointer, VAList, to the next vaarg 3232 Tmp3 = DAG.getNode(ISD::ADD, TLI.getPointerTy(), VAList, 3233 DAG.getConstant(MVT::getSizeInBits(VT)/8, 3234 TLI.getPointerTy())); 3235 // Store the incremented VAList to the legalized pointer 3236 Tmp3 = DAG.getStore(VAList.getValue(1), Tmp3, Tmp2, SV->getValue(), 3237 SV->getOffset()); 3238 // Load the actual argument out of the pointer VAList 3239 Result = DAG.getLoad(VT, Tmp3, VAList, NULL, 0); 3240 Tmp1 = LegalizeOp(Result.getValue(1)); 3241 Result = LegalizeOp(Result); 3242 break; 3243 } 3244 } 3245 // Since VAARG produces two values, make sure to remember that we 3246 // legalized both of them. 3247 AddLegalizedOperand(SDOperand(Node, 0), Result); 3248 AddLegalizedOperand(SDOperand(Node, 1), Tmp1); 3249 return Op.ResNo ? Tmp1 : Result; 3250 } 3251 3252 case ISD::VACOPY: 3253 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3254 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the dest pointer. 3255 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the source pointer. 3256 3257 switch (TLI.getOperationAction(ISD::VACOPY, MVT::Other)) { 3258 default: assert(0 && "This action is not supported yet!"); 3259 case TargetLowering::Custom: 3260 isCustom = true; 3261 // FALLTHROUGH 3262 case TargetLowering::Legal: 3263 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, 3264 Node->getOperand(3), Node->getOperand(4)); 3265 if (isCustom) { 3266 Tmp1 = TLI.LowerOperation(Result, DAG); 3267 if (Tmp1.Val) Result = Tmp1; 3268 } 3269 break; 3270 case TargetLowering::Expand: 3271 // This defaults to loading a pointer from the input and storing it to the 3272 // output, returning the chain. 3273 SrcValueSDNode *SVD = cast<SrcValueSDNode>(Node->getOperand(3)); 3274 SrcValueSDNode *SVS = cast<SrcValueSDNode>(Node->getOperand(4)); 3275 Tmp4 = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp3, SVD->getValue(), 3276 SVD->getOffset()); 3277 Result = DAG.getStore(Tmp4.getValue(1), Tmp4, Tmp2, SVS->getValue(), 3278 SVS->getOffset()); 3279 break; 3280 } 3281 break; 3282 3283 case ISD::VAEND: 3284 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3285 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 3286 3287 switch (TLI.getOperationAction(ISD::VAEND, MVT::Other)) { 3288 default: assert(0 && "This action is not supported yet!"); 3289 case TargetLowering::Custom: 3290 isCustom = true; 3291 // FALLTHROUGH 3292 case TargetLowering::Legal: 3293 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 3294 if (isCustom) { 3295 Tmp1 = TLI.LowerOperation(Tmp1, DAG); 3296 if (Tmp1.Val) Result = Tmp1; 3297 } 3298 break; 3299 case TargetLowering::Expand: 3300 Result = Tmp1; // Default to a no-op, return the chain 3301 break; 3302 } 3303 break; 3304 3305 case ISD::VASTART: 3306 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3307 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 3308 3309 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 3310 3311 switch (TLI.getOperationAction(ISD::VASTART, MVT::Other)) { 3312 default: assert(0 && "This action is not supported yet!"); 3313 case TargetLowering::Legal: break; 3314 case TargetLowering::Custom: 3315 Tmp1 = TLI.LowerOperation(Result, DAG); 3316 if (Tmp1.Val) Result = Tmp1; 3317 break; 3318 } 3319 break; 3320 3321 case ISD::ROTL: 3322 case ISD::ROTR: 3323 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3324 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 3325 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3326 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3327 default: 3328 assert(0 && "ROTL/ROTR legalize operation not supported"); 3329 break; 3330 case TargetLowering::Legal: 3331 break; 3332 case TargetLowering::Custom: 3333 Tmp1 = TLI.LowerOperation(Result, DAG); 3334 if (Tmp1.Val) Result = Tmp1; 3335 break; 3336 case TargetLowering::Promote: 3337 assert(0 && "Do not know how to promote ROTL/ROTR"); 3338 break; 3339 case TargetLowering::Expand: 3340 assert(0 && "Do not know how to expand ROTL/ROTR"); 3341 break; 3342 } 3343 break; 3344 3345 case ISD::BSWAP: 3346 Tmp1 = LegalizeOp(Node->getOperand(0)); // Op 3347 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3348 case TargetLowering::Custom: 3349 assert(0 && "Cannot custom legalize this yet!"); 3350 case TargetLowering::Legal: 3351 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3352 break; 3353 case TargetLowering::Promote: { 3354 MVT::ValueType OVT = Tmp1.getValueType(); 3355 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3356 unsigned DiffBits = MVT::getSizeInBits(NVT) - MVT::getSizeInBits(OVT); 3357 3358 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); 3359 Tmp1 = DAG.getNode(ISD::BSWAP, NVT, Tmp1); 3360 Result = DAG.getNode(ISD::SRL, NVT, Tmp1, 3361 DAG.getConstant(DiffBits, TLI.getShiftAmountTy())); 3362 break; 3363 } 3364 case TargetLowering::Expand: 3365 Result = ExpandBSWAP(Tmp1); 3366 break; 3367 } 3368 break; 3369 3370 case ISD::CTPOP: 3371 case ISD::CTTZ: 3372 case ISD::CTLZ: 3373 Tmp1 = LegalizeOp(Node->getOperand(0)); // Op 3374 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3375 case TargetLowering::Custom: 3376 case TargetLowering::Legal: 3377 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3378 if (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)) == 3379 TargetLowering::Custom) { 3380 Tmp1 = TLI.LowerOperation(Result, DAG); 3381 if (Tmp1.Val) { 3382 Result = Tmp1; 3383 } 3384 } 3385 break; 3386 case TargetLowering::Promote: { 3387 MVT::ValueType OVT = Tmp1.getValueType(); 3388 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3389 3390 // Zero extend the argument. 3391 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); 3392 // Perform the larger operation, then subtract if needed. 3393 Tmp1 = DAG.getNode(Node->getOpcode(), Node->getValueType(0), Tmp1); 3394 switch (Node->getOpcode()) { 3395 case ISD::CTPOP: 3396 Result = Tmp1; 3397 break; 3398 case ISD::CTTZ: 3399 //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) 3400 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), Tmp1, 3401 DAG.getConstant(MVT::getSizeInBits(NVT), NVT), 3402 ISD::SETEQ); 3403 Result = DAG.getNode(ISD::SELECT, NVT, Tmp2, 3404 DAG.getConstant(MVT::getSizeInBits(OVT),NVT), Tmp1); 3405 break; 3406 case ISD::CTLZ: 3407 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 3408 Result = DAG.getNode(ISD::SUB, NVT, Tmp1, 3409 DAG.getConstant(MVT::getSizeInBits(NVT) - 3410 MVT::getSizeInBits(OVT), NVT)); 3411 break; 3412 } 3413 break; 3414 } 3415 case TargetLowering::Expand: 3416 Result = ExpandBitCount(Node->getOpcode(), Tmp1); 3417 break; 3418 } 3419 break; 3420 3421 // Unary operators 3422 case ISD::FABS: 3423 case ISD::FNEG: 3424 case ISD::FSQRT: 3425 case ISD::FSIN: 3426 case ISD::FCOS: 3427 Tmp1 = LegalizeOp(Node->getOperand(0)); 3428 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3429 case TargetLowering::Promote: 3430 case TargetLowering::Custom: 3431 isCustom = true; 3432 // FALLTHROUGH 3433 case TargetLowering::Legal: 3434 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3435 if (isCustom) { 3436 Tmp1 = TLI.LowerOperation(Result, DAG); 3437 if (Tmp1.Val) Result = Tmp1; 3438 } 3439 break; 3440 case TargetLowering::Expand: 3441 switch (Node->getOpcode()) { 3442 default: assert(0 && "Unreachable!"); 3443 case ISD::FNEG: 3444 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 3445 Tmp2 = DAG.getConstantFP(-0.0, Node->getValueType(0)); 3446 Result = DAG.getNode(ISD::FSUB, Node->getValueType(0), Tmp2, Tmp1); 3447 break; 3448 case ISD::FABS: { 3449 // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X). 3450 MVT::ValueType VT = Node->getValueType(0); 3451 Tmp2 = DAG.getConstantFP(0.0, VT); 3452 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), Tmp1, Tmp2, ISD::SETUGT); 3453 Tmp3 = DAG.getNode(ISD::FNEG, VT, Tmp1); 3454 Result = DAG.getNode(ISD::SELECT, VT, Tmp2, Tmp1, Tmp3); 3455 break; 3456 } 3457 case ISD::FSQRT: 3458 case ISD::FSIN: 3459 case ISD::FCOS: { 3460 MVT::ValueType VT = Node->getValueType(0); 3461 3462 // Expand unsupported unary vector operators by unrolling them. 3463 if (MVT::isVector(VT)) { 3464 Result = LegalizeOp(UnrollVectorOp(Op)); 3465 break; 3466 } 3467 3468 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3469 switch(Node->getOpcode()) { 3470 case ISD::FSQRT: 3471 LC = GetFPLibCall(VT, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 3472 RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128); 3473 break; 3474 case ISD::FSIN: 3475 LC = GetFPLibCall(VT, RTLIB::SIN_F32, RTLIB::SIN_F64, 3476 RTLIB::SIN_F80, RTLIB::SIN_PPCF128); 3477 break; 3478 case ISD::FCOS: 3479 LC = GetFPLibCall(VT, RTLIB::COS_F32, RTLIB::COS_F64, 3480 RTLIB::COS_F80, RTLIB::COS_PPCF128); 3481 break; 3482 default: assert(0 && "Unreachable!"); 3483 } 3484 SDOperand Dummy; 3485 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 3486 false/*sign irrelevant*/, Dummy); 3487 break; 3488 } 3489 } 3490 break; 3491 } 3492 break; 3493 case ISD::FPOWI: { 3494 MVT::ValueType VT = Node->getValueType(0); 3495 3496 // Expand unsupported unary vector operators by unrolling them. 3497 if (MVT::isVector(VT)) { 3498 Result = LegalizeOp(UnrollVectorOp(Op)); 3499 break; 3500 } 3501 3502 // We always lower FPOWI into a libcall. No target support for it yet. 3503 RTLIB::Libcall LC = GetFPLibCall(VT, RTLIB::POWI_F32, RTLIB::POWI_F64, 3504 RTLIB::POWI_F80, RTLIB::POWI_PPCF128); 3505 SDOperand Dummy; 3506 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 3507 false/*sign irrelevant*/, Dummy); 3508 break; 3509 } 3510 case ISD::BIT_CONVERT: 3511 if (!isTypeLegal(Node->getOperand(0).getValueType())) { 3512 Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 3513 Node->getValueType(0)); 3514 } else if (MVT::isVector(Op.getOperand(0).getValueType())) { 3515 // The input has to be a vector type, we have to either scalarize it, pack 3516 // it, or convert it based on whether the input vector type is legal. 3517 SDNode *InVal = Node->getOperand(0).Val; 3518 int InIx = Node->getOperand(0).ResNo; 3519 unsigned NumElems = MVT::getVectorNumElements(InVal->getValueType(InIx)); 3520 MVT::ValueType EVT = MVT::getVectorElementType(InVal->getValueType(InIx)); 3521 3522 // Figure out if there is a simple type corresponding to this Vector 3523 // type. If so, convert to the vector type. 3524 MVT::ValueType TVT = MVT::getVectorType(EVT, NumElems); 3525 if (TLI.isTypeLegal(TVT)) { 3526 // Turn this into a bit convert of the vector input. 3527 Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), 3528 LegalizeOp(Node->getOperand(0))); 3529 break; 3530 } else if (NumElems == 1) { 3531 // Turn this into a bit convert of the scalar input. 3532 Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), 3533 ScalarizeVectorOp(Node->getOperand(0))); 3534 break; 3535 } else { 3536 // FIXME: UNIMP! Store then reload 3537 assert(0 && "Cast from unsupported vector type not implemented yet!"); 3538 } 3539 } else { 3540 switch (TLI.getOperationAction(ISD::BIT_CONVERT, 3541 Node->getOperand(0).getValueType())) { 3542 default: assert(0 && "Unknown operation action!"); 3543 case TargetLowering::Expand: 3544 Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 3545 Node->getValueType(0)); 3546 break; 3547 case TargetLowering::Legal: 3548 Tmp1 = LegalizeOp(Node->getOperand(0)); 3549 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3550 break; 3551 } 3552 } 3553 break; 3554 3555 // Conversion operators. The source and destination have different types. 3556 case ISD::SINT_TO_FP: 3557 case ISD::UINT_TO_FP: { 3558 bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP; 3559 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3560 case Legal: 3561 switch (TLI.getOperationAction(Node->getOpcode(), 3562 Node->getOperand(0).getValueType())) { 3563 default: assert(0 && "Unknown operation action!"); 3564 case TargetLowering::Custom: 3565 isCustom = true; 3566 // FALLTHROUGH 3567 case TargetLowering::Legal: 3568 Tmp1 = LegalizeOp(Node->getOperand(0)); 3569 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3570 if (isCustom) { 3571 Tmp1 = TLI.LowerOperation(Result, DAG); 3572 if (Tmp1.Val) Result = Tmp1; 3573 } 3574 break; 3575 case TargetLowering::Expand: 3576 Result = ExpandLegalINT_TO_FP(isSigned, 3577 LegalizeOp(Node->getOperand(0)), 3578 Node->getValueType(0)); 3579 break; 3580 case TargetLowering::Promote: 3581 Result = PromoteLegalINT_TO_FP(LegalizeOp(Node->getOperand(0)), 3582 Node->getValueType(0), 3583 isSigned); 3584 break; 3585 } 3586 break; 3587 case Expand: 3588 Result = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, 3589 Node->getValueType(0), Node->getOperand(0)); 3590 break; 3591 case Promote: 3592 Tmp1 = PromoteOp(Node->getOperand(0)); 3593 if (isSigned) { 3594 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, Tmp1.getValueType(), 3595 Tmp1, DAG.getValueType(Node->getOperand(0).getValueType())); 3596 } else { 3597 Tmp1 = DAG.getZeroExtendInReg(Tmp1, 3598 Node->getOperand(0).getValueType()); 3599 } 3600 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3601 Result = LegalizeOp(Result); // The 'op' is not necessarily legal! 3602 break; 3603 } 3604 break; 3605 } 3606 case ISD::TRUNCATE: 3607 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3608 case Legal: 3609 Tmp1 = LegalizeOp(Node->getOperand(0)); 3610 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3611 break; 3612 case Expand: 3613 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 3614 3615 // Since the result is legal, we should just be able to truncate the low 3616 // part of the source. 3617 Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), Tmp1); 3618 break; 3619 case Promote: 3620 Result = PromoteOp(Node->getOperand(0)); 3621 Result = DAG.getNode(ISD::TRUNCATE, Op.getValueType(), Result); 3622 break; 3623 } 3624 break; 3625 3626 case ISD::FP_TO_SINT: 3627 case ISD::FP_TO_UINT: 3628 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3629 case Legal: 3630 Tmp1 = LegalizeOp(Node->getOperand(0)); 3631 3632 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))){ 3633 default: assert(0 && "Unknown operation action!"); 3634 case TargetLowering::Custom: 3635 isCustom = true; 3636 // FALLTHROUGH 3637 case TargetLowering::Legal: 3638 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3639 if (isCustom) { 3640 Tmp1 = TLI.LowerOperation(Result, DAG); 3641 if (Tmp1.Val) Result = Tmp1; 3642 } 3643 break; 3644 case TargetLowering::Promote: 3645 Result = PromoteLegalFP_TO_INT(Tmp1, Node->getValueType(0), 3646 Node->getOpcode() == ISD::FP_TO_SINT); 3647 break; 3648 case TargetLowering::Expand: 3649 if (Node->getOpcode() == ISD::FP_TO_UINT) { 3650 SDOperand True, False; 3651 MVT::ValueType VT = Node->getOperand(0).getValueType(); 3652 MVT::ValueType NVT = Node->getValueType(0); 3653 unsigned ShiftAmt = MVT::getSizeInBits(NVT)-1; 3654 const uint64_t zero[] = {0, 0}; 3655 APFloat apf = APFloat(APInt(MVT::getSizeInBits(VT), 2, zero)); 3656 uint64_t x = 1ULL << ShiftAmt; 3657 (void)apf.convertFromZeroExtendedInteger 3658 (&x, MVT::getSizeInBits(NVT), false, APFloat::rmNearestTiesToEven); 3659 Tmp2 = DAG.getConstantFP(apf, VT); 3660 Tmp3 = DAG.getSetCC(TLI.getSetCCResultTy(), 3661 Node->getOperand(0), Tmp2, ISD::SETLT); 3662 True = DAG.getNode(ISD::FP_TO_SINT, NVT, Node->getOperand(0)); 3663 False = DAG.getNode(ISD::FP_TO_SINT, NVT, 3664 DAG.getNode(ISD::FSUB, VT, Node->getOperand(0), 3665 Tmp2)); 3666 False = DAG.getNode(ISD::XOR, NVT, False, 3667 DAG.getConstant(1ULL << ShiftAmt, NVT)); 3668 Result = DAG.getNode(ISD::SELECT, NVT, Tmp3, True, False); 3669 break; 3670 } else { 3671 assert(0 && "Do not know how to expand FP_TO_SINT yet!"); 3672 } 3673 break; 3674 } 3675 break; 3676 case Expand: { 3677 MVT::ValueType VT = Op.getValueType(); 3678 MVT::ValueType OVT = Node->getOperand(0).getValueType(); 3679 // Convert ppcf128 to i32 3680 if (OVT == MVT::ppcf128 && VT == MVT::i32) { 3681 if (Node->getOpcode() == ISD::FP_TO_SINT) { 3682 Result = DAG.getNode(ISD::FP_ROUND_INREG, MVT::ppcf128, 3683 Node->getOperand(0), DAG.getValueType(MVT::f64)); 3684 Result = DAG.getNode(ISD::FP_ROUND, MVT::f64, Result, 3685 DAG.getIntPtrConstant(1)); 3686 Result = DAG.getNode(ISD::FP_TO_SINT, VT, Result); 3687 } else { 3688 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 3689 APFloat apf = APFloat(APInt(128, 2, TwoE31)); 3690 Tmp2 = DAG.getConstantFP(apf, OVT); 3691 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 3692 // FIXME: generated code sucks. 3693 Result = DAG.getNode(ISD::SELECT_CC, VT, Node->getOperand(0), Tmp2, 3694 DAG.getNode(ISD::ADD, MVT::i32, 3695 DAG.getNode(ISD::FP_TO_SINT, VT, 3696 DAG.getNode(ISD::FSUB, OVT, 3697 Node->getOperand(0), Tmp2)), 3698 DAG.getConstant(0x80000000, MVT::i32)), 3699 DAG.getNode(ISD::FP_TO_SINT, VT, 3700 Node->getOperand(0)), 3701 DAG.getCondCode(ISD::SETGE)); 3702 } 3703 break; 3704 } 3705 // Convert f32 / f64 to i32 / i64. 3706 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3707 switch (Node->getOpcode()) { 3708 case ISD::FP_TO_SINT: { 3709 if (OVT == MVT::f32) 3710 LC = (VT == MVT::i32) 3711 ? RTLIB::FPTOSINT_F32_I32 : RTLIB::FPTOSINT_F32_I64; 3712 else if (OVT == MVT::f64) 3713 LC = (VT == MVT::i32) 3714 ? RTLIB::FPTOSINT_F64_I32 : RTLIB::FPTOSINT_F64_I64; 3715 else if (OVT == MVT::f80) { 3716 assert(VT == MVT::i64); 3717 LC = RTLIB::FPTOSINT_F80_I64; 3718 } 3719 else if (OVT == MVT::ppcf128) { 3720 assert(VT == MVT::i64); 3721 LC = RTLIB::FPTOSINT_PPCF128_I64; 3722 } 3723 break; 3724 } 3725 case ISD::FP_TO_UINT: { 3726 if (OVT == MVT::f32) 3727 LC = (VT == MVT::i32) 3728 ? RTLIB::FPTOUINT_F32_I32 : RTLIB::FPTOSINT_F32_I64; 3729 else if (OVT == MVT::f64) 3730 LC = (VT == MVT::i32) 3731 ? RTLIB::FPTOUINT_F64_I32 : RTLIB::FPTOSINT_F64_I64; 3732 else if (OVT == MVT::f80) { 3733 LC = (VT == MVT::i32) 3734 ? RTLIB::FPTOUINT_F80_I32 : RTLIB::FPTOUINT_F80_I64; 3735 } 3736 else if (OVT == MVT::ppcf128) { 3737 assert(VT == MVT::i64); 3738 LC = RTLIB::FPTOUINT_PPCF128_I64; 3739 } 3740 break; 3741 } 3742 default: assert(0 && "Unreachable!"); 3743 } 3744 SDOperand Dummy; 3745 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 3746 false/*sign irrelevant*/, Dummy); 3747 break; 3748 } 3749 case Promote: 3750 Tmp1 = PromoteOp(Node->getOperand(0)); 3751 Result = DAG.UpdateNodeOperands(Result, LegalizeOp(Tmp1)); 3752 Result = LegalizeOp(Result); 3753 break; 3754 } 3755 break; 3756 3757 case ISD::FP_EXTEND: { 3758 MVT::ValueType DstVT = Op.getValueType(); 3759 MVT::ValueType SrcVT = Op.getOperand(0).getValueType(); 3760 if (TLI.getConvertAction(SrcVT, DstVT) == TargetLowering::Expand) { 3761 // The only other way we can lower this is to turn it into a STORE, 3762 // LOAD pair, targetting a temporary location (a stack slot). 3763 Result = EmitStackConvert(Node->getOperand(0), SrcVT, DstVT); 3764 break; 3765 } 3766 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3767 case Expand: assert(0 && "Shouldn't need to expand other operators here!"); 3768 case Legal: 3769 Tmp1 = LegalizeOp(Node->getOperand(0)); 3770 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3771 break; 3772 case Promote: 3773 Tmp1 = PromoteOp(Node->getOperand(0)); 3774 Result = DAG.getNode(ISD::FP_EXTEND, Op.getValueType(), Tmp1); 3775 break; 3776 } 3777 break; 3778 } 3779 case ISD::FP_ROUND: { 3780 MVT::ValueType DstVT = Op.getValueType(); 3781 MVT::ValueType SrcVT = Op.getOperand(0).getValueType(); 3782 if (TLI.getConvertAction(SrcVT, DstVT) == TargetLowering::Expand) { 3783 if (SrcVT == MVT::ppcf128) { 3784 SDOperand Lo; 3785 ExpandOp(Node->getOperand(0), Lo, Result); 3786 // Round it the rest of the way (e.g. to f32) if needed. 3787 if (DstVT!=MVT::f64) 3788 Result = DAG.getNode(ISD::FP_ROUND, DstVT, Result, Op.getOperand(1)); 3789 break; 3790 } 3791 // The only other way we can lower this is to turn it into a STORE, 3792 // LOAD pair, targetting a temporary location (a stack slot). 3793 Result = EmitStackConvert(Node->getOperand(0), DstVT, DstVT); 3794 break; 3795 } 3796 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3797 case Expand: assert(0 && "Shouldn't need to expand other operators here!"); 3798 case Legal: 3799 Tmp1 = LegalizeOp(Node->getOperand(0)); 3800 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 3801 break; 3802 case Promote: 3803 Tmp1 = PromoteOp(Node->getOperand(0)); 3804 Result = DAG.getNode(ISD::FP_ROUND, Op.getValueType(), Tmp1, 3805 Node->getOperand(1)); 3806 break; 3807 } 3808 break; 3809 } 3810 case ISD::ANY_EXTEND: 3811 case ISD::ZERO_EXTEND: 3812 case ISD::SIGN_EXTEND: 3813 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3814 case Expand: assert(0 && "Shouldn't need to expand other operators here!"); 3815 case Legal: 3816 Tmp1 = LegalizeOp(Node->getOperand(0)); 3817 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3818 break; 3819 case Promote: 3820 switch (Node->getOpcode()) { 3821 case ISD::ANY_EXTEND: 3822 Tmp1 = PromoteOp(Node->getOperand(0)); 3823 Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Tmp1); 3824 break; 3825 case ISD::ZERO_EXTEND: 3826 Result = PromoteOp(Node->getOperand(0)); 3827 Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Result); 3828 Result = DAG.getZeroExtendInReg(Result, 3829 Node->getOperand(0).getValueType()); 3830 break; 3831 case ISD::SIGN_EXTEND: 3832 Result = PromoteOp(Node->getOperand(0)); 3833 Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Result); 3834 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 3835 Result, 3836 DAG.getValueType(Node->getOperand(0).getValueType())); 3837 break; 3838 } 3839 } 3840 break; 3841 case ISD::FP_ROUND_INREG: 3842 case ISD::SIGN_EXTEND_INREG: { 3843 Tmp1 = LegalizeOp(Node->getOperand(0)); 3844 MVT::ValueType ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 3845 3846 // If this operation is not supported, convert it to a shl/shr or load/store 3847 // pair. 3848 switch (TLI.getOperationAction(Node->getOpcode(), ExtraVT)) { 3849 default: assert(0 && "This action not supported for this op yet!"); 3850 case TargetLowering::Legal: 3851 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 3852 break; 3853 case TargetLowering::Expand: 3854 // If this is an integer extend and shifts are supported, do that. 3855 if (Node->getOpcode() == ISD::SIGN_EXTEND_INREG) { 3856 // NOTE: we could fall back on load/store here too for targets without 3857 // SAR. However, it is doubtful that any exist. 3858 unsigned BitsDiff = MVT::getSizeInBits(Node->getValueType(0)) - 3859 MVT::getSizeInBits(ExtraVT); 3860 SDOperand ShiftCst = DAG.getConstant(BitsDiff, TLI.getShiftAmountTy()); 3861 Result = DAG.getNode(ISD::SHL, Node->getValueType(0), 3862 Node->getOperand(0), ShiftCst); 3863 Result = DAG.getNode(ISD::SRA, Node->getValueType(0), 3864 Result, ShiftCst); 3865 } else if (Node->getOpcode() == ISD::FP_ROUND_INREG) { 3866 // The only way we can lower this is to turn it into a TRUNCSTORE, 3867 // EXTLOAD pair, targetting a temporary location (a stack slot). 3868 3869 // NOTE: there is a choice here between constantly creating new stack 3870 // slots and always reusing the same one. We currently always create 3871 // new ones, as reuse may inhibit scheduling. 3872 Result = EmitStackConvert(Node->getOperand(0), ExtraVT, 3873 Node->getValueType(0)); 3874 } else { 3875 assert(0 && "Unknown op"); 3876 } 3877 break; 3878 } 3879 break; 3880 } 3881 case ISD::TRAMPOLINE: { 3882 SDOperand Ops[6]; 3883 for (unsigned i = 0; i != 6; ++i) 3884 Ops[i] = LegalizeOp(Node->getOperand(i)); 3885 Result = DAG.UpdateNodeOperands(Result, Ops, 6); 3886 // The only option for this node is to custom lower it. 3887 Result = TLI.LowerOperation(Result, DAG); 3888 assert(Result.Val && "Should always custom lower!"); 3889 3890 // Since trampoline produces two values, make sure to remember that we 3891 // legalized both of them. 3892 Tmp1 = LegalizeOp(Result.getValue(1)); 3893 Result = LegalizeOp(Result); 3894 AddLegalizedOperand(SDOperand(Node, 0), Result); 3895 AddLegalizedOperand(SDOperand(Node, 1), Tmp1); 3896 return Op.ResNo ? Tmp1 : Result; 3897 } 3898 case ISD::FLT_ROUNDS: { 3899 MVT::ValueType VT = Node->getValueType(0); 3900 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 3901 default: assert(0 && "This action not supported for this op yet!"); 3902 case TargetLowering::Custom: 3903 Result = TLI.LowerOperation(Op, DAG); 3904 if (Result.Val) break; 3905 // Fall Thru 3906 case TargetLowering::Legal: 3907 // If this operation is not supported, lower it to constant 1 3908 Result = DAG.getConstant(1, VT); 3909 break; 3910 } 3911 } 3912 case ISD::TRAP: { 3913 MVT::ValueType VT = Node->getValueType(0); 3914 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 3915 default: assert(0 && "This action not supported for this op yet!"); 3916 case TargetLowering::Legal: 3917 Tmp1 = LegalizeOp(Node->getOperand(0)); 3918 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3919 break; 3920 case TargetLowering::Custom: 3921 Result = TLI.LowerOperation(Op, DAG); 3922 if (Result.Val) break; 3923 // Fall Thru 3924 case TargetLowering::Expand: 3925 // If this operation is not supported, lower it to 'abort()' call 3926 Tmp1 = LegalizeOp(Node->getOperand(0)); 3927 TargetLowering::ArgListTy Args; 3928 std::pair<SDOperand,SDOperand> CallResult = 3929 TLI.LowerCallTo(Tmp1, Type::VoidTy, false, false, CallingConv::C, false, 3930 DAG.getExternalSymbol("abort", TLI.getPointerTy()), 3931 Args, DAG); 3932 Result = CallResult.second; 3933 break; 3934 } 3935 break; 3936 } 3937 } 3938 3939 assert(Result.getValueType() == Op.getValueType() && 3940 "Bad legalization!"); 3941 3942 // Make sure that the generated code is itself legal. 3943 if (Result != Op) 3944 Result = LegalizeOp(Result); 3945 3946 // Note that LegalizeOp may be reentered even from single-use nodes, which 3947 // means that we always must cache transformed nodes. 3948 AddLegalizedOperand(Op, Result); 3949 return Result; 3950} 3951 3952/// PromoteOp - Given an operation that produces a value in an invalid type, 3953/// promote it to compute the value into a larger type. The produced value will 3954/// have the correct bits for the low portion of the register, but no guarantee 3955/// is made about the top bits: it may be zero, sign-extended, or garbage. 3956SDOperand SelectionDAGLegalize::PromoteOp(SDOperand Op) { 3957 MVT::ValueType VT = Op.getValueType(); 3958 MVT::ValueType NVT = TLI.getTypeToTransformTo(VT); 3959 assert(getTypeAction(VT) == Promote && 3960 "Caller should expand or legalize operands that are not promotable!"); 3961 assert(NVT > VT && MVT::isInteger(NVT) == MVT::isInteger(VT) && 3962 "Cannot promote to smaller type!"); 3963 3964 SDOperand Tmp1, Tmp2, Tmp3; 3965 SDOperand Result; 3966 SDNode *Node = Op.Val; 3967 3968 DenseMap<SDOperand, SDOperand>::iterator I = PromotedNodes.find(Op); 3969 if (I != PromotedNodes.end()) return I->second; 3970 3971 switch (Node->getOpcode()) { 3972 case ISD::CopyFromReg: 3973 assert(0 && "CopyFromReg must be legal!"); 3974 default: 3975#ifndef NDEBUG 3976 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 3977#endif 3978 assert(0 && "Do not know how to promote this operator!"); 3979 abort(); 3980 case ISD::UNDEF: 3981 Result = DAG.getNode(ISD::UNDEF, NVT); 3982 break; 3983 case ISD::Constant: 3984 if (VT != MVT::i1) 3985 Result = DAG.getNode(ISD::SIGN_EXTEND, NVT, Op); 3986 else 3987 Result = DAG.getNode(ISD::ZERO_EXTEND, NVT, Op); 3988 assert(isa<ConstantSDNode>(Result) && "Didn't constant fold zext?"); 3989 break; 3990 case ISD::ConstantFP: 3991 Result = DAG.getNode(ISD::FP_EXTEND, NVT, Op); 3992 assert(isa<ConstantFPSDNode>(Result) && "Didn't constant fold fp_extend?"); 3993 break; 3994 3995 case ISD::SETCC: 3996 assert(isTypeLegal(TLI.getSetCCResultTy()) && "SetCC type is not legal??"); 3997 Result = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(),Node->getOperand(0), 3998 Node->getOperand(1), Node->getOperand(2)); 3999 break; 4000 4001 case ISD::TRUNCATE: 4002 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4003 case Legal: 4004 Result = LegalizeOp(Node->getOperand(0)); 4005 assert(Result.getValueType() >= NVT && 4006 "This truncation doesn't make sense!"); 4007 if (Result.getValueType() > NVT) // Truncate to NVT instead of VT 4008 Result = DAG.getNode(ISD::TRUNCATE, NVT, Result); 4009 break; 4010 case Promote: 4011 // The truncation is not required, because we don't guarantee anything 4012 // about high bits anyway. 4013 Result = PromoteOp(Node->getOperand(0)); 4014 break; 4015 case Expand: 4016 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 4017 // Truncate the low part of the expanded value to the result type 4018 Result = DAG.getNode(ISD::TRUNCATE, NVT, Tmp1); 4019 } 4020 break; 4021 case ISD::SIGN_EXTEND: 4022 case ISD::ZERO_EXTEND: 4023 case ISD::ANY_EXTEND: 4024 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4025 case Expand: assert(0 && "BUG: Smaller reg should have been promoted!"); 4026 case Legal: 4027 // Input is legal? Just do extend all the way to the larger type. 4028 Result = DAG.getNode(Node->getOpcode(), NVT, Node->getOperand(0)); 4029 break; 4030 case Promote: 4031 // Promote the reg if it's smaller. 4032 Result = PromoteOp(Node->getOperand(0)); 4033 // The high bits are not guaranteed to be anything. Insert an extend. 4034 if (Node->getOpcode() == ISD::SIGN_EXTEND) 4035 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Result, 4036 DAG.getValueType(Node->getOperand(0).getValueType())); 4037 else if (Node->getOpcode() == ISD::ZERO_EXTEND) 4038 Result = DAG.getZeroExtendInReg(Result, 4039 Node->getOperand(0).getValueType()); 4040 break; 4041 } 4042 break; 4043 case ISD::BIT_CONVERT: 4044 Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 4045 Node->getValueType(0)); 4046 Result = PromoteOp(Result); 4047 break; 4048 4049 case ISD::FP_EXTEND: 4050 assert(0 && "Case not implemented. Dynamically dead with 2 FP types!"); 4051 case ISD::FP_ROUND: 4052 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4053 case Expand: assert(0 && "BUG: Cannot expand FP regs!"); 4054 case Promote: assert(0 && "Unreachable with 2 FP types!"); 4055 case Legal: 4056 if (Node->getConstantOperandVal(1) == 0) { 4057 // Input is legal? Do an FP_ROUND_INREG. 4058 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Node->getOperand(0), 4059 DAG.getValueType(VT)); 4060 } else { 4061 // Just remove the truncate, it isn't affecting the value. 4062 Result = DAG.getNode(ISD::FP_ROUND, NVT, Node->getOperand(0), 4063 Node->getOperand(1)); 4064 } 4065 break; 4066 } 4067 break; 4068 case ISD::SINT_TO_FP: 4069 case ISD::UINT_TO_FP: 4070 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4071 case Legal: 4072 // No extra round required here. 4073 Result = DAG.getNode(Node->getOpcode(), NVT, Node->getOperand(0)); 4074 break; 4075 4076 case Promote: 4077 Result = PromoteOp(Node->getOperand(0)); 4078 if (Node->getOpcode() == ISD::SINT_TO_FP) 4079 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 4080 Result, 4081 DAG.getValueType(Node->getOperand(0).getValueType())); 4082 else 4083 Result = DAG.getZeroExtendInReg(Result, 4084 Node->getOperand(0).getValueType()); 4085 // No extra round required here. 4086 Result = DAG.getNode(Node->getOpcode(), NVT, Result); 4087 break; 4088 case Expand: 4089 Result = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, NVT, 4090 Node->getOperand(0)); 4091 // Round if we cannot tolerate excess precision. 4092 if (NoExcessFPPrecision) 4093 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4094 DAG.getValueType(VT)); 4095 break; 4096 } 4097 break; 4098 4099 case ISD::SIGN_EXTEND_INREG: 4100 Result = PromoteOp(Node->getOperand(0)); 4101 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Result, 4102 Node->getOperand(1)); 4103 break; 4104 case ISD::FP_TO_SINT: 4105 case ISD::FP_TO_UINT: 4106 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4107 case Legal: 4108 case Expand: 4109 Tmp1 = Node->getOperand(0); 4110 break; 4111 case Promote: 4112 // The input result is prerounded, so we don't have to do anything 4113 // special. 4114 Tmp1 = PromoteOp(Node->getOperand(0)); 4115 break; 4116 } 4117 // If we're promoting a UINT to a larger size, check to see if the new node 4118 // will be legal. If it isn't, check to see if FP_TO_SINT is legal, since 4119 // we can use that instead. This allows us to generate better code for 4120 // FP_TO_UINT for small destination sizes on targets where FP_TO_UINT is not 4121 // legal, such as PowerPC. 4122 if (Node->getOpcode() == ISD::FP_TO_UINT && 4123 !TLI.isOperationLegal(ISD::FP_TO_UINT, NVT) && 4124 (TLI.isOperationLegal(ISD::FP_TO_SINT, NVT) || 4125 TLI.getOperationAction(ISD::FP_TO_SINT, NVT)==TargetLowering::Custom)){ 4126 Result = DAG.getNode(ISD::FP_TO_SINT, NVT, Tmp1); 4127 } else { 4128 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 4129 } 4130 break; 4131 4132 case ISD::FABS: 4133 case ISD::FNEG: 4134 Tmp1 = PromoteOp(Node->getOperand(0)); 4135 assert(Tmp1.getValueType() == NVT); 4136 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 4137 // NOTE: we do not have to do any extra rounding here for 4138 // NoExcessFPPrecision, because we know the input will have the appropriate 4139 // precision, and these operations don't modify precision at all. 4140 break; 4141 4142 case ISD::FSQRT: 4143 case ISD::FSIN: 4144 case ISD::FCOS: 4145 Tmp1 = PromoteOp(Node->getOperand(0)); 4146 assert(Tmp1.getValueType() == NVT); 4147 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 4148 if (NoExcessFPPrecision) 4149 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4150 DAG.getValueType(VT)); 4151 break; 4152 4153 case ISD::FPOWI: { 4154 // Promote f32 powi to f64 powi. Note that this could insert a libcall 4155 // directly as well, which may be better. 4156 Tmp1 = PromoteOp(Node->getOperand(0)); 4157 assert(Tmp1.getValueType() == NVT); 4158 Result = DAG.getNode(ISD::FPOWI, NVT, Tmp1, Node->getOperand(1)); 4159 if (NoExcessFPPrecision) 4160 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4161 DAG.getValueType(VT)); 4162 break; 4163 } 4164 4165 case ISD::AND: 4166 case ISD::OR: 4167 case ISD::XOR: 4168 case ISD::ADD: 4169 case ISD::SUB: 4170 case ISD::MUL: 4171 // The input may have strange things in the top bits of the registers, but 4172 // these operations don't care. They may have weird bits going out, but 4173 // that too is okay if they are integer operations. 4174 Tmp1 = PromoteOp(Node->getOperand(0)); 4175 Tmp2 = PromoteOp(Node->getOperand(1)); 4176 assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT); 4177 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 4178 break; 4179 case ISD::FADD: 4180 case ISD::FSUB: 4181 case ISD::FMUL: 4182 Tmp1 = PromoteOp(Node->getOperand(0)); 4183 Tmp2 = PromoteOp(Node->getOperand(1)); 4184 assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT); 4185 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 4186 4187 // Floating point operations will give excess precision that we may not be 4188 // able to tolerate. If we DO allow excess precision, just leave it, 4189 // otherwise excise it. 4190 // FIXME: Why would we need to round FP ops more than integer ones? 4191 // Is Round(Add(Add(A,B),C)) != Round(Add(Round(Add(A,B)), C)) 4192 if (NoExcessFPPrecision) 4193 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4194 DAG.getValueType(VT)); 4195 break; 4196 4197 case ISD::SDIV: 4198 case ISD::SREM: 4199 // These operators require that their input be sign extended. 4200 Tmp1 = PromoteOp(Node->getOperand(0)); 4201 Tmp2 = PromoteOp(Node->getOperand(1)); 4202 if (MVT::isInteger(NVT)) { 4203 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, 4204 DAG.getValueType(VT)); 4205 Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp2, 4206 DAG.getValueType(VT)); 4207 } 4208 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 4209 4210 // Perform FP_ROUND: this is probably overly pessimistic. 4211 if (MVT::isFloatingPoint(NVT) && NoExcessFPPrecision) 4212 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4213 DAG.getValueType(VT)); 4214 break; 4215 case ISD::FDIV: 4216 case ISD::FREM: 4217 case ISD::FCOPYSIGN: 4218 // These operators require that their input be fp extended. 4219 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4220 case Expand: assert(0 && "not implemented"); 4221 case Legal: Tmp1 = LegalizeOp(Node->getOperand(0)); break; 4222 case Promote: Tmp1 = PromoteOp(Node->getOperand(0)); break; 4223 } 4224 switch (getTypeAction(Node->getOperand(1).getValueType())) { 4225 case Expand: assert(0 && "not implemented"); 4226 case Legal: Tmp2 = LegalizeOp(Node->getOperand(1)); break; 4227 case Promote: Tmp2 = PromoteOp(Node->getOperand(1)); break; 4228 } 4229 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 4230 4231 // Perform FP_ROUND: this is probably overly pessimistic. 4232 if (NoExcessFPPrecision && Node->getOpcode() != ISD::FCOPYSIGN) 4233 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4234 DAG.getValueType(VT)); 4235 break; 4236 4237 case ISD::UDIV: 4238 case ISD::UREM: 4239 // These operators require that their input be zero extended. 4240 Tmp1 = PromoteOp(Node->getOperand(0)); 4241 Tmp2 = PromoteOp(Node->getOperand(1)); 4242 assert(MVT::isInteger(NVT) && "Operators don't apply to FP!"); 4243 Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); 4244 Tmp2 = DAG.getZeroExtendInReg(Tmp2, VT); 4245 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 4246 break; 4247 4248 case ISD::SHL: 4249 Tmp1 = PromoteOp(Node->getOperand(0)); 4250 Result = DAG.getNode(ISD::SHL, NVT, Tmp1, Node->getOperand(1)); 4251 break; 4252 case ISD::SRA: 4253 // The input value must be properly sign extended. 4254 Tmp1 = PromoteOp(Node->getOperand(0)); 4255 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, 4256 DAG.getValueType(VT)); 4257 Result = DAG.getNode(ISD::SRA, NVT, Tmp1, Node->getOperand(1)); 4258 break; 4259 case ISD::SRL: 4260 // The input value must be properly zero extended. 4261 Tmp1 = PromoteOp(Node->getOperand(0)); 4262 Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); 4263 Result = DAG.getNode(ISD::SRL, NVT, Tmp1, Node->getOperand(1)); 4264 break; 4265 4266 case ISD::VAARG: 4267 Tmp1 = Node->getOperand(0); // Get the chain. 4268 Tmp2 = Node->getOperand(1); // Get the pointer. 4269 if (TLI.getOperationAction(ISD::VAARG, VT) == TargetLowering::Custom) { 4270 Tmp3 = DAG.getVAArg(VT, Tmp1, Tmp2, Node->getOperand(2)); 4271 Result = TLI.CustomPromoteOperation(Tmp3, DAG); 4272 } else { 4273 SrcValueSDNode *SV = cast<SrcValueSDNode>(Node->getOperand(2)); 4274 SDOperand VAList = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp2, 4275 SV->getValue(), SV->getOffset()); 4276 // Increment the pointer, VAList, to the next vaarg 4277 Tmp3 = DAG.getNode(ISD::ADD, TLI.getPointerTy(), VAList, 4278 DAG.getConstant(MVT::getSizeInBits(VT)/8, 4279 TLI.getPointerTy())); 4280 // Store the incremented VAList to the legalized pointer 4281 Tmp3 = DAG.getStore(VAList.getValue(1), Tmp3, Tmp2, SV->getValue(), 4282 SV->getOffset()); 4283 // Load the actual argument out of the pointer VAList 4284 Result = DAG.getExtLoad(ISD::EXTLOAD, NVT, Tmp3, VAList, NULL, 0, VT); 4285 } 4286 // Remember that we legalized the chain. 4287 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 4288 break; 4289 4290 case ISD::LOAD: { 4291 LoadSDNode *LD = cast<LoadSDNode>(Node); 4292 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(Node) 4293 ? ISD::EXTLOAD : LD->getExtensionType(); 4294 Result = DAG.getExtLoad(ExtType, NVT, 4295 LD->getChain(), LD->getBasePtr(), 4296 LD->getSrcValue(), LD->getSrcValueOffset(), 4297 LD->getMemoryVT(), 4298 LD->isVolatile(), 4299 LD->getAlignment()); 4300 // Remember that we legalized the chain. 4301 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 4302 break; 4303 } 4304 case ISD::SELECT: 4305 Tmp2 = PromoteOp(Node->getOperand(1)); // Legalize the op0 4306 Tmp3 = PromoteOp(Node->getOperand(2)); // Legalize the op1 4307 Result = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), Tmp2, Tmp3); 4308 break; 4309 case ISD::SELECT_CC: 4310 Tmp2 = PromoteOp(Node->getOperand(2)); // True 4311 Tmp3 = PromoteOp(Node->getOperand(3)); // False 4312 Result = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0), 4313 Node->getOperand(1), Tmp2, Tmp3, Node->getOperand(4)); 4314 break; 4315 case ISD::BSWAP: 4316 Tmp1 = Node->getOperand(0); 4317 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); 4318 Tmp1 = DAG.getNode(ISD::BSWAP, NVT, Tmp1); 4319 Result = DAG.getNode(ISD::SRL, NVT, Tmp1, 4320 DAG.getConstant(MVT::getSizeInBits(NVT) - 4321 MVT::getSizeInBits(VT), 4322 TLI.getShiftAmountTy())); 4323 break; 4324 case ISD::CTPOP: 4325 case ISD::CTTZ: 4326 case ISD::CTLZ: 4327 // Zero extend the argument 4328 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Node->getOperand(0)); 4329 // Perform the larger operation, then subtract if needed. 4330 Tmp1 = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 4331 switch(Node->getOpcode()) { 4332 case ISD::CTPOP: 4333 Result = Tmp1; 4334 break; 4335 case ISD::CTTZ: 4336 // if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) 4337 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), Tmp1, 4338 DAG.getConstant(MVT::getSizeInBits(NVT), NVT), 4339 ISD::SETEQ); 4340 Result = DAG.getNode(ISD::SELECT, NVT, Tmp2, 4341 DAG.getConstant(MVT::getSizeInBits(VT), NVT), Tmp1); 4342 break; 4343 case ISD::CTLZ: 4344 //Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4345 Result = DAG.getNode(ISD::SUB, NVT, Tmp1, 4346 DAG.getConstant(MVT::getSizeInBits(NVT) - 4347 MVT::getSizeInBits(VT), NVT)); 4348 break; 4349 } 4350 break; 4351 case ISD::EXTRACT_SUBVECTOR: 4352 Result = PromoteOp(ExpandEXTRACT_SUBVECTOR(Op)); 4353 break; 4354 case ISD::EXTRACT_VECTOR_ELT: 4355 Result = PromoteOp(ExpandEXTRACT_VECTOR_ELT(Op)); 4356 break; 4357 } 4358 4359 assert(Result.Val && "Didn't set a result!"); 4360 4361 // Make sure the result is itself legal. 4362 Result = LegalizeOp(Result); 4363 4364 // Remember that we promoted this! 4365 AddPromotedOperand(Op, Result); 4366 return Result; 4367} 4368 4369/// ExpandEXTRACT_VECTOR_ELT - Expand an EXTRACT_VECTOR_ELT operation into 4370/// a legal EXTRACT_VECTOR_ELT operation, scalar code, or memory traffic, 4371/// based on the vector type. The return type of this matches the element type 4372/// of the vector, which may not be legal for the target. 4373SDOperand SelectionDAGLegalize::ExpandEXTRACT_VECTOR_ELT(SDOperand Op) { 4374 // We know that operand #0 is the Vec vector. If the index is a constant 4375 // or if the invec is a supported hardware type, we can use it. Otherwise, 4376 // lower to a store then an indexed load. 4377 SDOperand Vec = Op.getOperand(0); 4378 SDOperand Idx = Op.getOperand(1); 4379 4380 MVT::ValueType TVT = Vec.getValueType(); 4381 unsigned NumElems = MVT::getVectorNumElements(TVT); 4382 4383 switch (TLI.getOperationAction(ISD::EXTRACT_VECTOR_ELT, TVT)) { 4384 default: assert(0 && "This action is not supported yet!"); 4385 case TargetLowering::Custom: { 4386 Vec = LegalizeOp(Vec); 4387 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 4388 SDOperand Tmp3 = TLI.LowerOperation(Op, DAG); 4389 if (Tmp3.Val) 4390 return Tmp3; 4391 break; 4392 } 4393 case TargetLowering::Legal: 4394 if (isTypeLegal(TVT)) { 4395 Vec = LegalizeOp(Vec); 4396 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 4397 return Op; 4398 } 4399 break; 4400 case TargetLowering::Expand: 4401 break; 4402 } 4403 4404 if (NumElems == 1) { 4405 // This must be an access of the only element. Return it. 4406 Op = ScalarizeVectorOp(Vec); 4407 } else if (!TLI.isTypeLegal(TVT) && isa<ConstantSDNode>(Idx)) { 4408 unsigned NumLoElts = 1 << Log2_32(NumElems-1); 4409 ConstantSDNode *CIdx = cast<ConstantSDNode>(Idx); 4410 SDOperand Lo, Hi; 4411 SplitVectorOp(Vec, Lo, Hi); 4412 if (CIdx->getValue() < NumLoElts) { 4413 Vec = Lo; 4414 } else { 4415 Vec = Hi; 4416 Idx = DAG.getConstant(CIdx->getValue() - NumLoElts, 4417 Idx.getValueType()); 4418 } 4419 4420 // It's now an extract from the appropriate high or low part. Recurse. 4421 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 4422 Op = ExpandEXTRACT_VECTOR_ELT(Op); 4423 } else { 4424 // Store the value to a temporary stack slot, then LOAD the scalar 4425 // element back out. 4426 SDOperand StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); 4427 SDOperand Ch = DAG.getStore(DAG.getEntryNode(), Vec, StackPtr, NULL, 0); 4428 4429 // Add the offset to the index. 4430 unsigned EltSize = MVT::getSizeInBits(Op.getValueType())/8; 4431 Idx = DAG.getNode(ISD::MUL, Idx.getValueType(), Idx, 4432 DAG.getConstant(EltSize, Idx.getValueType())); 4433 4434 if (MVT::getSizeInBits(Idx.getValueType()) > 4435 MVT::getSizeInBits(TLI.getPointerTy())) 4436 Idx = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), Idx); 4437 else 4438 Idx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), Idx); 4439 4440 StackPtr = DAG.getNode(ISD::ADD, Idx.getValueType(), Idx, StackPtr); 4441 4442 Op = DAG.getLoad(Op.getValueType(), Ch, StackPtr, NULL, 0); 4443 } 4444 return Op; 4445} 4446 4447/// ExpandEXTRACT_SUBVECTOR - Expand a EXTRACT_SUBVECTOR operation. For now 4448/// we assume the operation can be split if it is not already legal. 4449SDOperand SelectionDAGLegalize::ExpandEXTRACT_SUBVECTOR(SDOperand Op) { 4450 // We know that operand #0 is the Vec vector. For now we assume the index 4451 // is a constant and that the extracted result is a supported hardware type. 4452 SDOperand Vec = Op.getOperand(0); 4453 SDOperand Idx = LegalizeOp(Op.getOperand(1)); 4454 4455 unsigned NumElems = MVT::getVectorNumElements(Vec.getValueType()); 4456 4457 if (NumElems == MVT::getVectorNumElements(Op.getValueType())) { 4458 // This must be an access of the desired vector length. Return it. 4459 return Vec; 4460 } 4461 4462 ConstantSDNode *CIdx = cast<ConstantSDNode>(Idx); 4463 SDOperand Lo, Hi; 4464 SplitVectorOp(Vec, Lo, Hi); 4465 if (CIdx->getValue() < NumElems/2) { 4466 Vec = Lo; 4467 } else { 4468 Vec = Hi; 4469 Idx = DAG.getConstant(CIdx->getValue() - NumElems/2, Idx.getValueType()); 4470 } 4471 4472 // It's now an extract from the appropriate high or low part. Recurse. 4473 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 4474 return ExpandEXTRACT_SUBVECTOR(Op); 4475} 4476 4477/// LegalizeSetCCOperands - Attempts to create a legal LHS and RHS for a SETCC 4478/// with condition CC on the current target. This usually involves legalizing 4479/// or promoting the arguments. In the case where LHS and RHS must be expanded, 4480/// there may be no choice but to create a new SetCC node to represent the 4481/// legalized value of setcc lhs, rhs. In this case, the value is returned in 4482/// LHS, and the SDOperand returned in RHS has a nil SDNode value. 4483void SelectionDAGLegalize::LegalizeSetCCOperands(SDOperand &LHS, 4484 SDOperand &RHS, 4485 SDOperand &CC) { 4486 SDOperand Tmp1, Tmp2, Tmp3, Result; 4487 4488 switch (getTypeAction(LHS.getValueType())) { 4489 case Legal: 4490 Tmp1 = LegalizeOp(LHS); // LHS 4491 Tmp2 = LegalizeOp(RHS); // RHS 4492 break; 4493 case Promote: 4494 Tmp1 = PromoteOp(LHS); // LHS 4495 Tmp2 = PromoteOp(RHS); // RHS 4496 4497 // If this is an FP compare, the operands have already been extended. 4498 if (MVT::isInteger(LHS.getValueType())) { 4499 MVT::ValueType VT = LHS.getValueType(); 4500 MVT::ValueType NVT = TLI.getTypeToTransformTo(VT); 4501 4502 // Otherwise, we have to insert explicit sign or zero extends. Note 4503 // that we could insert sign extends for ALL conditions, but zero extend 4504 // is cheaper on many machines (an AND instead of two shifts), so prefer 4505 // it. 4506 switch (cast<CondCodeSDNode>(CC)->get()) { 4507 default: assert(0 && "Unknown integer comparison!"); 4508 case ISD::SETEQ: 4509 case ISD::SETNE: 4510 case ISD::SETUGE: 4511 case ISD::SETUGT: 4512 case ISD::SETULE: 4513 case ISD::SETULT: 4514 // ALL of these operations will work if we either sign or zero extend 4515 // the operands (including the unsigned comparisons!). Zero extend is 4516 // usually a simpler/cheaper operation, so prefer it. 4517 Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); 4518 Tmp2 = DAG.getZeroExtendInReg(Tmp2, VT); 4519 break; 4520 case ISD::SETGE: 4521 case ISD::SETGT: 4522 case ISD::SETLT: 4523 case ISD::SETLE: 4524 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, 4525 DAG.getValueType(VT)); 4526 Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp2, 4527 DAG.getValueType(VT)); 4528 break; 4529 } 4530 } 4531 break; 4532 case Expand: { 4533 MVT::ValueType VT = LHS.getValueType(); 4534 if (VT == MVT::f32 || VT == MVT::f64) { 4535 // Expand into one or more soft-fp libcall(s). 4536 RTLIB::Libcall LC1, LC2 = RTLIB::UNKNOWN_LIBCALL; 4537 switch (cast<CondCodeSDNode>(CC)->get()) { 4538 case ISD::SETEQ: 4539 case ISD::SETOEQ: 4540 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64; 4541 break; 4542 case ISD::SETNE: 4543 case ISD::SETUNE: 4544 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : RTLIB::UNE_F64; 4545 break; 4546 case ISD::SETGE: 4547 case ISD::SETOGE: 4548 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64; 4549 break; 4550 case ISD::SETLT: 4551 case ISD::SETOLT: 4552 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 4553 break; 4554 case ISD::SETLE: 4555 case ISD::SETOLE: 4556 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64; 4557 break; 4558 case ISD::SETGT: 4559 case ISD::SETOGT: 4560 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64; 4561 break; 4562 case ISD::SETUO: 4563 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64; 4564 break; 4565 case ISD::SETO: 4566 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : RTLIB::O_F64; 4567 break; 4568 default: 4569 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64; 4570 switch (cast<CondCodeSDNode>(CC)->get()) { 4571 case ISD::SETONE: 4572 // SETONE = SETOLT | SETOGT 4573 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 4574 // Fallthrough 4575 case ISD::SETUGT: 4576 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64; 4577 break; 4578 case ISD::SETUGE: 4579 LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64; 4580 break; 4581 case ISD::SETULT: 4582 LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 4583 break; 4584 case ISD::SETULE: 4585 LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64; 4586 break; 4587 case ISD::SETUEQ: 4588 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64; 4589 break; 4590 default: assert(0 && "Unsupported FP setcc!"); 4591 } 4592 } 4593 4594 SDOperand Dummy; 4595 Tmp1 = ExpandLibCall(TLI.getLibcallName(LC1), 4596 DAG.getNode(ISD::MERGE_VALUES, VT, LHS, RHS).Val, 4597 false /*sign irrelevant*/, Dummy); 4598 Tmp2 = DAG.getConstant(0, MVT::i32); 4599 CC = DAG.getCondCode(TLI.getCmpLibcallCC(LC1)); 4600 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 4601 Tmp1 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), Tmp1, Tmp2, CC); 4602 LHS = ExpandLibCall(TLI.getLibcallName(LC2), 4603 DAG.getNode(ISD::MERGE_VALUES, VT, LHS, RHS).Val, 4604 false /*sign irrelevant*/, Dummy); 4605 Tmp2 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), LHS, Tmp2, 4606 DAG.getCondCode(TLI.getCmpLibcallCC(LC2))); 4607 Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp2); 4608 Tmp2 = SDOperand(); 4609 } 4610 LHS = Tmp1; 4611 RHS = Tmp2; 4612 return; 4613 } 4614 4615 SDOperand LHSLo, LHSHi, RHSLo, RHSHi; 4616 ExpandOp(LHS, LHSLo, LHSHi); 4617 ExpandOp(RHS, RHSLo, RHSHi); 4618 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 4619 4620 if (VT==MVT::ppcf128) { 4621 // FIXME: This generated code sucks. We want to generate 4622 // FCMP crN, hi1, hi2 4623 // BNE crN, L: 4624 // FCMP crN, lo1, lo2 4625 // The following can be improved, but not that much. 4626 Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETEQ); 4627 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, CCCode); 4628 Tmp3 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2); 4629 Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETNE); 4630 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, CCCode); 4631 Tmp1 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2); 4632 Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp3); 4633 Tmp2 = SDOperand(); 4634 break; 4635 } 4636 4637 switch (CCCode) { 4638 case ISD::SETEQ: 4639 case ISD::SETNE: 4640 if (RHSLo == RHSHi) 4641 if (ConstantSDNode *RHSCST = dyn_cast<ConstantSDNode>(RHSLo)) 4642 if (RHSCST->isAllOnesValue()) { 4643 // Comparison to -1. 4644 Tmp1 = DAG.getNode(ISD::AND, LHSLo.getValueType(), LHSLo, LHSHi); 4645 Tmp2 = RHSLo; 4646 break; 4647 } 4648 4649 Tmp1 = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSLo, RHSLo); 4650 Tmp2 = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSHi, RHSHi); 4651 Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp2); 4652 Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); 4653 break; 4654 default: 4655 // If this is a comparison of the sign bit, just look at the top part. 4656 // X > -1, x < 0 4657 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(RHS)) 4658 if ((cast<CondCodeSDNode>(CC)->get() == ISD::SETLT && 4659 CST->getValue() == 0) || // X < 0 4660 (cast<CondCodeSDNode>(CC)->get() == ISD::SETGT && 4661 CST->isAllOnesValue())) { // X > -1 4662 Tmp1 = LHSHi; 4663 Tmp2 = RHSHi; 4664 break; 4665 } 4666 4667 // FIXME: This generated code sucks. 4668 ISD::CondCode LowCC; 4669 switch (CCCode) { 4670 default: assert(0 && "Unknown integer setcc!"); 4671 case ISD::SETLT: 4672 case ISD::SETULT: LowCC = ISD::SETULT; break; 4673 case ISD::SETGT: 4674 case ISD::SETUGT: LowCC = ISD::SETUGT; break; 4675 case ISD::SETLE: 4676 case ISD::SETULE: LowCC = ISD::SETULE; break; 4677 case ISD::SETGE: 4678 case ISD::SETUGE: LowCC = ISD::SETUGE; break; 4679 } 4680 4681 // Tmp1 = lo(op1) < lo(op2) // Always unsigned comparison 4682 // Tmp2 = hi(op1) < hi(op2) // Signedness depends on operands 4683 // dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2; 4684 4685 // NOTE: on targets without efficient SELECT of bools, we can always use 4686 // this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3) 4687 TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, false, true, NULL); 4688 Tmp1 = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, LowCC, 4689 false, DagCombineInfo); 4690 if (!Tmp1.Val) 4691 Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, LowCC); 4692 Tmp2 = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, 4693 CCCode, false, DagCombineInfo); 4694 if (!Tmp2.Val) 4695 Tmp2 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), LHSHi, RHSHi,CC); 4696 4697 ConstantSDNode *Tmp1C = dyn_cast<ConstantSDNode>(Tmp1.Val); 4698 ConstantSDNode *Tmp2C = dyn_cast<ConstantSDNode>(Tmp2.Val); 4699 if ((Tmp1C && Tmp1C->getValue() == 0) || 4700 (Tmp2C && Tmp2C->getValue() == 0 && 4701 (CCCode == ISD::SETLE || CCCode == ISD::SETGE || 4702 CCCode == ISD::SETUGE || CCCode == ISD::SETULE)) || 4703 (Tmp2C && Tmp2C->getValue() == 1 && 4704 (CCCode == ISD::SETLT || CCCode == ISD::SETGT || 4705 CCCode == ISD::SETUGT || CCCode == ISD::SETULT))) { 4706 // low part is known false, returns high part. 4707 // For LE / GE, if high part is known false, ignore the low part. 4708 // For LT / GT, if high part is known true, ignore the low part. 4709 Tmp1 = Tmp2; 4710 Tmp2 = SDOperand(); 4711 } else { 4712 Result = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, 4713 ISD::SETEQ, false, DagCombineInfo); 4714 if (!Result.Val) 4715 Result=DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETEQ); 4716 Result = LegalizeOp(DAG.getNode(ISD::SELECT, Tmp1.getValueType(), 4717 Result, Tmp1, Tmp2)); 4718 Tmp1 = Result; 4719 Tmp2 = SDOperand(); 4720 } 4721 } 4722 } 4723 } 4724 LHS = Tmp1; 4725 RHS = Tmp2; 4726} 4727 4728/// EmitStackConvert - Emit a store/load combination to the stack. This stores 4729/// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 4730/// a load from the stack slot to DestVT, extending it if needed. 4731/// The resultant code need not be legal. 4732SDOperand SelectionDAGLegalize::EmitStackConvert(SDOperand SrcOp, 4733 MVT::ValueType SlotVT, 4734 MVT::ValueType DestVT) { 4735 // Create the stack frame object. 4736 SDOperand FIPtr = DAG.CreateStackTemporary(SlotVT); 4737 4738 unsigned SrcSize = MVT::getSizeInBits(SrcOp.getValueType()); 4739 unsigned SlotSize = MVT::getSizeInBits(SlotVT); 4740 unsigned DestSize = MVT::getSizeInBits(DestVT); 4741 4742 // Emit a store to the stack slot. Use a truncstore if the input value is 4743 // later than DestVT. 4744 SDOperand Store; 4745 if (SrcSize > SlotSize) 4746 Store = DAG.getTruncStore(DAG.getEntryNode(), SrcOp, FIPtr, NULL, 0,SlotVT); 4747 else { 4748 assert(SrcSize == SlotSize && "Invalid store"); 4749 Store = DAG.getStore(DAG.getEntryNode(), SrcOp, FIPtr, NULL, 0); 4750 } 4751 4752 // Result is a load from the stack slot. 4753 if (SlotSize == DestSize) 4754 return DAG.getLoad(DestVT, Store, FIPtr, NULL, 0); 4755 4756 assert(SlotSize < DestSize && "Unknown extension!"); 4757 return DAG.getExtLoad(ISD::EXTLOAD, DestVT, Store, FIPtr, NULL, 0, SlotVT); 4758} 4759 4760SDOperand SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 4761 // Create a vector sized/aligned stack slot, store the value to element #0, 4762 // then load the whole vector back out. 4763 SDOperand StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 4764 SDOperand Ch = DAG.getStore(DAG.getEntryNode(), Node->getOperand(0), StackPtr, 4765 NULL, 0); 4766 return DAG.getLoad(Node->getValueType(0), Ch, StackPtr, NULL, 0); 4767} 4768 4769 4770/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't 4771/// support the operation, but do support the resultant vector type. 4772SDOperand SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 4773 4774 // If the only non-undef value is the low element, turn this into a 4775 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 4776 unsigned NumElems = Node->getNumOperands(); 4777 bool isOnlyLowElement = true; 4778 SDOperand SplatValue = Node->getOperand(0); 4779 std::map<SDOperand, std::vector<unsigned> > Values; 4780 Values[SplatValue].push_back(0); 4781 bool isConstant = true; 4782 if (!isa<ConstantFPSDNode>(SplatValue) && !isa<ConstantSDNode>(SplatValue) && 4783 SplatValue.getOpcode() != ISD::UNDEF) 4784 isConstant = false; 4785 4786 for (unsigned i = 1; i < NumElems; ++i) { 4787 SDOperand V = Node->getOperand(i); 4788 Values[V].push_back(i); 4789 if (V.getOpcode() != ISD::UNDEF) 4790 isOnlyLowElement = false; 4791 if (SplatValue != V) 4792 SplatValue = SDOperand(0,0); 4793 4794 // If this isn't a constant element or an undef, we can't use a constant 4795 // pool load. 4796 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V) && 4797 V.getOpcode() != ISD::UNDEF) 4798 isConstant = false; 4799 } 4800 4801 if (isOnlyLowElement) { 4802 // If the low element is an undef too, then this whole things is an undef. 4803 if (Node->getOperand(0).getOpcode() == ISD::UNDEF) 4804 return DAG.getNode(ISD::UNDEF, Node->getValueType(0)); 4805 // Otherwise, turn this into a scalar_to_vector node. 4806 return DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), 4807 Node->getOperand(0)); 4808 } 4809 4810 // If all elements are constants, create a load from the constant pool. 4811 if (isConstant) { 4812 MVT::ValueType VT = Node->getValueType(0); 4813 const Type *OpNTy = 4814 MVT::getTypeForValueType(Node->getOperand(0).getValueType()); 4815 std::vector<Constant*> CV; 4816 for (unsigned i = 0, e = NumElems; i != e; ++i) { 4817 if (ConstantFPSDNode *V = 4818 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 4819 CV.push_back(ConstantFP::get(OpNTy, V->getValueAPF())); 4820 } else if (ConstantSDNode *V = 4821 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 4822 CV.push_back(ConstantInt::get(OpNTy, V->getValue())); 4823 } else { 4824 assert(Node->getOperand(i).getOpcode() == ISD::UNDEF); 4825 CV.push_back(UndefValue::get(OpNTy)); 4826 } 4827 } 4828 Constant *CP = ConstantVector::get(CV); 4829 SDOperand CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy()); 4830 return DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0); 4831 } 4832 4833 if (SplatValue.Val) { // Splat of one value? 4834 // Build the shuffle constant vector: <0, 0, 0, 0> 4835 MVT::ValueType MaskVT = 4836 MVT::getIntVectorWithNumElements(NumElems); 4837 SDOperand Zero = DAG.getConstant(0, MVT::getVectorElementType(MaskVT)); 4838 std::vector<SDOperand> ZeroVec(NumElems, Zero); 4839 SDOperand SplatMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 4840 &ZeroVec[0], ZeroVec.size()); 4841 4842 // If the target supports VECTOR_SHUFFLE and this shuffle mask, use it. 4843 if (isShuffleLegal(Node->getValueType(0), SplatMask)) { 4844 // Get the splatted value into the low element of a vector register. 4845 SDOperand LowValVec = 4846 DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), SplatValue); 4847 4848 // Return shuffle(LowValVec, undef, <0,0,0,0>) 4849 return DAG.getNode(ISD::VECTOR_SHUFFLE, Node->getValueType(0), LowValVec, 4850 DAG.getNode(ISD::UNDEF, Node->getValueType(0)), 4851 SplatMask); 4852 } 4853 } 4854 4855 // If there are only two unique elements, we may be able to turn this into a 4856 // vector shuffle. 4857 if (Values.size() == 2) { 4858 // Build the shuffle constant vector: e.g. <0, 4, 0, 4> 4859 MVT::ValueType MaskVT = 4860 MVT::getIntVectorWithNumElements(NumElems); 4861 std::vector<SDOperand> MaskVec(NumElems); 4862 unsigned i = 0; 4863 for (std::map<SDOperand,std::vector<unsigned> >::iterator I=Values.begin(), 4864 E = Values.end(); I != E; ++I) { 4865 for (std::vector<unsigned>::iterator II = I->second.begin(), 4866 EE = I->second.end(); II != EE; ++II) 4867 MaskVec[*II] = DAG.getConstant(i, MVT::getVectorElementType(MaskVT)); 4868 i += NumElems; 4869 } 4870 SDOperand ShuffleMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 4871 &MaskVec[0], MaskVec.size()); 4872 4873 // If the target supports VECTOR_SHUFFLE and this shuffle mask, use it. 4874 if (TLI.isOperationLegal(ISD::SCALAR_TO_VECTOR, Node->getValueType(0)) && 4875 isShuffleLegal(Node->getValueType(0), ShuffleMask)) { 4876 SmallVector<SDOperand, 8> Ops; 4877 for(std::map<SDOperand,std::vector<unsigned> >::iterator I=Values.begin(), 4878 E = Values.end(); I != E; ++I) { 4879 SDOperand Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), 4880 I->first); 4881 Ops.push_back(Op); 4882 } 4883 Ops.push_back(ShuffleMask); 4884 4885 // Return shuffle(LoValVec, HiValVec, <0,1,0,1>) 4886 return DAG.getNode(ISD::VECTOR_SHUFFLE, Node->getValueType(0), 4887 &Ops[0], Ops.size()); 4888 } 4889 } 4890 4891 // Otherwise, we can't handle this case efficiently. Allocate a sufficiently 4892 // aligned object on the stack, store each element into it, then load 4893 // the result as a vector. 4894 MVT::ValueType VT = Node->getValueType(0); 4895 // Create the stack frame object. 4896 SDOperand FIPtr = DAG.CreateStackTemporary(VT); 4897 4898 // Emit a store of each element to the stack slot. 4899 SmallVector<SDOperand, 8> Stores; 4900 unsigned TypeByteSize = 4901 MVT::getSizeInBits(Node->getOperand(0).getValueType())/8; 4902 // Store (in the right endianness) the elements to memory. 4903 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 4904 // Ignore undef elements. 4905 if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue; 4906 4907 unsigned Offset = TypeByteSize*i; 4908 4909 SDOperand Idx = DAG.getConstant(Offset, FIPtr.getValueType()); 4910 Idx = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr, Idx); 4911 4912 Stores.push_back(DAG.getStore(DAG.getEntryNode(), Node->getOperand(i), Idx, 4913 NULL, 0)); 4914 } 4915 4916 SDOperand StoreChain; 4917 if (!Stores.empty()) // Not all undef elements? 4918 StoreChain = DAG.getNode(ISD::TokenFactor, MVT::Other, 4919 &Stores[0], Stores.size()); 4920 else 4921 StoreChain = DAG.getEntryNode(); 4922 4923 // Result is a load from the stack slot. 4924 return DAG.getLoad(VT, StoreChain, FIPtr, NULL, 0); 4925} 4926 4927void SelectionDAGLegalize::ExpandShiftParts(unsigned NodeOp, 4928 SDOperand Op, SDOperand Amt, 4929 SDOperand &Lo, SDOperand &Hi) { 4930 // Expand the subcomponents. 4931 SDOperand LHSL, LHSH; 4932 ExpandOp(Op, LHSL, LHSH); 4933 4934 SDOperand Ops[] = { LHSL, LHSH, Amt }; 4935 MVT::ValueType VT = LHSL.getValueType(); 4936 Lo = DAG.getNode(NodeOp, DAG.getNodeValueTypes(VT, VT), 2, Ops, 3); 4937 Hi = Lo.getValue(1); 4938} 4939 4940 4941/// ExpandShift - Try to find a clever way to expand this shift operation out to 4942/// smaller elements. If we can't find a way that is more efficient than a 4943/// libcall on this target, return false. Otherwise, return true with the 4944/// low-parts expanded into Lo and Hi. 4945bool SelectionDAGLegalize::ExpandShift(unsigned Opc, SDOperand Op,SDOperand Amt, 4946 SDOperand &Lo, SDOperand &Hi) { 4947 assert((Opc == ISD::SHL || Opc == ISD::SRA || Opc == ISD::SRL) && 4948 "This is not a shift!"); 4949 4950 MVT::ValueType NVT = TLI.getTypeToTransformTo(Op.getValueType()); 4951 SDOperand ShAmt = LegalizeOp(Amt); 4952 MVT::ValueType ShTy = ShAmt.getValueType(); 4953 unsigned VTBits = MVT::getSizeInBits(Op.getValueType()); 4954 unsigned NVTBits = MVT::getSizeInBits(NVT); 4955 4956 // Handle the case when Amt is an immediate. 4957 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Amt.Val)) { 4958 unsigned Cst = CN->getValue(); 4959 // Expand the incoming operand to be shifted, so that we have its parts 4960 SDOperand InL, InH; 4961 ExpandOp(Op, InL, InH); 4962 switch(Opc) { 4963 case ISD::SHL: 4964 if (Cst > VTBits) { 4965 Lo = DAG.getConstant(0, NVT); 4966 Hi = DAG.getConstant(0, NVT); 4967 } else if (Cst > NVTBits) { 4968 Lo = DAG.getConstant(0, NVT); 4969 Hi = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Cst-NVTBits,ShTy)); 4970 } else if (Cst == NVTBits) { 4971 Lo = DAG.getConstant(0, NVT); 4972 Hi = InL; 4973 } else { 4974 Lo = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Cst, ShTy)); 4975 Hi = DAG.getNode(ISD::OR, NVT, 4976 DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(Cst, ShTy)), 4977 DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(NVTBits-Cst, ShTy))); 4978 } 4979 return true; 4980 case ISD::SRL: 4981 if (Cst > VTBits) { 4982 Lo = DAG.getConstant(0, NVT); 4983 Hi = DAG.getConstant(0, NVT); 4984 } else if (Cst > NVTBits) { 4985 Lo = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Cst-NVTBits,ShTy)); 4986 Hi = DAG.getConstant(0, NVT); 4987 } else if (Cst == NVTBits) { 4988 Lo = InH; 4989 Hi = DAG.getConstant(0, NVT); 4990 } else { 4991 Lo = DAG.getNode(ISD::OR, NVT, 4992 DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(Cst, ShTy)), 4993 DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(NVTBits-Cst, ShTy))); 4994 Hi = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Cst, ShTy)); 4995 } 4996 return true; 4997 case ISD::SRA: 4998 if (Cst > VTBits) { 4999 Hi = Lo = DAG.getNode(ISD::SRA, NVT, InH, 5000 DAG.getConstant(NVTBits-1, ShTy)); 5001 } else if (Cst > NVTBits) { 5002 Lo = DAG.getNode(ISD::SRA, NVT, InH, 5003 DAG.getConstant(Cst-NVTBits, ShTy)); 5004 Hi = DAG.getNode(ISD::SRA, NVT, InH, 5005 DAG.getConstant(NVTBits-1, ShTy)); 5006 } else if (Cst == NVTBits) { 5007 Lo = InH; 5008 Hi = DAG.getNode(ISD::SRA, NVT, InH, 5009 DAG.getConstant(NVTBits-1, ShTy)); 5010 } else { 5011 Lo = DAG.getNode(ISD::OR, NVT, 5012 DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(Cst, ShTy)), 5013 DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(NVTBits-Cst, ShTy))); 5014 Hi = DAG.getNode(ISD::SRA, NVT, InH, DAG.getConstant(Cst, ShTy)); 5015 } 5016 return true; 5017 } 5018 } 5019 5020 // Okay, the shift amount isn't constant. However, if we can tell that it is 5021 // >= 32 or < 32, we can still simplify it, without knowing the actual value. 5022 uint64_t Mask = NVTBits, KnownZero, KnownOne; 5023 DAG.ComputeMaskedBits(Amt, Mask, KnownZero, KnownOne); 5024 5025 // If we know that the high bit of the shift amount is one, then we can do 5026 // this as a couple of simple shifts. 5027 if (KnownOne & Mask) { 5028 // Mask out the high bit, which we know is set. 5029 Amt = DAG.getNode(ISD::AND, Amt.getValueType(), Amt, 5030 DAG.getConstant(NVTBits-1, Amt.getValueType())); 5031 5032 // Expand the incoming operand to be shifted, so that we have its parts 5033 SDOperand InL, InH; 5034 ExpandOp(Op, InL, InH); 5035 switch(Opc) { 5036 case ISD::SHL: 5037 Lo = DAG.getConstant(0, NVT); // Low part is zero. 5038 Hi = DAG.getNode(ISD::SHL, NVT, InL, Amt); // High part from Lo part. 5039 return true; 5040 case ISD::SRL: 5041 Hi = DAG.getConstant(0, NVT); // Hi part is zero. 5042 Lo = DAG.getNode(ISD::SRL, NVT, InH, Amt); // Lo part from Hi part. 5043 return true; 5044 case ISD::SRA: 5045 Hi = DAG.getNode(ISD::SRA, NVT, InH, // Sign extend high part. 5046 DAG.getConstant(NVTBits-1, Amt.getValueType())); 5047 Lo = DAG.getNode(ISD::SRA, NVT, InH, Amt); // Lo part from Hi part. 5048 return true; 5049 } 5050 } 5051 5052 // If we know that the high bit of the shift amount is zero, then we can do 5053 // this as a couple of simple shifts. 5054 if (KnownZero & Mask) { 5055 // Compute 32-amt. 5056 SDOperand Amt2 = DAG.getNode(ISD::SUB, Amt.getValueType(), 5057 DAG.getConstant(NVTBits, Amt.getValueType()), 5058 Amt); 5059 5060 // Expand the incoming operand to be shifted, so that we have its parts 5061 SDOperand InL, InH; 5062 ExpandOp(Op, InL, InH); 5063 switch(Opc) { 5064 case ISD::SHL: 5065 Lo = DAG.getNode(ISD::SHL, NVT, InL, Amt); 5066 Hi = DAG.getNode(ISD::OR, NVT, 5067 DAG.getNode(ISD::SHL, NVT, InH, Amt), 5068 DAG.getNode(ISD::SRL, NVT, InL, Amt2)); 5069 return true; 5070 case ISD::SRL: 5071 Hi = DAG.getNode(ISD::SRL, NVT, InH, Amt); 5072 Lo = DAG.getNode(ISD::OR, NVT, 5073 DAG.getNode(ISD::SRL, NVT, InL, Amt), 5074 DAG.getNode(ISD::SHL, NVT, InH, Amt2)); 5075 return true; 5076 case ISD::SRA: 5077 Hi = DAG.getNode(ISD::SRA, NVT, InH, Amt); 5078 Lo = DAG.getNode(ISD::OR, NVT, 5079 DAG.getNode(ISD::SRL, NVT, InL, Amt), 5080 DAG.getNode(ISD::SHL, NVT, InH, Amt2)); 5081 return true; 5082 } 5083 } 5084 5085 return false; 5086} 5087 5088 5089// ExpandLibCall - Expand a node into a call to a libcall. If the result value 5090// does not fit into a register, return the lo part and set the hi part to the 5091// by-reg argument. If it does fit into a single register, return the result 5092// and leave the Hi part unset. 5093SDOperand SelectionDAGLegalize::ExpandLibCall(const char *Name, SDNode *Node, 5094 bool isSigned, SDOperand &Hi) { 5095 assert(!IsLegalizingCall && "Cannot overlap legalization of calls!"); 5096 // The input chain to this libcall is the entry node of the function. 5097 // Legalizing the call will automatically add the previous call to the 5098 // dependence. 5099 SDOperand InChain = DAG.getEntryNode(); 5100 5101 TargetLowering::ArgListTy Args; 5102 TargetLowering::ArgListEntry Entry; 5103 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 5104 MVT::ValueType ArgVT = Node->getOperand(i).getValueType(); 5105 const Type *ArgTy = MVT::getTypeForValueType(ArgVT); 5106 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; 5107 Entry.isSExt = isSigned; 5108 Args.push_back(Entry); 5109 } 5110 SDOperand Callee = DAG.getExternalSymbol(Name, TLI.getPointerTy()); 5111 5112 // Splice the libcall in wherever FindInputOutputChains tells us to. 5113 const Type *RetTy = MVT::getTypeForValueType(Node->getValueType(0)); 5114 std::pair<SDOperand,SDOperand> CallInfo = 5115 TLI.LowerCallTo(InChain, RetTy, isSigned, false, CallingConv::C, false, 5116 Callee, Args, DAG); 5117 5118 // Legalize the call sequence, starting with the chain. This will advance 5119 // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that 5120 // was added by LowerCallTo (guaranteeing proper serialization of calls). 5121 LegalizeOp(CallInfo.second); 5122 SDOperand Result; 5123 switch (getTypeAction(CallInfo.first.getValueType())) { 5124 default: assert(0 && "Unknown thing"); 5125 case Legal: 5126 Result = CallInfo.first; 5127 break; 5128 case Expand: 5129 ExpandOp(CallInfo.first, Result, Hi); 5130 break; 5131 } 5132 return Result; 5133} 5134 5135 5136/// ExpandIntToFP - Expand a [US]INT_TO_FP operation. 5137/// 5138SDOperand SelectionDAGLegalize:: 5139ExpandIntToFP(bool isSigned, MVT::ValueType DestTy, SDOperand Source) { 5140 assert(getTypeAction(Source.getValueType()) == Expand && 5141 "This is not an expansion!"); 5142 assert(Source.getValueType() == MVT::i64 && "Only handle expand from i64!"); 5143 5144 if (!isSigned) { 5145 assert(Source.getValueType() == MVT::i64 && 5146 "This only works for 64-bit -> FP"); 5147 // The 64-bit value loaded will be incorrectly if the 'sign bit' of the 5148 // incoming integer is set. To handle this, we dynamically test to see if 5149 // it is set, and, if so, add a fudge factor. 5150 SDOperand Lo, Hi; 5151 ExpandOp(Source, Lo, Hi); 5152 5153 // If this is unsigned, and not supported, first perform the conversion to 5154 // signed, then adjust the result if the sign bit is set. 5155 SDOperand SignedConv = ExpandIntToFP(true, DestTy, 5156 DAG.getNode(ISD::BUILD_PAIR, Source.getValueType(), Lo, Hi)); 5157 5158 SDOperand SignSet = DAG.getSetCC(TLI.getSetCCResultTy(), Hi, 5159 DAG.getConstant(0, Hi.getValueType()), 5160 ISD::SETLT); 5161 SDOperand Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); 5162 SDOperand CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(), 5163 SignSet, Four, Zero); 5164 uint64_t FF = 0x5f800000ULL; 5165 if (TLI.isLittleEndian()) FF <<= 32; 5166 static Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF); 5167 5168 SDOperand CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); 5169 CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset); 5170 SDOperand FudgeInReg; 5171 if (DestTy == MVT::f32) 5172 FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx, NULL, 0); 5173 else if (MVT::getSizeInBits(DestTy) > MVT::getSizeInBits(MVT::f32)) 5174 // FIXME: Avoid the extend by construction the right constantpool? 5175 FudgeInReg = DAG.getExtLoad(ISD::EXTLOAD, DestTy, DAG.getEntryNode(), 5176 CPIdx, NULL, 0, MVT::f32); 5177 else 5178 assert(0 && "Unexpected conversion"); 5179 5180 MVT::ValueType SCVT = SignedConv.getValueType(); 5181 if (SCVT != DestTy) { 5182 // Destination type needs to be expanded as well. The FADD now we are 5183 // constructing will be expanded into a libcall. 5184 if (MVT::getSizeInBits(SCVT) != MVT::getSizeInBits(DestTy)) { 5185 assert(SCVT == MVT::i32 && DestTy == MVT::f64); 5186 SignedConv = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, 5187 SignedConv, SignedConv.getValue(1)); 5188 } 5189 SignedConv = DAG.getNode(ISD::BIT_CONVERT, DestTy, SignedConv); 5190 } 5191 return DAG.getNode(ISD::FADD, DestTy, SignedConv, FudgeInReg); 5192 } 5193 5194 // Check to see if the target has a custom way to lower this. If so, use it. 5195 switch (TLI.getOperationAction(ISD::SINT_TO_FP, Source.getValueType())) { 5196 default: assert(0 && "This action not implemented for this operation!"); 5197 case TargetLowering::Legal: 5198 case TargetLowering::Expand: 5199 break; // This case is handled below. 5200 case TargetLowering::Custom: { 5201 SDOperand NV = TLI.LowerOperation(DAG.getNode(ISD::SINT_TO_FP, DestTy, 5202 Source), DAG); 5203 if (NV.Val) 5204 return LegalizeOp(NV); 5205 break; // The target decided this was legal after all 5206 } 5207 } 5208 5209 // Expand the source, then glue it back together for the call. We must expand 5210 // the source in case it is shared (this pass of legalize must traverse it). 5211 SDOperand SrcLo, SrcHi; 5212 ExpandOp(Source, SrcLo, SrcHi); 5213 Source = DAG.getNode(ISD::BUILD_PAIR, Source.getValueType(), SrcLo, SrcHi); 5214 5215 RTLIB::Libcall LC; 5216 if (DestTy == MVT::f32) 5217 LC = RTLIB::SINTTOFP_I64_F32; 5218 else { 5219 assert(DestTy == MVT::f64 && "Unknown fp value type!"); 5220 LC = RTLIB::SINTTOFP_I64_F64; 5221 } 5222 5223 assert(TLI.getLibcallName(LC) && "Don't know how to expand this SINT_TO_FP!"); 5224 Source = DAG.getNode(ISD::SINT_TO_FP, DestTy, Source); 5225 SDOperand UnusedHiPart; 5226 return ExpandLibCall(TLI.getLibcallName(LC), Source.Val, isSigned, 5227 UnusedHiPart); 5228} 5229 5230/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a 5231/// INT_TO_FP operation of the specified operand when the target requests that 5232/// we expand it. At this point, we know that the result and operand types are 5233/// legal for the target. 5234SDOperand SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, 5235 SDOperand Op0, 5236 MVT::ValueType DestVT) { 5237 if (Op0.getValueType() == MVT::i32) { 5238 // simple 32-bit [signed|unsigned] integer to float/double expansion 5239 5240 // Get the stack frame index of a 8 byte buffer. 5241 SDOperand StackSlot = DAG.CreateStackTemporary(MVT::f64); 5242 5243 // word offset constant for Hi/Lo address computation 5244 SDOperand WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy()); 5245 // set up Hi and Lo (into buffer) address based on endian 5246 SDOperand Hi = StackSlot; 5247 SDOperand Lo = DAG.getNode(ISD::ADD, TLI.getPointerTy(), StackSlot,WordOff); 5248 if (TLI.isLittleEndian()) 5249 std::swap(Hi, Lo); 5250 5251 // if signed map to unsigned space 5252 SDOperand Op0Mapped; 5253 if (isSigned) { 5254 // constant used to invert sign bit (signed to unsigned mapping) 5255 SDOperand SignBit = DAG.getConstant(0x80000000u, MVT::i32); 5256 Op0Mapped = DAG.getNode(ISD::XOR, MVT::i32, Op0, SignBit); 5257 } else { 5258 Op0Mapped = Op0; 5259 } 5260 // store the lo of the constructed double - based on integer input 5261 SDOperand Store1 = DAG.getStore(DAG.getEntryNode(), 5262 Op0Mapped, Lo, NULL, 0); 5263 // initial hi portion of constructed double 5264 SDOperand InitialHi = DAG.getConstant(0x43300000u, MVT::i32); 5265 // store the hi of the constructed double - biased exponent 5266 SDOperand Store2=DAG.getStore(Store1, InitialHi, Hi, NULL, 0); 5267 // load the constructed double 5268 SDOperand Load = DAG.getLoad(MVT::f64, Store2, StackSlot, NULL, 0); 5269 // FP constant to bias correct the final result 5270 SDOperand Bias = DAG.getConstantFP(isSigned ? 5271 BitsToDouble(0x4330000080000000ULL) 5272 : BitsToDouble(0x4330000000000000ULL), 5273 MVT::f64); 5274 // subtract the bias 5275 SDOperand Sub = DAG.getNode(ISD::FSUB, MVT::f64, Load, Bias); 5276 // final result 5277 SDOperand Result; 5278 // handle final rounding 5279 if (DestVT == MVT::f64) { 5280 // do nothing 5281 Result = Sub; 5282 } else if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(MVT::f64)) { 5283 Result = DAG.getNode(ISD::FP_ROUND, DestVT, Sub, 5284 DAG.getIntPtrConstant(0)); 5285 } else if (MVT::getSizeInBits(DestVT) > MVT::getSizeInBits(MVT::f64)) { 5286 Result = DAG.getNode(ISD::FP_EXTEND, DestVT, Sub); 5287 } 5288 return Result; 5289 } 5290 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 5291 SDOperand Tmp1 = DAG.getNode(ISD::SINT_TO_FP, DestVT, Op0); 5292 5293 SDOperand SignSet = DAG.getSetCC(TLI.getSetCCResultTy(), Op0, 5294 DAG.getConstant(0, Op0.getValueType()), 5295 ISD::SETLT); 5296 SDOperand Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); 5297 SDOperand CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(), 5298 SignSet, Four, Zero); 5299 5300 // If the sign bit of the integer is set, the large number will be treated 5301 // as a negative number. To counteract this, the dynamic code adds an 5302 // offset depending on the data type. 5303 uint64_t FF; 5304 switch (Op0.getValueType()) { 5305 default: assert(0 && "Unsupported integer type!"); 5306 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 5307 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 5308 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 5309 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 5310 } 5311 if (TLI.isLittleEndian()) FF <<= 32; 5312 static Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF); 5313 5314 SDOperand CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); 5315 CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset); 5316 SDOperand FudgeInReg; 5317 if (DestVT == MVT::f32) 5318 FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx, NULL, 0); 5319 else { 5320 FudgeInReg = LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, DestVT, 5321 DAG.getEntryNode(), CPIdx, 5322 NULL, 0, MVT::f32)); 5323 } 5324 5325 return DAG.getNode(ISD::FADD, DestVT, Tmp1, FudgeInReg); 5326} 5327 5328/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a 5329/// *INT_TO_FP operation of the specified operand when the target requests that 5330/// we promote it. At this point, we know that the result and operand types are 5331/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 5332/// operation that takes a larger input. 5333SDOperand SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDOperand LegalOp, 5334 MVT::ValueType DestVT, 5335 bool isSigned) { 5336 // First step, figure out the appropriate *INT_TO_FP operation to use. 5337 MVT::ValueType NewInTy = LegalOp.getValueType(); 5338 5339 unsigned OpToUse = 0; 5340 5341 // Scan for the appropriate larger type to use. 5342 while (1) { 5343 NewInTy = (MVT::ValueType)(NewInTy+1); 5344 assert(MVT::isInteger(NewInTy) && "Ran out of possibilities!"); 5345 5346 // If the target supports SINT_TO_FP of this type, use it. 5347 switch (TLI.getOperationAction(ISD::SINT_TO_FP, NewInTy)) { 5348 default: break; 5349 case TargetLowering::Legal: 5350 if (!TLI.isTypeLegal(NewInTy)) 5351 break; // Can't use this datatype. 5352 // FALL THROUGH. 5353 case TargetLowering::Custom: 5354 OpToUse = ISD::SINT_TO_FP; 5355 break; 5356 } 5357 if (OpToUse) break; 5358 if (isSigned) continue; 5359 5360 // If the target supports UINT_TO_FP of this type, use it. 5361 switch (TLI.getOperationAction(ISD::UINT_TO_FP, NewInTy)) { 5362 default: break; 5363 case TargetLowering::Legal: 5364 if (!TLI.isTypeLegal(NewInTy)) 5365 break; // Can't use this datatype. 5366 // FALL THROUGH. 5367 case TargetLowering::Custom: 5368 OpToUse = ISD::UINT_TO_FP; 5369 break; 5370 } 5371 if (OpToUse) break; 5372 5373 // Otherwise, try a larger type. 5374 } 5375 5376 // Okay, we found the operation and type to use. Zero extend our input to the 5377 // desired type then run the operation on it. 5378 return DAG.getNode(OpToUse, DestVT, 5379 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5380 NewInTy, LegalOp)); 5381} 5382 5383/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a 5384/// FP_TO_*INT operation of the specified operand when the target requests that 5385/// we promote it. At this point, we know that the result and operand types are 5386/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 5387/// operation that returns a larger result. 5388SDOperand SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDOperand LegalOp, 5389 MVT::ValueType DestVT, 5390 bool isSigned) { 5391 // First step, figure out the appropriate FP_TO*INT operation to use. 5392 MVT::ValueType NewOutTy = DestVT; 5393 5394 unsigned OpToUse = 0; 5395 5396 // Scan for the appropriate larger type to use. 5397 while (1) { 5398 NewOutTy = (MVT::ValueType)(NewOutTy+1); 5399 assert(MVT::isInteger(NewOutTy) && "Ran out of possibilities!"); 5400 5401 // If the target supports FP_TO_SINT returning this type, use it. 5402 switch (TLI.getOperationAction(ISD::FP_TO_SINT, NewOutTy)) { 5403 default: break; 5404 case TargetLowering::Legal: 5405 if (!TLI.isTypeLegal(NewOutTy)) 5406 break; // Can't use this datatype. 5407 // FALL THROUGH. 5408 case TargetLowering::Custom: 5409 OpToUse = ISD::FP_TO_SINT; 5410 break; 5411 } 5412 if (OpToUse) break; 5413 5414 // If the target supports FP_TO_UINT of this type, use it. 5415 switch (TLI.getOperationAction(ISD::FP_TO_UINT, NewOutTy)) { 5416 default: break; 5417 case TargetLowering::Legal: 5418 if (!TLI.isTypeLegal(NewOutTy)) 5419 break; // Can't use this datatype. 5420 // FALL THROUGH. 5421 case TargetLowering::Custom: 5422 OpToUse = ISD::FP_TO_UINT; 5423 break; 5424 } 5425 if (OpToUse) break; 5426 5427 // Otherwise, try a larger type. 5428 } 5429 5430 5431 // Okay, we found the operation and type to use. 5432 SDOperand Operation = DAG.getNode(OpToUse, NewOutTy, LegalOp); 5433 5434 // If the operation produces an invalid type, it must be custom lowered. Use 5435 // the target lowering hooks to expand it. Just keep the low part of the 5436 // expanded operation, we know that we're truncating anyway. 5437 if (getTypeAction(NewOutTy) == Expand) { 5438 Operation = SDOperand(TLI.ExpandOperationResult(Operation.Val, DAG), 0); 5439 assert(Operation.Val && "Didn't return anything"); 5440 } 5441 5442 // Truncate the result of the extended FP_TO_*INT operation to the desired 5443 // size. 5444 return DAG.getNode(ISD::TRUNCATE, DestVT, Operation); 5445} 5446 5447/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation. 5448/// 5449SDOperand SelectionDAGLegalize::ExpandBSWAP(SDOperand Op) { 5450 MVT::ValueType VT = Op.getValueType(); 5451 MVT::ValueType SHVT = TLI.getShiftAmountTy(); 5452 SDOperand Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 5453 switch (VT) { 5454 default: assert(0 && "Unhandled Expand type in BSWAP!"); abort(); 5455 case MVT::i16: 5456 Tmp2 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT)); 5457 Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT)); 5458 return DAG.getNode(ISD::OR, VT, Tmp1, Tmp2); 5459 case MVT::i32: 5460 Tmp4 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(24, SHVT)); 5461 Tmp3 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT)); 5462 Tmp2 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT)); 5463 Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(24, SHVT)); 5464 Tmp3 = DAG.getNode(ISD::AND, VT, Tmp3, DAG.getConstant(0xFF0000, VT)); 5465 Tmp2 = DAG.getNode(ISD::AND, VT, Tmp2, DAG.getConstant(0xFF00, VT)); 5466 Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp3); 5467 Tmp2 = DAG.getNode(ISD::OR, VT, Tmp2, Tmp1); 5468 return DAG.getNode(ISD::OR, VT, Tmp4, Tmp2); 5469 case MVT::i64: 5470 Tmp8 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(56, SHVT)); 5471 Tmp7 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(40, SHVT)); 5472 Tmp6 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(24, SHVT)); 5473 Tmp5 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT)); 5474 Tmp4 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT)); 5475 Tmp3 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(24, SHVT)); 5476 Tmp2 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(40, SHVT)); 5477 Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(56, SHVT)); 5478 Tmp7 = DAG.getNode(ISD::AND, VT, Tmp7, DAG.getConstant(255ULL<<48, VT)); 5479 Tmp6 = DAG.getNode(ISD::AND, VT, Tmp6, DAG.getConstant(255ULL<<40, VT)); 5480 Tmp5 = DAG.getNode(ISD::AND, VT, Tmp5, DAG.getConstant(255ULL<<32, VT)); 5481 Tmp4 = DAG.getNode(ISD::AND, VT, Tmp4, DAG.getConstant(255ULL<<24, VT)); 5482 Tmp3 = DAG.getNode(ISD::AND, VT, Tmp3, DAG.getConstant(255ULL<<16, VT)); 5483 Tmp2 = DAG.getNode(ISD::AND, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT)); 5484 Tmp8 = DAG.getNode(ISD::OR, VT, Tmp8, Tmp7); 5485 Tmp6 = DAG.getNode(ISD::OR, VT, Tmp6, Tmp5); 5486 Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp3); 5487 Tmp2 = DAG.getNode(ISD::OR, VT, Tmp2, Tmp1); 5488 Tmp8 = DAG.getNode(ISD::OR, VT, Tmp8, Tmp6); 5489 Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp2); 5490 return DAG.getNode(ISD::OR, VT, Tmp8, Tmp4); 5491 } 5492} 5493 5494/// ExpandBitCount - Expand the specified bitcount instruction into operations. 5495/// 5496SDOperand SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDOperand Op) { 5497 switch (Opc) { 5498 default: assert(0 && "Cannot expand this yet!"); 5499 case ISD::CTPOP: { 5500 static const uint64_t mask[6] = { 5501 0x5555555555555555ULL, 0x3333333333333333ULL, 5502 0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL, 5503 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL 5504 }; 5505 MVT::ValueType VT = Op.getValueType(); 5506 MVT::ValueType ShVT = TLI.getShiftAmountTy(); 5507 unsigned len = MVT::getSizeInBits(VT); 5508 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 5509 //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8]) 5510 SDOperand Tmp2 = DAG.getConstant(mask[i], VT); 5511 SDOperand Tmp3 = DAG.getConstant(1ULL << i, ShVT); 5512 Op = DAG.getNode(ISD::ADD, VT, DAG.getNode(ISD::AND, VT, Op, Tmp2), 5513 DAG.getNode(ISD::AND, VT, 5514 DAG.getNode(ISD::SRL, VT, Op, Tmp3),Tmp2)); 5515 } 5516 return Op; 5517 } 5518 case ISD::CTLZ: { 5519 // for now, we do this: 5520 // x = x | (x >> 1); 5521 // x = x | (x >> 2); 5522 // ... 5523 // x = x | (x >>16); 5524 // x = x | (x >>32); // for 64-bit input 5525 // return popcount(~x); 5526 // 5527 // but see also: http://www.hackersdelight.org/HDcode/nlz.cc 5528 MVT::ValueType VT = Op.getValueType(); 5529 MVT::ValueType ShVT = TLI.getShiftAmountTy(); 5530 unsigned len = MVT::getSizeInBits(VT); 5531 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 5532 SDOperand Tmp3 = DAG.getConstant(1ULL << i, ShVT); 5533 Op = DAG.getNode(ISD::OR, VT, Op, DAG.getNode(ISD::SRL, VT, Op, Tmp3)); 5534 } 5535 Op = DAG.getNode(ISD::XOR, VT, Op, DAG.getConstant(~0ULL, VT)); 5536 return DAG.getNode(ISD::CTPOP, VT, Op); 5537 } 5538 case ISD::CTTZ: { 5539 // for now, we use: { return popcount(~x & (x - 1)); } 5540 // unless the target has ctlz but not ctpop, in which case we use: 5541 // { return 32 - nlz(~x & (x-1)); } 5542 // see also http://www.hackersdelight.org/HDcode/ntz.cc 5543 MVT::ValueType VT = Op.getValueType(); 5544 SDOperand Tmp2 = DAG.getConstant(~0ULL, VT); 5545 SDOperand Tmp3 = DAG.getNode(ISD::AND, VT, 5546 DAG.getNode(ISD::XOR, VT, Op, Tmp2), 5547 DAG.getNode(ISD::SUB, VT, Op, DAG.getConstant(1, VT))); 5548 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 5549 if (!TLI.isOperationLegal(ISD::CTPOP, VT) && 5550 TLI.isOperationLegal(ISD::CTLZ, VT)) 5551 return DAG.getNode(ISD::SUB, VT, 5552 DAG.getConstant(MVT::getSizeInBits(VT), VT), 5553 DAG.getNode(ISD::CTLZ, VT, Tmp3)); 5554 return DAG.getNode(ISD::CTPOP, VT, Tmp3); 5555 } 5556 } 5557} 5558 5559/// ExpandOp - Expand the specified SDOperand into its two component pieces 5560/// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, the 5561/// LegalizeNodes map is filled in for any results that are not expanded, the 5562/// ExpandedNodes map is filled in for any results that are expanded, and the 5563/// Lo/Hi values are returned. 5564void SelectionDAGLegalize::ExpandOp(SDOperand Op, SDOperand &Lo, SDOperand &Hi){ 5565 MVT::ValueType VT = Op.getValueType(); 5566 MVT::ValueType NVT = TLI.getTypeToTransformTo(VT); 5567 SDNode *Node = Op.Val; 5568 assert(getTypeAction(VT) == Expand && "Not an expanded type!"); 5569 assert(((MVT::isInteger(NVT) && NVT < VT) || MVT::isFloatingPoint(VT) || 5570 MVT::isVector(VT)) && 5571 "Cannot expand to FP value or to larger int value!"); 5572 5573 // See if we already expanded it. 5574 DenseMap<SDOperand, std::pair<SDOperand, SDOperand> >::iterator I 5575 = ExpandedNodes.find(Op); 5576 if (I != ExpandedNodes.end()) { 5577 Lo = I->second.first; 5578 Hi = I->second.second; 5579 return; 5580 } 5581 5582 switch (Node->getOpcode()) { 5583 case ISD::CopyFromReg: 5584 assert(0 && "CopyFromReg must be legal!"); 5585 case ISD::FP_ROUND_INREG: 5586 if (VT == MVT::ppcf128 && 5587 TLI.getOperationAction(ISD::FP_ROUND_INREG, VT) == 5588 TargetLowering::Custom) { 5589 SDOperand SrcLo, SrcHi, Src; 5590 ExpandOp(Op.getOperand(0), SrcLo, SrcHi); 5591 Src = DAG.getNode(ISD::BUILD_PAIR, VT, SrcLo, SrcHi); 5592 SDOperand Result = TLI.LowerOperation( 5593 DAG.getNode(ISD::FP_ROUND_INREG, VT, Src, Op.getOperand(1)), DAG); 5594 assert(Result.Val->getOpcode() == ISD::BUILD_PAIR); 5595 Lo = Result.Val->getOperand(0); 5596 Hi = Result.Val->getOperand(1); 5597 break; 5598 } 5599 // fall through 5600 default: 5601#ifndef NDEBUG 5602 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 5603#endif 5604 assert(0 && "Do not know how to expand this operator!"); 5605 abort(); 5606 case ISD::EXTRACT_VECTOR_ELT: 5607 assert(VT==MVT::i64 && "Do not know how to expand this operator!"); 5608 // ExpandEXTRACT_VECTOR_ELT tolerates invalid result types. 5609 Lo = ExpandEXTRACT_VECTOR_ELT(Op); 5610 return ExpandOp(Lo, Lo, Hi); 5611 case ISD::UNDEF: 5612 NVT = TLI.getTypeToExpandTo(VT); 5613 Lo = DAG.getNode(ISD::UNDEF, NVT); 5614 Hi = DAG.getNode(ISD::UNDEF, NVT); 5615 break; 5616 case ISD::Constant: { 5617 uint64_t Cst = cast<ConstantSDNode>(Node)->getValue(); 5618 Lo = DAG.getConstant(Cst, NVT); 5619 Hi = DAG.getConstant(Cst >> MVT::getSizeInBits(NVT), NVT); 5620 break; 5621 } 5622 case ISD::ConstantFP: { 5623 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 5624 if (CFP->getValueType(0) == MVT::ppcf128) { 5625 APInt api = CFP->getValueAPF().convertToAPInt(); 5626 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &api.getRawData()[1])), 5627 MVT::f64); 5628 Hi = DAG.getConstantFP(APFloat(APInt(64, 1, &api.getRawData()[0])), 5629 MVT::f64); 5630 break; 5631 } 5632 Lo = ExpandConstantFP(CFP, false, DAG, TLI); 5633 if (getTypeAction(Lo.getValueType()) == Expand) 5634 ExpandOp(Lo, Lo, Hi); 5635 break; 5636 } 5637 case ISD::BUILD_PAIR: 5638 // Return the operands. 5639 Lo = Node->getOperand(0); 5640 Hi = Node->getOperand(1); 5641 break; 5642 5643 case ISD::MERGE_VALUES: 5644 if (Node->getNumValues() == 1) { 5645 ExpandOp(Op.getOperand(0), Lo, Hi); 5646 break; 5647 } 5648 // FIXME: For now only expand i64,chain = MERGE_VALUES (x, y) 5649 assert(Op.ResNo == 0 && Node->getNumValues() == 2 && 5650 Op.getValue(1).getValueType() == MVT::Other && 5651 "unhandled MERGE_VALUES"); 5652 ExpandOp(Op.getOperand(0), Lo, Hi); 5653 // Remember that we legalized the chain. 5654 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Op.getOperand(1))); 5655 break; 5656 5657 case ISD::SIGN_EXTEND_INREG: 5658 ExpandOp(Node->getOperand(0), Lo, Hi); 5659 // sext_inreg the low part if needed. 5660 Lo = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Lo, Node->getOperand(1)); 5661 5662 // The high part gets the sign extension from the lo-part. This handles 5663 // things like sextinreg V:i64 from i8. 5664 Hi = DAG.getNode(ISD::SRA, NVT, Lo, 5665 DAG.getConstant(MVT::getSizeInBits(NVT)-1, 5666 TLI.getShiftAmountTy())); 5667 break; 5668 5669 case ISD::BSWAP: { 5670 ExpandOp(Node->getOperand(0), Lo, Hi); 5671 SDOperand TempLo = DAG.getNode(ISD::BSWAP, NVT, Hi); 5672 Hi = DAG.getNode(ISD::BSWAP, NVT, Lo); 5673 Lo = TempLo; 5674 break; 5675 } 5676 5677 case ISD::CTPOP: 5678 ExpandOp(Node->getOperand(0), Lo, Hi); 5679 Lo = DAG.getNode(ISD::ADD, NVT, // ctpop(HL) -> ctpop(H)+ctpop(L) 5680 DAG.getNode(ISD::CTPOP, NVT, Lo), 5681 DAG.getNode(ISD::CTPOP, NVT, Hi)); 5682 Hi = DAG.getConstant(0, NVT); 5683 break; 5684 5685 case ISD::CTLZ: { 5686 // ctlz (HL) -> ctlz(H) != 32 ? ctlz(H) : (ctlz(L)+32) 5687 ExpandOp(Node->getOperand(0), Lo, Hi); 5688 SDOperand BitsC = DAG.getConstant(MVT::getSizeInBits(NVT), NVT); 5689 SDOperand HLZ = DAG.getNode(ISD::CTLZ, NVT, Hi); 5690 SDOperand TopNotZero = DAG.getSetCC(TLI.getSetCCResultTy(), HLZ, BitsC, 5691 ISD::SETNE); 5692 SDOperand LowPart = DAG.getNode(ISD::CTLZ, NVT, Lo); 5693 LowPart = DAG.getNode(ISD::ADD, NVT, LowPart, BitsC); 5694 5695 Lo = DAG.getNode(ISD::SELECT, NVT, TopNotZero, HLZ, LowPart); 5696 Hi = DAG.getConstant(0, NVT); 5697 break; 5698 } 5699 5700 case ISD::CTTZ: { 5701 // cttz (HL) -> cttz(L) != 32 ? cttz(L) : (cttz(H)+32) 5702 ExpandOp(Node->getOperand(0), Lo, Hi); 5703 SDOperand BitsC = DAG.getConstant(MVT::getSizeInBits(NVT), NVT); 5704 SDOperand LTZ = DAG.getNode(ISD::CTTZ, NVT, Lo); 5705 SDOperand BotNotZero = DAG.getSetCC(TLI.getSetCCResultTy(), LTZ, BitsC, 5706 ISD::SETNE); 5707 SDOperand HiPart = DAG.getNode(ISD::CTTZ, NVT, Hi); 5708 HiPart = DAG.getNode(ISD::ADD, NVT, HiPart, BitsC); 5709 5710 Lo = DAG.getNode(ISD::SELECT, NVT, BotNotZero, LTZ, HiPart); 5711 Hi = DAG.getConstant(0, NVT); 5712 break; 5713 } 5714 5715 case ISD::VAARG: { 5716 SDOperand Ch = Node->getOperand(0); // Legalize the chain. 5717 SDOperand Ptr = Node->getOperand(1); // Legalize the pointer. 5718 Lo = DAG.getVAArg(NVT, Ch, Ptr, Node->getOperand(2)); 5719 Hi = DAG.getVAArg(NVT, Lo.getValue(1), Ptr, Node->getOperand(2)); 5720 5721 // Remember that we legalized the chain. 5722 Hi = LegalizeOp(Hi); 5723 AddLegalizedOperand(Op.getValue(1), Hi.getValue(1)); 5724 if (!TLI.isLittleEndian()) 5725 std::swap(Lo, Hi); 5726 break; 5727 } 5728 5729 case ISD::LOAD: { 5730 LoadSDNode *LD = cast<LoadSDNode>(Node); 5731 SDOperand Ch = LD->getChain(); // Legalize the chain. 5732 SDOperand Ptr = LD->getBasePtr(); // Legalize the pointer. 5733 ISD::LoadExtType ExtType = LD->getExtensionType(); 5734 int SVOffset = LD->getSrcValueOffset(); 5735 unsigned Alignment = LD->getAlignment(); 5736 bool isVolatile = LD->isVolatile(); 5737 5738 if (ExtType == ISD::NON_EXTLOAD) { 5739 Lo = DAG.getLoad(NVT, Ch, Ptr, LD->getSrcValue(), SVOffset, 5740 isVolatile, Alignment); 5741 if (VT == MVT::f32 || VT == MVT::f64) { 5742 // f32->i32 or f64->i64 one to one expansion. 5743 // Remember that we legalized the chain. 5744 AddLegalizedOperand(SDOperand(Node, 1), LegalizeOp(Lo.getValue(1))); 5745 // Recursively expand the new load. 5746 if (getTypeAction(NVT) == Expand) 5747 ExpandOp(Lo, Lo, Hi); 5748 break; 5749 } 5750 5751 // Increment the pointer to the other half. 5752 unsigned IncrementSize = MVT::getSizeInBits(Lo.getValueType())/8; 5753 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 5754 DAG.getIntPtrConstant(IncrementSize)); 5755 SVOffset += IncrementSize; 5756 Alignment = MinAlign(Alignment, IncrementSize); 5757 Hi = DAG.getLoad(NVT, Ch, Ptr, LD->getSrcValue(), SVOffset, 5758 isVolatile, Alignment); 5759 5760 // Build a factor node to remember that this load is independent of the 5761 // other one. 5762 SDOperand TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 5763 Hi.getValue(1)); 5764 5765 // Remember that we legalized the chain. 5766 AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF)); 5767 if (!TLI.isLittleEndian()) 5768 std::swap(Lo, Hi); 5769 } else { 5770 MVT::ValueType EVT = LD->getMemoryVT(); 5771 5772 if ((VT == MVT::f64 && EVT == MVT::f32) || 5773 (VT == MVT::ppcf128 && (EVT==MVT::f64 || EVT==MVT::f32))) { 5774 // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND 5775 SDOperand Load = DAG.getLoad(EVT, Ch, Ptr, LD->getSrcValue(), 5776 SVOffset, isVolatile, Alignment); 5777 // Remember that we legalized the chain. 5778 AddLegalizedOperand(SDOperand(Node, 1), LegalizeOp(Load.getValue(1))); 5779 ExpandOp(DAG.getNode(ISD::FP_EXTEND, VT, Load), Lo, Hi); 5780 break; 5781 } 5782 5783 if (EVT == NVT) 5784 Lo = DAG.getLoad(NVT, Ch, Ptr, LD->getSrcValue(), 5785 SVOffset, isVolatile, Alignment); 5786 else 5787 Lo = DAG.getExtLoad(ExtType, NVT, Ch, Ptr, LD->getSrcValue(), 5788 SVOffset, EVT, isVolatile, 5789 Alignment); 5790 5791 // Remember that we legalized the chain. 5792 AddLegalizedOperand(SDOperand(Node, 1), LegalizeOp(Lo.getValue(1))); 5793 5794 if (ExtType == ISD::SEXTLOAD) { 5795 // The high part is obtained by SRA'ing all but one of the bits of the 5796 // lo part. 5797 unsigned LoSize = MVT::getSizeInBits(Lo.getValueType()); 5798 Hi = DAG.getNode(ISD::SRA, NVT, Lo, 5799 DAG.getConstant(LoSize-1, TLI.getShiftAmountTy())); 5800 } else if (ExtType == ISD::ZEXTLOAD) { 5801 // The high part is just a zero. 5802 Hi = DAG.getConstant(0, NVT); 5803 } else /* if (ExtType == ISD::EXTLOAD) */ { 5804 // The high part is undefined. 5805 Hi = DAG.getNode(ISD::UNDEF, NVT); 5806 } 5807 } 5808 break; 5809 } 5810 case ISD::AND: 5811 case ISD::OR: 5812 case ISD::XOR: { // Simple logical operators -> two trivial pieces. 5813 SDOperand LL, LH, RL, RH; 5814 ExpandOp(Node->getOperand(0), LL, LH); 5815 ExpandOp(Node->getOperand(1), RL, RH); 5816 Lo = DAG.getNode(Node->getOpcode(), NVT, LL, RL); 5817 Hi = DAG.getNode(Node->getOpcode(), NVT, LH, RH); 5818 break; 5819 } 5820 case ISD::SELECT: { 5821 SDOperand LL, LH, RL, RH; 5822 ExpandOp(Node->getOperand(1), LL, LH); 5823 ExpandOp(Node->getOperand(2), RL, RH); 5824 if (getTypeAction(NVT) == Expand) 5825 NVT = TLI.getTypeToExpandTo(NVT); 5826 Lo = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), LL, RL); 5827 if (VT != MVT::f32) 5828 Hi = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), LH, RH); 5829 break; 5830 } 5831 case ISD::SELECT_CC: { 5832 SDOperand TL, TH, FL, FH; 5833 ExpandOp(Node->getOperand(2), TL, TH); 5834 ExpandOp(Node->getOperand(3), FL, FH); 5835 if (getTypeAction(NVT) == Expand) 5836 NVT = TLI.getTypeToExpandTo(NVT); 5837 Lo = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0), 5838 Node->getOperand(1), TL, FL, Node->getOperand(4)); 5839 if (VT != MVT::f32) 5840 Hi = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0), 5841 Node->getOperand(1), TH, FH, Node->getOperand(4)); 5842 break; 5843 } 5844 case ISD::ANY_EXTEND: 5845 // The low part is any extension of the input (which degenerates to a copy). 5846 Lo = DAG.getNode(ISD::ANY_EXTEND, NVT, Node->getOperand(0)); 5847 // The high part is undefined. 5848 Hi = DAG.getNode(ISD::UNDEF, NVT); 5849 break; 5850 case ISD::SIGN_EXTEND: { 5851 // The low part is just a sign extension of the input (which degenerates to 5852 // a copy). 5853 Lo = DAG.getNode(ISD::SIGN_EXTEND, NVT, Node->getOperand(0)); 5854 5855 // The high part is obtained by SRA'ing all but one of the bits of the lo 5856 // part. 5857 unsigned LoSize = MVT::getSizeInBits(Lo.getValueType()); 5858 Hi = DAG.getNode(ISD::SRA, NVT, Lo, 5859 DAG.getConstant(LoSize-1, TLI.getShiftAmountTy())); 5860 break; 5861 } 5862 case ISD::ZERO_EXTEND: 5863 // The low part is just a zero extension of the input (which degenerates to 5864 // a copy). 5865 Lo = DAG.getNode(ISD::ZERO_EXTEND, NVT, Node->getOperand(0)); 5866 5867 // The high part is just a zero. 5868 Hi = DAG.getConstant(0, NVT); 5869 break; 5870 5871 case ISD::TRUNCATE: { 5872 // The input value must be larger than this value. Expand *it*. 5873 SDOperand NewLo; 5874 ExpandOp(Node->getOperand(0), NewLo, Hi); 5875 5876 // The low part is now either the right size, or it is closer. If not the 5877 // right size, make an illegal truncate so we recursively expand it. 5878 if (NewLo.getValueType() != Node->getValueType(0)) 5879 NewLo = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), NewLo); 5880 ExpandOp(NewLo, Lo, Hi); 5881 break; 5882 } 5883 5884 case ISD::BIT_CONVERT: { 5885 SDOperand Tmp; 5886 if (TLI.getOperationAction(ISD::BIT_CONVERT, VT) == TargetLowering::Custom){ 5887 // If the target wants to, allow it to lower this itself. 5888 switch (getTypeAction(Node->getOperand(0).getValueType())) { 5889 case Expand: assert(0 && "cannot expand FP!"); 5890 case Legal: Tmp = LegalizeOp(Node->getOperand(0)); break; 5891 case Promote: Tmp = PromoteOp (Node->getOperand(0)); break; 5892 } 5893 Tmp = TLI.LowerOperation(DAG.getNode(ISD::BIT_CONVERT, VT, Tmp), DAG); 5894 } 5895 5896 // f32 / f64 must be expanded to i32 / i64. 5897 if (VT == MVT::f32 || VT == MVT::f64) { 5898 Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 5899 if (getTypeAction(NVT) == Expand) 5900 ExpandOp(Lo, Lo, Hi); 5901 break; 5902 } 5903 5904 // If source operand will be expanded to the same type as VT, i.e. 5905 // i64 <- f64, i32 <- f32, expand the source operand instead. 5906 MVT::ValueType VT0 = Node->getOperand(0).getValueType(); 5907 if (getTypeAction(VT0) == Expand && TLI.getTypeToTransformTo(VT0) == VT) { 5908 ExpandOp(Node->getOperand(0), Lo, Hi); 5909 break; 5910 } 5911 5912 // Turn this into a load/store pair by default. 5913 if (Tmp.Val == 0) 5914 Tmp = EmitStackConvert(Node->getOperand(0), VT, VT); 5915 5916 ExpandOp(Tmp, Lo, Hi); 5917 break; 5918 } 5919 5920 case ISD::READCYCLECOUNTER: { 5921 assert(TLI.getOperationAction(ISD::READCYCLECOUNTER, VT) == 5922 TargetLowering::Custom && 5923 "Must custom expand ReadCycleCounter"); 5924 SDOperand Tmp = TLI.LowerOperation(Op, DAG); 5925 assert(Tmp.Val && "Node must be custom expanded!"); 5926 ExpandOp(Tmp.getValue(0), Lo, Hi); 5927 AddLegalizedOperand(SDOperand(Node, 1), // Remember we legalized the chain. 5928 LegalizeOp(Tmp.getValue(1))); 5929 break; 5930 } 5931 5932 // These operators cannot be expanded directly, emit them as calls to 5933 // library functions. 5934 case ISD::FP_TO_SINT: { 5935 if (TLI.getOperationAction(ISD::FP_TO_SINT, VT) == TargetLowering::Custom) { 5936 SDOperand Op; 5937 switch (getTypeAction(Node->getOperand(0).getValueType())) { 5938 case Expand: assert(0 && "cannot expand FP!"); 5939 case Legal: Op = LegalizeOp(Node->getOperand(0)); break; 5940 case Promote: Op = PromoteOp (Node->getOperand(0)); break; 5941 } 5942 5943 Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_SINT, VT, Op), DAG); 5944 5945 // Now that the custom expander is done, expand the result, which is still 5946 // VT. 5947 if (Op.Val) { 5948 ExpandOp(Op, Lo, Hi); 5949 break; 5950 } 5951 } 5952 5953 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 5954 if (Node->getOperand(0).getValueType() == MVT::f32) 5955 LC = RTLIB::FPTOSINT_F32_I64; 5956 else if (Node->getOperand(0).getValueType() == MVT::f64) 5957 LC = RTLIB::FPTOSINT_F64_I64; 5958 else if (Node->getOperand(0).getValueType() == MVT::f80) 5959 LC = RTLIB::FPTOSINT_F80_I64; 5960 else if (Node->getOperand(0).getValueType() == MVT::ppcf128) 5961 LC = RTLIB::FPTOSINT_PPCF128_I64; 5962 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, 5963 false/*sign irrelevant*/, Hi); 5964 break; 5965 } 5966 5967 case ISD::FP_TO_UINT: { 5968 if (TLI.getOperationAction(ISD::FP_TO_UINT, VT) == TargetLowering::Custom) { 5969 SDOperand Op; 5970 switch (getTypeAction(Node->getOperand(0).getValueType())) { 5971 case Expand: assert(0 && "cannot expand FP!"); 5972 case Legal: Op = LegalizeOp(Node->getOperand(0)); break; 5973 case Promote: Op = PromoteOp (Node->getOperand(0)); break; 5974 } 5975 5976 Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_UINT, VT, Op), DAG); 5977 5978 // Now that the custom expander is done, expand the result. 5979 if (Op.Val) { 5980 ExpandOp(Op, Lo, Hi); 5981 break; 5982 } 5983 } 5984 5985 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 5986 if (Node->getOperand(0).getValueType() == MVT::f32) 5987 LC = RTLIB::FPTOUINT_F32_I64; 5988 else if (Node->getOperand(0).getValueType() == MVT::f64) 5989 LC = RTLIB::FPTOUINT_F64_I64; 5990 else if (Node->getOperand(0).getValueType() == MVT::f80) 5991 LC = RTLIB::FPTOUINT_F80_I64; 5992 else if (Node->getOperand(0).getValueType() == MVT::ppcf128) 5993 LC = RTLIB::FPTOUINT_PPCF128_I64; 5994 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, 5995 false/*sign irrelevant*/, Hi); 5996 break; 5997 } 5998 5999 case ISD::SHL: { 6000 // If the target wants custom lowering, do so. 6001 SDOperand ShiftAmt = LegalizeOp(Node->getOperand(1)); 6002 if (TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Custom) { 6003 SDOperand Op = DAG.getNode(ISD::SHL, VT, Node->getOperand(0), ShiftAmt); 6004 Op = TLI.LowerOperation(Op, DAG); 6005 if (Op.Val) { 6006 // Now that the custom expander is done, expand the result, which is 6007 // still VT. 6008 ExpandOp(Op, Lo, Hi); 6009 break; 6010 } 6011 } 6012 6013 // If ADDC/ADDE are supported and if the shift amount is a constant 1, emit 6014 // this X << 1 as X+X. 6015 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(ShiftAmt)) { 6016 if (ShAmt->getValue() == 1 && TLI.isOperationLegal(ISD::ADDC, NVT) && 6017 TLI.isOperationLegal(ISD::ADDE, NVT)) { 6018 SDOperand LoOps[2], HiOps[3]; 6019 ExpandOp(Node->getOperand(0), LoOps[0], HiOps[0]); 6020 SDVTList VTList = DAG.getVTList(LoOps[0].getValueType(), MVT::Flag); 6021 LoOps[1] = LoOps[0]; 6022 Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); 6023 6024 HiOps[1] = HiOps[0]; 6025 HiOps[2] = Lo.getValue(1); 6026 Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); 6027 break; 6028 } 6029 } 6030 6031 // If we can emit an efficient shift operation, do so now. 6032 if (ExpandShift(ISD::SHL, Node->getOperand(0), ShiftAmt, Lo, Hi)) 6033 break; 6034 6035 // If this target supports SHL_PARTS, use it. 6036 TargetLowering::LegalizeAction Action = 6037 TLI.getOperationAction(ISD::SHL_PARTS, NVT); 6038 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 6039 Action == TargetLowering::Custom) { 6040 ExpandShiftParts(ISD::SHL_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi); 6041 break; 6042 } 6043 6044 // Otherwise, emit a libcall. 6045 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SHL_I64), Node, 6046 false/*left shift=unsigned*/, Hi); 6047 break; 6048 } 6049 6050 case ISD::SRA: { 6051 // If the target wants custom lowering, do so. 6052 SDOperand ShiftAmt = LegalizeOp(Node->getOperand(1)); 6053 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Custom) { 6054 SDOperand Op = DAG.getNode(ISD::SRA, VT, Node->getOperand(0), ShiftAmt); 6055 Op = TLI.LowerOperation(Op, DAG); 6056 if (Op.Val) { 6057 // Now that the custom expander is done, expand the result, which is 6058 // still VT. 6059 ExpandOp(Op, Lo, Hi); 6060 break; 6061 } 6062 } 6063 6064 // If we can emit an efficient shift operation, do so now. 6065 if (ExpandShift(ISD::SRA, Node->getOperand(0), ShiftAmt, Lo, Hi)) 6066 break; 6067 6068 // If this target supports SRA_PARTS, use it. 6069 TargetLowering::LegalizeAction Action = 6070 TLI.getOperationAction(ISD::SRA_PARTS, NVT); 6071 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 6072 Action == TargetLowering::Custom) { 6073 ExpandShiftParts(ISD::SRA_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi); 6074 break; 6075 } 6076 6077 // Otherwise, emit a libcall. 6078 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SRA_I64), Node, 6079 true/*ashr is signed*/, Hi); 6080 break; 6081 } 6082 6083 case ISD::SRL: { 6084 // If the target wants custom lowering, do so. 6085 SDOperand ShiftAmt = LegalizeOp(Node->getOperand(1)); 6086 if (TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Custom) { 6087 SDOperand Op = DAG.getNode(ISD::SRL, VT, Node->getOperand(0), ShiftAmt); 6088 Op = TLI.LowerOperation(Op, DAG); 6089 if (Op.Val) { 6090 // Now that the custom expander is done, expand the result, which is 6091 // still VT. 6092 ExpandOp(Op, Lo, Hi); 6093 break; 6094 } 6095 } 6096 6097 // If we can emit an efficient shift operation, do so now. 6098 if (ExpandShift(ISD::SRL, Node->getOperand(0), ShiftAmt, Lo, Hi)) 6099 break; 6100 6101 // If this target supports SRL_PARTS, use it. 6102 TargetLowering::LegalizeAction Action = 6103 TLI.getOperationAction(ISD::SRL_PARTS, NVT); 6104 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 6105 Action == TargetLowering::Custom) { 6106 ExpandShiftParts(ISD::SRL_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi); 6107 break; 6108 } 6109 6110 // Otherwise, emit a libcall. 6111 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SRL_I64), Node, 6112 false/*lshr is unsigned*/, Hi); 6113 break; 6114 } 6115 6116 case ISD::ADD: 6117 case ISD::SUB: { 6118 // If the target wants to custom expand this, let them. 6119 if (TLI.getOperationAction(Node->getOpcode(), VT) == 6120 TargetLowering::Custom) { 6121 Op = TLI.LowerOperation(Op, DAG); 6122 if (Op.Val) { 6123 ExpandOp(Op, Lo, Hi); 6124 break; 6125 } 6126 } 6127 6128 // Expand the subcomponents. 6129 SDOperand LHSL, LHSH, RHSL, RHSH; 6130 ExpandOp(Node->getOperand(0), LHSL, LHSH); 6131 ExpandOp(Node->getOperand(1), RHSL, RHSH); 6132 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 6133 SDOperand LoOps[2], HiOps[3]; 6134 LoOps[0] = LHSL; 6135 LoOps[1] = RHSL; 6136 HiOps[0] = LHSH; 6137 HiOps[1] = RHSH; 6138 if (Node->getOpcode() == ISD::ADD) { 6139 Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); 6140 HiOps[2] = Lo.getValue(1); 6141 Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); 6142 } else { 6143 Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2); 6144 HiOps[2] = Lo.getValue(1); 6145 Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3); 6146 } 6147 break; 6148 } 6149 6150 case ISD::ADDC: 6151 case ISD::SUBC: { 6152 // Expand the subcomponents. 6153 SDOperand LHSL, LHSH, RHSL, RHSH; 6154 ExpandOp(Node->getOperand(0), LHSL, LHSH); 6155 ExpandOp(Node->getOperand(1), RHSL, RHSH); 6156 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 6157 SDOperand LoOps[2] = { LHSL, RHSL }; 6158 SDOperand HiOps[3] = { LHSH, RHSH }; 6159 6160 if (Node->getOpcode() == ISD::ADDC) { 6161 Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); 6162 HiOps[2] = Lo.getValue(1); 6163 Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); 6164 } else { 6165 Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2); 6166 HiOps[2] = Lo.getValue(1); 6167 Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3); 6168 } 6169 // Remember that we legalized the flag. 6170 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1))); 6171 break; 6172 } 6173 case ISD::ADDE: 6174 case ISD::SUBE: { 6175 // Expand the subcomponents. 6176 SDOperand LHSL, LHSH, RHSL, RHSH; 6177 ExpandOp(Node->getOperand(0), LHSL, LHSH); 6178 ExpandOp(Node->getOperand(1), RHSL, RHSH); 6179 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 6180 SDOperand LoOps[3] = { LHSL, RHSL, Node->getOperand(2) }; 6181 SDOperand HiOps[3] = { LHSH, RHSH }; 6182 6183 Lo = DAG.getNode(Node->getOpcode(), VTList, LoOps, 3); 6184 HiOps[2] = Lo.getValue(1); 6185 Hi = DAG.getNode(Node->getOpcode(), VTList, HiOps, 3); 6186 6187 // Remember that we legalized the flag. 6188 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1))); 6189 break; 6190 } 6191 case ISD::MUL: { 6192 // If the target wants to custom expand this, let them. 6193 if (TLI.getOperationAction(ISD::MUL, VT) == TargetLowering::Custom) { 6194 SDOperand New = TLI.LowerOperation(Op, DAG); 6195 if (New.Val) { 6196 ExpandOp(New, Lo, Hi); 6197 break; 6198 } 6199 } 6200 6201 bool HasMULHS = TLI.isOperationLegal(ISD::MULHS, NVT); 6202 bool HasMULHU = TLI.isOperationLegal(ISD::MULHU, NVT); 6203 bool HasSMUL_LOHI = TLI.isOperationLegal(ISD::SMUL_LOHI, NVT); 6204 bool HasUMUL_LOHI = TLI.isOperationLegal(ISD::UMUL_LOHI, NVT); 6205 if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) { 6206 SDOperand LL, LH, RL, RH; 6207 ExpandOp(Node->getOperand(0), LL, LH); 6208 ExpandOp(Node->getOperand(1), RL, RH); 6209 unsigned BitSize = MVT::getSizeInBits(RH.getValueType()); 6210 unsigned LHSSB = DAG.ComputeNumSignBits(Op.getOperand(0)); 6211 unsigned RHSSB = DAG.ComputeNumSignBits(Op.getOperand(1)); 6212 // FIXME: generalize this to handle other bit sizes 6213 if (LHSSB == 32 && RHSSB == 32 && 6214 DAG.MaskedValueIsZero(Op.getOperand(0), 0xFFFFFFFF00000000ULL) && 6215 DAG.MaskedValueIsZero(Op.getOperand(1), 0xFFFFFFFF00000000ULL)) { 6216 // The inputs are both zero-extended. 6217 if (HasUMUL_LOHI) { 6218 // We can emit a umul_lohi. 6219 Lo = DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL); 6220 Hi = SDOperand(Lo.Val, 1); 6221 break; 6222 } 6223 if (HasMULHU) { 6224 // We can emit a mulhu+mul. 6225 Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); 6226 Hi = DAG.getNode(ISD::MULHU, NVT, LL, RL); 6227 break; 6228 } 6229 } 6230 if (LHSSB > BitSize && RHSSB > BitSize) { 6231 // The input values are both sign-extended. 6232 if (HasSMUL_LOHI) { 6233 // We can emit a smul_lohi. 6234 Lo = DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL); 6235 Hi = SDOperand(Lo.Val, 1); 6236 break; 6237 } 6238 if (HasMULHS) { 6239 // We can emit a mulhs+mul. 6240 Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); 6241 Hi = DAG.getNode(ISD::MULHS, NVT, LL, RL); 6242 break; 6243 } 6244 } 6245 if (HasUMUL_LOHI) { 6246 // Lo,Hi = umul LHS, RHS. 6247 SDOperand UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, 6248 DAG.getVTList(NVT, NVT), LL, RL); 6249 Lo = UMulLOHI; 6250 Hi = UMulLOHI.getValue(1); 6251 RH = DAG.getNode(ISD::MUL, NVT, LL, RH); 6252 LH = DAG.getNode(ISD::MUL, NVT, LH, RL); 6253 Hi = DAG.getNode(ISD::ADD, NVT, Hi, RH); 6254 Hi = DAG.getNode(ISD::ADD, NVT, Hi, LH); 6255 break; 6256 } 6257 if (HasMULHU) { 6258 Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); 6259 Hi = DAG.getNode(ISD::MULHU, NVT, LL, RL); 6260 RH = DAG.getNode(ISD::MUL, NVT, LL, RH); 6261 LH = DAG.getNode(ISD::MUL, NVT, LH, RL); 6262 Hi = DAG.getNode(ISD::ADD, NVT, Hi, RH); 6263 Hi = DAG.getNode(ISD::ADD, NVT, Hi, LH); 6264 break; 6265 } 6266 } 6267 6268 // If nothing else, we can make a libcall. 6269 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::MUL_I64), Node, 6270 false/*sign irrelevant*/, Hi); 6271 break; 6272 } 6273 case ISD::SDIV: 6274 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SDIV_I64), Node, true, Hi); 6275 break; 6276 case ISD::UDIV: 6277 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::UDIV_I64), Node, true, Hi); 6278 break; 6279 case ISD::SREM: 6280 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SREM_I64), Node, true, Hi); 6281 break; 6282 case ISD::UREM: 6283 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::UREM_I64), Node, true, Hi); 6284 break; 6285 6286 case ISD::FADD: 6287 Lo = ExpandLibCall(TLI.getLibcallName(GetFPLibCall(VT, RTLIB::ADD_F32, 6288 RTLIB::ADD_F64, 6289 RTLIB::ADD_F80, 6290 RTLIB::ADD_PPCF128)), 6291 Node, false, Hi); 6292 break; 6293 case ISD::FSUB: 6294 Lo = ExpandLibCall(TLI.getLibcallName(GetFPLibCall(VT, RTLIB::SUB_F32, 6295 RTLIB::SUB_F64, 6296 RTLIB::SUB_F80, 6297 RTLIB::SUB_PPCF128)), 6298 Node, false, Hi); 6299 break; 6300 case ISD::FMUL: 6301 Lo = ExpandLibCall(TLI.getLibcallName(GetFPLibCall(VT, RTLIB::MUL_F32, 6302 RTLIB::MUL_F64, 6303 RTLIB::MUL_F80, 6304 RTLIB::MUL_PPCF128)), 6305 Node, false, Hi); 6306 break; 6307 case ISD::FDIV: 6308 Lo = ExpandLibCall(TLI.getLibcallName(GetFPLibCall(VT, RTLIB::DIV_F32, 6309 RTLIB::DIV_F64, 6310 RTLIB::DIV_F80, 6311 RTLIB::DIV_PPCF128)), 6312 Node, false, Hi); 6313 break; 6314 case ISD::FP_EXTEND: 6315 if (VT == MVT::ppcf128) { 6316 assert(Node->getOperand(0).getValueType()==MVT::f32 || 6317 Node->getOperand(0).getValueType()==MVT::f64); 6318 const uint64_t zero = 0; 6319 if (Node->getOperand(0).getValueType()==MVT::f32) 6320 Hi = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Node->getOperand(0)); 6321 else 6322 Hi = Node->getOperand(0); 6323 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); 6324 break; 6325 } 6326 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::FPEXT_F32_F64), Node, true,Hi); 6327 break; 6328 case ISD::FP_ROUND: 6329 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::FPROUND_F64_F32),Node,true,Hi); 6330 break; 6331 case ISD::FPOWI: 6332 Lo = ExpandLibCall(TLI.getLibcallName(GetFPLibCall(VT, RTLIB::POWI_F32, 6333 RTLIB::POWI_F64, 6334 RTLIB::POWI_F80, 6335 RTLIB::POWI_PPCF128)), 6336 Node, false, Hi); 6337 break; 6338 case ISD::FSQRT: 6339 case ISD::FSIN: 6340 case ISD::FCOS: { 6341 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 6342 switch(Node->getOpcode()) { 6343 case ISD::FSQRT: 6344 LC = GetFPLibCall(VT, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 6345 RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128); 6346 break; 6347 case ISD::FSIN: 6348 LC = GetFPLibCall(VT, RTLIB::SIN_F32, RTLIB::SIN_F64, 6349 RTLIB::SIN_F80, RTLIB::SIN_PPCF128); 6350 break; 6351 case ISD::FCOS: 6352 LC = GetFPLibCall(VT, RTLIB::COS_F32, RTLIB::COS_F64, 6353 RTLIB::COS_F80, RTLIB::COS_PPCF128); 6354 break; 6355 default: assert(0 && "Unreachable!"); 6356 } 6357 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, false, Hi); 6358 break; 6359 } 6360 case ISD::FABS: { 6361 if (VT == MVT::ppcf128) { 6362 SDOperand Tmp; 6363 ExpandOp(Node->getOperand(0), Lo, Tmp); 6364 Hi = DAG.getNode(ISD::FABS, NVT, Tmp); 6365 // lo = hi==fabs(hi) ? lo : -lo; 6366 Lo = DAG.getNode(ISD::SELECT_CC, NVT, Hi, Tmp, 6367 Lo, DAG.getNode(ISD::FNEG, NVT, Lo), 6368 DAG.getCondCode(ISD::SETEQ)); 6369 break; 6370 } 6371 SDOperand Mask = (VT == MVT::f64) 6372 ? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT) 6373 : DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT); 6374 Mask = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask); 6375 Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 6376 Lo = DAG.getNode(ISD::AND, NVT, Lo, Mask); 6377 if (getTypeAction(NVT) == Expand) 6378 ExpandOp(Lo, Lo, Hi); 6379 break; 6380 } 6381 case ISD::FNEG: { 6382 if (VT == MVT::ppcf128) { 6383 ExpandOp(Node->getOperand(0), Lo, Hi); 6384 Lo = DAG.getNode(ISD::FNEG, MVT::f64, Lo); 6385 Hi = DAG.getNode(ISD::FNEG, MVT::f64, Hi); 6386 break; 6387 } 6388 SDOperand Mask = (VT == MVT::f64) 6389 ? DAG.getConstantFP(BitsToDouble(1ULL << 63), VT) 6390 : DAG.getConstantFP(BitsToFloat(1U << 31), VT); 6391 Mask = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask); 6392 Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 6393 Lo = DAG.getNode(ISD::XOR, NVT, Lo, Mask); 6394 if (getTypeAction(NVT) == Expand) 6395 ExpandOp(Lo, Lo, Hi); 6396 break; 6397 } 6398 case ISD::FCOPYSIGN: { 6399 Lo = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI); 6400 if (getTypeAction(NVT) == Expand) 6401 ExpandOp(Lo, Lo, Hi); 6402 break; 6403 } 6404 case ISD::SINT_TO_FP: 6405 case ISD::UINT_TO_FP: { 6406 bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP; 6407 MVT::ValueType SrcVT = Node->getOperand(0).getValueType(); 6408 if (VT == MVT::ppcf128 && SrcVT != MVT::i64) { 6409 static uint64_t zero = 0; 6410 if (isSigned) { 6411 Hi = LegalizeOp(DAG.getNode(ISD::SINT_TO_FP, MVT::f64, 6412 Node->getOperand(0))); 6413 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); 6414 } else { 6415 static uint64_t TwoE32[] = { 0x41f0000000000000LL, 0 }; 6416 Hi = LegalizeOp(DAG.getNode(ISD::SINT_TO_FP, MVT::f64, 6417 Node->getOperand(0))); 6418 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); 6419 Hi = DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi); 6420 // X>=0 ? {(f64)x, 0} : {(f64)x, 0} + 2^32 6421 ExpandOp(DAG.getNode(ISD::SELECT_CC, MVT::ppcf128, Node->getOperand(0), 6422 DAG.getConstant(0, MVT::i32), 6423 DAG.getNode(ISD::FADD, MVT::ppcf128, Hi, 6424 DAG.getConstantFP( 6425 APFloat(APInt(128, 2, TwoE32)), 6426 MVT::ppcf128)), 6427 Hi, 6428 DAG.getCondCode(ISD::SETLT)), 6429 Lo, Hi); 6430 } 6431 break; 6432 } 6433 if (VT == MVT::ppcf128 && SrcVT == MVT::i64 && !isSigned) { 6434 // si64->ppcf128 done by libcall, below 6435 static uint64_t TwoE64[] = { 0x43f0000000000000LL, 0 }; 6436 ExpandOp(DAG.getNode(ISD::SINT_TO_FP, MVT::ppcf128, Node->getOperand(0)), 6437 Lo, Hi); 6438 Hi = DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi); 6439 // x>=0 ? (ppcf128)(i64)x : (ppcf128)(i64)x + 2^64 6440 ExpandOp(DAG.getNode(ISD::SELECT_CC, MVT::ppcf128, Node->getOperand(0), 6441 DAG.getConstant(0, MVT::i64), 6442 DAG.getNode(ISD::FADD, MVT::ppcf128, Hi, 6443 DAG.getConstantFP( 6444 APFloat(APInt(128, 2, TwoE64)), 6445 MVT::ppcf128)), 6446 Hi, 6447 DAG.getCondCode(ISD::SETLT)), 6448 Lo, Hi); 6449 break; 6450 } 6451 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 6452 if (Node->getOperand(0).getValueType() == MVT::i64) { 6453 if (VT == MVT::f32) 6454 LC = isSigned ? RTLIB::SINTTOFP_I64_F32 : RTLIB::UINTTOFP_I64_F32; 6455 else if (VT == MVT::f64) 6456 LC = isSigned ? RTLIB::SINTTOFP_I64_F64 : RTLIB::UINTTOFP_I64_F64; 6457 else if (VT == MVT::f80) { 6458 assert(isSigned); 6459 LC = RTLIB::SINTTOFP_I64_F80; 6460 } 6461 else if (VT == MVT::ppcf128) { 6462 assert(isSigned); 6463 LC = RTLIB::SINTTOFP_I64_PPCF128; 6464 } 6465 } else { 6466 if (VT == MVT::f32) 6467 LC = isSigned ? RTLIB::SINTTOFP_I32_F32 : RTLIB::UINTTOFP_I32_F32; 6468 else 6469 LC = isSigned ? RTLIB::SINTTOFP_I32_F64 : RTLIB::UINTTOFP_I32_F64; 6470 } 6471 6472 // Promote the operand if needed. 6473 if (getTypeAction(SrcVT) == Promote) { 6474 SDOperand Tmp = PromoteOp(Node->getOperand(0)); 6475 Tmp = isSigned 6476 ? DAG.getNode(ISD::SIGN_EXTEND_INREG, Tmp.getValueType(), Tmp, 6477 DAG.getValueType(SrcVT)) 6478 : DAG.getZeroExtendInReg(Tmp, SrcVT); 6479 Node = DAG.UpdateNodeOperands(Op, Tmp).Val; 6480 } 6481 6482 const char *LibCall = TLI.getLibcallName(LC); 6483 if (LibCall) 6484 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, isSigned, Hi); 6485 else { 6486 Lo = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, VT, 6487 Node->getOperand(0)); 6488 if (getTypeAction(Lo.getValueType()) == Expand) 6489 ExpandOp(Lo, Lo, Hi); 6490 } 6491 break; 6492 } 6493 } 6494 6495 // Make sure the resultant values have been legalized themselves, unless this 6496 // is a type that requires multi-step expansion. 6497 if (getTypeAction(NVT) != Expand && NVT != MVT::isVoid) { 6498 Lo = LegalizeOp(Lo); 6499 if (Hi.Val) 6500 // Don't legalize the high part if it is expanded to a single node. 6501 Hi = LegalizeOp(Hi); 6502 } 6503 6504 // Remember in a map if the values will be reused later. 6505 bool isNew = ExpandedNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi))); 6506 assert(isNew && "Value already expanded?!?"); 6507} 6508 6509/// SplitVectorOp - Given an operand of vector type, break it down into 6510/// two smaller values, still of vector type. 6511void SelectionDAGLegalize::SplitVectorOp(SDOperand Op, SDOperand &Lo, 6512 SDOperand &Hi) { 6513 assert(MVT::isVector(Op.getValueType()) && "Cannot split non-vector type!"); 6514 SDNode *Node = Op.Val; 6515 unsigned NumElements = MVT::getVectorNumElements(Op.getValueType()); 6516 assert(NumElements > 1 && "Cannot split a single element vector!"); 6517 6518 MVT::ValueType NewEltVT = MVT::getVectorElementType(Op.getValueType()); 6519 6520 unsigned NewNumElts_Lo = 1 << Log2_32(NumElements-1); 6521 unsigned NewNumElts_Hi = NumElements - NewNumElts_Lo; 6522 6523 MVT::ValueType NewVT_Lo = MVT::getVectorType(NewEltVT, NewNumElts_Lo); 6524 MVT::ValueType NewVT_Hi = MVT::getVectorType(NewEltVT, NewNumElts_Hi); 6525 6526 // See if we already split it. 6527 std::map<SDOperand, std::pair<SDOperand, SDOperand> >::iterator I 6528 = SplitNodes.find(Op); 6529 if (I != SplitNodes.end()) { 6530 Lo = I->second.first; 6531 Hi = I->second.second; 6532 return; 6533 } 6534 6535 switch (Node->getOpcode()) { 6536 default: 6537#ifndef NDEBUG 6538 Node->dump(&DAG); 6539#endif 6540 assert(0 && "Unhandled operation in SplitVectorOp!"); 6541 case ISD::UNDEF: 6542 Lo = DAG.getNode(ISD::UNDEF, NewVT_Lo); 6543 Hi = DAG.getNode(ISD::UNDEF, NewVT_Hi); 6544 break; 6545 case ISD::BUILD_PAIR: 6546 Lo = Node->getOperand(0); 6547 Hi = Node->getOperand(1); 6548 break; 6549 case ISD::INSERT_VECTOR_ELT: { 6550 SplitVectorOp(Node->getOperand(0), Lo, Hi); 6551 unsigned Index = cast<ConstantSDNode>(Node->getOperand(2))->getValue(); 6552 SDOperand ScalarOp = Node->getOperand(1); 6553 if (Index < NewNumElts_Lo) 6554 Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, NewVT_Lo, Lo, ScalarOp, 6555 DAG.getConstant(Index, TLI.getPointerTy())); 6556 else 6557 Hi = DAG.getNode(ISD::INSERT_VECTOR_ELT, NewVT_Hi, Hi, ScalarOp, 6558 DAG.getConstant(Index - NewNumElts_Lo, 6559 TLI.getPointerTy())); 6560 break; 6561 } 6562 case ISD::VECTOR_SHUFFLE: { 6563 // Build the low part. 6564 SDOperand Mask = Node->getOperand(2); 6565 SmallVector<SDOperand, 8> Ops; 6566 MVT::ValueType PtrVT = TLI.getPointerTy(); 6567 6568 // Insert all of the elements from the input that are needed. We use 6569 // buildvector of extractelement here because the input vectors will have 6570 // to be legalized, so this makes the code simpler. 6571 for (unsigned i = 0; i != NewNumElts_Lo; ++i) { 6572 unsigned Idx = cast<ConstantSDNode>(Mask.getOperand(i))->getValue(); 6573 SDOperand InVec = Node->getOperand(0); 6574 if (Idx >= NumElements) { 6575 InVec = Node->getOperand(1); 6576 Idx -= NumElements; 6577 } 6578 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, NewEltVT, InVec, 6579 DAG.getConstant(Idx, PtrVT))); 6580 } 6581 Lo = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Lo, &Ops[0], Ops.size()); 6582 Ops.clear(); 6583 6584 for (unsigned i = NewNumElts_Lo; i != NumElements; ++i) { 6585 unsigned Idx = cast<ConstantSDNode>(Mask.getOperand(i))->getValue(); 6586 SDOperand InVec = Node->getOperand(0); 6587 if (Idx >= NumElements) { 6588 InVec = Node->getOperand(1); 6589 Idx -= NumElements; 6590 } 6591 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, NewEltVT, InVec, 6592 DAG.getConstant(Idx, PtrVT))); 6593 } 6594 Hi = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Lo, &Ops[0], Ops.size()); 6595 break; 6596 } 6597 case ISD::BUILD_VECTOR: { 6598 SmallVector<SDOperand, 8> LoOps(Node->op_begin(), 6599 Node->op_begin()+NewNumElts_Lo); 6600 Lo = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Lo, &LoOps[0], LoOps.size()); 6601 6602 SmallVector<SDOperand, 8> HiOps(Node->op_begin()+NewNumElts_Lo, 6603 Node->op_end()); 6604 Hi = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Hi, &HiOps[0], HiOps.size()); 6605 break; 6606 } 6607 case ISD::CONCAT_VECTORS: { 6608 // FIXME: Handle non-power-of-two vectors? 6609 unsigned NewNumSubvectors = Node->getNumOperands() / 2; 6610 if (NewNumSubvectors == 1) { 6611 Lo = Node->getOperand(0); 6612 Hi = Node->getOperand(1); 6613 } else { 6614 SmallVector<SDOperand, 8> LoOps(Node->op_begin(), 6615 Node->op_begin()+NewNumSubvectors); 6616 Lo = DAG.getNode(ISD::CONCAT_VECTORS, NewVT_Lo, &LoOps[0], LoOps.size()); 6617 6618 SmallVector<SDOperand, 8> HiOps(Node->op_begin()+NewNumSubvectors, 6619 Node->op_end()); 6620 Hi = DAG.getNode(ISD::CONCAT_VECTORS, NewVT_Hi, &HiOps[0], HiOps.size()); 6621 } 6622 break; 6623 } 6624 case ISD::SELECT: { 6625 SDOperand Cond = Node->getOperand(0); 6626 6627 SDOperand LL, LH, RL, RH; 6628 SplitVectorOp(Node->getOperand(1), LL, LH); 6629 SplitVectorOp(Node->getOperand(2), RL, RH); 6630 6631 if (MVT::isVector(Cond.getValueType())) { 6632 // Handle a vector merge. 6633 SDOperand CL, CH; 6634 SplitVectorOp(Cond, CL, CH); 6635 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, CL, LL, RL); 6636 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, CH, LH, RH); 6637 } else { 6638 // Handle a simple select with vector operands. 6639 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, Cond, LL, RL); 6640 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, Cond, LH, RH); 6641 } 6642 break; 6643 } 6644 case ISD::ADD: 6645 case ISD::SUB: 6646 case ISD::MUL: 6647 case ISD::FADD: 6648 case ISD::FSUB: 6649 case ISD::FMUL: 6650 case ISD::SDIV: 6651 case ISD::UDIV: 6652 case ISD::FDIV: 6653 case ISD::FPOW: 6654 case ISD::AND: 6655 case ISD::OR: 6656 case ISD::XOR: 6657 case ISD::UREM: 6658 case ISD::SREM: 6659 case ISD::FREM: { 6660 SDOperand LL, LH, RL, RH; 6661 SplitVectorOp(Node->getOperand(0), LL, LH); 6662 SplitVectorOp(Node->getOperand(1), RL, RH); 6663 6664 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, LL, RL); 6665 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, LH, RH); 6666 break; 6667 } 6668 case ISD::FPOWI: { 6669 SDOperand L, H; 6670 SplitVectorOp(Node->getOperand(0), L, H); 6671 6672 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, L, Node->getOperand(1)); 6673 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, H, Node->getOperand(1)); 6674 break; 6675 } 6676 case ISD::CTTZ: 6677 case ISD::CTLZ: 6678 case ISD::CTPOP: 6679 case ISD::FNEG: 6680 case ISD::FABS: 6681 case ISD::FSQRT: 6682 case ISD::FSIN: 6683 case ISD::FCOS: 6684 case ISD::FP_TO_SINT: 6685 case ISD::FP_TO_UINT: 6686 case ISD::SINT_TO_FP: 6687 case ISD::UINT_TO_FP: { 6688 SDOperand L, H; 6689 SplitVectorOp(Node->getOperand(0), L, H); 6690 6691 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, L); 6692 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, H); 6693 break; 6694 } 6695 case ISD::LOAD: { 6696 LoadSDNode *LD = cast<LoadSDNode>(Node); 6697 SDOperand Ch = LD->getChain(); 6698 SDOperand Ptr = LD->getBasePtr(); 6699 const Value *SV = LD->getSrcValue(); 6700 int SVOffset = LD->getSrcValueOffset(); 6701 unsigned Alignment = LD->getAlignment(); 6702 bool isVolatile = LD->isVolatile(); 6703 6704 Lo = DAG.getLoad(NewVT_Lo, Ch, Ptr, SV, SVOffset, isVolatile, Alignment); 6705 unsigned IncrementSize = NewNumElts_Lo * MVT::getSizeInBits(NewEltVT)/8; 6706 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 6707 DAG.getIntPtrConstant(IncrementSize)); 6708 SVOffset += IncrementSize; 6709 Alignment = MinAlign(Alignment, IncrementSize); 6710 Hi = DAG.getLoad(NewVT_Hi, Ch, Ptr, SV, SVOffset, isVolatile, Alignment); 6711 6712 // Build a factor node to remember that this load is independent of the 6713 // other one. 6714 SDOperand TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 6715 Hi.getValue(1)); 6716 6717 // Remember that we legalized the chain. 6718 AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF)); 6719 break; 6720 } 6721 case ISD::BIT_CONVERT: { 6722 // We know the result is a vector. The input may be either a vector or a 6723 // scalar value. 6724 SDOperand InOp = Node->getOperand(0); 6725 if (!MVT::isVector(InOp.getValueType()) || 6726 MVT::getVectorNumElements(InOp.getValueType()) == 1) { 6727 // The input is a scalar or single-element vector. 6728 // Lower to a store/load so that it can be split. 6729 // FIXME: this could be improved probably. 6730 SDOperand Ptr = DAG.CreateStackTemporary(InOp.getValueType()); 6731 6732 SDOperand St = DAG.getStore(DAG.getEntryNode(), 6733 InOp, Ptr, NULL, 0); 6734 InOp = DAG.getLoad(Op.getValueType(), St, Ptr, NULL, 0); 6735 } 6736 // Split the vector and convert each of the pieces now. 6737 SplitVectorOp(InOp, Lo, Hi); 6738 Lo = DAG.getNode(ISD::BIT_CONVERT, NewVT_Lo, Lo); 6739 Hi = DAG.getNode(ISD::BIT_CONVERT, NewVT_Hi, Hi); 6740 break; 6741 } 6742 } 6743 6744 // Remember in a map if the values will be reused later. 6745 bool isNew = 6746 SplitNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi))).second; 6747 assert(isNew && "Value already split?!?"); 6748} 6749 6750 6751/// ScalarizeVectorOp - Given an operand of single-element vector type 6752/// (e.g. v1f32), convert it into the equivalent operation that returns a 6753/// scalar (e.g. f32) value. 6754SDOperand SelectionDAGLegalize::ScalarizeVectorOp(SDOperand Op) { 6755 assert(MVT::isVector(Op.getValueType()) && 6756 "Bad ScalarizeVectorOp invocation!"); 6757 SDNode *Node = Op.Val; 6758 MVT::ValueType NewVT = MVT::getVectorElementType(Op.getValueType()); 6759 assert(MVT::getVectorNumElements(Op.getValueType()) == 1); 6760 6761 // See if we already scalarized it. 6762 std::map<SDOperand, SDOperand>::iterator I = ScalarizedNodes.find(Op); 6763 if (I != ScalarizedNodes.end()) return I->second; 6764 6765 SDOperand Result; 6766 switch (Node->getOpcode()) { 6767 default: 6768#ifndef NDEBUG 6769 Node->dump(&DAG); cerr << "\n"; 6770#endif 6771 assert(0 && "Unknown vector operation in ScalarizeVectorOp!"); 6772 case ISD::ADD: 6773 case ISD::FADD: 6774 case ISD::SUB: 6775 case ISD::FSUB: 6776 case ISD::MUL: 6777 case ISD::FMUL: 6778 case ISD::SDIV: 6779 case ISD::UDIV: 6780 case ISD::FDIV: 6781 case ISD::SREM: 6782 case ISD::UREM: 6783 case ISD::FREM: 6784 case ISD::FPOW: 6785 case ISD::AND: 6786 case ISD::OR: 6787 case ISD::XOR: 6788 Result = DAG.getNode(Node->getOpcode(), 6789 NewVT, 6790 ScalarizeVectorOp(Node->getOperand(0)), 6791 ScalarizeVectorOp(Node->getOperand(1))); 6792 break; 6793 case ISD::FNEG: 6794 case ISD::FABS: 6795 case ISD::FSQRT: 6796 case ISD::FSIN: 6797 case ISD::FCOS: 6798 Result = DAG.getNode(Node->getOpcode(), 6799 NewVT, 6800 ScalarizeVectorOp(Node->getOperand(0))); 6801 break; 6802 case ISD::FPOWI: 6803 Result = DAG.getNode(Node->getOpcode(), 6804 NewVT, 6805 ScalarizeVectorOp(Node->getOperand(0)), 6806 Node->getOperand(1)); 6807 break; 6808 case ISD::LOAD: { 6809 LoadSDNode *LD = cast<LoadSDNode>(Node); 6810 SDOperand Ch = LegalizeOp(LD->getChain()); // Legalize the chain. 6811 SDOperand Ptr = LegalizeOp(LD->getBasePtr()); // Legalize the pointer. 6812 6813 const Value *SV = LD->getSrcValue(); 6814 int SVOffset = LD->getSrcValueOffset(); 6815 Result = DAG.getLoad(NewVT, Ch, Ptr, SV, SVOffset, 6816 LD->isVolatile(), LD->getAlignment()); 6817 6818 // Remember that we legalized the chain. 6819 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 6820 break; 6821 } 6822 case ISD::BUILD_VECTOR: 6823 Result = Node->getOperand(0); 6824 break; 6825 case ISD::INSERT_VECTOR_ELT: 6826 // Returning the inserted scalar element. 6827 Result = Node->getOperand(1); 6828 break; 6829 case ISD::CONCAT_VECTORS: 6830 assert(Node->getOperand(0).getValueType() == NewVT && 6831 "Concat of non-legal vectors not yet supported!"); 6832 Result = Node->getOperand(0); 6833 break; 6834 case ISD::VECTOR_SHUFFLE: { 6835 // Figure out if the scalar is the LHS or RHS and return it. 6836 SDOperand EltNum = Node->getOperand(2).getOperand(0); 6837 if (cast<ConstantSDNode>(EltNum)->getValue()) 6838 Result = ScalarizeVectorOp(Node->getOperand(1)); 6839 else 6840 Result = ScalarizeVectorOp(Node->getOperand(0)); 6841 break; 6842 } 6843 case ISD::EXTRACT_SUBVECTOR: 6844 Result = Node->getOperand(0); 6845 assert(Result.getValueType() == NewVT); 6846 break; 6847 case ISD::BIT_CONVERT: 6848 Result = DAG.getNode(ISD::BIT_CONVERT, NewVT, Op.getOperand(0)); 6849 break; 6850 case ISD::SELECT: 6851 Result = DAG.getNode(ISD::SELECT, NewVT, Op.getOperand(0), 6852 ScalarizeVectorOp(Op.getOperand(1)), 6853 ScalarizeVectorOp(Op.getOperand(2))); 6854 break; 6855 } 6856 6857 if (TLI.isTypeLegal(NewVT)) 6858 Result = LegalizeOp(Result); 6859 bool isNew = ScalarizedNodes.insert(std::make_pair(Op, Result)).second; 6860 assert(isNew && "Value already scalarized?"); 6861 return Result; 6862} 6863 6864 6865// SelectionDAG::Legalize - This is the entry point for the file. 6866// 6867void SelectionDAG::Legalize() { 6868 if (ViewLegalizeDAGs) viewGraph(); 6869 6870 /// run - This is the main entry point to this class. 6871 /// 6872 SelectionDAGLegalize(*this).LegalizeDAG(); 6873} 6874 6875