LegalizeDAG.cpp revision c2b2e1333d66e37c657e25fc09dc79e4ea1d79d9
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the SelectionDAG::Legalize method. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/Analysis/DebugInfo.h" 15#include "llvm/CodeGen/Analysis.h" 16#include "llvm/CodeGen/MachineFunction.h" 17#include "llvm/CodeGen/MachineJumpTableInfo.h" 18#include "llvm/CodeGen/SelectionDAG.h" 19#include "llvm/Target/TargetFrameLowering.h" 20#include "llvm/Target/TargetLowering.h" 21#include "llvm/Target/TargetData.h" 22#include "llvm/Target/TargetMachine.h" 23#include "llvm/CallingConv.h" 24#include "llvm/Constants.h" 25#include "llvm/DerivedTypes.h" 26#include "llvm/LLVMContext.h" 27#include "llvm/Support/Debug.h" 28#include "llvm/Support/ErrorHandling.h" 29#include "llvm/Support/MathExtras.h" 30#include "llvm/Support/raw_ostream.h" 31#include "llvm/ADT/DenseMap.h" 32#include "llvm/ADT/SmallVector.h" 33#include "llvm/ADT/SmallPtrSet.h" 34using namespace llvm; 35 36//===----------------------------------------------------------------------===// 37/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and 38/// hacks on it until the target machine can handle it. This involves 39/// eliminating value sizes the machine cannot handle (promoting small sizes to 40/// large sizes or splitting up large values into small values) as well as 41/// eliminating operations the machine cannot handle. 42/// 43/// This code also does a small amount of optimization and recognition of idioms 44/// as part of its processing. For example, if a target does not support a 45/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 46/// will attempt merge setcc and brc instructions into brcc's. 47/// 48namespace { 49class SelectionDAGLegalize { 50 const TargetMachine &TM; 51 const TargetLowering &TLI; 52 SelectionDAG &DAG; 53 54 // Libcall insertion helpers. 55 56 /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been 57 /// legalized. We use this to ensure that calls are properly serialized 58 /// against each other, including inserted libcalls. 59 SDValue LastCALLSEQ_END; 60 61 /// IsLegalizingCall - This member is used *only* for purposes of providing 62 /// helpful assertions that a libcall isn't created while another call is 63 /// being legalized (which could lead to non-serialized call sequences). 64 bool IsLegalizingCall; 65 66 /// LegalizedNodes - For nodes that are of legal width, and that have more 67 /// than one use, this map indicates what regularized operand to use. This 68 /// allows us to avoid legalizing the same thing more than once. 69 DenseMap<SDValue, SDValue> LegalizedNodes; 70 71 void AddLegalizedOperand(SDValue From, SDValue To) { 72 LegalizedNodes.insert(std::make_pair(From, To)); 73 // If someone requests legalization of the new node, return itself. 74 if (From != To) 75 LegalizedNodes.insert(std::make_pair(To, To)); 76 77 // Transfer SDDbgValues. 78 DAG.TransferDbgValues(From, To); 79 } 80 81public: 82 explicit SelectionDAGLegalize(SelectionDAG &DAG); 83 84 void LegalizeDAG(); 85 86private: 87 /// LegalizeOp - Return a legal replacement for the given operation, with 88 /// all legal operands. 89 SDValue LegalizeOp(SDValue O); 90 91 SDValue OptimizeFloatStore(StoreSDNode *ST); 92 93 /// PerformInsertVectorEltInMemory - Some target cannot handle a variable 94 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 95 /// is necessary to spill the vector being inserted into to memory, perform 96 /// the insert there, and then read the result back. 97 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, 98 SDValue Idx, DebugLoc dl); 99 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 100 SDValue Idx, DebugLoc dl); 101 102 /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which 103 /// performs the same shuffe in terms of order or result bytes, but on a type 104 /// whose vector element type is narrower than the original shuffle type. 105 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 106 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl, 107 SDValue N1, SDValue N2, 108 SmallVectorImpl<int> &Mask) const; 109 110 bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, 111 SmallPtrSet<SDNode*, 32> &NodesLeadingTo); 112 113 void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, 114 DebugLoc dl); 115 116 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 117 SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops, 118 unsigned NumOps, bool isSigned, DebugLoc dl); 119 120 std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC, 121 SDNode *Node, bool isSigned); 122 SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 123 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 124 RTLIB::Libcall Call_PPCF128); 125 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, 126 RTLIB::Libcall Call_I8, 127 RTLIB::Libcall Call_I16, 128 RTLIB::Libcall Call_I32, 129 RTLIB::Libcall Call_I64, 130 RTLIB::Libcall Call_I128); 131 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 132 133 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl); 134 SDValue ExpandBUILD_VECTOR(SDNode *Node); 135 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 136 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 137 SmallVectorImpl<SDValue> &Results); 138 SDValue ExpandFCOPYSIGN(SDNode *Node); 139 SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT, 140 DebugLoc dl); 141 SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned, 142 DebugLoc dl); 143 SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned, 144 DebugLoc dl); 145 146 SDValue ExpandBSWAP(SDValue Op, DebugLoc dl); 147 SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl); 148 149 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 150 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 151 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 152 153 std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node); 154 155 void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results); 156 void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results); 157}; 158} 159 160/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which 161/// performs the same shuffe in terms of order or result bytes, but on a type 162/// whose vector element type is narrower than the original shuffle type. 163/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 164SDValue 165SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl, 166 SDValue N1, SDValue N2, 167 SmallVectorImpl<int> &Mask) const { 168 unsigned NumMaskElts = VT.getVectorNumElements(); 169 unsigned NumDestElts = NVT.getVectorNumElements(); 170 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 171 172 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 173 174 if (NumEltsGrowth == 1) 175 return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]); 176 177 SmallVector<int, 8> NewMask; 178 for (unsigned i = 0; i != NumMaskElts; ++i) { 179 int Idx = Mask[i]; 180 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 181 if (Idx < 0) 182 NewMask.push_back(-1); 183 else 184 NewMask.push_back(Idx * NumEltsGrowth + j); 185 } 186 } 187 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 188 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 189 return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]); 190} 191 192SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag) 193 : TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()), 194 DAG(dag) { 195} 196 197void SelectionDAGLegalize::LegalizeDAG() { 198 LastCALLSEQ_END = DAG.getEntryNode(); 199 IsLegalizingCall = false; 200 201 // The legalize process is inherently a bottom-up recursive process (users 202 // legalize their uses before themselves). Given infinite stack space, we 203 // could just start legalizing on the root and traverse the whole graph. In 204 // practice however, this causes us to run out of stack space on large basic 205 // blocks. To avoid this problem, compute an ordering of the nodes where each 206 // node is only legalized after all of its operands are legalized. 207 DAG.AssignTopologicalOrder(); 208 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 209 E = prior(DAG.allnodes_end()); I != llvm::next(E); ++I) 210 LegalizeOp(SDValue(I, 0)); 211 212 // Finally, it's possible the root changed. Get the new root. 213 SDValue OldRoot = DAG.getRoot(); 214 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 215 DAG.setRoot(LegalizedNodes[OldRoot]); 216 217 LegalizedNodes.clear(); 218 219 // Remove dead nodes now. 220 DAG.RemoveDeadNodes(); 221} 222 223 224/// FindCallEndFromCallStart - Given a chained node that is part of a call 225/// sequence, find the CALLSEQ_END node that terminates the call sequence. 226static SDNode *FindCallEndFromCallStart(SDNode *Node, int depth = 0) { 227 // Nested CALLSEQ_START/END constructs aren't yet legal, 228 // but we can DTRT and handle them correctly here. 229 if (Node->getOpcode() == ISD::CALLSEQ_START) 230 depth++; 231 else if (Node->getOpcode() == ISD::CALLSEQ_END) { 232 depth--; 233 if (depth == 0) 234 return Node; 235 } 236 if (Node->use_empty()) 237 return 0; // No CallSeqEnd 238 239 // The chain is usually at the end. 240 SDValue TheChain(Node, Node->getNumValues()-1); 241 if (TheChain.getValueType() != MVT::Other) { 242 // Sometimes it's at the beginning. 243 TheChain = SDValue(Node, 0); 244 if (TheChain.getValueType() != MVT::Other) { 245 // Otherwise, hunt for it. 246 for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i) 247 if (Node->getValueType(i) == MVT::Other) { 248 TheChain = SDValue(Node, i); 249 break; 250 } 251 252 // Otherwise, we walked into a node without a chain. 253 if (TheChain.getValueType() != MVT::Other) 254 return 0; 255 } 256 } 257 258 for (SDNode::use_iterator UI = Node->use_begin(), 259 E = Node->use_end(); UI != E; ++UI) { 260 261 // Make sure to only follow users of our token chain. 262 SDNode *User = *UI; 263 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) 264 if (User->getOperand(i) == TheChain) 265 if (SDNode *Result = FindCallEndFromCallStart(User, depth)) 266 return Result; 267 } 268 return 0; 269} 270 271/// FindCallStartFromCallEnd - Given a chained node that is part of a call 272/// sequence, find the CALLSEQ_START node that initiates the call sequence. 273static SDNode *FindCallStartFromCallEnd(SDNode *Node) { 274 int nested = 0; 275 assert(Node && "Didn't find callseq_start for a call??"); 276 while (Node->getOpcode() != ISD::CALLSEQ_START || nested) { 277 Node = Node->getOperand(0).getNode(); 278 assert(Node->getOperand(0).getValueType() == MVT::Other && 279 "Node doesn't have a token chain argument!"); 280 switch (Node->getOpcode()) { 281 default: 282 break; 283 case ISD::CALLSEQ_START: 284 if (!nested) 285 return Node; 286 nested--; 287 break; 288 case ISD::CALLSEQ_END: 289 nested++; 290 break; 291 } 292 } 293 return 0; 294} 295 296/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to 297/// see if any uses can reach Dest. If no dest operands can get to dest, 298/// legalize them, legalize ourself, and return false, otherwise, return true. 299/// 300/// Keep track of the nodes we fine that actually do lead to Dest in 301/// NodesLeadingTo. This avoids retraversing them exponential number of times. 302/// 303bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, 304 SmallPtrSet<SDNode*, 32> &NodesLeadingTo) { 305 if (N == Dest) return true; // N certainly leads to Dest :) 306 307 // If we've already processed this node and it does lead to Dest, there is no 308 // need to reprocess it. 309 if (NodesLeadingTo.count(N)) return true; 310 311 // If the first result of this node has been already legalized, then it cannot 312 // reach N. 313 if (LegalizedNodes.count(SDValue(N, 0))) return false; 314 315 // Okay, this node has not already been legalized. Check and legalize all 316 // operands. If none lead to Dest, then we can legalize this node. 317 bool OperandsLeadToDest = false; 318 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 319 OperandsLeadToDest |= // If an operand leads to Dest, so do we. 320 LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest, 321 NodesLeadingTo); 322 323 if (OperandsLeadToDest) { 324 NodesLeadingTo.insert(N); 325 return true; 326 } 327 328 // Okay, this node looks safe, legalize it and return false. 329 LegalizeOp(SDValue(N, 0)); 330 return false; 331} 332 333/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or 334/// a load from the constant pool. 335static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP, 336 SelectionDAG &DAG, const TargetLowering &TLI) { 337 bool Extend = false; 338 DebugLoc dl = CFP->getDebugLoc(); 339 340 // If a FP immediate is precise when represented as a float and if the 341 // target can do an extending load from float to double, we put it into 342 // the constant pool as a float, even if it's is statically typed as a 343 // double. This shrinks FP constants and canonicalizes them for targets where 344 // an FP extending load is the same cost as a normal load (such as on the x87 345 // fp stack or PPC FP unit). 346 EVT VT = CFP->getValueType(0); 347 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 348 if (!UseCP) { 349 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 350 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), 351 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 352 } 353 354 EVT OrigVT = VT; 355 EVT SVT = VT; 356 while (SVT != MVT::f32) { 357 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 358 if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) && 359 // Only do this if the target has a native EXTLOAD instruction from 360 // smaller type. 361 TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) && 362 TLI.ShouldShrinkFPConstant(OrigVT)) { 363 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 364 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 365 VT = SVT; 366 Extend = true; 367 } 368 } 369 370 SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy()); 371 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 372 if (Extend) 373 return DAG.getExtLoad(ISD::EXTLOAD, dl, OrigVT, 374 DAG.getEntryNode(), 375 CPIdx, MachinePointerInfo::getConstantPool(), 376 VT, false, false, Alignment); 377 return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx, 378 MachinePointerInfo::getConstantPool(), false, false, 379 Alignment); 380} 381 382/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores. 383static 384SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG, 385 const TargetLowering &TLI) { 386 SDValue Chain = ST->getChain(); 387 SDValue Ptr = ST->getBasePtr(); 388 SDValue Val = ST->getValue(); 389 EVT VT = Val.getValueType(); 390 int Alignment = ST->getAlignment(); 391 DebugLoc dl = ST->getDebugLoc(); 392 if (ST->getMemoryVT().isFloatingPoint() || 393 ST->getMemoryVT().isVector()) { 394 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 395 if (TLI.isTypeLegal(intVT)) { 396 // Expand to a bitconvert of the value to the integer type of the 397 // same size, then a (misaligned) int store. 398 // FIXME: Does not handle truncating floating point stores! 399 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 400 return DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 401 ST->isVolatile(), ST->isNonTemporal(), Alignment); 402 } 403 // Do a (aligned) store to a stack slot, then copy from the stack slot 404 // to the final destination using (unaligned) integer loads and stores. 405 EVT StoredVT = ST->getMemoryVT(); 406 EVT RegVT = 407 TLI.getRegisterType(*DAG.getContext(), 408 EVT::getIntegerVT(*DAG.getContext(), 409 StoredVT.getSizeInBits())); 410 unsigned StoredBytes = StoredVT.getSizeInBits() / 8; 411 unsigned RegBytes = RegVT.getSizeInBits() / 8; 412 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 413 414 // Make sure the stack slot is also aligned for the register type. 415 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); 416 417 // Perform the original store, only redirected to the stack slot. 418 SDValue Store = DAG.getTruncStore(Chain, dl, 419 Val, StackPtr, MachinePointerInfo(), 420 StoredVT, false, false, 0); 421 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy()); 422 SmallVector<SDValue, 8> Stores; 423 unsigned Offset = 0; 424 425 // Do all but one copies using the full register width. 426 for (unsigned i = 1; i < NumRegs; i++) { 427 // Load one integer register's worth from the stack slot. 428 SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, 429 MachinePointerInfo(), 430 false, false, 0); 431 // Store it to the final location. Remember the store. 432 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 433 ST->getPointerInfo().getWithOffset(Offset), 434 ST->isVolatile(), ST->isNonTemporal(), 435 MinAlign(ST->getAlignment(), Offset))); 436 // Increment the pointers. 437 Offset += RegBytes; 438 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, 439 Increment); 440 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 441 } 442 443 // The last store may be partial. Do a truncating store. On big-endian 444 // machines this requires an extending load from the stack slot to ensure 445 // that the bits are in the right place. 446 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 447 8 * (StoredBytes - Offset)); 448 449 // Load from the stack slot. 450 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 451 MachinePointerInfo(), 452 MemVT, false, false, 0); 453 454 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 455 ST->getPointerInfo() 456 .getWithOffset(Offset), 457 MemVT, ST->isVolatile(), 458 ST->isNonTemporal(), 459 MinAlign(ST->getAlignment(), Offset))); 460 // The order of the stores doesn't matter - say it with a TokenFactor. 461 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0], 462 Stores.size()); 463 } 464 assert(ST->getMemoryVT().isInteger() && 465 !ST->getMemoryVT().isVector() && 466 "Unaligned store of unknown type."); 467 // Get the half-size VT 468 EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); 469 int NumBits = NewStoredVT.getSizeInBits(); 470 int IncrementSize = NumBits / 8; 471 472 // Divide the stored value in two parts. 473 SDValue ShiftAmount = DAG.getConstant(NumBits, 474 TLI.getShiftAmountTy(Val.getValueType())); 475 SDValue Lo = Val; 476 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 477 478 // Store the two parts 479 SDValue Store1, Store2; 480 Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr, 481 ST->getPointerInfo(), NewStoredVT, 482 ST->isVolatile(), ST->isNonTemporal(), Alignment); 483 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 484 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 485 Alignment = MinAlign(Alignment, IncrementSize); 486 Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr, 487 ST->getPointerInfo().getWithOffset(IncrementSize), 488 NewStoredVT, ST->isVolatile(), ST->isNonTemporal(), 489 Alignment); 490 491 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 492} 493 494/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads. 495static 496SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG, 497 const TargetLowering &TLI) { 498 SDValue Chain = LD->getChain(); 499 SDValue Ptr = LD->getBasePtr(); 500 EVT VT = LD->getValueType(0); 501 EVT LoadedVT = LD->getMemoryVT(); 502 DebugLoc dl = LD->getDebugLoc(); 503 if (VT.isFloatingPoint() || VT.isVector()) { 504 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 505 if (TLI.isTypeLegal(intVT)) { 506 // Expand to a (misaligned) integer load of the same size, 507 // then bitconvert to floating point or vector. 508 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getPointerInfo(), 509 LD->isVolatile(), 510 LD->isNonTemporal(), LD->getAlignment()); 511 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 512 if (VT.isFloatingPoint() && LoadedVT != VT) 513 Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result); 514 515 SDValue Ops[] = { Result, Chain }; 516 return DAG.getMergeValues(Ops, 2, dl); 517 } 518 519 // Copy the value to a (aligned) stack slot using (unaligned) integer 520 // loads and stores, then do a (aligned) load from the stack slot. 521 EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT); 522 unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8; 523 unsigned RegBytes = RegVT.getSizeInBits() / 8; 524 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 525 526 // Make sure the stack slot is also aligned for the register type. 527 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 528 529 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy()); 530 SmallVector<SDValue, 8> Stores; 531 SDValue StackPtr = StackBase; 532 unsigned Offset = 0; 533 534 // Do all but one copies using the full register width. 535 for (unsigned i = 1; i < NumRegs; i++) { 536 // Load one integer register's worth from the original location. 537 SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, 538 LD->getPointerInfo().getWithOffset(Offset), 539 LD->isVolatile(), LD->isNonTemporal(), 540 MinAlign(LD->getAlignment(), Offset)); 541 // Follow the load with a store to the stack slot. Remember the store. 542 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr, 543 MachinePointerInfo(), false, false, 0)); 544 // Increment the pointers. 545 Offset += RegBytes; 546 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 547 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, 548 Increment); 549 } 550 551 // The last copy may be partial. Do an extending load. 552 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 553 8 * (LoadedBytes - Offset)); 554 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 555 LD->getPointerInfo().getWithOffset(Offset), 556 MemVT, LD->isVolatile(), 557 LD->isNonTemporal(), 558 MinAlign(LD->getAlignment(), Offset)); 559 // Follow the load with a store to the stack slot. Remember the store. 560 // On big-endian machines this requires a truncating store to ensure 561 // that the bits end up in the right place. 562 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr, 563 MachinePointerInfo(), MemVT, 564 false, false, 0)); 565 566 // The order of the stores doesn't matter - say it with a TokenFactor. 567 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0], 568 Stores.size()); 569 570 // Finally, perform the original load only redirected to the stack slot. 571 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 572 MachinePointerInfo(), LoadedVT, false, false, 0); 573 574 // Callers expect a MERGE_VALUES node. 575 SDValue Ops[] = { Load, TF }; 576 return DAG.getMergeValues(Ops, 2, dl); 577 } 578 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 579 "Unaligned load of unsupported type."); 580 581 // Compute the new VT that is half the size of the old one. This is an 582 // integer MVT. 583 unsigned NumBits = LoadedVT.getSizeInBits(); 584 EVT NewLoadedVT; 585 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 586 NumBits >>= 1; 587 588 unsigned Alignment = LD->getAlignment(); 589 unsigned IncrementSize = NumBits / 8; 590 ISD::LoadExtType HiExtType = LD->getExtensionType(); 591 592 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 593 if (HiExtType == ISD::NON_EXTLOAD) 594 HiExtType = ISD::ZEXTLOAD; 595 596 // Load the value in two parts 597 SDValue Lo, Hi; 598 if (TLI.isLittleEndian()) { 599 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 600 NewLoadedVT, LD->isVolatile(), 601 LD->isNonTemporal(), Alignment); 602 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 603 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 604 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 605 LD->getPointerInfo().getWithOffset(IncrementSize), 606 NewLoadedVT, LD->isVolatile(), 607 LD->isNonTemporal(), MinAlign(Alignment,IncrementSize)); 608 } else { 609 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 610 NewLoadedVT, LD->isVolatile(), 611 LD->isNonTemporal(), Alignment); 612 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 613 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 614 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 615 LD->getPointerInfo().getWithOffset(IncrementSize), 616 NewLoadedVT, LD->isVolatile(), 617 LD->isNonTemporal(), MinAlign(Alignment,IncrementSize)); 618 } 619 620 // aggregate the two parts 621 SDValue ShiftAmount = DAG.getConstant(NumBits, 622 TLI.getShiftAmountTy(Hi.getValueType())); 623 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 624 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 625 626 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 627 Hi.getValue(1)); 628 629 SDValue Ops[] = { Result, TF }; 630 return DAG.getMergeValues(Ops, 2, dl); 631} 632 633/// PerformInsertVectorEltInMemory - Some target cannot handle a variable 634/// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 635/// is necessary to spill the vector being inserted into to memory, perform 636/// the insert there, and then read the result back. 637SDValue SelectionDAGLegalize:: 638PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 639 DebugLoc dl) { 640 SDValue Tmp1 = Vec; 641 SDValue Tmp2 = Val; 642 SDValue Tmp3 = Idx; 643 644 // If the target doesn't support this, we have to spill the input vector 645 // to a temporary stack slot, update the element, then reload it. This is 646 // badness. We could also load the value into a vector register (either 647 // with a "move to register" or "extload into register" instruction, then 648 // permute it into place, if the idx is a constant and if the idx is 649 // supported by the target. 650 EVT VT = Tmp1.getValueType(); 651 EVT EltVT = VT.getVectorElementType(); 652 EVT IdxVT = Tmp3.getValueType(); 653 EVT PtrVT = TLI.getPointerTy(); 654 SDValue StackPtr = DAG.CreateStackTemporary(VT); 655 656 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 657 658 // Store the vector. 659 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr, 660 MachinePointerInfo::getFixedStack(SPFI), 661 false, false, 0); 662 663 // Truncate or zero extend offset to target pointer type. 664 unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND; 665 Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3); 666 // Add the offset to the index. 667 unsigned EltSize = EltVT.getSizeInBits()/8; 668 Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT)); 669 SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr); 670 // Store the scalar value. 671 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT, 672 false, false, 0); 673 // Load the updated vector. 674 return DAG.getLoad(VT, dl, Ch, StackPtr, 675 MachinePointerInfo::getFixedStack(SPFI), false, false, 0); 676} 677 678 679SDValue SelectionDAGLegalize:: 680ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) { 681 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 682 // SCALAR_TO_VECTOR requires that the type of the value being inserted 683 // match the element type of the vector being created, except for 684 // integers in which case the inserted value can be over width. 685 EVT EltVT = Vec.getValueType().getVectorElementType(); 686 if (Val.getValueType() == EltVT || 687 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 688 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 689 Vec.getValueType(), Val); 690 691 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 692 // We generate a shuffle of InVec and ScVec, so the shuffle mask 693 // should be 0,1,2,3,4,5... with the appropriate element replaced with 694 // elt 0 of the RHS. 695 SmallVector<int, 8> ShufOps; 696 for (unsigned i = 0; i != NumElts; ++i) 697 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 698 699 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, 700 &ShufOps[0]); 701 } 702 } 703 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 704} 705 706SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 707 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 708 // FIXME: We shouldn't do this for TargetConstantFP's. 709 // FIXME: move this to the DAG Combiner! Note that we can't regress due 710 // to phase ordering between legalized code and the dag combiner. This 711 // probably means that we need to integrate dag combiner and legalizer 712 // together. 713 // We generally can't do this one for long doubles. 714 SDValue Tmp1 = ST->getChain(); 715 SDValue Tmp2 = ST->getBasePtr(); 716 SDValue Tmp3; 717 unsigned Alignment = ST->getAlignment(); 718 bool isVolatile = ST->isVolatile(); 719 bool isNonTemporal = ST->isNonTemporal(); 720 DebugLoc dl = ST->getDebugLoc(); 721 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 722 if (CFP->getValueType(0) == MVT::f32 && 723 TLI.isTypeLegal(MVT::i32)) { 724 Tmp3 = DAG.getConstant(CFP->getValueAPF(). 725 bitcastToAPInt().zextOrTrunc(32), 726 MVT::i32); 727 return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), 728 isVolatile, isNonTemporal, Alignment); 729 } 730 731 if (CFP->getValueType(0) == MVT::f64) { 732 // If this target supports 64-bit registers, do a single 64-bit store. 733 if (TLI.isTypeLegal(MVT::i64)) { 734 Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 735 zextOrTrunc(64), MVT::i64); 736 return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), 737 isVolatile, isNonTemporal, Alignment); 738 } 739 740 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 741 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 742 // stores. If the target supports neither 32- nor 64-bits, this 743 // xform is certainly not worth it. 744 const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt(); 745 SDValue Lo = DAG.getConstant(IntVal.trunc(32), MVT::i32); 746 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32); 747 if (TLI.isBigEndian()) std::swap(Lo, Hi); 748 749 Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getPointerInfo(), isVolatile, 750 isNonTemporal, Alignment); 751 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 752 DAG.getIntPtrConstant(4)); 753 Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, 754 ST->getPointerInfo().getWithOffset(4), 755 isVolatile, isNonTemporal, MinAlign(Alignment, 4U)); 756 757 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 758 } 759 } 760 } 761 return SDValue(0, 0); 762} 763 764/// LegalizeOp - Return a legal replacement for the given operation, with 765/// all legal operands. 766SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) { 767 if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes. 768 return Op; 769 770 SDNode *Node = Op.getNode(); 771 DebugLoc dl = Node->getDebugLoc(); 772 773 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 774 assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 775 TargetLowering::TypeLegal && 776 "Unexpected illegal type!"); 777 778 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 779 assert((TLI.getTypeAction(*DAG.getContext(), 780 Node->getOperand(i).getValueType()) == 781 TargetLowering::TypeLegal || 782 Node->getOperand(i).getOpcode() == ISD::TargetConstant) && 783 "Unexpected illegal type!"); 784 785 // Note that LegalizeOp may be reentered even from single-use nodes, which 786 // means that we always must cache transformed nodes. 787 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 788 if (I != LegalizedNodes.end()) return I->second; 789 790 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 791 SDValue Result = Op; 792 bool isCustom = false; 793 794 // Figure out the correct action; the way to query this varies by opcode 795 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 796 bool SimpleFinishLegalizing = true; 797 switch (Node->getOpcode()) { 798 case ISD::INTRINSIC_W_CHAIN: 799 case ISD::INTRINSIC_WO_CHAIN: 800 case ISD::INTRINSIC_VOID: 801 case ISD::VAARG: 802 case ISD::STACKSAVE: 803 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 804 break; 805 case ISD::SINT_TO_FP: 806 case ISD::UINT_TO_FP: 807 case ISD::EXTRACT_VECTOR_ELT: 808 Action = TLI.getOperationAction(Node->getOpcode(), 809 Node->getOperand(0).getValueType()); 810 break; 811 case ISD::FP_ROUND_INREG: 812 case ISD::SIGN_EXTEND_INREG: { 813 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 814 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 815 break; 816 } 817 case ISD::ATOMIC_STORE: { 818 Action = TLI.getOperationAction(Node->getOpcode(), 819 Node->getOperand(2).getValueType()); 820 break; 821 } 822 case ISD::SELECT_CC: 823 case ISD::SETCC: 824 case ISD::BR_CC: { 825 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : 826 Node->getOpcode() == ISD::SETCC ? 2 : 1; 827 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0; 828 EVT OpVT = Node->getOperand(CompareOperand).getValueType(); 829 ISD::CondCode CCCode = 830 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 831 Action = TLI.getCondCodeAction(CCCode, OpVT); 832 if (Action == TargetLowering::Legal) { 833 if (Node->getOpcode() == ISD::SELECT_CC) 834 Action = TLI.getOperationAction(Node->getOpcode(), 835 Node->getValueType(0)); 836 else 837 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 838 } 839 break; 840 } 841 case ISD::LOAD: 842 case ISD::STORE: 843 // FIXME: Model these properly. LOAD and STORE are complicated, and 844 // STORE expects the unlegalized operand in some cases. 845 SimpleFinishLegalizing = false; 846 break; 847 case ISD::CALLSEQ_START: 848 case ISD::CALLSEQ_END: 849 // FIXME: This shouldn't be necessary. These nodes have special properties 850 // dealing with the recursive nature of legalization. Removing this 851 // special case should be done as part of making LegalizeDAG non-recursive. 852 SimpleFinishLegalizing = false; 853 break; 854 case ISD::EXTRACT_ELEMENT: 855 case ISD::FLT_ROUNDS_: 856 case ISD::SADDO: 857 case ISD::SSUBO: 858 case ISD::UADDO: 859 case ISD::USUBO: 860 case ISD::SMULO: 861 case ISD::UMULO: 862 case ISD::FPOWI: 863 case ISD::MERGE_VALUES: 864 case ISD::EH_RETURN: 865 case ISD::FRAME_TO_ARGS_OFFSET: 866 case ISD::EH_SJLJ_SETJMP: 867 case ISD::EH_SJLJ_LONGJMP: 868 case ISD::EH_SJLJ_DISPATCHSETUP: 869 // These operations lie about being legal: when they claim to be legal, 870 // they should actually be expanded. 871 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 872 if (Action == TargetLowering::Legal) 873 Action = TargetLowering::Expand; 874 break; 875 case ISD::INIT_TRAMPOLINE: 876 case ISD::ADJUST_TRAMPOLINE: 877 case ISD::FRAMEADDR: 878 case ISD::RETURNADDR: 879 // These operations lie about being legal: when they claim to be legal, 880 // they should actually be custom-lowered. 881 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 882 if (Action == TargetLowering::Legal) 883 Action = TargetLowering::Custom; 884 break; 885 case ISD::BUILD_VECTOR: 886 // A weird case: legalization for BUILD_VECTOR never legalizes the 887 // operands! 888 // FIXME: This really sucks... changing it isn't semantically incorrect, 889 // but it massively pessimizes the code for floating-point BUILD_VECTORs 890 // because ConstantFP operands get legalized into constant pool loads 891 // before the BUILD_VECTOR code can see them. It doesn't usually bite, 892 // though, because BUILD_VECTORS usually get lowered into other nodes 893 // which get legalized properly. 894 SimpleFinishLegalizing = false; 895 break; 896 default: 897 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 898 Action = TargetLowering::Legal; 899 } else { 900 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 901 } 902 break; 903 } 904 905 if (SimpleFinishLegalizing) { 906 SmallVector<SDValue, 8> Ops, ResultVals; 907 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 908 Ops.push_back(LegalizeOp(Node->getOperand(i))); 909 switch (Node->getOpcode()) { 910 default: break; 911 case ISD::BR: 912 case ISD::BRIND: 913 case ISD::BR_JT: 914 case ISD::BR_CC: 915 case ISD::BRCOND: 916 // Branches tweak the chain to include LastCALLSEQ_END 917 Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0], 918 LastCALLSEQ_END); 919 Ops[0] = LegalizeOp(Ops[0]); 920 LastCALLSEQ_END = DAG.getEntryNode(); 921 break; 922 case ISD::SHL: 923 case ISD::SRL: 924 case ISD::SRA: 925 case ISD::ROTL: 926 case ISD::ROTR: 927 // Legalizing shifts/rotates requires adjusting the shift amount 928 // to the appropriate width. 929 if (!Ops[1].getValueType().isVector()) 930 Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[0].getValueType(), 931 Ops[1])); 932 break; 933 case ISD::SRL_PARTS: 934 case ISD::SRA_PARTS: 935 case ISD::SHL_PARTS: 936 // Legalizing shifts/rotates requires adjusting the shift amount 937 // to the appropriate width. 938 if (!Ops[2].getValueType().isVector()) 939 Ops[2] = LegalizeOp(DAG.getShiftAmountOperand(Ops[0].getValueType(), 940 Ops[2])); 941 break; 942 } 943 944 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), Ops.data(), 945 Ops.size()), 0); 946 switch (Action) { 947 case TargetLowering::Legal: 948 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 949 ResultVals.push_back(Result.getValue(i)); 950 break; 951 case TargetLowering::Custom: 952 // FIXME: The handling for custom lowering with multiple results is 953 // a complete mess. 954 Tmp1 = TLI.LowerOperation(Result, DAG); 955 if (Tmp1.getNode()) { 956 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { 957 if (e == 1) 958 ResultVals.push_back(Tmp1); 959 else 960 ResultVals.push_back(Tmp1.getValue(i)); 961 } 962 break; 963 } 964 965 // FALL THROUGH 966 case TargetLowering::Expand: 967 ExpandNode(Result.getNode(), ResultVals); 968 break; 969 case TargetLowering::Promote: 970 PromoteNode(Result.getNode(), ResultVals); 971 break; 972 } 973 if (!ResultVals.empty()) { 974 for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) { 975 if (ResultVals[i] != SDValue(Node, i)) 976 ResultVals[i] = LegalizeOp(ResultVals[i]); 977 AddLegalizedOperand(SDValue(Node, i), ResultVals[i]); 978 } 979 return ResultVals[Op.getResNo()]; 980 } 981 } 982 983 switch (Node->getOpcode()) { 984 default: 985#ifndef NDEBUG 986 dbgs() << "NODE: "; 987 Node->dump( &DAG); 988 dbgs() << "\n"; 989#endif 990 assert(0 && "Do not know how to legalize this operator!"); 991 992 case ISD::BUILD_VECTOR: 993 switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) { 994 default: assert(0 && "This action is not supported yet!"); 995 case TargetLowering::Custom: 996 Tmp3 = TLI.LowerOperation(Result, DAG); 997 if (Tmp3.getNode()) { 998 Result = Tmp3; 999 break; 1000 } 1001 // FALLTHROUGH 1002 case TargetLowering::Expand: 1003 Result = ExpandBUILD_VECTOR(Result.getNode()); 1004 break; 1005 } 1006 break; 1007 case ISD::CALLSEQ_START: { 1008 SDNode *CallEnd = FindCallEndFromCallStart(Node); 1009 1010 // Recursively Legalize all of the inputs of the call end that do not lead 1011 // to this call start. This ensures that any libcalls that need be inserted 1012 // are inserted *before* the CALLSEQ_START. 1013 {SmallPtrSet<SDNode*, 32> NodesLeadingTo; 1014 for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i) 1015 LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node, 1016 NodesLeadingTo); 1017 } 1018 1019 // Now that we have legalized all of the inputs (which may have inserted 1020 // libcalls), create the new CALLSEQ_START node. 1021 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1022 1023 // Merge in the last call to ensure that this call starts after the last 1024 // call ended. 1025 if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) { 1026 Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 1027 Tmp1, LastCALLSEQ_END); 1028 Tmp1 = LegalizeOp(Tmp1); 1029 } 1030 1031 // Do not try to legalize the target-specific arguments (#1+). 1032 if (Tmp1 != Node->getOperand(0)) { 1033 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end()); 1034 Ops[0] = Tmp1; 1035 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), &Ops[0], 1036 Ops.size()), Result.getResNo()); 1037 } 1038 1039 // Remember that the CALLSEQ_START is legalized. 1040 AddLegalizedOperand(Op.getValue(0), Result); 1041 if (Node->getNumValues() == 2) // If this has a flag result, remember it. 1042 AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); 1043 1044 // Now that the callseq_start and all of the non-call nodes above this call 1045 // sequence have been legalized, legalize the call itself. During this 1046 // process, no libcalls can/will be inserted, guaranteeing that no calls 1047 // can overlap. 1048 assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!"); 1049 // Note that we are selecting this call! 1050 LastCALLSEQ_END = SDValue(CallEnd, 0); 1051 IsLegalizingCall = true; 1052 1053 // Legalize the call, starting from the CALLSEQ_END. 1054 LegalizeOp(LastCALLSEQ_END); 1055 assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!"); 1056 return Result; 1057 } 1058 case ISD::CALLSEQ_END: 1059 // If the CALLSEQ_START node hasn't been legalized first, legalize it. This 1060 // will cause this node to be legalized as well as handling libcalls right. 1061 if (LastCALLSEQ_END.getNode() != Node) { 1062 LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0)); 1063 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 1064 assert(I != LegalizedNodes.end() && 1065 "Legalizing the call start should have legalized this node!"); 1066 return I->second; 1067 } 1068 1069 // Otherwise, the call start has been legalized and everything is going 1070 // according to plan. Just legalize ourselves normally here. 1071 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1072 // Do not try to legalize the target-specific arguments (#1+), except for 1073 // an optional flag input. 1074 if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Glue){ 1075 if (Tmp1 != Node->getOperand(0)) { 1076 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end()); 1077 Ops[0] = Tmp1; 1078 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), 1079 &Ops[0], Ops.size()), 1080 Result.getResNo()); 1081 } 1082 } else { 1083 Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1)); 1084 if (Tmp1 != Node->getOperand(0) || 1085 Tmp2 != Node->getOperand(Node->getNumOperands()-1)) { 1086 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end()); 1087 Ops[0] = Tmp1; 1088 Ops.back() = Tmp2; 1089 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), 1090 &Ops[0], Ops.size()), 1091 Result.getResNo()); 1092 } 1093 } 1094 assert(IsLegalizingCall && "Call sequence imbalance between start/end?"); 1095 // This finishes up call legalization. 1096 IsLegalizingCall = false; 1097 1098 // If the CALLSEQ_END node has a flag, remember that we legalized it. 1099 AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); 1100 if (Node->getNumValues() == 2) 1101 AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); 1102 return Result.getValue(Op.getResNo()); 1103 case ISD::LOAD: { 1104 LoadSDNode *LD = cast<LoadSDNode>(Node); 1105 Tmp1 = LegalizeOp(LD->getChain()); // Legalize the chain. 1106 Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer. 1107 1108 ISD::LoadExtType ExtType = LD->getExtensionType(); 1109 if (ExtType == ISD::NON_EXTLOAD) { 1110 EVT VT = Node->getValueType(0); 1111 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), 1112 Tmp1, Tmp2, LD->getOffset()), 1113 Result.getResNo()); 1114 Tmp3 = Result.getValue(0); 1115 Tmp4 = Result.getValue(1); 1116 1117 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1118 default: assert(0 && "This action is not supported yet!"); 1119 case TargetLowering::Legal: 1120 // If this is an unaligned load and the target doesn't support it, 1121 // expand it. 1122 if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) { 1123 Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext()); 1124 unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty); 1125 if (LD->getAlignment() < ABIAlignment){ 1126 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), 1127 DAG, TLI); 1128 Tmp3 = Result.getOperand(0); 1129 Tmp4 = Result.getOperand(1); 1130 Tmp3 = LegalizeOp(Tmp3); 1131 Tmp4 = LegalizeOp(Tmp4); 1132 } 1133 } 1134 break; 1135 case TargetLowering::Custom: 1136 Tmp1 = TLI.LowerOperation(Tmp3, DAG); 1137 if (Tmp1.getNode()) { 1138 Tmp3 = LegalizeOp(Tmp1); 1139 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 1140 } 1141 break; 1142 case TargetLowering::Promote: { 1143 // Only promote a load of vector type to another. 1144 assert(VT.isVector() && "Cannot promote this load!"); 1145 // Change base type to a different vector type. 1146 EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 1147 1148 Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getPointerInfo(), 1149 LD->isVolatile(), LD->isNonTemporal(), 1150 LD->getAlignment()); 1151 Tmp3 = LegalizeOp(DAG.getNode(ISD::BITCAST, dl, VT, Tmp1)); 1152 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 1153 break; 1154 } 1155 } 1156 // Since loads produce two values, make sure to remember that we 1157 // legalized both of them. 1158 AddLegalizedOperand(SDValue(Node, 0), Tmp3); 1159 AddLegalizedOperand(SDValue(Node, 1), Tmp4); 1160 return Op.getResNo() ? Tmp4 : Tmp3; 1161 } 1162 1163 EVT SrcVT = LD->getMemoryVT(); 1164 unsigned SrcWidth = SrcVT.getSizeInBits(); 1165 unsigned Alignment = LD->getAlignment(); 1166 bool isVolatile = LD->isVolatile(); 1167 bool isNonTemporal = LD->isNonTemporal(); 1168 1169 if (SrcWidth != SrcVT.getStoreSizeInBits() && 1170 // Some targets pretend to have an i1 loading operation, and actually 1171 // load an i8. This trick is correct for ZEXTLOAD because the top 7 1172 // bits are guaranteed to be zero; it helps the optimizers understand 1173 // that these bits are zero. It is also useful for EXTLOAD, since it 1174 // tells the optimizers that those bits are undefined. It would be 1175 // nice to have an effective generic way of getting these benefits... 1176 // Until such a way is found, don't insist on promoting i1 here. 1177 (SrcVT != MVT::i1 || 1178 TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) { 1179 // Promote to a byte-sized load if not loading an integral number of 1180 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 1181 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 1182 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 1183 SDValue Ch; 1184 1185 // The extra bits are guaranteed to be zero, since we stored them that 1186 // way. A zext load from NVT thus automatically gives zext from SrcVT. 1187 1188 ISD::LoadExtType NewExtType = 1189 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 1190 1191 Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), 1192 Tmp1, Tmp2, LD->getPointerInfo(), 1193 NVT, isVolatile, isNonTemporal, Alignment); 1194 1195 Ch = Result.getValue(1); // The chain. 1196 1197 if (ExtType == ISD::SEXTLOAD) 1198 // Having the top bits zero doesn't help when sign extending. 1199 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 1200 Result.getValueType(), 1201 Result, DAG.getValueType(SrcVT)); 1202 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 1203 // All the top bits are guaranteed to be zero - inform the optimizers. 1204 Result = DAG.getNode(ISD::AssertZext, dl, 1205 Result.getValueType(), Result, 1206 DAG.getValueType(SrcVT)); 1207 1208 Tmp1 = LegalizeOp(Result); 1209 Tmp2 = LegalizeOp(Ch); 1210 } else if (SrcWidth & (SrcWidth - 1)) { 1211 // If not loading a power-of-2 number of bits, expand as two loads. 1212 assert(!SrcVT.isVector() && "Unsupported extload!"); 1213 unsigned RoundWidth = 1 << Log2_32(SrcWidth); 1214 assert(RoundWidth < SrcWidth); 1215 unsigned ExtraWidth = SrcWidth - RoundWidth; 1216 assert(ExtraWidth < RoundWidth); 1217 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 1218 "Load size not an integral number of bytes!"); 1219 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 1220 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 1221 SDValue Lo, Hi, Ch; 1222 unsigned IncrementSize; 1223 1224 if (TLI.isLittleEndian()) { 1225 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 1226 // Load the bottom RoundWidth bits. 1227 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), 1228 Tmp1, Tmp2, 1229 LD->getPointerInfo(), RoundVT, isVolatile, 1230 isNonTemporal, Alignment); 1231 1232 // Load the remaining ExtraWidth bits. 1233 IncrementSize = RoundWidth / 8; 1234 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 1235 DAG.getIntPtrConstant(IncrementSize)); 1236 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2, 1237 LD->getPointerInfo().getWithOffset(IncrementSize), 1238 ExtraVT, isVolatile, isNonTemporal, 1239 MinAlign(Alignment, IncrementSize)); 1240 1241 // Build a factor node to remember that this load is independent of 1242 // the other one. 1243 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 1244 Hi.getValue(1)); 1245 1246 // Move the top bits to the right place. 1247 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi, 1248 DAG.getConstant(RoundWidth, 1249 TLI.getShiftAmountTy(Hi.getValueType()))); 1250 1251 // Join the hi and lo parts. 1252 Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 1253 } else { 1254 // Big endian - avoid unaligned loads. 1255 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 1256 // Load the top RoundWidth bits. 1257 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2, 1258 LD->getPointerInfo(), RoundVT, isVolatile, 1259 isNonTemporal, Alignment); 1260 1261 // Load the remaining ExtraWidth bits. 1262 IncrementSize = RoundWidth / 8; 1263 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 1264 DAG.getIntPtrConstant(IncrementSize)); 1265 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, 1266 dl, Node->getValueType(0), Tmp1, Tmp2, 1267 LD->getPointerInfo().getWithOffset(IncrementSize), 1268 ExtraVT, isVolatile, isNonTemporal, 1269 MinAlign(Alignment, IncrementSize)); 1270 1271 // Build a factor node to remember that this load is independent of 1272 // the other one. 1273 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 1274 Hi.getValue(1)); 1275 1276 // Move the top bits to the right place. 1277 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi, 1278 DAG.getConstant(ExtraWidth, 1279 TLI.getShiftAmountTy(Hi.getValueType()))); 1280 1281 // Join the hi and lo parts. 1282 Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 1283 } 1284 1285 Tmp1 = LegalizeOp(Result); 1286 Tmp2 = LegalizeOp(Ch); 1287 } else { 1288 switch (TLI.getLoadExtAction(ExtType, SrcVT)) { 1289 default: assert(0 && "This action is not supported yet!"); 1290 case TargetLowering::Custom: 1291 isCustom = true; 1292 // FALLTHROUGH 1293 case TargetLowering::Legal: 1294 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), 1295 Tmp1, Tmp2, LD->getOffset()), 1296 Result.getResNo()); 1297 Tmp1 = Result.getValue(0); 1298 Tmp2 = Result.getValue(1); 1299 1300 if (isCustom) { 1301 Tmp3 = TLI.LowerOperation(Result, DAG); 1302 if (Tmp3.getNode()) { 1303 Tmp1 = LegalizeOp(Tmp3); 1304 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 1305 } 1306 } else { 1307 // If this is an unaligned load and the target doesn't support it, 1308 // expand it. 1309 if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) { 1310 Type *Ty = 1311 LD->getMemoryVT().getTypeForEVT(*DAG.getContext()); 1312 unsigned ABIAlignment = 1313 TLI.getTargetData()->getABITypeAlignment(Ty); 1314 if (LD->getAlignment() < ABIAlignment){ 1315 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), 1316 DAG, TLI); 1317 Tmp1 = Result.getOperand(0); 1318 Tmp2 = Result.getOperand(1); 1319 Tmp1 = LegalizeOp(Tmp1); 1320 Tmp2 = LegalizeOp(Tmp2); 1321 } 1322 } 1323 } 1324 break; 1325 case TargetLowering::Expand: 1326 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT) && TLI.isTypeLegal(SrcVT)) { 1327 SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, 1328 LD->getPointerInfo(), 1329 LD->isVolatile(), LD->isNonTemporal(), 1330 LD->getAlignment()); 1331 unsigned ExtendOp; 1332 switch (ExtType) { 1333 case ISD::EXTLOAD: 1334 ExtendOp = (SrcVT.isFloatingPoint() ? 1335 ISD::FP_EXTEND : ISD::ANY_EXTEND); 1336 break; 1337 case ISD::SEXTLOAD: ExtendOp = ISD::SIGN_EXTEND; break; 1338 case ISD::ZEXTLOAD: ExtendOp = ISD::ZERO_EXTEND; break; 1339 default: llvm_unreachable("Unexpected extend load type!"); 1340 } 1341 Result = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 1342 Tmp1 = LegalizeOp(Result); // Relegalize new nodes. 1343 Tmp2 = LegalizeOp(Load.getValue(1)); 1344 break; 1345 } 1346 1347 // If this is a promoted vector load, and the vector element types are 1348 // legal, then scalarize it. 1349 if (ExtType == ISD::EXTLOAD && SrcVT.isVector() && 1350 TLI.isTypeLegal(Node->getValueType(0).getScalarType())) { 1351 SmallVector<SDValue, 8> LoadVals; 1352 SmallVector<SDValue, 8> LoadChains; 1353 unsigned NumElem = SrcVT.getVectorNumElements(); 1354 unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8; 1355 1356 for (unsigned Idx=0; Idx<NumElem; Idx++) { 1357 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 1358 DAG.getIntPtrConstant(Stride)); 1359 SDValue ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, 1360 Node->getValueType(0).getScalarType(), 1361 Tmp1, Tmp2, LD->getPointerInfo().getWithOffset(Idx * Stride), 1362 SrcVT.getScalarType(), 1363 LD->isVolatile(), LD->isNonTemporal(), 1364 LD->getAlignment()); 1365 1366 LoadVals.push_back(ScalarLoad.getValue(0)); 1367 LoadChains.push_back(ScalarLoad.getValue(1)); 1368 } 1369 Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 1370 &LoadChains[0], LoadChains.size()); 1371 SDValue ValRes = DAG.getNode(ISD::BUILD_VECTOR, dl, 1372 Node->getValueType(0), &LoadVals[0], LoadVals.size()); 1373 1374 Tmp1 = LegalizeOp(ValRes); // Relegalize new nodes. 1375 Tmp2 = LegalizeOp(Result.getValue(0)); // Relegalize new nodes. 1376 break; 1377 } 1378 1379 // If this is a promoted vector load, and the vector element types are 1380 // illegal, create the promoted vector from bitcasted segments. 1381 if (ExtType == ISD::EXTLOAD && SrcVT.isVector()) { 1382 EVT MemElemTy = Node->getValueType(0).getScalarType(); 1383 EVT SrcSclrTy = SrcVT.getScalarType(); 1384 unsigned SizeRatio = 1385 (MemElemTy.getSizeInBits() / SrcSclrTy.getSizeInBits()); 1386 1387 SmallVector<SDValue, 8> LoadVals; 1388 SmallVector<SDValue, 8> LoadChains; 1389 unsigned NumElem = SrcVT.getVectorNumElements(); 1390 unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8; 1391 1392 for (unsigned Idx=0; Idx<NumElem; Idx++) { 1393 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 1394 DAG.getIntPtrConstant(Stride)); 1395 SDValue ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, 1396 SrcVT.getScalarType(), 1397 Tmp1, Tmp2, LD->getPointerInfo().getWithOffset(Idx * Stride), 1398 SrcVT.getScalarType(), 1399 LD->isVolatile(), LD->isNonTemporal(), 1400 LD->getAlignment()); 1401 if (TLI.isBigEndian()) { 1402 // MSB (which is garbage, comes first) 1403 LoadVals.push_back(ScalarLoad.getValue(0)); 1404 for (unsigned i = 0; i<SizeRatio-1; ++i) 1405 LoadVals.push_back(DAG.getUNDEF(SrcVT.getScalarType())); 1406 } else { 1407 // LSB (which is data, comes first) 1408 for (unsigned i = 0; i<SizeRatio-1; ++i) 1409 LoadVals.push_back(DAG.getUNDEF(SrcVT.getScalarType())); 1410 LoadVals.push_back(ScalarLoad.getValue(0)); 1411 } 1412 LoadChains.push_back(ScalarLoad.getValue(1)); 1413 } 1414 1415 Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 1416 &LoadChains[0], LoadChains.size()); 1417 EVT TempWideVector = EVT::getVectorVT(*DAG.getContext(), 1418 SrcVT.getScalarType(), NumElem*SizeRatio); 1419 SDValue ValRes = DAG.getNode(ISD::BUILD_VECTOR, dl, 1420 TempWideVector, &LoadVals[0], LoadVals.size()); 1421 1422 // Cast to the correct type 1423 ValRes = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), ValRes); 1424 1425 Tmp1 = LegalizeOp(ValRes); // Relegalize new nodes. 1426 Tmp2 = LegalizeOp(Result.getValue(0)); // Relegalize new nodes. 1427 break; 1428 1429 } 1430 1431 // FIXME: This does not work for vectors on most targets. Sign- and 1432 // zero-extend operations are currently folded into extending loads, 1433 // whether they are legal or not, and then we end up here without any 1434 // support for legalizing them. 1435 assert(ExtType != ISD::EXTLOAD && 1436 "EXTLOAD should always be supported!"); 1437 // Turn the unsupported load into an EXTLOAD followed by an explicit 1438 // zero/sign extend inreg. 1439 Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0), 1440 Tmp1, Tmp2, LD->getPointerInfo(), SrcVT, 1441 LD->isVolatile(), LD->isNonTemporal(), 1442 LD->getAlignment()); 1443 SDValue ValRes; 1444 if (ExtType == ISD::SEXTLOAD) 1445 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 1446 Result.getValueType(), 1447 Result, DAG.getValueType(SrcVT)); 1448 else 1449 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType()); 1450 Tmp1 = LegalizeOp(ValRes); // Relegalize new nodes. 1451 Tmp2 = LegalizeOp(Result.getValue(1)); // Relegalize new nodes. 1452 break; 1453 } 1454 } 1455 1456 // Since loads produce two values, make sure to remember that we legalized 1457 // both of them. 1458 AddLegalizedOperand(SDValue(Node, 0), Tmp1); 1459 AddLegalizedOperand(SDValue(Node, 1), Tmp2); 1460 return Op.getResNo() ? Tmp2 : Tmp1; 1461 } 1462 case ISD::STORE: { 1463 StoreSDNode *ST = cast<StoreSDNode>(Node); 1464 Tmp1 = LegalizeOp(ST->getChain()); // Legalize the chain. 1465 Tmp2 = LegalizeOp(ST->getBasePtr()); // Legalize the pointer. 1466 unsigned Alignment = ST->getAlignment(); 1467 bool isVolatile = ST->isVolatile(); 1468 bool isNonTemporal = ST->isNonTemporal(); 1469 1470 if (!ST->isTruncatingStore()) { 1471 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 1472 Result = SDValue(OptStore, 0); 1473 break; 1474 } 1475 1476 { 1477 Tmp3 = LegalizeOp(ST->getValue()); 1478 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), 1479 Tmp1, Tmp3, Tmp2, 1480 ST->getOffset()), 1481 Result.getResNo()); 1482 1483 EVT VT = Tmp3.getValueType(); 1484 switch (TLI.getOperationAction(ISD::STORE, VT)) { 1485 default: assert(0 && "This action is not supported yet!"); 1486 case TargetLowering::Legal: 1487 // If this is an unaligned store and the target doesn't support it, 1488 // expand it. 1489 if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) { 1490 Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext()); 1491 unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty); 1492 if (ST->getAlignment() < ABIAlignment) 1493 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), 1494 DAG, TLI); 1495 } 1496 break; 1497 case TargetLowering::Custom: 1498 Tmp1 = TLI.LowerOperation(Result, DAG); 1499 if (Tmp1.getNode()) Result = Tmp1; 1500 break; 1501 case TargetLowering::Promote: 1502 assert(VT.isVector() && "Unknown legal promote case!"); 1503 Tmp3 = DAG.getNode(ISD::BITCAST, dl, 1504 TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3); 1505 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, 1506 ST->getPointerInfo(), isVolatile, 1507 isNonTemporal, Alignment); 1508 break; 1509 } 1510 break; 1511 } 1512 } else { 1513 Tmp3 = LegalizeOp(ST->getValue()); 1514 1515 EVT StVT = ST->getMemoryVT(); 1516 unsigned StWidth = StVT.getSizeInBits(); 1517 1518 if (StWidth != StVT.getStoreSizeInBits()) { 1519 // Promote to a byte-sized store with upper bits zero if not 1520 // storing an integral number of bytes. For example, promote 1521 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 1522 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), 1523 StVT.getStoreSizeInBits()); 1524 Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT); 1525 Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), 1526 NVT, isVolatile, isNonTemporal, Alignment); 1527 } else if (StWidth & (StWidth - 1)) { 1528 // If not storing a power-of-2 number of bits, expand as two stores. 1529 assert(!StVT.isVector() && "Unsupported truncstore!"); 1530 unsigned RoundWidth = 1 << Log2_32(StWidth); 1531 assert(RoundWidth < StWidth); 1532 unsigned ExtraWidth = StWidth - RoundWidth; 1533 assert(ExtraWidth < RoundWidth); 1534 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 1535 "Store size not an integral number of bytes!"); 1536 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 1537 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 1538 SDValue Lo, Hi; 1539 unsigned IncrementSize; 1540 1541 if (TLI.isLittleEndian()) { 1542 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 1543 // Store the bottom RoundWidth bits. 1544 Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), 1545 RoundVT, 1546 isVolatile, isNonTemporal, Alignment); 1547 1548 // Store the remaining ExtraWidth bits. 1549 IncrementSize = RoundWidth / 8; 1550 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 1551 DAG.getIntPtrConstant(IncrementSize)); 1552 Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3, 1553 DAG.getConstant(RoundWidth, 1554 TLI.getShiftAmountTy(Tmp3.getValueType()))); 1555 Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, 1556 ST->getPointerInfo().getWithOffset(IncrementSize), 1557 ExtraVT, isVolatile, isNonTemporal, 1558 MinAlign(Alignment, IncrementSize)); 1559 } else { 1560 // Big endian - avoid unaligned stores. 1561 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 1562 // Store the top RoundWidth bits. 1563 Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3, 1564 DAG.getConstant(ExtraWidth, 1565 TLI.getShiftAmountTy(Tmp3.getValueType()))); 1566 Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getPointerInfo(), 1567 RoundVT, isVolatile, isNonTemporal, Alignment); 1568 1569 // Store the remaining ExtraWidth bits. 1570 IncrementSize = RoundWidth / 8; 1571 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 1572 DAG.getIntPtrConstant(IncrementSize)); 1573 Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, 1574 ST->getPointerInfo().getWithOffset(IncrementSize), 1575 ExtraVT, isVolatile, isNonTemporal, 1576 MinAlign(Alignment, IncrementSize)); 1577 } 1578 1579 // The order of the stores doesn't matter. 1580 Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 1581 } else { 1582 if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() || 1583 Tmp2 != ST->getBasePtr()) 1584 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), 1585 Tmp1, Tmp3, Tmp2, 1586 ST->getOffset()), 1587 Result.getResNo()); 1588 1589 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 1590 default: assert(0 && "This action is not supported yet!"); 1591 case TargetLowering::Legal: 1592 // If this is an unaligned store and the target doesn't support it, 1593 // expand it. 1594 if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) { 1595 Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext()); 1596 unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty); 1597 if (ST->getAlignment() < ABIAlignment) 1598 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), 1599 DAG, TLI); 1600 } 1601 break; 1602 case TargetLowering::Custom: 1603 Result = TLI.LowerOperation(Result, DAG); 1604 break; 1605 case TargetLowering::Expand: 1606 1607 EVT WideScalarVT = Tmp3.getValueType().getScalarType(); 1608 EVT NarrowScalarVT = StVT.getScalarType(); 1609 1610 if (StVT.isVector()) { 1611 unsigned NumElem = StVT.getVectorNumElements(); 1612 // The type of the data we want to save 1613 EVT RegVT = Tmp3.getValueType(); 1614 EVT RegSclVT = RegVT.getScalarType(); 1615 // The type of data as saved in memory. 1616 EVT MemSclVT = StVT.getScalarType(); 1617 1618 bool RegScalarLegal = TLI.isTypeLegal(RegSclVT); 1619 bool MemScalarLegal = TLI.isTypeLegal(MemSclVT); 1620 1621 // We need to expand this store. If both the reg-scalar and the 1622 // memory-scalar are of legal types, then scalarize the vector. 1623 if (RegScalarLegal && MemScalarLegal) { 1624 // Cast floats into integers 1625 unsigned ScalarSize = MemSclVT.getSizeInBits(); 1626 EVT EltVT = EVT::getIntegerVT(*DAG.getContext(), ScalarSize); 1627 assert(TLI.isTypeLegal(EltVT) && "Saved scalars must be legal"); 1628 1629 // Round odd types to the next pow of two. 1630 if (!isPowerOf2_32(ScalarSize)) 1631 ScalarSize = NextPowerOf2(ScalarSize); 1632 1633 // Store Stride in bytes 1634 unsigned Stride = ScalarSize/8; 1635 // Extract each of the elements from the original vector 1636 // and save them into memory individually. 1637 SmallVector<SDValue, 8> Stores; 1638 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 1639 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 1640 RegSclVT, Tmp3, DAG.getIntPtrConstant(Idx)); 1641 1642 Ex = DAG.getNode(ISD::TRUNCATE, dl, EltVT, Ex); 1643 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 1644 DAG.getIntPtrConstant(Stride)); 1645 1646 SDValue Store = DAG.getStore(Tmp1, dl, Ex, Tmp2, 1647 ST->getPointerInfo().getWithOffset(Idx*Stride), 1648 isVolatile, isNonTemporal, Alignment); 1649 Stores.push_back(Store); 1650 } 1651 1652 Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 1653 &Stores[0], Stores.size()); 1654 break; 1655 } 1656 1657 1658 // The scalar register type is illegal. 1659 // For example saving <2 x i64> -> <2 x i32> on a x86. 1660 // In here we bitcast the value into a vector of smaller parts and 1661 // save it using smaller scalars. 1662 if (!RegScalarLegal && MemScalarLegal) { 1663 // Store Stride in bytes 1664 unsigned Stride = MemSclVT.getSizeInBits()/8; 1665 1666 unsigned SizeRatio = 1667 (RegSclVT.getSizeInBits() / MemSclVT.getSizeInBits()); 1668 1669 EVT CastValueVT = EVT::getVectorVT(*DAG.getContext(), 1670 MemSclVT, 1671 SizeRatio * NumElem); 1672 1673 // Cast the wide elem vector to wider vec with smaller elem type. 1674 // Example <2 x i64> -> <4 x i32> 1675 Tmp3 = DAG.getNode(ISD::BITCAST, dl, CastValueVT, Tmp3); 1676 1677 SmallVector<SDValue, 8> Stores; 1678 for (unsigned Idx=0; Idx < NumElem * SizeRatio; Idx++) { 1679 // Extract the Ith element. 1680 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 1681 NarrowScalarVT, Tmp3, DAG.getIntPtrConstant(Idx)); 1682 // Bump pointer. 1683 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 1684 DAG.getIntPtrConstant(Stride)); 1685 1686 // Store if, this element is: 1687 // - First element on big endian, or 1688 // - Last element on little endian 1689 if (( TLI.isBigEndian() && (Idx % SizeRatio == 0)) || 1690 ((!TLI.isBigEndian() && (Idx % SizeRatio == SizeRatio-1)))) { 1691 SDValue Store = DAG.getStore(Tmp1, dl, Ex, Tmp2, 1692 ST->getPointerInfo().getWithOffset(Idx*Stride), 1693 isVolatile, isNonTemporal, Alignment); 1694 Stores.push_back(Store); 1695 } 1696 } 1697 Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 1698 &Stores[0], Stores.size()); 1699 break; 1700 } 1701 1702 1703 assert(false && "Unable to legalize the vector trunc store!"); 1704 }// is vector 1705 1706 1707 // TRUNCSTORE:i16 i32 -> STORE i16 1708 assert(TLI.isTypeLegal(StVT) && "Do not know how to expand this store!"); 1709 Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3); 1710 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), 1711 isVolatile, isNonTemporal, Alignment); 1712 break; 1713 } 1714 } 1715 } 1716 break; 1717 } 1718 } 1719 assert(Result.getValueType() == Op.getValueType() && 1720 "Bad legalization!"); 1721 1722 // Make sure that the generated code is itself legal. 1723 if (Result != Op) 1724 Result = LegalizeOp(Result); 1725 1726 // Note that LegalizeOp may be reentered even from single-use nodes, which 1727 // means that we always must cache transformed nodes. 1728 AddLegalizedOperand(Op, Result); 1729 return Result; 1730} 1731 1732SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1733 SDValue Vec = Op.getOperand(0); 1734 SDValue Idx = Op.getOperand(1); 1735 DebugLoc dl = Op.getDebugLoc(); 1736 // Store the value to a temporary stack slot, then LOAD the returned part. 1737 SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); 1738 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, 1739 MachinePointerInfo(), false, false, 0); 1740 1741 // Add the offset to the index. 1742 unsigned EltSize = 1743 Vec.getValueType().getVectorElementType().getSizeInBits()/8; 1744 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx, 1745 DAG.getConstant(EltSize, Idx.getValueType())); 1746 1747 if (Idx.getValueType().bitsGT(TLI.getPointerTy())) 1748 Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx); 1749 else 1750 Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx); 1751 1752 StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr); 1753 1754 if (Op.getValueType().isVector()) 1755 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,MachinePointerInfo(), 1756 false, false, 0); 1757 return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, 1758 MachinePointerInfo(), 1759 Vec.getValueType().getVectorElementType(), 1760 false, false, 0); 1761} 1762 1763SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1764 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1765 1766 SDValue Vec = Op.getOperand(0); 1767 SDValue Part = Op.getOperand(1); 1768 SDValue Idx = Op.getOperand(2); 1769 DebugLoc dl = Op.getDebugLoc(); 1770 1771 // Store the value to a temporary stack slot, then LOAD the returned part. 1772 1773 SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); 1774 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1775 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI); 1776 1777 // First store the whole vector. 1778 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo, 1779 false, false, 0); 1780 1781 // Then store the inserted part. 1782 1783 // Add the offset to the index. 1784 unsigned EltSize = 1785 Vec.getValueType().getVectorElementType().getSizeInBits()/8; 1786 1787 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx, 1788 DAG.getConstant(EltSize, Idx.getValueType())); 1789 1790 if (Idx.getValueType().bitsGT(TLI.getPointerTy())) 1791 Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx); 1792 else 1793 Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx); 1794 1795 SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, 1796 StackPtr); 1797 1798 // Store the subvector. 1799 Ch = DAG.getStore(DAG.getEntryNode(), dl, Part, SubStackPtr, 1800 MachinePointerInfo(), false, false, 0); 1801 1802 // Finally, load the updated vector. 1803 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo, 1804 false, false, 0); 1805} 1806 1807SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1808 // We can't handle this case efficiently. Allocate a sufficiently 1809 // aligned object on the stack, store each element into it, then load 1810 // the result as a vector. 1811 // Create the stack frame object. 1812 EVT VT = Node->getValueType(0); 1813 EVT EltVT = VT.getVectorElementType(); 1814 DebugLoc dl = Node->getDebugLoc(); 1815 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1816 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1817 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI); 1818 1819 // Emit a store of each element to the stack slot. 1820 SmallVector<SDValue, 8> Stores; 1821 unsigned TypeByteSize = EltVT.getSizeInBits() / 8; 1822 // Store (in the right endianness) the elements to memory. 1823 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1824 // Ignore undef elements. 1825 if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue; 1826 1827 unsigned Offset = TypeByteSize*i; 1828 1829 SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType()); 1830 Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx); 1831 1832 // If the destination vector element type is narrower than the source 1833 // element type, only store the bits necessary. 1834 if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) { 1835 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1836 Node->getOperand(i), Idx, 1837 PtrInfo.getWithOffset(Offset), 1838 EltVT, false, false, 0)); 1839 } else 1840 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, 1841 Node->getOperand(i), Idx, 1842 PtrInfo.getWithOffset(Offset), 1843 false, false, 0)); 1844 } 1845 1846 SDValue StoreChain; 1847 if (!Stores.empty()) // Not all undef elements? 1848 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 1849 &Stores[0], Stores.size()); 1850 else 1851 StoreChain = DAG.getEntryNode(); 1852 1853 // Result is a load from the stack slot. 1854 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo, false, false, 0); 1855} 1856 1857SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) { 1858 DebugLoc dl = Node->getDebugLoc(); 1859 SDValue Tmp1 = Node->getOperand(0); 1860 SDValue Tmp2 = Node->getOperand(1); 1861 1862 // Get the sign bit of the RHS. First obtain a value that has the same 1863 // sign as the sign bit, i.e. negative if and only if the sign bit is 1. 1864 SDValue SignBit; 1865 EVT FloatVT = Tmp2.getValueType(); 1866 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits()); 1867 if (TLI.isTypeLegal(IVT)) { 1868 // Convert to an integer with the same sign bit. 1869 SignBit = DAG.getNode(ISD::BITCAST, dl, IVT, Tmp2); 1870 } else { 1871 // Store the float to memory, then load the sign part out as an integer. 1872 MVT LoadTy = TLI.getPointerTy(); 1873 // First create a temporary that is aligned for both the load and store. 1874 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1875 // Then store the float to it. 1876 SDValue Ch = 1877 DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, MachinePointerInfo(), 1878 false, false, 0); 1879 if (TLI.isBigEndian()) { 1880 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1881 // Load out a legal integer with the same sign bit as the float. 1882 SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, MachinePointerInfo(), 1883 false, false, 0); 1884 } else { // Little endian 1885 SDValue LoadPtr = StackPtr; 1886 // The float may be wider than the integer we are going to load. Advance 1887 // the pointer so that the loaded integer will contain the sign bit. 1888 unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits(); 1889 unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8; 1890 LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(), 1891 LoadPtr, DAG.getIntPtrConstant(ByteOffset)); 1892 // Load a legal integer containing the sign bit. 1893 SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(), 1894 false, false, 0); 1895 // Move the sign bit to the top bit of the loaded integer. 1896 unsigned BitShift = LoadTy.getSizeInBits() - 1897 (FloatVT.getSizeInBits() - 8 * ByteOffset); 1898 assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?"); 1899 if (BitShift) 1900 SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit, 1901 DAG.getConstant(BitShift, 1902 TLI.getShiftAmountTy(SignBit.getValueType()))); 1903 } 1904 } 1905 // Now get the sign bit proper, by seeing whether the value is negative. 1906 SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()), 1907 SignBit, DAG.getConstant(0, SignBit.getValueType()), 1908 ISD::SETLT); 1909 // Get the absolute value of the result. 1910 SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1); 1911 // Select between the nabs and abs value based on the sign bit of 1912 // the input. 1913 return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit, 1914 DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal), 1915 AbsVal); 1916} 1917 1918void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1919 SmallVectorImpl<SDValue> &Results) { 1920 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1921 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1922 " not tell us which reg is the stack pointer!"); 1923 DebugLoc dl = Node->getDebugLoc(); 1924 EVT VT = Node->getValueType(0); 1925 SDValue Tmp1 = SDValue(Node, 0); 1926 SDValue Tmp2 = SDValue(Node, 1); 1927 SDValue Tmp3 = Node->getOperand(2); 1928 SDValue Chain = Tmp1.getOperand(0); 1929 1930 // Chain the dynamic stack allocation so that it doesn't modify the stack 1931 // pointer when other instructions are using the stack. 1932 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true)); 1933 1934 SDValue Size = Tmp2.getOperand(1); 1935 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1936 Chain = SP.getValue(1); 1937 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); 1938 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 1939 if (Align > StackAlign) 1940 SP = DAG.getNode(ISD::AND, dl, VT, SP, 1941 DAG.getConstant(-(uint64_t)Align, VT)); 1942 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value 1943 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1944 1945 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true), 1946 DAG.getIntPtrConstant(0, true), SDValue()); 1947 1948 Results.push_back(Tmp1); 1949 Results.push_back(Tmp2); 1950} 1951 1952/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and 1953/// condition code CC on the current target. This routine expands SETCC with 1954/// illegal condition code into AND / OR of multiple SETCC values. 1955void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT, 1956 SDValue &LHS, SDValue &RHS, 1957 SDValue &CC, 1958 DebugLoc dl) { 1959 EVT OpVT = LHS.getValueType(); 1960 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 1961 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 1962 default: assert(0 && "Unknown condition code action!"); 1963 case TargetLowering::Legal: 1964 // Nothing to do. 1965 break; 1966 case TargetLowering::Expand: { 1967 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 1968 unsigned Opc = 0; 1969 switch (CCCode) { 1970 default: assert(0 && "Don't know how to expand this condition!"); 1971 case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO; Opc = ISD::AND; break; 1972 case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO; Opc = ISD::AND; break; 1973 case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO; Opc = ISD::AND; break; 1974 case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO; Opc = ISD::AND; break; 1975 case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO; Opc = ISD::AND; break; 1976 case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO; Opc = ISD::AND; break; 1977 case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR; break; 1978 case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR; break; 1979 case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR; break; 1980 case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR; break; 1981 case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR; break; 1982 case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR; break; 1983 // FIXME: Implement more expansions. 1984 } 1985 1986 SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1); 1987 SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2); 1988 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 1989 RHS = SDValue(); 1990 CC = SDValue(); 1991 break; 1992 } 1993 } 1994} 1995 1996/// EmitStackConvert - Emit a store/load combination to the stack. This stores 1997/// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1998/// a load from the stack slot to DestVT, extending it if needed. 1999/// The resultant code need not be legal. 2000SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, 2001 EVT SlotVT, 2002 EVT DestVT, 2003 DebugLoc dl) { 2004 // Create the stack frame object. 2005 unsigned SrcAlign = 2006 TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType(). 2007 getTypeForEVT(*DAG.getContext())); 2008 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); 2009 2010 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 2011 int SPFI = StackPtrFI->getIndex(); 2012 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(SPFI); 2013 2014 unsigned SrcSize = SrcOp.getValueType().getSizeInBits(); 2015 unsigned SlotSize = SlotVT.getSizeInBits(); 2016 unsigned DestSize = DestVT.getSizeInBits(); 2017 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 2018 unsigned DestAlign = TLI.getTargetData()->getPrefTypeAlignment(DestType); 2019 2020 // Emit a store to the stack slot. Use a truncstore if the input value is 2021 // later than DestVT. 2022 SDValue Store; 2023 2024 if (SrcSize > SlotSize) 2025 Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, 2026 PtrInfo, SlotVT, false, false, SrcAlign); 2027 else { 2028 assert(SrcSize == SlotSize && "Invalid store"); 2029 Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, 2030 PtrInfo, false, false, SrcAlign); 2031 } 2032 2033 // Result is a load from the stack slot. 2034 if (SlotSize == DestSize) 2035 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, 2036 false, false, DestAlign); 2037 2038 assert(SlotSize < DestSize && "Unknown extension!"); 2039 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, 2040 PtrInfo, SlotVT, false, false, DestAlign); 2041} 2042 2043SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 2044 DebugLoc dl = Node->getDebugLoc(); 2045 // Create a vector sized/aligned stack slot, store the value to element #0, 2046 // then load the whole vector back out. 2047 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 2048 2049 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 2050 int SPFI = StackPtrFI->getIndex(); 2051 2052 SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0), 2053 StackPtr, 2054 MachinePointerInfo::getFixedStack(SPFI), 2055 Node->getValueType(0).getVectorElementType(), 2056 false, false, 0); 2057 return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr, 2058 MachinePointerInfo::getFixedStack(SPFI), 2059 false, false, 0); 2060} 2061 2062 2063/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't 2064/// support the operation, but do support the resultant vector type. 2065SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 2066 unsigned NumElems = Node->getNumOperands(); 2067 SDValue Value1, Value2; 2068 DebugLoc dl = Node->getDebugLoc(); 2069 EVT VT = Node->getValueType(0); 2070 EVT OpVT = Node->getOperand(0).getValueType(); 2071 EVT EltVT = VT.getVectorElementType(); 2072 2073 // If the only non-undef value is the low element, turn this into a 2074 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 2075 bool isOnlyLowElement = true; 2076 bool MoreThanTwoValues = false; 2077 bool isConstant = true; 2078 for (unsigned i = 0; i < NumElems; ++i) { 2079 SDValue V = Node->getOperand(i); 2080 if (V.getOpcode() == ISD::UNDEF) 2081 continue; 2082 if (i > 0) 2083 isOnlyLowElement = false; 2084 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 2085 isConstant = false; 2086 2087 if (!Value1.getNode()) { 2088 Value1 = V; 2089 } else if (!Value2.getNode()) { 2090 if (V != Value1) 2091 Value2 = V; 2092 } else if (V != Value1 && V != Value2) { 2093 MoreThanTwoValues = true; 2094 } 2095 } 2096 2097 if (!Value1.getNode()) 2098 return DAG.getUNDEF(VT); 2099 2100 if (isOnlyLowElement) 2101 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 2102 2103 // If all elements are constants, create a load from the constant pool. 2104 if (isConstant) { 2105 std::vector<Constant*> CV; 2106 for (unsigned i = 0, e = NumElems; i != e; ++i) { 2107 if (ConstantFPSDNode *V = 2108 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 2109 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 2110 } else if (ConstantSDNode *V = 2111 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 2112 if (OpVT==EltVT) 2113 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 2114 else { 2115 // If OpVT and EltVT don't match, EltVT is not legal and the 2116 // element values have been promoted/truncated earlier. Undo this; 2117 // we don't want a v16i8 to become a v16i32 for example. 2118 const ConstantInt *CI = V->getConstantIntValue(); 2119 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 2120 CI->getZExtValue())); 2121 } 2122 } else { 2123 assert(Node->getOperand(i).getOpcode() == ISD::UNDEF); 2124 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 2125 CV.push_back(UndefValue::get(OpNTy)); 2126 } 2127 } 2128 Constant *CP = ConstantVector::get(CV); 2129 SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy()); 2130 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 2131 return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, 2132 MachinePointerInfo::getConstantPool(), 2133 false, false, Alignment); 2134 } 2135 2136 if (!MoreThanTwoValues) { 2137 SmallVector<int, 8> ShuffleVec(NumElems, -1); 2138 for (unsigned i = 0; i < NumElems; ++i) { 2139 SDValue V = Node->getOperand(i); 2140 if (V.getOpcode() == ISD::UNDEF) 2141 continue; 2142 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 2143 } 2144 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 2145 // Get the splatted value into the low element of a vector register. 2146 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 2147 SDValue Vec2; 2148 if (Value2.getNode()) 2149 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 2150 else 2151 Vec2 = DAG.getUNDEF(VT); 2152 2153 // Return shuffle(LowValVec, undef, <0,0,0,0>) 2154 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data()); 2155 } 2156 } 2157 2158 // Otherwise, we can't handle this case efficiently. 2159 return ExpandVectorBuildThroughStack(Node); 2160} 2161 2162// ExpandLibCall - Expand a node into a call to a libcall. If the result value 2163// does not fit into a register, return the lo part and set the hi part to the 2164// by-reg argument. If it does fit into a single register, return the result 2165// and leave the Hi part unset. 2166SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 2167 bool isSigned) { 2168 assert(!IsLegalizingCall && "Cannot overlap legalization of calls!"); 2169 // The input chain to this libcall is the entry node of the function. 2170 // Legalizing the call will automatically add the previous call to the 2171 // dependence. 2172 SDValue InChain = DAG.getEntryNode(); 2173 2174 TargetLowering::ArgListTy Args; 2175 TargetLowering::ArgListEntry Entry; 2176 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 2177 EVT ArgVT = Node->getOperand(i).getValueType(); 2178 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2179 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; 2180 Entry.isSExt = isSigned; 2181 Entry.isZExt = !isSigned; 2182 Args.push_back(Entry); 2183 } 2184 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2185 TLI.getPointerTy()); 2186 2187 // Splice the libcall in wherever FindInputOutputChains tells us to. 2188 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); 2189 2190 // isTailCall may be true since the callee does not reference caller stack 2191 // frame. Check if it's in the right position. 2192 bool isTailCall = isInTailCallPosition(DAG, Node, TLI); 2193 std::pair<SDValue, SDValue> CallInfo = 2194 TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false, 2195 0, TLI.getLibcallCallingConv(LC), isTailCall, 2196 /*isReturnValueUsed=*/true, 2197 Callee, Args, DAG, Node->getDebugLoc()); 2198 2199 if (!CallInfo.second.getNode()) 2200 // It's a tailcall, return the chain (which is the DAG root). 2201 return DAG.getRoot(); 2202 2203 // Legalize the call sequence, starting with the chain. This will advance 2204 // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that 2205 // was added by LowerCallTo (guaranteeing proper serialization of calls). 2206 LegalizeOp(CallInfo.second); 2207 return CallInfo.first; 2208} 2209 2210/// ExpandLibCall - Generate a libcall taking the given operands as arguments 2211/// and returning a result of type RetVT. 2212SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, 2213 const SDValue *Ops, unsigned NumOps, 2214 bool isSigned, DebugLoc dl) { 2215 TargetLowering::ArgListTy Args; 2216 Args.reserve(NumOps); 2217 2218 TargetLowering::ArgListEntry Entry; 2219 for (unsigned i = 0; i != NumOps; ++i) { 2220 Entry.Node = Ops[i]; 2221 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 2222 Entry.isSExt = isSigned; 2223 Entry.isZExt = !isSigned; 2224 Args.push_back(Entry); 2225 } 2226 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2227 TLI.getPointerTy()); 2228 2229 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2230 std::pair<SDValue,SDValue> CallInfo = 2231 TLI.LowerCallTo(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false, 2232 false, 0, TLI.getLibcallCallingConv(LC), false, 2233 /*isReturnValueUsed=*/true, 2234 Callee, Args, DAG, dl); 2235 2236 // Legalize the call sequence, starting with the chain. This will advance 2237 // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that 2238 // was added by LowerCallTo (guaranteeing proper serialization of calls). 2239 LegalizeOp(CallInfo.second); 2240 2241 return CallInfo.first; 2242} 2243 2244// ExpandChainLibCall - Expand a node into a call to a libcall. Similar to 2245// ExpandLibCall except that the first operand is the in-chain. 2246std::pair<SDValue, SDValue> 2247SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC, 2248 SDNode *Node, 2249 bool isSigned) { 2250 assert(!IsLegalizingCall && "Cannot overlap legalization of calls!"); 2251 SDValue InChain = Node->getOperand(0); 2252 2253 TargetLowering::ArgListTy Args; 2254 TargetLowering::ArgListEntry Entry; 2255 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) { 2256 EVT ArgVT = Node->getOperand(i).getValueType(); 2257 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2258 Entry.Node = Node->getOperand(i); 2259 Entry.Ty = ArgTy; 2260 Entry.isSExt = isSigned; 2261 Entry.isZExt = !isSigned; 2262 Args.push_back(Entry); 2263 } 2264 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2265 TLI.getPointerTy()); 2266 2267 // Splice the libcall in wherever FindInputOutputChains tells us to. 2268 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); 2269 std::pair<SDValue, SDValue> CallInfo = 2270 TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false, 2271 0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false, 2272 /*isReturnValueUsed=*/true, 2273 Callee, Args, DAG, Node->getDebugLoc()); 2274 2275 // Legalize the call sequence, starting with the chain. This will advance 2276 // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that 2277 // was added by LowerCallTo (guaranteeing proper serialization of calls). 2278 LegalizeOp(CallInfo.second); 2279 return CallInfo; 2280} 2281 2282SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2283 RTLIB::Libcall Call_F32, 2284 RTLIB::Libcall Call_F64, 2285 RTLIB::Libcall Call_F80, 2286 RTLIB::Libcall Call_PPCF128) { 2287 RTLIB::Libcall LC; 2288 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 2289 default: assert(0 && "Unexpected request for libcall!"); 2290 case MVT::f32: LC = Call_F32; break; 2291 case MVT::f64: LC = Call_F64; break; 2292 case MVT::f80: LC = Call_F80; break; 2293 case MVT::ppcf128: LC = Call_PPCF128; break; 2294 } 2295 return ExpandLibCall(LC, Node, false); 2296} 2297 2298SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, 2299 RTLIB::Libcall Call_I8, 2300 RTLIB::Libcall Call_I16, 2301 RTLIB::Libcall Call_I32, 2302 RTLIB::Libcall Call_I64, 2303 RTLIB::Libcall Call_I128) { 2304 RTLIB::Libcall LC; 2305 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 2306 default: assert(0 && "Unexpected request for libcall!"); 2307 case MVT::i8: LC = Call_I8; break; 2308 case MVT::i16: LC = Call_I16; break; 2309 case MVT::i32: LC = Call_I32; break; 2310 case MVT::i64: LC = Call_I64; break; 2311 case MVT::i128: LC = Call_I128; break; 2312 } 2313 return ExpandLibCall(LC, Node, isSigned); 2314} 2315 2316/// isDivRemLibcallAvailable - Return true if divmod libcall is available. 2317static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned, 2318 const TargetLowering &TLI) { 2319 RTLIB::Libcall LC; 2320 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 2321 default: assert(0 && "Unexpected request for libcall!"); 2322 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2323 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2324 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2325 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2326 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2327 } 2328 2329 return TLI.getLibcallName(LC) != 0; 2330} 2331 2332/// UseDivRem - Only issue divrem libcall if both quotient and remainder are 2333/// needed. 2334static bool UseDivRem(SDNode *Node, bool isSigned, bool isDIV) { 2335 unsigned OtherOpcode = 0; 2336 if (isSigned) 2337 OtherOpcode = isDIV ? ISD::SREM : ISD::SDIV; 2338 else 2339 OtherOpcode = isDIV ? ISD::UREM : ISD::UDIV; 2340 2341 SDValue Op0 = Node->getOperand(0); 2342 SDValue Op1 = Node->getOperand(1); 2343 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 2344 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 2345 SDNode *User = *UI; 2346 if (User == Node) 2347 continue; 2348 if (User->getOpcode() == OtherOpcode && 2349 User->getOperand(0) == Op0 && 2350 User->getOperand(1) == Op1) 2351 return true; 2352 } 2353 return false; 2354} 2355 2356/// ExpandDivRemLibCall - Issue libcalls to __{u}divmod to compute div / rem 2357/// pairs. 2358void 2359SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 2360 SmallVectorImpl<SDValue> &Results) { 2361 unsigned Opcode = Node->getOpcode(); 2362 bool isSigned = Opcode == ISD::SDIVREM; 2363 2364 RTLIB::Libcall LC; 2365 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 2366 default: assert(0 && "Unexpected request for libcall!"); 2367 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2368 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2369 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2370 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2371 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2372 } 2373 2374 // The input chain to this libcall is the entry node of the function. 2375 // Legalizing the call will automatically add the previous call to the 2376 // dependence. 2377 SDValue InChain = DAG.getEntryNode(); 2378 2379 EVT RetVT = Node->getValueType(0); 2380 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2381 2382 TargetLowering::ArgListTy Args; 2383 TargetLowering::ArgListEntry Entry; 2384 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 2385 EVT ArgVT = Node->getOperand(i).getValueType(); 2386 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2387 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; 2388 Entry.isSExt = isSigned; 2389 Entry.isZExt = !isSigned; 2390 Args.push_back(Entry); 2391 } 2392 2393 // Also pass the return address of the remainder. 2394 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 2395 Entry.Node = FIPtr; 2396 Entry.Ty = RetTy->getPointerTo(); 2397 Entry.isSExt = isSigned; 2398 Entry.isZExt = !isSigned; 2399 Args.push_back(Entry); 2400 2401 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2402 TLI.getPointerTy()); 2403 2404 // Splice the libcall in wherever FindInputOutputChains tells us to. 2405 DebugLoc dl = Node->getDebugLoc(); 2406 std::pair<SDValue, SDValue> CallInfo = 2407 TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false, 2408 0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false, 2409 /*isReturnValueUsed=*/true, Callee, Args, DAG, dl); 2410 2411 // Legalize the call sequence, starting with the chain. This will advance 2412 // the LastCALLSEQ to the legalized version of the CALLSEQ_END node that 2413 // was added by LowerCallTo (guaranteeing proper serialization of calls). 2414 LegalizeOp(CallInfo.second); 2415 2416 // Remainder is loaded back from the stack frame. 2417 SDValue Rem = DAG.getLoad(RetVT, dl, LastCALLSEQ_END, FIPtr, 2418 MachinePointerInfo(), false, false, 0); 2419 Results.push_back(CallInfo.first); 2420 Results.push_back(Rem); 2421} 2422 2423/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a 2424/// INT_TO_FP operation of the specified operand when the target requests that 2425/// we expand it. At this point, we know that the result and operand types are 2426/// legal for the target. 2427SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, 2428 SDValue Op0, 2429 EVT DestVT, 2430 DebugLoc dl) { 2431 if (Op0.getValueType() == MVT::i32) { 2432 // simple 32-bit [signed|unsigned] integer to float/double expansion 2433 2434 // Get the stack frame index of a 8 byte buffer. 2435 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2436 2437 // word offset constant for Hi/Lo address computation 2438 SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy()); 2439 // set up Hi and Lo (into buffer) address based on endian 2440 SDValue Hi = StackSlot; 2441 SDValue Lo = DAG.getNode(ISD::ADD, dl, 2442 TLI.getPointerTy(), StackSlot, WordOff); 2443 if (TLI.isLittleEndian()) 2444 std::swap(Hi, Lo); 2445 2446 // if signed map to unsigned space 2447 SDValue Op0Mapped; 2448 if (isSigned) { 2449 // constant used to invert sign bit (signed to unsigned mapping) 2450 SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32); 2451 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit); 2452 } else { 2453 Op0Mapped = Op0; 2454 } 2455 // store the lo of the constructed double - based on integer input 2456 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, 2457 Op0Mapped, Lo, MachinePointerInfo(), 2458 false, false, 0); 2459 // initial hi portion of constructed double 2460 SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32); 2461 // store the hi of the constructed double - biased exponent 2462 SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi, 2463 MachinePointerInfo(), 2464 false, false, 0); 2465 // load the constructed double 2466 SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, 2467 MachinePointerInfo(), false, false, 0); 2468 // FP constant to bias correct the final result 2469 SDValue Bias = DAG.getConstantFP(isSigned ? 2470 BitsToDouble(0x4330000080000000ULL) : 2471 BitsToDouble(0x4330000000000000ULL), 2472 MVT::f64); 2473 // subtract the bias 2474 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2475 // final result 2476 SDValue Result; 2477 // handle final rounding 2478 if (DestVT == MVT::f64) { 2479 // do nothing 2480 Result = Sub; 2481 } else if (DestVT.bitsLT(MVT::f64)) { 2482 Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub, 2483 DAG.getIntPtrConstant(0)); 2484 } else if (DestVT.bitsGT(MVT::f64)) { 2485 Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub); 2486 } 2487 return Result; 2488 } 2489 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 2490 // Code below here assumes !isSigned without checking again. 2491 2492 // Implementation of unsigned i64 to f64 following the algorithm in 2493 // __floatundidf in compiler_rt. This implementation has the advantage 2494 // of performing rounding correctly, both in the default rounding mode 2495 // and in all alternate rounding modes. 2496 // TODO: Generalize this for use with other types. 2497 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) { 2498 SDValue TwoP52 = 2499 DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64); 2500 SDValue TwoP84PlusTwoP52 = 2501 DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64); 2502 SDValue TwoP84 = 2503 DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64); 2504 2505 SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32); 2506 SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, 2507 DAG.getConstant(32, MVT::i64)); 2508 SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52); 2509 SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84); 2510 SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr); 2511 SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr); 2512 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt, 2513 TwoP84PlusTwoP52); 2514 return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub); 2515 } 2516 2517 // Implementation of unsigned i64 to f32. 2518 // TODO: Generalize this for use with other types. 2519 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) { 2520 // For unsigned conversions, convert them to signed conversions using the 2521 // algorithm from the x86_64 __floatundidf in compiler_rt. 2522 if (!isSigned) { 2523 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0); 2524 2525 SDValue ShiftConst = 2526 DAG.getConstant(1, TLI.getShiftAmountTy(Op0.getValueType())); 2527 SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst); 2528 SDValue AndConst = DAG.getConstant(1, MVT::i64); 2529 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst); 2530 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr); 2531 2532 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or); 2533 SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt); 2534 2535 // TODO: This really should be implemented using a branch rather than a 2536 // select. We happen to get lucky and machinesink does the right 2537 // thing most of the time. This would be a good candidate for a 2538 //pseudo-op, or, even better, for whole-function isel. 2539 SDValue SignBitTest = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64), 2540 Op0, DAG.getConstant(0, MVT::i64), ISD::SETLT); 2541 return DAG.getNode(ISD::SELECT, dl, MVT::f32, SignBitTest, Slow, Fast); 2542 } 2543 2544 // Otherwise, implement the fully general conversion. 2545 2546 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, 2547 DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64)); 2548 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, 2549 DAG.getConstant(UINT64_C(0x800), MVT::i64)); 2550 SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, 2551 DAG.getConstant(UINT64_C(0x7ff), MVT::i64)); 2552 SDValue Ne = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64), 2553 And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE); 2554 SDValue Sel = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ne, Or, Op0); 2555 SDValue Ge = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64), 2556 Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64), 2557 ISD::SETUGE); 2558 SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0); 2559 EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType()); 2560 2561 SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2, 2562 DAG.getConstant(32, SHVT)); 2563 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh); 2564 SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc); 2565 SDValue TwoP32 = 2566 DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64); 2567 SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt); 2568 SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2); 2569 SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo); 2570 SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2); 2571 return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd, 2572 DAG.getIntPtrConstant(0)); 2573 } 2574 2575 SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2576 2577 SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()), 2578 Op0, DAG.getConstant(0, Op0.getValueType()), 2579 ISD::SETLT); 2580 SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); 2581 SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), 2582 SignSet, Four, Zero); 2583 2584 // If the sign bit of the integer is set, the large number will be treated 2585 // as a negative number. To counteract this, the dynamic code adds an 2586 // offset depending on the data type. 2587 uint64_t FF; 2588 switch (Op0.getValueType().getSimpleVT().SimpleTy) { 2589 default: assert(0 && "Unsupported integer type!"); 2590 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2591 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2592 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2593 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2594 } 2595 if (TLI.isLittleEndian()) FF <<= 32; 2596 Constant *FudgeFactor = ConstantInt::get( 2597 Type::getInt64Ty(*DAG.getContext()), FF); 2598 2599 SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); 2600 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 2601 CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset); 2602 Alignment = std::min(Alignment, 4u); 2603 SDValue FudgeInReg; 2604 if (DestVT == MVT::f32) 2605 FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2606 MachinePointerInfo::getConstantPool(), 2607 false, false, Alignment); 2608 else { 2609 FudgeInReg = 2610 LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, 2611 DAG.getEntryNode(), CPIdx, 2612 MachinePointerInfo::getConstantPool(), 2613 MVT::f32, false, false, Alignment)); 2614 } 2615 2616 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2617} 2618 2619/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a 2620/// *INT_TO_FP operation of the specified operand when the target requests that 2621/// we promote it. At this point, we know that the result and operand types are 2622/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2623/// operation that takes a larger input. 2624SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, 2625 EVT DestVT, 2626 bool isSigned, 2627 DebugLoc dl) { 2628 // First step, figure out the appropriate *INT_TO_FP operation to use. 2629 EVT NewInTy = LegalOp.getValueType(); 2630 2631 unsigned OpToUse = 0; 2632 2633 // Scan for the appropriate larger type to use. 2634 while (1) { 2635 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2636 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2637 2638 // If the target supports SINT_TO_FP of this type, use it. 2639 if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) { 2640 OpToUse = ISD::SINT_TO_FP; 2641 break; 2642 } 2643 if (isSigned) continue; 2644 2645 // If the target supports UINT_TO_FP of this type, use it. 2646 if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) { 2647 OpToUse = ISD::UINT_TO_FP; 2648 break; 2649 } 2650 2651 // Otherwise, try a larger type. 2652 } 2653 2654 // Okay, we found the operation and type to use. Zero extend our input to the 2655 // desired type then run the operation on it. 2656 return DAG.getNode(OpToUse, dl, DestVT, 2657 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2658 dl, NewInTy, LegalOp)); 2659} 2660 2661/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a 2662/// FP_TO_*INT operation of the specified operand when the target requests that 2663/// we promote it. At this point, we know that the result and operand types are 2664/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2665/// operation that returns a larger result. 2666SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, 2667 EVT DestVT, 2668 bool isSigned, 2669 DebugLoc dl) { 2670 // First step, figure out the appropriate FP_TO*INT operation to use. 2671 EVT NewOutTy = DestVT; 2672 2673 unsigned OpToUse = 0; 2674 2675 // Scan for the appropriate larger type to use. 2676 while (1) { 2677 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2678 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2679 2680 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) { 2681 OpToUse = ISD::FP_TO_SINT; 2682 break; 2683 } 2684 2685 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) { 2686 OpToUse = ISD::FP_TO_UINT; 2687 break; 2688 } 2689 2690 // Otherwise, try a larger type. 2691 } 2692 2693 2694 // Okay, we found the operation and type to use. 2695 SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2696 2697 // Truncate the result of the extended FP_TO_*INT operation to the desired 2698 // size. 2699 return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2700} 2701 2702/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation. 2703/// 2704SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) { 2705 EVT VT = Op.getValueType(); 2706 EVT SHVT = TLI.getShiftAmountTy(VT); 2707 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 2708 switch (VT.getSimpleVT().SimpleTy) { 2709 default: assert(0 && "Unhandled Expand type in BSWAP!"); 2710 case MVT::i16: 2711 Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2712 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2713 return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); 2714 case MVT::i32: 2715 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2716 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2717 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2718 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2719 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT)); 2720 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT)); 2721 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2722 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2723 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2724 case MVT::i64: 2725 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT)); 2726 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT)); 2727 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2728 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2729 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2730 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2731 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT)); 2732 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT)); 2733 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT)); 2734 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT)); 2735 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT)); 2736 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT)); 2737 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT)); 2738 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT)); 2739 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 2740 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 2741 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2742 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2743 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 2744 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2745 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 2746 } 2747} 2748 2749/// SplatByte - Distribute ByteVal over NumBits bits. 2750// FIXME: Move this helper to a common place. 2751static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) { 2752 APInt Val = APInt(NumBits, ByteVal); 2753 unsigned Shift = 8; 2754 for (unsigned i = NumBits; i > 8; i >>= 1) { 2755 Val = (Val << Shift) | Val; 2756 Shift <<= 1; 2757 } 2758 return Val; 2759} 2760 2761/// ExpandBitCount - Expand the specified bitcount instruction into operations. 2762/// 2763SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op, 2764 DebugLoc dl) { 2765 switch (Opc) { 2766 default: assert(0 && "Cannot expand this yet!"); 2767 case ISD::CTPOP: { 2768 EVT VT = Op.getValueType(); 2769 EVT ShVT = TLI.getShiftAmountTy(VT); 2770 unsigned Len = VT.getSizeInBits(); 2771 2772 assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 && 2773 "CTPOP not implemented for this type."); 2774 2775 // This is the "best" algorithm from 2776 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 2777 2778 SDValue Mask55 = DAG.getConstant(SplatByte(Len, 0x55), VT); 2779 SDValue Mask33 = DAG.getConstant(SplatByte(Len, 0x33), VT); 2780 SDValue Mask0F = DAG.getConstant(SplatByte(Len, 0x0F), VT); 2781 SDValue Mask01 = DAG.getConstant(SplatByte(Len, 0x01), VT); 2782 2783 // v = v - ((v >> 1) & 0x55555555...) 2784 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 2785 DAG.getNode(ISD::AND, dl, VT, 2786 DAG.getNode(ISD::SRL, dl, VT, Op, 2787 DAG.getConstant(1, ShVT)), 2788 Mask55)); 2789 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 2790 Op = DAG.getNode(ISD::ADD, dl, VT, 2791 DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 2792 DAG.getNode(ISD::AND, dl, VT, 2793 DAG.getNode(ISD::SRL, dl, VT, Op, 2794 DAG.getConstant(2, ShVT)), 2795 Mask33)); 2796 // v = (v + (v >> 4)) & 0x0F0F0F0F... 2797 Op = DAG.getNode(ISD::AND, dl, VT, 2798 DAG.getNode(ISD::ADD, dl, VT, Op, 2799 DAG.getNode(ISD::SRL, dl, VT, Op, 2800 DAG.getConstant(4, ShVT))), 2801 Mask0F); 2802 // v = (v * 0x01010101...) >> (Len - 8) 2803 Op = DAG.getNode(ISD::SRL, dl, VT, 2804 DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 2805 DAG.getConstant(Len - 8, ShVT)); 2806 2807 return Op; 2808 } 2809 case ISD::CTLZ: { 2810 // for now, we do this: 2811 // x = x | (x >> 1); 2812 // x = x | (x >> 2); 2813 // ... 2814 // x = x | (x >>16); 2815 // x = x | (x >>32); // for 64-bit input 2816 // return popcount(~x); 2817 // 2818 // but see also: http://www.hackersdelight.org/HDcode/nlz.cc 2819 EVT VT = Op.getValueType(); 2820 EVT ShVT = TLI.getShiftAmountTy(VT); 2821 unsigned len = VT.getSizeInBits(); 2822 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 2823 SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT); 2824 Op = DAG.getNode(ISD::OR, dl, VT, Op, 2825 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3)); 2826 } 2827 Op = DAG.getNOT(dl, Op, VT); 2828 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 2829 } 2830 case ISD::CTTZ: { 2831 // for now, we use: { return popcount(~x & (x - 1)); } 2832 // unless the target has ctlz but not ctpop, in which case we use: 2833 // { return 32 - nlz(~x & (x-1)); } 2834 // see also http://www.hackersdelight.org/HDcode/ntz.cc 2835 EVT VT = Op.getValueType(); 2836 SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT, 2837 DAG.getNOT(dl, Op, VT), 2838 DAG.getNode(ISD::SUB, dl, VT, Op, 2839 DAG.getConstant(1, VT))); 2840 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 2841 if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) && 2842 TLI.isOperationLegalOrCustom(ISD::CTLZ, VT)) 2843 return DAG.getNode(ISD::SUB, dl, VT, 2844 DAG.getConstant(VT.getSizeInBits(), VT), 2845 DAG.getNode(ISD::CTLZ, dl, VT, Tmp3)); 2846 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3); 2847 } 2848 } 2849} 2850 2851std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) { 2852 unsigned Opc = Node->getOpcode(); 2853 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 2854 RTLIB::Libcall LC; 2855 2856 switch (Opc) { 2857 default: 2858 llvm_unreachable("Unhandled atomic intrinsic Expand!"); 2859 break; 2860 case ISD::ATOMIC_SWAP: 2861 switch (VT.SimpleTy) { 2862 default: llvm_unreachable("Unexpected value type for atomic!"); 2863 case MVT::i8: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break; 2864 case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break; 2865 case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break; 2866 case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break; 2867 } 2868 break; 2869 case ISD::ATOMIC_CMP_SWAP: 2870 switch (VT.SimpleTy) { 2871 default: llvm_unreachable("Unexpected value type for atomic!"); 2872 case MVT::i8: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break; 2873 case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break; 2874 case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break; 2875 case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break; 2876 } 2877 break; 2878 case ISD::ATOMIC_LOAD_ADD: 2879 switch (VT.SimpleTy) { 2880 default: llvm_unreachable("Unexpected value type for atomic!"); 2881 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_ADD_1; break; 2882 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break; 2883 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break; 2884 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break; 2885 } 2886 break; 2887 case ISD::ATOMIC_LOAD_SUB: 2888 switch (VT.SimpleTy) { 2889 default: llvm_unreachable("Unexpected value type for atomic!"); 2890 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_SUB_1; break; 2891 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break; 2892 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break; 2893 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break; 2894 } 2895 break; 2896 case ISD::ATOMIC_LOAD_AND: 2897 switch (VT.SimpleTy) { 2898 default: llvm_unreachable("Unexpected value type for atomic!"); 2899 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_AND_1; break; 2900 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break; 2901 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break; 2902 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break; 2903 } 2904 break; 2905 case ISD::ATOMIC_LOAD_OR: 2906 switch (VT.SimpleTy) { 2907 default: llvm_unreachable("Unexpected value type for atomic!"); 2908 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_OR_1; break; 2909 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break; 2910 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break; 2911 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break; 2912 } 2913 break; 2914 case ISD::ATOMIC_LOAD_XOR: 2915 switch (VT.SimpleTy) { 2916 default: llvm_unreachable("Unexpected value type for atomic!"); 2917 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_XOR_1; break; 2918 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break; 2919 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break; 2920 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break; 2921 } 2922 break; 2923 case ISD::ATOMIC_LOAD_NAND: 2924 switch (VT.SimpleTy) { 2925 default: llvm_unreachable("Unexpected value type for atomic!"); 2926 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_NAND_1; break; 2927 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break; 2928 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break; 2929 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break; 2930 } 2931 break; 2932 } 2933 2934 return ExpandChainLibCall(LC, Node, false); 2935} 2936 2937void SelectionDAGLegalize::ExpandNode(SDNode *Node, 2938 SmallVectorImpl<SDValue> &Results) { 2939 DebugLoc dl = Node->getDebugLoc(); 2940 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2941 switch (Node->getOpcode()) { 2942 case ISD::CTPOP: 2943 case ISD::CTLZ: 2944 case ISD::CTTZ: 2945 Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl); 2946 Results.push_back(Tmp1); 2947 break; 2948 case ISD::BSWAP: 2949 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl)); 2950 break; 2951 case ISD::FRAMEADDR: 2952 case ISD::RETURNADDR: 2953 case ISD::FRAME_TO_ARGS_OFFSET: 2954 Results.push_back(DAG.getConstant(0, Node->getValueType(0))); 2955 break; 2956 case ISD::FLT_ROUNDS_: 2957 Results.push_back(DAG.getConstant(1, Node->getValueType(0))); 2958 break; 2959 case ISD::EH_RETURN: 2960 case ISD::EH_LABEL: 2961 case ISD::PREFETCH: 2962 case ISD::VAEND: 2963 case ISD::EH_SJLJ_LONGJMP: 2964 case ISD::EH_SJLJ_DISPATCHSETUP: 2965 // If the target didn't expand these, there's nothing to do, so just 2966 // preserve the chain and be done. 2967 Results.push_back(Node->getOperand(0)); 2968 break; 2969 case ISD::EH_SJLJ_SETJMP: 2970 // If the target didn't expand this, just return 'zero' and preserve the 2971 // chain. 2972 Results.push_back(DAG.getConstant(0, MVT::i32)); 2973 Results.push_back(Node->getOperand(0)); 2974 break; 2975 case ISD::ATOMIC_FENCE: 2976 case ISD::MEMBARRIER: { 2977 // If the target didn't lower this, lower it to '__sync_synchronize()' call 2978 // FIXME: handle "fence singlethread" more efficiently. 2979 TargetLowering::ArgListTy Args; 2980 std::pair<SDValue, SDValue> CallResult = 2981 TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()), 2982 false, false, false, false, 0, CallingConv::C, 2983 /*isTailCall=*/false, 2984 /*isReturnValueUsed=*/true, 2985 DAG.getExternalSymbol("__sync_synchronize", 2986 TLI.getPointerTy()), 2987 Args, DAG, dl); 2988 Results.push_back(CallResult.second); 2989 break; 2990 } 2991 case ISD::ATOMIC_LOAD: { 2992 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. 2993 SDValue Zero = DAG.getConstant(0, Node->getValueType(0)); 2994 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, 2995 cast<AtomicSDNode>(Node)->getMemoryVT(), 2996 Node->getOperand(0), 2997 Node->getOperand(1), Zero, Zero, 2998 cast<AtomicSDNode>(Node)->getMemOperand(), 2999 cast<AtomicSDNode>(Node)->getOrdering(), 3000 cast<AtomicSDNode>(Node)->getSynchScope()); 3001 Results.push_back(Swap.getValue(0)); 3002 Results.push_back(Swap.getValue(1)); 3003 break; 3004 } 3005 case ISD::ATOMIC_STORE: { 3006 // There is no libcall for atomic store; fake it with ATOMIC_SWAP. 3007 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, 3008 cast<AtomicSDNode>(Node)->getMemoryVT(), 3009 Node->getOperand(0), 3010 Node->getOperand(1), Node->getOperand(2), 3011 cast<AtomicSDNode>(Node)->getMemOperand(), 3012 cast<AtomicSDNode>(Node)->getOrdering(), 3013 cast<AtomicSDNode>(Node)->getSynchScope()); 3014 Results.push_back(Swap.getValue(1)); 3015 break; 3016 } 3017 // By default, atomic intrinsics are marked Legal and lowered. Targets 3018 // which don't support them directly, however, may want libcalls, in which 3019 // case they mark them Expand, and we get here. 3020 case ISD::ATOMIC_SWAP: 3021 case ISD::ATOMIC_LOAD_ADD: 3022 case ISD::ATOMIC_LOAD_SUB: 3023 case ISD::ATOMIC_LOAD_AND: 3024 case ISD::ATOMIC_LOAD_OR: 3025 case ISD::ATOMIC_LOAD_XOR: 3026 case ISD::ATOMIC_LOAD_NAND: 3027 case ISD::ATOMIC_LOAD_MIN: 3028 case ISD::ATOMIC_LOAD_MAX: 3029 case ISD::ATOMIC_LOAD_UMIN: 3030 case ISD::ATOMIC_LOAD_UMAX: 3031 case ISD::ATOMIC_CMP_SWAP: { 3032 std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node); 3033 Results.push_back(Tmp.first); 3034 Results.push_back(Tmp.second); 3035 break; 3036 } 3037 case ISD::DYNAMIC_STACKALLOC: 3038 ExpandDYNAMIC_STACKALLOC(Node, Results); 3039 break; 3040 case ISD::MERGE_VALUES: 3041 for (unsigned i = 0; i < Node->getNumValues(); i++) 3042 Results.push_back(Node->getOperand(i)); 3043 break; 3044 case ISD::UNDEF: { 3045 EVT VT = Node->getValueType(0); 3046 if (VT.isInteger()) 3047 Results.push_back(DAG.getConstant(0, VT)); 3048 else { 3049 assert(VT.isFloatingPoint() && "Unknown value type!"); 3050 Results.push_back(DAG.getConstantFP(0, VT)); 3051 } 3052 break; 3053 } 3054 case ISD::TRAP: { 3055 // If this operation is not supported, lower it to 'abort()' call 3056 TargetLowering::ArgListTy Args; 3057 std::pair<SDValue, SDValue> CallResult = 3058 TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()), 3059 false, false, false, false, 0, CallingConv::C, 3060 /*isTailCall=*/false, 3061 /*isReturnValueUsed=*/true, 3062 DAG.getExternalSymbol("abort", TLI.getPointerTy()), 3063 Args, DAG, dl); 3064 Results.push_back(CallResult.second); 3065 break; 3066 } 3067 case ISD::FP_ROUND: 3068 case ISD::BITCAST: 3069 Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 3070 Node->getValueType(0), dl); 3071 Results.push_back(Tmp1); 3072 break; 3073 case ISD::FP_EXTEND: 3074 Tmp1 = EmitStackConvert(Node->getOperand(0), 3075 Node->getOperand(0).getValueType(), 3076 Node->getValueType(0), dl); 3077 Results.push_back(Tmp1); 3078 break; 3079 case ISD::SIGN_EXTEND_INREG: { 3080 // NOTE: we could fall back on load/store here too for targets without 3081 // SAR. However, it is doubtful that any exist. 3082 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 3083 EVT VT = Node->getValueType(0); 3084 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT); 3085 if (VT.isVector()) 3086 ShiftAmountTy = VT; 3087 unsigned BitsDiff = VT.getScalarType().getSizeInBits() - 3088 ExtraVT.getScalarType().getSizeInBits(); 3089 SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy); 3090 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 3091 Node->getOperand(0), ShiftCst); 3092 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 3093 Results.push_back(Tmp1); 3094 break; 3095 } 3096 case ISD::FP_ROUND_INREG: { 3097 // The only way we can lower this is to turn it into a TRUNCSTORE, 3098 // EXTLOAD pair, targeting a temporary location (a stack slot). 3099 3100 // NOTE: there is a choice here between constantly creating new stack 3101 // slots and always reusing the same one. We currently always create 3102 // new ones, as reuse may inhibit scheduling. 3103 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 3104 Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT, 3105 Node->getValueType(0), dl); 3106 Results.push_back(Tmp1); 3107 break; 3108 } 3109 case ISD::SINT_TO_FP: 3110 case ISD::UINT_TO_FP: 3111 Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP, 3112 Node->getOperand(0), Node->getValueType(0), dl); 3113 Results.push_back(Tmp1); 3114 break; 3115 case ISD::FP_TO_UINT: { 3116 SDValue True, False; 3117 EVT VT = Node->getOperand(0).getValueType(); 3118 EVT NVT = Node->getValueType(0); 3119 APFloat apf(APInt::getNullValue(VT.getSizeInBits())); 3120 APInt x = APInt::getSignBit(NVT.getSizeInBits()); 3121 (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven); 3122 Tmp1 = DAG.getConstantFP(apf, VT); 3123 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), 3124 Node->getOperand(0), 3125 Tmp1, ISD::SETLT); 3126 True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0)); 3127 False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, 3128 DAG.getNode(ISD::FSUB, dl, VT, 3129 Node->getOperand(0), Tmp1)); 3130 False = DAG.getNode(ISD::XOR, dl, NVT, False, 3131 DAG.getConstant(x, NVT)); 3132 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False); 3133 Results.push_back(Tmp1); 3134 break; 3135 } 3136 case ISD::VAARG: { 3137 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3138 EVT VT = Node->getValueType(0); 3139 Tmp1 = Node->getOperand(0); 3140 Tmp2 = Node->getOperand(1); 3141 unsigned Align = Node->getConstantOperandVal(3); 3142 3143 SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, 3144 MachinePointerInfo(V), false, false, 0); 3145 SDValue VAList = VAListLoad; 3146 3147 if (Align > TLI.getMinStackArgumentAlignment()) { 3148 assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); 3149 3150 VAList = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList, 3151 DAG.getConstant(Align - 1, 3152 TLI.getPointerTy())); 3153 3154 VAList = DAG.getNode(ISD::AND, dl, TLI.getPointerTy(), VAList, 3155 DAG.getConstant(-(int64_t)Align, 3156 TLI.getPointerTy())); 3157 } 3158 3159 // Increment the pointer, VAList, to the next vaarg 3160 Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList, 3161 DAG.getConstant(TLI.getTargetData()-> 3162 getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())), 3163 TLI.getPointerTy())); 3164 // Store the incremented VAList to the legalized pointer 3165 Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2, 3166 MachinePointerInfo(V), false, false, 0); 3167 // Load the actual argument out of the pointer VAList 3168 Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, MachinePointerInfo(), 3169 false, false, 0)); 3170 Results.push_back(Results[0].getValue(1)); 3171 break; 3172 } 3173 case ISD::VACOPY: { 3174 // This defaults to loading a pointer from the input and storing it to the 3175 // output, returning the chain. 3176 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 3177 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 3178 Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0), 3179 Node->getOperand(2), MachinePointerInfo(VS), 3180 false, false, 0); 3181 Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 3182 MachinePointerInfo(VD), false, false, 0); 3183 Results.push_back(Tmp1); 3184 break; 3185 } 3186 case ISD::EXTRACT_VECTOR_ELT: 3187 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) 3188 // This must be an access of the only element. Return it. 3189 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 3190 Node->getOperand(0)); 3191 else 3192 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 3193 Results.push_back(Tmp1); 3194 break; 3195 case ISD::EXTRACT_SUBVECTOR: 3196 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 3197 break; 3198 case ISD::INSERT_SUBVECTOR: 3199 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 3200 break; 3201 case ISD::CONCAT_VECTORS: { 3202 Results.push_back(ExpandVectorBuildThroughStack(Node)); 3203 break; 3204 } 3205 case ISD::SCALAR_TO_VECTOR: 3206 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 3207 break; 3208 case ISD::INSERT_VECTOR_ELT: 3209 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 3210 Node->getOperand(1), 3211 Node->getOperand(2), dl)); 3212 break; 3213 case ISD::VECTOR_SHUFFLE: { 3214 SmallVector<int, 8> Mask; 3215 cast<ShuffleVectorSDNode>(Node)->getMask(Mask); 3216 3217 EVT VT = Node->getValueType(0); 3218 EVT EltVT = VT.getVectorElementType(); 3219 if (!TLI.isTypeLegal(EltVT)) 3220 EltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 3221 unsigned NumElems = VT.getVectorNumElements(); 3222 SmallVector<SDValue, 8> Ops; 3223 for (unsigned i = 0; i != NumElems; ++i) { 3224 if (Mask[i] < 0) { 3225 Ops.push_back(DAG.getUNDEF(EltVT)); 3226 continue; 3227 } 3228 unsigned Idx = Mask[i]; 3229 if (Idx < NumElems) 3230 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, 3231 Node->getOperand(0), 3232 DAG.getIntPtrConstant(Idx))); 3233 else 3234 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, 3235 Node->getOperand(1), 3236 DAG.getIntPtrConstant(Idx - NumElems))); 3237 } 3238 Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size()); 3239 Results.push_back(Tmp1); 3240 break; 3241 } 3242 case ISD::EXTRACT_ELEMENT: { 3243 EVT OpTy = Node->getOperand(0).getValueType(); 3244 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 3245 // 1 -> Hi 3246 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 3247 DAG.getConstant(OpTy.getSizeInBits()/2, 3248 TLI.getShiftAmountTy(Node->getOperand(0).getValueType()))); 3249 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 3250 } else { 3251 // 0 -> Lo 3252 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 3253 Node->getOperand(0)); 3254 } 3255 Results.push_back(Tmp1); 3256 break; 3257 } 3258 case ISD::STACKSAVE: 3259 // Expand to CopyFromReg if the target set 3260 // StackPointerRegisterToSaveRestore. 3261 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3262 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 3263 Node->getValueType(0))); 3264 Results.push_back(Results[0].getValue(1)); 3265 } else { 3266 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 3267 Results.push_back(Node->getOperand(0)); 3268 } 3269 break; 3270 case ISD::STACKRESTORE: 3271 // Expand to CopyToReg if the target set 3272 // StackPointerRegisterToSaveRestore. 3273 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3274 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 3275 Node->getOperand(1))); 3276 } else { 3277 Results.push_back(Node->getOperand(0)); 3278 } 3279 break; 3280 case ISD::FCOPYSIGN: 3281 Results.push_back(ExpandFCOPYSIGN(Node)); 3282 break; 3283 case ISD::FNEG: 3284 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 3285 Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0)); 3286 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1, 3287 Node->getOperand(0)); 3288 Results.push_back(Tmp1); 3289 break; 3290 case ISD::FABS: { 3291 // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X). 3292 EVT VT = Node->getValueType(0); 3293 Tmp1 = Node->getOperand(0); 3294 Tmp2 = DAG.getConstantFP(0.0, VT); 3295 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()), 3296 Tmp1, Tmp2, ISD::SETUGT); 3297 Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1); 3298 Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3); 3299 Results.push_back(Tmp1); 3300 break; 3301 } 3302 case ISD::FSQRT: 3303 Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 3304 RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128)); 3305 break; 3306 case ISD::FSIN: 3307 Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 3308 RTLIB::SIN_F80, RTLIB::SIN_PPCF128)); 3309 break; 3310 case ISD::FCOS: 3311 Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 3312 RTLIB::COS_F80, RTLIB::COS_PPCF128)); 3313 break; 3314 case ISD::FLOG: 3315 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, 3316 RTLIB::LOG_F80, RTLIB::LOG_PPCF128)); 3317 break; 3318 case ISD::FLOG2: 3319 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, 3320 RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128)); 3321 break; 3322 case ISD::FLOG10: 3323 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, 3324 RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128)); 3325 break; 3326 case ISD::FEXP: 3327 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, 3328 RTLIB::EXP_F80, RTLIB::EXP_PPCF128)); 3329 break; 3330 case ISD::FEXP2: 3331 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, 3332 RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128)); 3333 break; 3334 case ISD::FTRUNC: 3335 Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 3336 RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128)); 3337 break; 3338 case ISD::FFLOOR: 3339 Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 3340 RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128)); 3341 break; 3342 case ISD::FCEIL: 3343 Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 3344 RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128)); 3345 break; 3346 case ISD::FRINT: 3347 Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 3348 RTLIB::RINT_F80, RTLIB::RINT_PPCF128)); 3349 break; 3350 case ISD::FNEARBYINT: 3351 Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 3352 RTLIB::NEARBYINT_F64, 3353 RTLIB::NEARBYINT_F80, 3354 RTLIB::NEARBYINT_PPCF128)); 3355 break; 3356 case ISD::FPOWI: 3357 Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64, 3358 RTLIB::POWI_F80, RTLIB::POWI_PPCF128)); 3359 break; 3360 case ISD::FPOW: 3361 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, 3362 RTLIB::POW_F80, RTLIB::POW_PPCF128)); 3363 break; 3364 case ISD::FDIV: 3365 Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 3366 RTLIB::DIV_F80, RTLIB::DIV_PPCF128)); 3367 break; 3368 case ISD::FREM: 3369 Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 3370 RTLIB::REM_F80, RTLIB::REM_PPCF128)); 3371 break; 3372 case ISD::FMA: 3373 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 3374 RTLIB::FMA_F80, RTLIB::FMA_PPCF128)); 3375 break; 3376 case ISD::FP16_TO_FP32: 3377 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); 3378 break; 3379 case ISD::FP32_TO_FP16: 3380 Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false)); 3381 break; 3382 case ISD::ConstantFP: { 3383 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 3384 // Check to see if this FP immediate is already legal. 3385 // If this is a legal constant, turn it into a TargetConstantFP node. 3386 if (TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0))) 3387 Results.push_back(SDValue(Node, 0)); 3388 else 3389 Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI)); 3390 break; 3391 } 3392 case ISD::EHSELECTION: { 3393 unsigned Reg = TLI.getExceptionSelectorRegister(); 3394 assert(Reg && "Can't expand to unknown register!"); 3395 Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg, 3396 Node->getValueType(0))); 3397 Results.push_back(Results[0].getValue(1)); 3398 break; 3399 } 3400 case ISD::EXCEPTIONADDR: { 3401 unsigned Reg = TLI.getExceptionAddressRegister(); 3402 assert(Reg && "Can't expand to unknown register!"); 3403 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg, 3404 Node->getValueType(0))); 3405 Results.push_back(Results[0].getValue(1)); 3406 break; 3407 } 3408 case ISD::SUB: { 3409 EVT VT = Node->getValueType(0); 3410 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3411 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 3412 "Don't know how to expand this subtraction!"); 3413 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1), 3414 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT)); 3415 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT)); 3416 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 3417 break; 3418 } 3419 case ISD::UREM: 3420 case ISD::SREM: { 3421 EVT VT = Node->getValueType(0); 3422 SDVTList VTs = DAG.getVTList(VT, VT); 3423 bool isSigned = Node->getOpcode() == ISD::SREM; 3424 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 3425 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3426 Tmp2 = Node->getOperand(0); 3427 Tmp3 = Node->getOperand(1); 3428 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) || 3429 (isDivRemLibcallAvailable(Node, isSigned, TLI) && 3430 UseDivRem(Node, isSigned, false))) { 3431 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1); 3432 } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) { 3433 // X % Y -> X-X/Y*Y 3434 Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3); 3435 Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3); 3436 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1); 3437 } else if (isSigned) 3438 Tmp1 = ExpandIntLibCall(Node, true, 3439 RTLIB::SREM_I8, 3440 RTLIB::SREM_I16, RTLIB::SREM_I32, 3441 RTLIB::SREM_I64, RTLIB::SREM_I128); 3442 else 3443 Tmp1 = ExpandIntLibCall(Node, false, 3444 RTLIB::UREM_I8, 3445 RTLIB::UREM_I16, RTLIB::UREM_I32, 3446 RTLIB::UREM_I64, RTLIB::UREM_I128); 3447 Results.push_back(Tmp1); 3448 break; 3449 } 3450 case ISD::UDIV: 3451 case ISD::SDIV: { 3452 bool isSigned = Node->getOpcode() == ISD::SDIV; 3453 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3454 EVT VT = Node->getValueType(0); 3455 SDVTList VTs = DAG.getVTList(VT, VT); 3456 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) || 3457 (isDivRemLibcallAvailable(Node, isSigned, TLI) && 3458 UseDivRem(Node, isSigned, true))) 3459 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3460 Node->getOperand(1)); 3461 else if (isSigned) 3462 Tmp1 = ExpandIntLibCall(Node, true, 3463 RTLIB::SDIV_I8, 3464 RTLIB::SDIV_I16, RTLIB::SDIV_I32, 3465 RTLIB::SDIV_I64, RTLIB::SDIV_I128); 3466 else 3467 Tmp1 = ExpandIntLibCall(Node, false, 3468 RTLIB::UDIV_I8, 3469 RTLIB::UDIV_I16, RTLIB::UDIV_I32, 3470 RTLIB::UDIV_I64, RTLIB::UDIV_I128); 3471 Results.push_back(Tmp1); 3472 break; 3473 } 3474 case ISD::MULHU: 3475 case ISD::MULHS: { 3476 unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : 3477 ISD::SMUL_LOHI; 3478 EVT VT = Node->getValueType(0); 3479 SDVTList VTs = DAG.getVTList(VT, VT); 3480 assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) && 3481 "If this wasn't legal, it shouldn't have been created!"); 3482 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3483 Node->getOperand(1)); 3484 Results.push_back(Tmp1.getValue(1)); 3485 break; 3486 } 3487 case ISD::SDIVREM: 3488 case ISD::UDIVREM: 3489 // Expand into divrem libcall 3490 ExpandDivRemLibCall(Node, Results); 3491 break; 3492 case ISD::MUL: { 3493 EVT VT = Node->getValueType(0); 3494 SDVTList VTs = DAG.getVTList(VT, VT); 3495 // See if multiply or divide can be lowered using two-result operations. 3496 // We just need the low half of the multiply; try both the signed 3497 // and unsigned forms. If the target supports both SMUL_LOHI and 3498 // UMUL_LOHI, form a preference by checking which forms of plain 3499 // MULH it supports. 3500 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3501 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3502 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3503 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3504 unsigned OpToUse = 0; 3505 if (HasSMUL_LOHI && !HasMULHS) { 3506 OpToUse = ISD::SMUL_LOHI; 3507 } else if (HasUMUL_LOHI && !HasMULHU) { 3508 OpToUse = ISD::UMUL_LOHI; 3509 } else if (HasSMUL_LOHI) { 3510 OpToUse = ISD::SMUL_LOHI; 3511 } else if (HasUMUL_LOHI) { 3512 OpToUse = ISD::UMUL_LOHI; 3513 } 3514 if (OpToUse) { 3515 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3516 Node->getOperand(1))); 3517 break; 3518 } 3519 Tmp1 = ExpandIntLibCall(Node, false, 3520 RTLIB::MUL_I8, 3521 RTLIB::MUL_I16, RTLIB::MUL_I32, 3522 RTLIB::MUL_I64, RTLIB::MUL_I128); 3523 Results.push_back(Tmp1); 3524 break; 3525 } 3526 case ISD::SADDO: 3527 case ISD::SSUBO: { 3528 SDValue LHS = Node->getOperand(0); 3529 SDValue RHS = Node->getOperand(1); 3530 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ? 3531 ISD::ADD : ISD::SUB, dl, LHS.getValueType(), 3532 LHS, RHS); 3533 Results.push_back(Sum); 3534 EVT OType = Node->getValueType(1); 3535 3536 SDValue Zero = DAG.getConstant(0, LHS.getValueType()); 3537 3538 // LHSSign -> LHS >= 0 3539 // RHSSign -> RHS >= 0 3540 // SumSign -> Sum >= 0 3541 // 3542 // Add: 3543 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) 3544 // Sub: 3545 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) 3546 // 3547 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE); 3548 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE); 3549 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign, 3550 Node->getOpcode() == ISD::SADDO ? 3551 ISD::SETEQ : ISD::SETNE); 3552 3553 SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE); 3554 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE); 3555 3556 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE); 3557 Results.push_back(Cmp); 3558 break; 3559 } 3560 case ISD::UADDO: 3561 case ISD::USUBO: { 3562 SDValue LHS = Node->getOperand(0); 3563 SDValue RHS = Node->getOperand(1); 3564 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ? 3565 ISD::ADD : ISD::SUB, dl, LHS.getValueType(), 3566 LHS, RHS); 3567 Results.push_back(Sum); 3568 Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS, 3569 Node->getOpcode () == ISD::UADDO ? 3570 ISD::SETULT : ISD::SETUGT)); 3571 break; 3572 } 3573 case ISD::UMULO: 3574 case ISD::SMULO: { 3575 EVT VT = Node->getValueType(0); 3576 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2); 3577 SDValue LHS = Node->getOperand(0); 3578 SDValue RHS = Node->getOperand(1); 3579 SDValue BottomHalf; 3580 SDValue TopHalf; 3581 static const unsigned Ops[2][3] = 3582 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 3583 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 3584 bool isSigned = Node->getOpcode() == ISD::SMULO; 3585 if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 3586 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 3587 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 3588 } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 3589 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 3590 RHS); 3591 TopHalf = BottomHalf.getValue(1); 3592 } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(), 3593 VT.getSizeInBits() * 2))) { 3594 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 3595 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 3596 Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 3597 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, 3598 DAG.getIntPtrConstant(0)); 3599 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, 3600 DAG.getIntPtrConstant(1)); 3601 } else { 3602 // We can fall back to a libcall with an illegal type for the MUL if we 3603 // have a libcall big enough. 3604 // Also, we can fall back to a division in some cases, but that's a big 3605 // performance hit in the general case. 3606 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3607 if (WideVT == MVT::i16) 3608 LC = RTLIB::MUL_I16; 3609 else if (WideVT == MVT::i32) 3610 LC = RTLIB::MUL_I32; 3611 else if (WideVT == MVT::i64) 3612 LC = RTLIB::MUL_I64; 3613 else if (WideVT == MVT::i128) 3614 LC = RTLIB::MUL_I128; 3615 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 3616 3617 // The high part is obtained by SRA'ing all but one of the bits of low 3618 // part. 3619 unsigned LoSize = VT.getSizeInBits(); 3620 SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, RHS, 3621 DAG.getConstant(LoSize-1, TLI.getPointerTy())); 3622 SDValue HiRHS = DAG.getNode(ISD::SRA, dl, VT, LHS, 3623 DAG.getConstant(LoSize-1, TLI.getPointerTy())); 3624 3625 // Here we're passing the 2 arguments explicitly as 4 arguments that are 3626 // pre-lowered to the correct types. This all depends upon WideVT not 3627 // being a legal type for the architecture and thus has to be split to 3628 // two arguments. 3629 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 3630 SDValue Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl); 3631 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret, 3632 DAG.getIntPtrConstant(0)); 3633 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret, 3634 DAG.getIntPtrConstant(1)); 3635 } 3636 3637 if (isSigned) { 3638 Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, 3639 TLI.getShiftAmountTy(BottomHalf.getValueType())); 3640 Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1); 3641 TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1, 3642 ISD::SETNE); 3643 } else { 3644 TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, 3645 DAG.getConstant(0, VT), ISD::SETNE); 3646 } 3647 Results.push_back(BottomHalf); 3648 Results.push_back(TopHalf); 3649 break; 3650 } 3651 case ISD::BUILD_PAIR: { 3652 EVT PairTy = Node->getValueType(0); 3653 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 3654 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 3655 Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2, 3656 DAG.getConstant(PairTy.getSizeInBits()/2, 3657 TLI.getShiftAmountTy(PairTy))); 3658 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 3659 break; 3660 } 3661 case ISD::SELECT: 3662 Tmp1 = Node->getOperand(0); 3663 Tmp2 = Node->getOperand(1); 3664 Tmp3 = Node->getOperand(2); 3665 if (Tmp1.getOpcode() == ISD::SETCC) { 3666 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3667 Tmp2, Tmp3, 3668 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3669 } else { 3670 Tmp1 = DAG.getSelectCC(dl, Tmp1, 3671 DAG.getConstant(0, Tmp1.getValueType()), 3672 Tmp2, Tmp3, ISD::SETNE); 3673 } 3674 Results.push_back(Tmp1); 3675 break; 3676 case ISD::BR_JT: { 3677 SDValue Chain = Node->getOperand(0); 3678 SDValue Table = Node->getOperand(1); 3679 SDValue Index = Node->getOperand(2); 3680 3681 EVT PTy = TLI.getPointerTy(); 3682 3683 const TargetData &TD = *TLI.getTargetData(); 3684 unsigned EntrySize = 3685 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 3686 3687 Index = DAG.getNode(ISD::MUL, dl, PTy, 3688 Index, DAG.getConstant(EntrySize, PTy)); 3689 SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table); 3690 3691 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 3692 SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr, 3693 MachinePointerInfo::getJumpTable(), MemVT, 3694 false, false, 0); 3695 Addr = LD; 3696 if (TM.getRelocationModel() == Reloc::PIC_) { 3697 // For PIC, the sequence is: 3698 // BRIND(load(Jumptable + index) + RelocBase) 3699 // RelocBase can be JumpTable, GOT or some sort of global base. 3700 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 3701 TLI.getPICJumpTableRelocBase(Table, DAG)); 3702 } 3703 Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr); 3704 Results.push_back(Tmp1); 3705 break; 3706 } 3707 case ISD::BRCOND: 3708 // Expand brcond's setcc into its constituent parts and create a BR_CC 3709 // Node. 3710 Tmp1 = Node->getOperand(0); 3711 Tmp2 = Node->getOperand(1); 3712 if (Tmp2.getOpcode() == ISD::SETCC) { 3713 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, 3714 Tmp1, Tmp2.getOperand(2), 3715 Tmp2.getOperand(0), Tmp2.getOperand(1), 3716 Node->getOperand(2)); 3717 } else { 3718 // We test only the i1 bit. Skip the AND if UNDEF. 3719 Tmp3 = (Tmp2.getOpcode() == ISD::UNDEF) ? Tmp2 : 3720 DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 3721 DAG.getConstant(1, Tmp2.getValueType())); 3722 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 3723 DAG.getCondCode(ISD::SETNE), Tmp3, 3724 DAG.getConstant(0, Tmp3.getValueType()), 3725 Node->getOperand(2)); 3726 } 3727 Results.push_back(Tmp1); 3728 break; 3729 case ISD::SETCC: { 3730 Tmp1 = Node->getOperand(0); 3731 Tmp2 = Node->getOperand(1); 3732 Tmp3 = Node->getOperand(2); 3733 LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl); 3734 3735 // If we expanded the SETCC into an AND/OR, return the new node 3736 if (Tmp2.getNode() == 0) { 3737 Results.push_back(Tmp1); 3738 break; 3739 } 3740 3741 // Otherwise, SETCC for the given comparison type must be completely 3742 // illegal; expand it into a SELECT_CC. 3743 EVT VT = Node->getValueType(0); 3744 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3745 DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3); 3746 Results.push_back(Tmp1); 3747 break; 3748 } 3749 case ISD::SELECT_CC: { 3750 Tmp1 = Node->getOperand(0); // LHS 3751 Tmp2 = Node->getOperand(1); // RHS 3752 Tmp3 = Node->getOperand(2); // True 3753 Tmp4 = Node->getOperand(3); // False 3754 SDValue CC = Node->getOperand(4); 3755 3756 LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()), 3757 Tmp1, Tmp2, CC, dl); 3758 3759 assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!"); 3760 Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); 3761 CC = DAG.getCondCode(ISD::SETNE); 3762 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2, 3763 Tmp3, Tmp4, CC); 3764 Results.push_back(Tmp1); 3765 break; 3766 } 3767 case ISD::BR_CC: { 3768 Tmp1 = Node->getOperand(0); // Chain 3769 Tmp2 = Node->getOperand(2); // LHS 3770 Tmp3 = Node->getOperand(3); // RHS 3771 Tmp4 = Node->getOperand(1); // CC 3772 3773 LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()), 3774 Tmp2, Tmp3, Tmp4, dl); 3775 LastCALLSEQ_END = DAG.getEntryNode(); 3776 3777 assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!"); 3778 Tmp3 = DAG.getConstant(0, Tmp2.getValueType()); 3779 Tmp4 = DAG.getCondCode(ISD::SETNE); 3780 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2, 3781 Tmp3, Node->getOperand(4)); 3782 Results.push_back(Tmp1); 3783 break; 3784 } 3785 case ISD::GLOBAL_OFFSET_TABLE: 3786 case ISD::GlobalAddress: 3787 case ISD::GlobalTLSAddress: 3788 case ISD::ExternalSymbol: 3789 case ISD::ConstantPool: 3790 case ISD::JumpTable: 3791 case ISD::INTRINSIC_W_CHAIN: 3792 case ISD::INTRINSIC_WO_CHAIN: 3793 case ISD::INTRINSIC_VOID: 3794 // FIXME: Custom lowering for these operations shouldn't return null! 3795 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 3796 Results.push_back(SDValue(Node, i)); 3797 break; 3798 } 3799} 3800void SelectionDAGLegalize::PromoteNode(SDNode *Node, 3801 SmallVectorImpl<SDValue> &Results) { 3802 EVT OVT = Node->getValueType(0); 3803 if (Node->getOpcode() == ISD::UINT_TO_FP || 3804 Node->getOpcode() == ISD::SINT_TO_FP || 3805 Node->getOpcode() == ISD::SETCC) { 3806 OVT = Node->getOperand(0).getValueType(); 3807 } 3808 EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3809 DebugLoc dl = Node->getDebugLoc(); 3810 SDValue Tmp1, Tmp2, Tmp3; 3811 switch (Node->getOpcode()) { 3812 case ISD::CTTZ: 3813 case ISD::CTLZ: 3814 case ISD::CTPOP: 3815 // Zero extend the argument. 3816 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 3817 // Perform the larger operation. 3818 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 3819 if (Node->getOpcode() == ISD::CTTZ) { 3820 //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) 3821 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), 3822 Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT), 3823 ISD::SETEQ); 3824 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, 3825 DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1); 3826 } else if (Node->getOpcode() == ISD::CTLZ) { 3827 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 3828 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 3829 DAG.getConstant(NVT.getSizeInBits() - 3830 OVT.getSizeInBits(), NVT)); 3831 } 3832 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 3833 break; 3834 case ISD::BSWAP: { 3835 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 3836 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 3837 Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1); 3838 Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1, 3839 DAG.getConstant(DiffBits, TLI.getShiftAmountTy(NVT))); 3840 Results.push_back(Tmp1); 3841 break; 3842 } 3843 case ISD::FP_TO_UINT: 3844 case ISD::FP_TO_SINT: 3845 Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0), 3846 Node->getOpcode() == ISD::FP_TO_SINT, dl); 3847 Results.push_back(Tmp1); 3848 break; 3849 case ISD::UINT_TO_FP: 3850 case ISD::SINT_TO_FP: 3851 Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0), 3852 Node->getOpcode() == ISD::SINT_TO_FP, dl); 3853 Results.push_back(Tmp1); 3854 break; 3855 case ISD::AND: 3856 case ISD::OR: 3857 case ISD::XOR: { 3858 unsigned ExtOp, TruncOp; 3859 if (OVT.isVector()) { 3860 ExtOp = ISD::BITCAST; 3861 TruncOp = ISD::BITCAST; 3862 } else { 3863 assert(OVT.isInteger() && "Cannot promote logic operation"); 3864 ExtOp = ISD::ANY_EXTEND; 3865 TruncOp = ISD::TRUNCATE; 3866 } 3867 // Promote each of the values to the new type. 3868 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 3869 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 3870 // Perform the larger operation, then convert back 3871 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 3872 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 3873 break; 3874 } 3875 case ISD::SELECT: { 3876 unsigned ExtOp, TruncOp; 3877 if (Node->getValueType(0).isVector()) { 3878 ExtOp = ISD::BITCAST; 3879 TruncOp = ISD::BITCAST; 3880 } else if (Node->getValueType(0).isInteger()) { 3881 ExtOp = ISD::ANY_EXTEND; 3882 TruncOp = ISD::TRUNCATE; 3883 } else { 3884 ExtOp = ISD::FP_EXTEND; 3885 TruncOp = ISD::FP_ROUND; 3886 } 3887 Tmp1 = Node->getOperand(0); 3888 // Promote each of the values to the new type. 3889 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 3890 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 3891 // Perform the larger operation, then round down. 3892 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3); 3893 if (TruncOp != ISD::FP_ROUND) 3894 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 3895 else 3896 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 3897 DAG.getIntPtrConstant(0)); 3898 Results.push_back(Tmp1); 3899 break; 3900 } 3901 case ISD::VECTOR_SHUFFLE: { 3902 SmallVector<int, 8> Mask; 3903 cast<ShuffleVectorSDNode>(Node)->getMask(Mask); 3904 3905 // Cast the two input vectors. 3906 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 3907 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 3908 3909 // Convert the shuffle mask to the right # elements. 3910 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 3911 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 3912 Results.push_back(Tmp1); 3913 break; 3914 } 3915 case ISD::SETCC: { 3916 unsigned ExtOp = ISD::FP_EXTEND; 3917 if (NVT.isInteger()) { 3918 ISD::CondCode CCCode = 3919 cast<CondCodeSDNode>(Node->getOperand(2))->get(); 3920 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 3921 } 3922 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 3923 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 3924 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 3925 Tmp1, Tmp2, Node->getOperand(2))); 3926 break; 3927 } 3928 } 3929} 3930 3931// SelectionDAG::Legalize - This is the entry point for the file. 3932// 3933void SelectionDAG::Legalize() { 3934 /// run - This is the main entry point to this class. 3935 /// 3936 SelectionDAGLegalize(*this).LegalizeDAG(); 3937} 3938