LegalizeDAG.cpp revision e07415d4006b923ed1d2057ffa5a493353e28f9e
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the SelectionDAG::Legalize method. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/SelectionDAG.h" 15#include "llvm/CodeGen/MachineFunction.h" 16#include "llvm/CodeGen/MachineFrameInfo.h" 17#include "llvm/CodeGen/MachineJumpTableInfo.h" 18#include "llvm/CodeGen/MachineModuleInfo.h" 19#include "llvm/CodeGen/PseudoSourceValue.h" 20#include "llvm/Target/TargetFrameInfo.h" 21#include "llvm/Target/TargetLowering.h" 22#include "llvm/Target/TargetData.h" 23#include "llvm/Target/TargetMachine.h" 24#include "llvm/Target/TargetOptions.h" 25#include "llvm/CallingConv.h" 26#include "llvm/Constants.h" 27#include "llvm/DerivedTypes.h" 28#include "llvm/Support/CommandLine.h" 29#include "llvm/Support/Compiler.h" 30#include "llvm/Support/MathExtras.h" 31#include "llvm/ADT/DenseMap.h" 32#include "llvm/ADT/SmallVector.h" 33#include "llvm/ADT/SmallPtrSet.h" 34#include <map> 35using namespace llvm; 36 37#ifndef NDEBUG 38static cl::opt<bool> 39ViewLegalizeDAGs("view-legalize-dags", cl::Hidden, 40 cl::desc("Pop up a window to show dags before legalize")); 41#else 42static const bool ViewLegalizeDAGs = 0; 43#endif 44 45//===----------------------------------------------------------------------===// 46/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and 47/// hacks on it until the target machine can handle it. This involves 48/// eliminating value sizes the machine cannot handle (promoting small sizes to 49/// large sizes or splitting up large values into small values) as well as 50/// eliminating operations the machine cannot handle. 51/// 52/// This code also does a small amount of optimization and recognition of idioms 53/// as part of its processing. For example, if a target does not support a 54/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 55/// will attempt merge setcc and brc instructions into brcc's. 56/// 57namespace { 58class VISIBILITY_HIDDEN SelectionDAGLegalize { 59 TargetLowering &TLI; 60 SelectionDAG &DAG; 61 62 // Libcall insertion helpers. 63 64 /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been 65 /// legalized. We use this to ensure that calls are properly serialized 66 /// against each other, including inserted libcalls. 67 SDOperand LastCALLSEQ_END; 68 69 /// IsLegalizingCall - This member is used *only* for purposes of providing 70 /// helpful assertions that a libcall isn't created while another call is 71 /// being legalized (which could lead to non-serialized call sequences). 72 bool IsLegalizingCall; 73 74 enum LegalizeAction { 75 Legal, // The target natively supports this operation. 76 Promote, // This operation should be executed in a larger type. 77 Expand // Try to expand this to other ops, otherwise use a libcall. 78 }; 79 80 /// ValueTypeActions - This is a bitvector that contains two bits for each 81 /// value type, where the two bits correspond to the LegalizeAction enum. 82 /// This can be queried with "getTypeAction(VT)". 83 TargetLowering::ValueTypeActionImpl ValueTypeActions; 84 85 /// LegalizedNodes - For nodes that are of legal width, and that have more 86 /// than one use, this map indicates what regularized operand to use. This 87 /// allows us to avoid legalizing the same thing more than once. 88 DenseMap<SDOperand, SDOperand> LegalizedNodes; 89 90 /// PromotedNodes - For nodes that are below legal width, and that have more 91 /// than one use, this map indicates what promoted value to use. This allows 92 /// us to avoid promoting the same thing more than once. 93 DenseMap<SDOperand, SDOperand> PromotedNodes; 94 95 /// ExpandedNodes - For nodes that need to be expanded this map indicates 96 /// which which operands are the expanded version of the input. This allows 97 /// us to avoid expanding the same node more than once. 98 DenseMap<SDOperand, std::pair<SDOperand, SDOperand> > ExpandedNodes; 99 100 /// SplitNodes - For vector nodes that need to be split, this map indicates 101 /// which which operands are the split version of the input. This allows us 102 /// to avoid splitting the same node more than once. 103 std::map<SDOperand, std::pair<SDOperand, SDOperand> > SplitNodes; 104 105 /// ScalarizedNodes - For nodes that need to be converted from vector types to 106 /// scalar types, this contains the mapping of ones we have already 107 /// processed to the result. 108 std::map<SDOperand, SDOperand> ScalarizedNodes; 109 110 void AddLegalizedOperand(SDOperand From, SDOperand To) { 111 LegalizedNodes.insert(std::make_pair(From, To)); 112 // If someone requests legalization of the new node, return itself. 113 if (From != To) 114 LegalizedNodes.insert(std::make_pair(To, To)); 115 } 116 void AddPromotedOperand(SDOperand From, SDOperand To) { 117 bool isNew = PromotedNodes.insert(std::make_pair(From, To)); 118 assert(isNew && "Got into the map somehow?"); 119 // If someone requests legalization of the new node, return itself. 120 LegalizedNodes.insert(std::make_pair(To, To)); 121 } 122 123public: 124 125 SelectionDAGLegalize(SelectionDAG &DAG); 126 127 /// getTypeAction - Return how we should legalize values of this type, either 128 /// it is already legal or we need to expand it into multiple registers of 129 /// smaller integer type, or we need to promote it to a larger type. 130 LegalizeAction getTypeAction(MVT::ValueType VT) const { 131 return (LegalizeAction)ValueTypeActions.getTypeAction(VT); 132 } 133 134 /// isTypeLegal - Return true if this type is legal on this target. 135 /// 136 bool isTypeLegal(MVT::ValueType VT) const { 137 return getTypeAction(VT) == Legal; 138 } 139 140 void LegalizeDAG(); 141 142private: 143 /// HandleOp - Legalize, Promote, or Expand the specified operand as 144 /// appropriate for its type. 145 void HandleOp(SDOperand Op); 146 147 /// LegalizeOp - We know that the specified value has a legal type. 148 /// Recursively ensure that the operands have legal types, then return the 149 /// result. 150 SDOperand LegalizeOp(SDOperand O); 151 152 /// UnrollVectorOp - We know that the given vector has a legal type, however 153 /// the operation it performs is not legal and is an operation that we have 154 /// no way of lowering. "Unroll" the vector, splitting out the scalars and 155 /// operating on each element individually. 156 SDOperand UnrollVectorOp(SDOperand O); 157 158 /// PromoteOp - Given an operation that produces a value in an invalid type, 159 /// promote it to compute the value into a larger type. The produced value 160 /// will have the correct bits for the low portion of the register, but no 161 /// guarantee is made about the top bits: it may be zero, sign-extended, or 162 /// garbage. 163 SDOperand PromoteOp(SDOperand O); 164 165 /// ExpandOp - Expand the specified SDOperand into its two component pieces 166 /// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, 167 /// the LegalizeNodes map is filled in for any results that are not expanded, 168 /// the ExpandedNodes map is filled in for any results that are expanded, and 169 /// the Lo/Hi values are returned. This applies to integer types and Vector 170 /// types. 171 void ExpandOp(SDOperand O, SDOperand &Lo, SDOperand &Hi); 172 173 /// SplitVectorOp - Given an operand of vector type, break it down into 174 /// two smaller values. 175 void SplitVectorOp(SDOperand O, SDOperand &Lo, SDOperand &Hi); 176 177 /// ScalarizeVectorOp - Given an operand of single-element vector type 178 /// (e.g. v1f32), convert it into the equivalent operation that returns a 179 /// scalar (e.g. f32) value. 180 SDOperand ScalarizeVectorOp(SDOperand O); 181 182 /// isShuffleLegal - Return true if a vector shuffle is legal with the 183 /// specified mask and type. Targets can specify exactly which masks they 184 /// support and the code generator is tasked with not creating illegal masks. 185 /// 186 /// Note that this will also return true for shuffles that are promoted to a 187 /// different type. 188 /// 189 /// If this is a legal shuffle, this method returns the (possibly promoted) 190 /// build_vector Mask. If it's not a legal shuffle, it returns null. 191 SDNode *isShuffleLegal(MVT::ValueType VT, SDOperand Mask) const; 192 193 bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, 194 SmallPtrSet<SDNode*, 32> &NodesLeadingTo); 195 196 void LegalizeSetCCOperands(SDOperand &LHS, SDOperand &RHS, SDOperand &CC); 197 198 SDOperand ExpandLibCall(const char *Name, SDNode *Node, bool isSigned, 199 SDOperand &Hi); 200 SDOperand ExpandIntToFP(bool isSigned, MVT::ValueType DestTy, 201 SDOperand Source); 202 203 SDOperand EmitStackConvert(SDOperand SrcOp, MVT::ValueType SlotVT, 204 MVT::ValueType DestVT); 205 SDOperand ExpandBUILD_VECTOR(SDNode *Node); 206 SDOperand ExpandSCALAR_TO_VECTOR(SDNode *Node); 207 SDOperand ExpandLegalINT_TO_FP(bool isSigned, 208 SDOperand LegalOp, 209 MVT::ValueType DestVT); 210 SDOperand PromoteLegalINT_TO_FP(SDOperand LegalOp, MVT::ValueType DestVT, 211 bool isSigned); 212 SDOperand PromoteLegalFP_TO_INT(SDOperand LegalOp, MVT::ValueType DestVT, 213 bool isSigned); 214 215 SDOperand ExpandBSWAP(SDOperand Op); 216 SDOperand ExpandBitCount(unsigned Opc, SDOperand Op); 217 bool ExpandShift(unsigned Opc, SDOperand Op, SDOperand Amt, 218 SDOperand &Lo, SDOperand &Hi); 219 void ExpandShiftParts(unsigned NodeOp, SDOperand Op, SDOperand Amt, 220 SDOperand &Lo, SDOperand &Hi); 221 222 SDOperand ExpandEXTRACT_SUBVECTOR(SDOperand Op); 223 SDOperand ExpandEXTRACT_VECTOR_ELT(SDOperand Op); 224}; 225} 226 227/// isVectorShuffleLegal - Return true if a vector shuffle is legal with the 228/// specified mask and type. Targets can specify exactly which masks they 229/// support and the code generator is tasked with not creating illegal masks. 230/// 231/// Note that this will also return true for shuffles that are promoted to a 232/// different type. 233SDNode *SelectionDAGLegalize::isShuffleLegal(MVT::ValueType VT, 234 SDOperand Mask) const { 235 switch (TLI.getOperationAction(ISD::VECTOR_SHUFFLE, VT)) { 236 default: return 0; 237 case TargetLowering::Legal: 238 case TargetLowering::Custom: 239 break; 240 case TargetLowering::Promote: { 241 // If this is promoted to a different type, convert the shuffle mask and 242 // ask if it is legal in the promoted type! 243 MVT::ValueType NVT = TLI.getTypeToPromoteTo(ISD::VECTOR_SHUFFLE, VT); 244 245 // If we changed # elements, change the shuffle mask. 246 unsigned NumEltsGrowth = 247 MVT::getVectorNumElements(NVT) / MVT::getVectorNumElements(VT); 248 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 249 if (NumEltsGrowth > 1) { 250 // Renumber the elements. 251 SmallVector<SDOperand, 8> Ops; 252 for (unsigned i = 0, e = Mask.getNumOperands(); i != e; ++i) { 253 SDOperand InOp = Mask.getOperand(i); 254 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 255 if (InOp.getOpcode() == ISD::UNDEF) 256 Ops.push_back(DAG.getNode(ISD::UNDEF, MVT::i32)); 257 else { 258 unsigned InEltNo = cast<ConstantSDNode>(InOp)->getValue(); 259 Ops.push_back(DAG.getConstant(InEltNo*NumEltsGrowth+j, MVT::i32)); 260 } 261 } 262 } 263 Mask = DAG.getNode(ISD::BUILD_VECTOR, NVT, &Ops[0], Ops.size()); 264 } 265 VT = NVT; 266 break; 267 } 268 } 269 return TLI.isShuffleMaskLegal(Mask, VT) ? Mask.Val : 0; 270} 271 272SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag) 273 : TLI(dag.getTargetLoweringInfo()), DAG(dag), 274 ValueTypeActions(TLI.getValueTypeActions()) { 275 assert(MVT::LAST_VALUETYPE <= 32 && 276 "Too many value types for ValueTypeActions to hold!"); 277} 278 279/// ComputeTopDownOrdering - Compute a top-down ordering of the dag, where Order 280/// contains all of a nodes operands before it contains the node. 281static void ComputeTopDownOrdering(SelectionDAG &DAG, 282 SmallVector<SDNode*, 64> &Order) { 283 284 DenseMap<SDNode*, unsigned> Visited; 285 std::vector<SDNode*> Worklist; 286 Worklist.reserve(128); 287 288 // Compute ordering from all of the leaves in the graphs, those (like the 289 // entry node) that have no operands. 290 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 291 E = DAG.allnodes_end(); I != E; ++I) { 292 if (I->getNumOperands() == 0) { 293 Visited[I] = 0 - 1U; 294 Worklist.push_back(I); 295 } 296 } 297 298 while (!Worklist.empty()) { 299 SDNode *N = Worklist.back(); 300 Worklist.pop_back(); 301 302 if (++Visited[N] != N->getNumOperands()) 303 continue; // Haven't visited all operands yet 304 305 Order.push_back(N); 306 307 // Now that we have N in, add anything that uses it if all of their operands 308 // are now done. 309 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 310 UI != E; ++UI) 311 Worklist.push_back(*UI); 312 } 313 314 assert(Order.size() == Visited.size() && 315 Order.size() == 316 (unsigned)std::distance(DAG.allnodes_begin(), DAG.allnodes_end()) && 317 "Error: DAG is cyclic!"); 318} 319 320 321void SelectionDAGLegalize::LegalizeDAG() { 322 LastCALLSEQ_END = DAG.getEntryNode(); 323 IsLegalizingCall = false; 324 325 // The legalize process is inherently a bottom-up recursive process (users 326 // legalize their uses before themselves). Given infinite stack space, we 327 // could just start legalizing on the root and traverse the whole graph. In 328 // practice however, this causes us to run out of stack space on large basic 329 // blocks. To avoid this problem, compute an ordering of the nodes where each 330 // node is only legalized after all of its operands are legalized. 331 SmallVector<SDNode*, 64> Order; 332 ComputeTopDownOrdering(DAG, Order); 333 334 for (unsigned i = 0, e = Order.size(); i != e; ++i) 335 HandleOp(SDOperand(Order[i], 0)); 336 337 // Finally, it's possible the root changed. Get the new root. 338 SDOperand OldRoot = DAG.getRoot(); 339 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 340 DAG.setRoot(LegalizedNodes[OldRoot]); 341 342 ExpandedNodes.clear(); 343 LegalizedNodes.clear(); 344 PromotedNodes.clear(); 345 SplitNodes.clear(); 346 ScalarizedNodes.clear(); 347 348 // Remove dead nodes now. 349 DAG.RemoveDeadNodes(); 350} 351 352 353/// FindCallEndFromCallStart - Given a chained node that is part of a call 354/// sequence, find the CALLSEQ_END node that terminates the call sequence. 355static SDNode *FindCallEndFromCallStart(SDNode *Node) { 356 if (Node->getOpcode() == ISD::CALLSEQ_END) 357 return Node; 358 if (Node->use_empty()) 359 return 0; // No CallSeqEnd 360 361 // The chain is usually at the end. 362 SDOperand TheChain(Node, Node->getNumValues()-1); 363 if (TheChain.getValueType() != MVT::Other) { 364 // Sometimes it's at the beginning. 365 TheChain = SDOperand(Node, 0); 366 if (TheChain.getValueType() != MVT::Other) { 367 // Otherwise, hunt for it. 368 for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i) 369 if (Node->getValueType(i) == MVT::Other) { 370 TheChain = SDOperand(Node, i); 371 break; 372 } 373 374 // Otherwise, we walked into a node without a chain. 375 if (TheChain.getValueType() != MVT::Other) 376 return 0; 377 } 378 } 379 380 for (SDNode::use_iterator UI = Node->use_begin(), 381 E = Node->use_end(); UI != E; ++UI) { 382 383 // Make sure to only follow users of our token chain. 384 SDNode *User = *UI; 385 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) 386 if (User->getOperand(i) == TheChain) 387 if (SDNode *Result = FindCallEndFromCallStart(User)) 388 return Result; 389 } 390 return 0; 391} 392 393/// FindCallStartFromCallEnd - Given a chained node that is part of a call 394/// sequence, find the CALLSEQ_START node that initiates the call sequence. 395static SDNode *FindCallStartFromCallEnd(SDNode *Node) { 396 assert(Node && "Didn't find callseq_start for a call??"); 397 if (Node->getOpcode() == ISD::CALLSEQ_START) return Node; 398 399 assert(Node->getOperand(0).getValueType() == MVT::Other && 400 "Node doesn't have a token chain argument!"); 401 return FindCallStartFromCallEnd(Node->getOperand(0).Val); 402} 403 404/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to 405/// see if any uses can reach Dest. If no dest operands can get to dest, 406/// legalize them, legalize ourself, and return false, otherwise, return true. 407/// 408/// Keep track of the nodes we fine that actually do lead to Dest in 409/// NodesLeadingTo. This avoids retraversing them exponential number of times. 410/// 411bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, 412 SmallPtrSet<SDNode*, 32> &NodesLeadingTo) { 413 if (N == Dest) return true; // N certainly leads to Dest :) 414 415 // If we've already processed this node and it does lead to Dest, there is no 416 // need to reprocess it. 417 if (NodesLeadingTo.count(N)) return true; 418 419 // If the first result of this node has been already legalized, then it cannot 420 // reach N. 421 switch (getTypeAction(N->getValueType(0))) { 422 case Legal: 423 if (LegalizedNodes.count(SDOperand(N, 0))) return false; 424 break; 425 case Promote: 426 if (PromotedNodes.count(SDOperand(N, 0))) return false; 427 break; 428 case Expand: 429 if (ExpandedNodes.count(SDOperand(N, 0))) return false; 430 break; 431 } 432 433 // Okay, this node has not already been legalized. Check and legalize all 434 // operands. If none lead to Dest, then we can legalize this node. 435 bool OperandsLeadToDest = false; 436 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 437 OperandsLeadToDest |= // If an operand leads to Dest, so do we. 438 LegalizeAllNodesNotLeadingTo(N->getOperand(i).Val, Dest, NodesLeadingTo); 439 440 if (OperandsLeadToDest) { 441 NodesLeadingTo.insert(N); 442 return true; 443 } 444 445 // Okay, this node looks safe, legalize it and return false. 446 HandleOp(SDOperand(N, 0)); 447 return false; 448} 449 450/// HandleOp - Legalize, Promote, or Expand the specified operand as 451/// appropriate for its type. 452void SelectionDAGLegalize::HandleOp(SDOperand Op) { 453 MVT::ValueType VT = Op.getValueType(); 454 switch (getTypeAction(VT)) { 455 default: assert(0 && "Bad type action!"); 456 case Legal: (void)LegalizeOp(Op); break; 457 case Promote: (void)PromoteOp(Op); break; 458 case Expand: 459 if (!MVT::isVector(VT)) { 460 // If this is an illegal scalar, expand it into its two component 461 // pieces. 462 SDOperand X, Y; 463 if (Op.getOpcode() == ISD::TargetConstant) 464 break; // Allow illegal target nodes. 465 ExpandOp(Op, X, Y); 466 } else if (MVT::getVectorNumElements(VT) == 1) { 467 // If this is an illegal single element vector, convert it to a 468 // scalar operation. 469 (void)ScalarizeVectorOp(Op); 470 } else { 471 // Otherwise, this is an illegal multiple element vector. 472 // Split it in half and legalize both parts. 473 SDOperand X, Y; 474 SplitVectorOp(Op, X, Y); 475 } 476 break; 477 } 478} 479 480/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or 481/// a load from the constant pool. 482static SDOperand ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP, 483 SelectionDAG &DAG, TargetLowering &TLI) { 484 bool Extend = false; 485 486 // If a FP immediate is precise when represented as a float and if the 487 // target can do an extending load from float to double, we put it into 488 // the constant pool as a float, even if it's is statically typed as a 489 // double. 490 MVT::ValueType VT = CFP->getValueType(0); 491 bool isDouble = VT == MVT::f64; 492 ConstantFP *LLVMC = ConstantFP::get(MVT::getTypeForValueType(VT), 493 CFP->getValueAPF()); 494 if (!UseCP) { 495 if (VT!=MVT::f64 && VT!=MVT::f32) 496 assert(0 && "Invalid type expansion"); 497 return DAG.getConstant(LLVMC->getValueAPF().convertToAPInt().getZExtValue(), 498 isDouble ? MVT::i64 : MVT::i32); 499 } 500 501 if (isDouble && CFP->isValueValidForType(MVT::f32, CFP->getValueAPF()) && 502 // Only do this if the target has a native EXTLOAD instruction from f32. 503 // Do not try to be clever about long doubles (so far) 504 TLI.isLoadXLegal(ISD::EXTLOAD, MVT::f32)) { 505 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC,Type::FloatTy)); 506 VT = MVT::f32; 507 Extend = true; 508 } 509 510 SDOperand CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy()); 511 if (Extend) { 512 return DAG.getExtLoad(ISD::EXTLOAD, MVT::f64, DAG.getEntryNode(), 513 CPIdx, PseudoSourceValue::getConstantPool(), 514 0, MVT::f32); 515 } else { 516 return DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, 517 PseudoSourceValue::getConstantPool(), 0); 518 } 519} 520 521 522/// ExpandFCOPYSIGNToBitwiseOps - Expands fcopysign to a series of bitwise 523/// operations. 524static 525SDOperand ExpandFCOPYSIGNToBitwiseOps(SDNode *Node, MVT::ValueType NVT, 526 SelectionDAG &DAG, TargetLowering &TLI) { 527 MVT::ValueType VT = Node->getValueType(0); 528 MVT::ValueType SrcVT = Node->getOperand(1).getValueType(); 529 assert((SrcVT == MVT::f32 || SrcVT == MVT::f64) && 530 "fcopysign expansion only supported for f32 and f64"); 531 MVT::ValueType SrcNVT = (SrcVT == MVT::f64) ? MVT::i64 : MVT::i32; 532 533 // First get the sign bit of second operand. 534 SDOperand Mask1 = (SrcVT == MVT::f64) 535 ? DAG.getConstantFP(BitsToDouble(1ULL << 63), SrcVT) 536 : DAG.getConstantFP(BitsToFloat(1U << 31), SrcVT); 537 Mask1 = DAG.getNode(ISD::BIT_CONVERT, SrcNVT, Mask1); 538 SDOperand SignBit= DAG.getNode(ISD::BIT_CONVERT, SrcNVT, Node->getOperand(1)); 539 SignBit = DAG.getNode(ISD::AND, SrcNVT, SignBit, Mask1); 540 // Shift right or sign-extend it if the two operands have different types. 541 int SizeDiff = MVT::getSizeInBits(SrcNVT) - MVT::getSizeInBits(NVT); 542 if (SizeDiff > 0) { 543 SignBit = DAG.getNode(ISD::SRL, SrcNVT, SignBit, 544 DAG.getConstant(SizeDiff, TLI.getShiftAmountTy())); 545 SignBit = DAG.getNode(ISD::TRUNCATE, NVT, SignBit); 546 } else if (SizeDiff < 0) 547 SignBit = DAG.getNode(ISD::SIGN_EXTEND, NVT, SignBit); 548 549 // Clear the sign bit of first operand. 550 SDOperand Mask2 = (VT == MVT::f64) 551 ? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT) 552 : DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT); 553 Mask2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask2); 554 SDOperand Result = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 555 Result = DAG.getNode(ISD::AND, NVT, Result, Mask2); 556 557 // Or the value with the sign bit. 558 Result = DAG.getNode(ISD::OR, NVT, Result, SignBit); 559 return Result; 560} 561 562/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores. 563static 564SDOperand ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG, 565 TargetLowering &TLI) { 566 SDOperand Chain = ST->getChain(); 567 SDOperand Ptr = ST->getBasePtr(); 568 SDOperand Val = ST->getValue(); 569 MVT::ValueType VT = Val.getValueType(); 570 int Alignment = ST->getAlignment(); 571 int SVOffset = ST->getSrcValueOffset(); 572 if (MVT::isFloatingPoint(ST->getMemoryVT()) || 573 MVT::isVector(ST->getMemoryVT())) { 574 // Expand to a bitconvert of the value to the integer type of the 575 // same size, then a (misaligned) int store. 576 MVT::ValueType intVT; 577 if (VT == MVT::v8i16 || VT == MVT::v4i32 || 578 VT == MVT::v2i64 || VT == MVT::v2f64 || 579 VT == MVT::v4f32 || VT == MVT::v16i8 || 580 VT == MVT::ppcf128) 581 intVT = MVT::i128; 582 else if (VT==MVT::f64 || 583 VT == MVT::v8i8 || VT == MVT::v4i16 || 584 VT == MVT::v2i32 || VT == MVT::v1i64 || 585 VT == MVT::v2f32) 586 intVT = MVT::i64; 587 else if (VT==MVT::f32) 588 intVT = MVT::i32; 589 else 590 assert(0 && "Unaligned load of unsupported type"); 591 592 SDOperand Result = DAG.getNode(ISD::BIT_CONVERT, intVT, Val); 593 return DAG.getStore(Chain, Result, Ptr, ST->getSrcValue(), 594 SVOffset, ST->isVolatile(), Alignment); 595 } 596 assert(MVT::isInteger(ST->getMemoryVT()) && 597 !MVT::isVector(ST->getMemoryVT()) && 598 "Unaligned store of unknown type."); 599 // Get the half-size VT 600 MVT::ValueType NewStoredVT = ST->getMemoryVT() - 1; 601 int NumBits = MVT::getSizeInBits(NewStoredVT); 602 int IncrementSize = NumBits / 8; 603 604 // Divide the stored value in two parts. 605 SDOperand ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy()); 606 SDOperand Lo = Val; 607 SDOperand Hi = DAG.getNode(ISD::SRL, VT, Val, ShiftAmount); 608 609 // Store the two parts 610 SDOperand Store1, Store2; 611 Store1 = DAG.getTruncStore(Chain, TLI.isLittleEndian()?Lo:Hi, Ptr, 612 ST->getSrcValue(), SVOffset, NewStoredVT, 613 ST->isVolatile(), Alignment); 614 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 615 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 616 Alignment = MinAlign(Alignment, IncrementSize); 617 Store2 = DAG.getTruncStore(Chain, TLI.isLittleEndian()?Hi:Lo, Ptr, 618 ST->getSrcValue(), SVOffset + IncrementSize, 619 NewStoredVT, ST->isVolatile(), Alignment); 620 621 return DAG.getNode(ISD::TokenFactor, MVT::Other, Store1, Store2); 622} 623 624/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads. 625static 626SDOperand ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG, 627 TargetLowering &TLI) { 628 int SVOffset = LD->getSrcValueOffset(); 629 SDOperand Chain = LD->getChain(); 630 SDOperand Ptr = LD->getBasePtr(); 631 MVT::ValueType VT = LD->getValueType(0); 632 MVT::ValueType LoadedVT = LD->getMemoryVT(); 633 if (MVT::isFloatingPoint(VT) || MVT::isVector(VT)) { 634 // Expand to a (misaligned) integer load of the same size, 635 // then bitconvert to floating point or vector. 636 MVT::ValueType intVT; 637 if (LoadedVT == MVT::v8i16 || LoadedVT == MVT::v4i32 || 638 LoadedVT == MVT::v2i64 || LoadedVT == MVT::v2f64 || 639 LoadedVT == MVT::v4f32 || LoadedVT == MVT::v16i8 || 640 LoadedVT == MVT::ppcf128) 641 intVT = MVT::i128; 642 else if (LoadedVT == MVT::f64 || 643 LoadedVT == MVT::v8i8 || LoadedVT == MVT::v4i16 || 644 LoadedVT == MVT::v2i32 || LoadedVT == MVT::v1i64 || 645 LoadedVT == MVT::v2f32) 646 intVT = MVT::i64; 647 else if (LoadedVT == MVT::f32) 648 intVT = MVT::i32; 649 else 650 assert(0 && "Unaligned load of unsupported type"); 651 652 SDOperand newLoad = DAG.getLoad(intVT, Chain, Ptr, LD->getSrcValue(), 653 SVOffset, LD->isVolatile(), 654 LD->getAlignment()); 655 SDOperand Result = DAG.getNode(ISD::BIT_CONVERT, LoadedVT, newLoad); 656 if (MVT::isFloatingPoint(VT) && LoadedVT != VT) 657 Result = DAG.getNode(ISD::FP_EXTEND, VT, Result); 658 659 SDOperand Ops[] = { Result, Chain }; 660 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), 661 Ops, 2); 662 } 663 assert(MVT::isInteger(LoadedVT) && !MVT::isVector(LoadedVT) && 664 "Unaligned load of unsupported type."); 665 666 // Compute the new VT that is half the size of the old one. This is an 667 // integer MVT. 668 unsigned NumBits = MVT::getSizeInBits(LoadedVT); 669 MVT::ValueType NewLoadedVT; 670 NewLoadedVT = MVT::getIntegerType(NumBits/2); 671 NumBits >>= 1; 672 673 unsigned Alignment = LD->getAlignment(); 674 unsigned IncrementSize = NumBits / 8; 675 ISD::LoadExtType HiExtType = LD->getExtensionType(); 676 677 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 678 if (HiExtType == ISD::NON_EXTLOAD) 679 HiExtType = ISD::ZEXTLOAD; 680 681 // Load the value in two parts 682 SDOperand Lo, Hi; 683 if (TLI.isLittleEndian()) { 684 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, Chain, Ptr, LD->getSrcValue(), 685 SVOffset, NewLoadedVT, LD->isVolatile(), Alignment); 686 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 687 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 688 Hi = DAG.getExtLoad(HiExtType, VT, Chain, Ptr, LD->getSrcValue(), 689 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(), 690 MinAlign(Alignment, IncrementSize)); 691 } else { 692 Hi = DAG.getExtLoad(HiExtType, VT, Chain, Ptr, LD->getSrcValue(), SVOffset, 693 NewLoadedVT,LD->isVolatile(), Alignment); 694 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 695 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 696 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, Chain, Ptr, LD->getSrcValue(), 697 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(), 698 MinAlign(Alignment, IncrementSize)); 699 } 700 701 // aggregate the two parts 702 SDOperand ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy()); 703 SDOperand Result = DAG.getNode(ISD::SHL, VT, Hi, ShiftAmount); 704 Result = DAG.getNode(ISD::OR, VT, Result, Lo); 705 706 SDOperand TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 707 Hi.getValue(1)); 708 709 SDOperand Ops[] = { Result, TF }; 710 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), Ops, 2); 711} 712 713/// UnrollVectorOp - We know that the given vector has a legal type, however 714/// the operation it performs is not legal and is an operation that we have 715/// no way of lowering. "Unroll" the vector, splitting out the scalars and 716/// operating on each element individually. 717SDOperand SelectionDAGLegalize::UnrollVectorOp(SDOperand Op) { 718 MVT::ValueType VT = Op.getValueType(); 719 assert(isTypeLegal(VT) && 720 "Caller should expand or promote operands that are not legal!"); 721 assert(Op.Val->getNumValues() == 1 && 722 "Can't unroll a vector with multiple results!"); 723 unsigned NE = MVT::getVectorNumElements(VT); 724 MVT::ValueType EltVT = MVT::getVectorElementType(VT); 725 726 SmallVector<SDOperand, 8> Scalars; 727 SmallVector<SDOperand, 4> Operands(Op.getNumOperands()); 728 for (unsigned i = 0; i != NE; ++i) { 729 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 730 SDOperand Operand = Op.getOperand(j); 731 MVT::ValueType OperandVT = Operand.getValueType(); 732 if (MVT::isVector(OperandVT)) { 733 // A vector operand; extract a single element. 734 MVT::ValueType OperandEltVT = MVT::getVectorElementType(OperandVT); 735 Operands[j] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, 736 OperandEltVT, 737 Operand, 738 DAG.getConstant(i, MVT::i32)); 739 } else { 740 // A scalar operand; just use it as is. 741 Operands[j] = Operand; 742 } 743 } 744 Scalars.push_back(DAG.getNode(Op.getOpcode(), EltVT, 745 &Operands[0], Operands.size())); 746 } 747 748 return DAG.getNode(ISD::BUILD_VECTOR, VT, &Scalars[0], Scalars.size()); 749} 750 751/// GetFPLibCall - Return the right libcall for the given floating point type. 752static RTLIB::Libcall GetFPLibCall(MVT::ValueType VT, 753 RTLIB::Libcall Call_F32, 754 RTLIB::Libcall Call_F64, 755 RTLIB::Libcall Call_F80, 756 RTLIB::Libcall Call_PPCF128) { 757 return 758 VT == MVT::f32 ? Call_F32 : 759 VT == MVT::f64 ? Call_F64 : 760 VT == MVT::f80 ? Call_F80 : 761 VT == MVT::ppcf128 ? Call_PPCF128 : 762 RTLIB::UNKNOWN_LIBCALL; 763} 764 765/// LegalizeOp - We know that the specified value has a legal type, and 766/// that its operands are legal. Now ensure that the operation itself 767/// is legal, recursively ensuring that the operands' operations remain 768/// legal. 769SDOperand SelectionDAGLegalize::LegalizeOp(SDOperand Op) { 770 if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes. 771 return Op; 772 773 assert(isTypeLegal(Op.getValueType()) && 774 "Caller should expand or promote operands that are not legal!"); 775 SDNode *Node = Op.Val; 776 777 // If this operation defines any values that cannot be represented in a 778 // register on this target, make sure to expand or promote them. 779 if (Node->getNumValues() > 1) { 780 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 781 if (getTypeAction(Node->getValueType(i)) != Legal) { 782 HandleOp(Op.getValue(i)); 783 assert(LegalizedNodes.count(Op) && 784 "Handling didn't add legal operands!"); 785 return LegalizedNodes[Op]; 786 } 787 } 788 789 // Note that LegalizeOp may be reentered even from single-use nodes, which 790 // means that we always must cache transformed nodes. 791 DenseMap<SDOperand, SDOperand>::iterator I = LegalizedNodes.find(Op); 792 if (I != LegalizedNodes.end()) return I->second; 793 794 SDOperand Tmp1, Tmp2, Tmp3, Tmp4; 795 SDOperand Result = Op; 796 bool isCustom = false; 797 798 switch (Node->getOpcode()) { 799 case ISD::FrameIndex: 800 case ISD::EntryToken: 801 case ISD::Register: 802 case ISD::BasicBlock: 803 case ISD::TargetFrameIndex: 804 case ISD::TargetJumpTable: 805 case ISD::TargetConstant: 806 case ISD::TargetConstantFP: 807 case ISD::TargetConstantPool: 808 case ISD::TargetGlobalAddress: 809 case ISD::TargetGlobalTLSAddress: 810 case ISD::TargetExternalSymbol: 811 case ISD::VALUETYPE: 812 case ISD::SRCVALUE: 813 case ISD::MEMOPERAND: 814 case ISD::STRING: 815 case ISD::CONDCODE: 816 // Primitives must all be legal. 817 assert(TLI.isOperationLegal(Node->getOpcode(), Node->getValueType(0)) && 818 "This must be legal!"); 819 break; 820 default: 821 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 822 // If this is a target node, legalize it by legalizing the operands then 823 // passing it through. 824 SmallVector<SDOperand, 8> Ops; 825 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 826 Ops.push_back(LegalizeOp(Node->getOperand(i))); 827 828 Result = DAG.UpdateNodeOperands(Result.getValue(0), &Ops[0], Ops.size()); 829 830 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 831 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 832 return Result.getValue(Op.ResNo); 833 } 834 // Otherwise this is an unhandled builtin node. splat. 835#ifndef NDEBUG 836 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 837#endif 838 assert(0 && "Do not know how to legalize this operator!"); 839 abort(); 840 case ISD::GLOBAL_OFFSET_TABLE: 841 case ISD::GlobalAddress: 842 case ISD::GlobalTLSAddress: 843 case ISD::ExternalSymbol: 844 case ISD::ConstantPool: 845 case ISD::JumpTable: // Nothing to do. 846 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 847 default: assert(0 && "This action is not supported yet!"); 848 case TargetLowering::Custom: 849 Tmp1 = TLI.LowerOperation(Op, DAG); 850 if (Tmp1.Val) Result = Tmp1; 851 // FALLTHROUGH if the target doesn't want to lower this op after all. 852 case TargetLowering::Legal: 853 break; 854 } 855 break; 856 case ISD::FRAMEADDR: 857 case ISD::RETURNADDR: 858 // The only option for these nodes is to custom lower them. If the target 859 // does not custom lower them, then return zero. 860 Tmp1 = TLI.LowerOperation(Op, DAG); 861 if (Tmp1.Val) 862 Result = Tmp1; 863 else 864 Result = DAG.getConstant(0, TLI.getPointerTy()); 865 break; 866 case ISD::FRAME_TO_ARGS_OFFSET: { 867 MVT::ValueType VT = Node->getValueType(0); 868 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 869 default: assert(0 && "This action is not supported yet!"); 870 case TargetLowering::Custom: 871 Result = TLI.LowerOperation(Op, DAG); 872 if (Result.Val) break; 873 // Fall Thru 874 case TargetLowering::Legal: 875 Result = DAG.getConstant(0, VT); 876 break; 877 } 878 } 879 break; 880 case ISD::EXCEPTIONADDR: { 881 Tmp1 = LegalizeOp(Node->getOperand(0)); 882 MVT::ValueType VT = Node->getValueType(0); 883 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 884 default: assert(0 && "This action is not supported yet!"); 885 case TargetLowering::Expand: { 886 unsigned Reg = TLI.getExceptionAddressRegister(); 887 Result = DAG.getCopyFromReg(Tmp1, Reg, VT); 888 } 889 break; 890 case TargetLowering::Custom: 891 Result = TLI.LowerOperation(Op, DAG); 892 if (Result.Val) break; 893 // Fall Thru 894 case TargetLowering::Legal: { 895 SDOperand Ops[] = { DAG.getConstant(0, VT), Tmp1 }; 896 Result = DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), 897 Ops, 2); 898 break; 899 } 900 } 901 } 902 if (Result.Val->getNumValues() == 1) break; 903 904 assert(Result.Val->getNumValues() == 2 && 905 "Cannot return more than two values!"); 906 907 // Since we produced two values, make sure to remember that we 908 // legalized both of them. 909 Tmp1 = LegalizeOp(Result); 910 Tmp2 = LegalizeOp(Result.getValue(1)); 911 AddLegalizedOperand(Op.getValue(0), Tmp1); 912 AddLegalizedOperand(Op.getValue(1), Tmp2); 913 return Op.ResNo ? Tmp2 : Tmp1; 914 case ISD::EHSELECTION: { 915 Tmp1 = LegalizeOp(Node->getOperand(0)); 916 Tmp2 = LegalizeOp(Node->getOperand(1)); 917 MVT::ValueType VT = Node->getValueType(0); 918 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 919 default: assert(0 && "This action is not supported yet!"); 920 case TargetLowering::Expand: { 921 unsigned Reg = TLI.getExceptionSelectorRegister(); 922 Result = DAG.getCopyFromReg(Tmp2, Reg, VT); 923 } 924 break; 925 case TargetLowering::Custom: 926 Result = TLI.LowerOperation(Op, DAG); 927 if (Result.Val) break; 928 // Fall Thru 929 case TargetLowering::Legal: { 930 SDOperand Ops[] = { DAG.getConstant(0, VT), Tmp2 }; 931 Result = DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), 932 Ops, 2); 933 break; 934 } 935 } 936 } 937 if (Result.Val->getNumValues() == 1) break; 938 939 assert(Result.Val->getNumValues() == 2 && 940 "Cannot return more than two values!"); 941 942 // Since we produced two values, make sure to remember that we 943 // legalized both of them. 944 Tmp1 = LegalizeOp(Result); 945 Tmp2 = LegalizeOp(Result.getValue(1)); 946 AddLegalizedOperand(Op.getValue(0), Tmp1); 947 AddLegalizedOperand(Op.getValue(1), Tmp2); 948 return Op.ResNo ? Tmp2 : Tmp1; 949 case ISD::EH_RETURN: { 950 MVT::ValueType VT = Node->getValueType(0); 951 // The only "good" option for this node is to custom lower it. 952 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 953 default: assert(0 && "This action is not supported at all!"); 954 case TargetLowering::Custom: 955 Result = TLI.LowerOperation(Op, DAG); 956 if (Result.Val) break; 957 // Fall Thru 958 case TargetLowering::Legal: 959 // Target does not know, how to lower this, lower to noop 960 Result = LegalizeOp(Node->getOperand(0)); 961 break; 962 } 963 } 964 break; 965 case ISD::AssertSext: 966 case ISD::AssertZext: 967 Tmp1 = LegalizeOp(Node->getOperand(0)); 968 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 969 break; 970 case ISD::MERGE_VALUES: 971 // Legalize eliminates MERGE_VALUES nodes. 972 Result = Node->getOperand(Op.ResNo); 973 break; 974 case ISD::CopyFromReg: 975 Tmp1 = LegalizeOp(Node->getOperand(0)); 976 Result = Op.getValue(0); 977 if (Node->getNumValues() == 2) { 978 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 979 } else { 980 assert(Node->getNumValues() == 3 && "Invalid copyfromreg!"); 981 if (Node->getNumOperands() == 3) { 982 Tmp2 = LegalizeOp(Node->getOperand(2)); 983 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2); 984 } else { 985 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 986 } 987 AddLegalizedOperand(Op.getValue(2), Result.getValue(2)); 988 } 989 // Since CopyFromReg produces two values, make sure to remember that we 990 // legalized both of them. 991 AddLegalizedOperand(Op.getValue(0), Result); 992 AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); 993 return Result.getValue(Op.ResNo); 994 case ISD::UNDEF: { 995 MVT::ValueType VT = Op.getValueType(); 996 switch (TLI.getOperationAction(ISD::UNDEF, VT)) { 997 default: assert(0 && "This action is not supported yet!"); 998 case TargetLowering::Expand: 999 if (MVT::isInteger(VT)) 1000 Result = DAG.getConstant(0, VT); 1001 else if (MVT::isFloatingPoint(VT)) 1002 Result = DAG.getConstantFP(APFloat(APInt(MVT::getSizeInBits(VT), 0)), 1003 VT); 1004 else 1005 assert(0 && "Unknown value type!"); 1006 break; 1007 case TargetLowering::Legal: 1008 break; 1009 } 1010 break; 1011 } 1012 1013 case ISD::INTRINSIC_W_CHAIN: 1014 case ISD::INTRINSIC_WO_CHAIN: 1015 case ISD::INTRINSIC_VOID: { 1016 SmallVector<SDOperand, 8> Ops; 1017 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 1018 Ops.push_back(LegalizeOp(Node->getOperand(i))); 1019 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1020 1021 // Allow the target to custom lower its intrinsics if it wants to. 1022 if (TLI.getOperationAction(Node->getOpcode(), MVT::Other) == 1023 TargetLowering::Custom) { 1024 Tmp3 = TLI.LowerOperation(Result, DAG); 1025 if (Tmp3.Val) Result = Tmp3; 1026 } 1027 1028 if (Result.Val->getNumValues() == 1) break; 1029 1030 // Must have return value and chain result. 1031 assert(Result.Val->getNumValues() == 2 && 1032 "Cannot return more than two values!"); 1033 1034 // Since loads produce two values, make sure to remember that we 1035 // legalized both of them. 1036 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 1037 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 1038 return Result.getValue(Op.ResNo); 1039 } 1040 1041 case ISD::LOCATION: 1042 assert(Node->getNumOperands() == 5 && "Invalid LOCATION node!"); 1043 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the input chain. 1044 1045 switch (TLI.getOperationAction(ISD::LOCATION, MVT::Other)) { 1046 case TargetLowering::Promote: 1047 default: assert(0 && "This action is not supported yet!"); 1048 case TargetLowering::Expand: { 1049 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 1050 bool useDEBUG_LOC = TLI.isOperationLegal(ISD::DEBUG_LOC, MVT::Other); 1051 bool useLABEL = TLI.isOperationLegal(ISD::LABEL, MVT::Other); 1052 1053 if (MMI && (useDEBUG_LOC || useLABEL)) { 1054 const std::string &FName = 1055 cast<StringSDNode>(Node->getOperand(3))->getValue(); 1056 const std::string &DirName = 1057 cast<StringSDNode>(Node->getOperand(4))->getValue(); 1058 unsigned SrcFile = MMI->RecordSource(DirName, FName); 1059 1060 SmallVector<SDOperand, 8> Ops; 1061 Ops.push_back(Tmp1); // chain 1062 SDOperand LineOp = Node->getOperand(1); 1063 SDOperand ColOp = Node->getOperand(2); 1064 1065 if (useDEBUG_LOC) { 1066 Ops.push_back(LineOp); // line # 1067 Ops.push_back(ColOp); // col # 1068 Ops.push_back(DAG.getConstant(SrcFile, MVT::i32)); // source file id 1069 Result = DAG.getNode(ISD::DEBUG_LOC, MVT::Other, &Ops[0], Ops.size()); 1070 } else { 1071 unsigned Line = cast<ConstantSDNode>(LineOp)->getValue(); 1072 unsigned Col = cast<ConstantSDNode>(ColOp)->getValue(); 1073 unsigned ID = MMI->RecordSourceLine(Line, Col, SrcFile); 1074 Ops.push_back(DAG.getConstant(ID, MVT::i32)); 1075 Ops.push_back(DAG.getConstant(0, MVT::i32)); // a debug label 1076 Result = DAG.getNode(ISD::LABEL, MVT::Other, &Ops[0], Ops.size()); 1077 } 1078 } else { 1079 Result = Tmp1; // chain 1080 } 1081 break; 1082 } 1083 case TargetLowering::Legal: 1084 if (Tmp1 != Node->getOperand(0) || 1085 getTypeAction(Node->getOperand(1).getValueType()) == Promote) { 1086 SmallVector<SDOperand, 8> Ops; 1087 Ops.push_back(Tmp1); 1088 if (getTypeAction(Node->getOperand(1).getValueType()) == Legal) { 1089 Ops.push_back(Node->getOperand(1)); // line # must be legal. 1090 Ops.push_back(Node->getOperand(2)); // col # must be legal. 1091 } else { 1092 // Otherwise promote them. 1093 Ops.push_back(PromoteOp(Node->getOperand(1))); 1094 Ops.push_back(PromoteOp(Node->getOperand(2))); 1095 } 1096 Ops.push_back(Node->getOperand(3)); // filename must be legal. 1097 Ops.push_back(Node->getOperand(4)); // working dir # must be legal. 1098 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1099 } 1100 break; 1101 } 1102 break; 1103 1104 case ISD::DECLARE: 1105 assert(Node->getNumOperands() == 3 && "Invalid DECLARE node!"); 1106 switch (TLI.getOperationAction(ISD::DECLARE, MVT::Other)) { 1107 default: assert(0 && "This action is not supported yet!"); 1108 case TargetLowering::Legal: 1109 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1110 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the address. 1111 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the variable. 1112 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1113 break; 1114 case TargetLowering::Expand: 1115 Result = LegalizeOp(Node->getOperand(0)); 1116 break; 1117 } 1118 break; 1119 1120 case ISD::DEBUG_LOC: 1121 assert(Node->getNumOperands() == 4 && "Invalid DEBUG_LOC node!"); 1122 switch (TLI.getOperationAction(ISD::DEBUG_LOC, MVT::Other)) { 1123 default: assert(0 && "This action is not supported yet!"); 1124 case TargetLowering::Legal: 1125 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1126 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the line #. 1127 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the col #. 1128 Tmp4 = LegalizeOp(Node->getOperand(3)); // Legalize the source file id. 1129 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4); 1130 break; 1131 } 1132 break; 1133 1134 case ISD::LABEL: 1135 assert(Node->getNumOperands() == 3 && "Invalid LABEL node!"); 1136 switch (TLI.getOperationAction(ISD::LABEL, MVT::Other)) { 1137 default: assert(0 && "This action is not supported yet!"); 1138 case TargetLowering::Legal: 1139 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1140 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the label id. 1141 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the "flavor" operand. 1142 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1143 break; 1144 case TargetLowering::Expand: 1145 Result = LegalizeOp(Node->getOperand(0)); 1146 break; 1147 } 1148 break; 1149 1150 case ISD::MEMBARRIER: { 1151 assert(Node->getNumOperands() == 6 && "Invalid MemBarrier node!"); 1152 switch (TLI.getOperationAction(ISD::MEMBARRIER, MVT::Other)) { 1153 default: assert(0 && "This action is not supported yet!"); 1154 case TargetLowering::Legal: { 1155 SDOperand Ops[6]; 1156 Ops[0] = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1157 for (int x = 1; x < 6; ++x) { 1158 Ops[x] = Node->getOperand(x); 1159 if (!isTypeLegal(Ops[x].getValueType())) 1160 Ops[x] = PromoteOp(Ops[x]); 1161 } 1162 Result = DAG.UpdateNodeOperands(Result, &Ops[0], 6); 1163 break; 1164 } 1165 case TargetLowering::Expand: 1166 //There is no libgcc call for this op 1167 Result = Node->getOperand(0); // Noop 1168 break; 1169 } 1170 break; 1171 } 1172 1173 case ISD::ATOMIC_LCS: 1174 case ISD::ATOMIC_LAS: 1175 case ISD::ATOMIC_SWAP: { 1176 assert(((Node->getNumOperands() == 4 && Node->getOpcode() == ISD::ATOMIC_LCS) || 1177 (Node->getNumOperands() == 3 && Node->getOpcode() == ISD::ATOMIC_LAS) || 1178 (Node->getNumOperands() == 3 && Node->getOpcode() == ISD::ATOMIC_SWAP)) && 1179 "Invalid MemBarrier node!"); 1180 int num = Node->getOpcode() == ISD::ATOMIC_LCS ? 4 : 3; 1181 MVT::ValueType VT = Node->getValueType(0); 1182 switch (TLI.getOperationAction(ISD::ATOMIC_LCS, VT)) { 1183 default: assert(0 && "This action is not supported yet!"); 1184 case TargetLowering::Legal: { 1185 SDOperand Ops[4]; 1186 for (int x = 0; x < num; ++x) 1187 Ops[x] = LegalizeOp(Node->getOperand(x)); 1188 Result = DAG.UpdateNodeOperands(Result, &Ops[0], num); 1189 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 1190 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 1191 return Result.getValue(Op.ResNo); 1192 break; 1193 } 1194 } 1195 break; 1196 } 1197 1198 case ISD::Constant: { 1199 ConstantSDNode *CN = cast<ConstantSDNode>(Node); 1200 unsigned opAction = 1201 TLI.getOperationAction(ISD::Constant, CN->getValueType(0)); 1202 1203 // We know we don't need to expand constants here, constants only have one 1204 // value and we check that it is fine above. 1205 1206 if (opAction == TargetLowering::Custom) { 1207 Tmp1 = TLI.LowerOperation(Result, DAG); 1208 if (Tmp1.Val) 1209 Result = Tmp1; 1210 } 1211 break; 1212 } 1213 case ISD::ConstantFP: { 1214 // Spill FP immediates to the constant pool if the target cannot directly 1215 // codegen them. Targets often have some immediate values that can be 1216 // efficiently generated into an FP register without a load. We explicitly 1217 // leave these constants as ConstantFP nodes for the target to deal with. 1218 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 1219 1220 switch (TLI.getOperationAction(ISD::ConstantFP, CFP->getValueType(0))) { 1221 default: assert(0 && "This action is not supported yet!"); 1222 case TargetLowering::Legal: 1223 break; 1224 case TargetLowering::Custom: 1225 Tmp3 = TLI.LowerOperation(Result, DAG); 1226 if (Tmp3.Val) { 1227 Result = Tmp3; 1228 break; 1229 } 1230 // FALLTHROUGH 1231 case TargetLowering::Expand: { 1232 // Check to see if this FP immediate is already legal. 1233 bool isLegal = false; 1234 for (TargetLowering::legal_fpimm_iterator I = TLI.legal_fpimm_begin(), 1235 E = TLI.legal_fpimm_end(); I != E; ++I) { 1236 if (CFP->isExactlyValue(*I)) { 1237 isLegal = true; 1238 break; 1239 } 1240 } 1241 // If this is a legal constant, turn it into a TargetConstantFP node. 1242 if (isLegal) 1243 break; 1244 Result = ExpandConstantFP(CFP, true, DAG, TLI); 1245 } 1246 } 1247 break; 1248 } 1249 case ISD::TokenFactor: 1250 if (Node->getNumOperands() == 2) { 1251 Tmp1 = LegalizeOp(Node->getOperand(0)); 1252 Tmp2 = LegalizeOp(Node->getOperand(1)); 1253 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1254 } else if (Node->getNumOperands() == 3) { 1255 Tmp1 = LegalizeOp(Node->getOperand(0)); 1256 Tmp2 = LegalizeOp(Node->getOperand(1)); 1257 Tmp3 = LegalizeOp(Node->getOperand(2)); 1258 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1259 } else { 1260 SmallVector<SDOperand, 8> Ops; 1261 // Legalize the operands. 1262 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 1263 Ops.push_back(LegalizeOp(Node->getOperand(i))); 1264 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1265 } 1266 break; 1267 1268 case ISD::FORMAL_ARGUMENTS: 1269 case ISD::CALL: 1270 // The only option for this is to custom lower it. 1271 Tmp3 = TLI.LowerOperation(Result.getValue(0), DAG); 1272 assert(Tmp3.Val && "Target didn't custom lower this node!"); 1273 1274 // The number of incoming and outgoing values should match; unless the final 1275 // outgoing value is a flag. 1276 assert((Tmp3.Val->getNumValues() == Result.Val->getNumValues() || 1277 (Tmp3.Val->getNumValues() == Result.Val->getNumValues() + 1 && 1278 Tmp3.Val->getValueType(Tmp3.Val->getNumValues() - 1) == 1279 MVT::Flag)) && 1280 "Lowering call/formal_arguments produced unexpected # results!"); 1281 1282 // Since CALL/FORMAL_ARGUMENTS nodes produce multiple values, make sure to 1283 // remember that we legalized all of them, so it doesn't get relegalized. 1284 for (unsigned i = 0, e = Tmp3.Val->getNumValues(); i != e; ++i) { 1285 if (Tmp3.Val->getValueType(i) == MVT::Flag) 1286 continue; 1287 Tmp1 = LegalizeOp(Tmp3.getValue(i)); 1288 if (Op.ResNo == i) 1289 Tmp2 = Tmp1; 1290 AddLegalizedOperand(SDOperand(Node, i), Tmp1); 1291 } 1292 return Tmp2; 1293 case ISD::EXTRACT_SUBREG: { 1294 Tmp1 = LegalizeOp(Node->getOperand(0)); 1295 ConstantSDNode *idx = dyn_cast<ConstantSDNode>(Node->getOperand(1)); 1296 assert(idx && "Operand must be a constant"); 1297 Tmp2 = DAG.getTargetConstant(idx->getValue(), idx->getValueType(0)); 1298 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1299 } 1300 break; 1301 case ISD::INSERT_SUBREG: { 1302 Tmp1 = LegalizeOp(Node->getOperand(0)); 1303 Tmp2 = LegalizeOp(Node->getOperand(1)); 1304 ConstantSDNode *idx = dyn_cast<ConstantSDNode>(Node->getOperand(2)); 1305 assert(idx && "Operand must be a constant"); 1306 Tmp3 = DAG.getTargetConstant(idx->getValue(), idx->getValueType(0)); 1307 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1308 } 1309 break; 1310 case ISD::BUILD_VECTOR: 1311 switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) { 1312 default: assert(0 && "This action is not supported yet!"); 1313 case TargetLowering::Custom: 1314 Tmp3 = TLI.LowerOperation(Result, DAG); 1315 if (Tmp3.Val) { 1316 Result = Tmp3; 1317 break; 1318 } 1319 // FALLTHROUGH 1320 case TargetLowering::Expand: 1321 Result = ExpandBUILD_VECTOR(Result.Val); 1322 break; 1323 } 1324 break; 1325 case ISD::INSERT_VECTOR_ELT: 1326 Tmp1 = LegalizeOp(Node->getOperand(0)); // InVec 1327 Tmp3 = LegalizeOp(Node->getOperand(2)); // InEltNo 1328 1329 // The type of the value to insert may not be legal, even though the vector 1330 // type is legal. Legalize/Promote accordingly. We do not handle Expand 1331 // here. 1332 switch (getTypeAction(Node->getOperand(1).getValueType())) { 1333 default: assert(0 && "Cannot expand insert element operand"); 1334 case Legal: Tmp2 = LegalizeOp(Node->getOperand(1)); break; 1335 case Promote: Tmp2 = PromoteOp(Node->getOperand(1)); break; 1336 } 1337 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1338 1339 switch (TLI.getOperationAction(ISD::INSERT_VECTOR_ELT, 1340 Node->getValueType(0))) { 1341 default: assert(0 && "This action is not supported yet!"); 1342 case TargetLowering::Legal: 1343 break; 1344 case TargetLowering::Custom: 1345 Tmp4 = TLI.LowerOperation(Result, DAG); 1346 if (Tmp4.Val) { 1347 Result = Tmp4; 1348 break; 1349 } 1350 // FALLTHROUGH 1351 case TargetLowering::Expand: { 1352 // If the insert index is a constant, codegen this as a scalar_to_vector, 1353 // then a shuffle that inserts it into the right position in the vector. 1354 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Tmp3)) { 1355 // SCALAR_TO_VECTOR requires that the type of the value being inserted 1356 // match the element type of the vector being created. 1357 if (Tmp2.getValueType() == 1358 MVT::getVectorElementType(Op.getValueType())) { 1359 SDOperand ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, 1360 Tmp1.getValueType(), Tmp2); 1361 1362 unsigned NumElts = MVT::getVectorNumElements(Tmp1.getValueType()); 1363 MVT::ValueType ShufMaskVT = MVT::getIntVectorWithNumElements(NumElts); 1364 MVT::ValueType ShufMaskEltVT = MVT::getVectorElementType(ShufMaskVT); 1365 1366 // We generate a shuffle of InVec and ScVec, so the shuffle mask 1367 // should be 0,1,2,3,4,5... with the appropriate element replaced with 1368 // elt 0 of the RHS. 1369 SmallVector<SDOperand, 8> ShufOps; 1370 for (unsigned i = 0; i != NumElts; ++i) { 1371 if (i != InsertPos->getValue()) 1372 ShufOps.push_back(DAG.getConstant(i, ShufMaskEltVT)); 1373 else 1374 ShufOps.push_back(DAG.getConstant(NumElts, ShufMaskEltVT)); 1375 } 1376 SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, ShufMaskVT, 1377 &ShufOps[0], ShufOps.size()); 1378 1379 Result = DAG.getNode(ISD::VECTOR_SHUFFLE, Tmp1.getValueType(), 1380 Tmp1, ScVec, ShufMask); 1381 Result = LegalizeOp(Result); 1382 break; 1383 } 1384 } 1385 1386 // If the target doesn't support this, we have to spill the input vector 1387 // to a temporary stack slot, update the element, then reload it. This is 1388 // badness. We could also load the value into a vector register (either 1389 // with a "move to register" or "extload into register" instruction, then 1390 // permute it into place, if the idx is a constant and if the idx is 1391 // supported by the target. 1392 MVT::ValueType VT = Tmp1.getValueType(); 1393 MVT::ValueType EltVT = MVT::getVectorElementType(VT); 1394 MVT::ValueType IdxVT = Tmp3.getValueType(); 1395 MVT::ValueType PtrVT = TLI.getPointerTy(); 1396 SDOperand StackPtr = DAG.CreateStackTemporary(VT); 1397 1398 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr.Val); 1399 int SPFI = StackPtrFI->getIndex(); 1400 1401 // Store the vector. 1402 SDOperand Ch = DAG.getStore(DAG.getEntryNode(), Tmp1, StackPtr, 1403 PseudoSourceValue::getFixedStack(), 1404 SPFI); 1405 1406 // Truncate or zero extend offset to target pointer type. 1407 unsigned CastOpc = (IdxVT > PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND; 1408 Tmp3 = DAG.getNode(CastOpc, PtrVT, Tmp3); 1409 // Add the offset to the index. 1410 unsigned EltSize = MVT::getSizeInBits(EltVT)/8; 1411 Tmp3 = DAG.getNode(ISD::MUL, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT)); 1412 SDOperand StackPtr2 = DAG.getNode(ISD::ADD, IdxVT, Tmp3, StackPtr); 1413 // Store the scalar value. 1414 Ch = DAG.getTruncStore(Ch, Tmp2, StackPtr2, 1415 PseudoSourceValue::getFixedStack(), SPFI, EltVT); 1416 // Load the updated vector. 1417 Result = DAG.getLoad(VT, Ch, StackPtr, 1418 PseudoSourceValue::getFixedStack(), SPFI); 1419 break; 1420 } 1421 } 1422 break; 1423 case ISD::SCALAR_TO_VECTOR: 1424 if (!TLI.isTypeLegal(Node->getOperand(0).getValueType())) { 1425 Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node)); 1426 break; 1427 } 1428 1429 Tmp1 = LegalizeOp(Node->getOperand(0)); // InVal 1430 Result = DAG.UpdateNodeOperands(Result, Tmp1); 1431 switch (TLI.getOperationAction(ISD::SCALAR_TO_VECTOR, 1432 Node->getValueType(0))) { 1433 default: assert(0 && "This action is not supported yet!"); 1434 case TargetLowering::Legal: 1435 break; 1436 case TargetLowering::Custom: 1437 Tmp3 = TLI.LowerOperation(Result, DAG); 1438 if (Tmp3.Val) { 1439 Result = Tmp3; 1440 break; 1441 } 1442 // FALLTHROUGH 1443 case TargetLowering::Expand: 1444 Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node)); 1445 break; 1446 } 1447 break; 1448 case ISD::VECTOR_SHUFFLE: 1449 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the input vectors, 1450 Tmp2 = LegalizeOp(Node->getOperand(1)); // but not the shuffle mask. 1451 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 1452 1453 // Allow targets to custom lower the SHUFFLEs they support. 1454 switch (TLI.getOperationAction(ISD::VECTOR_SHUFFLE,Result.getValueType())) { 1455 default: assert(0 && "Unknown operation action!"); 1456 case TargetLowering::Legal: 1457 assert(isShuffleLegal(Result.getValueType(), Node->getOperand(2)) && 1458 "vector shuffle should not be created if not legal!"); 1459 break; 1460 case TargetLowering::Custom: 1461 Tmp3 = TLI.LowerOperation(Result, DAG); 1462 if (Tmp3.Val) { 1463 Result = Tmp3; 1464 break; 1465 } 1466 // FALLTHROUGH 1467 case TargetLowering::Expand: { 1468 MVT::ValueType VT = Node->getValueType(0); 1469 MVT::ValueType EltVT = MVT::getVectorElementType(VT); 1470 MVT::ValueType PtrVT = TLI.getPointerTy(); 1471 SDOperand Mask = Node->getOperand(2); 1472 unsigned NumElems = Mask.getNumOperands(); 1473 SmallVector<SDOperand,8> Ops; 1474 for (unsigned i = 0; i != NumElems; ++i) { 1475 SDOperand Arg = Mask.getOperand(i); 1476 if (Arg.getOpcode() == ISD::UNDEF) { 1477 Ops.push_back(DAG.getNode(ISD::UNDEF, EltVT)); 1478 } else { 1479 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 1480 unsigned Idx = cast<ConstantSDNode>(Arg)->getValue(); 1481 if (Idx < NumElems) 1482 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Tmp1, 1483 DAG.getConstant(Idx, PtrVT))); 1484 else 1485 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Tmp2, 1486 DAG.getConstant(Idx - NumElems, PtrVT))); 1487 } 1488 } 1489 Result = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()); 1490 break; 1491 } 1492 case TargetLowering::Promote: { 1493 // Change base type to a different vector type. 1494 MVT::ValueType OVT = Node->getValueType(0); 1495 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 1496 1497 // Cast the two input vectors. 1498 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp1); 1499 Tmp2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp2); 1500 1501 // Convert the shuffle mask to the right # elements. 1502 Tmp3 = SDOperand(isShuffleLegal(OVT, Node->getOperand(2)), 0); 1503 assert(Tmp3.Val && "Shuffle not legal?"); 1504 Result = DAG.getNode(ISD::VECTOR_SHUFFLE, NVT, Tmp1, Tmp2, Tmp3); 1505 Result = DAG.getNode(ISD::BIT_CONVERT, OVT, Result); 1506 break; 1507 } 1508 } 1509 break; 1510 1511 case ISD::EXTRACT_VECTOR_ELT: 1512 Tmp1 = Node->getOperand(0); 1513 Tmp2 = LegalizeOp(Node->getOperand(1)); 1514 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1515 Result = ExpandEXTRACT_VECTOR_ELT(Result); 1516 break; 1517 1518 case ISD::EXTRACT_SUBVECTOR: 1519 Tmp1 = Node->getOperand(0); 1520 Tmp2 = LegalizeOp(Node->getOperand(1)); 1521 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1522 Result = ExpandEXTRACT_SUBVECTOR(Result); 1523 break; 1524 1525 case ISD::CALLSEQ_START: { 1526 SDNode *CallEnd = FindCallEndFromCallStart(Node); 1527 1528 // Recursively Legalize all of the inputs of the call end that do not lead 1529 // to this call start. This ensures that any libcalls that need be inserted 1530 // are inserted *before* the CALLSEQ_START. 1531 {SmallPtrSet<SDNode*, 32> NodesLeadingTo; 1532 for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i) 1533 LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).Val, Node, 1534 NodesLeadingTo); 1535 } 1536 1537 // Now that we legalized all of the inputs (which may have inserted 1538 // libcalls) create the new CALLSEQ_START node. 1539 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1540 1541 // Merge in the last call, to ensure that this call start after the last 1542 // call ended. 1543 if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) { 1544 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1545 Tmp1 = LegalizeOp(Tmp1); 1546 } 1547 1548 // Do not try to legalize the target-specific arguments (#1+). 1549 if (Tmp1 != Node->getOperand(0)) { 1550 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1551 Ops[0] = Tmp1; 1552 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1553 } 1554 1555 // Remember that the CALLSEQ_START is legalized. 1556 AddLegalizedOperand(Op.getValue(0), Result); 1557 if (Node->getNumValues() == 2) // If this has a flag result, remember it. 1558 AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); 1559 1560 // Now that the callseq_start and all of the non-call nodes above this call 1561 // sequence have been legalized, legalize the call itself. During this 1562 // process, no libcalls can/will be inserted, guaranteeing that no calls 1563 // can overlap. 1564 assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!"); 1565 SDOperand InCallSEQ = LastCALLSEQ_END; 1566 // Note that we are selecting this call! 1567 LastCALLSEQ_END = SDOperand(CallEnd, 0); 1568 IsLegalizingCall = true; 1569 1570 // Legalize the call, starting from the CALLSEQ_END. 1571 LegalizeOp(LastCALLSEQ_END); 1572 assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!"); 1573 return Result; 1574 } 1575 case ISD::CALLSEQ_END: 1576 // If the CALLSEQ_START node hasn't been legalized first, legalize it. This 1577 // will cause this node to be legalized as well as handling libcalls right. 1578 if (LastCALLSEQ_END.Val != Node) { 1579 LegalizeOp(SDOperand(FindCallStartFromCallEnd(Node), 0)); 1580 DenseMap<SDOperand, SDOperand>::iterator I = LegalizedNodes.find(Op); 1581 assert(I != LegalizedNodes.end() && 1582 "Legalizing the call start should have legalized this node!"); 1583 return I->second; 1584 } 1585 1586 // Otherwise, the call start has been legalized and everything is going 1587 // according to plan. Just legalize ourselves normally here. 1588 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1589 // Do not try to legalize the target-specific arguments (#1+), except for 1590 // an optional flag input. 1591 if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){ 1592 if (Tmp1 != Node->getOperand(0)) { 1593 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1594 Ops[0] = Tmp1; 1595 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1596 } 1597 } else { 1598 Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1)); 1599 if (Tmp1 != Node->getOperand(0) || 1600 Tmp2 != Node->getOperand(Node->getNumOperands()-1)) { 1601 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1602 Ops[0] = Tmp1; 1603 Ops.back() = Tmp2; 1604 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1605 } 1606 } 1607 assert(IsLegalizingCall && "Call sequence imbalance between start/end?"); 1608 // This finishes up call legalization. 1609 IsLegalizingCall = false; 1610 1611 // If the CALLSEQ_END node has a flag, remember that we legalized it. 1612 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 1613 if (Node->getNumValues() == 2) 1614 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 1615 return Result.getValue(Op.ResNo); 1616 case ISD::DYNAMIC_STACKALLOC: { 1617 MVT::ValueType VT = Node->getValueType(0); 1618 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1619 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the size. 1620 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the alignment. 1621 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1622 1623 Tmp1 = Result.getValue(0); 1624 Tmp2 = Result.getValue(1); 1625 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1626 default: assert(0 && "This action is not supported yet!"); 1627 case TargetLowering::Expand: { 1628 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1629 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1630 " not tell us which reg is the stack pointer!"); 1631 SDOperand Chain = Tmp1.getOperand(0); 1632 1633 // Chain the dynamic stack allocation so that it doesn't modify the stack 1634 // pointer when other instructions are using the stack. 1635 Chain = DAG.getCALLSEQ_START(Chain, 1636 DAG.getConstant(0, TLI.getPointerTy())); 1637 1638 SDOperand Size = Tmp2.getOperand(1); 1639 SDOperand SP = DAG.getCopyFromReg(Chain, SPReg, VT); 1640 Chain = SP.getValue(1); 1641 unsigned Align = cast<ConstantSDNode>(Tmp3)->getValue(); 1642 unsigned StackAlign = 1643 TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); 1644 if (Align > StackAlign) 1645 SP = DAG.getNode(ISD::AND, VT, SP, 1646 DAG.getConstant(-(uint64_t)Align, VT)); 1647 Tmp1 = DAG.getNode(ISD::SUB, VT, SP, Size); // Value 1648 Chain = DAG.getCopyToReg(Chain, SPReg, Tmp1); // Output chain 1649 1650 Tmp2 = 1651 DAG.getCALLSEQ_END(Chain, 1652 DAG.getConstant(0, TLI.getPointerTy()), 1653 DAG.getConstant(0, TLI.getPointerTy()), 1654 SDOperand()); 1655 1656 Tmp1 = LegalizeOp(Tmp1); 1657 Tmp2 = LegalizeOp(Tmp2); 1658 break; 1659 } 1660 case TargetLowering::Custom: 1661 Tmp3 = TLI.LowerOperation(Tmp1, DAG); 1662 if (Tmp3.Val) { 1663 Tmp1 = LegalizeOp(Tmp3); 1664 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 1665 } 1666 break; 1667 case TargetLowering::Legal: 1668 break; 1669 } 1670 // Since this op produce two values, make sure to remember that we 1671 // legalized both of them. 1672 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 1673 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 1674 return Op.ResNo ? Tmp2 : Tmp1; 1675 } 1676 case ISD::INLINEASM: { 1677 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1678 bool Changed = false; 1679 // Legalize all of the operands of the inline asm, in case they are nodes 1680 // that need to be expanded or something. Note we skip the asm string and 1681 // all of the TargetConstant flags. 1682 SDOperand Op = LegalizeOp(Ops[0]); 1683 Changed = Op != Ops[0]; 1684 Ops[0] = Op; 1685 1686 bool HasInFlag = Ops.back().getValueType() == MVT::Flag; 1687 for (unsigned i = 2, e = Ops.size()-HasInFlag; i < e; ) { 1688 unsigned NumVals = cast<ConstantSDNode>(Ops[i])->getValue() >> 3; 1689 for (++i; NumVals; ++i, --NumVals) { 1690 SDOperand Op = LegalizeOp(Ops[i]); 1691 if (Op != Ops[i]) { 1692 Changed = true; 1693 Ops[i] = Op; 1694 } 1695 } 1696 } 1697 1698 if (HasInFlag) { 1699 Op = LegalizeOp(Ops.back()); 1700 Changed |= Op != Ops.back(); 1701 Ops.back() = Op; 1702 } 1703 1704 if (Changed) 1705 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1706 1707 // INLINE asm returns a chain and flag, make sure to add both to the map. 1708 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 1709 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 1710 return Result.getValue(Op.ResNo); 1711 } 1712 case ISD::BR: 1713 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1714 // Ensure that libcalls are emitted before a branch. 1715 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1716 Tmp1 = LegalizeOp(Tmp1); 1717 LastCALLSEQ_END = DAG.getEntryNode(); 1718 1719 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 1720 break; 1721 case ISD::BRIND: 1722 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1723 // Ensure that libcalls are emitted before a branch. 1724 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1725 Tmp1 = LegalizeOp(Tmp1); 1726 LastCALLSEQ_END = DAG.getEntryNode(); 1727 1728 switch (getTypeAction(Node->getOperand(1).getValueType())) { 1729 default: assert(0 && "Indirect target must be legal type (pointer)!"); 1730 case Legal: 1731 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition. 1732 break; 1733 } 1734 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1735 break; 1736 case ISD::BR_JT: 1737 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1738 // Ensure that libcalls are emitted before a branch. 1739 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1740 Tmp1 = LegalizeOp(Tmp1); 1741 LastCALLSEQ_END = DAG.getEntryNode(); 1742 1743 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the jumptable node. 1744 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 1745 1746 switch (TLI.getOperationAction(ISD::BR_JT, MVT::Other)) { 1747 default: assert(0 && "This action is not supported yet!"); 1748 case TargetLowering::Legal: break; 1749 case TargetLowering::Custom: 1750 Tmp1 = TLI.LowerOperation(Result, DAG); 1751 if (Tmp1.Val) Result = Tmp1; 1752 break; 1753 case TargetLowering::Expand: { 1754 SDOperand Chain = Result.getOperand(0); 1755 SDOperand Table = Result.getOperand(1); 1756 SDOperand Index = Result.getOperand(2); 1757 1758 MVT::ValueType PTy = TLI.getPointerTy(); 1759 MachineFunction &MF = DAG.getMachineFunction(); 1760 unsigned EntrySize = MF.getJumpTableInfo()->getEntrySize(); 1761 Index= DAG.getNode(ISD::MUL, PTy, Index, DAG.getConstant(EntrySize, PTy)); 1762 SDOperand Addr = DAG.getNode(ISD::ADD, PTy, Index, Table); 1763 1764 SDOperand LD; 1765 switch (EntrySize) { 1766 default: assert(0 && "Size of jump table not supported yet."); break; 1767 case 4: LD = DAG.getLoad(MVT::i32, Chain, Addr, 1768 PseudoSourceValue::getJumpTable(), 0); break; 1769 case 8: LD = DAG.getLoad(MVT::i64, Chain, Addr, 1770 PseudoSourceValue::getJumpTable(), 0); break; 1771 } 1772 1773 Addr = LD; 1774 if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) { 1775 // For PIC, the sequence is: 1776 // BRIND(load(Jumptable + index) + RelocBase) 1777 // RelocBase can be JumpTable, GOT or some sort of global base. 1778 if (PTy != MVT::i32) 1779 Addr = DAG.getNode(ISD::SIGN_EXTEND, PTy, Addr); 1780 Addr = DAG.getNode(ISD::ADD, PTy, Addr, 1781 TLI.getPICJumpTableRelocBase(Table, DAG)); 1782 } 1783 Result = DAG.getNode(ISD::BRIND, MVT::Other, LD.getValue(1), Addr); 1784 } 1785 } 1786 break; 1787 case ISD::BRCOND: 1788 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1789 // Ensure that libcalls are emitted before a return. 1790 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1791 Tmp1 = LegalizeOp(Tmp1); 1792 LastCALLSEQ_END = DAG.getEntryNode(); 1793 1794 switch (getTypeAction(Node->getOperand(1).getValueType())) { 1795 case Expand: assert(0 && "It's impossible to expand bools"); 1796 case Legal: 1797 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition. 1798 break; 1799 case Promote: { 1800 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the condition. 1801 1802 // The top bits of the promoted condition are not necessarily zero, ensure 1803 // that the value is properly zero extended. 1804 unsigned BitWidth = Tmp2.getValueSizeInBits(); 1805 if (!DAG.MaskedValueIsZero(Tmp2, 1806 APInt::getHighBitsSet(BitWidth, BitWidth-1))) 1807 Tmp2 = DAG.getZeroExtendInReg(Tmp2, MVT::i1); 1808 break; 1809 } 1810 } 1811 1812 // Basic block destination (Op#2) is always legal. 1813 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 1814 1815 switch (TLI.getOperationAction(ISD::BRCOND, MVT::Other)) { 1816 default: assert(0 && "This action is not supported yet!"); 1817 case TargetLowering::Legal: break; 1818 case TargetLowering::Custom: 1819 Tmp1 = TLI.LowerOperation(Result, DAG); 1820 if (Tmp1.Val) Result = Tmp1; 1821 break; 1822 case TargetLowering::Expand: 1823 // Expand brcond's setcc into its constituent parts and create a BR_CC 1824 // Node. 1825 if (Tmp2.getOpcode() == ISD::SETCC) { 1826 Result = DAG.getNode(ISD::BR_CC, MVT::Other, Tmp1, Tmp2.getOperand(2), 1827 Tmp2.getOperand(0), Tmp2.getOperand(1), 1828 Node->getOperand(2)); 1829 } else { 1830 Result = DAG.getNode(ISD::BR_CC, MVT::Other, Tmp1, 1831 DAG.getCondCode(ISD::SETNE), Tmp2, 1832 DAG.getConstant(0, Tmp2.getValueType()), 1833 Node->getOperand(2)); 1834 } 1835 break; 1836 } 1837 break; 1838 case ISD::BR_CC: 1839 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1840 // Ensure that libcalls are emitted before a branch. 1841 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1842 Tmp1 = LegalizeOp(Tmp1); 1843 Tmp2 = Node->getOperand(2); // LHS 1844 Tmp3 = Node->getOperand(3); // RHS 1845 Tmp4 = Node->getOperand(1); // CC 1846 1847 LegalizeSetCCOperands(Tmp2, Tmp3, Tmp4); 1848 LastCALLSEQ_END = DAG.getEntryNode(); 1849 1850 // If we didn't get both a LHS and RHS back from LegalizeSetCCOperands, 1851 // the LHS is a legal SETCC itself. In this case, we need to compare 1852 // the result against zero to select between true and false values. 1853 if (Tmp3.Val == 0) { 1854 Tmp3 = DAG.getConstant(0, Tmp2.getValueType()); 1855 Tmp4 = DAG.getCondCode(ISD::SETNE); 1856 } 1857 1858 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp4, Tmp2, Tmp3, 1859 Node->getOperand(4)); 1860 1861 switch (TLI.getOperationAction(ISD::BR_CC, Tmp3.getValueType())) { 1862 default: assert(0 && "Unexpected action for BR_CC!"); 1863 case TargetLowering::Legal: break; 1864 case TargetLowering::Custom: 1865 Tmp4 = TLI.LowerOperation(Result, DAG); 1866 if (Tmp4.Val) Result = Tmp4; 1867 break; 1868 } 1869 break; 1870 case ISD::LOAD: { 1871 LoadSDNode *LD = cast<LoadSDNode>(Node); 1872 Tmp1 = LegalizeOp(LD->getChain()); // Legalize the chain. 1873 Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer. 1874 1875 ISD::LoadExtType ExtType = LD->getExtensionType(); 1876 if (ExtType == ISD::NON_EXTLOAD) { 1877 MVT::ValueType VT = Node->getValueType(0); 1878 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset()); 1879 Tmp3 = Result.getValue(0); 1880 Tmp4 = Result.getValue(1); 1881 1882 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1883 default: assert(0 && "This action is not supported yet!"); 1884 case TargetLowering::Legal: 1885 // If this is an unaligned load and the target doesn't support it, 1886 // expand it. 1887 if (!TLI.allowsUnalignedMemoryAccesses()) { 1888 unsigned ABIAlignment = TLI.getTargetData()-> 1889 getABITypeAlignment(MVT::getTypeForValueType(LD->getMemoryVT())); 1890 if (LD->getAlignment() < ABIAlignment){ 1891 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.Val), DAG, 1892 TLI); 1893 Tmp3 = Result.getOperand(0); 1894 Tmp4 = Result.getOperand(1); 1895 Tmp3 = LegalizeOp(Tmp3); 1896 Tmp4 = LegalizeOp(Tmp4); 1897 } 1898 } 1899 break; 1900 case TargetLowering::Custom: 1901 Tmp1 = TLI.LowerOperation(Tmp3, DAG); 1902 if (Tmp1.Val) { 1903 Tmp3 = LegalizeOp(Tmp1); 1904 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 1905 } 1906 break; 1907 case TargetLowering::Promote: { 1908 // Only promote a load of vector type to another. 1909 assert(MVT::isVector(VT) && "Cannot promote this load!"); 1910 // Change base type to a different vector type. 1911 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 1912 1913 Tmp1 = DAG.getLoad(NVT, Tmp1, Tmp2, LD->getSrcValue(), 1914 LD->getSrcValueOffset(), 1915 LD->isVolatile(), LD->getAlignment()); 1916 Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, VT, Tmp1)); 1917 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 1918 break; 1919 } 1920 } 1921 // Since loads produce two values, make sure to remember that we 1922 // legalized both of them. 1923 AddLegalizedOperand(SDOperand(Node, 0), Tmp3); 1924 AddLegalizedOperand(SDOperand(Node, 1), Tmp4); 1925 return Op.ResNo ? Tmp4 : Tmp3; 1926 } else { 1927 MVT::ValueType SrcVT = LD->getMemoryVT(); 1928 unsigned SrcWidth = MVT::getSizeInBits(SrcVT); 1929 int SVOffset = LD->getSrcValueOffset(); 1930 unsigned Alignment = LD->getAlignment(); 1931 bool isVolatile = LD->isVolatile(); 1932 1933 if (SrcWidth != MVT::getStoreSizeInBits(SrcVT) && 1934 // Some targets pretend to have an i1 loading operation, and actually 1935 // load an i8. This trick is correct for ZEXTLOAD because the top 7 1936 // bits are guaranteed to be zero; it helps the optimizers understand 1937 // that these bits are zero. It is also useful for EXTLOAD, since it 1938 // tells the optimizers that those bits are undefined. It would be 1939 // nice to have an effective generic way of getting these benefits... 1940 // Until such a way is found, don't insist on promoting i1 here. 1941 (SrcVT != MVT::i1 || 1942 TLI.getLoadXAction(ExtType, MVT::i1) == TargetLowering::Promote)) { 1943 // Promote to a byte-sized load if not loading an integral number of 1944 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 1945 unsigned NewWidth = MVT::getStoreSizeInBits(SrcVT); 1946 MVT::ValueType NVT = MVT::getIntegerType(NewWidth); 1947 SDOperand Ch; 1948 1949 // The extra bits are guaranteed to be zero, since we stored them that 1950 // way. A zext load from NVT thus automatically gives zext from SrcVT. 1951 1952 ISD::LoadExtType NewExtType = 1953 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 1954 1955 Result = DAG.getExtLoad(NewExtType, Node->getValueType(0), 1956 Tmp1, Tmp2, LD->getSrcValue(), SVOffset, 1957 NVT, isVolatile, Alignment); 1958 1959 Ch = Result.getValue(1); // The chain. 1960 1961 if (ExtType == ISD::SEXTLOAD) 1962 // Having the top bits zero doesn't help when sign extending. 1963 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 1964 Result, DAG.getValueType(SrcVT)); 1965 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 1966 // All the top bits are guaranteed to be zero - inform the optimizers. 1967 Result = DAG.getNode(ISD::AssertZext, Result.getValueType(), Result, 1968 DAG.getValueType(SrcVT)); 1969 1970 Tmp1 = LegalizeOp(Result); 1971 Tmp2 = LegalizeOp(Ch); 1972 } else if (SrcWidth & (SrcWidth - 1)) { 1973 // If not loading a power-of-2 number of bits, expand as two loads. 1974 assert(MVT::isExtendedVT(SrcVT) && !MVT::isVector(SrcVT) && 1975 "Unsupported extload!"); 1976 unsigned RoundWidth = 1 << Log2_32(SrcWidth); 1977 assert(RoundWidth < SrcWidth); 1978 unsigned ExtraWidth = SrcWidth - RoundWidth; 1979 assert(ExtraWidth < RoundWidth); 1980 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 1981 "Load size not an integral number of bytes!"); 1982 MVT::ValueType RoundVT = MVT::getIntegerType(RoundWidth); 1983 MVT::ValueType ExtraVT = MVT::getIntegerType(ExtraWidth); 1984 SDOperand Lo, Hi, Ch; 1985 unsigned IncrementSize; 1986 1987 if (TLI.isLittleEndian()) { 1988 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 1989 // Load the bottom RoundWidth bits. 1990 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, Node->getValueType(0), Tmp1, Tmp2, 1991 LD->getSrcValue(), SVOffset, RoundVT, isVolatile, 1992 Alignment); 1993 1994 // Load the remaining ExtraWidth bits. 1995 IncrementSize = RoundWidth / 8; 1996 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 1997 DAG.getIntPtrConstant(IncrementSize)); 1998 Hi = DAG.getExtLoad(ExtType, Node->getValueType(0), Tmp1, Tmp2, 1999 LD->getSrcValue(), SVOffset + IncrementSize, 2000 ExtraVT, isVolatile, 2001 MinAlign(Alignment, IncrementSize)); 2002 2003 // Build a factor node to remember that this load is independent of the 2004 // other one. 2005 Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 2006 Hi.getValue(1)); 2007 2008 // Move the top bits to the right place. 2009 Hi = DAG.getNode(ISD::SHL, Hi.getValueType(), Hi, 2010 DAG.getConstant(RoundWidth, TLI.getShiftAmountTy())); 2011 2012 // Join the hi and lo parts. 2013 Result = DAG.getNode(ISD::OR, Node->getValueType(0), Lo, Hi); 2014 } else { 2015 // Big endian - avoid unaligned loads. 2016 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 2017 // Load the top RoundWidth bits. 2018 Hi = DAG.getExtLoad(ExtType, Node->getValueType(0), Tmp1, Tmp2, 2019 LD->getSrcValue(), SVOffset, RoundVT, isVolatile, 2020 Alignment); 2021 2022 // Load the remaining ExtraWidth bits. 2023 IncrementSize = RoundWidth / 8; 2024 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2025 DAG.getIntPtrConstant(IncrementSize)); 2026 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, Node->getValueType(0), Tmp1, Tmp2, 2027 LD->getSrcValue(), SVOffset + IncrementSize, 2028 ExtraVT, isVolatile, 2029 MinAlign(Alignment, IncrementSize)); 2030 2031 // Build a factor node to remember that this load is independent of the 2032 // other one. 2033 Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 2034 Hi.getValue(1)); 2035 2036 // Move the top bits to the right place. 2037 Hi = DAG.getNode(ISD::SHL, Hi.getValueType(), Hi, 2038 DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy())); 2039 2040 // Join the hi and lo parts. 2041 Result = DAG.getNode(ISD::OR, Node->getValueType(0), Lo, Hi); 2042 } 2043 2044 Tmp1 = LegalizeOp(Result); 2045 Tmp2 = LegalizeOp(Ch); 2046 } else { 2047 switch (TLI.getLoadXAction(ExtType, SrcVT)) { 2048 default: assert(0 && "This action is not supported yet!"); 2049 case TargetLowering::Custom: 2050 isCustom = true; 2051 // FALLTHROUGH 2052 case TargetLowering::Legal: 2053 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset()); 2054 Tmp1 = Result.getValue(0); 2055 Tmp2 = Result.getValue(1); 2056 2057 if (isCustom) { 2058 Tmp3 = TLI.LowerOperation(Result, DAG); 2059 if (Tmp3.Val) { 2060 Tmp1 = LegalizeOp(Tmp3); 2061 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 2062 } 2063 } else { 2064 // If this is an unaligned load and the target doesn't support it, 2065 // expand it. 2066 if (!TLI.allowsUnalignedMemoryAccesses()) { 2067 unsigned ABIAlignment = TLI.getTargetData()-> 2068 getABITypeAlignment(MVT::getTypeForValueType(LD->getMemoryVT())); 2069 if (LD->getAlignment() < ABIAlignment){ 2070 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.Val), DAG, 2071 TLI); 2072 Tmp1 = Result.getOperand(0); 2073 Tmp2 = Result.getOperand(1); 2074 Tmp1 = LegalizeOp(Tmp1); 2075 Tmp2 = LegalizeOp(Tmp2); 2076 } 2077 } 2078 } 2079 break; 2080 case TargetLowering::Expand: 2081 // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND 2082 if (SrcVT == MVT::f32 && Node->getValueType(0) == MVT::f64) { 2083 SDOperand Load = DAG.getLoad(SrcVT, Tmp1, Tmp2, LD->getSrcValue(), 2084 LD->getSrcValueOffset(), 2085 LD->isVolatile(), LD->getAlignment()); 2086 Result = DAG.getNode(ISD::FP_EXTEND, Node->getValueType(0), Load); 2087 Tmp1 = LegalizeOp(Result); // Relegalize new nodes. 2088 Tmp2 = LegalizeOp(Load.getValue(1)); 2089 break; 2090 } 2091 assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!"); 2092 // Turn the unsupported load into an EXTLOAD followed by an explicit 2093 // zero/sign extend inreg. 2094 Result = DAG.getExtLoad(ISD::EXTLOAD, Node->getValueType(0), 2095 Tmp1, Tmp2, LD->getSrcValue(), 2096 LD->getSrcValueOffset(), SrcVT, 2097 LD->isVolatile(), LD->getAlignment()); 2098 SDOperand ValRes; 2099 if (ExtType == ISD::SEXTLOAD) 2100 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 2101 Result, DAG.getValueType(SrcVT)); 2102 else 2103 ValRes = DAG.getZeroExtendInReg(Result, SrcVT); 2104 Tmp1 = LegalizeOp(ValRes); // Relegalize new nodes. 2105 Tmp2 = LegalizeOp(Result.getValue(1)); // Relegalize new nodes. 2106 break; 2107 } 2108 } 2109 2110 // Since loads produce two values, make sure to remember that we legalized 2111 // both of them. 2112 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 2113 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 2114 return Op.ResNo ? Tmp2 : Tmp1; 2115 } 2116 } 2117 case ISD::EXTRACT_ELEMENT: { 2118 MVT::ValueType OpTy = Node->getOperand(0).getValueType(); 2119 switch (getTypeAction(OpTy)) { 2120 default: assert(0 && "EXTRACT_ELEMENT action for type unimplemented!"); 2121 case Legal: 2122 if (cast<ConstantSDNode>(Node->getOperand(1))->getValue()) { 2123 // 1 -> Hi 2124 Result = DAG.getNode(ISD::SRL, OpTy, Node->getOperand(0), 2125 DAG.getConstant(MVT::getSizeInBits(OpTy)/2, 2126 TLI.getShiftAmountTy())); 2127 Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), Result); 2128 } else { 2129 // 0 -> Lo 2130 Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), 2131 Node->getOperand(0)); 2132 } 2133 break; 2134 case Expand: 2135 // Get both the low and high parts. 2136 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 2137 if (cast<ConstantSDNode>(Node->getOperand(1))->getValue()) 2138 Result = Tmp2; // 1 -> Hi 2139 else 2140 Result = Tmp1; // 0 -> Lo 2141 break; 2142 } 2143 break; 2144 } 2145 2146 case ISD::CopyToReg: 2147 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2148 2149 assert(isTypeLegal(Node->getOperand(2).getValueType()) && 2150 "Register type must be legal!"); 2151 // Legalize the incoming value (must be a legal type). 2152 Tmp2 = LegalizeOp(Node->getOperand(2)); 2153 if (Node->getNumValues() == 1) { 2154 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2); 2155 } else { 2156 assert(Node->getNumValues() == 2 && "Unknown CopyToReg"); 2157 if (Node->getNumOperands() == 4) { 2158 Tmp3 = LegalizeOp(Node->getOperand(3)); 2159 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2, 2160 Tmp3); 2161 } else { 2162 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2); 2163 } 2164 2165 // Since this produces two values, make sure to remember that we legalized 2166 // both of them. 2167 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 2168 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 2169 return Result; 2170 } 2171 break; 2172 2173 case ISD::RET: 2174 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2175 2176 // Ensure that libcalls are emitted before a return. 2177 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 2178 Tmp1 = LegalizeOp(Tmp1); 2179 LastCALLSEQ_END = DAG.getEntryNode(); 2180 2181 switch (Node->getNumOperands()) { 2182 case 3: // ret val 2183 Tmp2 = Node->getOperand(1); 2184 Tmp3 = Node->getOperand(2); // Signness 2185 switch (getTypeAction(Tmp2.getValueType())) { 2186 case Legal: 2187 Result = DAG.UpdateNodeOperands(Result, Tmp1, LegalizeOp(Tmp2), Tmp3); 2188 break; 2189 case Expand: 2190 if (!MVT::isVector(Tmp2.getValueType())) { 2191 SDOperand Lo, Hi; 2192 ExpandOp(Tmp2, Lo, Hi); 2193 2194 // Big endian systems want the hi reg first. 2195 if (TLI.isBigEndian()) 2196 std::swap(Lo, Hi); 2197 2198 if (Hi.Val) 2199 Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3, Hi,Tmp3); 2200 else 2201 Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3); 2202 Result = LegalizeOp(Result); 2203 } else { 2204 SDNode *InVal = Tmp2.Val; 2205 int InIx = Tmp2.ResNo; 2206 unsigned NumElems = MVT::getVectorNumElements(InVal->getValueType(InIx)); 2207 MVT::ValueType EVT = MVT::getVectorElementType(InVal->getValueType(InIx)); 2208 2209 // Figure out if there is a simple type corresponding to this Vector 2210 // type. If so, convert to the vector type. 2211 MVT::ValueType TVT = MVT::getVectorType(EVT, NumElems); 2212 if (TLI.isTypeLegal(TVT)) { 2213 // Turn this into a return of the vector type. 2214 Tmp2 = LegalizeOp(Tmp2); 2215 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2216 } else if (NumElems == 1) { 2217 // Turn this into a return of the scalar type. 2218 Tmp2 = ScalarizeVectorOp(Tmp2); 2219 Tmp2 = LegalizeOp(Tmp2); 2220 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2221 2222 // FIXME: Returns of gcc generic vectors smaller than a legal type 2223 // should be returned in integer registers! 2224 2225 // The scalarized value type may not be legal, e.g. it might require 2226 // promotion or expansion. Relegalize the return. 2227 Result = LegalizeOp(Result); 2228 } else { 2229 // FIXME: Returns of gcc generic vectors larger than a legal vector 2230 // type should be returned by reference! 2231 SDOperand Lo, Hi; 2232 SplitVectorOp(Tmp2, Lo, Hi); 2233 Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3, Hi,Tmp3); 2234 Result = LegalizeOp(Result); 2235 } 2236 } 2237 break; 2238 case Promote: 2239 Tmp2 = PromoteOp(Node->getOperand(1)); 2240 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2241 Result = LegalizeOp(Result); 2242 break; 2243 } 2244 break; 2245 case 1: // ret void 2246 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2247 break; 2248 default: { // ret <values> 2249 SmallVector<SDOperand, 8> NewValues; 2250 NewValues.push_back(Tmp1); 2251 for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2) 2252 switch (getTypeAction(Node->getOperand(i).getValueType())) { 2253 case Legal: 2254 NewValues.push_back(LegalizeOp(Node->getOperand(i))); 2255 NewValues.push_back(Node->getOperand(i+1)); 2256 break; 2257 case Expand: { 2258 SDOperand Lo, Hi; 2259 assert(!MVT::isExtendedVT(Node->getOperand(i).getValueType()) && 2260 "FIXME: TODO: implement returning non-legal vector types!"); 2261 ExpandOp(Node->getOperand(i), Lo, Hi); 2262 NewValues.push_back(Lo); 2263 NewValues.push_back(Node->getOperand(i+1)); 2264 if (Hi.Val) { 2265 NewValues.push_back(Hi); 2266 NewValues.push_back(Node->getOperand(i+1)); 2267 } 2268 break; 2269 } 2270 case Promote: 2271 assert(0 && "Can't promote multiple return value yet!"); 2272 } 2273 2274 if (NewValues.size() == Node->getNumOperands()) 2275 Result = DAG.UpdateNodeOperands(Result, &NewValues[0],NewValues.size()); 2276 else 2277 Result = DAG.getNode(ISD::RET, MVT::Other, 2278 &NewValues[0], NewValues.size()); 2279 break; 2280 } 2281 } 2282 2283 if (Result.getOpcode() == ISD::RET) { 2284 switch (TLI.getOperationAction(Result.getOpcode(), MVT::Other)) { 2285 default: assert(0 && "This action is not supported yet!"); 2286 case TargetLowering::Legal: break; 2287 case TargetLowering::Custom: 2288 Tmp1 = TLI.LowerOperation(Result, DAG); 2289 if (Tmp1.Val) Result = Tmp1; 2290 break; 2291 } 2292 } 2293 break; 2294 case ISD::STORE: { 2295 StoreSDNode *ST = cast<StoreSDNode>(Node); 2296 Tmp1 = LegalizeOp(ST->getChain()); // Legalize the chain. 2297 Tmp2 = LegalizeOp(ST->getBasePtr()); // Legalize the pointer. 2298 int SVOffset = ST->getSrcValueOffset(); 2299 unsigned Alignment = ST->getAlignment(); 2300 bool isVolatile = ST->isVolatile(); 2301 2302 if (!ST->isTruncatingStore()) { 2303 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 2304 // FIXME: We shouldn't do this for TargetConstantFP's. 2305 // FIXME: move this to the DAG Combiner! Note that we can't regress due 2306 // to phase ordering between legalized code and the dag combiner. This 2307 // probably means that we need to integrate dag combiner and legalizer 2308 // together. 2309 // We generally can't do this one for long doubles. 2310 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 2311 if (CFP->getValueType(0) == MVT::f32 && 2312 getTypeAction(MVT::i32) == Legal) { 2313 Tmp3 = DAG.getConstant((uint32_t)CFP->getValueAPF(). 2314 convertToAPInt().getZExtValue(), 2315 MVT::i32); 2316 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2317 SVOffset, isVolatile, Alignment); 2318 break; 2319 } else if (CFP->getValueType(0) == MVT::f64) { 2320 // If this target supports 64-bit registers, do a single 64-bit store. 2321 if (getTypeAction(MVT::i64) == Legal) { 2322 Tmp3 = DAG.getConstant(CFP->getValueAPF().convertToAPInt(). 2323 getZExtValue(), MVT::i64); 2324 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2325 SVOffset, isVolatile, Alignment); 2326 break; 2327 } else if (getTypeAction(MVT::i32) == Legal) { 2328 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 2329 // stores. If the target supports neither 32- nor 64-bits, this 2330 // xform is certainly not worth it. 2331 uint64_t IntVal =CFP->getValueAPF().convertToAPInt().getZExtValue(); 2332 SDOperand Lo = DAG.getConstant(uint32_t(IntVal), MVT::i32); 2333 SDOperand Hi = DAG.getConstant(uint32_t(IntVal >>32), MVT::i32); 2334 if (TLI.isBigEndian()) std::swap(Lo, Hi); 2335 2336 Lo = DAG.getStore(Tmp1, Lo, Tmp2, ST->getSrcValue(), 2337 SVOffset, isVolatile, Alignment); 2338 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2339 DAG.getIntPtrConstant(4)); 2340 Hi = DAG.getStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), SVOffset+4, 2341 isVolatile, MinAlign(Alignment, 4U)); 2342 2343 Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); 2344 break; 2345 } 2346 } 2347 } 2348 2349 switch (getTypeAction(ST->getMemoryVT())) { 2350 case Legal: { 2351 Tmp3 = LegalizeOp(ST->getValue()); 2352 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2, 2353 ST->getOffset()); 2354 2355 MVT::ValueType VT = Tmp3.getValueType(); 2356 switch (TLI.getOperationAction(ISD::STORE, VT)) { 2357 default: assert(0 && "This action is not supported yet!"); 2358 case TargetLowering::Legal: 2359 // If this is an unaligned store and the target doesn't support it, 2360 // expand it. 2361 if (!TLI.allowsUnalignedMemoryAccesses()) { 2362 unsigned ABIAlignment = TLI.getTargetData()-> 2363 getABITypeAlignment(MVT::getTypeForValueType(ST->getMemoryVT())); 2364 if (ST->getAlignment() < ABIAlignment) 2365 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.Val), DAG, 2366 TLI); 2367 } 2368 break; 2369 case TargetLowering::Custom: 2370 Tmp1 = TLI.LowerOperation(Result, DAG); 2371 if (Tmp1.Val) Result = Tmp1; 2372 break; 2373 case TargetLowering::Promote: 2374 assert(MVT::isVector(VT) && "Unknown legal promote case!"); 2375 Tmp3 = DAG.getNode(ISD::BIT_CONVERT, 2376 TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3); 2377 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, 2378 ST->getSrcValue(), SVOffset, isVolatile, 2379 Alignment); 2380 break; 2381 } 2382 break; 2383 } 2384 case Promote: 2385 // Truncate the value and store the result. 2386 Tmp3 = PromoteOp(ST->getValue()); 2387 Result = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2388 SVOffset, ST->getMemoryVT(), 2389 isVolatile, Alignment); 2390 break; 2391 2392 case Expand: 2393 unsigned IncrementSize = 0; 2394 SDOperand Lo, Hi; 2395 2396 // If this is a vector type, then we have to calculate the increment as 2397 // the product of the element size in bytes, and the number of elements 2398 // in the high half of the vector. 2399 if (MVT::isVector(ST->getValue().getValueType())) { 2400 SDNode *InVal = ST->getValue().Val; 2401 int InIx = ST->getValue().ResNo; 2402 MVT::ValueType InVT = InVal->getValueType(InIx); 2403 unsigned NumElems = MVT::getVectorNumElements(InVT); 2404 MVT::ValueType EVT = MVT::getVectorElementType(InVT); 2405 2406 // Figure out if there is a simple type corresponding to this Vector 2407 // type. If so, convert to the vector type. 2408 MVT::ValueType TVT = MVT::getVectorType(EVT, NumElems); 2409 if (TLI.isTypeLegal(TVT)) { 2410 // Turn this into a normal store of the vector type. 2411 Tmp3 = LegalizeOp(ST->getValue()); 2412 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2413 SVOffset, isVolatile, Alignment); 2414 Result = LegalizeOp(Result); 2415 break; 2416 } else if (NumElems == 1) { 2417 // Turn this into a normal store of the scalar type. 2418 Tmp3 = ScalarizeVectorOp(ST->getValue()); 2419 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2420 SVOffset, isVolatile, Alignment); 2421 // The scalarized value type may not be legal, e.g. it might require 2422 // promotion or expansion. Relegalize the scalar store. 2423 Result = LegalizeOp(Result); 2424 break; 2425 } else { 2426 SplitVectorOp(ST->getValue(), Lo, Hi); 2427 IncrementSize = MVT::getVectorNumElements(Lo.Val->getValueType(0)) * 2428 MVT::getSizeInBits(EVT)/8; 2429 } 2430 } else { 2431 ExpandOp(ST->getValue(), Lo, Hi); 2432 IncrementSize = Hi.Val ? MVT::getSizeInBits(Hi.getValueType())/8 : 0; 2433 2434 if (TLI.isBigEndian()) 2435 std::swap(Lo, Hi); 2436 } 2437 2438 Lo = DAG.getStore(Tmp1, Lo, Tmp2, ST->getSrcValue(), 2439 SVOffset, isVolatile, Alignment); 2440 2441 if (Hi.Val == NULL) { 2442 // Must be int <-> float one-to-one expansion. 2443 Result = Lo; 2444 break; 2445 } 2446 2447 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2448 DAG.getIntPtrConstant(IncrementSize)); 2449 assert(isTypeLegal(Tmp2.getValueType()) && 2450 "Pointers must be legal!"); 2451 SVOffset += IncrementSize; 2452 Alignment = MinAlign(Alignment, IncrementSize); 2453 Hi = DAG.getStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), 2454 SVOffset, isVolatile, Alignment); 2455 Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); 2456 break; 2457 } 2458 } else { 2459 switch (getTypeAction(ST->getValue().getValueType())) { 2460 case Legal: 2461 Tmp3 = LegalizeOp(ST->getValue()); 2462 break; 2463 case Promote: 2464 // We can promote the value, the truncstore will still take care of it. 2465 Tmp3 = PromoteOp(ST->getValue()); 2466 break; 2467 case Expand: 2468 // Just store the low part. This may become a non-trunc store, so make 2469 // sure to use getTruncStore, not UpdateNodeOperands below. 2470 ExpandOp(ST->getValue(), Tmp3, Tmp4); 2471 return DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2472 SVOffset, MVT::i8, isVolatile, Alignment); 2473 } 2474 2475 MVT::ValueType StVT = ST->getMemoryVT(); 2476 unsigned StWidth = MVT::getSizeInBits(StVT); 2477 2478 if (StWidth != MVT::getStoreSizeInBits(StVT)) { 2479 // Promote to a byte-sized store with upper bits zero if not 2480 // storing an integral number of bytes. For example, promote 2481 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 2482 MVT::ValueType NVT = MVT::getIntegerType(MVT::getStoreSizeInBits(StVT)); 2483 Tmp3 = DAG.getZeroExtendInReg(Tmp3, StVT); 2484 Result = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2485 SVOffset, NVT, isVolatile, Alignment); 2486 } else if (StWidth & (StWidth - 1)) { 2487 // If not storing a power-of-2 number of bits, expand as two stores. 2488 assert(MVT::isExtendedVT(StVT) && !MVT::isVector(StVT) && 2489 "Unsupported truncstore!"); 2490 unsigned RoundWidth = 1 << Log2_32(StWidth); 2491 assert(RoundWidth < StWidth); 2492 unsigned ExtraWidth = StWidth - RoundWidth; 2493 assert(ExtraWidth < RoundWidth); 2494 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 2495 "Store size not an integral number of bytes!"); 2496 MVT::ValueType RoundVT = MVT::getIntegerType(RoundWidth); 2497 MVT::ValueType ExtraVT = MVT::getIntegerType(ExtraWidth); 2498 SDOperand Lo, Hi; 2499 unsigned IncrementSize; 2500 2501 if (TLI.isLittleEndian()) { 2502 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 2503 // Store the bottom RoundWidth bits. 2504 Lo = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2505 SVOffset, RoundVT, 2506 isVolatile, Alignment); 2507 2508 // Store the remaining ExtraWidth bits. 2509 IncrementSize = RoundWidth / 8; 2510 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2511 DAG.getIntPtrConstant(IncrementSize)); 2512 Hi = DAG.getNode(ISD::SRL, Tmp3.getValueType(), Tmp3, 2513 DAG.getConstant(RoundWidth, TLI.getShiftAmountTy())); 2514 Hi = DAG.getTruncStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), 2515 SVOffset + IncrementSize, ExtraVT, isVolatile, 2516 MinAlign(Alignment, IncrementSize)); 2517 } else { 2518 // Big endian - avoid unaligned stores. 2519 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 2520 // Store the top RoundWidth bits. 2521 Hi = DAG.getNode(ISD::SRL, Tmp3.getValueType(), Tmp3, 2522 DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy())); 2523 Hi = DAG.getTruncStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), SVOffset, 2524 RoundVT, isVolatile, Alignment); 2525 2526 // Store the remaining ExtraWidth bits. 2527 IncrementSize = RoundWidth / 8; 2528 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2529 DAG.getIntPtrConstant(IncrementSize)); 2530 Lo = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2531 SVOffset + IncrementSize, ExtraVT, isVolatile, 2532 MinAlign(Alignment, IncrementSize)); 2533 } 2534 2535 // The order of the stores doesn't matter. 2536 Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); 2537 } else { 2538 if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() || 2539 Tmp2 != ST->getBasePtr()) 2540 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2, 2541 ST->getOffset()); 2542 2543 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 2544 default: assert(0 && "This action is not supported yet!"); 2545 case TargetLowering::Legal: 2546 // If this is an unaligned store and the target doesn't support it, 2547 // expand it. 2548 if (!TLI.allowsUnalignedMemoryAccesses()) { 2549 unsigned ABIAlignment = TLI.getTargetData()-> 2550 getABITypeAlignment(MVT::getTypeForValueType(ST->getMemoryVT())); 2551 if (ST->getAlignment() < ABIAlignment) 2552 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.Val), DAG, 2553 TLI); 2554 } 2555 break; 2556 case TargetLowering::Custom: 2557 Result = TLI.LowerOperation(Result, DAG); 2558 break; 2559 case Expand: 2560 // TRUNCSTORE:i16 i32 -> STORE i16 2561 assert(isTypeLegal(StVT) && "Do not know how to expand this store!"); 2562 Tmp3 = DAG.getNode(ISD::TRUNCATE, StVT, Tmp3); 2563 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), SVOffset, 2564 isVolatile, Alignment); 2565 break; 2566 } 2567 } 2568 } 2569 break; 2570 } 2571 case ISD::PCMARKER: 2572 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2573 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 2574 break; 2575 case ISD::STACKSAVE: 2576 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2577 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2578 Tmp1 = Result.getValue(0); 2579 Tmp2 = Result.getValue(1); 2580 2581 switch (TLI.getOperationAction(ISD::STACKSAVE, MVT::Other)) { 2582 default: assert(0 && "This action is not supported yet!"); 2583 case TargetLowering::Legal: break; 2584 case TargetLowering::Custom: 2585 Tmp3 = TLI.LowerOperation(Result, DAG); 2586 if (Tmp3.Val) { 2587 Tmp1 = LegalizeOp(Tmp3); 2588 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 2589 } 2590 break; 2591 case TargetLowering::Expand: 2592 // Expand to CopyFromReg if the target set 2593 // StackPointerRegisterToSaveRestore. 2594 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 2595 Tmp1 = DAG.getCopyFromReg(Result.getOperand(0), SP, 2596 Node->getValueType(0)); 2597 Tmp2 = Tmp1.getValue(1); 2598 } else { 2599 Tmp1 = DAG.getNode(ISD::UNDEF, Node->getValueType(0)); 2600 Tmp2 = Node->getOperand(0); 2601 } 2602 break; 2603 } 2604 2605 // Since stacksave produce two values, make sure to remember that we 2606 // legalized both of them. 2607 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 2608 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 2609 return Op.ResNo ? Tmp2 : Tmp1; 2610 2611 case ISD::STACKRESTORE: 2612 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2613 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 2614 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 2615 2616 switch (TLI.getOperationAction(ISD::STACKRESTORE, MVT::Other)) { 2617 default: assert(0 && "This action is not supported yet!"); 2618 case TargetLowering::Legal: break; 2619 case TargetLowering::Custom: 2620 Tmp1 = TLI.LowerOperation(Result, DAG); 2621 if (Tmp1.Val) Result = Tmp1; 2622 break; 2623 case TargetLowering::Expand: 2624 // Expand to CopyToReg if the target set 2625 // StackPointerRegisterToSaveRestore. 2626 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 2627 Result = DAG.getCopyToReg(Tmp1, SP, Tmp2); 2628 } else { 2629 Result = Tmp1; 2630 } 2631 break; 2632 } 2633 break; 2634 2635 case ISD::READCYCLECOUNTER: 2636 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain 2637 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2638 switch (TLI.getOperationAction(ISD::READCYCLECOUNTER, 2639 Node->getValueType(0))) { 2640 default: assert(0 && "This action is not supported yet!"); 2641 case TargetLowering::Legal: 2642 Tmp1 = Result.getValue(0); 2643 Tmp2 = Result.getValue(1); 2644 break; 2645 case TargetLowering::Custom: 2646 Result = TLI.LowerOperation(Result, DAG); 2647 Tmp1 = LegalizeOp(Result.getValue(0)); 2648 Tmp2 = LegalizeOp(Result.getValue(1)); 2649 break; 2650 } 2651 2652 // Since rdcc produce two values, make sure to remember that we legalized 2653 // both of them. 2654 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 2655 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 2656 return Result; 2657 2658 case ISD::SELECT: 2659 switch (getTypeAction(Node->getOperand(0).getValueType())) { 2660 case Expand: assert(0 && "It's impossible to expand bools"); 2661 case Legal: 2662 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the condition. 2663 break; 2664 case Promote: { 2665 Tmp1 = PromoteOp(Node->getOperand(0)); // Promote the condition. 2666 // Make sure the condition is either zero or one. 2667 unsigned BitWidth = Tmp1.getValueSizeInBits(); 2668 if (!DAG.MaskedValueIsZero(Tmp1, 2669 APInt::getHighBitsSet(BitWidth, BitWidth-1))) 2670 Tmp1 = DAG.getZeroExtendInReg(Tmp1, MVT::i1); 2671 break; 2672 } 2673 } 2674 Tmp2 = LegalizeOp(Node->getOperand(1)); // TrueVal 2675 Tmp3 = LegalizeOp(Node->getOperand(2)); // FalseVal 2676 2677 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2678 2679 switch (TLI.getOperationAction(ISD::SELECT, Tmp2.getValueType())) { 2680 default: assert(0 && "This action is not supported yet!"); 2681 case TargetLowering::Legal: break; 2682 case TargetLowering::Custom: { 2683 Tmp1 = TLI.LowerOperation(Result, DAG); 2684 if (Tmp1.Val) Result = Tmp1; 2685 break; 2686 } 2687 case TargetLowering::Expand: 2688 if (Tmp1.getOpcode() == ISD::SETCC) { 2689 Result = DAG.getSelectCC(Tmp1.getOperand(0), Tmp1.getOperand(1), 2690 Tmp2, Tmp3, 2691 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 2692 } else { 2693 Result = DAG.getSelectCC(Tmp1, 2694 DAG.getConstant(0, Tmp1.getValueType()), 2695 Tmp2, Tmp3, ISD::SETNE); 2696 } 2697 break; 2698 case TargetLowering::Promote: { 2699 MVT::ValueType NVT = 2700 TLI.getTypeToPromoteTo(ISD::SELECT, Tmp2.getValueType()); 2701 unsigned ExtOp, TruncOp; 2702 if (MVT::isVector(Tmp2.getValueType())) { 2703 ExtOp = ISD::BIT_CONVERT; 2704 TruncOp = ISD::BIT_CONVERT; 2705 } else if (MVT::isInteger(Tmp2.getValueType())) { 2706 ExtOp = ISD::ANY_EXTEND; 2707 TruncOp = ISD::TRUNCATE; 2708 } else { 2709 ExtOp = ISD::FP_EXTEND; 2710 TruncOp = ISD::FP_ROUND; 2711 } 2712 // Promote each of the values to the new type. 2713 Tmp2 = DAG.getNode(ExtOp, NVT, Tmp2); 2714 Tmp3 = DAG.getNode(ExtOp, NVT, Tmp3); 2715 // Perform the larger operation, then round down. 2716 Result = DAG.getNode(ISD::SELECT, NVT, Tmp1, Tmp2,Tmp3); 2717 if (TruncOp != ISD::FP_ROUND) 2718 Result = DAG.getNode(TruncOp, Node->getValueType(0), Result); 2719 else 2720 Result = DAG.getNode(TruncOp, Node->getValueType(0), Result, 2721 DAG.getIntPtrConstant(0)); 2722 break; 2723 } 2724 } 2725 break; 2726 case ISD::SELECT_CC: { 2727 Tmp1 = Node->getOperand(0); // LHS 2728 Tmp2 = Node->getOperand(1); // RHS 2729 Tmp3 = LegalizeOp(Node->getOperand(2)); // True 2730 Tmp4 = LegalizeOp(Node->getOperand(3)); // False 2731 SDOperand CC = Node->getOperand(4); 2732 2733 LegalizeSetCCOperands(Tmp1, Tmp2, CC); 2734 2735 // If we didn't get both a LHS and RHS back from LegalizeSetCCOperands, 2736 // the LHS is a legal SETCC itself. In this case, we need to compare 2737 // the result against zero to select between true and false values. 2738 if (Tmp2.Val == 0) { 2739 Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); 2740 CC = DAG.getCondCode(ISD::SETNE); 2741 } 2742 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4, CC); 2743 2744 // Everything is legal, see if we should expand this op or something. 2745 switch (TLI.getOperationAction(ISD::SELECT_CC, Tmp3.getValueType())) { 2746 default: assert(0 && "This action is not supported yet!"); 2747 case TargetLowering::Legal: break; 2748 case TargetLowering::Custom: 2749 Tmp1 = TLI.LowerOperation(Result, DAG); 2750 if (Tmp1.Val) Result = Tmp1; 2751 break; 2752 } 2753 break; 2754 } 2755 case ISD::SETCC: 2756 Tmp1 = Node->getOperand(0); 2757 Tmp2 = Node->getOperand(1); 2758 Tmp3 = Node->getOperand(2); 2759 LegalizeSetCCOperands(Tmp1, Tmp2, Tmp3); 2760 2761 // If we had to Expand the SetCC operands into a SELECT node, then it may 2762 // not always be possible to return a true LHS & RHS. In this case, just 2763 // return the value we legalized, returned in the LHS 2764 if (Tmp2.Val == 0) { 2765 Result = Tmp1; 2766 break; 2767 } 2768 2769 switch (TLI.getOperationAction(ISD::SETCC, Tmp1.getValueType())) { 2770 default: assert(0 && "Cannot handle this action for SETCC yet!"); 2771 case TargetLowering::Custom: 2772 isCustom = true; 2773 // FALLTHROUGH. 2774 case TargetLowering::Legal: 2775 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2776 if (isCustom) { 2777 Tmp4 = TLI.LowerOperation(Result, DAG); 2778 if (Tmp4.Val) Result = Tmp4; 2779 } 2780 break; 2781 case TargetLowering::Promote: { 2782 // First step, figure out the appropriate operation to use. 2783 // Allow SETCC to not be supported for all legal data types 2784 // Mostly this targets FP 2785 MVT::ValueType NewInTy = Node->getOperand(0).getValueType(); 2786 MVT::ValueType OldVT = NewInTy; OldVT = OldVT; 2787 2788 // Scan for the appropriate larger type to use. 2789 while (1) { 2790 NewInTy = (MVT::ValueType)(NewInTy+1); 2791 2792 assert(MVT::isInteger(NewInTy) == MVT::isInteger(OldVT) && 2793 "Fell off of the edge of the integer world"); 2794 assert(MVT::isFloatingPoint(NewInTy) == MVT::isFloatingPoint(OldVT) && 2795 "Fell off of the edge of the floating point world"); 2796 2797 // If the target supports SETCC of this type, use it. 2798 if (TLI.isOperationLegal(ISD::SETCC, NewInTy)) 2799 break; 2800 } 2801 if (MVT::isInteger(NewInTy)) 2802 assert(0 && "Cannot promote Legal Integer SETCC yet"); 2803 else { 2804 Tmp1 = DAG.getNode(ISD::FP_EXTEND, NewInTy, Tmp1); 2805 Tmp2 = DAG.getNode(ISD::FP_EXTEND, NewInTy, Tmp2); 2806 } 2807 Tmp1 = LegalizeOp(Tmp1); 2808 Tmp2 = LegalizeOp(Tmp2); 2809 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2810 Result = LegalizeOp(Result); 2811 break; 2812 } 2813 case TargetLowering::Expand: 2814 // Expand a setcc node into a select_cc of the same condition, lhs, and 2815 // rhs that selects between const 1 (true) and const 0 (false). 2816 MVT::ValueType VT = Node->getValueType(0); 2817 Result = DAG.getNode(ISD::SELECT_CC, VT, Tmp1, Tmp2, 2818 DAG.getConstant(1, VT), DAG.getConstant(0, VT), 2819 Tmp3); 2820 break; 2821 } 2822 break; 2823 case ISD::MEMSET: 2824 case ISD::MEMCPY: 2825 case ISD::MEMMOVE: { 2826 Tmp1 = LegalizeOp(Node->getOperand(0)); // Chain 2827 Tmp2 = LegalizeOp(Node->getOperand(1)); // Pointer 2828 2829 if (Node->getOpcode() == ISD::MEMSET) { // memset = ubyte 2830 switch (getTypeAction(Node->getOperand(2).getValueType())) { 2831 case Expand: assert(0 && "Cannot expand a byte!"); 2832 case Legal: 2833 Tmp3 = LegalizeOp(Node->getOperand(2)); 2834 break; 2835 case Promote: 2836 Tmp3 = PromoteOp(Node->getOperand(2)); 2837 break; 2838 } 2839 } else { 2840 Tmp3 = LegalizeOp(Node->getOperand(2)); // memcpy/move = pointer, 2841 } 2842 2843 SDOperand Tmp4; 2844 switch (getTypeAction(Node->getOperand(3).getValueType())) { 2845 case Expand: { 2846 // Length is too big, just take the lo-part of the length. 2847 SDOperand HiPart; 2848 ExpandOp(Node->getOperand(3), Tmp4, HiPart); 2849 break; 2850 } 2851 case Legal: 2852 Tmp4 = LegalizeOp(Node->getOperand(3)); 2853 break; 2854 case Promote: 2855 Tmp4 = PromoteOp(Node->getOperand(3)); 2856 break; 2857 } 2858 2859 SDOperand Tmp5; 2860 switch (getTypeAction(Node->getOperand(4).getValueType())) { // uint 2861 case Expand: assert(0 && "Cannot expand this yet!"); 2862 case Legal: 2863 Tmp5 = LegalizeOp(Node->getOperand(4)); 2864 break; 2865 case Promote: 2866 Tmp5 = PromoteOp(Node->getOperand(4)); 2867 break; 2868 } 2869 2870 SDOperand Tmp6; 2871 switch (getTypeAction(Node->getOperand(5).getValueType())) { // bool 2872 case Expand: assert(0 && "Cannot expand this yet!"); 2873 case Legal: 2874 Tmp6 = LegalizeOp(Node->getOperand(5)); 2875 break; 2876 case Promote: 2877 Tmp6 = PromoteOp(Node->getOperand(5)); 2878 break; 2879 } 2880 2881 switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) { 2882 default: assert(0 && "This action not implemented for this operation!"); 2883 case TargetLowering::Custom: 2884 isCustom = true; 2885 // FALLTHROUGH 2886 case TargetLowering::Legal: { 2887 SDOperand Ops[] = { Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6 }; 2888 Result = DAG.UpdateNodeOperands(Result, Ops, 6); 2889 if (isCustom) { 2890 Tmp1 = TLI.LowerOperation(Result, DAG); 2891 if (Tmp1.Val) Result = Tmp1; 2892 } 2893 break; 2894 } 2895 case TargetLowering::Expand: { 2896 // Otherwise, the target does not support this operation. Lower the 2897 // operation to an explicit libcall as appropriate. 2898 MVT::ValueType IntPtr = TLI.getPointerTy(); 2899 const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(); 2900 TargetLowering::ArgListTy Args; 2901 TargetLowering::ArgListEntry Entry; 2902 2903 const char *FnName = 0; 2904 if (Node->getOpcode() == ISD::MEMSET) { 2905 Entry.Node = Tmp2; Entry.Ty = IntPtrTy; 2906 Args.push_back(Entry); 2907 // Extend the (previously legalized) ubyte argument to be an int value 2908 // for the call. 2909 if (Tmp3.getValueType() > MVT::i32) 2910 Tmp3 = DAG.getNode(ISD::TRUNCATE, MVT::i32, Tmp3); 2911 else 2912 Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Tmp3); 2913 Entry.Node = Tmp3; Entry.Ty = Type::Int32Ty; Entry.isSExt = true; 2914 Args.push_back(Entry); 2915 Entry.Node = Tmp4; Entry.Ty = IntPtrTy; Entry.isSExt = false; 2916 Args.push_back(Entry); 2917 2918 FnName = "memset"; 2919 } else if (Node->getOpcode() == ISD::MEMCPY || 2920 Node->getOpcode() == ISD::MEMMOVE) { 2921 Entry.Ty = IntPtrTy; 2922 Entry.Node = Tmp2; Args.push_back(Entry); 2923 Entry.Node = Tmp3; Args.push_back(Entry); 2924 Entry.Node = Tmp4; Args.push_back(Entry); 2925 FnName = Node->getOpcode() == ISD::MEMMOVE ? "memmove" : "memcpy"; 2926 } else { 2927 assert(0 && "Unknown op!"); 2928 } 2929 2930 std::pair<SDOperand,SDOperand> CallResult = 2931 TLI.LowerCallTo(Tmp1, Type::VoidTy, 2932 false, false, false, CallingConv::C, false, 2933 DAG.getExternalSymbol(FnName, IntPtr), Args, DAG); 2934 Result = CallResult.second; 2935 break; 2936 } 2937 } 2938 break; 2939 } 2940 2941 case ISD::SHL_PARTS: 2942 case ISD::SRA_PARTS: 2943 case ISD::SRL_PARTS: { 2944 SmallVector<SDOperand, 8> Ops; 2945 bool Changed = false; 2946 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 2947 Ops.push_back(LegalizeOp(Node->getOperand(i))); 2948 Changed |= Ops.back() != Node->getOperand(i); 2949 } 2950 if (Changed) 2951 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 2952 2953 switch (TLI.getOperationAction(Node->getOpcode(), 2954 Node->getValueType(0))) { 2955 default: assert(0 && "This action is not supported yet!"); 2956 case TargetLowering::Legal: break; 2957 case TargetLowering::Custom: 2958 Tmp1 = TLI.LowerOperation(Result, DAG); 2959 if (Tmp1.Val) { 2960 SDOperand Tmp2, RetVal(0, 0); 2961 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { 2962 Tmp2 = LegalizeOp(Tmp1.getValue(i)); 2963 AddLegalizedOperand(SDOperand(Node, i), Tmp2); 2964 if (i == Op.ResNo) 2965 RetVal = Tmp2; 2966 } 2967 assert(RetVal.Val && "Illegal result number"); 2968 return RetVal; 2969 } 2970 break; 2971 } 2972 2973 // Since these produce multiple values, make sure to remember that we 2974 // legalized all of them. 2975 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 2976 AddLegalizedOperand(SDOperand(Node, i), Result.getValue(i)); 2977 return Result.getValue(Op.ResNo); 2978 } 2979 2980 // Binary operators 2981 case ISD::ADD: 2982 case ISD::SUB: 2983 case ISD::MUL: 2984 case ISD::MULHS: 2985 case ISD::MULHU: 2986 case ISD::UDIV: 2987 case ISD::SDIV: 2988 case ISD::AND: 2989 case ISD::OR: 2990 case ISD::XOR: 2991 case ISD::SHL: 2992 case ISD::SRL: 2993 case ISD::SRA: 2994 case ISD::FADD: 2995 case ISD::FSUB: 2996 case ISD::FMUL: 2997 case ISD::FDIV: 2998 case ISD::FPOW: 2999 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3000 switch (getTypeAction(Node->getOperand(1).getValueType())) { 3001 case Expand: assert(0 && "Not possible"); 3002 case Legal: 3003 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the RHS. 3004 break; 3005 case Promote: 3006 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the RHS. 3007 break; 3008 } 3009 3010 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3011 3012 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3013 default: assert(0 && "BinOp legalize operation not supported"); 3014 case TargetLowering::Legal: break; 3015 case TargetLowering::Custom: 3016 Tmp1 = TLI.LowerOperation(Result, DAG); 3017 if (Tmp1.Val) Result = Tmp1; 3018 break; 3019 case TargetLowering::Expand: { 3020 MVT::ValueType VT = Op.getValueType(); 3021 3022 // See if multiply or divide can be lowered using two-result operations. 3023 SDVTList VTs = DAG.getVTList(VT, VT); 3024 if (Node->getOpcode() == ISD::MUL) { 3025 // We just need the low half of the multiply; try both the signed 3026 // and unsigned forms. If the target supports both SMUL_LOHI and 3027 // UMUL_LOHI, form a preference by checking which forms of plain 3028 // MULH it supports. 3029 bool HasSMUL_LOHI = TLI.isOperationLegal(ISD::SMUL_LOHI, VT); 3030 bool HasUMUL_LOHI = TLI.isOperationLegal(ISD::UMUL_LOHI, VT); 3031 bool HasMULHS = TLI.isOperationLegal(ISD::MULHS, VT); 3032 bool HasMULHU = TLI.isOperationLegal(ISD::MULHU, VT); 3033 unsigned OpToUse = 0; 3034 if (HasSMUL_LOHI && !HasMULHS) { 3035 OpToUse = ISD::SMUL_LOHI; 3036 } else if (HasUMUL_LOHI && !HasMULHU) { 3037 OpToUse = ISD::UMUL_LOHI; 3038 } else if (HasSMUL_LOHI) { 3039 OpToUse = ISD::SMUL_LOHI; 3040 } else if (HasUMUL_LOHI) { 3041 OpToUse = ISD::UMUL_LOHI; 3042 } 3043 if (OpToUse) { 3044 Result = SDOperand(DAG.getNode(OpToUse, VTs, Tmp1, Tmp2).Val, 0); 3045 break; 3046 } 3047 } 3048 if (Node->getOpcode() == ISD::MULHS && 3049 TLI.isOperationLegal(ISD::SMUL_LOHI, VT)) { 3050 Result = SDOperand(DAG.getNode(ISD::SMUL_LOHI, VTs, Tmp1, Tmp2).Val, 1); 3051 break; 3052 } 3053 if (Node->getOpcode() == ISD::MULHU && 3054 TLI.isOperationLegal(ISD::UMUL_LOHI, VT)) { 3055 Result = SDOperand(DAG.getNode(ISD::UMUL_LOHI, VTs, Tmp1, Tmp2).Val, 1); 3056 break; 3057 } 3058 if (Node->getOpcode() == ISD::SDIV && 3059 TLI.isOperationLegal(ISD::SDIVREM, VT)) { 3060 Result = SDOperand(DAG.getNode(ISD::SDIVREM, VTs, Tmp1, Tmp2).Val, 0); 3061 break; 3062 } 3063 if (Node->getOpcode() == ISD::UDIV && 3064 TLI.isOperationLegal(ISD::UDIVREM, VT)) { 3065 Result = SDOperand(DAG.getNode(ISD::UDIVREM, VTs, Tmp1, Tmp2).Val, 0); 3066 break; 3067 } 3068 3069 // Check to see if we have a libcall for this operator. 3070 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3071 bool isSigned = false; 3072 switch (Node->getOpcode()) { 3073 case ISD::UDIV: 3074 case ISD::SDIV: 3075 if (VT == MVT::i32) { 3076 LC = Node->getOpcode() == ISD::UDIV 3077 ? RTLIB::UDIV_I32 : RTLIB::SDIV_I32; 3078 isSigned = Node->getOpcode() == ISD::SDIV; 3079 } 3080 break; 3081 case ISD::FPOW: 3082 LC = GetFPLibCall(VT, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, 3083 RTLIB::POW_PPCF128); 3084 break; 3085 default: break; 3086 } 3087 if (LC != RTLIB::UNKNOWN_LIBCALL) { 3088 SDOperand Dummy; 3089 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, isSigned, Dummy); 3090 break; 3091 } 3092 3093 assert(MVT::isVector(Node->getValueType(0)) && 3094 "Cannot expand this binary operator!"); 3095 // Expand the operation into a bunch of nasty scalar code. 3096 Result = LegalizeOp(UnrollVectorOp(Op)); 3097 break; 3098 } 3099 case TargetLowering::Promote: { 3100 switch (Node->getOpcode()) { 3101 default: assert(0 && "Do not know how to promote this BinOp!"); 3102 case ISD::AND: 3103 case ISD::OR: 3104 case ISD::XOR: { 3105 MVT::ValueType OVT = Node->getValueType(0); 3106 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3107 assert(MVT::isVector(OVT) && "Cannot promote this BinOp!"); 3108 // Bit convert each of the values to the new type. 3109 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp1); 3110 Tmp2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp2); 3111 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 3112 // Bit convert the result back the original type. 3113 Result = DAG.getNode(ISD::BIT_CONVERT, OVT, Result); 3114 break; 3115 } 3116 } 3117 } 3118 } 3119 break; 3120 3121 case ISD::SMUL_LOHI: 3122 case ISD::UMUL_LOHI: 3123 case ISD::SDIVREM: 3124 case ISD::UDIVREM: 3125 // These nodes will only be produced by target-specific lowering, so 3126 // they shouldn't be here if they aren't legal. 3127 assert(TLI.isOperationLegal(Node->getOpcode(), Node->getValueType(0)) && 3128 "This must be legal!"); 3129 3130 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3131 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 3132 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3133 break; 3134 3135 case ISD::FCOPYSIGN: // FCOPYSIGN does not require LHS/RHS to match type! 3136 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3137 switch (getTypeAction(Node->getOperand(1).getValueType())) { 3138 case Expand: assert(0 && "Not possible"); 3139 case Legal: 3140 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the RHS. 3141 break; 3142 case Promote: 3143 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the RHS. 3144 break; 3145 } 3146 3147 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3148 3149 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3150 default: assert(0 && "Operation not supported"); 3151 case TargetLowering::Custom: 3152 Tmp1 = TLI.LowerOperation(Result, DAG); 3153 if (Tmp1.Val) Result = Tmp1; 3154 break; 3155 case TargetLowering::Legal: break; 3156 case TargetLowering::Expand: { 3157 // If this target supports fabs/fneg natively and select is cheap, 3158 // do this efficiently. 3159 if (!TLI.isSelectExpensive() && 3160 TLI.getOperationAction(ISD::FABS, Tmp1.getValueType()) == 3161 TargetLowering::Legal && 3162 TLI.getOperationAction(ISD::FNEG, Tmp1.getValueType()) == 3163 TargetLowering::Legal) { 3164 // Get the sign bit of the RHS. 3165 MVT::ValueType IVT = 3166 Tmp2.getValueType() == MVT::f32 ? MVT::i32 : MVT::i64; 3167 SDOperand SignBit = DAG.getNode(ISD::BIT_CONVERT, IVT, Tmp2); 3168 SignBit = DAG.getSetCC(TLI.getSetCCResultTy(), 3169 SignBit, DAG.getConstant(0, IVT), ISD::SETLT); 3170 // Get the absolute value of the result. 3171 SDOperand AbsVal = DAG.getNode(ISD::FABS, Tmp1.getValueType(), Tmp1); 3172 // Select between the nabs and abs value based on the sign bit of 3173 // the input. 3174 Result = DAG.getNode(ISD::SELECT, AbsVal.getValueType(), SignBit, 3175 DAG.getNode(ISD::FNEG, AbsVal.getValueType(), 3176 AbsVal), 3177 AbsVal); 3178 Result = LegalizeOp(Result); 3179 break; 3180 } 3181 3182 // Otherwise, do bitwise ops! 3183 MVT::ValueType NVT = 3184 Node->getValueType(0) == MVT::f32 ? MVT::i32 : MVT::i64; 3185 Result = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI); 3186 Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), Result); 3187 Result = LegalizeOp(Result); 3188 break; 3189 } 3190 } 3191 break; 3192 3193 case ISD::ADDC: 3194 case ISD::SUBC: 3195 Tmp1 = LegalizeOp(Node->getOperand(0)); 3196 Tmp2 = LegalizeOp(Node->getOperand(1)); 3197 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3198 // Since this produces two values, make sure to remember that we legalized 3199 // both of them. 3200 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 3201 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 3202 return Result; 3203 3204 case ISD::ADDE: 3205 case ISD::SUBE: 3206 Tmp1 = LegalizeOp(Node->getOperand(0)); 3207 Tmp2 = LegalizeOp(Node->getOperand(1)); 3208 Tmp3 = LegalizeOp(Node->getOperand(2)); 3209 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 3210 // Since this produces two values, make sure to remember that we legalized 3211 // both of them. 3212 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 3213 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 3214 return Result; 3215 3216 case ISD::BUILD_PAIR: { 3217 MVT::ValueType PairTy = Node->getValueType(0); 3218 // TODO: handle the case where the Lo and Hi operands are not of legal type 3219 Tmp1 = LegalizeOp(Node->getOperand(0)); // Lo 3220 Tmp2 = LegalizeOp(Node->getOperand(1)); // Hi 3221 switch (TLI.getOperationAction(ISD::BUILD_PAIR, PairTy)) { 3222 case TargetLowering::Promote: 3223 case TargetLowering::Custom: 3224 assert(0 && "Cannot promote/custom this yet!"); 3225 case TargetLowering::Legal: 3226 if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1)) 3227 Result = DAG.getNode(ISD::BUILD_PAIR, PairTy, Tmp1, Tmp2); 3228 break; 3229 case TargetLowering::Expand: 3230 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, PairTy, Tmp1); 3231 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, PairTy, Tmp2); 3232 Tmp2 = DAG.getNode(ISD::SHL, PairTy, Tmp2, 3233 DAG.getConstant(MVT::getSizeInBits(PairTy)/2, 3234 TLI.getShiftAmountTy())); 3235 Result = DAG.getNode(ISD::OR, PairTy, Tmp1, Tmp2); 3236 break; 3237 } 3238 break; 3239 } 3240 3241 case ISD::UREM: 3242 case ISD::SREM: 3243 case ISD::FREM: 3244 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3245 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 3246 3247 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3248 case TargetLowering::Promote: assert(0 && "Cannot promote this yet!"); 3249 case TargetLowering::Custom: 3250 isCustom = true; 3251 // FALLTHROUGH 3252 case TargetLowering::Legal: 3253 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3254 if (isCustom) { 3255 Tmp1 = TLI.LowerOperation(Result, DAG); 3256 if (Tmp1.Val) Result = Tmp1; 3257 } 3258 break; 3259 case TargetLowering::Expand: { 3260 unsigned DivOpc= (Node->getOpcode() == ISD::UREM) ? ISD::UDIV : ISD::SDIV; 3261 bool isSigned = DivOpc == ISD::SDIV; 3262 MVT::ValueType VT = Node->getValueType(0); 3263 3264 // See if remainder can be lowered using two-result operations. 3265 SDVTList VTs = DAG.getVTList(VT, VT); 3266 if (Node->getOpcode() == ISD::SREM && 3267 TLI.isOperationLegal(ISD::SDIVREM, VT)) { 3268 Result = SDOperand(DAG.getNode(ISD::SDIVREM, VTs, Tmp1, Tmp2).Val, 1); 3269 break; 3270 } 3271 if (Node->getOpcode() == ISD::UREM && 3272 TLI.isOperationLegal(ISD::UDIVREM, VT)) { 3273 Result = SDOperand(DAG.getNode(ISD::UDIVREM, VTs, Tmp1, Tmp2).Val, 1); 3274 break; 3275 } 3276 3277 if (MVT::isInteger(VT)) { 3278 if (TLI.getOperationAction(DivOpc, VT) == 3279 TargetLowering::Legal) { 3280 // X % Y -> X-X/Y*Y 3281 Result = DAG.getNode(DivOpc, VT, Tmp1, Tmp2); 3282 Result = DAG.getNode(ISD::MUL, VT, Result, Tmp2); 3283 Result = DAG.getNode(ISD::SUB, VT, Tmp1, Result); 3284 } else if (MVT::isVector(VT)) { 3285 Result = LegalizeOp(UnrollVectorOp(Op)); 3286 } else { 3287 assert(VT == MVT::i32 && 3288 "Cannot expand this binary operator!"); 3289 RTLIB::Libcall LC = Node->getOpcode() == ISD::UREM 3290 ? RTLIB::UREM_I32 : RTLIB::SREM_I32; 3291 SDOperand Dummy; 3292 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, isSigned, Dummy); 3293 } 3294 } else { 3295 assert(MVT::isFloatingPoint(VT) && 3296 "remainder op must have integer or floating-point type"); 3297 if (MVT::isVector(VT)) { 3298 Result = LegalizeOp(UnrollVectorOp(Op)); 3299 } else { 3300 // Floating point mod -> fmod libcall. 3301 RTLIB::Libcall LC = GetFPLibCall(VT, RTLIB::REM_F32, RTLIB::REM_F64, 3302 RTLIB::REM_F80, RTLIB::REM_PPCF128); 3303 SDOperand Dummy; 3304 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 3305 false/*sign irrelevant*/, Dummy); 3306 } 3307 } 3308 break; 3309 } 3310 } 3311 break; 3312 case ISD::VAARG: { 3313 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3314 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 3315 3316 MVT::ValueType VT = Node->getValueType(0); 3317 switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) { 3318 default: assert(0 && "This action is not supported yet!"); 3319 case TargetLowering::Custom: 3320 isCustom = true; 3321 // FALLTHROUGH 3322 case TargetLowering::Legal: 3323 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 3324 Result = Result.getValue(0); 3325 Tmp1 = Result.getValue(1); 3326 3327 if (isCustom) { 3328 Tmp2 = TLI.LowerOperation(Result, DAG); 3329 if (Tmp2.Val) { 3330 Result = LegalizeOp(Tmp2); 3331 Tmp1 = LegalizeOp(Tmp2.getValue(1)); 3332 } 3333 } 3334 break; 3335 case TargetLowering::Expand: { 3336 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3337 SDOperand VAList = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp2, V, 0); 3338 // Increment the pointer, VAList, to the next vaarg 3339 Tmp3 = DAG.getNode(ISD::ADD, TLI.getPointerTy(), VAList, 3340 DAG.getConstant(MVT::getSizeInBits(VT)/8, 3341 TLI.getPointerTy())); 3342 // Store the incremented VAList to the legalized pointer 3343 Tmp3 = DAG.getStore(VAList.getValue(1), Tmp3, Tmp2, V, 0); 3344 // Load the actual argument out of the pointer VAList 3345 Result = DAG.getLoad(VT, Tmp3, VAList, NULL, 0); 3346 Tmp1 = LegalizeOp(Result.getValue(1)); 3347 Result = LegalizeOp(Result); 3348 break; 3349 } 3350 } 3351 // Since VAARG produces two values, make sure to remember that we 3352 // legalized both of them. 3353 AddLegalizedOperand(SDOperand(Node, 0), Result); 3354 AddLegalizedOperand(SDOperand(Node, 1), Tmp1); 3355 return Op.ResNo ? Tmp1 : Result; 3356 } 3357 3358 case ISD::VACOPY: 3359 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3360 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the dest pointer. 3361 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the source pointer. 3362 3363 switch (TLI.getOperationAction(ISD::VACOPY, MVT::Other)) { 3364 default: assert(0 && "This action is not supported yet!"); 3365 case TargetLowering::Custom: 3366 isCustom = true; 3367 // FALLTHROUGH 3368 case TargetLowering::Legal: 3369 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, 3370 Node->getOperand(3), Node->getOperand(4)); 3371 if (isCustom) { 3372 Tmp1 = TLI.LowerOperation(Result, DAG); 3373 if (Tmp1.Val) Result = Tmp1; 3374 } 3375 break; 3376 case TargetLowering::Expand: 3377 // This defaults to loading a pointer from the input and storing it to the 3378 // output, returning the chain. 3379 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 3380 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 3381 Tmp4 = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp3, VD, 0); 3382 Result = DAG.getStore(Tmp4.getValue(1), Tmp4, Tmp2, VS, 0); 3383 break; 3384 } 3385 break; 3386 3387 case ISD::VAEND: 3388 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3389 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 3390 3391 switch (TLI.getOperationAction(ISD::VAEND, MVT::Other)) { 3392 default: assert(0 && "This action is not supported yet!"); 3393 case TargetLowering::Custom: 3394 isCustom = true; 3395 // FALLTHROUGH 3396 case TargetLowering::Legal: 3397 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 3398 if (isCustom) { 3399 Tmp1 = TLI.LowerOperation(Tmp1, DAG); 3400 if (Tmp1.Val) Result = Tmp1; 3401 } 3402 break; 3403 case TargetLowering::Expand: 3404 Result = Tmp1; // Default to a no-op, return the chain 3405 break; 3406 } 3407 break; 3408 3409 case ISD::VASTART: 3410 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3411 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 3412 3413 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 3414 3415 switch (TLI.getOperationAction(ISD::VASTART, MVT::Other)) { 3416 default: assert(0 && "This action is not supported yet!"); 3417 case TargetLowering::Legal: break; 3418 case TargetLowering::Custom: 3419 Tmp1 = TLI.LowerOperation(Result, DAG); 3420 if (Tmp1.Val) Result = Tmp1; 3421 break; 3422 } 3423 break; 3424 3425 case ISD::ROTL: 3426 case ISD::ROTR: 3427 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3428 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 3429 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3430 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3431 default: 3432 assert(0 && "ROTL/ROTR legalize operation not supported"); 3433 break; 3434 case TargetLowering::Legal: 3435 break; 3436 case TargetLowering::Custom: 3437 Tmp1 = TLI.LowerOperation(Result, DAG); 3438 if (Tmp1.Val) Result = Tmp1; 3439 break; 3440 case TargetLowering::Promote: 3441 assert(0 && "Do not know how to promote ROTL/ROTR"); 3442 break; 3443 case TargetLowering::Expand: 3444 assert(0 && "Do not know how to expand ROTL/ROTR"); 3445 break; 3446 } 3447 break; 3448 3449 case ISD::BSWAP: 3450 Tmp1 = LegalizeOp(Node->getOperand(0)); // Op 3451 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3452 case TargetLowering::Custom: 3453 assert(0 && "Cannot custom legalize this yet!"); 3454 case TargetLowering::Legal: 3455 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3456 break; 3457 case TargetLowering::Promote: { 3458 MVT::ValueType OVT = Tmp1.getValueType(); 3459 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3460 unsigned DiffBits = MVT::getSizeInBits(NVT) - MVT::getSizeInBits(OVT); 3461 3462 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); 3463 Tmp1 = DAG.getNode(ISD::BSWAP, NVT, Tmp1); 3464 Result = DAG.getNode(ISD::SRL, NVT, Tmp1, 3465 DAG.getConstant(DiffBits, TLI.getShiftAmountTy())); 3466 break; 3467 } 3468 case TargetLowering::Expand: 3469 Result = ExpandBSWAP(Tmp1); 3470 break; 3471 } 3472 break; 3473 3474 case ISD::CTPOP: 3475 case ISD::CTTZ: 3476 case ISD::CTLZ: 3477 Tmp1 = LegalizeOp(Node->getOperand(0)); // Op 3478 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3479 case TargetLowering::Custom: 3480 case TargetLowering::Legal: 3481 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3482 if (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)) == 3483 TargetLowering::Custom) { 3484 Tmp1 = TLI.LowerOperation(Result, DAG); 3485 if (Tmp1.Val) { 3486 Result = Tmp1; 3487 } 3488 } 3489 break; 3490 case TargetLowering::Promote: { 3491 MVT::ValueType OVT = Tmp1.getValueType(); 3492 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3493 3494 // Zero extend the argument. 3495 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); 3496 // Perform the larger operation, then subtract if needed. 3497 Tmp1 = DAG.getNode(Node->getOpcode(), Node->getValueType(0), Tmp1); 3498 switch (Node->getOpcode()) { 3499 case ISD::CTPOP: 3500 Result = Tmp1; 3501 break; 3502 case ISD::CTTZ: 3503 //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) 3504 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), Tmp1, 3505 DAG.getConstant(MVT::getSizeInBits(NVT), NVT), 3506 ISD::SETEQ); 3507 Result = DAG.getNode(ISD::SELECT, NVT, Tmp2, 3508 DAG.getConstant(MVT::getSizeInBits(OVT),NVT), Tmp1); 3509 break; 3510 case ISD::CTLZ: 3511 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 3512 Result = DAG.getNode(ISD::SUB, NVT, Tmp1, 3513 DAG.getConstant(MVT::getSizeInBits(NVT) - 3514 MVT::getSizeInBits(OVT), NVT)); 3515 break; 3516 } 3517 break; 3518 } 3519 case TargetLowering::Expand: 3520 Result = ExpandBitCount(Node->getOpcode(), Tmp1); 3521 break; 3522 } 3523 break; 3524 3525 // Unary operators 3526 case ISD::FABS: 3527 case ISD::FNEG: 3528 case ISD::FSQRT: 3529 case ISD::FSIN: 3530 case ISD::FCOS: 3531 Tmp1 = LegalizeOp(Node->getOperand(0)); 3532 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3533 case TargetLowering::Promote: 3534 case TargetLowering::Custom: 3535 isCustom = true; 3536 // FALLTHROUGH 3537 case TargetLowering::Legal: 3538 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3539 if (isCustom) { 3540 Tmp1 = TLI.LowerOperation(Result, DAG); 3541 if (Tmp1.Val) Result = Tmp1; 3542 } 3543 break; 3544 case TargetLowering::Expand: 3545 switch (Node->getOpcode()) { 3546 default: assert(0 && "Unreachable!"); 3547 case ISD::FNEG: 3548 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 3549 Tmp2 = DAG.getConstantFP(-0.0, Node->getValueType(0)); 3550 Result = DAG.getNode(ISD::FSUB, Node->getValueType(0), Tmp2, Tmp1); 3551 break; 3552 case ISD::FABS: { 3553 // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X). 3554 MVT::ValueType VT = Node->getValueType(0); 3555 Tmp2 = DAG.getConstantFP(0.0, VT); 3556 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), Tmp1, Tmp2, ISD::SETUGT); 3557 Tmp3 = DAG.getNode(ISD::FNEG, VT, Tmp1); 3558 Result = DAG.getNode(ISD::SELECT, VT, Tmp2, Tmp1, Tmp3); 3559 break; 3560 } 3561 case ISD::FSQRT: 3562 case ISD::FSIN: 3563 case ISD::FCOS: { 3564 MVT::ValueType VT = Node->getValueType(0); 3565 3566 // Expand unsupported unary vector operators by unrolling them. 3567 if (MVT::isVector(VT)) { 3568 Result = LegalizeOp(UnrollVectorOp(Op)); 3569 break; 3570 } 3571 3572 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3573 switch(Node->getOpcode()) { 3574 case ISD::FSQRT: 3575 LC = GetFPLibCall(VT, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 3576 RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128); 3577 break; 3578 case ISD::FSIN: 3579 LC = GetFPLibCall(VT, RTLIB::SIN_F32, RTLIB::SIN_F64, 3580 RTLIB::SIN_F80, RTLIB::SIN_PPCF128); 3581 break; 3582 case ISD::FCOS: 3583 LC = GetFPLibCall(VT, RTLIB::COS_F32, RTLIB::COS_F64, 3584 RTLIB::COS_F80, RTLIB::COS_PPCF128); 3585 break; 3586 default: assert(0 && "Unreachable!"); 3587 } 3588 SDOperand Dummy; 3589 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 3590 false/*sign irrelevant*/, Dummy); 3591 break; 3592 } 3593 } 3594 break; 3595 } 3596 break; 3597 case ISD::FPOWI: { 3598 MVT::ValueType VT = Node->getValueType(0); 3599 3600 // Expand unsupported unary vector operators by unrolling them. 3601 if (MVT::isVector(VT)) { 3602 Result = LegalizeOp(UnrollVectorOp(Op)); 3603 break; 3604 } 3605 3606 // We always lower FPOWI into a libcall. No target support for it yet. 3607 RTLIB::Libcall LC = GetFPLibCall(VT, RTLIB::POWI_F32, RTLIB::POWI_F64, 3608 RTLIB::POWI_F80, RTLIB::POWI_PPCF128); 3609 SDOperand Dummy; 3610 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 3611 false/*sign irrelevant*/, Dummy); 3612 break; 3613 } 3614 case ISD::BIT_CONVERT: 3615 if (!isTypeLegal(Node->getOperand(0).getValueType())) { 3616 Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 3617 Node->getValueType(0)); 3618 } else if (MVT::isVector(Op.getOperand(0).getValueType())) { 3619 // The input has to be a vector type, we have to either scalarize it, pack 3620 // it, or convert it based on whether the input vector type is legal. 3621 SDNode *InVal = Node->getOperand(0).Val; 3622 int InIx = Node->getOperand(0).ResNo; 3623 unsigned NumElems = MVT::getVectorNumElements(InVal->getValueType(InIx)); 3624 MVT::ValueType EVT = MVT::getVectorElementType(InVal->getValueType(InIx)); 3625 3626 // Figure out if there is a simple type corresponding to this Vector 3627 // type. If so, convert to the vector type. 3628 MVT::ValueType TVT = MVT::getVectorType(EVT, NumElems); 3629 if (TLI.isTypeLegal(TVT)) { 3630 // Turn this into a bit convert of the vector input. 3631 Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), 3632 LegalizeOp(Node->getOperand(0))); 3633 break; 3634 } else if (NumElems == 1) { 3635 // Turn this into a bit convert of the scalar input. 3636 Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), 3637 ScalarizeVectorOp(Node->getOperand(0))); 3638 break; 3639 } else { 3640 // FIXME: UNIMP! Store then reload 3641 assert(0 && "Cast from unsupported vector type not implemented yet!"); 3642 } 3643 } else { 3644 switch (TLI.getOperationAction(ISD::BIT_CONVERT, 3645 Node->getOperand(0).getValueType())) { 3646 default: assert(0 && "Unknown operation action!"); 3647 case TargetLowering::Expand: 3648 Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 3649 Node->getValueType(0)); 3650 break; 3651 case TargetLowering::Legal: 3652 Tmp1 = LegalizeOp(Node->getOperand(0)); 3653 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3654 break; 3655 } 3656 } 3657 break; 3658 3659 // Conversion operators. The source and destination have different types. 3660 case ISD::SINT_TO_FP: 3661 case ISD::UINT_TO_FP: { 3662 bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP; 3663 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3664 case Legal: 3665 switch (TLI.getOperationAction(Node->getOpcode(), 3666 Node->getOperand(0).getValueType())) { 3667 default: assert(0 && "Unknown operation action!"); 3668 case TargetLowering::Custom: 3669 isCustom = true; 3670 // FALLTHROUGH 3671 case TargetLowering::Legal: 3672 Tmp1 = LegalizeOp(Node->getOperand(0)); 3673 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3674 if (isCustom) { 3675 Tmp1 = TLI.LowerOperation(Result, DAG); 3676 if (Tmp1.Val) Result = Tmp1; 3677 } 3678 break; 3679 case TargetLowering::Expand: 3680 Result = ExpandLegalINT_TO_FP(isSigned, 3681 LegalizeOp(Node->getOperand(0)), 3682 Node->getValueType(0)); 3683 break; 3684 case TargetLowering::Promote: 3685 Result = PromoteLegalINT_TO_FP(LegalizeOp(Node->getOperand(0)), 3686 Node->getValueType(0), 3687 isSigned); 3688 break; 3689 } 3690 break; 3691 case Expand: 3692 Result = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, 3693 Node->getValueType(0), Node->getOperand(0)); 3694 break; 3695 case Promote: 3696 Tmp1 = PromoteOp(Node->getOperand(0)); 3697 if (isSigned) { 3698 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, Tmp1.getValueType(), 3699 Tmp1, DAG.getValueType(Node->getOperand(0).getValueType())); 3700 } else { 3701 Tmp1 = DAG.getZeroExtendInReg(Tmp1, 3702 Node->getOperand(0).getValueType()); 3703 } 3704 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3705 Result = LegalizeOp(Result); // The 'op' is not necessarily legal! 3706 break; 3707 } 3708 break; 3709 } 3710 case ISD::TRUNCATE: 3711 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3712 case Legal: 3713 Tmp1 = LegalizeOp(Node->getOperand(0)); 3714 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3715 break; 3716 case Expand: 3717 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 3718 3719 // Since the result is legal, we should just be able to truncate the low 3720 // part of the source. 3721 Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), Tmp1); 3722 break; 3723 case Promote: 3724 Result = PromoteOp(Node->getOperand(0)); 3725 Result = DAG.getNode(ISD::TRUNCATE, Op.getValueType(), Result); 3726 break; 3727 } 3728 break; 3729 3730 case ISD::FP_TO_SINT: 3731 case ISD::FP_TO_UINT: 3732 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3733 case Legal: 3734 Tmp1 = LegalizeOp(Node->getOperand(0)); 3735 3736 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))){ 3737 default: assert(0 && "Unknown operation action!"); 3738 case TargetLowering::Custom: 3739 isCustom = true; 3740 // FALLTHROUGH 3741 case TargetLowering::Legal: 3742 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3743 if (isCustom) { 3744 Tmp1 = TLI.LowerOperation(Result, DAG); 3745 if (Tmp1.Val) Result = Tmp1; 3746 } 3747 break; 3748 case TargetLowering::Promote: 3749 Result = PromoteLegalFP_TO_INT(Tmp1, Node->getValueType(0), 3750 Node->getOpcode() == ISD::FP_TO_SINT); 3751 break; 3752 case TargetLowering::Expand: 3753 if (Node->getOpcode() == ISD::FP_TO_UINT) { 3754 SDOperand True, False; 3755 MVT::ValueType VT = Node->getOperand(0).getValueType(); 3756 MVT::ValueType NVT = Node->getValueType(0); 3757 unsigned ShiftAmt = MVT::getSizeInBits(NVT)-1; 3758 const uint64_t zero[] = {0, 0}; 3759 APFloat apf = APFloat(APInt(MVT::getSizeInBits(VT), 2, zero)); 3760 uint64_t x = 1ULL << ShiftAmt; 3761 (void)apf.convertFromZeroExtendedInteger 3762 (&x, MVT::getSizeInBits(NVT), false, APFloat::rmNearestTiesToEven); 3763 Tmp2 = DAG.getConstantFP(apf, VT); 3764 Tmp3 = DAG.getSetCC(TLI.getSetCCResultTy(), 3765 Node->getOperand(0), Tmp2, ISD::SETLT); 3766 True = DAG.getNode(ISD::FP_TO_SINT, NVT, Node->getOperand(0)); 3767 False = DAG.getNode(ISD::FP_TO_SINT, NVT, 3768 DAG.getNode(ISD::FSUB, VT, Node->getOperand(0), 3769 Tmp2)); 3770 False = DAG.getNode(ISD::XOR, NVT, False, 3771 DAG.getConstant(1ULL << ShiftAmt, NVT)); 3772 Result = DAG.getNode(ISD::SELECT, NVT, Tmp3, True, False); 3773 break; 3774 } else { 3775 assert(0 && "Do not know how to expand FP_TO_SINT yet!"); 3776 } 3777 break; 3778 } 3779 break; 3780 case Expand: { 3781 MVT::ValueType VT = Op.getValueType(); 3782 MVT::ValueType OVT = Node->getOperand(0).getValueType(); 3783 // Convert ppcf128 to i32 3784 if (OVT == MVT::ppcf128 && VT == MVT::i32) { 3785 if (Node->getOpcode() == ISD::FP_TO_SINT) { 3786 Result = DAG.getNode(ISD::FP_ROUND_INREG, MVT::ppcf128, 3787 Node->getOperand(0), DAG.getValueType(MVT::f64)); 3788 Result = DAG.getNode(ISD::FP_ROUND, MVT::f64, Result, 3789 DAG.getIntPtrConstant(1)); 3790 Result = DAG.getNode(ISD::FP_TO_SINT, VT, Result); 3791 } else { 3792 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 3793 APFloat apf = APFloat(APInt(128, 2, TwoE31)); 3794 Tmp2 = DAG.getConstantFP(apf, OVT); 3795 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 3796 // FIXME: generated code sucks. 3797 Result = DAG.getNode(ISD::SELECT_CC, VT, Node->getOperand(0), Tmp2, 3798 DAG.getNode(ISD::ADD, MVT::i32, 3799 DAG.getNode(ISD::FP_TO_SINT, VT, 3800 DAG.getNode(ISD::FSUB, OVT, 3801 Node->getOperand(0), Tmp2)), 3802 DAG.getConstant(0x80000000, MVT::i32)), 3803 DAG.getNode(ISD::FP_TO_SINT, VT, 3804 Node->getOperand(0)), 3805 DAG.getCondCode(ISD::SETGE)); 3806 } 3807 break; 3808 } 3809 // Convert f32 / f64 to i32 / i64. 3810 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3811 switch (Node->getOpcode()) { 3812 case ISD::FP_TO_SINT: { 3813 if (OVT == MVT::f32) 3814 LC = (VT == MVT::i32) 3815 ? RTLIB::FPTOSINT_F32_I32 : RTLIB::FPTOSINT_F32_I64; 3816 else if (OVT == MVT::f64) 3817 LC = (VT == MVT::i32) 3818 ? RTLIB::FPTOSINT_F64_I32 : RTLIB::FPTOSINT_F64_I64; 3819 else if (OVT == MVT::f80) { 3820 assert(VT == MVT::i64); 3821 LC = RTLIB::FPTOSINT_F80_I64; 3822 } 3823 else if (OVT == MVT::ppcf128) { 3824 assert(VT == MVT::i64); 3825 LC = RTLIB::FPTOSINT_PPCF128_I64; 3826 } 3827 break; 3828 } 3829 case ISD::FP_TO_UINT: { 3830 if (OVT == MVT::f32) 3831 LC = (VT == MVT::i32) 3832 ? RTLIB::FPTOUINT_F32_I32 : RTLIB::FPTOSINT_F32_I64; 3833 else if (OVT == MVT::f64) 3834 LC = (VT == MVT::i32) 3835 ? RTLIB::FPTOUINT_F64_I32 : RTLIB::FPTOSINT_F64_I64; 3836 else if (OVT == MVT::f80) { 3837 LC = (VT == MVT::i32) 3838 ? RTLIB::FPTOUINT_F80_I32 : RTLIB::FPTOUINT_F80_I64; 3839 } 3840 else if (OVT == MVT::ppcf128) { 3841 assert(VT == MVT::i64); 3842 LC = RTLIB::FPTOUINT_PPCF128_I64; 3843 } 3844 break; 3845 } 3846 default: assert(0 && "Unreachable!"); 3847 } 3848 SDOperand Dummy; 3849 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 3850 false/*sign irrelevant*/, Dummy); 3851 break; 3852 } 3853 case Promote: 3854 Tmp1 = PromoteOp(Node->getOperand(0)); 3855 Result = DAG.UpdateNodeOperands(Result, LegalizeOp(Tmp1)); 3856 Result = LegalizeOp(Result); 3857 break; 3858 } 3859 break; 3860 3861 case ISD::FP_EXTEND: { 3862 MVT::ValueType DstVT = Op.getValueType(); 3863 MVT::ValueType SrcVT = Op.getOperand(0).getValueType(); 3864 if (TLI.getConvertAction(SrcVT, DstVT) == TargetLowering::Expand) { 3865 // The only other way we can lower this is to turn it into a STORE, 3866 // LOAD pair, targetting a temporary location (a stack slot). 3867 Result = EmitStackConvert(Node->getOperand(0), SrcVT, DstVT); 3868 break; 3869 } 3870 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3871 case Expand: assert(0 && "Shouldn't need to expand other operators here!"); 3872 case Legal: 3873 Tmp1 = LegalizeOp(Node->getOperand(0)); 3874 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3875 break; 3876 case Promote: 3877 Tmp1 = PromoteOp(Node->getOperand(0)); 3878 Result = DAG.getNode(ISD::FP_EXTEND, Op.getValueType(), Tmp1); 3879 break; 3880 } 3881 break; 3882 } 3883 case ISD::FP_ROUND: { 3884 MVT::ValueType DstVT = Op.getValueType(); 3885 MVT::ValueType SrcVT = Op.getOperand(0).getValueType(); 3886 if (TLI.getConvertAction(SrcVT, DstVT) == TargetLowering::Expand) { 3887 if (SrcVT == MVT::ppcf128) { 3888 SDOperand Lo; 3889 ExpandOp(Node->getOperand(0), Lo, Result); 3890 // Round it the rest of the way (e.g. to f32) if needed. 3891 if (DstVT!=MVT::f64) 3892 Result = DAG.getNode(ISD::FP_ROUND, DstVT, Result, Op.getOperand(1)); 3893 break; 3894 } 3895 // The only other way we can lower this is to turn it into a STORE, 3896 // LOAD pair, targetting a temporary location (a stack slot). 3897 Result = EmitStackConvert(Node->getOperand(0), DstVT, DstVT); 3898 break; 3899 } 3900 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3901 case Expand: assert(0 && "Shouldn't need to expand other operators here!"); 3902 case Legal: 3903 Tmp1 = LegalizeOp(Node->getOperand(0)); 3904 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 3905 break; 3906 case Promote: 3907 Tmp1 = PromoteOp(Node->getOperand(0)); 3908 Result = DAG.getNode(ISD::FP_ROUND, Op.getValueType(), Tmp1, 3909 Node->getOperand(1)); 3910 break; 3911 } 3912 break; 3913 } 3914 case ISD::ANY_EXTEND: 3915 case ISD::ZERO_EXTEND: 3916 case ISD::SIGN_EXTEND: 3917 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3918 case Expand: assert(0 && "Shouldn't need to expand other operators here!"); 3919 case Legal: 3920 Tmp1 = LegalizeOp(Node->getOperand(0)); 3921 if (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)) == 3922 TargetLowering::Custom) { 3923 Tmp2 = TLI.LowerOperation(Result, DAG); 3924 if (Tmp2.Val) { 3925 Tmp1 = Tmp2; 3926 } 3927 } 3928 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3929 break; 3930 case Promote: 3931 switch (Node->getOpcode()) { 3932 case ISD::ANY_EXTEND: 3933 Tmp1 = PromoteOp(Node->getOperand(0)); 3934 Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Tmp1); 3935 break; 3936 case ISD::ZERO_EXTEND: 3937 Result = PromoteOp(Node->getOperand(0)); 3938 Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Result); 3939 Result = DAG.getZeroExtendInReg(Result, 3940 Node->getOperand(0).getValueType()); 3941 break; 3942 case ISD::SIGN_EXTEND: 3943 Result = PromoteOp(Node->getOperand(0)); 3944 Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Result); 3945 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 3946 Result, 3947 DAG.getValueType(Node->getOperand(0).getValueType())); 3948 break; 3949 } 3950 } 3951 break; 3952 case ISD::FP_ROUND_INREG: 3953 case ISD::SIGN_EXTEND_INREG: { 3954 Tmp1 = LegalizeOp(Node->getOperand(0)); 3955 MVT::ValueType ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 3956 3957 // If this operation is not supported, convert it to a shl/shr or load/store 3958 // pair. 3959 switch (TLI.getOperationAction(Node->getOpcode(), ExtraVT)) { 3960 default: assert(0 && "This action not supported for this op yet!"); 3961 case TargetLowering::Legal: 3962 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 3963 break; 3964 case TargetLowering::Expand: 3965 // If this is an integer extend and shifts are supported, do that. 3966 if (Node->getOpcode() == ISD::SIGN_EXTEND_INREG) { 3967 // NOTE: we could fall back on load/store here too for targets without 3968 // SAR. However, it is doubtful that any exist. 3969 unsigned BitsDiff = MVT::getSizeInBits(Node->getValueType(0)) - 3970 MVT::getSizeInBits(ExtraVT); 3971 SDOperand ShiftCst = DAG.getConstant(BitsDiff, TLI.getShiftAmountTy()); 3972 Result = DAG.getNode(ISD::SHL, Node->getValueType(0), 3973 Node->getOperand(0), ShiftCst); 3974 Result = DAG.getNode(ISD::SRA, Node->getValueType(0), 3975 Result, ShiftCst); 3976 } else if (Node->getOpcode() == ISD::FP_ROUND_INREG) { 3977 // The only way we can lower this is to turn it into a TRUNCSTORE, 3978 // EXTLOAD pair, targetting a temporary location (a stack slot). 3979 3980 // NOTE: there is a choice here between constantly creating new stack 3981 // slots and always reusing the same one. We currently always create 3982 // new ones, as reuse may inhibit scheduling. 3983 Result = EmitStackConvert(Node->getOperand(0), ExtraVT, 3984 Node->getValueType(0)); 3985 } else { 3986 assert(0 && "Unknown op"); 3987 } 3988 break; 3989 } 3990 break; 3991 } 3992 case ISD::TRAMPOLINE: { 3993 SDOperand Ops[6]; 3994 for (unsigned i = 0; i != 6; ++i) 3995 Ops[i] = LegalizeOp(Node->getOperand(i)); 3996 Result = DAG.UpdateNodeOperands(Result, Ops, 6); 3997 // The only option for this node is to custom lower it. 3998 Result = TLI.LowerOperation(Result, DAG); 3999 assert(Result.Val && "Should always custom lower!"); 4000 4001 // Since trampoline produces two values, make sure to remember that we 4002 // legalized both of them. 4003 Tmp1 = LegalizeOp(Result.getValue(1)); 4004 Result = LegalizeOp(Result); 4005 AddLegalizedOperand(SDOperand(Node, 0), Result); 4006 AddLegalizedOperand(SDOperand(Node, 1), Tmp1); 4007 return Op.ResNo ? Tmp1 : Result; 4008 } 4009 case ISD::FLT_ROUNDS_: { 4010 MVT::ValueType VT = Node->getValueType(0); 4011 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 4012 default: assert(0 && "This action not supported for this op yet!"); 4013 case TargetLowering::Custom: 4014 Result = TLI.LowerOperation(Op, DAG); 4015 if (Result.Val) break; 4016 // Fall Thru 4017 case TargetLowering::Legal: 4018 // If this operation is not supported, lower it to constant 1 4019 Result = DAG.getConstant(1, VT); 4020 break; 4021 } 4022 } 4023 case ISD::TRAP: { 4024 MVT::ValueType VT = Node->getValueType(0); 4025 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 4026 default: assert(0 && "This action not supported for this op yet!"); 4027 case TargetLowering::Legal: 4028 Tmp1 = LegalizeOp(Node->getOperand(0)); 4029 Result = DAG.UpdateNodeOperands(Result, Tmp1); 4030 break; 4031 case TargetLowering::Custom: 4032 Result = TLI.LowerOperation(Op, DAG); 4033 if (Result.Val) break; 4034 // Fall Thru 4035 case TargetLowering::Expand: 4036 // If this operation is not supported, lower it to 'abort()' call 4037 Tmp1 = LegalizeOp(Node->getOperand(0)); 4038 TargetLowering::ArgListTy Args; 4039 std::pair<SDOperand,SDOperand> CallResult = 4040 TLI.LowerCallTo(Tmp1, Type::VoidTy, 4041 false, false, false, CallingConv::C, false, 4042 DAG.getExternalSymbol("abort", TLI.getPointerTy()), 4043 Args, DAG); 4044 Result = CallResult.second; 4045 break; 4046 } 4047 break; 4048 } 4049 } 4050 4051 assert(Result.getValueType() == Op.getValueType() && 4052 "Bad legalization!"); 4053 4054 // Make sure that the generated code is itself legal. 4055 if (Result != Op) 4056 Result = LegalizeOp(Result); 4057 4058 // Note that LegalizeOp may be reentered even from single-use nodes, which 4059 // means that we always must cache transformed nodes. 4060 AddLegalizedOperand(Op, Result); 4061 return Result; 4062} 4063 4064/// PromoteOp - Given an operation that produces a value in an invalid type, 4065/// promote it to compute the value into a larger type. The produced value will 4066/// have the correct bits for the low portion of the register, but no guarantee 4067/// is made about the top bits: it may be zero, sign-extended, or garbage. 4068SDOperand SelectionDAGLegalize::PromoteOp(SDOperand Op) { 4069 MVT::ValueType VT = Op.getValueType(); 4070 MVT::ValueType NVT = TLI.getTypeToTransformTo(VT); 4071 assert(getTypeAction(VT) == Promote && 4072 "Caller should expand or legalize operands that are not promotable!"); 4073 assert(NVT > VT && MVT::isInteger(NVT) == MVT::isInteger(VT) && 4074 "Cannot promote to smaller type!"); 4075 4076 SDOperand Tmp1, Tmp2, Tmp3; 4077 SDOperand Result; 4078 SDNode *Node = Op.Val; 4079 4080 DenseMap<SDOperand, SDOperand>::iterator I = PromotedNodes.find(Op); 4081 if (I != PromotedNodes.end()) return I->second; 4082 4083 switch (Node->getOpcode()) { 4084 case ISD::CopyFromReg: 4085 assert(0 && "CopyFromReg must be legal!"); 4086 default: 4087#ifndef NDEBUG 4088 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 4089#endif 4090 assert(0 && "Do not know how to promote this operator!"); 4091 abort(); 4092 case ISD::UNDEF: 4093 Result = DAG.getNode(ISD::UNDEF, NVT); 4094 break; 4095 case ISD::Constant: 4096 if (VT != MVT::i1) 4097 Result = DAG.getNode(ISD::SIGN_EXTEND, NVT, Op); 4098 else 4099 Result = DAG.getNode(ISD::ZERO_EXTEND, NVT, Op); 4100 assert(isa<ConstantSDNode>(Result) && "Didn't constant fold zext?"); 4101 break; 4102 case ISD::ConstantFP: 4103 Result = DAG.getNode(ISD::FP_EXTEND, NVT, Op); 4104 assert(isa<ConstantFPSDNode>(Result) && "Didn't constant fold fp_extend?"); 4105 break; 4106 4107 case ISD::SETCC: 4108 assert(isTypeLegal(TLI.getSetCCResultTy()) && "SetCC type is not legal??"); 4109 Result = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(),Node->getOperand(0), 4110 Node->getOperand(1), Node->getOperand(2)); 4111 break; 4112 4113 case ISD::TRUNCATE: 4114 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4115 case Legal: 4116 Result = LegalizeOp(Node->getOperand(0)); 4117 assert(Result.getValueType() >= NVT && 4118 "This truncation doesn't make sense!"); 4119 if (Result.getValueType() > NVT) // Truncate to NVT instead of VT 4120 Result = DAG.getNode(ISD::TRUNCATE, NVT, Result); 4121 break; 4122 case Promote: 4123 // The truncation is not required, because we don't guarantee anything 4124 // about high bits anyway. 4125 Result = PromoteOp(Node->getOperand(0)); 4126 break; 4127 case Expand: 4128 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 4129 // Truncate the low part of the expanded value to the result type 4130 Result = DAG.getNode(ISD::TRUNCATE, NVT, Tmp1); 4131 } 4132 break; 4133 case ISD::SIGN_EXTEND: 4134 case ISD::ZERO_EXTEND: 4135 case ISD::ANY_EXTEND: 4136 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4137 case Expand: assert(0 && "BUG: Smaller reg should have been promoted!"); 4138 case Legal: 4139 // Input is legal? Just do extend all the way to the larger type. 4140 Result = DAG.getNode(Node->getOpcode(), NVT, Node->getOperand(0)); 4141 break; 4142 case Promote: 4143 // Promote the reg if it's smaller. 4144 Result = PromoteOp(Node->getOperand(0)); 4145 // The high bits are not guaranteed to be anything. Insert an extend. 4146 if (Node->getOpcode() == ISD::SIGN_EXTEND) 4147 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Result, 4148 DAG.getValueType(Node->getOperand(0).getValueType())); 4149 else if (Node->getOpcode() == ISD::ZERO_EXTEND) 4150 Result = DAG.getZeroExtendInReg(Result, 4151 Node->getOperand(0).getValueType()); 4152 break; 4153 } 4154 break; 4155 case ISD::BIT_CONVERT: 4156 Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 4157 Node->getValueType(0)); 4158 Result = PromoteOp(Result); 4159 break; 4160 4161 case ISD::FP_EXTEND: 4162 assert(0 && "Case not implemented. Dynamically dead with 2 FP types!"); 4163 case ISD::FP_ROUND: 4164 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4165 case Expand: assert(0 && "BUG: Cannot expand FP regs!"); 4166 case Promote: assert(0 && "Unreachable with 2 FP types!"); 4167 case Legal: 4168 if (Node->getConstantOperandVal(1) == 0) { 4169 // Input is legal? Do an FP_ROUND_INREG. 4170 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Node->getOperand(0), 4171 DAG.getValueType(VT)); 4172 } else { 4173 // Just remove the truncate, it isn't affecting the value. 4174 Result = DAG.getNode(ISD::FP_ROUND, NVT, Node->getOperand(0), 4175 Node->getOperand(1)); 4176 } 4177 break; 4178 } 4179 break; 4180 case ISD::SINT_TO_FP: 4181 case ISD::UINT_TO_FP: 4182 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4183 case Legal: 4184 // No extra round required here. 4185 Result = DAG.getNode(Node->getOpcode(), NVT, Node->getOperand(0)); 4186 break; 4187 4188 case Promote: 4189 Result = PromoteOp(Node->getOperand(0)); 4190 if (Node->getOpcode() == ISD::SINT_TO_FP) 4191 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 4192 Result, 4193 DAG.getValueType(Node->getOperand(0).getValueType())); 4194 else 4195 Result = DAG.getZeroExtendInReg(Result, 4196 Node->getOperand(0).getValueType()); 4197 // No extra round required here. 4198 Result = DAG.getNode(Node->getOpcode(), NVT, Result); 4199 break; 4200 case Expand: 4201 Result = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, NVT, 4202 Node->getOperand(0)); 4203 // Round if we cannot tolerate excess precision. 4204 if (NoExcessFPPrecision) 4205 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4206 DAG.getValueType(VT)); 4207 break; 4208 } 4209 break; 4210 4211 case ISD::SIGN_EXTEND_INREG: 4212 Result = PromoteOp(Node->getOperand(0)); 4213 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Result, 4214 Node->getOperand(1)); 4215 break; 4216 case ISD::FP_TO_SINT: 4217 case ISD::FP_TO_UINT: 4218 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4219 case Legal: 4220 case Expand: 4221 Tmp1 = Node->getOperand(0); 4222 break; 4223 case Promote: 4224 // The input result is prerounded, so we don't have to do anything 4225 // special. 4226 Tmp1 = PromoteOp(Node->getOperand(0)); 4227 break; 4228 } 4229 // If we're promoting a UINT to a larger size, check to see if the new node 4230 // will be legal. If it isn't, check to see if FP_TO_SINT is legal, since 4231 // we can use that instead. This allows us to generate better code for 4232 // FP_TO_UINT for small destination sizes on targets where FP_TO_UINT is not 4233 // legal, such as PowerPC. 4234 if (Node->getOpcode() == ISD::FP_TO_UINT && 4235 !TLI.isOperationLegal(ISD::FP_TO_UINT, NVT) && 4236 (TLI.isOperationLegal(ISD::FP_TO_SINT, NVT) || 4237 TLI.getOperationAction(ISD::FP_TO_SINT, NVT)==TargetLowering::Custom)){ 4238 Result = DAG.getNode(ISD::FP_TO_SINT, NVT, Tmp1); 4239 } else { 4240 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 4241 } 4242 break; 4243 4244 case ISD::FABS: 4245 case ISD::FNEG: 4246 Tmp1 = PromoteOp(Node->getOperand(0)); 4247 assert(Tmp1.getValueType() == NVT); 4248 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 4249 // NOTE: we do not have to do any extra rounding here for 4250 // NoExcessFPPrecision, because we know the input will have the appropriate 4251 // precision, and these operations don't modify precision at all. 4252 break; 4253 4254 case ISD::FSQRT: 4255 case ISD::FSIN: 4256 case ISD::FCOS: 4257 Tmp1 = PromoteOp(Node->getOperand(0)); 4258 assert(Tmp1.getValueType() == NVT); 4259 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 4260 if (NoExcessFPPrecision) 4261 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4262 DAG.getValueType(VT)); 4263 break; 4264 4265 case ISD::FPOWI: { 4266 // Promote f32 powi to f64 powi. Note that this could insert a libcall 4267 // directly as well, which may be better. 4268 Tmp1 = PromoteOp(Node->getOperand(0)); 4269 assert(Tmp1.getValueType() == NVT); 4270 Result = DAG.getNode(ISD::FPOWI, NVT, Tmp1, Node->getOperand(1)); 4271 if (NoExcessFPPrecision) 4272 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4273 DAG.getValueType(VT)); 4274 break; 4275 } 4276 4277 case ISD::ATOMIC_LCS: { 4278 Tmp2 = PromoteOp(Node->getOperand(2)); 4279 Tmp3 = PromoteOp(Node->getOperand(3)); 4280 Result = DAG.getAtomic(Node->getOpcode(), Node->getOperand(0), 4281 Node->getOperand(1), Tmp2, Tmp3, 4282 cast<AtomicSDNode>(Node)->getVT()); 4283 // Remember that we legalized the chain. 4284 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 4285 break; 4286 } 4287 case ISD::ATOMIC_LAS: 4288 case ISD::ATOMIC_SWAP: { 4289 Tmp2 = PromoteOp(Node->getOperand(2)); 4290 Result = DAG.getAtomic(Node->getOpcode(), Node->getOperand(0), 4291 Node->getOperand(1), Tmp2, 4292 cast<AtomicSDNode>(Node)->getVT()); 4293 // Remember that we legalized the chain. 4294 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 4295 break; 4296 } 4297 4298 case ISD::AND: 4299 case ISD::OR: 4300 case ISD::XOR: 4301 case ISD::ADD: 4302 case ISD::SUB: 4303 case ISD::MUL: 4304 // The input may have strange things in the top bits of the registers, but 4305 // these operations don't care. They may have weird bits going out, but 4306 // that too is okay if they are integer operations. 4307 Tmp1 = PromoteOp(Node->getOperand(0)); 4308 Tmp2 = PromoteOp(Node->getOperand(1)); 4309 assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT); 4310 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 4311 break; 4312 case ISD::FADD: 4313 case ISD::FSUB: 4314 case ISD::FMUL: 4315 Tmp1 = PromoteOp(Node->getOperand(0)); 4316 Tmp2 = PromoteOp(Node->getOperand(1)); 4317 assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT); 4318 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 4319 4320 // Floating point operations will give excess precision that we may not be 4321 // able to tolerate. If we DO allow excess precision, just leave it, 4322 // otherwise excise it. 4323 // FIXME: Why would we need to round FP ops more than integer ones? 4324 // Is Round(Add(Add(A,B),C)) != Round(Add(Round(Add(A,B)), C)) 4325 if (NoExcessFPPrecision) 4326 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4327 DAG.getValueType(VT)); 4328 break; 4329 4330 case ISD::SDIV: 4331 case ISD::SREM: 4332 // These operators require that their input be sign extended. 4333 Tmp1 = PromoteOp(Node->getOperand(0)); 4334 Tmp2 = PromoteOp(Node->getOperand(1)); 4335 if (MVT::isInteger(NVT)) { 4336 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, 4337 DAG.getValueType(VT)); 4338 Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp2, 4339 DAG.getValueType(VT)); 4340 } 4341 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 4342 4343 // Perform FP_ROUND: this is probably overly pessimistic. 4344 if (MVT::isFloatingPoint(NVT) && NoExcessFPPrecision) 4345 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4346 DAG.getValueType(VT)); 4347 break; 4348 case ISD::FDIV: 4349 case ISD::FREM: 4350 case ISD::FCOPYSIGN: 4351 // These operators require that their input be fp extended. 4352 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4353 case Expand: assert(0 && "not implemented"); 4354 case Legal: Tmp1 = LegalizeOp(Node->getOperand(0)); break; 4355 case Promote: Tmp1 = PromoteOp(Node->getOperand(0)); break; 4356 } 4357 switch (getTypeAction(Node->getOperand(1).getValueType())) { 4358 case Expand: assert(0 && "not implemented"); 4359 case Legal: Tmp2 = LegalizeOp(Node->getOperand(1)); break; 4360 case Promote: Tmp2 = PromoteOp(Node->getOperand(1)); break; 4361 } 4362 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 4363 4364 // Perform FP_ROUND: this is probably overly pessimistic. 4365 if (NoExcessFPPrecision && Node->getOpcode() != ISD::FCOPYSIGN) 4366 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4367 DAG.getValueType(VT)); 4368 break; 4369 4370 case ISD::UDIV: 4371 case ISD::UREM: 4372 // These operators require that their input be zero extended. 4373 Tmp1 = PromoteOp(Node->getOperand(0)); 4374 Tmp2 = PromoteOp(Node->getOperand(1)); 4375 assert(MVT::isInteger(NVT) && "Operators don't apply to FP!"); 4376 Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); 4377 Tmp2 = DAG.getZeroExtendInReg(Tmp2, VT); 4378 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 4379 break; 4380 4381 case ISD::SHL: 4382 Tmp1 = PromoteOp(Node->getOperand(0)); 4383 Result = DAG.getNode(ISD::SHL, NVT, Tmp1, Node->getOperand(1)); 4384 break; 4385 case ISD::SRA: 4386 // The input value must be properly sign extended. 4387 Tmp1 = PromoteOp(Node->getOperand(0)); 4388 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, 4389 DAG.getValueType(VT)); 4390 Result = DAG.getNode(ISD::SRA, NVT, Tmp1, Node->getOperand(1)); 4391 break; 4392 case ISD::SRL: 4393 // The input value must be properly zero extended. 4394 Tmp1 = PromoteOp(Node->getOperand(0)); 4395 Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); 4396 Result = DAG.getNode(ISD::SRL, NVT, Tmp1, Node->getOperand(1)); 4397 break; 4398 4399 case ISD::VAARG: 4400 Tmp1 = Node->getOperand(0); // Get the chain. 4401 Tmp2 = Node->getOperand(1); // Get the pointer. 4402 if (TLI.getOperationAction(ISD::VAARG, VT) == TargetLowering::Custom) { 4403 Tmp3 = DAG.getVAArg(VT, Tmp1, Tmp2, Node->getOperand(2)); 4404 Result = TLI.CustomPromoteOperation(Tmp3, DAG); 4405 } else { 4406 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 4407 SDOperand VAList = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp2, V, 0); 4408 // Increment the pointer, VAList, to the next vaarg 4409 Tmp3 = DAG.getNode(ISD::ADD, TLI.getPointerTy(), VAList, 4410 DAG.getConstant(MVT::getSizeInBits(VT)/8, 4411 TLI.getPointerTy())); 4412 // Store the incremented VAList to the legalized pointer 4413 Tmp3 = DAG.getStore(VAList.getValue(1), Tmp3, Tmp2, V, 0); 4414 // Load the actual argument out of the pointer VAList 4415 Result = DAG.getExtLoad(ISD::EXTLOAD, NVT, Tmp3, VAList, NULL, 0, VT); 4416 } 4417 // Remember that we legalized the chain. 4418 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 4419 break; 4420 4421 case ISD::LOAD: { 4422 LoadSDNode *LD = cast<LoadSDNode>(Node); 4423 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(Node) 4424 ? ISD::EXTLOAD : LD->getExtensionType(); 4425 Result = DAG.getExtLoad(ExtType, NVT, 4426 LD->getChain(), LD->getBasePtr(), 4427 LD->getSrcValue(), LD->getSrcValueOffset(), 4428 LD->getMemoryVT(), 4429 LD->isVolatile(), 4430 LD->getAlignment()); 4431 // Remember that we legalized the chain. 4432 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 4433 break; 4434 } 4435 case ISD::SELECT: 4436 Tmp2 = PromoteOp(Node->getOperand(1)); // Legalize the op0 4437 Tmp3 = PromoteOp(Node->getOperand(2)); // Legalize the op1 4438 Result = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), Tmp2, Tmp3); 4439 break; 4440 case ISD::SELECT_CC: 4441 Tmp2 = PromoteOp(Node->getOperand(2)); // True 4442 Tmp3 = PromoteOp(Node->getOperand(3)); // False 4443 Result = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0), 4444 Node->getOperand(1), Tmp2, Tmp3, Node->getOperand(4)); 4445 break; 4446 case ISD::BSWAP: 4447 Tmp1 = Node->getOperand(0); 4448 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); 4449 Tmp1 = DAG.getNode(ISD::BSWAP, NVT, Tmp1); 4450 Result = DAG.getNode(ISD::SRL, NVT, Tmp1, 4451 DAG.getConstant(MVT::getSizeInBits(NVT) - 4452 MVT::getSizeInBits(VT), 4453 TLI.getShiftAmountTy())); 4454 break; 4455 case ISD::CTPOP: 4456 case ISD::CTTZ: 4457 case ISD::CTLZ: 4458 // Zero extend the argument 4459 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Node->getOperand(0)); 4460 // Perform the larger operation, then subtract if needed. 4461 Tmp1 = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 4462 switch(Node->getOpcode()) { 4463 case ISD::CTPOP: 4464 Result = Tmp1; 4465 break; 4466 case ISD::CTTZ: 4467 // if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) 4468 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), Tmp1, 4469 DAG.getConstant(MVT::getSizeInBits(NVT), NVT), 4470 ISD::SETEQ); 4471 Result = DAG.getNode(ISD::SELECT, NVT, Tmp2, 4472 DAG.getConstant(MVT::getSizeInBits(VT), NVT), Tmp1); 4473 break; 4474 case ISD::CTLZ: 4475 //Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4476 Result = DAG.getNode(ISD::SUB, NVT, Tmp1, 4477 DAG.getConstant(MVT::getSizeInBits(NVT) - 4478 MVT::getSizeInBits(VT), NVT)); 4479 break; 4480 } 4481 break; 4482 case ISD::EXTRACT_SUBVECTOR: 4483 Result = PromoteOp(ExpandEXTRACT_SUBVECTOR(Op)); 4484 break; 4485 case ISD::EXTRACT_VECTOR_ELT: 4486 Result = PromoteOp(ExpandEXTRACT_VECTOR_ELT(Op)); 4487 break; 4488 } 4489 4490 assert(Result.Val && "Didn't set a result!"); 4491 4492 // Make sure the result is itself legal. 4493 Result = LegalizeOp(Result); 4494 4495 // Remember that we promoted this! 4496 AddPromotedOperand(Op, Result); 4497 return Result; 4498} 4499 4500/// ExpandEXTRACT_VECTOR_ELT - Expand an EXTRACT_VECTOR_ELT operation into 4501/// a legal EXTRACT_VECTOR_ELT operation, scalar code, or memory traffic, 4502/// based on the vector type. The return type of this matches the element type 4503/// of the vector, which may not be legal for the target. 4504SDOperand SelectionDAGLegalize::ExpandEXTRACT_VECTOR_ELT(SDOperand Op) { 4505 // We know that operand #0 is the Vec vector. If the index is a constant 4506 // or if the invec is a supported hardware type, we can use it. Otherwise, 4507 // lower to a store then an indexed load. 4508 SDOperand Vec = Op.getOperand(0); 4509 SDOperand Idx = Op.getOperand(1); 4510 4511 MVT::ValueType TVT = Vec.getValueType(); 4512 unsigned NumElems = MVT::getVectorNumElements(TVT); 4513 4514 switch (TLI.getOperationAction(ISD::EXTRACT_VECTOR_ELT, TVT)) { 4515 default: assert(0 && "This action is not supported yet!"); 4516 case TargetLowering::Custom: { 4517 Vec = LegalizeOp(Vec); 4518 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 4519 SDOperand Tmp3 = TLI.LowerOperation(Op, DAG); 4520 if (Tmp3.Val) 4521 return Tmp3; 4522 break; 4523 } 4524 case TargetLowering::Legal: 4525 if (isTypeLegal(TVT)) { 4526 Vec = LegalizeOp(Vec); 4527 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 4528 return Op; 4529 } 4530 break; 4531 case TargetLowering::Expand: 4532 break; 4533 } 4534 4535 if (NumElems == 1) { 4536 // This must be an access of the only element. Return it. 4537 Op = ScalarizeVectorOp(Vec); 4538 } else if (!TLI.isTypeLegal(TVT) && isa<ConstantSDNode>(Idx)) { 4539 unsigned NumLoElts = 1 << Log2_32(NumElems-1); 4540 ConstantSDNode *CIdx = cast<ConstantSDNode>(Idx); 4541 SDOperand Lo, Hi; 4542 SplitVectorOp(Vec, Lo, Hi); 4543 if (CIdx->getValue() < NumLoElts) { 4544 Vec = Lo; 4545 } else { 4546 Vec = Hi; 4547 Idx = DAG.getConstant(CIdx->getValue() - NumLoElts, 4548 Idx.getValueType()); 4549 } 4550 4551 // It's now an extract from the appropriate high or low part. Recurse. 4552 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 4553 Op = ExpandEXTRACT_VECTOR_ELT(Op); 4554 } else { 4555 // Store the value to a temporary stack slot, then LOAD the scalar 4556 // element back out. 4557 SDOperand StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); 4558 SDOperand Ch = DAG.getStore(DAG.getEntryNode(), Vec, StackPtr, NULL, 0); 4559 4560 // Add the offset to the index. 4561 unsigned EltSize = MVT::getSizeInBits(Op.getValueType())/8; 4562 Idx = DAG.getNode(ISD::MUL, Idx.getValueType(), Idx, 4563 DAG.getConstant(EltSize, Idx.getValueType())); 4564 4565 if (MVT::getSizeInBits(Idx.getValueType()) > 4566 MVT::getSizeInBits(TLI.getPointerTy())) 4567 Idx = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), Idx); 4568 else 4569 Idx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), Idx); 4570 4571 StackPtr = DAG.getNode(ISD::ADD, Idx.getValueType(), Idx, StackPtr); 4572 4573 Op = DAG.getLoad(Op.getValueType(), Ch, StackPtr, NULL, 0); 4574 } 4575 return Op; 4576} 4577 4578/// ExpandEXTRACT_SUBVECTOR - Expand a EXTRACT_SUBVECTOR operation. For now 4579/// we assume the operation can be split if it is not already legal. 4580SDOperand SelectionDAGLegalize::ExpandEXTRACT_SUBVECTOR(SDOperand Op) { 4581 // We know that operand #0 is the Vec vector. For now we assume the index 4582 // is a constant and that the extracted result is a supported hardware type. 4583 SDOperand Vec = Op.getOperand(0); 4584 SDOperand Idx = LegalizeOp(Op.getOperand(1)); 4585 4586 unsigned NumElems = MVT::getVectorNumElements(Vec.getValueType()); 4587 4588 if (NumElems == MVT::getVectorNumElements(Op.getValueType())) { 4589 // This must be an access of the desired vector length. Return it. 4590 return Vec; 4591 } 4592 4593 ConstantSDNode *CIdx = cast<ConstantSDNode>(Idx); 4594 SDOperand Lo, Hi; 4595 SplitVectorOp(Vec, Lo, Hi); 4596 if (CIdx->getValue() < NumElems/2) { 4597 Vec = Lo; 4598 } else { 4599 Vec = Hi; 4600 Idx = DAG.getConstant(CIdx->getValue() - NumElems/2, Idx.getValueType()); 4601 } 4602 4603 // It's now an extract from the appropriate high or low part. Recurse. 4604 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 4605 return ExpandEXTRACT_SUBVECTOR(Op); 4606} 4607 4608/// LegalizeSetCCOperands - Attempts to create a legal LHS and RHS for a SETCC 4609/// with condition CC on the current target. This usually involves legalizing 4610/// or promoting the arguments. In the case where LHS and RHS must be expanded, 4611/// there may be no choice but to create a new SetCC node to represent the 4612/// legalized value of setcc lhs, rhs. In this case, the value is returned in 4613/// LHS, and the SDOperand returned in RHS has a nil SDNode value. 4614void SelectionDAGLegalize::LegalizeSetCCOperands(SDOperand &LHS, 4615 SDOperand &RHS, 4616 SDOperand &CC) { 4617 SDOperand Tmp1, Tmp2, Tmp3, Result; 4618 4619 switch (getTypeAction(LHS.getValueType())) { 4620 case Legal: 4621 Tmp1 = LegalizeOp(LHS); // LHS 4622 Tmp2 = LegalizeOp(RHS); // RHS 4623 break; 4624 case Promote: 4625 Tmp1 = PromoteOp(LHS); // LHS 4626 Tmp2 = PromoteOp(RHS); // RHS 4627 4628 // If this is an FP compare, the operands have already been extended. 4629 if (MVT::isInteger(LHS.getValueType())) { 4630 MVT::ValueType VT = LHS.getValueType(); 4631 MVT::ValueType NVT = TLI.getTypeToTransformTo(VT); 4632 4633 // Otherwise, we have to insert explicit sign or zero extends. Note 4634 // that we could insert sign extends for ALL conditions, but zero extend 4635 // is cheaper on many machines (an AND instead of two shifts), so prefer 4636 // it. 4637 switch (cast<CondCodeSDNode>(CC)->get()) { 4638 default: assert(0 && "Unknown integer comparison!"); 4639 case ISD::SETEQ: 4640 case ISD::SETNE: 4641 case ISD::SETUGE: 4642 case ISD::SETUGT: 4643 case ISD::SETULE: 4644 case ISD::SETULT: 4645 // ALL of these operations will work if we either sign or zero extend 4646 // the operands (including the unsigned comparisons!). Zero extend is 4647 // usually a simpler/cheaper operation, so prefer it. 4648 Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); 4649 Tmp2 = DAG.getZeroExtendInReg(Tmp2, VT); 4650 break; 4651 case ISD::SETGE: 4652 case ISD::SETGT: 4653 case ISD::SETLT: 4654 case ISD::SETLE: 4655 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, 4656 DAG.getValueType(VT)); 4657 Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp2, 4658 DAG.getValueType(VT)); 4659 break; 4660 } 4661 } 4662 break; 4663 case Expand: { 4664 MVT::ValueType VT = LHS.getValueType(); 4665 if (VT == MVT::f32 || VT == MVT::f64) { 4666 // Expand into one or more soft-fp libcall(s). 4667 RTLIB::Libcall LC1, LC2 = RTLIB::UNKNOWN_LIBCALL; 4668 switch (cast<CondCodeSDNode>(CC)->get()) { 4669 case ISD::SETEQ: 4670 case ISD::SETOEQ: 4671 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64; 4672 break; 4673 case ISD::SETNE: 4674 case ISD::SETUNE: 4675 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : RTLIB::UNE_F64; 4676 break; 4677 case ISD::SETGE: 4678 case ISD::SETOGE: 4679 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64; 4680 break; 4681 case ISD::SETLT: 4682 case ISD::SETOLT: 4683 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 4684 break; 4685 case ISD::SETLE: 4686 case ISD::SETOLE: 4687 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64; 4688 break; 4689 case ISD::SETGT: 4690 case ISD::SETOGT: 4691 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64; 4692 break; 4693 case ISD::SETUO: 4694 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64; 4695 break; 4696 case ISD::SETO: 4697 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : RTLIB::O_F64; 4698 break; 4699 default: 4700 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64; 4701 switch (cast<CondCodeSDNode>(CC)->get()) { 4702 case ISD::SETONE: 4703 // SETONE = SETOLT | SETOGT 4704 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 4705 // Fallthrough 4706 case ISD::SETUGT: 4707 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64; 4708 break; 4709 case ISD::SETUGE: 4710 LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64; 4711 break; 4712 case ISD::SETULT: 4713 LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 4714 break; 4715 case ISD::SETULE: 4716 LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64; 4717 break; 4718 case ISD::SETUEQ: 4719 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64; 4720 break; 4721 default: assert(0 && "Unsupported FP setcc!"); 4722 } 4723 } 4724 4725 SDOperand Dummy; 4726 Tmp1 = ExpandLibCall(TLI.getLibcallName(LC1), 4727 DAG.getNode(ISD::MERGE_VALUES, VT, LHS, RHS).Val, 4728 false /*sign irrelevant*/, Dummy); 4729 Tmp2 = DAG.getConstant(0, MVT::i32); 4730 CC = DAG.getCondCode(TLI.getCmpLibcallCC(LC1)); 4731 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 4732 Tmp1 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), Tmp1, Tmp2, CC); 4733 LHS = ExpandLibCall(TLI.getLibcallName(LC2), 4734 DAG.getNode(ISD::MERGE_VALUES, VT, LHS, RHS).Val, 4735 false /*sign irrelevant*/, Dummy); 4736 Tmp2 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), LHS, Tmp2, 4737 DAG.getCondCode(TLI.getCmpLibcallCC(LC2))); 4738 Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp2); 4739 Tmp2 = SDOperand(); 4740 } 4741 LHS = Tmp1; 4742 RHS = Tmp2; 4743 return; 4744 } 4745 4746 SDOperand LHSLo, LHSHi, RHSLo, RHSHi; 4747 ExpandOp(LHS, LHSLo, LHSHi); 4748 ExpandOp(RHS, RHSLo, RHSHi); 4749 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 4750 4751 if (VT==MVT::ppcf128) { 4752 // FIXME: This generated code sucks. We want to generate 4753 // FCMP crN, hi1, hi2 4754 // BNE crN, L: 4755 // FCMP crN, lo1, lo2 4756 // The following can be improved, but not that much. 4757 Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETEQ); 4758 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, CCCode); 4759 Tmp3 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2); 4760 Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETNE); 4761 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, CCCode); 4762 Tmp1 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2); 4763 Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp3); 4764 Tmp2 = SDOperand(); 4765 break; 4766 } 4767 4768 switch (CCCode) { 4769 case ISD::SETEQ: 4770 case ISD::SETNE: 4771 if (RHSLo == RHSHi) 4772 if (ConstantSDNode *RHSCST = dyn_cast<ConstantSDNode>(RHSLo)) 4773 if (RHSCST->isAllOnesValue()) { 4774 // Comparison to -1. 4775 Tmp1 = DAG.getNode(ISD::AND, LHSLo.getValueType(), LHSLo, LHSHi); 4776 Tmp2 = RHSLo; 4777 break; 4778 } 4779 4780 Tmp1 = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSLo, RHSLo); 4781 Tmp2 = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSHi, RHSHi); 4782 Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp2); 4783 Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); 4784 break; 4785 default: 4786 // If this is a comparison of the sign bit, just look at the top part. 4787 // X > -1, x < 0 4788 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(RHS)) 4789 if ((cast<CondCodeSDNode>(CC)->get() == ISD::SETLT && 4790 CST->getValue() == 0) || // X < 0 4791 (cast<CondCodeSDNode>(CC)->get() == ISD::SETGT && 4792 CST->isAllOnesValue())) { // X > -1 4793 Tmp1 = LHSHi; 4794 Tmp2 = RHSHi; 4795 break; 4796 } 4797 4798 // FIXME: This generated code sucks. 4799 ISD::CondCode LowCC; 4800 switch (CCCode) { 4801 default: assert(0 && "Unknown integer setcc!"); 4802 case ISD::SETLT: 4803 case ISD::SETULT: LowCC = ISD::SETULT; break; 4804 case ISD::SETGT: 4805 case ISD::SETUGT: LowCC = ISD::SETUGT; break; 4806 case ISD::SETLE: 4807 case ISD::SETULE: LowCC = ISD::SETULE; break; 4808 case ISD::SETGE: 4809 case ISD::SETUGE: LowCC = ISD::SETUGE; break; 4810 } 4811 4812 // Tmp1 = lo(op1) < lo(op2) // Always unsigned comparison 4813 // Tmp2 = hi(op1) < hi(op2) // Signedness depends on operands 4814 // dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2; 4815 4816 // NOTE: on targets without efficient SELECT of bools, we can always use 4817 // this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3) 4818 TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, false, true, NULL); 4819 Tmp1 = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, LowCC, 4820 false, DagCombineInfo); 4821 if (!Tmp1.Val) 4822 Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, LowCC); 4823 Tmp2 = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, 4824 CCCode, false, DagCombineInfo); 4825 if (!Tmp2.Val) 4826 Tmp2 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), LHSHi, RHSHi,CC); 4827 4828 ConstantSDNode *Tmp1C = dyn_cast<ConstantSDNode>(Tmp1.Val); 4829 ConstantSDNode *Tmp2C = dyn_cast<ConstantSDNode>(Tmp2.Val); 4830 if ((Tmp1C && Tmp1C->getValue() == 0) || 4831 (Tmp2C && Tmp2C->getValue() == 0 && 4832 (CCCode == ISD::SETLE || CCCode == ISD::SETGE || 4833 CCCode == ISD::SETUGE || CCCode == ISD::SETULE)) || 4834 (Tmp2C && Tmp2C->getValue() == 1 && 4835 (CCCode == ISD::SETLT || CCCode == ISD::SETGT || 4836 CCCode == ISD::SETUGT || CCCode == ISD::SETULT))) { 4837 // low part is known false, returns high part. 4838 // For LE / GE, if high part is known false, ignore the low part. 4839 // For LT / GT, if high part is known true, ignore the low part. 4840 Tmp1 = Tmp2; 4841 Tmp2 = SDOperand(); 4842 } else { 4843 Result = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, 4844 ISD::SETEQ, false, DagCombineInfo); 4845 if (!Result.Val) 4846 Result=DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETEQ); 4847 Result = LegalizeOp(DAG.getNode(ISD::SELECT, Tmp1.getValueType(), 4848 Result, Tmp1, Tmp2)); 4849 Tmp1 = Result; 4850 Tmp2 = SDOperand(); 4851 } 4852 } 4853 } 4854 } 4855 LHS = Tmp1; 4856 RHS = Tmp2; 4857} 4858 4859/// EmitStackConvert - Emit a store/load combination to the stack. This stores 4860/// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 4861/// a load from the stack slot to DestVT, extending it if needed. 4862/// The resultant code need not be legal. 4863SDOperand SelectionDAGLegalize::EmitStackConvert(SDOperand SrcOp, 4864 MVT::ValueType SlotVT, 4865 MVT::ValueType DestVT) { 4866 // Create the stack frame object. 4867 SDOperand FIPtr = DAG.CreateStackTemporary(SlotVT); 4868 4869 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 4870 int SPFI = StackPtrFI->getIndex(); 4871 4872 unsigned SrcSize = MVT::getSizeInBits(SrcOp.getValueType()); 4873 unsigned SlotSize = MVT::getSizeInBits(SlotVT); 4874 unsigned DestSize = MVT::getSizeInBits(DestVT); 4875 4876 // Emit a store to the stack slot. Use a truncstore if the input value is 4877 // later than DestVT. 4878 SDOperand Store; 4879 if (SrcSize > SlotSize) 4880 Store = DAG.getTruncStore(DAG.getEntryNode(), SrcOp, FIPtr, 4881 PseudoSourceValue::getFixedStack(), 4882 SPFI, SlotVT); 4883 else { 4884 assert(SrcSize == SlotSize && "Invalid store"); 4885 Store = DAG.getStore(DAG.getEntryNode(), SrcOp, FIPtr, 4886 PseudoSourceValue::getFixedStack(), 4887 SPFI, SlotVT); 4888 } 4889 4890 // Result is a load from the stack slot. 4891 if (SlotSize == DestSize) 4892 return DAG.getLoad(DestVT, Store, FIPtr, NULL, 0); 4893 4894 assert(SlotSize < DestSize && "Unknown extension!"); 4895 return DAG.getExtLoad(ISD::EXTLOAD, DestVT, Store, FIPtr, NULL, 0, SlotVT); 4896} 4897 4898SDOperand SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 4899 // Create a vector sized/aligned stack slot, store the value to element #0, 4900 // then load the whole vector back out. 4901 SDOperand StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 4902 4903 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 4904 int SPFI = StackPtrFI->getIndex(); 4905 4906 SDOperand Ch = DAG.getStore(DAG.getEntryNode(), Node->getOperand(0), StackPtr, 4907 PseudoSourceValue::getFixedStack(), SPFI); 4908 return DAG.getLoad(Node->getValueType(0), Ch, StackPtr, 4909 PseudoSourceValue::getFixedStack(), SPFI); 4910} 4911 4912 4913/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't 4914/// support the operation, but do support the resultant vector type. 4915SDOperand SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 4916 4917 // If the only non-undef value is the low element, turn this into a 4918 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 4919 unsigned NumElems = Node->getNumOperands(); 4920 bool isOnlyLowElement = true; 4921 SDOperand SplatValue = Node->getOperand(0); 4922 std::map<SDOperand, std::vector<unsigned> > Values; 4923 Values[SplatValue].push_back(0); 4924 bool isConstant = true; 4925 if (!isa<ConstantFPSDNode>(SplatValue) && !isa<ConstantSDNode>(SplatValue) && 4926 SplatValue.getOpcode() != ISD::UNDEF) 4927 isConstant = false; 4928 4929 for (unsigned i = 1; i < NumElems; ++i) { 4930 SDOperand V = Node->getOperand(i); 4931 Values[V].push_back(i); 4932 if (V.getOpcode() != ISD::UNDEF) 4933 isOnlyLowElement = false; 4934 if (SplatValue != V) 4935 SplatValue = SDOperand(0,0); 4936 4937 // If this isn't a constant element or an undef, we can't use a constant 4938 // pool load. 4939 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V) && 4940 V.getOpcode() != ISD::UNDEF) 4941 isConstant = false; 4942 } 4943 4944 if (isOnlyLowElement) { 4945 // If the low element is an undef too, then this whole things is an undef. 4946 if (Node->getOperand(0).getOpcode() == ISD::UNDEF) 4947 return DAG.getNode(ISD::UNDEF, Node->getValueType(0)); 4948 // Otherwise, turn this into a scalar_to_vector node. 4949 return DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), 4950 Node->getOperand(0)); 4951 } 4952 4953 // If all elements are constants, create a load from the constant pool. 4954 if (isConstant) { 4955 MVT::ValueType VT = Node->getValueType(0); 4956 const Type *OpNTy = 4957 MVT::getTypeForValueType(Node->getOperand(0).getValueType()); 4958 std::vector<Constant*> CV; 4959 for (unsigned i = 0, e = NumElems; i != e; ++i) { 4960 if (ConstantFPSDNode *V = 4961 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 4962 CV.push_back(ConstantFP::get(OpNTy, V->getValueAPF())); 4963 } else if (ConstantSDNode *V = 4964 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 4965 CV.push_back(ConstantInt::get(OpNTy, V->getValue())); 4966 } else { 4967 assert(Node->getOperand(i).getOpcode() == ISD::UNDEF); 4968 CV.push_back(UndefValue::get(OpNTy)); 4969 } 4970 } 4971 Constant *CP = ConstantVector::get(CV); 4972 SDOperand CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy()); 4973 return DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, 4974 PseudoSourceValue::getConstantPool(), 0); 4975 } 4976 4977 if (SplatValue.Val) { // Splat of one value? 4978 // Build the shuffle constant vector: <0, 0, 0, 0> 4979 MVT::ValueType MaskVT = 4980 MVT::getIntVectorWithNumElements(NumElems); 4981 SDOperand Zero = DAG.getConstant(0, MVT::getVectorElementType(MaskVT)); 4982 std::vector<SDOperand> ZeroVec(NumElems, Zero); 4983 SDOperand SplatMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 4984 &ZeroVec[0], ZeroVec.size()); 4985 4986 // If the target supports VECTOR_SHUFFLE and this shuffle mask, use it. 4987 if (isShuffleLegal(Node->getValueType(0), SplatMask)) { 4988 // Get the splatted value into the low element of a vector register. 4989 SDOperand LowValVec = 4990 DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), SplatValue); 4991 4992 // Return shuffle(LowValVec, undef, <0,0,0,0>) 4993 return DAG.getNode(ISD::VECTOR_SHUFFLE, Node->getValueType(0), LowValVec, 4994 DAG.getNode(ISD::UNDEF, Node->getValueType(0)), 4995 SplatMask); 4996 } 4997 } 4998 4999 // If there are only two unique elements, we may be able to turn this into a 5000 // vector shuffle. 5001 if (Values.size() == 2) { 5002 // Build the shuffle constant vector: e.g. <0, 4, 0, 4> 5003 MVT::ValueType MaskVT = 5004 MVT::getIntVectorWithNumElements(NumElems); 5005 std::vector<SDOperand> MaskVec(NumElems); 5006 unsigned i = 0; 5007 for (std::map<SDOperand,std::vector<unsigned> >::iterator I=Values.begin(), 5008 E = Values.end(); I != E; ++I) { 5009 for (std::vector<unsigned>::iterator II = I->second.begin(), 5010 EE = I->second.end(); II != EE; ++II) 5011 MaskVec[*II] = DAG.getConstant(i, MVT::getVectorElementType(MaskVT)); 5012 i += NumElems; 5013 } 5014 SDOperand ShuffleMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 5015 &MaskVec[0], MaskVec.size()); 5016 5017 // If the target supports VECTOR_SHUFFLE and this shuffle mask, use it. 5018 if (TLI.isOperationLegal(ISD::SCALAR_TO_VECTOR, Node->getValueType(0)) && 5019 isShuffleLegal(Node->getValueType(0), ShuffleMask)) { 5020 SmallVector<SDOperand, 8> Ops; 5021 for(std::map<SDOperand,std::vector<unsigned> >::iterator I=Values.begin(), 5022 E = Values.end(); I != E; ++I) { 5023 SDOperand Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), 5024 I->first); 5025 Ops.push_back(Op); 5026 } 5027 Ops.push_back(ShuffleMask); 5028 5029 // Return shuffle(LoValVec, HiValVec, <0,1,0,1>) 5030 return DAG.getNode(ISD::VECTOR_SHUFFLE, Node->getValueType(0), 5031 &Ops[0], Ops.size()); 5032 } 5033 } 5034 5035 // Otherwise, we can't handle this case efficiently. Allocate a sufficiently 5036 // aligned object on the stack, store each element into it, then load 5037 // the result as a vector. 5038 MVT::ValueType VT = Node->getValueType(0); 5039 // Create the stack frame object. 5040 SDOperand FIPtr = DAG.CreateStackTemporary(VT); 5041 5042 // Emit a store of each element to the stack slot. 5043 SmallVector<SDOperand, 8> Stores; 5044 unsigned TypeByteSize = 5045 MVT::getSizeInBits(Node->getOperand(0).getValueType())/8; 5046 // Store (in the right endianness) the elements to memory. 5047 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 5048 // Ignore undef elements. 5049 if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue; 5050 5051 unsigned Offset = TypeByteSize*i; 5052 5053 SDOperand Idx = DAG.getConstant(Offset, FIPtr.getValueType()); 5054 Idx = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr, Idx); 5055 5056 Stores.push_back(DAG.getStore(DAG.getEntryNode(), Node->getOperand(i), Idx, 5057 NULL, 0)); 5058 } 5059 5060 SDOperand StoreChain; 5061 if (!Stores.empty()) // Not all undef elements? 5062 StoreChain = DAG.getNode(ISD::TokenFactor, MVT::Other, 5063 &Stores[0], Stores.size()); 5064 else 5065 StoreChain = DAG.getEntryNode(); 5066 5067 // Result is a load from the stack slot. 5068 return DAG.getLoad(VT, StoreChain, FIPtr, NULL, 0); 5069} 5070 5071void SelectionDAGLegalize::ExpandShiftParts(unsigned NodeOp, 5072 SDOperand Op, SDOperand Amt, 5073 SDOperand &Lo, SDOperand &Hi) { 5074 // Expand the subcomponents. 5075 SDOperand LHSL, LHSH; 5076 ExpandOp(Op, LHSL, LHSH); 5077 5078 SDOperand Ops[] = { LHSL, LHSH, Amt }; 5079 MVT::ValueType VT = LHSL.getValueType(); 5080 Lo = DAG.getNode(NodeOp, DAG.getNodeValueTypes(VT, VT), 2, Ops, 3); 5081 Hi = Lo.getValue(1); 5082} 5083 5084 5085/// ExpandShift - Try to find a clever way to expand this shift operation out to 5086/// smaller elements. If we can't find a way that is more efficient than a 5087/// libcall on this target, return false. Otherwise, return true with the 5088/// low-parts expanded into Lo and Hi. 5089bool SelectionDAGLegalize::ExpandShift(unsigned Opc, SDOperand Op,SDOperand Amt, 5090 SDOperand &Lo, SDOperand &Hi) { 5091 assert((Opc == ISD::SHL || Opc == ISD::SRA || Opc == ISD::SRL) && 5092 "This is not a shift!"); 5093 5094 MVT::ValueType NVT = TLI.getTypeToTransformTo(Op.getValueType()); 5095 SDOperand ShAmt = LegalizeOp(Amt); 5096 MVT::ValueType ShTy = ShAmt.getValueType(); 5097 unsigned ShBits = MVT::getSizeInBits(ShTy); 5098 unsigned VTBits = MVT::getSizeInBits(Op.getValueType()); 5099 unsigned NVTBits = MVT::getSizeInBits(NVT); 5100 5101 // Handle the case when Amt is an immediate. 5102 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Amt.Val)) { 5103 unsigned Cst = CN->getValue(); 5104 // Expand the incoming operand to be shifted, so that we have its parts 5105 SDOperand InL, InH; 5106 ExpandOp(Op, InL, InH); 5107 switch(Opc) { 5108 case ISD::SHL: 5109 if (Cst > VTBits) { 5110 Lo = DAG.getConstant(0, NVT); 5111 Hi = DAG.getConstant(0, NVT); 5112 } else if (Cst > NVTBits) { 5113 Lo = DAG.getConstant(0, NVT); 5114 Hi = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Cst-NVTBits,ShTy)); 5115 } else if (Cst == NVTBits) { 5116 Lo = DAG.getConstant(0, NVT); 5117 Hi = InL; 5118 } else { 5119 Lo = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Cst, ShTy)); 5120 Hi = DAG.getNode(ISD::OR, NVT, 5121 DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(Cst, ShTy)), 5122 DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(NVTBits-Cst, ShTy))); 5123 } 5124 return true; 5125 case ISD::SRL: 5126 if (Cst > VTBits) { 5127 Lo = DAG.getConstant(0, NVT); 5128 Hi = DAG.getConstant(0, NVT); 5129 } else if (Cst > NVTBits) { 5130 Lo = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Cst-NVTBits,ShTy)); 5131 Hi = DAG.getConstant(0, NVT); 5132 } else if (Cst == NVTBits) { 5133 Lo = InH; 5134 Hi = DAG.getConstant(0, NVT); 5135 } else { 5136 Lo = DAG.getNode(ISD::OR, NVT, 5137 DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(Cst, ShTy)), 5138 DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(NVTBits-Cst, ShTy))); 5139 Hi = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Cst, ShTy)); 5140 } 5141 return true; 5142 case ISD::SRA: 5143 if (Cst > VTBits) { 5144 Hi = Lo = DAG.getNode(ISD::SRA, NVT, InH, 5145 DAG.getConstant(NVTBits-1, ShTy)); 5146 } else if (Cst > NVTBits) { 5147 Lo = DAG.getNode(ISD::SRA, NVT, InH, 5148 DAG.getConstant(Cst-NVTBits, ShTy)); 5149 Hi = DAG.getNode(ISD::SRA, NVT, InH, 5150 DAG.getConstant(NVTBits-1, ShTy)); 5151 } else if (Cst == NVTBits) { 5152 Lo = InH; 5153 Hi = DAG.getNode(ISD::SRA, NVT, InH, 5154 DAG.getConstant(NVTBits-1, ShTy)); 5155 } else { 5156 Lo = DAG.getNode(ISD::OR, NVT, 5157 DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(Cst, ShTy)), 5158 DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(NVTBits-Cst, ShTy))); 5159 Hi = DAG.getNode(ISD::SRA, NVT, InH, DAG.getConstant(Cst, ShTy)); 5160 } 5161 return true; 5162 } 5163 } 5164 5165 // Okay, the shift amount isn't constant. However, if we can tell that it is 5166 // >= 32 or < 32, we can still simplify it, without knowing the actual value. 5167 APInt Mask = APInt::getHighBitsSet(ShBits, ShBits - Log2_32(NVTBits)); 5168 APInt KnownZero, KnownOne; 5169 DAG.ComputeMaskedBits(Amt, Mask, KnownZero, KnownOne); 5170 5171 // If we know that if any of the high bits of the shift amount are one, then 5172 // we can do this as a couple of simple shifts. 5173 if (KnownOne.intersects(Mask)) { 5174 // Mask out the high bit, which we know is set. 5175 Amt = DAG.getNode(ISD::AND, Amt.getValueType(), Amt, 5176 DAG.getConstant(~Mask, Amt.getValueType())); 5177 5178 // Expand the incoming operand to be shifted, so that we have its parts 5179 SDOperand InL, InH; 5180 ExpandOp(Op, InL, InH); 5181 switch(Opc) { 5182 case ISD::SHL: 5183 Lo = DAG.getConstant(0, NVT); // Low part is zero. 5184 Hi = DAG.getNode(ISD::SHL, NVT, InL, Amt); // High part from Lo part. 5185 return true; 5186 case ISD::SRL: 5187 Hi = DAG.getConstant(0, NVT); // Hi part is zero. 5188 Lo = DAG.getNode(ISD::SRL, NVT, InH, Amt); // Lo part from Hi part. 5189 return true; 5190 case ISD::SRA: 5191 Hi = DAG.getNode(ISD::SRA, NVT, InH, // Sign extend high part. 5192 DAG.getConstant(NVTBits-1, Amt.getValueType())); 5193 Lo = DAG.getNode(ISD::SRA, NVT, InH, Amt); // Lo part from Hi part. 5194 return true; 5195 } 5196 } 5197 5198 // If we know that the high bits of the shift amount are all zero, then we can 5199 // do this as a couple of simple shifts. 5200 if ((KnownZero & Mask) == Mask) { 5201 // Compute 32-amt. 5202 SDOperand Amt2 = DAG.getNode(ISD::SUB, Amt.getValueType(), 5203 DAG.getConstant(NVTBits, Amt.getValueType()), 5204 Amt); 5205 5206 // Expand the incoming operand to be shifted, so that we have its parts 5207 SDOperand InL, InH; 5208 ExpandOp(Op, InL, InH); 5209 switch(Opc) { 5210 case ISD::SHL: 5211 Lo = DAG.getNode(ISD::SHL, NVT, InL, Amt); 5212 Hi = DAG.getNode(ISD::OR, NVT, 5213 DAG.getNode(ISD::SHL, NVT, InH, Amt), 5214 DAG.getNode(ISD::SRL, NVT, InL, Amt2)); 5215 return true; 5216 case ISD::SRL: 5217 Hi = DAG.getNode(ISD::SRL, NVT, InH, Amt); 5218 Lo = DAG.getNode(ISD::OR, NVT, 5219 DAG.getNode(ISD::SRL, NVT, InL, Amt), 5220 DAG.getNode(ISD::SHL, NVT, InH, Amt2)); 5221 return true; 5222 case ISD::SRA: 5223 Hi = DAG.getNode(ISD::SRA, NVT, InH, Amt); 5224 Lo = DAG.getNode(ISD::OR, NVT, 5225 DAG.getNode(ISD::SRL, NVT, InL, Amt), 5226 DAG.getNode(ISD::SHL, NVT, InH, Amt2)); 5227 return true; 5228 } 5229 } 5230 5231 return false; 5232} 5233 5234 5235// ExpandLibCall - Expand a node into a call to a libcall. If the result value 5236// does not fit into a register, return the lo part and set the hi part to the 5237// by-reg argument. If it does fit into a single register, return the result 5238// and leave the Hi part unset. 5239SDOperand SelectionDAGLegalize::ExpandLibCall(const char *Name, SDNode *Node, 5240 bool isSigned, SDOperand &Hi) { 5241 assert(!IsLegalizingCall && "Cannot overlap legalization of calls!"); 5242 // The input chain to this libcall is the entry node of the function. 5243 // Legalizing the call will automatically add the previous call to the 5244 // dependence. 5245 SDOperand InChain = DAG.getEntryNode(); 5246 5247 TargetLowering::ArgListTy Args; 5248 TargetLowering::ArgListEntry Entry; 5249 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 5250 MVT::ValueType ArgVT = Node->getOperand(i).getValueType(); 5251 const Type *ArgTy = MVT::getTypeForValueType(ArgVT); 5252 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; 5253 Entry.isSExt = isSigned; 5254 Entry.isZExt = !isSigned; 5255 Args.push_back(Entry); 5256 } 5257 SDOperand Callee = DAG.getExternalSymbol(Name, TLI.getPointerTy()); 5258 5259 // Splice the libcall in wherever FindInputOutputChains tells us to. 5260 const Type *RetTy = MVT::getTypeForValueType(Node->getValueType(0)); 5261 std::pair<SDOperand,SDOperand> CallInfo = 5262 TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, CallingConv::C, 5263 false, Callee, Args, DAG); 5264 5265 // Legalize the call sequence, starting with the chain. This will advance 5266 // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that 5267 // was added by LowerCallTo (guaranteeing proper serialization of calls). 5268 LegalizeOp(CallInfo.second); 5269 SDOperand Result; 5270 switch (getTypeAction(CallInfo.first.getValueType())) { 5271 default: assert(0 && "Unknown thing"); 5272 case Legal: 5273 Result = CallInfo.first; 5274 break; 5275 case Expand: 5276 ExpandOp(CallInfo.first, Result, Hi); 5277 break; 5278 } 5279 return Result; 5280} 5281 5282 5283/// ExpandIntToFP - Expand a [US]INT_TO_FP operation. 5284/// 5285SDOperand SelectionDAGLegalize:: 5286ExpandIntToFP(bool isSigned, MVT::ValueType DestTy, SDOperand Source) { 5287 assert(getTypeAction(Source.getValueType()) == Expand && 5288 "This is not an expansion!"); 5289 assert(Source.getValueType() == MVT::i64 && "Only handle expand from i64!"); 5290 5291 if (!isSigned) { 5292 assert(Source.getValueType() == MVT::i64 && 5293 "This only works for 64-bit -> FP"); 5294 // The 64-bit value loaded will be incorrectly if the 'sign bit' of the 5295 // incoming integer is set. To handle this, we dynamically test to see if 5296 // it is set, and, if so, add a fudge factor. 5297 SDOperand Lo, Hi; 5298 ExpandOp(Source, Lo, Hi); 5299 5300 // If this is unsigned, and not supported, first perform the conversion to 5301 // signed, then adjust the result if the sign bit is set. 5302 SDOperand SignedConv = ExpandIntToFP(true, DestTy, 5303 DAG.getNode(ISD::BUILD_PAIR, Source.getValueType(), Lo, Hi)); 5304 5305 SDOperand SignSet = DAG.getSetCC(TLI.getSetCCResultTy(), Hi, 5306 DAG.getConstant(0, Hi.getValueType()), 5307 ISD::SETLT); 5308 SDOperand Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); 5309 SDOperand CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(), 5310 SignSet, Four, Zero); 5311 uint64_t FF = 0x5f800000ULL; 5312 if (TLI.isLittleEndian()) FF <<= 32; 5313 static Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF); 5314 5315 SDOperand CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); 5316 CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset); 5317 SDOperand FudgeInReg; 5318 if (DestTy == MVT::f32) 5319 FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx, 5320 PseudoSourceValue::getConstantPool(), 0); 5321 else if (MVT::getSizeInBits(DestTy) > MVT::getSizeInBits(MVT::f32)) 5322 // FIXME: Avoid the extend by construction the right constantpool? 5323 FudgeInReg = DAG.getExtLoad(ISD::EXTLOAD, DestTy, DAG.getEntryNode(), 5324 CPIdx, 5325 PseudoSourceValue::getConstantPool(), 0, 5326 MVT::f32); 5327 else 5328 assert(0 && "Unexpected conversion"); 5329 5330 MVT::ValueType SCVT = SignedConv.getValueType(); 5331 if (SCVT != DestTy) { 5332 // Destination type needs to be expanded as well. The FADD now we are 5333 // constructing will be expanded into a libcall. 5334 if (MVT::getSizeInBits(SCVT) != MVT::getSizeInBits(DestTy)) { 5335 assert(SCVT == MVT::i32 && DestTy == MVT::f64); 5336 SignedConv = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, 5337 SignedConv, SignedConv.getValue(1)); 5338 } 5339 SignedConv = DAG.getNode(ISD::BIT_CONVERT, DestTy, SignedConv); 5340 } 5341 return DAG.getNode(ISD::FADD, DestTy, SignedConv, FudgeInReg); 5342 } 5343 5344 // Check to see if the target has a custom way to lower this. If so, use it. 5345 switch (TLI.getOperationAction(ISD::SINT_TO_FP, Source.getValueType())) { 5346 default: assert(0 && "This action not implemented for this operation!"); 5347 case TargetLowering::Legal: 5348 case TargetLowering::Expand: 5349 break; // This case is handled below. 5350 case TargetLowering::Custom: { 5351 SDOperand NV = TLI.LowerOperation(DAG.getNode(ISD::SINT_TO_FP, DestTy, 5352 Source), DAG); 5353 if (NV.Val) 5354 return LegalizeOp(NV); 5355 break; // The target decided this was legal after all 5356 } 5357 } 5358 5359 // Expand the source, then glue it back together for the call. We must expand 5360 // the source in case it is shared (this pass of legalize must traverse it). 5361 SDOperand SrcLo, SrcHi; 5362 ExpandOp(Source, SrcLo, SrcHi); 5363 Source = DAG.getNode(ISD::BUILD_PAIR, Source.getValueType(), SrcLo, SrcHi); 5364 5365 RTLIB::Libcall LC; 5366 if (DestTy == MVT::f32) 5367 LC = RTLIB::SINTTOFP_I64_F32; 5368 else { 5369 assert(DestTy == MVT::f64 && "Unknown fp value type!"); 5370 LC = RTLIB::SINTTOFP_I64_F64; 5371 } 5372 5373 assert(TLI.getLibcallName(LC) && "Don't know how to expand this SINT_TO_FP!"); 5374 Source = DAG.getNode(ISD::SINT_TO_FP, DestTy, Source); 5375 SDOperand UnusedHiPart; 5376 return ExpandLibCall(TLI.getLibcallName(LC), Source.Val, isSigned, 5377 UnusedHiPart); 5378} 5379 5380/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a 5381/// INT_TO_FP operation of the specified operand when the target requests that 5382/// we expand it. At this point, we know that the result and operand types are 5383/// legal for the target. 5384SDOperand SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, 5385 SDOperand Op0, 5386 MVT::ValueType DestVT) { 5387 if (Op0.getValueType() == MVT::i32) { 5388 // simple 32-bit [signed|unsigned] integer to float/double expansion 5389 5390 // Get the stack frame index of a 8 byte buffer. 5391 SDOperand StackSlot = DAG.CreateStackTemporary(MVT::f64); 5392 5393 // word offset constant for Hi/Lo address computation 5394 SDOperand WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy()); 5395 // set up Hi and Lo (into buffer) address based on endian 5396 SDOperand Hi = StackSlot; 5397 SDOperand Lo = DAG.getNode(ISD::ADD, TLI.getPointerTy(), StackSlot,WordOff); 5398 if (TLI.isLittleEndian()) 5399 std::swap(Hi, Lo); 5400 5401 // if signed map to unsigned space 5402 SDOperand Op0Mapped; 5403 if (isSigned) { 5404 // constant used to invert sign bit (signed to unsigned mapping) 5405 SDOperand SignBit = DAG.getConstant(0x80000000u, MVT::i32); 5406 Op0Mapped = DAG.getNode(ISD::XOR, MVT::i32, Op0, SignBit); 5407 } else { 5408 Op0Mapped = Op0; 5409 } 5410 // store the lo of the constructed double - based on integer input 5411 SDOperand Store1 = DAG.getStore(DAG.getEntryNode(), 5412 Op0Mapped, Lo, NULL, 0); 5413 // initial hi portion of constructed double 5414 SDOperand InitialHi = DAG.getConstant(0x43300000u, MVT::i32); 5415 // store the hi of the constructed double - biased exponent 5416 SDOperand Store2=DAG.getStore(Store1, InitialHi, Hi, NULL, 0); 5417 // load the constructed double 5418 SDOperand Load = DAG.getLoad(MVT::f64, Store2, StackSlot, NULL, 0); 5419 // FP constant to bias correct the final result 5420 SDOperand Bias = DAG.getConstantFP(isSigned ? 5421 BitsToDouble(0x4330000080000000ULL) 5422 : BitsToDouble(0x4330000000000000ULL), 5423 MVT::f64); 5424 // subtract the bias 5425 SDOperand Sub = DAG.getNode(ISD::FSUB, MVT::f64, Load, Bias); 5426 // final result 5427 SDOperand Result; 5428 // handle final rounding 5429 if (DestVT == MVT::f64) { 5430 // do nothing 5431 Result = Sub; 5432 } else if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(MVT::f64)) { 5433 Result = DAG.getNode(ISD::FP_ROUND, DestVT, Sub, 5434 DAG.getIntPtrConstant(0)); 5435 } else if (MVT::getSizeInBits(DestVT) > MVT::getSizeInBits(MVT::f64)) { 5436 Result = DAG.getNode(ISD::FP_EXTEND, DestVT, Sub); 5437 } 5438 return Result; 5439 } 5440 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 5441 SDOperand Tmp1 = DAG.getNode(ISD::SINT_TO_FP, DestVT, Op0); 5442 5443 SDOperand SignSet = DAG.getSetCC(TLI.getSetCCResultTy(), Op0, 5444 DAG.getConstant(0, Op0.getValueType()), 5445 ISD::SETLT); 5446 SDOperand Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); 5447 SDOperand CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(), 5448 SignSet, Four, Zero); 5449 5450 // If the sign bit of the integer is set, the large number will be treated 5451 // as a negative number. To counteract this, the dynamic code adds an 5452 // offset depending on the data type. 5453 uint64_t FF; 5454 switch (Op0.getValueType()) { 5455 default: assert(0 && "Unsupported integer type!"); 5456 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 5457 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 5458 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 5459 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 5460 } 5461 if (TLI.isLittleEndian()) FF <<= 32; 5462 static Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF); 5463 5464 SDOperand CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); 5465 CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset); 5466 SDOperand FudgeInReg; 5467 if (DestVT == MVT::f32) 5468 FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx, 5469 PseudoSourceValue::getConstantPool(), 0); 5470 else { 5471 FudgeInReg = 5472 LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, DestVT, 5473 DAG.getEntryNode(), CPIdx, 5474 PseudoSourceValue::getConstantPool(), 0, 5475 MVT::f32)); 5476 } 5477 5478 return DAG.getNode(ISD::FADD, DestVT, Tmp1, FudgeInReg); 5479} 5480 5481/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a 5482/// *INT_TO_FP operation of the specified operand when the target requests that 5483/// we promote it. At this point, we know that the result and operand types are 5484/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 5485/// operation that takes a larger input. 5486SDOperand SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDOperand LegalOp, 5487 MVT::ValueType DestVT, 5488 bool isSigned) { 5489 // First step, figure out the appropriate *INT_TO_FP operation to use. 5490 MVT::ValueType NewInTy = LegalOp.getValueType(); 5491 5492 unsigned OpToUse = 0; 5493 5494 // Scan for the appropriate larger type to use. 5495 while (1) { 5496 NewInTy = (MVT::ValueType)(NewInTy+1); 5497 assert(MVT::isInteger(NewInTy) && "Ran out of possibilities!"); 5498 5499 // If the target supports SINT_TO_FP of this type, use it. 5500 switch (TLI.getOperationAction(ISD::SINT_TO_FP, NewInTy)) { 5501 default: break; 5502 case TargetLowering::Legal: 5503 if (!TLI.isTypeLegal(NewInTy)) 5504 break; // Can't use this datatype. 5505 // FALL THROUGH. 5506 case TargetLowering::Custom: 5507 OpToUse = ISD::SINT_TO_FP; 5508 break; 5509 } 5510 if (OpToUse) break; 5511 if (isSigned) continue; 5512 5513 // If the target supports UINT_TO_FP of this type, use it. 5514 switch (TLI.getOperationAction(ISD::UINT_TO_FP, NewInTy)) { 5515 default: break; 5516 case TargetLowering::Legal: 5517 if (!TLI.isTypeLegal(NewInTy)) 5518 break; // Can't use this datatype. 5519 // FALL THROUGH. 5520 case TargetLowering::Custom: 5521 OpToUse = ISD::UINT_TO_FP; 5522 break; 5523 } 5524 if (OpToUse) break; 5525 5526 // Otherwise, try a larger type. 5527 } 5528 5529 // Okay, we found the operation and type to use. Zero extend our input to the 5530 // desired type then run the operation on it. 5531 return DAG.getNode(OpToUse, DestVT, 5532 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5533 NewInTy, LegalOp)); 5534} 5535 5536/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a 5537/// FP_TO_*INT operation of the specified operand when the target requests that 5538/// we promote it. At this point, we know that the result and operand types are 5539/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 5540/// operation that returns a larger result. 5541SDOperand SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDOperand LegalOp, 5542 MVT::ValueType DestVT, 5543 bool isSigned) { 5544 // First step, figure out the appropriate FP_TO*INT operation to use. 5545 MVT::ValueType NewOutTy = DestVT; 5546 5547 unsigned OpToUse = 0; 5548 5549 // Scan for the appropriate larger type to use. 5550 while (1) { 5551 NewOutTy = (MVT::ValueType)(NewOutTy+1); 5552 assert(MVT::isInteger(NewOutTy) && "Ran out of possibilities!"); 5553 5554 // If the target supports FP_TO_SINT returning this type, use it. 5555 switch (TLI.getOperationAction(ISD::FP_TO_SINT, NewOutTy)) { 5556 default: break; 5557 case TargetLowering::Legal: 5558 if (!TLI.isTypeLegal(NewOutTy)) 5559 break; // Can't use this datatype. 5560 // FALL THROUGH. 5561 case TargetLowering::Custom: 5562 OpToUse = ISD::FP_TO_SINT; 5563 break; 5564 } 5565 if (OpToUse) break; 5566 5567 // If the target supports FP_TO_UINT of this type, use it. 5568 switch (TLI.getOperationAction(ISD::FP_TO_UINT, NewOutTy)) { 5569 default: break; 5570 case TargetLowering::Legal: 5571 if (!TLI.isTypeLegal(NewOutTy)) 5572 break; // Can't use this datatype. 5573 // FALL THROUGH. 5574 case TargetLowering::Custom: 5575 OpToUse = ISD::FP_TO_UINT; 5576 break; 5577 } 5578 if (OpToUse) break; 5579 5580 // Otherwise, try a larger type. 5581 } 5582 5583 5584 // Okay, we found the operation and type to use. 5585 SDOperand Operation = DAG.getNode(OpToUse, NewOutTy, LegalOp); 5586 5587 // If the operation produces an invalid type, it must be custom lowered. Use 5588 // the target lowering hooks to expand it. Just keep the low part of the 5589 // expanded operation, we know that we're truncating anyway. 5590 if (getTypeAction(NewOutTy) == Expand) { 5591 Operation = SDOperand(TLI.ExpandOperationResult(Operation.Val, DAG), 0); 5592 assert(Operation.Val && "Didn't return anything"); 5593 } 5594 5595 // Truncate the result of the extended FP_TO_*INT operation to the desired 5596 // size. 5597 return DAG.getNode(ISD::TRUNCATE, DestVT, Operation); 5598} 5599 5600/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation. 5601/// 5602SDOperand SelectionDAGLegalize::ExpandBSWAP(SDOperand Op) { 5603 MVT::ValueType VT = Op.getValueType(); 5604 MVT::ValueType SHVT = TLI.getShiftAmountTy(); 5605 SDOperand Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 5606 switch (VT) { 5607 default: assert(0 && "Unhandled Expand type in BSWAP!"); abort(); 5608 case MVT::i16: 5609 Tmp2 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT)); 5610 Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT)); 5611 return DAG.getNode(ISD::OR, VT, Tmp1, Tmp2); 5612 case MVT::i32: 5613 Tmp4 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(24, SHVT)); 5614 Tmp3 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT)); 5615 Tmp2 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT)); 5616 Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(24, SHVT)); 5617 Tmp3 = DAG.getNode(ISD::AND, VT, Tmp3, DAG.getConstant(0xFF0000, VT)); 5618 Tmp2 = DAG.getNode(ISD::AND, VT, Tmp2, DAG.getConstant(0xFF00, VT)); 5619 Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp3); 5620 Tmp2 = DAG.getNode(ISD::OR, VT, Tmp2, Tmp1); 5621 return DAG.getNode(ISD::OR, VT, Tmp4, Tmp2); 5622 case MVT::i64: 5623 Tmp8 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(56, SHVT)); 5624 Tmp7 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(40, SHVT)); 5625 Tmp6 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(24, SHVT)); 5626 Tmp5 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT)); 5627 Tmp4 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT)); 5628 Tmp3 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(24, SHVT)); 5629 Tmp2 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(40, SHVT)); 5630 Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(56, SHVT)); 5631 Tmp7 = DAG.getNode(ISD::AND, VT, Tmp7, DAG.getConstant(255ULL<<48, VT)); 5632 Tmp6 = DAG.getNode(ISD::AND, VT, Tmp6, DAG.getConstant(255ULL<<40, VT)); 5633 Tmp5 = DAG.getNode(ISD::AND, VT, Tmp5, DAG.getConstant(255ULL<<32, VT)); 5634 Tmp4 = DAG.getNode(ISD::AND, VT, Tmp4, DAG.getConstant(255ULL<<24, VT)); 5635 Tmp3 = DAG.getNode(ISD::AND, VT, Tmp3, DAG.getConstant(255ULL<<16, VT)); 5636 Tmp2 = DAG.getNode(ISD::AND, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT)); 5637 Tmp8 = DAG.getNode(ISD::OR, VT, Tmp8, Tmp7); 5638 Tmp6 = DAG.getNode(ISD::OR, VT, Tmp6, Tmp5); 5639 Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp3); 5640 Tmp2 = DAG.getNode(ISD::OR, VT, Tmp2, Tmp1); 5641 Tmp8 = DAG.getNode(ISD::OR, VT, Tmp8, Tmp6); 5642 Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp2); 5643 return DAG.getNode(ISD::OR, VT, Tmp8, Tmp4); 5644 } 5645} 5646 5647/// ExpandBitCount - Expand the specified bitcount instruction into operations. 5648/// 5649SDOperand SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDOperand Op) { 5650 switch (Opc) { 5651 default: assert(0 && "Cannot expand this yet!"); 5652 case ISD::CTPOP: { 5653 static const uint64_t mask[6] = { 5654 0x5555555555555555ULL, 0x3333333333333333ULL, 5655 0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL, 5656 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL 5657 }; 5658 MVT::ValueType VT = Op.getValueType(); 5659 MVT::ValueType ShVT = TLI.getShiftAmountTy(); 5660 unsigned len = MVT::getSizeInBits(VT); 5661 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 5662 //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8]) 5663 SDOperand Tmp2 = DAG.getConstant(mask[i], VT); 5664 SDOperand Tmp3 = DAG.getConstant(1ULL << i, ShVT); 5665 Op = DAG.getNode(ISD::ADD, VT, DAG.getNode(ISD::AND, VT, Op, Tmp2), 5666 DAG.getNode(ISD::AND, VT, 5667 DAG.getNode(ISD::SRL, VT, Op, Tmp3),Tmp2)); 5668 } 5669 return Op; 5670 } 5671 case ISD::CTLZ: { 5672 // for now, we do this: 5673 // x = x | (x >> 1); 5674 // x = x | (x >> 2); 5675 // ... 5676 // x = x | (x >>16); 5677 // x = x | (x >>32); // for 64-bit input 5678 // return popcount(~x); 5679 // 5680 // but see also: http://www.hackersdelight.org/HDcode/nlz.cc 5681 MVT::ValueType VT = Op.getValueType(); 5682 MVT::ValueType ShVT = TLI.getShiftAmountTy(); 5683 unsigned len = MVT::getSizeInBits(VT); 5684 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 5685 SDOperand Tmp3 = DAG.getConstant(1ULL << i, ShVT); 5686 Op = DAG.getNode(ISD::OR, VT, Op, DAG.getNode(ISD::SRL, VT, Op, Tmp3)); 5687 } 5688 Op = DAG.getNode(ISD::XOR, VT, Op, DAG.getConstant(~0ULL, VT)); 5689 return DAG.getNode(ISD::CTPOP, VT, Op); 5690 } 5691 case ISD::CTTZ: { 5692 // for now, we use: { return popcount(~x & (x - 1)); } 5693 // unless the target has ctlz but not ctpop, in which case we use: 5694 // { return 32 - nlz(~x & (x-1)); } 5695 // see also http://www.hackersdelight.org/HDcode/ntz.cc 5696 MVT::ValueType VT = Op.getValueType(); 5697 SDOperand Tmp2 = DAG.getConstant(~0ULL, VT); 5698 SDOperand Tmp3 = DAG.getNode(ISD::AND, VT, 5699 DAG.getNode(ISD::XOR, VT, Op, Tmp2), 5700 DAG.getNode(ISD::SUB, VT, Op, DAG.getConstant(1, VT))); 5701 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 5702 if (!TLI.isOperationLegal(ISD::CTPOP, VT) && 5703 TLI.isOperationLegal(ISD::CTLZ, VT)) 5704 return DAG.getNode(ISD::SUB, VT, 5705 DAG.getConstant(MVT::getSizeInBits(VT), VT), 5706 DAG.getNode(ISD::CTLZ, VT, Tmp3)); 5707 return DAG.getNode(ISD::CTPOP, VT, Tmp3); 5708 } 5709 } 5710} 5711 5712/// ExpandOp - Expand the specified SDOperand into its two component pieces 5713/// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, the 5714/// LegalizeNodes map is filled in for any results that are not expanded, the 5715/// ExpandedNodes map is filled in for any results that are expanded, and the 5716/// Lo/Hi values are returned. 5717void SelectionDAGLegalize::ExpandOp(SDOperand Op, SDOperand &Lo, SDOperand &Hi){ 5718 MVT::ValueType VT = Op.getValueType(); 5719 MVT::ValueType NVT = TLI.getTypeToTransformTo(VT); 5720 SDNode *Node = Op.Val; 5721 assert(getTypeAction(VT) == Expand && "Not an expanded type!"); 5722 assert(((MVT::isInteger(NVT) && NVT < VT) || MVT::isFloatingPoint(VT) || 5723 MVT::isVector(VT)) && 5724 "Cannot expand to FP value or to larger int value!"); 5725 5726 // See if we already expanded it. 5727 DenseMap<SDOperand, std::pair<SDOperand, SDOperand> >::iterator I 5728 = ExpandedNodes.find(Op); 5729 if (I != ExpandedNodes.end()) { 5730 Lo = I->second.first; 5731 Hi = I->second.second; 5732 return; 5733 } 5734 5735 switch (Node->getOpcode()) { 5736 case ISD::CopyFromReg: 5737 assert(0 && "CopyFromReg must be legal!"); 5738 case ISD::FP_ROUND_INREG: 5739 if (VT == MVT::ppcf128 && 5740 TLI.getOperationAction(ISD::FP_ROUND_INREG, VT) == 5741 TargetLowering::Custom) { 5742 SDOperand SrcLo, SrcHi, Src; 5743 ExpandOp(Op.getOperand(0), SrcLo, SrcHi); 5744 Src = DAG.getNode(ISD::BUILD_PAIR, VT, SrcLo, SrcHi); 5745 SDOperand Result = TLI.LowerOperation( 5746 DAG.getNode(ISD::FP_ROUND_INREG, VT, Src, Op.getOperand(1)), DAG); 5747 assert(Result.Val->getOpcode() == ISD::BUILD_PAIR); 5748 Lo = Result.Val->getOperand(0); 5749 Hi = Result.Val->getOperand(1); 5750 break; 5751 } 5752 // fall through 5753 default: 5754#ifndef NDEBUG 5755 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 5756#endif 5757 assert(0 && "Do not know how to expand this operator!"); 5758 abort(); 5759 case ISD::EXTRACT_ELEMENT: 5760 ExpandOp(Node->getOperand(0), Lo, Hi); 5761 if (cast<ConstantSDNode>(Node->getOperand(1))->getValue()) 5762 return ExpandOp(Hi, Lo, Hi); 5763 return ExpandOp(Lo, Lo, Hi); 5764 case ISD::EXTRACT_VECTOR_ELT: 5765 assert(VT==MVT::i64 && "Do not know how to expand this operator!"); 5766 // ExpandEXTRACT_VECTOR_ELT tolerates invalid result types. 5767 Lo = ExpandEXTRACT_VECTOR_ELT(Op); 5768 return ExpandOp(Lo, Lo, Hi); 5769 case ISD::UNDEF: 5770 NVT = TLI.getTypeToExpandTo(VT); 5771 Lo = DAG.getNode(ISD::UNDEF, NVT); 5772 Hi = DAG.getNode(ISD::UNDEF, NVT); 5773 break; 5774 case ISD::Constant: { 5775 uint64_t Cst = cast<ConstantSDNode>(Node)->getValue(); 5776 Lo = DAG.getConstant(Cst, NVT); 5777 Hi = DAG.getConstant(Cst >> MVT::getSizeInBits(NVT), NVT); 5778 break; 5779 } 5780 case ISD::ConstantFP: { 5781 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 5782 if (CFP->getValueType(0) == MVT::ppcf128) { 5783 APInt api = CFP->getValueAPF().convertToAPInt(); 5784 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &api.getRawData()[1])), 5785 MVT::f64); 5786 Hi = DAG.getConstantFP(APFloat(APInt(64, 1, &api.getRawData()[0])), 5787 MVT::f64); 5788 break; 5789 } 5790 Lo = ExpandConstantFP(CFP, false, DAG, TLI); 5791 if (getTypeAction(Lo.getValueType()) == Expand) 5792 ExpandOp(Lo, Lo, Hi); 5793 break; 5794 } 5795 case ISD::BUILD_PAIR: 5796 // Return the operands. 5797 Lo = Node->getOperand(0); 5798 Hi = Node->getOperand(1); 5799 break; 5800 5801 case ISD::MERGE_VALUES: 5802 if (Node->getNumValues() == 1) { 5803 ExpandOp(Op.getOperand(0), Lo, Hi); 5804 break; 5805 } 5806 // FIXME: For now only expand i64,chain = MERGE_VALUES (x, y) 5807 assert(Op.ResNo == 0 && Node->getNumValues() == 2 && 5808 Op.getValue(1).getValueType() == MVT::Other && 5809 "unhandled MERGE_VALUES"); 5810 ExpandOp(Op.getOperand(0), Lo, Hi); 5811 // Remember that we legalized the chain. 5812 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Op.getOperand(1))); 5813 break; 5814 5815 case ISD::SIGN_EXTEND_INREG: 5816 ExpandOp(Node->getOperand(0), Lo, Hi); 5817 // sext_inreg the low part if needed. 5818 Lo = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Lo, Node->getOperand(1)); 5819 5820 // The high part gets the sign extension from the lo-part. This handles 5821 // things like sextinreg V:i64 from i8. 5822 Hi = DAG.getNode(ISD::SRA, NVT, Lo, 5823 DAG.getConstant(MVT::getSizeInBits(NVT)-1, 5824 TLI.getShiftAmountTy())); 5825 break; 5826 5827 case ISD::BSWAP: { 5828 ExpandOp(Node->getOperand(0), Lo, Hi); 5829 SDOperand TempLo = DAG.getNode(ISD::BSWAP, NVT, Hi); 5830 Hi = DAG.getNode(ISD::BSWAP, NVT, Lo); 5831 Lo = TempLo; 5832 break; 5833 } 5834 5835 case ISD::CTPOP: 5836 ExpandOp(Node->getOperand(0), Lo, Hi); 5837 Lo = DAG.getNode(ISD::ADD, NVT, // ctpop(HL) -> ctpop(H)+ctpop(L) 5838 DAG.getNode(ISD::CTPOP, NVT, Lo), 5839 DAG.getNode(ISD::CTPOP, NVT, Hi)); 5840 Hi = DAG.getConstant(0, NVT); 5841 break; 5842 5843 case ISD::CTLZ: { 5844 // ctlz (HL) -> ctlz(H) != 32 ? ctlz(H) : (ctlz(L)+32) 5845 ExpandOp(Node->getOperand(0), Lo, Hi); 5846 SDOperand BitsC = DAG.getConstant(MVT::getSizeInBits(NVT), NVT); 5847 SDOperand HLZ = DAG.getNode(ISD::CTLZ, NVT, Hi); 5848 SDOperand TopNotZero = DAG.getSetCC(TLI.getSetCCResultTy(), HLZ, BitsC, 5849 ISD::SETNE); 5850 SDOperand LowPart = DAG.getNode(ISD::CTLZ, NVT, Lo); 5851 LowPart = DAG.getNode(ISD::ADD, NVT, LowPart, BitsC); 5852 5853 Lo = DAG.getNode(ISD::SELECT, NVT, TopNotZero, HLZ, LowPart); 5854 Hi = DAG.getConstant(0, NVT); 5855 break; 5856 } 5857 5858 case ISD::CTTZ: { 5859 // cttz (HL) -> cttz(L) != 32 ? cttz(L) : (cttz(H)+32) 5860 ExpandOp(Node->getOperand(0), Lo, Hi); 5861 SDOperand BitsC = DAG.getConstant(MVT::getSizeInBits(NVT), NVT); 5862 SDOperand LTZ = DAG.getNode(ISD::CTTZ, NVT, Lo); 5863 SDOperand BotNotZero = DAG.getSetCC(TLI.getSetCCResultTy(), LTZ, BitsC, 5864 ISD::SETNE); 5865 SDOperand HiPart = DAG.getNode(ISD::CTTZ, NVT, Hi); 5866 HiPart = DAG.getNode(ISD::ADD, NVT, HiPart, BitsC); 5867 5868 Lo = DAG.getNode(ISD::SELECT, NVT, BotNotZero, LTZ, HiPart); 5869 Hi = DAG.getConstant(0, NVT); 5870 break; 5871 } 5872 5873 case ISD::VAARG: { 5874 SDOperand Ch = Node->getOperand(0); // Legalize the chain. 5875 SDOperand Ptr = Node->getOperand(1); // Legalize the pointer. 5876 Lo = DAG.getVAArg(NVT, Ch, Ptr, Node->getOperand(2)); 5877 Hi = DAG.getVAArg(NVT, Lo.getValue(1), Ptr, Node->getOperand(2)); 5878 5879 // Remember that we legalized the chain. 5880 Hi = LegalizeOp(Hi); 5881 AddLegalizedOperand(Op.getValue(1), Hi.getValue(1)); 5882 if (TLI.isBigEndian()) 5883 std::swap(Lo, Hi); 5884 break; 5885 } 5886 5887 case ISD::LOAD: { 5888 LoadSDNode *LD = cast<LoadSDNode>(Node); 5889 SDOperand Ch = LD->getChain(); // Legalize the chain. 5890 SDOperand Ptr = LD->getBasePtr(); // Legalize the pointer. 5891 ISD::LoadExtType ExtType = LD->getExtensionType(); 5892 int SVOffset = LD->getSrcValueOffset(); 5893 unsigned Alignment = LD->getAlignment(); 5894 bool isVolatile = LD->isVolatile(); 5895 5896 if (ExtType == ISD::NON_EXTLOAD) { 5897 Lo = DAG.getLoad(NVT, Ch, Ptr, LD->getSrcValue(), SVOffset, 5898 isVolatile, Alignment); 5899 if (VT == MVT::f32 || VT == MVT::f64) { 5900 // f32->i32 or f64->i64 one to one expansion. 5901 // Remember that we legalized the chain. 5902 AddLegalizedOperand(SDOperand(Node, 1), LegalizeOp(Lo.getValue(1))); 5903 // Recursively expand the new load. 5904 if (getTypeAction(NVT) == Expand) 5905 ExpandOp(Lo, Lo, Hi); 5906 break; 5907 } 5908 5909 // Increment the pointer to the other half. 5910 unsigned IncrementSize = MVT::getSizeInBits(Lo.getValueType())/8; 5911 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 5912 DAG.getIntPtrConstant(IncrementSize)); 5913 SVOffset += IncrementSize; 5914 Alignment = MinAlign(Alignment, IncrementSize); 5915 Hi = DAG.getLoad(NVT, Ch, Ptr, LD->getSrcValue(), SVOffset, 5916 isVolatile, Alignment); 5917 5918 // Build a factor node to remember that this load is independent of the 5919 // other one. 5920 SDOperand TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 5921 Hi.getValue(1)); 5922 5923 // Remember that we legalized the chain. 5924 AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF)); 5925 if (TLI.isBigEndian()) 5926 std::swap(Lo, Hi); 5927 } else { 5928 MVT::ValueType EVT = LD->getMemoryVT(); 5929 5930 if ((VT == MVT::f64 && EVT == MVT::f32) || 5931 (VT == MVT::ppcf128 && (EVT==MVT::f64 || EVT==MVT::f32))) { 5932 // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND 5933 SDOperand Load = DAG.getLoad(EVT, Ch, Ptr, LD->getSrcValue(), 5934 SVOffset, isVolatile, Alignment); 5935 // Remember that we legalized the chain. 5936 AddLegalizedOperand(SDOperand(Node, 1), LegalizeOp(Load.getValue(1))); 5937 ExpandOp(DAG.getNode(ISD::FP_EXTEND, VT, Load), Lo, Hi); 5938 break; 5939 } 5940 5941 if (EVT == NVT) 5942 Lo = DAG.getLoad(NVT, Ch, Ptr, LD->getSrcValue(), 5943 SVOffset, isVolatile, Alignment); 5944 else 5945 Lo = DAG.getExtLoad(ExtType, NVT, Ch, Ptr, LD->getSrcValue(), 5946 SVOffset, EVT, isVolatile, 5947 Alignment); 5948 5949 // Remember that we legalized the chain. 5950 AddLegalizedOperand(SDOperand(Node, 1), LegalizeOp(Lo.getValue(1))); 5951 5952 if (ExtType == ISD::SEXTLOAD) { 5953 // The high part is obtained by SRA'ing all but one of the bits of the 5954 // lo part. 5955 unsigned LoSize = MVT::getSizeInBits(Lo.getValueType()); 5956 Hi = DAG.getNode(ISD::SRA, NVT, Lo, 5957 DAG.getConstant(LoSize-1, TLI.getShiftAmountTy())); 5958 } else if (ExtType == ISD::ZEXTLOAD) { 5959 // The high part is just a zero. 5960 Hi = DAG.getConstant(0, NVT); 5961 } else /* if (ExtType == ISD::EXTLOAD) */ { 5962 // The high part is undefined. 5963 Hi = DAG.getNode(ISD::UNDEF, NVT); 5964 } 5965 } 5966 break; 5967 } 5968 case ISD::AND: 5969 case ISD::OR: 5970 case ISD::XOR: { // Simple logical operators -> two trivial pieces. 5971 SDOperand LL, LH, RL, RH; 5972 ExpandOp(Node->getOperand(0), LL, LH); 5973 ExpandOp(Node->getOperand(1), RL, RH); 5974 Lo = DAG.getNode(Node->getOpcode(), NVT, LL, RL); 5975 Hi = DAG.getNode(Node->getOpcode(), NVT, LH, RH); 5976 break; 5977 } 5978 case ISD::SELECT: { 5979 SDOperand LL, LH, RL, RH; 5980 ExpandOp(Node->getOperand(1), LL, LH); 5981 ExpandOp(Node->getOperand(2), RL, RH); 5982 if (getTypeAction(NVT) == Expand) 5983 NVT = TLI.getTypeToExpandTo(NVT); 5984 Lo = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), LL, RL); 5985 if (VT != MVT::f32) 5986 Hi = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), LH, RH); 5987 break; 5988 } 5989 case ISD::SELECT_CC: { 5990 SDOperand TL, TH, FL, FH; 5991 ExpandOp(Node->getOperand(2), TL, TH); 5992 ExpandOp(Node->getOperand(3), FL, FH); 5993 if (getTypeAction(NVT) == Expand) 5994 NVT = TLI.getTypeToExpandTo(NVT); 5995 Lo = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0), 5996 Node->getOperand(1), TL, FL, Node->getOperand(4)); 5997 if (VT != MVT::f32) 5998 Hi = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0), 5999 Node->getOperand(1), TH, FH, Node->getOperand(4)); 6000 break; 6001 } 6002 case ISD::ANY_EXTEND: 6003 // The low part is any extension of the input (which degenerates to a copy). 6004 Lo = DAG.getNode(ISD::ANY_EXTEND, NVT, Node->getOperand(0)); 6005 // The high part is undefined. 6006 Hi = DAG.getNode(ISD::UNDEF, NVT); 6007 break; 6008 case ISD::SIGN_EXTEND: { 6009 // The low part is just a sign extension of the input (which degenerates to 6010 // a copy). 6011 Lo = DAG.getNode(ISD::SIGN_EXTEND, NVT, Node->getOperand(0)); 6012 6013 // The high part is obtained by SRA'ing all but one of the bits of the lo 6014 // part. 6015 unsigned LoSize = MVT::getSizeInBits(Lo.getValueType()); 6016 Hi = DAG.getNode(ISD::SRA, NVT, Lo, 6017 DAG.getConstant(LoSize-1, TLI.getShiftAmountTy())); 6018 break; 6019 } 6020 case ISD::ZERO_EXTEND: 6021 // The low part is just a zero extension of the input (which degenerates to 6022 // a copy). 6023 Lo = DAG.getNode(ISD::ZERO_EXTEND, NVT, Node->getOperand(0)); 6024 6025 // The high part is just a zero. 6026 Hi = DAG.getConstant(0, NVT); 6027 break; 6028 6029 case ISD::TRUNCATE: { 6030 // The input value must be larger than this value. Expand *it*. 6031 SDOperand NewLo; 6032 ExpandOp(Node->getOperand(0), NewLo, Hi); 6033 6034 // The low part is now either the right size, or it is closer. If not the 6035 // right size, make an illegal truncate so we recursively expand it. 6036 if (NewLo.getValueType() != Node->getValueType(0)) 6037 NewLo = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), NewLo); 6038 ExpandOp(NewLo, Lo, Hi); 6039 break; 6040 } 6041 6042 case ISD::BIT_CONVERT: { 6043 SDOperand Tmp; 6044 if (TLI.getOperationAction(ISD::BIT_CONVERT, VT) == TargetLowering::Custom){ 6045 // If the target wants to, allow it to lower this itself. 6046 switch (getTypeAction(Node->getOperand(0).getValueType())) { 6047 case Expand: assert(0 && "cannot expand FP!"); 6048 case Legal: Tmp = LegalizeOp(Node->getOperand(0)); break; 6049 case Promote: Tmp = PromoteOp (Node->getOperand(0)); break; 6050 } 6051 Tmp = TLI.LowerOperation(DAG.getNode(ISD::BIT_CONVERT, VT, Tmp), DAG); 6052 } 6053 6054 // f32 / f64 must be expanded to i32 / i64. 6055 if (VT == MVT::f32 || VT == MVT::f64) { 6056 Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 6057 if (getTypeAction(NVT) == Expand) 6058 ExpandOp(Lo, Lo, Hi); 6059 break; 6060 } 6061 6062 // If source operand will be expanded to the same type as VT, i.e. 6063 // i64 <- f64, i32 <- f32, expand the source operand instead. 6064 MVT::ValueType VT0 = Node->getOperand(0).getValueType(); 6065 if (getTypeAction(VT0) == Expand && TLI.getTypeToTransformTo(VT0) == VT) { 6066 ExpandOp(Node->getOperand(0), Lo, Hi); 6067 break; 6068 } 6069 6070 // Turn this into a load/store pair by default. 6071 if (Tmp.Val == 0) 6072 Tmp = EmitStackConvert(Node->getOperand(0), VT, VT); 6073 6074 ExpandOp(Tmp, Lo, Hi); 6075 break; 6076 } 6077 6078 case ISD::READCYCLECOUNTER: { 6079 assert(TLI.getOperationAction(ISD::READCYCLECOUNTER, VT) == 6080 TargetLowering::Custom && 6081 "Must custom expand ReadCycleCounter"); 6082 SDOperand Tmp = TLI.LowerOperation(Op, DAG); 6083 assert(Tmp.Val && "Node must be custom expanded!"); 6084 ExpandOp(Tmp.getValue(0), Lo, Hi); 6085 AddLegalizedOperand(SDOperand(Node, 1), // Remember we legalized the chain. 6086 LegalizeOp(Tmp.getValue(1))); 6087 break; 6088 } 6089 6090 // These operators cannot be expanded directly, emit them as calls to 6091 // library functions. 6092 case ISD::FP_TO_SINT: { 6093 if (TLI.getOperationAction(ISD::FP_TO_SINT, VT) == TargetLowering::Custom) { 6094 SDOperand Op; 6095 switch (getTypeAction(Node->getOperand(0).getValueType())) { 6096 case Expand: assert(0 && "cannot expand FP!"); 6097 case Legal: Op = LegalizeOp(Node->getOperand(0)); break; 6098 case Promote: Op = PromoteOp (Node->getOperand(0)); break; 6099 } 6100 6101 Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_SINT, VT, Op), DAG); 6102 6103 // Now that the custom expander is done, expand the result, which is still 6104 // VT. 6105 if (Op.Val) { 6106 ExpandOp(Op, Lo, Hi); 6107 break; 6108 } 6109 } 6110 6111 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 6112 if (Node->getOperand(0).getValueType() == MVT::f32) 6113 LC = RTLIB::FPTOSINT_F32_I64; 6114 else if (Node->getOperand(0).getValueType() == MVT::f64) 6115 LC = RTLIB::FPTOSINT_F64_I64; 6116 else if (Node->getOperand(0).getValueType() == MVT::f80) 6117 LC = RTLIB::FPTOSINT_F80_I64; 6118 else if (Node->getOperand(0).getValueType() == MVT::ppcf128) 6119 LC = RTLIB::FPTOSINT_PPCF128_I64; 6120 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, 6121 false/*sign irrelevant*/, Hi); 6122 break; 6123 } 6124 6125 case ISD::FP_TO_UINT: { 6126 if (TLI.getOperationAction(ISD::FP_TO_UINT, VT) == TargetLowering::Custom) { 6127 SDOperand Op; 6128 switch (getTypeAction(Node->getOperand(0).getValueType())) { 6129 case Expand: assert(0 && "cannot expand FP!"); 6130 case Legal: Op = LegalizeOp(Node->getOperand(0)); break; 6131 case Promote: Op = PromoteOp (Node->getOperand(0)); break; 6132 } 6133 6134 Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_UINT, VT, Op), DAG); 6135 6136 // Now that the custom expander is done, expand the result. 6137 if (Op.Val) { 6138 ExpandOp(Op, Lo, Hi); 6139 break; 6140 } 6141 } 6142 6143 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 6144 if (Node->getOperand(0).getValueType() == MVT::f32) 6145 LC = RTLIB::FPTOUINT_F32_I64; 6146 else if (Node->getOperand(0).getValueType() == MVT::f64) 6147 LC = RTLIB::FPTOUINT_F64_I64; 6148 else if (Node->getOperand(0).getValueType() == MVT::f80) 6149 LC = RTLIB::FPTOUINT_F80_I64; 6150 else if (Node->getOperand(0).getValueType() == MVT::ppcf128) 6151 LC = RTLIB::FPTOUINT_PPCF128_I64; 6152 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, 6153 false/*sign irrelevant*/, Hi); 6154 break; 6155 } 6156 6157 case ISD::SHL: { 6158 // If the target wants custom lowering, do so. 6159 SDOperand ShiftAmt = LegalizeOp(Node->getOperand(1)); 6160 if (TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Custom) { 6161 SDOperand Op = DAG.getNode(ISD::SHL, VT, Node->getOperand(0), ShiftAmt); 6162 Op = TLI.LowerOperation(Op, DAG); 6163 if (Op.Val) { 6164 // Now that the custom expander is done, expand the result, which is 6165 // still VT. 6166 ExpandOp(Op, Lo, Hi); 6167 break; 6168 } 6169 } 6170 6171 // If ADDC/ADDE are supported and if the shift amount is a constant 1, emit 6172 // this X << 1 as X+X. 6173 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(ShiftAmt)) { 6174 if (ShAmt->getValue() == 1 && TLI.isOperationLegal(ISD::ADDC, NVT) && 6175 TLI.isOperationLegal(ISD::ADDE, NVT)) { 6176 SDOperand LoOps[2], HiOps[3]; 6177 ExpandOp(Node->getOperand(0), LoOps[0], HiOps[0]); 6178 SDVTList VTList = DAG.getVTList(LoOps[0].getValueType(), MVT::Flag); 6179 LoOps[1] = LoOps[0]; 6180 Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); 6181 6182 HiOps[1] = HiOps[0]; 6183 HiOps[2] = Lo.getValue(1); 6184 Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); 6185 break; 6186 } 6187 } 6188 6189 // If we can emit an efficient shift operation, do so now. 6190 if (ExpandShift(ISD::SHL, Node->getOperand(0), ShiftAmt, Lo, Hi)) 6191 break; 6192 6193 // If this target supports SHL_PARTS, use it. 6194 TargetLowering::LegalizeAction Action = 6195 TLI.getOperationAction(ISD::SHL_PARTS, NVT); 6196 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 6197 Action == TargetLowering::Custom) { 6198 ExpandShiftParts(ISD::SHL_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi); 6199 break; 6200 } 6201 6202 // Otherwise, emit a libcall. 6203 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SHL_I64), Node, 6204 false/*left shift=unsigned*/, Hi); 6205 break; 6206 } 6207 6208 case ISD::SRA: { 6209 // If the target wants custom lowering, do so. 6210 SDOperand ShiftAmt = LegalizeOp(Node->getOperand(1)); 6211 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Custom) { 6212 SDOperand Op = DAG.getNode(ISD::SRA, VT, Node->getOperand(0), ShiftAmt); 6213 Op = TLI.LowerOperation(Op, DAG); 6214 if (Op.Val) { 6215 // Now that the custom expander is done, expand the result, which is 6216 // still VT. 6217 ExpandOp(Op, Lo, Hi); 6218 break; 6219 } 6220 } 6221 6222 // If we can emit an efficient shift operation, do so now. 6223 if (ExpandShift(ISD::SRA, Node->getOperand(0), ShiftAmt, Lo, Hi)) 6224 break; 6225 6226 // If this target supports SRA_PARTS, use it. 6227 TargetLowering::LegalizeAction Action = 6228 TLI.getOperationAction(ISD::SRA_PARTS, NVT); 6229 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 6230 Action == TargetLowering::Custom) { 6231 ExpandShiftParts(ISD::SRA_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi); 6232 break; 6233 } 6234 6235 // Otherwise, emit a libcall. 6236 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SRA_I64), Node, 6237 true/*ashr is signed*/, Hi); 6238 break; 6239 } 6240 6241 case ISD::SRL: { 6242 // If the target wants custom lowering, do so. 6243 SDOperand ShiftAmt = LegalizeOp(Node->getOperand(1)); 6244 if (TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Custom) { 6245 SDOperand Op = DAG.getNode(ISD::SRL, VT, Node->getOperand(0), ShiftAmt); 6246 Op = TLI.LowerOperation(Op, DAG); 6247 if (Op.Val) { 6248 // Now that the custom expander is done, expand the result, which is 6249 // still VT. 6250 ExpandOp(Op, Lo, Hi); 6251 break; 6252 } 6253 } 6254 6255 // If we can emit an efficient shift operation, do so now. 6256 if (ExpandShift(ISD::SRL, Node->getOperand(0), ShiftAmt, Lo, Hi)) 6257 break; 6258 6259 // If this target supports SRL_PARTS, use it. 6260 TargetLowering::LegalizeAction Action = 6261 TLI.getOperationAction(ISD::SRL_PARTS, NVT); 6262 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 6263 Action == TargetLowering::Custom) { 6264 ExpandShiftParts(ISD::SRL_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi); 6265 break; 6266 } 6267 6268 // Otherwise, emit a libcall. 6269 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SRL_I64), Node, 6270 false/*lshr is unsigned*/, Hi); 6271 break; 6272 } 6273 6274 case ISD::ADD: 6275 case ISD::SUB: { 6276 // If the target wants to custom expand this, let them. 6277 if (TLI.getOperationAction(Node->getOpcode(), VT) == 6278 TargetLowering::Custom) { 6279 Op = TLI.LowerOperation(Op, DAG); 6280 if (Op.Val) { 6281 ExpandOp(Op, Lo, Hi); 6282 break; 6283 } 6284 } 6285 6286 // Expand the subcomponents. 6287 SDOperand LHSL, LHSH, RHSL, RHSH; 6288 ExpandOp(Node->getOperand(0), LHSL, LHSH); 6289 ExpandOp(Node->getOperand(1), RHSL, RHSH); 6290 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 6291 SDOperand LoOps[2], HiOps[3]; 6292 LoOps[0] = LHSL; 6293 LoOps[1] = RHSL; 6294 HiOps[0] = LHSH; 6295 HiOps[1] = RHSH; 6296 if (Node->getOpcode() == ISD::ADD) { 6297 Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); 6298 HiOps[2] = Lo.getValue(1); 6299 Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); 6300 } else { 6301 Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2); 6302 HiOps[2] = Lo.getValue(1); 6303 Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3); 6304 } 6305 break; 6306 } 6307 6308 case ISD::ADDC: 6309 case ISD::SUBC: { 6310 // Expand the subcomponents. 6311 SDOperand LHSL, LHSH, RHSL, RHSH; 6312 ExpandOp(Node->getOperand(0), LHSL, LHSH); 6313 ExpandOp(Node->getOperand(1), RHSL, RHSH); 6314 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 6315 SDOperand LoOps[2] = { LHSL, RHSL }; 6316 SDOperand HiOps[3] = { LHSH, RHSH }; 6317 6318 if (Node->getOpcode() == ISD::ADDC) { 6319 Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); 6320 HiOps[2] = Lo.getValue(1); 6321 Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); 6322 } else { 6323 Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2); 6324 HiOps[2] = Lo.getValue(1); 6325 Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3); 6326 } 6327 // Remember that we legalized the flag. 6328 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1))); 6329 break; 6330 } 6331 case ISD::ADDE: 6332 case ISD::SUBE: { 6333 // Expand the subcomponents. 6334 SDOperand LHSL, LHSH, RHSL, RHSH; 6335 ExpandOp(Node->getOperand(0), LHSL, LHSH); 6336 ExpandOp(Node->getOperand(1), RHSL, RHSH); 6337 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 6338 SDOperand LoOps[3] = { LHSL, RHSL, Node->getOperand(2) }; 6339 SDOperand HiOps[3] = { LHSH, RHSH }; 6340 6341 Lo = DAG.getNode(Node->getOpcode(), VTList, LoOps, 3); 6342 HiOps[2] = Lo.getValue(1); 6343 Hi = DAG.getNode(Node->getOpcode(), VTList, HiOps, 3); 6344 6345 // Remember that we legalized the flag. 6346 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1))); 6347 break; 6348 } 6349 case ISD::MUL: { 6350 // If the target wants to custom expand this, let them. 6351 if (TLI.getOperationAction(ISD::MUL, VT) == TargetLowering::Custom) { 6352 SDOperand New = TLI.LowerOperation(Op, DAG); 6353 if (New.Val) { 6354 ExpandOp(New, Lo, Hi); 6355 break; 6356 } 6357 } 6358 6359 bool HasMULHS = TLI.isOperationLegal(ISD::MULHS, NVT); 6360 bool HasMULHU = TLI.isOperationLegal(ISD::MULHU, NVT); 6361 bool HasSMUL_LOHI = TLI.isOperationLegal(ISD::SMUL_LOHI, NVT); 6362 bool HasUMUL_LOHI = TLI.isOperationLegal(ISD::UMUL_LOHI, NVT); 6363 if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) { 6364 SDOperand LL, LH, RL, RH; 6365 ExpandOp(Node->getOperand(0), LL, LH); 6366 ExpandOp(Node->getOperand(1), RL, RH); 6367 unsigned OuterBitSize = Op.getValueSizeInBits(); 6368 unsigned InnerBitSize = RH.getValueSizeInBits(); 6369 unsigned LHSSB = DAG.ComputeNumSignBits(Op.getOperand(0)); 6370 unsigned RHSSB = DAG.ComputeNumSignBits(Op.getOperand(1)); 6371 if (DAG.MaskedValueIsZero(Op.getOperand(0), 6372 APInt::getHighBitsSet(OuterBitSize, LHSSB)) && 6373 DAG.MaskedValueIsZero(Op.getOperand(1), 6374 APInt::getHighBitsSet(OuterBitSize, RHSSB))) { 6375 // The inputs are both zero-extended. 6376 if (HasUMUL_LOHI) { 6377 // We can emit a umul_lohi. 6378 Lo = DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL); 6379 Hi = SDOperand(Lo.Val, 1); 6380 break; 6381 } 6382 if (HasMULHU) { 6383 // We can emit a mulhu+mul. 6384 Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); 6385 Hi = DAG.getNode(ISD::MULHU, NVT, LL, RL); 6386 break; 6387 } 6388 } 6389 if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) { 6390 // The input values are both sign-extended. 6391 if (HasSMUL_LOHI) { 6392 // We can emit a smul_lohi. 6393 Lo = DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL); 6394 Hi = SDOperand(Lo.Val, 1); 6395 break; 6396 } 6397 if (HasMULHS) { 6398 // We can emit a mulhs+mul. 6399 Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); 6400 Hi = DAG.getNode(ISD::MULHS, NVT, LL, RL); 6401 break; 6402 } 6403 } 6404 if (HasUMUL_LOHI) { 6405 // Lo,Hi = umul LHS, RHS. 6406 SDOperand UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, 6407 DAG.getVTList(NVT, NVT), LL, RL); 6408 Lo = UMulLOHI; 6409 Hi = UMulLOHI.getValue(1); 6410 RH = DAG.getNode(ISD::MUL, NVT, LL, RH); 6411 LH = DAG.getNode(ISD::MUL, NVT, LH, RL); 6412 Hi = DAG.getNode(ISD::ADD, NVT, Hi, RH); 6413 Hi = DAG.getNode(ISD::ADD, NVT, Hi, LH); 6414 break; 6415 } 6416 if (HasMULHU) { 6417 Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); 6418 Hi = DAG.getNode(ISD::MULHU, NVT, LL, RL); 6419 RH = DAG.getNode(ISD::MUL, NVT, LL, RH); 6420 LH = DAG.getNode(ISD::MUL, NVT, LH, RL); 6421 Hi = DAG.getNode(ISD::ADD, NVT, Hi, RH); 6422 Hi = DAG.getNode(ISD::ADD, NVT, Hi, LH); 6423 break; 6424 } 6425 } 6426 6427 // If nothing else, we can make a libcall. 6428 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::MUL_I64), Node, 6429 false/*sign irrelevant*/, Hi); 6430 break; 6431 } 6432 case ISD::SDIV: 6433 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SDIV_I64), Node, true, Hi); 6434 break; 6435 case ISD::UDIV: 6436 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::UDIV_I64), Node, true, Hi); 6437 break; 6438 case ISD::SREM: 6439 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SREM_I64), Node, true, Hi); 6440 break; 6441 case ISD::UREM: 6442 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::UREM_I64), Node, true, Hi); 6443 break; 6444 6445 case ISD::FADD: 6446 Lo = ExpandLibCall(TLI.getLibcallName(GetFPLibCall(VT, RTLIB::ADD_F32, 6447 RTLIB::ADD_F64, 6448 RTLIB::ADD_F80, 6449 RTLIB::ADD_PPCF128)), 6450 Node, false, Hi); 6451 break; 6452 case ISD::FSUB: 6453 Lo = ExpandLibCall(TLI.getLibcallName(GetFPLibCall(VT, RTLIB::SUB_F32, 6454 RTLIB::SUB_F64, 6455 RTLIB::SUB_F80, 6456 RTLIB::SUB_PPCF128)), 6457 Node, false, Hi); 6458 break; 6459 case ISD::FMUL: 6460 Lo = ExpandLibCall(TLI.getLibcallName(GetFPLibCall(VT, RTLIB::MUL_F32, 6461 RTLIB::MUL_F64, 6462 RTLIB::MUL_F80, 6463 RTLIB::MUL_PPCF128)), 6464 Node, false, Hi); 6465 break; 6466 case ISD::FDIV: 6467 Lo = ExpandLibCall(TLI.getLibcallName(GetFPLibCall(VT, RTLIB::DIV_F32, 6468 RTLIB::DIV_F64, 6469 RTLIB::DIV_F80, 6470 RTLIB::DIV_PPCF128)), 6471 Node, false, Hi); 6472 break; 6473 case ISD::FP_EXTEND: 6474 if (VT == MVT::ppcf128) { 6475 assert(Node->getOperand(0).getValueType()==MVT::f32 || 6476 Node->getOperand(0).getValueType()==MVT::f64); 6477 const uint64_t zero = 0; 6478 if (Node->getOperand(0).getValueType()==MVT::f32) 6479 Hi = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Node->getOperand(0)); 6480 else 6481 Hi = Node->getOperand(0); 6482 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); 6483 break; 6484 } 6485 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::FPEXT_F32_F64), Node, true,Hi); 6486 break; 6487 case ISD::FP_ROUND: 6488 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::FPROUND_F64_F32),Node,true,Hi); 6489 break; 6490 case ISD::FPOWI: 6491 Lo = ExpandLibCall(TLI.getLibcallName(GetFPLibCall(VT, RTLIB::POWI_F32, 6492 RTLIB::POWI_F64, 6493 RTLIB::POWI_F80, 6494 RTLIB::POWI_PPCF128)), 6495 Node, false, Hi); 6496 break; 6497 case ISD::FSQRT: 6498 case ISD::FSIN: 6499 case ISD::FCOS: { 6500 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 6501 switch(Node->getOpcode()) { 6502 case ISD::FSQRT: 6503 LC = GetFPLibCall(VT, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 6504 RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128); 6505 break; 6506 case ISD::FSIN: 6507 LC = GetFPLibCall(VT, RTLIB::SIN_F32, RTLIB::SIN_F64, 6508 RTLIB::SIN_F80, RTLIB::SIN_PPCF128); 6509 break; 6510 case ISD::FCOS: 6511 LC = GetFPLibCall(VT, RTLIB::COS_F32, RTLIB::COS_F64, 6512 RTLIB::COS_F80, RTLIB::COS_PPCF128); 6513 break; 6514 default: assert(0 && "Unreachable!"); 6515 } 6516 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, false, Hi); 6517 break; 6518 } 6519 case ISD::FABS: { 6520 if (VT == MVT::ppcf128) { 6521 SDOperand Tmp; 6522 ExpandOp(Node->getOperand(0), Lo, Tmp); 6523 Hi = DAG.getNode(ISD::FABS, NVT, Tmp); 6524 // lo = hi==fabs(hi) ? lo : -lo; 6525 Lo = DAG.getNode(ISD::SELECT_CC, NVT, Hi, Tmp, 6526 Lo, DAG.getNode(ISD::FNEG, NVT, Lo), 6527 DAG.getCondCode(ISD::SETEQ)); 6528 break; 6529 } 6530 SDOperand Mask = (VT == MVT::f64) 6531 ? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT) 6532 : DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT); 6533 Mask = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask); 6534 Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 6535 Lo = DAG.getNode(ISD::AND, NVT, Lo, Mask); 6536 if (getTypeAction(NVT) == Expand) 6537 ExpandOp(Lo, Lo, Hi); 6538 break; 6539 } 6540 case ISD::FNEG: { 6541 if (VT == MVT::ppcf128) { 6542 ExpandOp(Node->getOperand(0), Lo, Hi); 6543 Lo = DAG.getNode(ISD::FNEG, MVT::f64, Lo); 6544 Hi = DAG.getNode(ISD::FNEG, MVT::f64, Hi); 6545 break; 6546 } 6547 SDOperand Mask = (VT == MVT::f64) 6548 ? DAG.getConstantFP(BitsToDouble(1ULL << 63), VT) 6549 : DAG.getConstantFP(BitsToFloat(1U << 31), VT); 6550 Mask = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask); 6551 Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 6552 Lo = DAG.getNode(ISD::XOR, NVT, Lo, Mask); 6553 if (getTypeAction(NVT) == Expand) 6554 ExpandOp(Lo, Lo, Hi); 6555 break; 6556 } 6557 case ISD::FCOPYSIGN: { 6558 Lo = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI); 6559 if (getTypeAction(NVT) == Expand) 6560 ExpandOp(Lo, Lo, Hi); 6561 break; 6562 } 6563 case ISD::SINT_TO_FP: 6564 case ISD::UINT_TO_FP: { 6565 bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP; 6566 MVT::ValueType SrcVT = Node->getOperand(0).getValueType(); 6567 if (VT == MVT::ppcf128 && SrcVT != MVT::i64) { 6568 static const uint64_t zero = 0; 6569 if (isSigned) { 6570 Hi = LegalizeOp(DAG.getNode(ISD::SINT_TO_FP, MVT::f64, 6571 Node->getOperand(0))); 6572 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); 6573 } else { 6574 static const uint64_t TwoE32[] = { 0x41f0000000000000LL, 0 }; 6575 Hi = LegalizeOp(DAG.getNode(ISD::SINT_TO_FP, MVT::f64, 6576 Node->getOperand(0))); 6577 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); 6578 Hi = DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi); 6579 // X>=0 ? {(f64)x, 0} : {(f64)x, 0} + 2^32 6580 ExpandOp(DAG.getNode(ISD::SELECT_CC, MVT::ppcf128, Node->getOperand(0), 6581 DAG.getConstant(0, MVT::i32), 6582 DAG.getNode(ISD::FADD, MVT::ppcf128, Hi, 6583 DAG.getConstantFP( 6584 APFloat(APInt(128, 2, TwoE32)), 6585 MVT::ppcf128)), 6586 Hi, 6587 DAG.getCondCode(ISD::SETLT)), 6588 Lo, Hi); 6589 } 6590 break; 6591 } 6592 if (VT == MVT::ppcf128 && SrcVT == MVT::i64 && !isSigned) { 6593 // si64->ppcf128 done by libcall, below 6594 static const uint64_t TwoE64[] = { 0x43f0000000000000LL, 0 }; 6595 ExpandOp(DAG.getNode(ISD::SINT_TO_FP, MVT::ppcf128, Node->getOperand(0)), 6596 Lo, Hi); 6597 Hi = DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi); 6598 // x>=0 ? (ppcf128)(i64)x : (ppcf128)(i64)x + 2^64 6599 ExpandOp(DAG.getNode(ISD::SELECT_CC, MVT::ppcf128, Node->getOperand(0), 6600 DAG.getConstant(0, MVT::i64), 6601 DAG.getNode(ISD::FADD, MVT::ppcf128, Hi, 6602 DAG.getConstantFP( 6603 APFloat(APInt(128, 2, TwoE64)), 6604 MVT::ppcf128)), 6605 Hi, 6606 DAG.getCondCode(ISD::SETLT)), 6607 Lo, Hi); 6608 break; 6609 } 6610 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 6611 if (Node->getOperand(0).getValueType() == MVT::i64) { 6612 if (VT == MVT::f32) 6613 LC = isSigned ? RTLIB::SINTTOFP_I64_F32 : RTLIB::UINTTOFP_I64_F32; 6614 else if (VT == MVT::f64) 6615 LC = isSigned ? RTLIB::SINTTOFP_I64_F64 : RTLIB::UINTTOFP_I64_F64; 6616 else if (VT == MVT::f80) { 6617 assert(isSigned); 6618 LC = RTLIB::SINTTOFP_I64_F80; 6619 } 6620 else if (VT == MVT::ppcf128) { 6621 assert(isSigned); 6622 LC = RTLIB::SINTTOFP_I64_PPCF128; 6623 } 6624 } else { 6625 if (VT == MVT::f32) 6626 LC = isSigned ? RTLIB::SINTTOFP_I32_F32 : RTLIB::UINTTOFP_I32_F32; 6627 else 6628 LC = isSigned ? RTLIB::SINTTOFP_I32_F64 : RTLIB::UINTTOFP_I32_F64; 6629 } 6630 6631 // Promote the operand if needed. 6632 if (getTypeAction(SrcVT) == Promote) { 6633 SDOperand Tmp = PromoteOp(Node->getOperand(0)); 6634 Tmp = isSigned 6635 ? DAG.getNode(ISD::SIGN_EXTEND_INREG, Tmp.getValueType(), Tmp, 6636 DAG.getValueType(SrcVT)) 6637 : DAG.getZeroExtendInReg(Tmp, SrcVT); 6638 Node = DAG.UpdateNodeOperands(Op, Tmp).Val; 6639 } 6640 6641 const char *LibCall = TLI.getLibcallName(LC); 6642 if (LibCall) 6643 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, isSigned, Hi); 6644 else { 6645 Lo = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, VT, 6646 Node->getOperand(0)); 6647 if (getTypeAction(Lo.getValueType()) == Expand) 6648 ExpandOp(Lo, Lo, Hi); 6649 } 6650 break; 6651 } 6652 } 6653 6654 // Make sure the resultant values have been legalized themselves, unless this 6655 // is a type that requires multi-step expansion. 6656 if (getTypeAction(NVT) != Expand && NVT != MVT::isVoid) { 6657 Lo = LegalizeOp(Lo); 6658 if (Hi.Val) 6659 // Don't legalize the high part if it is expanded to a single node. 6660 Hi = LegalizeOp(Hi); 6661 } 6662 6663 // Remember in a map if the values will be reused later. 6664 bool isNew = ExpandedNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi))); 6665 assert(isNew && "Value already expanded?!?"); 6666} 6667 6668/// SplitVectorOp - Given an operand of vector type, break it down into 6669/// two smaller values, still of vector type. 6670void SelectionDAGLegalize::SplitVectorOp(SDOperand Op, SDOperand &Lo, 6671 SDOperand &Hi) { 6672 assert(MVT::isVector(Op.getValueType()) && "Cannot split non-vector type!"); 6673 SDNode *Node = Op.Val; 6674 unsigned NumElements = MVT::getVectorNumElements(Op.getValueType()); 6675 assert(NumElements > 1 && "Cannot split a single element vector!"); 6676 6677 MVT::ValueType NewEltVT = MVT::getVectorElementType(Op.getValueType()); 6678 6679 unsigned NewNumElts_Lo = 1 << Log2_32(NumElements-1); 6680 unsigned NewNumElts_Hi = NumElements - NewNumElts_Lo; 6681 6682 MVT::ValueType NewVT_Lo = MVT::getVectorType(NewEltVT, NewNumElts_Lo); 6683 MVT::ValueType NewVT_Hi = MVT::getVectorType(NewEltVT, NewNumElts_Hi); 6684 6685 // See if we already split it. 6686 std::map<SDOperand, std::pair<SDOperand, SDOperand> >::iterator I 6687 = SplitNodes.find(Op); 6688 if (I != SplitNodes.end()) { 6689 Lo = I->second.first; 6690 Hi = I->second.second; 6691 return; 6692 } 6693 6694 switch (Node->getOpcode()) { 6695 default: 6696#ifndef NDEBUG 6697 Node->dump(&DAG); 6698#endif 6699 assert(0 && "Unhandled operation in SplitVectorOp!"); 6700 case ISD::UNDEF: 6701 Lo = DAG.getNode(ISD::UNDEF, NewVT_Lo); 6702 Hi = DAG.getNode(ISD::UNDEF, NewVT_Hi); 6703 break; 6704 case ISD::BUILD_PAIR: 6705 Lo = Node->getOperand(0); 6706 Hi = Node->getOperand(1); 6707 break; 6708 case ISD::INSERT_VECTOR_ELT: { 6709 SplitVectorOp(Node->getOperand(0), Lo, Hi); 6710 unsigned Index = cast<ConstantSDNode>(Node->getOperand(2))->getValue(); 6711 SDOperand ScalarOp = Node->getOperand(1); 6712 if (Index < NewNumElts_Lo) 6713 Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, NewVT_Lo, Lo, ScalarOp, 6714 DAG.getConstant(Index, TLI.getPointerTy())); 6715 else 6716 Hi = DAG.getNode(ISD::INSERT_VECTOR_ELT, NewVT_Hi, Hi, ScalarOp, 6717 DAG.getConstant(Index - NewNumElts_Lo, 6718 TLI.getPointerTy())); 6719 break; 6720 } 6721 case ISD::VECTOR_SHUFFLE: { 6722 // Build the low part. 6723 SDOperand Mask = Node->getOperand(2); 6724 SmallVector<SDOperand, 8> Ops; 6725 MVT::ValueType PtrVT = TLI.getPointerTy(); 6726 6727 // Insert all of the elements from the input that are needed. We use 6728 // buildvector of extractelement here because the input vectors will have 6729 // to be legalized, so this makes the code simpler. 6730 for (unsigned i = 0; i != NewNumElts_Lo; ++i) { 6731 unsigned Idx = cast<ConstantSDNode>(Mask.getOperand(i))->getValue(); 6732 SDOperand InVec = Node->getOperand(0); 6733 if (Idx >= NumElements) { 6734 InVec = Node->getOperand(1); 6735 Idx -= NumElements; 6736 } 6737 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, NewEltVT, InVec, 6738 DAG.getConstant(Idx, PtrVT))); 6739 } 6740 Lo = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Lo, &Ops[0], Ops.size()); 6741 Ops.clear(); 6742 6743 for (unsigned i = NewNumElts_Lo; i != NumElements; ++i) { 6744 unsigned Idx = cast<ConstantSDNode>(Mask.getOperand(i))->getValue(); 6745 SDOperand InVec = Node->getOperand(0); 6746 if (Idx >= NumElements) { 6747 InVec = Node->getOperand(1); 6748 Idx -= NumElements; 6749 } 6750 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, NewEltVT, InVec, 6751 DAG.getConstant(Idx, PtrVT))); 6752 } 6753 Hi = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Lo, &Ops[0], Ops.size()); 6754 break; 6755 } 6756 case ISD::BUILD_VECTOR: { 6757 SmallVector<SDOperand, 8> LoOps(Node->op_begin(), 6758 Node->op_begin()+NewNumElts_Lo); 6759 Lo = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Lo, &LoOps[0], LoOps.size()); 6760 6761 SmallVector<SDOperand, 8> HiOps(Node->op_begin()+NewNumElts_Lo, 6762 Node->op_end()); 6763 Hi = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Hi, &HiOps[0], HiOps.size()); 6764 break; 6765 } 6766 case ISD::CONCAT_VECTORS: { 6767 // FIXME: Handle non-power-of-two vectors? 6768 unsigned NewNumSubvectors = Node->getNumOperands() / 2; 6769 if (NewNumSubvectors == 1) { 6770 Lo = Node->getOperand(0); 6771 Hi = Node->getOperand(1); 6772 } else { 6773 SmallVector<SDOperand, 8> LoOps(Node->op_begin(), 6774 Node->op_begin()+NewNumSubvectors); 6775 Lo = DAG.getNode(ISD::CONCAT_VECTORS, NewVT_Lo, &LoOps[0], LoOps.size()); 6776 6777 SmallVector<SDOperand, 8> HiOps(Node->op_begin()+NewNumSubvectors, 6778 Node->op_end()); 6779 Hi = DAG.getNode(ISD::CONCAT_VECTORS, NewVT_Hi, &HiOps[0], HiOps.size()); 6780 } 6781 break; 6782 } 6783 case ISD::SELECT: { 6784 SDOperand Cond = Node->getOperand(0); 6785 6786 SDOperand LL, LH, RL, RH; 6787 SplitVectorOp(Node->getOperand(1), LL, LH); 6788 SplitVectorOp(Node->getOperand(2), RL, RH); 6789 6790 if (MVT::isVector(Cond.getValueType())) { 6791 // Handle a vector merge. 6792 SDOperand CL, CH; 6793 SplitVectorOp(Cond, CL, CH); 6794 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, CL, LL, RL); 6795 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, CH, LH, RH); 6796 } else { 6797 // Handle a simple select with vector operands. 6798 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, Cond, LL, RL); 6799 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, Cond, LH, RH); 6800 } 6801 break; 6802 } 6803 case ISD::ADD: 6804 case ISD::SUB: 6805 case ISD::MUL: 6806 case ISD::FADD: 6807 case ISD::FSUB: 6808 case ISD::FMUL: 6809 case ISD::SDIV: 6810 case ISD::UDIV: 6811 case ISD::FDIV: 6812 case ISD::FPOW: 6813 case ISD::AND: 6814 case ISD::OR: 6815 case ISD::XOR: 6816 case ISD::UREM: 6817 case ISD::SREM: 6818 case ISD::FREM: { 6819 SDOperand LL, LH, RL, RH; 6820 SplitVectorOp(Node->getOperand(0), LL, LH); 6821 SplitVectorOp(Node->getOperand(1), RL, RH); 6822 6823 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, LL, RL); 6824 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, LH, RH); 6825 break; 6826 } 6827 case ISD::FPOWI: { 6828 SDOperand L, H; 6829 SplitVectorOp(Node->getOperand(0), L, H); 6830 6831 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, L, Node->getOperand(1)); 6832 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, H, Node->getOperand(1)); 6833 break; 6834 } 6835 case ISD::CTTZ: 6836 case ISD::CTLZ: 6837 case ISD::CTPOP: 6838 case ISD::FNEG: 6839 case ISD::FABS: 6840 case ISD::FSQRT: 6841 case ISD::FSIN: 6842 case ISD::FCOS: 6843 case ISD::FP_TO_SINT: 6844 case ISD::FP_TO_UINT: 6845 case ISD::SINT_TO_FP: 6846 case ISD::UINT_TO_FP: { 6847 SDOperand L, H; 6848 SplitVectorOp(Node->getOperand(0), L, H); 6849 6850 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, L); 6851 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, H); 6852 break; 6853 } 6854 case ISD::LOAD: { 6855 LoadSDNode *LD = cast<LoadSDNode>(Node); 6856 SDOperand Ch = LD->getChain(); 6857 SDOperand Ptr = LD->getBasePtr(); 6858 const Value *SV = LD->getSrcValue(); 6859 int SVOffset = LD->getSrcValueOffset(); 6860 unsigned Alignment = LD->getAlignment(); 6861 bool isVolatile = LD->isVolatile(); 6862 6863 Lo = DAG.getLoad(NewVT_Lo, Ch, Ptr, SV, SVOffset, isVolatile, Alignment); 6864 unsigned IncrementSize = NewNumElts_Lo * MVT::getSizeInBits(NewEltVT)/8; 6865 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 6866 DAG.getIntPtrConstant(IncrementSize)); 6867 SVOffset += IncrementSize; 6868 Alignment = MinAlign(Alignment, IncrementSize); 6869 Hi = DAG.getLoad(NewVT_Hi, Ch, Ptr, SV, SVOffset, isVolatile, Alignment); 6870 6871 // Build a factor node to remember that this load is independent of the 6872 // other one. 6873 SDOperand TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 6874 Hi.getValue(1)); 6875 6876 // Remember that we legalized the chain. 6877 AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF)); 6878 break; 6879 } 6880 case ISD::BIT_CONVERT: { 6881 // We know the result is a vector. The input may be either a vector or a 6882 // scalar value. 6883 SDOperand InOp = Node->getOperand(0); 6884 if (!MVT::isVector(InOp.getValueType()) || 6885 MVT::getVectorNumElements(InOp.getValueType()) == 1) { 6886 // The input is a scalar or single-element vector. 6887 // Lower to a store/load so that it can be split. 6888 // FIXME: this could be improved probably. 6889 SDOperand Ptr = DAG.CreateStackTemporary(InOp.getValueType()); 6890 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(Ptr.Val); 6891 6892 SDOperand St = DAG.getStore(DAG.getEntryNode(), 6893 InOp, Ptr, 6894 PseudoSourceValue::getFixedStack(), 6895 FI->getIndex()); 6896 InOp = DAG.getLoad(Op.getValueType(), St, Ptr, 6897 PseudoSourceValue::getFixedStack(), 6898 FI->getIndex()); 6899 } 6900 // Split the vector and convert each of the pieces now. 6901 SplitVectorOp(InOp, Lo, Hi); 6902 Lo = DAG.getNode(ISD::BIT_CONVERT, NewVT_Lo, Lo); 6903 Hi = DAG.getNode(ISD::BIT_CONVERT, NewVT_Hi, Hi); 6904 break; 6905 } 6906 } 6907 6908 // Remember in a map if the values will be reused later. 6909 bool isNew = 6910 SplitNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi))).second; 6911 assert(isNew && "Value already split?!?"); 6912} 6913 6914 6915/// ScalarizeVectorOp - Given an operand of single-element vector type 6916/// (e.g. v1f32), convert it into the equivalent operation that returns a 6917/// scalar (e.g. f32) value. 6918SDOperand SelectionDAGLegalize::ScalarizeVectorOp(SDOperand Op) { 6919 assert(MVT::isVector(Op.getValueType()) && 6920 "Bad ScalarizeVectorOp invocation!"); 6921 SDNode *Node = Op.Val; 6922 MVT::ValueType NewVT = MVT::getVectorElementType(Op.getValueType()); 6923 assert(MVT::getVectorNumElements(Op.getValueType()) == 1); 6924 6925 // See if we already scalarized it. 6926 std::map<SDOperand, SDOperand>::iterator I = ScalarizedNodes.find(Op); 6927 if (I != ScalarizedNodes.end()) return I->second; 6928 6929 SDOperand Result; 6930 switch (Node->getOpcode()) { 6931 default: 6932#ifndef NDEBUG 6933 Node->dump(&DAG); cerr << "\n"; 6934#endif 6935 assert(0 && "Unknown vector operation in ScalarizeVectorOp!"); 6936 case ISD::ADD: 6937 case ISD::FADD: 6938 case ISD::SUB: 6939 case ISD::FSUB: 6940 case ISD::MUL: 6941 case ISD::FMUL: 6942 case ISD::SDIV: 6943 case ISD::UDIV: 6944 case ISD::FDIV: 6945 case ISD::SREM: 6946 case ISD::UREM: 6947 case ISD::FREM: 6948 case ISD::FPOW: 6949 case ISD::AND: 6950 case ISD::OR: 6951 case ISD::XOR: 6952 Result = DAG.getNode(Node->getOpcode(), 6953 NewVT, 6954 ScalarizeVectorOp(Node->getOperand(0)), 6955 ScalarizeVectorOp(Node->getOperand(1))); 6956 break; 6957 case ISD::FNEG: 6958 case ISD::FABS: 6959 case ISD::FSQRT: 6960 case ISD::FSIN: 6961 case ISD::FCOS: 6962 Result = DAG.getNode(Node->getOpcode(), 6963 NewVT, 6964 ScalarizeVectorOp(Node->getOperand(0))); 6965 break; 6966 case ISD::FPOWI: 6967 Result = DAG.getNode(Node->getOpcode(), 6968 NewVT, 6969 ScalarizeVectorOp(Node->getOperand(0)), 6970 Node->getOperand(1)); 6971 break; 6972 case ISD::LOAD: { 6973 LoadSDNode *LD = cast<LoadSDNode>(Node); 6974 SDOperand Ch = LegalizeOp(LD->getChain()); // Legalize the chain. 6975 SDOperand Ptr = LegalizeOp(LD->getBasePtr()); // Legalize the pointer. 6976 6977 const Value *SV = LD->getSrcValue(); 6978 int SVOffset = LD->getSrcValueOffset(); 6979 Result = DAG.getLoad(NewVT, Ch, Ptr, SV, SVOffset, 6980 LD->isVolatile(), LD->getAlignment()); 6981 6982 // Remember that we legalized the chain. 6983 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 6984 break; 6985 } 6986 case ISD::BUILD_VECTOR: 6987 Result = Node->getOperand(0); 6988 break; 6989 case ISD::INSERT_VECTOR_ELT: 6990 // Returning the inserted scalar element. 6991 Result = Node->getOperand(1); 6992 break; 6993 case ISD::CONCAT_VECTORS: 6994 assert(Node->getOperand(0).getValueType() == NewVT && 6995 "Concat of non-legal vectors not yet supported!"); 6996 Result = Node->getOperand(0); 6997 break; 6998 case ISD::VECTOR_SHUFFLE: { 6999 // Figure out if the scalar is the LHS or RHS and return it. 7000 SDOperand EltNum = Node->getOperand(2).getOperand(0); 7001 if (cast<ConstantSDNode>(EltNum)->getValue()) 7002 Result = ScalarizeVectorOp(Node->getOperand(1)); 7003 else 7004 Result = ScalarizeVectorOp(Node->getOperand(0)); 7005 break; 7006 } 7007 case ISD::EXTRACT_SUBVECTOR: 7008 Result = Node->getOperand(0); 7009 assert(Result.getValueType() == NewVT); 7010 break; 7011 case ISD::BIT_CONVERT: 7012 Result = DAG.getNode(ISD::BIT_CONVERT, NewVT, Op.getOperand(0)); 7013 break; 7014 case ISD::SELECT: 7015 Result = DAG.getNode(ISD::SELECT, NewVT, Op.getOperand(0), 7016 ScalarizeVectorOp(Op.getOperand(1)), 7017 ScalarizeVectorOp(Op.getOperand(2))); 7018 break; 7019 } 7020 7021 if (TLI.isTypeLegal(NewVT)) 7022 Result = LegalizeOp(Result); 7023 bool isNew = ScalarizedNodes.insert(std::make_pair(Op, Result)).second; 7024 assert(isNew && "Value already scalarized?"); 7025 return Result; 7026} 7027 7028 7029// SelectionDAG::Legalize - This is the entry point for the file. 7030// 7031void SelectionDAG::Legalize() { 7032 if (ViewLegalizeDAGs) viewGraph(); 7033 7034 /// run - This is the main entry point to this class. 7035 /// 7036 SelectionDAGLegalize(*this).LegalizeDAG(); 7037} 7038 7039