LegalizeDAG.cpp revision f007a8b931e229eb325319c97363be8507311e2e
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the SelectionDAG::Legalize method. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/SelectionDAG.h" 15#include "llvm/CodeGen/MachineFunction.h" 16#include "llvm/CodeGen/MachineFrameInfo.h" 17#include "llvm/CodeGen/MachineJumpTableInfo.h" 18#include "llvm/CodeGen/MachineModuleInfo.h" 19#include "llvm/CodeGen/PseudoSourceValue.h" 20#include "llvm/Target/TargetFrameInfo.h" 21#include "llvm/Target/TargetLowering.h" 22#include "llvm/Target/TargetData.h" 23#include "llvm/Target/TargetMachine.h" 24#include "llvm/Target/TargetOptions.h" 25#include "llvm/Target/TargetSubtarget.h" 26#include "llvm/CallingConv.h" 27#include "llvm/Constants.h" 28#include "llvm/DerivedTypes.h" 29#include "llvm/Support/CommandLine.h" 30#include "llvm/Support/Compiler.h" 31#include "llvm/Support/MathExtras.h" 32#include "llvm/ADT/DenseMap.h" 33#include "llvm/ADT/SmallVector.h" 34#include "llvm/ADT/SmallPtrSet.h" 35#include <map> 36using namespace llvm; 37 38//===----------------------------------------------------------------------===// 39/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and 40/// hacks on it until the target machine can handle it. This involves 41/// eliminating value sizes the machine cannot handle (promoting small sizes to 42/// large sizes or splitting up large values into small values) as well as 43/// eliminating operations the machine cannot handle. 44/// 45/// This code also does a small amount of optimization and recognition of idioms 46/// as part of its processing. For example, if a target does not support a 47/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 48/// will attempt merge setcc and brc instructions into brcc's. 49/// 50namespace { 51class VISIBILITY_HIDDEN SelectionDAGLegalize { 52 TargetLowering &TLI; 53 SelectionDAG &DAG; 54 55 // Libcall insertion helpers. 56 57 /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been 58 /// legalized. We use this to ensure that calls are properly serialized 59 /// against each other, including inserted libcalls. 60 SDValue LastCALLSEQ_END; 61 62 /// IsLegalizingCall - This member is used *only* for purposes of providing 63 /// helpful assertions that a libcall isn't created while another call is 64 /// being legalized (which could lead to non-serialized call sequences). 65 bool IsLegalizingCall; 66 67 enum LegalizeAction { 68 Legal, // The target natively supports this operation. 69 Promote, // This operation should be executed in a larger type. 70 Expand // Try to expand this to other ops, otherwise use a libcall. 71 }; 72 73 /// ValueTypeActions - This is a bitvector that contains two bits for each 74 /// value type, where the two bits correspond to the LegalizeAction enum. 75 /// This can be queried with "getTypeAction(VT)". 76 TargetLowering::ValueTypeActionImpl ValueTypeActions; 77 78 /// LegalizedNodes - For nodes that are of legal width, and that have more 79 /// than one use, this map indicates what regularized operand to use. This 80 /// allows us to avoid legalizing the same thing more than once. 81 DenseMap<SDValue, SDValue> LegalizedNodes; 82 83 /// PromotedNodes - For nodes that are below legal width, and that have more 84 /// than one use, this map indicates what promoted value to use. This allows 85 /// us to avoid promoting the same thing more than once. 86 DenseMap<SDValue, SDValue> PromotedNodes; 87 88 /// ExpandedNodes - For nodes that need to be expanded this map indicates 89 /// which operands are the expanded version of the input. This allows 90 /// us to avoid expanding the same node more than once. 91 DenseMap<SDValue, std::pair<SDValue, SDValue> > ExpandedNodes; 92 93 /// SplitNodes - For vector nodes that need to be split, this map indicates 94 /// which operands are the split version of the input. This allows us 95 /// to avoid splitting the same node more than once. 96 std::map<SDValue, std::pair<SDValue, SDValue> > SplitNodes; 97 98 /// ScalarizedNodes - For nodes that need to be converted from vector types to 99 /// scalar types, this contains the mapping of ones we have already 100 /// processed to the result. 101 std::map<SDValue, SDValue> ScalarizedNodes; 102 103 /// WidenNodes - For nodes that need to be widened from one vector type to 104 /// another, this contains the mapping of those that we have already widen. 105 /// This allows us to avoid widening more than once. 106 std::map<SDValue, SDValue> WidenNodes; 107 108 void AddLegalizedOperand(SDValue From, SDValue To) { 109 LegalizedNodes.insert(std::make_pair(From, To)); 110 // If someone requests legalization of the new node, return itself. 111 if (From != To) 112 LegalizedNodes.insert(std::make_pair(To, To)); 113 } 114 void AddPromotedOperand(SDValue From, SDValue To) { 115 bool isNew = PromotedNodes.insert(std::make_pair(From, To)).second; 116 assert(isNew && "Got into the map somehow?"); 117 // If someone requests legalization of the new node, return itself. 118 LegalizedNodes.insert(std::make_pair(To, To)); 119 } 120 void AddWidenedOperand(SDValue From, SDValue To) { 121 bool isNew = WidenNodes.insert(std::make_pair(From, To)).second; 122 assert(isNew && "Got into the map somehow?"); 123 // If someone requests legalization of the new node, return itself. 124 LegalizedNodes.insert(std::make_pair(To, To)); 125 } 126 127public: 128 explicit SelectionDAGLegalize(SelectionDAG &DAG); 129 130 /// getTypeAction - Return how we should legalize values of this type, either 131 /// it is already legal or we need to expand it into multiple registers of 132 /// smaller integer type, or we need to promote it to a larger type. 133 LegalizeAction getTypeAction(MVT VT) const { 134 return (LegalizeAction)ValueTypeActions.getTypeAction(VT); 135 } 136 137 /// isTypeLegal - Return true if this type is legal on this target. 138 /// 139 bool isTypeLegal(MVT VT) const { 140 return getTypeAction(VT) == Legal; 141 } 142 143 void LegalizeDAG(); 144 145private: 146 /// HandleOp - Legalize, Promote, or Expand the specified operand as 147 /// appropriate for its type. 148 void HandleOp(SDValue Op); 149 150 /// LegalizeOp - We know that the specified value has a legal type. 151 /// Recursively ensure that the operands have legal types, then return the 152 /// result. 153 SDValue LegalizeOp(SDValue O); 154 155 /// UnrollVectorOp - We know that the given vector has a legal type, however 156 /// the operation it performs is not legal and is an operation that we have 157 /// no way of lowering. "Unroll" the vector, splitting out the scalars and 158 /// operating on each element individually. 159 SDValue UnrollVectorOp(SDValue O); 160 161 /// PerformInsertVectorEltInMemory - Some target cannot handle a variable 162 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 163 /// is necessary to spill the vector being inserted into to memory, perform 164 /// the insert there, and then read the result back. 165 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, 166 SDValue Idx); 167 168 /// PromoteOp - Given an operation that produces a value in an invalid type, 169 /// promote it to compute the value into a larger type. The produced value 170 /// will have the correct bits for the low portion of the register, but no 171 /// guarantee is made about the top bits: it may be zero, sign-extended, or 172 /// garbage. 173 SDValue PromoteOp(SDValue O); 174 175 /// ExpandOp - Expand the specified SDValue into its two component pieces 176 /// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, 177 /// the LegalizedNodes map is filled in for any results that are not expanded, 178 /// the ExpandedNodes map is filled in for any results that are expanded, and 179 /// the Lo/Hi values are returned. This applies to integer types and Vector 180 /// types. 181 void ExpandOp(SDValue O, SDValue &Lo, SDValue &Hi); 182 183 /// WidenVectorOp - Widen a vector operation to a wider type given by WidenVT 184 /// (e.g., v3i32 to v4i32). The produced value will have the correct value 185 /// for the existing elements but no guarantee is made about the new elements 186 /// at the end of the vector: it may be zero, ones, or garbage. This is useful 187 /// when we have an instruction operating on an illegal vector type and we 188 /// want to widen it to do the computation on a legal wider vector type. 189 SDValue WidenVectorOp(SDValue Op, MVT WidenVT); 190 191 /// SplitVectorOp - Given an operand of vector type, break it down into 192 /// two smaller values. 193 void SplitVectorOp(SDValue O, SDValue &Lo, SDValue &Hi); 194 195 /// ScalarizeVectorOp - Given an operand of single-element vector type 196 /// (e.g. v1f32), convert it into the equivalent operation that returns a 197 /// scalar (e.g. f32) value. 198 SDValue ScalarizeVectorOp(SDValue O); 199 200 /// Useful 16 element vector type that is used to pass operands for widening. 201 typedef SmallVector<SDValue, 16> SDValueVector; 202 203 /// LoadWidenVectorOp - Load a vector for a wider type. Returns true if 204 /// the LdChain contains a single load and false if it contains a token 205 /// factor for multiple loads. It takes 206 /// Result: location to return the result 207 /// LdChain: location to return the load chain 208 /// Op: load operation to widen 209 /// NVT: widen vector result type we want for the load 210 bool LoadWidenVectorOp(SDValue& Result, SDValue& LdChain, 211 SDValue Op, MVT NVT); 212 213 /// Helper genWidenVectorLoads - Helper function to generate a set of 214 /// loads to load a vector with a resulting wider type. It takes 215 /// LdChain: list of chains for the load we have generated 216 /// Chain: incoming chain for the ld vector 217 /// BasePtr: base pointer to load from 218 /// SV: memory disambiguation source value 219 /// SVOffset: memory disambiugation offset 220 /// Alignment: alignment of the memory 221 /// isVolatile: volatile load 222 /// LdWidth: width of memory that we want to load 223 /// ResType: the wider result result type for the resulting loaded vector 224 SDValue genWidenVectorLoads(SDValueVector& LdChain, SDValue Chain, 225 SDValue BasePtr, const Value *SV, 226 int SVOffset, unsigned Alignment, 227 bool isVolatile, unsigned LdWidth, 228 MVT ResType); 229 230 /// StoreWidenVectorOp - Stores a widen vector into non widen memory 231 /// location. It takes 232 /// ST: store node that we want to replace 233 /// Chain: incoming store chain 234 /// BasePtr: base address of where we want to store into 235 SDValue StoreWidenVectorOp(StoreSDNode *ST, SDValue Chain, 236 SDValue BasePtr); 237 238 /// Helper genWidenVectorStores - Helper function to generate a set of 239 /// stores to store a widen vector into non widen memory 240 // It takes 241 // StChain: list of chains for the stores we have generated 242 // Chain: incoming chain for the ld vector 243 // BasePtr: base pointer to load from 244 // SV: memory disambiguation source value 245 // SVOffset: memory disambiugation offset 246 // Alignment: alignment of the memory 247 // isVolatile: volatile lod 248 // ValOp: value to store 249 // StWidth: width of memory that we want to store 250 void genWidenVectorStores(SDValueVector& StChain, SDValue Chain, 251 SDValue BasePtr, const Value *SV, 252 int SVOffset, unsigned Alignment, 253 bool isVolatile, SDValue ValOp, 254 unsigned StWidth); 255 256 /// isShuffleLegal - Return non-null if a vector shuffle is legal with the 257 /// specified mask and type. Targets can specify exactly which masks they 258 /// support and the code generator is tasked with not creating illegal masks. 259 /// 260 /// Note that this will also return true for shuffles that are promoted to a 261 /// different type. 262 /// 263 /// If this is a legal shuffle, this method returns the (possibly promoted) 264 /// build_vector Mask. If it's not a legal shuffle, it returns null. 265 SDNode *isShuffleLegal(MVT VT, SDValue Mask) const; 266 267 bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, 268 SmallPtrSet<SDNode*, 32> &NodesLeadingTo); 269 270 void LegalizeSetCCOperands(SDValue &LHS, SDValue &RHS, SDValue &CC); 271 void LegalizeSetCCCondCode(MVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC); 272 void LegalizeSetCC(MVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC) { 273 LegalizeSetCCOperands(LHS, RHS, CC); 274 LegalizeSetCCCondCode(VT, LHS, RHS, CC); 275 } 276 277 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned, 278 SDValue &Hi); 279 SDValue ExpandIntToFP(bool isSigned, MVT DestTy, SDValue Source); 280 281 SDValue EmitStackConvert(SDValue SrcOp, MVT SlotVT, MVT DestVT); 282 SDValue ExpandBUILD_VECTOR(SDNode *Node); 283 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 284 SDValue LegalizeINT_TO_FP(SDValue Result, bool isSigned, MVT DestTy, SDValue Op); 285 SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, MVT DestVT); 286 SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, MVT DestVT, bool isSigned); 287 SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, MVT DestVT, bool isSigned); 288 289 SDValue ExpandBSWAP(SDValue Op); 290 SDValue ExpandBitCount(unsigned Opc, SDValue Op); 291 bool ExpandShift(unsigned Opc, SDValue Op, SDValue Amt, 292 SDValue &Lo, SDValue &Hi); 293 void ExpandShiftParts(unsigned NodeOp, SDValue Op, SDValue Amt, 294 SDValue &Lo, SDValue &Hi); 295 296 SDValue ExpandEXTRACT_SUBVECTOR(SDValue Op); 297 SDValue ExpandEXTRACT_VECTOR_ELT(SDValue Op); 298}; 299} 300 301/// isVectorShuffleLegal - Return true if a vector shuffle is legal with the 302/// specified mask and type. Targets can specify exactly which masks they 303/// support and the code generator is tasked with not creating illegal masks. 304/// 305/// Note that this will also return true for shuffles that are promoted to a 306/// different type. 307SDNode *SelectionDAGLegalize::isShuffleLegal(MVT VT, SDValue Mask) const { 308 switch (TLI.getOperationAction(ISD::VECTOR_SHUFFLE, VT)) { 309 default: return 0; 310 case TargetLowering::Legal: 311 case TargetLowering::Custom: 312 break; 313 case TargetLowering::Promote: { 314 // If this is promoted to a different type, convert the shuffle mask and 315 // ask if it is legal in the promoted type! 316 MVT NVT = TLI.getTypeToPromoteTo(ISD::VECTOR_SHUFFLE, VT); 317 MVT EltVT = NVT.getVectorElementType(); 318 319 // If we changed # elements, change the shuffle mask. 320 unsigned NumEltsGrowth = 321 NVT.getVectorNumElements() / VT.getVectorNumElements(); 322 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 323 if (NumEltsGrowth > 1) { 324 // Renumber the elements. 325 SmallVector<SDValue, 8> Ops; 326 for (unsigned i = 0, e = Mask.getNumOperands(); i != e; ++i) { 327 SDValue InOp = Mask.getOperand(i); 328 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 329 if (InOp.getOpcode() == ISD::UNDEF) 330 Ops.push_back(DAG.getNode(ISD::UNDEF, EltVT)); 331 else { 332 unsigned InEltNo = cast<ConstantSDNode>(InOp)->getZExtValue(); 333 Ops.push_back(DAG.getConstant(InEltNo*NumEltsGrowth+j, EltVT)); 334 } 335 } 336 } 337 Mask = DAG.getNode(ISD::BUILD_VECTOR, NVT, &Ops[0], Ops.size()); 338 } 339 VT = NVT; 340 break; 341 } 342 } 343 return TLI.isShuffleMaskLegal(Mask, VT) ? Mask.getNode() : 0; 344} 345 346SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag) 347 : TLI(dag.getTargetLoweringInfo()), DAG(dag), 348 ValueTypeActions(TLI.getValueTypeActions()) { 349 assert(MVT::LAST_VALUETYPE <= 32 && 350 "Too many value types for ValueTypeActions to hold!"); 351} 352 353void SelectionDAGLegalize::LegalizeDAG() { 354 LastCALLSEQ_END = DAG.getEntryNode(); 355 IsLegalizingCall = false; 356 357 // The legalize process is inherently a bottom-up recursive process (users 358 // legalize their uses before themselves). Given infinite stack space, we 359 // could just start legalizing on the root and traverse the whole graph. In 360 // practice however, this causes us to run out of stack space on large basic 361 // blocks. To avoid this problem, compute an ordering of the nodes where each 362 // node is only legalized after all of its operands are legalized. 363 DAG.AssignTopologicalOrder(); 364 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 365 E = prior(DAG.allnodes_end()); I != next(E); ++I) 366 HandleOp(SDValue(I, 0)); 367 368 // Finally, it's possible the root changed. Get the new root. 369 SDValue OldRoot = DAG.getRoot(); 370 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 371 DAG.setRoot(LegalizedNodes[OldRoot]); 372 373 ExpandedNodes.clear(); 374 LegalizedNodes.clear(); 375 PromotedNodes.clear(); 376 SplitNodes.clear(); 377 ScalarizedNodes.clear(); 378 WidenNodes.clear(); 379 380 // Remove dead nodes now. 381 DAG.RemoveDeadNodes(); 382} 383 384 385/// FindCallEndFromCallStart - Given a chained node that is part of a call 386/// sequence, find the CALLSEQ_END node that terminates the call sequence. 387static SDNode *FindCallEndFromCallStart(SDNode *Node) { 388 if (Node->getOpcode() == ISD::CALLSEQ_END) 389 return Node; 390 if (Node->use_empty()) 391 return 0; // No CallSeqEnd 392 393 // The chain is usually at the end. 394 SDValue TheChain(Node, Node->getNumValues()-1); 395 if (TheChain.getValueType() != MVT::Other) { 396 // Sometimes it's at the beginning. 397 TheChain = SDValue(Node, 0); 398 if (TheChain.getValueType() != MVT::Other) { 399 // Otherwise, hunt for it. 400 for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i) 401 if (Node->getValueType(i) == MVT::Other) { 402 TheChain = SDValue(Node, i); 403 break; 404 } 405 406 // Otherwise, we walked into a node without a chain. 407 if (TheChain.getValueType() != MVT::Other) 408 return 0; 409 } 410 } 411 412 for (SDNode::use_iterator UI = Node->use_begin(), 413 E = Node->use_end(); UI != E; ++UI) { 414 415 // Make sure to only follow users of our token chain. 416 SDNode *User = *UI; 417 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) 418 if (User->getOperand(i) == TheChain) 419 if (SDNode *Result = FindCallEndFromCallStart(User)) 420 return Result; 421 } 422 return 0; 423} 424 425/// FindCallStartFromCallEnd - Given a chained node that is part of a call 426/// sequence, find the CALLSEQ_START node that initiates the call sequence. 427static SDNode *FindCallStartFromCallEnd(SDNode *Node) { 428 assert(Node && "Didn't find callseq_start for a call??"); 429 if (Node->getOpcode() == ISD::CALLSEQ_START) return Node; 430 431 assert(Node->getOperand(0).getValueType() == MVT::Other && 432 "Node doesn't have a token chain argument!"); 433 return FindCallStartFromCallEnd(Node->getOperand(0).getNode()); 434} 435 436/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to 437/// see if any uses can reach Dest. If no dest operands can get to dest, 438/// legalize them, legalize ourself, and return false, otherwise, return true. 439/// 440/// Keep track of the nodes we fine that actually do lead to Dest in 441/// NodesLeadingTo. This avoids retraversing them exponential number of times. 442/// 443bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, 444 SmallPtrSet<SDNode*, 32> &NodesLeadingTo) { 445 if (N == Dest) return true; // N certainly leads to Dest :) 446 447 // If we've already processed this node and it does lead to Dest, there is no 448 // need to reprocess it. 449 if (NodesLeadingTo.count(N)) return true; 450 451 // If the first result of this node has been already legalized, then it cannot 452 // reach N. 453 switch (getTypeAction(N->getValueType(0))) { 454 case Legal: 455 if (LegalizedNodes.count(SDValue(N, 0))) return false; 456 break; 457 case Promote: 458 if (PromotedNodes.count(SDValue(N, 0))) return false; 459 break; 460 case Expand: 461 if (ExpandedNodes.count(SDValue(N, 0))) return false; 462 break; 463 } 464 465 // Okay, this node has not already been legalized. Check and legalize all 466 // operands. If none lead to Dest, then we can legalize this node. 467 bool OperandsLeadToDest = false; 468 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 469 OperandsLeadToDest |= // If an operand leads to Dest, so do we. 470 LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest, NodesLeadingTo); 471 472 if (OperandsLeadToDest) { 473 NodesLeadingTo.insert(N); 474 return true; 475 } 476 477 // Okay, this node looks safe, legalize it and return false. 478 HandleOp(SDValue(N, 0)); 479 return false; 480} 481 482/// HandleOp - Legalize, Promote, Widen, or Expand the specified operand as 483/// appropriate for its type. 484void SelectionDAGLegalize::HandleOp(SDValue Op) { 485 MVT VT = Op.getValueType(); 486 switch (getTypeAction(VT)) { 487 default: assert(0 && "Bad type action!"); 488 case Legal: (void)LegalizeOp(Op); break; 489 case Promote: 490 if (!VT.isVector()) { 491 (void)PromoteOp(Op); 492 break; 493 } 494 else { 495 // See if we can widen otherwise use Expand to either scalarize or split 496 MVT WidenVT = TLI.getWidenVectorType(VT); 497 if (WidenVT != MVT::Other) { 498 (void) WidenVectorOp(Op, WidenVT); 499 break; 500 } 501 // else fall thru to expand since we can't widen the vector 502 } 503 case Expand: 504 if (!VT.isVector()) { 505 // If this is an illegal scalar, expand it into its two component 506 // pieces. 507 SDValue X, Y; 508 if (Op.getOpcode() == ISD::TargetConstant) 509 break; // Allow illegal target nodes. 510 ExpandOp(Op, X, Y); 511 } else if (VT.getVectorNumElements() == 1) { 512 // If this is an illegal single element vector, convert it to a 513 // scalar operation. 514 (void)ScalarizeVectorOp(Op); 515 } else { 516 // This is an illegal multiple element vector. 517 // Split it in half and legalize both parts. 518 SDValue X, Y; 519 SplitVectorOp(Op, X, Y); 520 } 521 break; 522 } 523} 524 525/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or 526/// a load from the constant pool. 527static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP, 528 SelectionDAG &DAG, TargetLowering &TLI) { 529 bool Extend = false; 530 531 // If a FP immediate is precise when represented as a float and if the 532 // target can do an extending load from float to double, we put it into 533 // the constant pool as a float, even if it's is statically typed as a 534 // double. This shrinks FP constants and canonicalizes them for targets where 535 // an FP extending load is the same cost as a normal load (such as on the x87 536 // fp stack or PPC FP unit). 537 MVT VT = CFP->getValueType(0); 538 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 539 if (!UseCP) { 540 if (VT!=MVT::f64 && VT!=MVT::f32) 541 assert(0 && "Invalid type expansion"); 542 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), 543 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 544 } 545 546 MVT OrigVT = VT; 547 MVT SVT = VT; 548 while (SVT != MVT::f32) { 549 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT() - 1); 550 if (CFP->isValueValidForType(SVT, CFP->getValueAPF()) && 551 // Only do this if the target has a native EXTLOAD instruction from 552 // smaller type. 553 TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) && 554 TLI.ShouldShrinkFPConstant(OrigVT)) { 555 const Type *SType = SVT.getTypeForMVT(); 556 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 557 VT = SVT; 558 Extend = true; 559 } 560 } 561 562 SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy()); 563 unsigned Alignment = 1 << cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 564 if (Extend) 565 return DAG.getExtLoad(ISD::EXTLOAD, OrigVT, DAG.getEntryNode(), 566 CPIdx, PseudoSourceValue::getConstantPool(), 567 0, VT, false, Alignment); 568 return DAG.getLoad(OrigVT, DAG.getEntryNode(), CPIdx, 569 PseudoSourceValue::getConstantPool(), 0, false, Alignment); 570} 571 572 573/// ExpandFCOPYSIGNToBitwiseOps - Expands fcopysign to a series of bitwise 574/// operations. 575static 576SDValue ExpandFCOPYSIGNToBitwiseOps(SDNode *Node, MVT NVT, 577 SelectionDAG &DAG, TargetLowering &TLI) { 578 MVT VT = Node->getValueType(0); 579 MVT SrcVT = Node->getOperand(1).getValueType(); 580 assert((SrcVT == MVT::f32 || SrcVT == MVT::f64) && 581 "fcopysign expansion only supported for f32 and f64"); 582 MVT SrcNVT = (SrcVT == MVT::f64) ? MVT::i64 : MVT::i32; 583 584 // First get the sign bit of second operand. 585 SDValue Mask1 = (SrcVT == MVT::f64) 586 ? DAG.getConstantFP(BitsToDouble(1ULL << 63), SrcVT) 587 : DAG.getConstantFP(BitsToFloat(1U << 31), SrcVT); 588 Mask1 = DAG.getNode(ISD::BIT_CONVERT, SrcNVT, Mask1); 589 SDValue SignBit= DAG.getNode(ISD::BIT_CONVERT, SrcNVT, Node->getOperand(1)); 590 SignBit = DAG.getNode(ISD::AND, SrcNVT, SignBit, Mask1); 591 // Shift right or sign-extend it if the two operands have different types. 592 int SizeDiff = SrcNVT.getSizeInBits() - NVT.getSizeInBits(); 593 if (SizeDiff > 0) { 594 SignBit = DAG.getNode(ISD::SRL, SrcNVT, SignBit, 595 DAG.getConstant(SizeDiff, TLI.getShiftAmountTy())); 596 SignBit = DAG.getNode(ISD::TRUNCATE, NVT, SignBit); 597 } else if (SizeDiff < 0) { 598 SignBit = DAG.getNode(ISD::ZERO_EXTEND, NVT, SignBit); 599 SignBit = DAG.getNode(ISD::SHL, NVT, SignBit, 600 DAG.getConstant(-SizeDiff, TLI.getShiftAmountTy())); 601 } 602 603 // Clear the sign bit of first operand. 604 SDValue Mask2 = (VT == MVT::f64) 605 ? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT) 606 : DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT); 607 Mask2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask2); 608 SDValue Result = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 609 Result = DAG.getNode(ISD::AND, NVT, Result, Mask2); 610 611 // Or the value with the sign bit. 612 Result = DAG.getNode(ISD::OR, NVT, Result, SignBit); 613 return Result; 614} 615 616/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores. 617static 618SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG, 619 TargetLowering &TLI) { 620 SDValue Chain = ST->getChain(); 621 SDValue Ptr = ST->getBasePtr(); 622 SDValue Val = ST->getValue(); 623 MVT VT = Val.getValueType(); 624 int Alignment = ST->getAlignment(); 625 int SVOffset = ST->getSrcValueOffset(); 626 if (ST->getMemoryVT().isFloatingPoint() || 627 ST->getMemoryVT().isVector()) { 628 // Expand to a bitconvert of the value to the integer type of the 629 // same size, then a (misaligned) int store. 630 MVT intVT; 631 if (VT.is128BitVector() || VT == MVT::ppcf128 || VT == MVT::f128) 632 intVT = MVT::i128; 633 else if (VT.is64BitVector() || VT==MVT::f64) 634 intVT = MVT::i64; 635 else if (VT==MVT::f32) 636 intVT = MVT::i32; 637 else 638 assert(0 && "Unaligned store of unsupported type"); 639 640 SDValue Result = DAG.getNode(ISD::BIT_CONVERT, intVT, Val); 641 return DAG.getStore(Chain, Result, Ptr, ST->getSrcValue(), 642 SVOffset, ST->isVolatile(), Alignment); 643 } 644 assert(ST->getMemoryVT().isInteger() && 645 !ST->getMemoryVT().isVector() && 646 "Unaligned store of unknown type."); 647 // Get the half-size VT 648 MVT NewStoredVT = 649 (MVT::SimpleValueType)(ST->getMemoryVT().getSimpleVT() - 1); 650 int NumBits = NewStoredVT.getSizeInBits(); 651 int IncrementSize = NumBits / 8; 652 653 // Divide the stored value in two parts. 654 SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy()); 655 SDValue Lo = Val; 656 SDValue Hi = DAG.getNode(ISD::SRL, VT, Val, ShiftAmount); 657 658 // Store the two parts 659 SDValue Store1, Store2; 660 Store1 = DAG.getTruncStore(Chain, TLI.isLittleEndian()?Lo:Hi, Ptr, 661 ST->getSrcValue(), SVOffset, NewStoredVT, 662 ST->isVolatile(), Alignment); 663 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 664 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 665 Alignment = MinAlign(Alignment, IncrementSize); 666 Store2 = DAG.getTruncStore(Chain, TLI.isLittleEndian()?Hi:Lo, Ptr, 667 ST->getSrcValue(), SVOffset + IncrementSize, 668 NewStoredVT, ST->isVolatile(), Alignment); 669 670 return DAG.getNode(ISD::TokenFactor, MVT::Other, Store1, Store2); 671} 672 673/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads. 674static 675SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG, 676 TargetLowering &TLI) { 677 int SVOffset = LD->getSrcValueOffset(); 678 SDValue Chain = LD->getChain(); 679 SDValue Ptr = LD->getBasePtr(); 680 MVT VT = LD->getValueType(0); 681 MVT LoadedVT = LD->getMemoryVT(); 682 if (VT.isFloatingPoint() || VT.isVector()) { 683 // Expand to a (misaligned) integer load of the same size, 684 // then bitconvert to floating point or vector. 685 MVT intVT; 686 if (LoadedVT.is128BitVector() || 687 LoadedVT == MVT::ppcf128 || LoadedVT == MVT::f128) 688 intVT = MVT::i128; 689 else if (LoadedVT.is64BitVector() || LoadedVT == MVT::f64) 690 intVT = MVT::i64; 691 else if (LoadedVT == MVT::f32) 692 intVT = MVT::i32; 693 else 694 assert(0 && "Unaligned load of unsupported type"); 695 696 SDValue newLoad = DAG.getLoad(intVT, Chain, Ptr, LD->getSrcValue(), 697 SVOffset, LD->isVolatile(), 698 LD->getAlignment()); 699 SDValue Result = DAG.getNode(ISD::BIT_CONVERT, LoadedVT, newLoad); 700 if (VT.isFloatingPoint() && LoadedVT != VT) 701 Result = DAG.getNode(ISD::FP_EXTEND, VT, Result); 702 703 SDValue Ops[] = { Result, Chain }; 704 return DAG.getMergeValues(Ops, 2); 705 } 706 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 707 "Unaligned load of unsupported type."); 708 709 // Compute the new VT that is half the size of the old one. This is an 710 // integer MVT. 711 unsigned NumBits = LoadedVT.getSizeInBits(); 712 MVT NewLoadedVT; 713 NewLoadedVT = MVT::getIntegerVT(NumBits/2); 714 NumBits >>= 1; 715 716 unsigned Alignment = LD->getAlignment(); 717 unsigned IncrementSize = NumBits / 8; 718 ISD::LoadExtType HiExtType = LD->getExtensionType(); 719 720 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 721 if (HiExtType == ISD::NON_EXTLOAD) 722 HiExtType = ISD::ZEXTLOAD; 723 724 // Load the value in two parts 725 SDValue Lo, Hi; 726 if (TLI.isLittleEndian()) { 727 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, Chain, Ptr, LD->getSrcValue(), 728 SVOffset, NewLoadedVT, LD->isVolatile(), Alignment); 729 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 730 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 731 Hi = DAG.getExtLoad(HiExtType, VT, Chain, Ptr, LD->getSrcValue(), 732 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(), 733 MinAlign(Alignment, IncrementSize)); 734 } else { 735 Hi = DAG.getExtLoad(HiExtType, VT, Chain, Ptr, LD->getSrcValue(), SVOffset, 736 NewLoadedVT,LD->isVolatile(), Alignment); 737 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 738 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 739 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, Chain, Ptr, LD->getSrcValue(), 740 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(), 741 MinAlign(Alignment, IncrementSize)); 742 } 743 744 // aggregate the two parts 745 SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy()); 746 SDValue Result = DAG.getNode(ISD::SHL, VT, Hi, ShiftAmount); 747 Result = DAG.getNode(ISD::OR, VT, Result, Lo); 748 749 SDValue TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 750 Hi.getValue(1)); 751 752 SDValue Ops[] = { Result, TF }; 753 return DAG.getMergeValues(Ops, 2); 754} 755 756/// UnrollVectorOp - We know that the given vector has a legal type, however 757/// the operation it performs is not legal and is an operation that we have 758/// no way of lowering. "Unroll" the vector, splitting out the scalars and 759/// operating on each element individually. 760SDValue SelectionDAGLegalize::UnrollVectorOp(SDValue Op) { 761 MVT VT = Op.getValueType(); 762 assert(isTypeLegal(VT) && 763 "Caller should expand or promote operands that are not legal!"); 764 assert(Op.getNode()->getNumValues() == 1 && 765 "Can't unroll a vector with multiple results!"); 766 unsigned NE = VT.getVectorNumElements(); 767 MVT EltVT = VT.getVectorElementType(); 768 769 SmallVector<SDValue, 8> Scalars; 770 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 771 for (unsigned i = 0; i != NE; ++i) { 772 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 773 SDValue Operand = Op.getOperand(j); 774 MVT OperandVT = Operand.getValueType(); 775 if (OperandVT.isVector()) { 776 // A vector operand; extract a single element. 777 MVT OperandEltVT = OperandVT.getVectorElementType(); 778 Operands[j] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, 779 OperandEltVT, 780 Operand, 781 DAG.getConstant(i, MVT::i32)); 782 } else { 783 // A scalar operand; just use it as is. 784 Operands[j] = Operand; 785 } 786 } 787 Scalars.push_back(DAG.getNode(Op.getOpcode(), EltVT, 788 &Operands[0], Operands.size())); 789 } 790 791 return DAG.getNode(ISD::BUILD_VECTOR, VT, &Scalars[0], Scalars.size()); 792} 793 794/// GetFPLibCall - Return the right libcall for the given floating point type. 795static RTLIB::Libcall GetFPLibCall(MVT VT, 796 RTLIB::Libcall Call_F32, 797 RTLIB::Libcall Call_F64, 798 RTLIB::Libcall Call_F80, 799 RTLIB::Libcall Call_PPCF128) { 800 return 801 VT == MVT::f32 ? Call_F32 : 802 VT == MVT::f64 ? Call_F64 : 803 VT == MVT::f80 ? Call_F80 : 804 VT == MVT::ppcf128 ? Call_PPCF128 : 805 RTLIB::UNKNOWN_LIBCALL; 806} 807 808/// PerformInsertVectorEltInMemory - Some target cannot handle a variable 809/// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 810/// is necessary to spill the vector being inserted into to memory, perform 811/// the insert there, and then read the result back. 812SDValue SelectionDAGLegalize:: 813PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx) { 814 SDValue Tmp1 = Vec; 815 SDValue Tmp2 = Val; 816 SDValue Tmp3 = Idx; 817 818 // If the target doesn't support this, we have to spill the input vector 819 // to a temporary stack slot, update the element, then reload it. This is 820 // badness. We could also load the value into a vector register (either 821 // with a "move to register" or "extload into register" instruction, then 822 // permute it into place, if the idx is a constant and if the idx is 823 // supported by the target. 824 MVT VT = Tmp1.getValueType(); 825 MVT EltVT = VT.getVectorElementType(); 826 MVT IdxVT = Tmp3.getValueType(); 827 MVT PtrVT = TLI.getPointerTy(); 828 SDValue StackPtr = DAG.CreateStackTemporary(VT); 829 830 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 831 832 // Store the vector. 833 SDValue Ch = DAG.getStore(DAG.getEntryNode(), Tmp1, StackPtr, 834 PseudoSourceValue::getFixedStack(SPFI), 0); 835 836 // Truncate or zero extend offset to target pointer type. 837 unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND; 838 Tmp3 = DAG.getNode(CastOpc, PtrVT, Tmp3); 839 // Add the offset to the index. 840 unsigned EltSize = EltVT.getSizeInBits()/8; 841 Tmp3 = DAG.getNode(ISD::MUL, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT)); 842 SDValue StackPtr2 = DAG.getNode(ISD::ADD, IdxVT, Tmp3, StackPtr); 843 // Store the scalar value. 844 Ch = DAG.getTruncStore(Ch, Tmp2, StackPtr2, 845 PseudoSourceValue::getFixedStack(SPFI), 0, EltVT); 846 // Load the updated vector. 847 return DAG.getLoad(VT, Ch, StackPtr, 848 PseudoSourceValue::getFixedStack(SPFI), 0); 849} 850 851/// LegalizeOp - We know that the specified value has a legal type, and 852/// that its operands are legal. Now ensure that the operation itself 853/// is legal, recursively ensuring that the operands' operations remain 854/// legal. 855SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) { 856 if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes. 857 return Op; 858 859 assert(isTypeLegal(Op.getValueType()) && 860 "Caller should expand or promote operands that are not legal!"); 861 SDNode *Node = Op.getNode(); 862 863 // If this operation defines any values that cannot be represented in a 864 // register on this target, make sure to expand or promote them. 865 if (Node->getNumValues() > 1) { 866 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 867 if (getTypeAction(Node->getValueType(i)) != Legal) { 868 HandleOp(Op.getValue(i)); 869 assert(LegalizedNodes.count(Op) && 870 "Handling didn't add legal operands!"); 871 return LegalizedNodes[Op]; 872 } 873 } 874 875 // Note that LegalizeOp may be reentered even from single-use nodes, which 876 // means that we always must cache transformed nodes. 877 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 878 if (I != LegalizedNodes.end()) return I->second; 879 880 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 881 SDValue Result = Op; 882 bool isCustom = false; 883 884 switch (Node->getOpcode()) { 885 case ISD::FrameIndex: 886 case ISD::EntryToken: 887 case ISD::Register: 888 case ISD::BasicBlock: 889 case ISD::TargetFrameIndex: 890 case ISD::TargetJumpTable: 891 case ISD::TargetConstant: 892 case ISD::TargetConstantFP: 893 case ISD::TargetConstantPool: 894 case ISD::TargetGlobalAddress: 895 case ISD::TargetGlobalTLSAddress: 896 case ISD::TargetExternalSymbol: 897 case ISD::VALUETYPE: 898 case ISD::SRCVALUE: 899 case ISD::MEMOPERAND: 900 case ISD::CONDCODE: 901 case ISD::ARG_FLAGS: 902 // Primitives must all be legal. 903 assert(TLI.isOperationLegal(Node->getOpcode(), Node->getValueType(0)) && 904 "This must be legal!"); 905 break; 906 default: 907 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 908 // If this is a target node, legalize it by legalizing the operands then 909 // passing it through. 910 SmallVector<SDValue, 8> Ops; 911 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 912 Ops.push_back(LegalizeOp(Node->getOperand(i))); 913 914 Result = DAG.UpdateNodeOperands(Result.getValue(0), &Ops[0], Ops.size()); 915 916 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 917 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 918 return Result.getValue(Op.getResNo()); 919 } 920 // Otherwise this is an unhandled builtin node. splat. 921#ifndef NDEBUG 922 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 923#endif 924 assert(0 && "Do not know how to legalize this operator!"); 925 abort(); 926 case ISD::GLOBAL_OFFSET_TABLE: 927 case ISD::GlobalAddress: 928 case ISD::GlobalTLSAddress: 929 case ISD::ExternalSymbol: 930 case ISD::ConstantPool: 931 case ISD::JumpTable: // Nothing to do. 932 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 933 default: assert(0 && "This action is not supported yet!"); 934 case TargetLowering::Custom: 935 Tmp1 = TLI.LowerOperation(Op, DAG); 936 if (Tmp1.getNode()) Result = Tmp1; 937 // FALLTHROUGH if the target doesn't want to lower this op after all. 938 case TargetLowering::Legal: 939 break; 940 } 941 break; 942 case ISD::FRAMEADDR: 943 case ISD::RETURNADDR: 944 // The only option for these nodes is to custom lower them. If the target 945 // does not custom lower them, then return zero. 946 Tmp1 = TLI.LowerOperation(Op, DAG); 947 if (Tmp1.getNode()) 948 Result = Tmp1; 949 else 950 Result = DAG.getConstant(0, TLI.getPointerTy()); 951 break; 952 case ISD::FRAME_TO_ARGS_OFFSET: { 953 MVT VT = Node->getValueType(0); 954 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 955 default: assert(0 && "This action is not supported yet!"); 956 case TargetLowering::Custom: 957 Result = TLI.LowerOperation(Op, DAG); 958 if (Result.getNode()) break; 959 // Fall Thru 960 case TargetLowering::Legal: 961 Result = DAG.getConstant(0, VT); 962 break; 963 } 964 } 965 break; 966 case ISD::EXCEPTIONADDR: { 967 Tmp1 = LegalizeOp(Node->getOperand(0)); 968 MVT VT = Node->getValueType(0); 969 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 970 default: assert(0 && "This action is not supported yet!"); 971 case TargetLowering::Expand: { 972 unsigned Reg = TLI.getExceptionAddressRegister(); 973 Result = DAG.getCopyFromReg(Tmp1, Reg, VT); 974 } 975 break; 976 case TargetLowering::Custom: 977 Result = TLI.LowerOperation(Op, DAG); 978 if (Result.getNode()) break; 979 // Fall Thru 980 case TargetLowering::Legal: { 981 SDValue Ops[] = { DAG.getConstant(0, VT), Tmp1 }; 982 Result = DAG.getMergeValues(Ops, 2); 983 break; 984 } 985 } 986 } 987 if (Result.getNode()->getNumValues() == 1) break; 988 989 assert(Result.getNode()->getNumValues() == 2 && 990 "Cannot return more than two values!"); 991 992 // Since we produced two values, make sure to remember that we 993 // legalized both of them. 994 Tmp1 = LegalizeOp(Result); 995 Tmp2 = LegalizeOp(Result.getValue(1)); 996 AddLegalizedOperand(Op.getValue(0), Tmp1); 997 AddLegalizedOperand(Op.getValue(1), Tmp2); 998 return Op.getResNo() ? Tmp2 : Tmp1; 999 case ISD::EHSELECTION: { 1000 Tmp1 = LegalizeOp(Node->getOperand(0)); 1001 Tmp2 = LegalizeOp(Node->getOperand(1)); 1002 MVT VT = Node->getValueType(0); 1003 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1004 default: assert(0 && "This action is not supported yet!"); 1005 case TargetLowering::Expand: { 1006 unsigned Reg = TLI.getExceptionSelectorRegister(); 1007 Result = DAG.getCopyFromReg(Tmp2, Reg, VT); 1008 } 1009 break; 1010 case TargetLowering::Custom: 1011 Result = TLI.LowerOperation(Op, DAG); 1012 if (Result.getNode()) break; 1013 // Fall Thru 1014 case TargetLowering::Legal: { 1015 SDValue Ops[] = { DAG.getConstant(0, VT), Tmp2 }; 1016 Result = DAG.getMergeValues(Ops, 2); 1017 break; 1018 } 1019 } 1020 } 1021 if (Result.getNode()->getNumValues() == 1) break; 1022 1023 assert(Result.getNode()->getNumValues() == 2 && 1024 "Cannot return more than two values!"); 1025 1026 // Since we produced two values, make sure to remember that we 1027 // legalized both of them. 1028 Tmp1 = LegalizeOp(Result); 1029 Tmp2 = LegalizeOp(Result.getValue(1)); 1030 AddLegalizedOperand(Op.getValue(0), Tmp1); 1031 AddLegalizedOperand(Op.getValue(1), Tmp2); 1032 return Op.getResNo() ? Tmp2 : Tmp1; 1033 case ISD::EH_RETURN: { 1034 MVT VT = Node->getValueType(0); 1035 // The only "good" option for this node is to custom lower it. 1036 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1037 default: assert(0 && "This action is not supported at all!"); 1038 case TargetLowering::Custom: 1039 Result = TLI.LowerOperation(Op, DAG); 1040 if (Result.getNode()) break; 1041 // Fall Thru 1042 case TargetLowering::Legal: 1043 // Target does not know, how to lower this, lower to noop 1044 Result = LegalizeOp(Node->getOperand(0)); 1045 break; 1046 } 1047 } 1048 break; 1049 case ISD::AssertSext: 1050 case ISD::AssertZext: 1051 Tmp1 = LegalizeOp(Node->getOperand(0)); 1052 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 1053 break; 1054 case ISD::MERGE_VALUES: 1055 // Legalize eliminates MERGE_VALUES nodes. 1056 Result = Node->getOperand(Op.getResNo()); 1057 break; 1058 case ISD::CopyFromReg: 1059 Tmp1 = LegalizeOp(Node->getOperand(0)); 1060 Result = Op.getValue(0); 1061 if (Node->getNumValues() == 2) { 1062 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 1063 } else { 1064 assert(Node->getNumValues() == 3 && "Invalid copyfromreg!"); 1065 if (Node->getNumOperands() == 3) { 1066 Tmp2 = LegalizeOp(Node->getOperand(2)); 1067 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2); 1068 } else { 1069 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 1070 } 1071 AddLegalizedOperand(Op.getValue(2), Result.getValue(2)); 1072 } 1073 // Since CopyFromReg produces two values, make sure to remember that we 1074 // legalized both of them. 1075 AddLegalizedOperand(Op.getValue(0), Result); 1076 AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); 1077 return Result.getValue(Op.getResNo()); 1078 case ISD::UNDEF: { 1079 MVT VT = Op.getValueType(); 1080 switch (TLI.getOperationAction(ISD::UNDEF, VT)) { 1081 default: assert(0 && "This action is not supported yet!"); 1082 case TargetLowering::Expand: 1083 if (VT.isInteger()) 1084 Result = DAG.getConstant(0, VT); 1085 else if (VT.isFloatingPoint()) 1086 Result = DAG.getConstantFP(APFloat(APInt(VT.getSizeInBits(), 0)), 1087 VT); 1088 else 1089 assert(0 && "Unknown value type!"); 1090 break; 1091 case TargetLowering::Legal: 1092 break; 1093 } 1094 break; 1095 } 1096 1097 case ISD::INTRINSIC_W_CHAIN: 1098 case ISD::INTRINSIC_WO_CHAIN: 1099 case ISD::INTRINSIC_VOID: { 1100 SmallVector<SDValue, 8> Ops; 1101 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 1102 Ops.push_back(LegalizeOp(Node->getOperand(i))); 1103 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1104 1105 // Allow the target to custom lower its intrinsics if it wants to. 1106 if (TLI.getOperationAction(Node->getOpcode(), MVT::Other) == 1107 TargetLowering::Custom) { 1108 Tmp3 = TLI.LowerOperation(Result, DAG); 1109 if (Tmp3.getNode()) Result = Tmp3; 1110 } 1111 1112 if (Result.getNode()->getNumValues() == 1) break; 1113 1114 // Must have return value and chain result. 1115 assert(Result.getNode()->getNumValues() == 2 && 1116 "Cannot return more than two values!"); 1117 1118 // Since loads produce two values, make sure to remember that we 1119 // legalized both of them. 1120 AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); 1121 AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); 1122 return Result.getValue(Op.getResNo()); 1123 } 1124 1125 case ISD::DBG_STOPPOINT: 1126 assert(Node->getNumOperands() == 1 && "Invalid DBG_STOPPOINT node!"); 1127 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the input chain. 1128 1129 switch (TLI.getOperationAction(ISD::DBG_STOPPOINT, MVT::Other)) { 1130 case TargetLowering::Promote: 1131 default: assert(0 && "This action is not supported yet!"); 1132 case TargetLowering::Expand: { 1133 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 1134 bool useDEBUG_LOC = TLI.isOperationLegal(ISD::DEBUG_LOC, MVT::Other); 1135 bool useLABEL = TLI.isOperationLegal(ISD::DBG_LABEL, MVT::Other); 1136 1137 const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(Node); 1138 if (MMI && (useDEBUG_LOC || useLABEL)) { 1139 const CompileUnitDesc *CompileUnit = DSP->getCompileUnit(); 1140 unsigned SrcFile = MMI->RecordSource(CompileUnit); 1141 1142 unsigned Line = DSP->getLine(); 1143 unsigned Col = DSP->getColumn(); 1144 1145 if (useDEBUG_LOC) { 1146 SDValue Ops[] = { Tmp1, DAG.getConstant(Line, MVT::i32), 1147 DAG.getConstant(Col, MVT::i32), 1148 DAG.getConstant(SrcFile, MVT::i32) }; 1149 Result = DAG.getNode(ISD::DEBUG_LOC, MVT::Other, Ops, 4); 1150 } else { 1151 unsigned ID = MMI->RecordSourceLine(Line, Col, SrcFile); 1152 Result = DAG.getLabel(ISD::DBG_LABEL, Tmp1, ID); 1153 } 1154 } else { 1155 Result = Tmp1; // chain 1156 } 1157 break; 1158 } 1159 case TargetLowering::Legal: { 1160 LegalizeAction Action = getTypeAction(Node->getOperand(1).getValueType()); 1161 if (Action == Legal && Tmp1 == Node->getOperand(0)) 1162 break; 1163 1164 SmallVector<SDValue, 8> Ops; 1165 Ops.push_back(Tmp1); 1166 if (Action == Legal) { 1167 Ops.push_back(Node->getOperand(1)); // line # must be legal. 1168 Ops.push_back(Node->getOperand(2)); // col # must be legal. 1169 } else { 1170 // Otherwise promote them. 1171 Ops.push_back(PromoteOp(Node->getOperand(1))); 1172 Ops.push_back(PromoteOp(Node->getOperand(2))); 1173 } 1174 Ops.push_back(Node->getOperand(3)); // filename must be legal. 1175 Ops.push_back(Node->getOperand(4)); // working dir # must be legal. 1176 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1177 break; 1178 } 1179 } 1180 break; 1181 1182 case ISD::DECLARE: 1183 assert(Node->getNumOperands() == 3 && "Invalid DECLARE node!"); 1184 switch (TLI.getOperationAction(ISD::DECLARE, MVT::Other)) { 1185 default: assert(0 && "This action is not supported yet!"); 1186 case TargetLowering::Legal: 1187 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1188 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the address. 1189 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the variable. 1190 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1191 break; 1192 case TargetLowering::Expand: 1193 Result = LegalizeOp(Node->getOperand(0)); 1194 break; 1195 } 1196 break; 1197 1198 case ISD::DEBUG_LOC: 1199 assert(Node->getNumOperands() == 4 && "Invalid DEBUG_LOC node!"); 1200 switch (TLI.getOperationAction(ISD::DEBUG_LOC, MVT::Other)) { 1201 default: assert(0 && "This action is not supported yet!"); 1202 case TargetLowering::Legal: { 1203 LegalizeAction Action = getTypeAction(Node->getOperand(1).getValueType()); 1204 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1205 if (Action == Legal && Tmp1 == Node->getOperand(0)) 1206 break; 1207 if (Action == Legal) { 1208 Tmp2 = Node->getOperand(1); 1209 Tmp3 = Node->getOperand(2); 1210 Tmp4 = Node->getOperand(3); 1211 } else { 1212 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the line #. 1213 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the col #. 1214 Tmp4 = LegalizeOp(Node->getOperand(3)); // Legalize the source file id. 1215 } 1216 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4); 1217 break; 1218 } 1219 } 1220 break; 1221 1222 case ISD::DBG_LABEL: 1223 case ISD::EH_LABEL: 1224 assert(Node->getNumOperands() == 1 && "Invalid LABEL node!"); 1225 switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) { 1226 default: assert(0 && "This action is not supported yet!"); 1227 case TargetLowering::Legal: 1228 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1229 Result = DAG.UpdateNodeOperands(Result, Tmp1); 1230 break; 1231 case TargetLowering::Expand: 1232 Result = LegalizeOp(Node->getOperand(0)); 1233 break; 1234 } 1235 break; 1236 1237 case ISD::PREFETCH: 1238 assert(Node->getNumOperands() == 4 && "Invalid Prefetch node!"); 1239 switch (TLI.getOperationAction(ISD::PREFETCH, MVT::Other)) { 1240 default: assert(0 && "This action is not supported yet!"); 1241 case TargetLowering::Legal: 1242 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1243 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the address. 1244 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the rw specifier. 1245 Tmp4 = LegalizeOp(Node->getOperand(3)); // Legalize locality specifier. 1246 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4); 1247 break; 1248 case TargetLowering::Expand: 1249 // It's a noop. 1250 Result = LegalizeOp(Node->getOperand(0)); 1251 break; 1252 } 1253 break; 1254 1255 case ISD::MEMBARRIER: { 1256 assert(Node->getNumOperands() == 6 && "Invalid MemBarrier node!"); 1257 switch (TLI.getOperationAction(ISD::MEMBARRIER, MVT::Other)) { 1258 default: assert(0 && "This action is not supported yet!"); 1259 case TargetLowering::Legal: { 1260 SDValue Ops[6]; 1261 Ops[0] = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1262 for (int x = 1; x < 6; ++x) { 1263 Ops[x] = Node->getOperand(x); 1264 if (!isTypeLegal(Ops[x].getValueType())) 1265 Ops[x] = PromoteOp(Ops[x]); 1266 } 1267 Result = DAG.UpdateNodeOperands(Result, &Ops[0], 6); 1268 break; 1269 } 1270 case TargetLowering::Expand: 1271 //There is no libgcc call for this op 1272 Result = Node->getOperand(0); // Noop 1273 break; 1274 } 1275 break; 1276 } 1277 1278 case ISD::ATOMIC_CMP_SWAP_8: 1279 case ISD::ATOMIC_CMP_SWAP_16: 1280 case ISD::ATOMIC_CMP_SWAP_32: 1281 case ISD::ATOMIC_CMP_SWAP_64: { 1282 unsigned int num_operands = 4; 1283 assert(Node->getNumOperands() == num_operands && "Invalid Atomic node!"); 1284 SDValue Ops[4]; 1285 for (unsigned int x = 0; x < num_operands; ++x) 1286 Ops[x] = LegalizeOp(Node->getOperand(x)); 1287 Result = DAG.UpdateNodeOperands(Result, &Ops[0], num_operands); 1288 1289 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 1290 default: assert(0 && "This action is not supported yet!"); 1291 case TargetLowering::Custom: 1292 Result = TLI.LowerOperation(Result, DAG); 1293 break; 1294 case TargetLowering::Legal: 1295 break; 1296 } 1297 AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); 1298 AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); 1299 return Result.getValue(Op.getResNo()); 1300 } 1301 case ISD::ATOMIC_LOAD_ADD_8: 1302 case ISD::ATOMIC_LOAD_SUB_8: 1303 case ISD::ATOMIC_LOAD_AND_8: 1304 case ISD::ATOMIC_LOAD_OR_8: 1305 case ISD::ATOMIC_LOAD_XOR_8: 1306 case ISD::ATOMIC_LOAD_NAND_8: 1307 case ISD::ATOMIC_LOAD_MIN_8: 1308 case ISD::ATOMIC_LOAD_MAX_8: 1309 case ISD::ATOMIC_LOAD_UMIN_8: 1310 case ISD::ATOMIC_LOAD_UMAX_8: 1311 case ISD::ATOMIC_SWAP_8: 1312 case ISD::ATOMIC_LOAD_ADD_16: 1313 case ISD::ATOMIC_LOAD_SUB_16: 1314 case ISD::ATOMIC_LOAD_AND_16: 1315 case ISD::ATOMIC_LOAD_OR_16: 1316 case ISD::ATOMIC_LOAD_XOR_16: 1317 case ISD::ATOMIC_LOAD_NAND_16: 1318 case ISD::ATOMIC_LOAD_MIN_16: 1319 case ISD::ATOMIC_LOAD_MAX_16: 1320 case ISD::ATOMIC_LOAD_UMIN_16: 1321 case ISD::ATOMIC_LOAD_UMAX_16: 1322 case ISD::ATOMIC_SWAP_16: 1323 case ISD::ATOMIC_LOAD_ADD_32: 1324 case ISD::ATOMIC_LOAD_SUB_32: 1325 case ISD::ATOMIC_LOAD_AND_32: 1326 case ISD::ATOMIC_LOAD_OR_32: 1327 case ISD::ATOMIC_LOAD_XOR_32: 1328 case ISD::ATOMIC_LOAD_NAND_32: 1329 case ISD::ATOMIC_LOAD_MIN_32: 1330 case ISD::ATOMIC_LOAD_MAX_32: 1331 case ISD::ATOMIC_LOAD_UMIN_32: 1332 case ISD::ATOMIC_LOAD_UMAX_32: 1333 case ISD::ATOMIC_SWAP_32: 1334 case ISD::ATOMIC_LOAD_ADD_64: 1335 case ISD::ATOMIC_LOAD_SUB_64: 1336 case ISD::ATOMIC_LOAD_AND_64: 1337 case ISD::ATOMIC_LOAD_OR_64: 1338 case ISD::ATOMIC_LOAD_XOR_64: 1339 case ISD::ATOMIC_LOAD_NAND_64: 1340 case ISD::ATOMIC_LOAD_MIN_64: 1341 case ISD::ATOMIC_LOAD_MAX_64: 1342 case ISD::ATOMIC_LOAD_UMIN_64: 1343 case ISD::ATOMIC_LOAD_UMAX_64: 1344 case ISD::ATOMIC_SWAP_64: { 1345 unsigned int num_operands = 3; 1346 assert(Node->getNumOperands() == num_operands && "Invalid Atomic node!"); 1347 SDValue Ops[3]; 1348 for (unsigned int x = 0; x < num_operands; ++x) 1349 Ops[x] = LegalizeOp(Node->getOperand(x)); 1350 Result = DAG.UpdateNodeOperands(Result, &Ops[0], num_operands); 1351 1352 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 1353 default: assert(0 && "This action is not supported yet!"); 1354 case TargetLowering::Custom: 1355 Result = TLI.LowerOperation(Result, DAG); 1356 break; 1357 case TargetLowering::Legal: 1358 break; 1359 } 1360 AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); 1361 AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); 1362 return Result.getValue(Op.getResNo()); 1363 } 1364 case ISD::Constant: { 1365 ConstantSDNode *CN = cast<ConstantSDNode>(Node); 1366 unsigned opAction = 1367 TLI.getOperationAction(ISD::Constant, CN->getValueType(0)); 1368 1369 // We know we don't need to expand constants here, constants only have one 1370 // value and we check that it is fine above. 1371 1372 if (opAction == TargetLowering::Custom) { 1373 Tmp1 = TLI.LowerOperation(Result, DAG); 1374 if (Tmp1.getNode()) 1375 Result = Tmp1; 1376 } 1377 break; 1378 } 1379 case ISD::ConstantFP: { 1380 // Spill FP immediates to the constant pool if the target cannot directly 1381 // codegen them. Targets often have some immediate values that can be 1382 // efficiently generated into an FP register without a load. We explicitly 1383 // leave these constants as ConstantFP nodes for the target to deal with. 1384 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 1385 1386 switch (TLI.getOperationAction(ISD::ConstantFP, CFP->getValueType(0))) { 1387 default: assert(0 && "This action is not supported yet!"); 1388 case TargetLowering::Legal: 1389 break; 1390 case TargetLowering::Custom: 1391 Tmp3 = TLI.LowerOperation(Result, DAG); 1392 if (Tmp3.getNode()) { 1393 Result = Tmp3; 1394 break; 1395 } 1396 // FALLTHROUGH 1397 case TargetLowering::Expand: { 1398 // Check to see if this FP immediate is already legal. 1399 bool isLegal = false; 1400 for (TargetLowering::legal_fpimm_iterator I = TLI.legal_fpimm_begin(), 1401 E = TLI.legal_fpimm_end(); I != E; ++I) { 1402 if (CFP->isExactlyValue(*I)) { 1403 isLegal = true; 1404 break; 1405 } 1406 } 1407 // If this is a legal constant, turn it into a TargetConstantFP node. 1408 if (isLegal) 1409 break; 1410 Result = ExpandConstantFP(CFP, true, DAG, TLI); 1411 } 1412 } 1413 break; 1414 } 1415 case ISD::TokenFactor: 1416 if (Node->getNumOperands() == 2) { 1417 Tmp1 = LegalizeOp(Node->getOperand(0)); 1418 Tmp2 = LegalizeOp(Node->getOperand(1)); 1419 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1420 } else if (Node->getNumOperands() == 3) { 1421 Tmp1 = LegalizeOp(Node->getOperand(0)); 1422 Tmp2 = LegalizeOp(Node->getOperand(1)); 1423 Tmp3 = LegalizeOp(Node->getOperand(2)); 1424 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1425 } else { 1426 SmallVector<SDValue, 8> Ops; 1427 // Legalize the operands. 1428 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 1429 Ops.push_back(LegalizeOp(Node->getOperand(i))); 1430 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1431 } 1432 break; 1433 1434 case ISD::FORMAL_ARGUMENTS: 1435 case ISD::CALL: 1436 // The only option for this is to custom lower it. 1437 Tmp3 = TLI.LowerOperation(Result.getValue(0), DAG); 1438 assert(Tmp3.getNode() && "Target didn't custom lower this node!"); 1439 // A call within a calling sequence must be legalized to something 1440 // other than the normal CALLSEQ_END. Violating this gets Legalize 1441 // into an infinite loop. 1442 assert ((!IsLegalizingCall || 1443 Node->getOpcode() != ISD::CALL || 1444 Tmp3.getNode()->getOpcode() != ISD::CALLSEQ_END) && 1445 "Nested CALLSEQ_START..CALLSEQ_END not supported."); 1446 1447 // The number of incoming and outgoing values should match; unless the final 1448 // outgoing value is a flag. 1449 assert((Tmp3.getNode()->getNumValues() == Result.getNode()->getNumValues() || 1450 (Tmp3.getNode()->getNumValues() == Result.getNode()->getNumValues() + 1 && 1451 Tmp3.getNode()->getValueType(Tmp3.getNode()->getNumValues() - 1) == 1452 MVT::Flag)) && 1453 "Lowering call/formal_arguments produced unexpected # results!"); 1454 1455 // Since CALL/FORMAL_ARGUMENTS nodes produce multiple values, make sure to 1456 // remember that we legalized all of them, so it doesn't get relegalized. 1457 for (unsigned i = 0, e = Tmp3.getNode()->getNumValues(); i != e; ++i) { 1458 if (Tmp3.getNode()->getValueType(i) == MVT::Flag) 1459 continue; 1460 Tmp1 = LegalizeOp(Tmp3.getValue(i)); 1461 if (Op.getResNo() == i) 1462 Tmp2 = Tmp1; 1463 AddLegalizedOperand(SDValue(Node, i), Tmp1); 1464 } 1465 return Tmp2; 1466 case ISD::EXTRACT_SUBREG: { 1467 Tmp1 = LegalizeOp(Node->getOperand(0)); 1468 ConstantSDNode *idx = dyn_cast<ConstantSDNode>(Node->getOperand(1)); 1469 assert(idx && "Operand must be a constant"); 1470 Tmp2 = DAG.getTargetConstant(idx->getAPIntValue(), idx->getValueType(0)); 1471 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1472 } 1473 break; 1474 case ISD::INSERT_SUBREG: { 1475 Tmp1 = LegalizeOp(Node->getOperand(0)); 1476 Tmp2 = LegalizeOp(Node->getOperand(1)); 1477 ConstantSDNode *idx = dyn_cast<ConstantSDNode>(Node->getOperand(2)); 1478 assert(idx && "Operand must be a constant"); 1479 Tmp3 = DAG.getTargetConstant(idx->getAPIntValue(), idx->getValueType(0)); 1480 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1481 } 1482 break; 1483 case ISD::BUILD_VECTOR: 1484 switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) { 1485 default: assert(0 && "This action is not supported yet!"); 1486 case TargetLowering::Custom: 1487 Tmp3 = TLI.LowerOperation(Result, DAG); 1488 if (Tmp3.getNode()) { 1489 Result = Tmp3; 1490 break; 1491 } 1492 // FALLTHROUGH 1493 case TargetLowering::Expand: 1494 Result = ExpandBUILD_VECTOR(Result.getNode()); 1495 break; 1496 } 1497 break; 1498 case ISD::INSERT_VECTOR_ELT: 1499 Tmp1 = LegalizeOp(Node->getOperand(0)); // InVec 1500 Tmp3 = LegalizeOp(Node->getOperand(2)); // InEltNo 1501 1502 // The type of the value to insert may not be legal, even though the vector 1503 // type is legal. Legalize/Promote accordingly. We do not handle Expand 1504 // here. 1505 switch (getTypeAction(Node->getOperand(1).getValueType())) { 1506 default: assert(0 && "Cannot expand insert element operand"); 1507 case Legal: Tmp2 = LegalizeOp(Node->getOperand(1)); break; 1508 case Promote: Tmp2 = PromoteOp(Node->getOperand(1)); break; 1509 case Expand: 1510 // FIXME: An alternative would be to check to see if the target is not 1511 // going to custom lower this operation, we could bitcast to half elt 1512 // width and perform two inserts at that width, if that is legal. 1513 Tmp2 = Node->getOperand(1); 1514 break; 1515 } 1516 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1517 1518 switch (TLI.getOperationAction(ISD::INSERT_VECTOR_ELT, 1519 Node->getValueType(0))) { 1520 default: assert(0 && "This action is not supported yet!"); 1521 case TargetLowering::Legal: 1522 break; 1523 case TargetLowering::Custom: 1524 Tmp4 = TLI.LowerOperation(Result, DAG); 1525 if (Tmp4.getNode()) { 1526 Result = Tmp4; 1527 break; 1528 } 1529 // FALLTHROUGH 1530 case TargetLowering::Promote: 1531 // Fall thru for vector case 1532 case TargetLowering::Expand: { 1533 // If the insert index is a constant, codegen this as a scalar_to_vector, 1534 // then a shuffle that inserts it into the right position in the vector. 1535 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Tmp3)) { 1536 // SCALAR_TO_VECTOR requires that the type of the value being inserted 1537 // match the element type of the vector being created. 1538 if (Tmp2.getValueType() == 1539 Op.getValueType().getVectorElementType()) { 1540 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, 1541 Tmp1.getValueType(), Tmp2); 1542 1543 unsigned NumElts = Tmp1.getValueType().getVectorNumElements(); 1544 MVT ShufMaskVT = 1545 MVT::getIntVectorWithNumElements(NumElts); 1546 MVT ShufMaskEltVT = ShufMaskVT.getVectorElementType(); 1547 1548 // We generate a shuffle of InVec and ScVec, so the shuffle mask 1549 // should be 0,1,2,3,4,5... with the appropriate element replaced with 1550 // elt 0 of the RHS. 1551 SmallVector<SDValue, 8> ShufOps; 1552 for (unsigned i = 0; i != NumElts; ++i) { 1553 if (i != InsertPos->getZExtValue()) 1554 ShufOps.push_back(DAG.getConstant(i, ShufMaskEltVT)); 1555 else 1556 ShufOps.push_back(DAG.getConstant(NumElts, ShufMaskEltVT)); 1557 } 1558 SDValue ShufMask = DAG.getNode(ISD::BUILD_VECTOR, ShufMaskVT, 1559 &ShufOps[0], ShufOps.size()); 1560 1561 Result = DAG.getNode(ISD::VECTOR_SHUFFLE, Tmp1.getValueType(), 1562 Tmp1, ScVec, ShufMask); 1563 Result = LegalizeOp(Result); 1564 break; 1565 } 1566 } 1567 Result = PerformInsertVectorEltInMemory(Tmp1, Tmp2, Tmp3); 1568 break; 1569 } 1570 } 1571 break; 1572 case ISD::SCALAR_TO_VECTOR: 1573 if (!TLI.isTypeLegal(Node->getOperand(0).getValueType())) { 1574 Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node)); 1575 break; 1576 } 1577 1578 Tmp1 = LegalizeOp(Node->getOperand(0)); // InVal 1579 Result = DAG.UpdateNodeOperands(Result, Tmp1); 1580 switch (TLI.getOperationAction(ISD::SCALAR_TO_VECTOR, 1581 Node->getValueType(0))) { 1582 default: assert(0 && "This action is not supported yet!"); 1583 case TargetLowering::Legal: 1584 break; 1585 case TargetLowering::Custom: 1586 Tmp3 = TLI.LowerOperation(Result, DAG); 1587 if (Tmp3.getNode()) { 1588 Result = Tmp3; 1589 break; 1590 } 1591 // FALLTHROUGH 1592 case TargetLowering::Expand: 1593 Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node)); 1594 break; 1595 } 1596 break; 1597 case ISD::VECTOR_SHUFFLE: 1598 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the input vectors, 1599 Tmp2 = LegalizeOp(Node->getOperand(1)); // but not the shuffle mask. 1600 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 1601 1602 // Allow targets to custom lower the SHUFFLEs they support. 1603 switch (TLI.getOperationAction(ISD::VECTOR_SHUFFLE,Result.getValueType())) { 1604 default: assert(0 && "Unknown operation action!"); 1605 case TargetLowering::Legal: 1606 assert(isShuffleLegal(Result.getValueType(), Node->getOperand(2)) && 1607 "vector shuffle should not be created if not legal!"); 1608 break; 1609 case TargetLowering::Custom: 1610 Tmp3 = TLI.LowerOperation(Result, DAG); 1611 if (Tmp3.getNode()) { 1612 Result = Tmp3; 1613 break; 1614 } 1615 // FALLTHROUGH 1616 case TargetLowering::Expand: { 1617 MVT VT = Node->getValueType(0); 1618 MVT EltVT = VT.getVectorElementType(); 1619 MVT PtrVT = TLI.getPointerTy(); 1620 SDValue Mask = Node->getOperand(2); 1621 unsigned NumElems = Mask.getNumOperands(); 1622 SmallVector<SDValue,8> Ops; 1623 for (unsigned i = 0; i != NumElems; ++i) { 1624 SDValue Arg = Mask.getOperand(i); 1625 if (Arg.getOpcode() == ISD::UNDEF) { 1626 Ops.push_back(DAG.getNode(ISD::UNDEF, EltVT)); 1627 } else { 1628 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 1629 unsigned Idx = cast<ConstantSDNode>(Arg)->getZExtValue(); 1630 if (Idx < NumElems) 1631 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Tmp1, 1632 DAG.getConstant(Idx, PtrVT))); 1633 else 1634 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Tmp2, 1635 DAG.getConstant(Idx - NumElems, PtrVT))); 1636 } 1637 } 1638 Result = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()); 1639 break; 1640 } 1641 case TargetLowering::Promote: { 1642 // Change base type to a different vector type. 1643 MVT OVT = Node->getValueType(0); 1644 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 1645 1646 // Cast the two input vectors. 1647 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp1); 1648 Tmp2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp2); 1649 1650 // Convert the shuffle mask to the right # elements. 1651 Tmp3 = SDValue(isShuffleLegal(OVT, Node->getOperand(2)), 0); 1652 assert(Tmp3.getNode() && "Shuffle not legal?"); 1653 Result = DAG.getNode(ISD::VECTOR_SHUFFLE, NVT, Tmp1, Tmp2, Tmp3); 1654 Result = DAG.getNode(ISD::BIT_CONVERT, OVT, Result); 1655 break; 1656 } 1657 } 1658 break; 1659 1660 case ISD::EXTRACT_VECTOR_ELT: 1661 Tmp1 = Node->getOperand(0); 1662 Tmp2 = LegalizeOp(Node->getOperand(1)); 1663 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1664 Result = ExpandEXTRACT_VECTOR_ELT(Result); 1665 break; 1666 1667 case ISD::EXTRACT_SUBVECTOR: 1668 Tmp1 = Node->getOperand(0); 1669 Tmp2 = LegalizeOp(Node->getOperand(1)); 1670 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1671 Result = ExpandEXTRACT_SUBVECTOR(Result); 1672 break; 1673 1674 case ISD::CONCAT_VECTORS: { 1675 // Use extract/insert/build vector for now. We might try to be 1676 // more clever later. 1677 MVT PtrVT = TLI.getPointerTy(); 1678 SmallVector<SDValue, 8> Ops; 1679 unsigned NumOperands = Node->getNumOperands(); 1680 for (unsigned i=0; i < NumOperands; ++i) { 1681 SDValue SubOp = Node->getOperand(i); 1682 MVT VVT = SubOp.getNode()->getValueType(0); 1683 MVT EltVT = VVT.getVectorElementType(); 1684 unsigned NumSubElem = VVT.getVectorNumElements(); 1685 for (unsigned j=0; j < NumSubElem; ++j) { 1686 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, SubOp, 1687 DAG.getConstant(j, PtrVT))); 1688 } 1689 } 1690 return LegalizeOp(DAG.getNode(ISD::BUILD_VECTOR, Node->getValueType(0), 1691 &Ops[0], Ops.size())); 1692 } 1693 1694 case ISD::CALLSEQ_START: { 1695 SDNode *CallEnd = FindCallEndFromCallStart(Node); 1696 1697 // Recursively Legalize all of the inputs of the call end that do not lead 1698 // to this call start. This ensures that any libcalls that need be inserted 1699 // are inserted *before* the CALLSEQ_START. 1700 {SmallPtrSet<SDNode*, 32> NodesLeadingTo; 1701 for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i) 1702 LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node, 1703 NodesLeadingTo); 1704 } 1705 1706 // Now that we legalized all of the inputs (which may have inserted 1707 // libcalls) create the new CALLSEQ_START node. 1708 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1709 1710 // Merge in the last call, to ensure that this call start after the last 1711 // call ended. 1712 if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) { 1713 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1714 Tmp1 = LegalizeOp(Tmp1); 1715 } 1716 1717 // Do not try to legalize the target-specific arguments (#1+). 1718 if (Tmp1 != Node->getOperand(0)) { 1719 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end()); 1720 Ops[0] = Tmp1; 1721 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1722 } 1723 1724 // Remember that the CALLSEQ_START is legalized. 1725 AddLegalizedOperand(Op.getValue(0), Result); 1726 if (Node->getNumValues() == 2) // If this has a flag result, remember it. 1727 AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); 1728 1729 // Now that the callseq_start and all of the non-call nodes above this call 1730 // sequence have been legalized, legalize the call itself. During this 1731 // process, no libcalls can/will be inserted, guaranteeing that no calls 1732 // can overlap. 1733 assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!"); 1734 // Note that we are selecting this call! 1735 LastCALLSEQ_END = SDValue(CallEnd, 0); 1736 IsLegalizingCall = true; 1737 1738 // Legalize the call, starting from the CALLSEQ_END. 1739 LegalizeOp(LastCALLSEQ_END); 1740 assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!"); 1741 return Result; 1742 } 1743 case ISD::CALLSEQ_END: 1744 // If the CALLSEQ_START node hasn't been legalized first, legalize it. This 1745 // will cause this node to be legalized as well as handling libcalls right. 1746 if (LastCALLSEQ_END.getNode() != Node) { 1747 LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0)); 1748 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 1749 assert(I != LegalizedNodes.end() && 1750 "Legalizing the call start should have legalized this node!"); 1751 return I->second; 1752 } 1753 1754 // Otherwise, the call start has been legalized and everything is going 1755 // according to plan. Just legalize ourselves normally here. 1756 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1757 // Do not try to legalize the target-specific arguments (#1+), except for 1758 // an optional flag input. 1759 if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){ 1760 if (Tmp1 != Node->getOperand(0)) { 1761 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end()); 1762 Ops[0] = Tmp1; 1763 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1764 } 1765 } else { 1766 Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1)); 1767 if (Tmp1 != Node->getOperand(0) || 1768 Tmp2 != Node->getOperand(Node->getNumOperands()-1)) { 1769 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end()); 1770 Ops[0] = Tmp1; 1771 Ops.back() = Tmp2; 1772 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1773 } 1774 } 1775 assert(IsLegalizingCall && "Call sequence imbalance between start/end?"); 1776 // This finishes up call legalization. 1777 IsLegalizingCall = false; 1778 1779 // If the CALLSEQ_END node has a flag, remember that we legalized it. 1780 AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); 1781 if (Node->getNumValues() == 2) 1782 AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); 1783 return Result.getValue(Op.getResNo()); 1784 case ISD::DYNAMIC_STACKALLOC: { 1785 MVT VT = Node->getValueType(0); 1786 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1787 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the size. 1788 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the alignment. 1789 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1790 1791 Tmp1 = Result.getValue(0); 1792 Tmp2 = Result.getValue(1); 1793 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1794 default: assert(0 && "This action is not supported yet!"); 1795 case TargetLowering::Expand: { 1796 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1797 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1798 " not tell us which reg is the stack pointer!"); 1799 SDValue Chain = Tmp1.getOperand(0); 1800 1801 // Chain the dynamic stack allocation so that it doesn't modify the stack 1802 // pointer when other instructions are using the stack. 1803 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true)); 1804 1805 SDValue Size = Tmp2.getOperand(1); 1806 SDValue SP = DAG.getCopyFromReg(Chain, SPReg, VT); 1807 Chain = SP.getValue(1); 1808 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); 1809 unsigned StackAlign = 1810 TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); 1811 if (Align > StackAlign) 1812 SP = DAG.getNode(ISD::AND, VT, SP, 1813 DAG.getConstant(-(uint64_t)Align, VT)); 1814 Tmp1 = DAG.getNode(ISD::SUB, VT, SP, Size); // Value 1815 Chain = DAG.getCopyToReg(Chain, SPReg, Tmp1); // Output chain 1816 1817 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true), 1818 DAG.getIntPtrConstant(0, true), SDValue()); 1819 1820 Tmp1 = LegalizeOp(Tmp1); 1821 Tmp2 = LegalizeOp(Tmp2); 1822 break; 1823 } 1824 case TargetLowering::Custom: 1825 Tmp3 = TLI.LowerOperation(Tmp1, DAG); 1826 if (Tmp3.getNode()) { 1827 Tmp1 = LegalizeOp(Tmp3); 1828 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 1829 } 1830 break; 1831 case TargetLowering::Legal: 1832 break; 1833 } 1834 // Since this op produce two values, make sure to remember that we 1835 // legalized both of them. 1836 AddLegalizedOperand(SDValue(Node, 0), Tmp1); 1837 AddLegalizedOperand(SDValue(Node, 1), Tmp2); 1838 return Op.getResNo() ? Tmp2 : Tmp1; 1839 } 1840 case ISD::INLINEASM: { 1841 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end()); 1842 bool Changed = false; 1843 // Legalize all of the operands of the inline asm, in case they are nodes 1844 // that need to be expanded or something. Note we skip the asm string and 1845 // all of the TargetConstant flags. 1846 SDValue Op = LegalizeOp(Ops[0]); 1847 Changed = Op != Ops[0]; 1848 Ops[0] = Op; 1849 1850 bool HasInFlag = Ops.back().getValueType() == MVT::Flag; 1851 for (unsigned i = 2, e = Ops.size()-HasInFlag; i < e; ) { 1852 unsigned NumVals = cast<ConstantSDNode>(Ops[i])->getZExtValue() >> 3; 1853 for (++i; NumVals; ++i, --NumVals) { 1854 SDValue Op = LegalizeOp(Ops[i]); 1855 if (Op != Ops[i]) { 1856 Changed = true; 1857 Ops[i] = Op; 1858 } 1859 } 1860 } 1861 1862 if (HasInFlag) { 1863 Op = LegalizeOp(Ops.back()); 1864 Changed |= Op != Ops.back(); 1865 Ops.back() = Op; 1866 } 1867 1868 if (Changed) 1869 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1870 1871 // INLINE asm returns a chain and flag, make sure to add both to the map. 1872 AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); 1873 AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); 1874 return Result.getValue(Op.getResNo()); 1875 } 1876 case ISD::BR: 1877 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1878 // Ensure that libcalls are emitted before a branch. 1879 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1880 Tmp1 = LegalizeOp(Tmp1); 1881 LastCALLSEQ_END = DAG.getEntryNode(); 1882 1883 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 1884 break; 1885 case ISD::BRIND: 1886 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1887 // Ensure that libcalls are emitted before a branch. 1888 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1889 Tmp1 = LegalizeOp(Tmp1); 1890 LastCALLSEQ_END = DAG.getEntryNode(); 1891 1892 switch (getTypeAction(Node->getOperand(1).getValueType())) { 1893 default: assert(0 && "Indirect target must be legal type (pointer)!"); 1894 case Legal: 1895 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition. 1896 break; 1897 } 1898 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1899 break; 1900 case ISD::BR_JT: 1901 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1902 // Ensure that libcalls are emitted before a branch. 1903 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1904 Tmp1 = LegalizeOp(Tmp1); 1905 LastCALLSEQ_END = DAG.getEntryNode(); 1906 1907 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the jumptable node. 1908 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 1909 1910 switch (TLI.getOperationAction(ISD::BR_JT, MVT::Other)) { 1911 default: assert(0 && "This action is not supported yet!"); 1912 case TargetLowering::Legal: break; 1913 case TargetLowering::Custom: 1914 Tmp1 = TLI.LowerOperation(Result, DAG); 1915 if (Tmp1.getNode()) Result = Tmp1; 1916 break; 1917 case TargetLowering::Expand: { 1918 SDValue Chain = Result.getOperand(0); 1919 SDValue Table = Result.getOperand(1); 1920 SDValue Index = Result.getOperand(2); 1921 1922 MVT PTy = TLI.getPointerTy(); 1923 MachineFunction &MF = DAG.getMachineFunction(); 1924 unsigned EntrySize = MF.getJumpTableInfo()->getEntrySize(); 1925 Index= DAG.getNode(ISD::MUL, PTy, Index, DAG.getConstant(EntrySize, PTy)); 1926 SDValue Addr = DAG.getNode(ISD::ADD, PTy, Index, Table); 1927 1928 SDValue LD; 1929 switch (EntrySize) { 1930 default: assert(0 && "Size of jump table not supported yet."); break; 1931 case 4: LD = DAG.getLoad(MVT::i32, Chain, Addr, 1932 PseudoSourceValue::getJumpTable(), 0); break; 1933 case 8: LD = DAG.getLoad(MVT::i64, Chain, Addr, 1934 PseudoSourceValue::getJumpTable(), 0); break; 1935 } 1936 1937 Addr = LD; 1938 if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) { 1939 // For PIC, the sequence is: 1940 // BRIND(load(Jumptable + index) + RelocBase) 1941 // RelocBase can be JumpTable, GOT or some sort of global base. 1942 if (PTy != MVT::i32) 1943 Addr = DAG.getNode(ISD::SIGN_EXTEND, PTy, Addr); 1944 Addr = DAG.getNode(ISD::ADD, PTy, Addr, 1945 TLI.getPICJumpTableRelocBase(Table, DAG)); 1946 } 1947 Result = DAG.getNode(ISD::BRIND, MVT::Other, LD.getValue(1), Addr); 1948 } 1949 } 1950 break; 1951 case ISD::BRCOND: 1952 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1953 // Ensure that libcalls are emitted before a return. 1954 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1955 Tmp1 = LegalizeOp(Tmp1); 1956 LastCALLSEQ_END = DAG.getEntryNode(); 1957 1958 switch (getTypeAction(Node->getOperand(1).getValueType())) { 1959 case Expand: assert(0 && "It's impossible to expand bools"); 1960 case Legal: 1961 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition. 1962 break; 1963 case Promote: { 1964 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the condition. 1965 1966 // The top bits of the promoted condition are not necessarily zero, ensure 1967 // that the value is properly zero extended. 1968 unsigned BitWidth = Tmp2.getValueSizeInBits(); 1969 if (!DAG.MaskedValueIsZero(Tmp2, 1970 APInt::getHighBitsSet(BitWidth, BitWidth-1))) 1971 Tmp2 = DAG.getZeroExtendInReg(Tmp2, MVT::i1); 1972 break; 1973 } 1974 } 1975 1976 // Basic block destination (Op#2) is always legal. 1977 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 1978 1979 switch (TLI.getOperationAction(ISD::BRCOND, MVT::Other)) { 1980 default: assert(0 && "This action is not supported yet!"); 1981 case TargetLowering::Legal: break; 1982 case TargetLowering::Custom: 1983 Tmp1 = TLI.LowerOperation(Result, DAG); 1984 if (Tmp1.getNode()) Result = Tmp1; 1985 break; 1986 case TargetLowering::Expand: 1987 // Expand brcond's setcc into its constituent parts and create a BR_CC 1988 // Node. 1989 if (Tmp2.getOpcode() == ISD::SETCC) { 1990 Result = DAG.getNode(ISD::BR_CC, MVT::Other, Tmp1, Tmp2.getOperand(2), 1991 Tmp2.getOperand(0), Tmp2.getOperand(1), 1992 Node->getOperand(2)); 1993 } else { 1994 Result = DAG.getNode(ISD::BR_CC, MVT::Other, Tmp1, 1995 DAG.getCondCode(ISD::SETNE), Tmp2, 1996 DAG.getConstant(0, Tmp2.getValueType()), 1997 Node->getOperand(2)); 1998 } 1999 break; 2000 } 2001 break; 2002 case ISD::BR_CC: 2003 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2004 // Ensure that libcalls are emitted before a branch. 2005 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 2006 Tmp1 = LegalizeOp(Tmp1); 2007 Tmp2 = Node->getOperand(2); // LHS 2008 Tmp3 = Node->getOperand(3); // RHS 2009 Tmp4 = Node->getOperand(1); // CC 2010 2011 LegalizeSetCC(Node->getValueType(0), Tmp2, Tmp3, Tmp4); 2012 LastCALLSEQ_END = DAG.getEntryNode(); 2013 2014 // If we didn't get both a LHS and RHS back from LegalizeSetCC, 2015 // the LHS is a legal SETCC itself. In this case, we need to compare 2016 // the result against zero to select between true and false values. 2017 if (Tmp3.getNode() == 0) { 2018 Tmp3 = DAG.getConstant(0, Tmp2.getValueType()); 2019 Tmp4 = DAG.getCondCode(ISD::SETNE); 2020 } 2021 2022 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp4, Tmp2, Tmp3, 2023 Node->getOperand(4)); 2024 2025 switch (TLI.getOperationAction(ISD::BR_CC, Tmp3.getValueType())) { 2026 default: assert(0 && "Unexpected action for BR_CC!"); 2027 case TargetLowering::Legal: break; 2028 case TargetLowering::Custom: 2029 Tmp4 = TLI.LowerOperation(Result, DAG); 2030 if (Tmp4.getNode()) Result = Tmp4; 2031 break; 2032 } 2033 break; 2034 case ISD::LOAD: { 2035 LoadSDNode *LD = cast<LoadSDNode>(Node); 2036 Tmp1 = LegalizeOp(LD->getChain()); // Legalize the chain. 2037 Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer. 2038 2039 ISD::LoadExtType ExtType = LD->getExtensionType(); 2040 if (ExtType == ISD::NON_EXTLOAD) { 2041 MVT VT = Node->getValueType(0); 2042 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset()); 2043 Tmp3 = Result.getValue(0); 2044 Tmp4 = Result.getValue(1); 2045 2046 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 2047 default: assert(0 && "This action is not supported yet!"); 2048 case TargetLowering::Legal: 2049 // If this is an unaligned load and the target doesn't support it, 2050 // expand it. 2051 if (!TLI.allowsUnalignedMemoryAccesses()) { 2052 unsigned ABIAlignment = TLI.getTargetData()-> 2053 getABITypeAlignment(LD->getMemoryVT().getTypeForMVT()); 2054 if (LD->getAlignment() < ABIAlignment){ 2055 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), DAG, 2056 TLI); 2057 Tmp3 = Result.getOperand(0); 2058 Tmp4 = Result.getOperand(1); 2059 Tmp3 = LegalizeOp(Tmp3); 2060 Tmp4 = LegalizeOp(Tmp4); 2061 } 2062 } 2063 break; 2064 case TargetLowering::Custom: 2065 Tmp1 = TLI.LowerOperation(Tmp3, DAG); 2066 if (Tmp1.getNode()) { 2067 Tmp3 = LegalizeOp(Tmp1); 2068 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 2069 } 2070 break; 2071 case TargetLowering::Promote: { 2072 // Only promote a load of vector type to another. 2073 assert(VT.isVector() && "Cannot promote this load!"); 2074 // Change base type to a different vector type. 2075 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 2076 2077 Tmp1 = DAG.getLoad(NVT, Tmp1, Tmp2, LD->getSrcValue(), 2078 LD->getSrcValueOffset(), 2079 LD->isVolatile(), LD->getAlignment()); 2080 Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, VT, Tmp1)); 2081 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 2082 break; 2083 } 2084 } 2085 // Since loads produce two values, make sure to remember that we 2086 // legalized both of them. 2087 AddLegalizedOperand(SDValue(Node, 0), Tmp3); 2088 AddLegalizedOperand(SDValue(Node, 1), Tmp4); 2089 return Op.getResNo() ? Tmp4 : Tmp3; 2090 } else { 2091 MVT SrcVT = LD->getMemoryVT(); 2092 unsigned SrcWidth = SrcVT.getSizeInBits(); 2093 int SVOffset = LD->getSrcValueOffset(); 2094 unsigned Alignment = LD->getAlignment(); 2095 bool isVolatile = LD->isVolatile(); 2096 2097 if (SrcWidth != SrcVT.getStoreSizeInBits() && 2098 // Some targets pretend to have an i1 loading operation, and actually 2099 // load an i8. This trick is correct for ZEXTLOAD because the top 7 2100 // bits are guaranteed to be zero; it helps the optimizers understand 2101 // that these bits are zero. It is also useful for EXTLOAD, since it 2102 // tells the optimizers that those bits are undefined. It would be 2103 // nice to have an effective generic way of getting these benefits... 2104 // Until such a way is found, don't insist on promoting i1 here. 2105 (SrcVT != MVT::i1 || 2106 TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) { 2107 // Promote to a byte-sized load if not loading an integral number of 2108 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 2109 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 2110 MVT NVT = MVT::getIntegerVT(NewWidth); 2111 SDValue Ch; 2112 2113 // The extra bits are guaranteed to be zero, since we stored them that 2114 // way. A zext load from NVT thus automatically gives zext from SrcVT. 2115 2116 ISD::LoadExtType NewExtType = 2117 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 2118 2119 Result = DAG.getExtLoad(NewExtType, Node->getValueType(0), 2120 Tmp1, Tmp2, LD->getSrcValue(), SVOffset, 2121 NVT, isVolatile, Alignment); 2122 2123 Ch = Result.getValue(1); // The chain. 2124 2125 if (ExtType == ISD::SEXTLOAD) 2126 // Having the top bits zero doesn't help when sign extending. 2127 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 2128 Result, DAG.getValueType(SrcVT)); 2129 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 2130 // All the top bits are guaranteed to be zero - inform the optimizers. 2131 Result = DAG.getNode(ISD::AssertZext, Result.getValueType(), Result, 2132 DAG.getValueType(SrcVT)); 2133 2134 Tmp1 = LegalizeOp(Result); 2135 Tmp2 = LegalizeOp(Ch); 2136 } else if (SrcWidth & (SrcWidth - 1)) { 2137 // If not loading a power-of-2 number of bits, expand as two loads. 2138 assert(SrcVT.isExtended() && !SrcVT.isVector() && 2139 "Unsupported extload!"); 2140 unsigned RoundWidth = 1 << Log2_32(SrcWidth); 2141 assert(RoundWidth < SrcWidth); 2142 unsigned ExtraWidth = SrcWidth - RoundWidth; 2143 assert(ExtraWidth < RoundWidth); 2144 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 2145 "Load size not an integral number of bytes!"); 2146 MVT RoundVT = MVT::getIntegerVT(RoundWidth); 2147 MVT ExtraVT = MVT::getIntegerVT(ExtraWidth); 2148 SDValue Lo, Hi, Ch; 2149 unsigned IncrementSize; 2150 2151 if (TLI.isLittleEndian()) { 2152 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 2153 // Load the bottom RoundWidth bits. 2154 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, Node->getValueType(0), Tmp1, Tmp2, 2155 LD->getSrcValue(), SVOffset, RoundVT, isVolatile, 2156 Alignment); 2157 2158 // Load the remaining ExtraWidth bits. 2159 IncrementSize = RoundWidth / 8; 2160 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2161 DAG.getIntPtrConstant(IncrementSize)); 2162 Hi = DAG.getExtLoad(ExtType, Node->getValueType(0), Tmp1, Tmp2, 2163 LD->getSrcValue(), SVOffset + IncrementSize, 2164 ExtraVT, isVolatile, 2165 MinAlign(Alignment, IncrementSize)); 2166 2167 // Build a factor node to remember that this load is independent of the 2168 // other one. 2169 Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 2170 Hi.getValue(1)); 2171 2172 // Move the top bits to the right place. 2173 Hi = DAG.getNode(ISD::SHL, Hi.getValueType(), Hi, 2174 DAG.getConstant(RoundWidth, TLI.getShiftAmountTy())); 2175 2176 // Join the hi and lo parts. 2177 Result = DAG.getNode(ISD::OR, Node->getValueType(0), Lo, Hi); 2178 } else { 2179 // Big endian - avoid unaligned loads. 2180 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 2181 // Load the top RoundWidth bits. 2182 Hi = DAG.getExtLoad(ExtType, Node->getValueType(0), Tmp1, Tmp2, 2183 LD->getSrcValue(), SVOffset, RoundVT, isVolatile, 2184 Alignment); 2185 2186 // Load the remaining ExtraWidth bits. 2187 IncrementSize = RoundWidth / 8; 2188 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2189 DAG.getIntPtrConstant(IncrementSize)); 2190 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, Node->getValueType(0), Tmp1, Tmp2, 2191 LD->getSrcValue(), SVOffset + IncrementSize, 2192 ExtraVT, isVolatile, 2193 MinAlign(Alignment, IncrementSize)); 2194 2195 // Build a factor node to remember that this load is independent of the 2196 // other one. 2197 Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 2198 Hi.getValue(1)); 2199 2200 // Move the top bits to the right place. 2201 Hi = DAG.getNode(ISD::SHL, Hi.getValueType(), Hi, 2202 DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy())); 2203 2204 // Join the hi and lo parts. 2205 Result = DAG.getNode(ISD::OR, Node->getValueType(0), Lo, Hi); 2206 } 2207 2208 Tmp1 = LegalizeOp(Result); 2209 Tmp2 = LegalizeOp(Ch); 2210 } else { 2211 switch (TLI.getLoadExtAction(ExtType, SrcVT)) { 2212 default: assert(0 && "This action is not supported yet!"); 2213 case TargetLowering::Custom: 2214 isCustom = true; 2215 // FALLTHROUGH 2216 case TargetLowering::Legal: 2217 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset()); 2218 Tmp1 = Result.getValue(0); 2219 Tmp2 = Result.getValue(1); 2220 2221 if (isCustom) { 2222 Tmp3 = TLI.LowerOperation(Result, DAG); 2223 if (Tmp3.getNode()) { 2224 Tmp1 = LegalizeOp(Tmp3); 2225 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 2226 } 2227 } else { 2228 // If this is an unaligned load and the target doesn't support it, 2229 // expand it. 2230 if (!TLI.allowsUnalignedMemoryAccesses()) { 2231 unsigned ABIAlignment = TLI.getTargetData()-> 2232 getABITypeAlignment(LD->getMemoryVT().getTypeForMVT()); 2233 if (LD->getAlignment() < ABIAlignment){ 2234 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), DAG, 2235 TLI); 2236 Tmp1 = Result.getOperand(0); 2237 Tmp2 = Result.getOperand(1); 2238 Tmp1 = LegalizeOp(Tmp1); 2239 Tmp2 = LegalizeOp(Tmp2); 2240 } 2241 } 2242 } 2243 break; 2244 case TargetLowering::Expand: 2245 // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND 2246 if (SrcVT == MVT::f32 && Node->getValueType(0) == MVT::f64) { 2247 SDValue Load = DAG.getLoad(SrcVT, Tmp1, Tmp2, LD->getSrcValue(), 2248 LD->getSrcValueOffset(), 2249 LD->isVolatile(), LD->getAlignment()); 2250 Result = DAG.getNode(ISD::FP_EXTEND, Node->getValueType(0), Load); 2251 Tmp1 = LegalizeOp(Result); // Relegalize new nodes. 2252 Tmp2 = LegalizeOp(Load.getValue(1)); 2253 break; 2254 } 2255 assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!"); 2256 // Turn the unsupported load into an EXTLOAD followed by an explicit 2257 // zero/sign extend inreg. 2258 Result = DAG.getExtLoad(ISD::EXTLOAD, Node->getValueType(0), 2259 Tmp1, Tmp2, LD->getSrcValue(), 2260 LD->getSrcValueOffset(), SrcVT, 2261 LD->isVolatile(), LD->getAlignment()); 2262 SDValue ValRes; 2263 if (ExtType == ISD::SEXTLOAD) 2264 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 2265 Result, DAG.getValueType(SrcVT)); 2266 else 2267 ValRes = DAG.getZeroExtendInReg(Result, SrcVT); 2268 Tmp1 = LegalizeOp(ValRes); // Relegalize new nodes. 2269 Tmp2 = LegalizeOp(Result.getValue(1)); // Relegalize new nodes. 2270 break; 2271 } 2272 } 2273 2274 // Since loads produce two values, make sure to remember that we legalized 2275 // both of them. 2276 AddLegalizedOperand(SDValue(Node, 0), Tmp1); 2277 AddLegalizedOperand(SDValue(Node, 1), Tmp2); 2278 return Op.getResNo() ? Tmp2 : Tmp1; 2279 } 2280 } 2281 case ISD::EXTRACT_ELEMENT: { 2282 MVT OpTy = Node->getOperand(0).getValueType(); 2283 switch (getTypeAction(OpTy)) { 2284 default: assert(0 && "EXTRACT_ELEMENT action for type unimplemented!"); 2285 case Legal: 2286 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 2287 // 1 -> Hi 2288 Result = DAG.getNode(ISD::SRL, OpTy, Node->getOperand(0), 2289 DAG.getConstant(OpTy.getSizeInBits()/2, 2290 TLI.getShiftAmountTy())); 2291 Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), Result); 2292 } else { 2293 // 0 -> Lo 2294 Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), 2295 Node->getOperand(0)); 2296 } 2297 break; 2298 case Expand: 2299 // Get both the low and high parts. 2300 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 2301 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) 2302 Result = Tmp2; // 1 -> Hi 2303 else 2304 Result = Tmp1; // 0 -> Lo 2305 break; 2306 } 2307 break; 2308 } 2309 2310 case ISD::CopyToReg: 2311 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2312 2313 assert(isTypeLegal(Node->getOperand(2).getValueType()) && 2314 "Register type must be legal!"); 2315 // Legalize the incoming value (must be a legal type). 2316 Tmp2 = LegalizeOp(Node->getOperand(2)); 2317 if (Node->getNumValues() == 1) { 2318 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2); 2319 } else { 2320 assert(Node->getNumValues() == 2 && "Unknown CopyToReg"); 2321 if (Node->getNumOperands() == 4) { 2322 Tmp3 = LegalizeOp(Node->getOperand(3)); 2323 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2, 2324 Tmp3); 2325 } else { 2326 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2); 2327 } 2328 2329 // Since this produces two values, make sure to remember that we legalized 2330 // both of them. 2331 AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); 2332 AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); 2333 return Result; 2334 } 2335 break; 2336 2337 case ISD::RET: 2338 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2339 2340 // Ensure that libcalls are emitted before a return. 2341 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 2342 Tmp1 = LegalizeOp(Tmp1); 2343 LastCALLSEQ_END = DAG.getEntryNode(); 2344 2345 switch (Node->getNumOperands()) { 2346 case 3: // ret val 2347 Tmp2 = Node->getOperand(1); 2348 Tmp3 = Node->getOperand(2); // Signness 2349 switch (getTypeAction(Tmp2.getValueType())) { 2350 case Legal: 2351 Result = DAG.UpdateNodeOperands(Result, Tmp1, LegalizeOp(Tmp2), Tmp3); 2352 break; 2353 case Expand: 2354 if (!Tmp2.getValueType().isVector()) { 2355 SDValue Lo, Hi; 2356 ExpandOp(Tmp2, Lo, Hi); 2357 2358 // Big endian systems want the hi reg first. 2359 if (TLI.isBigEndian()) 2360 std::swap(Lo, Hi); 2361 2362 if (Hi.getNode()) 2363 Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3, Hi,Tmp3); 2364 else 2365 Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3); 2366 Result = LegalizeOp(Result); 2367 } else { 2368 SDNode *InVal = Tmp2.getNode(); 2369 int InIx = Tmp2.getResNo(); 2370 unsigned NumElems = InVal->getValueType(InIx).getVectorNumElements(); 2371 MVT EVT = InVal->getValueType(InIx).getVectorElementType(); 2372 2373 // Figure out if there is a simple type corresponding to this Vector 2374 // type. If so, convert to the vector type. 2375 MVT TVT = MVT::getVectorVT(EVT, NumElems); 2376 if (TLI.isTypeLegal(TVT)) { 2377 // Turn this into a return of the vector type. 2378 Tmp2 = LegalizeOp(Tmp2); 2379 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2380 } else if (NumElems == 1) { 2381 // Turn this into a return of the scalar type. 2382 Tmp2 = ScalarizeVectorOp(Tmp2); 2383 Tmp2 = LegalizeOp(Tmp2); 2384 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2385 2386 // FIXME: Returns of gcc generic vectors smaller than a legal type 2387 // should be returned in integer registers! 2388 2389 // The scalarized value type may not be legal, e.g. it might require 2390 // promotion or expansion. Relegalize the return. 2391 Result = LegalizeOp(Result); 2392 } else { 2393 // FIXME: Returns of gcc generic vectors larger than a legal vector 2394 // type should be returned by reference! 2395 SDValue Lo, Hi; 2396 SplitVectorOp(Tmp2, Lo, Hi); 2397 Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3, Hi,Tmp3); 2398 Result = LegalizeOp(Result); 2399 } 2400 } 2401 break; 2402 case Promote: 2403 Tmp2 = PromoteOp(Node->getOperand(1)); 2404 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2405 Result = LegalizeOp(Result); 2406 break; 2407 } 2408 break; 2409 case 1: // ret void 2410 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2411 break; 2412 default: { // ret <values> 2413 SmallVector<SDValue, 8> NewValues; 2414 NewValues.push_back(Tmp1); 2415 for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2) 2416 switch (getTypeAction(Node->getOperand(i).getValueType())) { 2417 case Legal: 2418 NewValues.push_back(LegalizeOp(Node->getOperand(i))); 2419 NewValues.push_back(Node->getOperand(i+1)); 2420 break; 2421 case Expand: { 2422 SDValue Lo, Hi; 2423 assert(!Node->getOperand(i).getValueType().isExtended() && 2424 "FIXME: TODO: implement returning non-legal vector types!"); 2425 ExpandOp(Node->getOperand(i), Lo, Hi); 2426 NewValues.push_back(Lo); 2427 NewValues.push_back(Node->getOperand(i+1)); 2428 if (Hi.getNode()) { 2429 NewValues.push_back(Hi); 2430 NewValues.push_back(Node->getOperand(i+1)); 2431 } 2432 break; 2433 } 2434 case Promote: 2435 assert(0 && "Can't promote multiple return value yet!"); 2436 } 2437 2438 if (NewValues.size() == Node->getNumOperands()) 2439 Result = DAG.UpdateNodeOperands(Result, &NewValues[0],NewValues.size()); 2440 else 2441 Result = DAG.getNode(ISD::RET, MVT::Other, 2442 &NewValues[0], NewValues.size()); 2443 break; 2444 } 2445 } 2446 2447 if (Result.getOpcode() == ISD::RET) { 2448 switch (TLI.getOperationAction(Result.getOpcode(), MVT::Other)) { 2449 default: assert(0 && "This action is not supported yet!"); 2450 case TargetLowering::Legal: break; 2451 case TargetLowering::Custom: 2452 Tmp1 = TLI.LowerOperation(Result, DAG); 2453 if (Tmp1.getNode()) Result = Tmp1; 2454 break; 2455 } 2456 } 2457 break; 2458 case ISD::STORE: { 2459 StoreSDNode *ST = cast<StoreSDNode>(Node); 2460 Tmp1 = LegalizeOp(ST->getChain()); // Legalize the chain. 2461 Tmp2 = LegalizeOp(ST->getBasePtr()); // Legalize the pointer. 2462 int SVOffset = ST->getSrcValueOffset(); 2463 unsigned Alignment = ST->getAlignment(); 2464 bool isVolatile = ST->isVolatile(); 2465 2466 if (!ST->isTruncatingStore()) { 2467 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 2468 // FIXME: We shouldn't do this for TargetConstantFP's. 2469 // FIXME: move this to the DAG Combiner! Note that we can't regress due 2470 // to phase ordering between legalized code and the dag combiner. This 2471 // probably means that we need to integrate dag combiner and legalizer 2472 // together. 2473 // We generally can't do this one for long doubles. 2474 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 2475 if (CFP->getValueType(0) == MVT::f32 && 2476 getTypeAction(MVT::i32) == Legal) { 2477 Tmp3 = DAG.getConstant(CFP->getValueAPF(). 2478 bitcastToAPInt().zextOrTrunc(32), 2479 MVT::i32); 2480 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2481 SVOffset, isVolatile, Alignment); 2482 break; 2483 } else if (CFP->getValueType(0) == MVT::f64) { 2484 // If this target supports 64-bit registers, do a single 64-bit store. 2485 if (getTypeAction(MVT::i64) == Legal) { 2486 Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 2487 zextOrTrunc(64), MVT::i64); 2488 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2489 SVOffset, isVolatile, Alignment); 2490 break; 2491 } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) { 2492 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 2493 // stores. If the target supports neither 32- nor 64-bits, this 2494 // xform is certainly not worth it. 2495 const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt(); 2496 SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32); 2497 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32); 2498 if (TLI.isBigEndian()) std::swap(Lo, Hi); 2499 2500 Lo = DAG.getStore(Tmp1, Lo, Tmp2, ST->getSrcValue(), 2501 SVOffset, isVolatile, Alignment); 2502 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2503 DAG.getIntPtrConstant(4)); 2504 Hi = DAG.getStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), SVOffset+4, 2505 isVolatile, MinAlign(Alignment, 4U)); 2506 2507 Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); 2508 break; 2509 } 2510 } 2511 } 2512 2513 switch (getTypeAction(ST->getMemoryVT())) { 2514 case Legal: { 2515 Tmp3 = LegalizeOp(ST->getValue()); 2516 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2, 2517 ST->getOffset()); 2518 2519 MVT VT = Tmp3.getValueType(); 2520 switch (TLI.getOperationAction(ISD::STORE, VT)) { 2521 default: assert(0 && "This action is not supported yet!"); 2522 case TargetLowering::Legal: 2523 // If this is an unaligned store and the target doesn't support it, 2524 // expand it. 2525 if (!TLI.allowsUnalignedMemoryAccesses()) { 2526 unsigned ABIAlignment = TLI.getTargetData()-> 2527 getABITypeAlignment(ST->getMemoryVT().getTypeForMVT()); 2528 if (ST->getAlignment() < ABIAlignment) 2529 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG, 2530 TLI); 2531 } 2532 break; 2533 case TargetLowering::Custom: 2534 Tmp1 = TLI.LowerOperation(Result, DAG); 2535 if (Tmp1.getNode()) Result = Tmp1; 2536 break; 2537 case TargetLowering::Promote: 2538 assert(VT.isVector() && "Unknown legal promote case!"); 2539 Tmp3 = DAG.getNode(ISD::BIT_CONVERT, 2540 TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3); 2541 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, 2542 ST->getSrcValue(), SVOffset, isVolatile, 2543 Alignment); 2544 break; 2545 } 2546 break; 2547 } 2548 case Promote: 2549 if (!ST->getMemoryVT().isVector()) { 2550 // Truncate the value and store the result. 2551 Tmp3 = PromoteOp(ST->getValue()); 2552 Result = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2553 SVOffset, ST->getMemoryVT(), 2554 isVolatile, Alignment); 2555 break; 2556 } 2557 // Fall thru to expand for vector 2558 case Expand: { 2559 unsigned IncrementSize = 0; 2560 SDValue Lo, Hi; 2561 2562 // If this is a vector type, then we have to calculate the increment as 2563 // the product of the element size in bytes, and the number of elements 2564 // in the high half of the vector. 2565 if (ST->getValue().getValueType().isVector()) { 2566 SDNode *InVal = ST->getValue().getNode(); 2567 int InIx = ST->getValue().getResNo(); 2568 MVT InVT = InVal->getValueType(InIx); 2569 unsigned NumElems = InVT.getVectorNumElements(); 2570 MVT EVT = InVT.getVectorElementType(); 2571 2572 // Figure out if there is a simple type corresponding to this Vector 2573 // type. If so, convert to the vector type. 2574 MVT TVT = MVT::getVectorVT(EVT, NumElems); 2575 if (TLI.isTypeLegal(TVT)) { 2576 // Turn this into a normal store of the vector type. 2577 Tmp3 = LegalizeOp(ST->getValue()); 2578 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2579 SVOffset, isVolatile, Alignment); 2580 Result = LegalizeOp(Result); 2581 break; 2582 } else if (NumElems == 1) { 2583 // Turn this into a normal store of the scalar type. 2584 Tmp3 = ScalarizeVectorOp(ST->getValue()); 2585 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2586 SVOffset, isVolatile, Alignment); 2587 // The scalarized value type may not be legal, e.g. it might require 2588 // promotion or expansion. Relegalize the scalar store. 2589 Result = LegalizeOp(Result); 2590 break; 2591 } else { 2592 // Check if we have widen this node with another value 2593 std::map<SDValue, SDValue>::iterator I = 2594 WidenNodes.find(ST->getValue()); 2595 if (I != WidenNodes.end()) { 2596 Result = StoreWidenVectorOp(ST, Tmp1, Tmp2); 2597 break; 2598 } 2599 else { 2600 SplitVectorOp(ST->getValue(), Lo, Hi); 2601 IncrementSize = Lo.getNode()->getValueType(0).getVectorNumElements() * 2602 EVT.getSizeInBits()/8; 2603 } 2604 } 2605 } else { 2606 ExpandOp(ST->getValue(), Lo, Hi); 2607 IncrementSize = Hi.getNode() ? Hi.getValueType().getSizeInBits()/8 : 0; 2608 2609 if (Hi.getNode() && TLI.isBigEndian()) 2610 std::swap(Lo, Hi); 2611 } 2612 2613 Lo = DAG.getStore(Tmp1, Lo, Tmp2, ST->getSrcValue(), 2614 SVOffset, isVolatile, Alignment); 2615 2616 if (Hi.getNode() == NULL) { 2617 // Must be int <-> float one-to-one expansion. 2618 Result = Lo; 2619 break; 2620 } 2621 2622 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2623 DAG.getIntPtrConstant(IncrementSize)); 2624 assert(isTypeLegal(Tmp2.getValueType()) && 2625 "Pointers must be legal!"); 2626 SVOffset += IncrementSize; 2627 Alignment = MinAlign(Alignment, IncrementSize); 2628 Hi = DAG.getStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), 2629 SVOffset, isVolatile, Alignment); 2630 Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); 2631 break; 2632 } // case Expand 2633 } 2634 } else { 2635 switch (getTypeAction(ST->getValue().getValueType())) { 2636 case Legal: 2637 Tmp3 = LegalizeOp(ST->getValue()); 2638 break; 2639 case Promote: 2640 if (!ST->getValue().getValueType().isVector()) { 2641 // We can promote the value, the truncstore will still take care of it. 2642 Tmp3 = PromoteOp(ST->getValue()); 2643 break; 2644 } 2645 // Vector case falls through to expand 2646 case Expand: 2647 // Just store the low part. This may become a non-trunc store, so make 2648 // sure to use getTruncStore, not UpdateNodeOperands below. 2649 ExpandOp(ST->getValue(), Tmp3, Tmp4); 2650 return DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2651 SVOffset, MVT::i8, isVolatile, Alignment); 2652 } 2653 2654 MVT StVT = ST->getMemoryVT(); 2655 unsigned StWidth = StVT.getSizeInBits(); 2656 2657 if (StWidth != StVT.getStoreSizeInBits()) { 2658 // Promote to a byte-sized store with upper bits zero if not 2659 // storing an integral number of bytes. For example, promote 2660 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 2661 MVT NVT = MVT::getIntegerVT(StVT.getStoreSizeInBits()); 2662 Tmp3 = DAG.getZeroExtendInReg(Tmp3, StVT); 2663 Result = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2664 SVOffset, NVT, isVolatile, Alignment); 2665 } else if (StWidth & (StWidth - 1)) { 2666 // If not storing a power-of-2 number of bits, expand as two stores. 2667 assert(StVT.isExtended() && !StVT.isVector() && 2668 "Unsupported truncstore!"); 2669 unsigned RoundWidth = 1 << Log2_32(StWidth); 2670 assert(RoundWidth < StWidth); 2671 unsigned ExtraWidth = StWidth - RoundWidth; 2672 assert(ExtraWidth < RoundWidth); 2673 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 2674 "Store size not an integral number of bytes!"); 2675 MVT RoundVT = MVT::getIntegerVT(RoundWidth); 2676 MVT ExtraVT = MVT::getIntegerVT(ExtraWidth); 2677 SDValue Lo, Hi; 2678 unsigned IncrementSize; 2679 2680 if (TLI.isLittleEndian()) { 2681 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 2682 // Store the bottom RoundWidth bits. 2683 Lo = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2684 SVOffset, RoundVT, 2685 isVolatile, Alignment); 2686 2687 // Store the remaining ExtraWidth bits. 2688 IncrementSize = RoundWidth / 8; 2689 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2690 DAG.getIntPtrConstant(IncrementSize)); 2691 Hi = DAG.getNode(ISD::SRL, Tmp3.getValueType(), Tmp3, 2692 DAG.getConstant(RoundWidth, TLI.getShiftAmountTy())); 2693 Hi = DAG.getTruncStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), 2694 SVOffset + IncrementSize, ExtraVT, isVolatile, 2695 MinAlign(Alignment, IncrementSize)); 2696 } else { 2697 // Big endian - avoid unaligned stores. 2698 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 2699 // Store the top RoundWidth bits. 2700 Hi = DAG.getNode(ISD::SRL, Tmp3.getValueType(), Tmp3, 2701 DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy())); 2702 Hi = DAG.getTruncStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), SVOffset, 2703 RoundVT, isVolatile, Alignment); 2704 2705 // Store the remaining ExtraWidth bits. 2706 IncrementSize = RoundWidth / 8; 2707 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2708 DAG.getIntPtrConstant(IncrementSize)); 2709 Lo = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2710 SVOffset + IncrementSize, ExtraVT, isVolatile, 2711 MinAlign(Alignment, IncrementSize)); 2712 } 2713 2714 // The order of the stores doesn't matter. 2715 Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); 2716 } else { 2717 if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() || 2718 Tmp2 != ST->getBasePtr()) 2719 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2, 2720 ST->getOffset()); 2721 2722 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 2723 default: assert(0 && "This action is not supported yet!"); 2724 case TargetLowering::Legal: 2725 // If this is an unaligned store and the target doesn't support it, 2726 // expand it. 2727 if (!TLI.allowsUnalignedMemoryAccesses()) { 2728 unsigned ABIAlignment = TLI.getTargetData()-> 2729 getABITypeAlignment(ST->getMemoryVT().getTypeForMVT()); 2730 if (ST->getAlignment() < ABIAlignment) 2731 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG, 2732 TLI); 2733 } 2734 break; 2735 case TargetLowering::Custom: 2736 Result = TLI.LowerOperation(Result, DAG); 2737 break; 2738 case Expand: 2739 // TRUNCSTORE:i16 i32 -> STORE i16 2740 assert(isTypeLegal(StVT) && "Do not know how to expand this store!"); 2741 Tmp3 = DAG.getNode(ISD::TRUNCATE, StVT, Tmp3); 2742 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), SVOffset, 2743 isVolatile, Alignment); 2744 break; 2745 } 2746 } 2747 } 2748 break; 2749 } 2750 case ISD::PCMARKER: 2751 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2752 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 2753 break; 2754 case ISD::STACKSAVE: 2755 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2756 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2757 Tmp1 = Result.getValue(0); 2758 Tmp2 = Result.getValue(1); 2759 2760 switch (TLI.getOperationAction(ISD::STACKSAVE, MVT::Other)) { 2761 default: assert(0 && "This action is not supported yet!"); 2762 case TargetLowering::Legal: break; 2763 case TargetLowering::Custom: 2764 Tmp3 = TLI.LowerOperation(Result, DAG); 2765 if (Tmp3.getNode()) { 2766 Tmp1 = LegalizeOp(Tmp3); 2767 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 2768 } 2769 break; 2770 case TargetLowering::Expand: 2771 // Expand to CopyFromReg if the target set 2772 // StackPointerRegisterToSaveRestore. 2773 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 2774 Tmp1 = DAG.getCopyFromReg(Result.getOperand(0), SP, 2775 Node->getValueType(0)); 2776 Tmp2 = Tmp1.getValue(1); 2777 } else { 2778 Tmp1 = DAG.getNode(ISD::UNDEF, Node->getValueType(0)); 2779 Tmp2 = Node->getOperand(0); 2780 } 2781 break; 2782 } 2783 2784 // Since stacksave produce two values, make sure to remember that we 2785 // legalized both of them. 2786 AddLegalizedOperand(SDValue(Node, 0), Tmp1); 2787 AddLegalizedOperand(SDValue(Node, 1), Tmp2); 2788 return Op.getResNo() ? Tmp2 : Tmp1; 2789 2790 case ISD::STACKRESTORE: 2791 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2792 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 2793 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 2794 2795 switch (TLI.getOperationAction(ISD::STACKRESTORE, MVT::Other)) { 2796 default: assert(0 && "This action is not supported yet!"); 2797 case TargetLowering::Legal: break; 2798 case TargetLowering::Custom: 2799 Tmp1 = TLI.LowerOperation(Result, DAG); 2800 if (Tmp1.getNode()) Result = Tmp1; 2801 break; 2802 case TargetLowering::Expand: 2803 // Expand to CopyToReg if the target set 2804 // StackPointerRegisterToSaveRestore. 2805 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 2806 Result = DAG.getCopyToReg(Tmp1, SP, Tmp2); 2807 } else { 2808 Result = Tmp1; 2809 } 2810 break; 2811 } 2812 break; 2813 2814 case ISD::READCYCLECOUNTER: 2815 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain 2816 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2817 switch (TLI.getOperationAction(ISD::READCYCLECOUNTER, 2818 Node->getValueType(0))) { 2819 default: assert(0 && "This action is not supported yet!"); 2820 case TargetLowering::Legal: 2821 Tmp1 = Result.getValue(0); 2822 Tmp2 = Result.getValue(1); 2823 break; 2824 case TargetLowering::Custom: 2825 Result = TLI.LowerOperation(Result, DAG); 2826 Tmp1 = LegalizeOp(Result.getValue(0)); 2827 Tmp2 = LegalizeOp(Result.getValue(1)); 2828 break; 2829 } 2830 2831 // Since rdcc produce two values, make sure to remember that we legalized 2832 // both of them. 2833 AddLegalizedOperand(SDValue(Node, 0), Tmp1); 2834 AddLegalizedOperand(SDValue(Node, 1), Tmp2); 2835 return Result; 2836 2837 case ISD::SELECT: 2838 switch (getTypeAction(Node->getOperand(0).getValueType())) { 2839 case Expand: assert(0 && "It's impossible to expand bools"); 2840 case Legal: 2841 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the condition. 2842 break; 2843 case Promote: { 2844 assert(!Node->getOperand(0).getValueType().isVector() && "not possible"); 2845 Tmp1 = PromoteOp(Node->getOperand(0)); // Promote the condition. 2846 // Make sure the condition is either zero or one. 2847 unsigned BitWidth = Tmp1.getValueSizeInBits(); 2848 if (!DAG.MaskedValueIsZero(Tmp1, 2849 APInt::getHighBitsSet(BitWidth, BitWidth-1))) 2850 Tmp1 = DAG.getZeroExtendInReg(Tmp1, MVT::i1); 2851 break; 2852 } 2853 } 2854 Tmp2 = LegalizeOp(Node->getOperand(1)); // TrueVal 2855 Tmp3 = LegalizeOp(Node->getOperand(2)); // FalseVal 2856 2857 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2858 2859 switch (TLI.getOperationAction(ISD::SELECT, Tmp2.getValueType())) { 2860 default: assert(0 && "This action is not supported yet!"); 2861 case TargetLowering::Legal: break; 2862 case TargetLowering::Custom: { 2863 Tmp1 = TLI.LowerOperation(Result, DAG); 2864 if (Tmp1.getNode()) Result = Tmp1; 2865 break; 2866 } 2867 case TargetLowering::Expand: 2868 if (Tmp1.getOpcode() == ISD::SETCC) { 2869 Result = DAG.getSelectCC(Tmp1.getOperand(0), Tmp1.getOperand(1), 2870 Tmp2, Tmp3, 2871 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 2872 } else { 2873 Result = DAG.getSelectCC(Tmp1, 2874 DAG.getConstant(0, Tmp1.getValueType()), 2875 Tmp2, Tmp3, ISD::SETNE); 2876 } 2877 break; 2878 case TargetLowering::Promote: { 2879 MVT NVT = 2880 TLI.getTypeToPromoteTo(ISD::SELECT, Tmp2.getValueType()); 2881 unsigned ExtOp, TruncOp; 2882 if (Tmp2.getValueType().isVector()) { 2883 ExtOp = ISD::BIT_CONVERT; 2884 TruncOp = ISD::BIT_CONVERT; 2885 } else if (Tmp2.getValueType().isInteger()) { 2886 ExtOp = ISD::ANY_EXTEND; 2887 TruncOp = ISD::TRUNCATE; 2888 } else { 2889 ExtOp = ISD::FP_EXTEND; 2890 TruncOp = ISD::FP_ROUND; 2891 } 2892 // Promote each of the values to the new type. 2893 Tmp2 = DAG.getNode(ExtOp, NVT, Tmp2); 2894 Tmp3 = DAG.getNode(ExtOp, NVT, Tmp3); 2895 // Perform the larger operation, then round down. 2896 Result = DAG.getNode(ISD::SELECT, NVT, Tmp1, Tmp2,Tmp3); 2897 if (TruncOp != ISD::FP_ROUND) 2898 Result = DAG.getNode(TruncOp, Node->getValueType(0), Result); 2899 else 2900 Result = DAG.getNode(TruncOp, Node->getValueType(0), Result, 2901 DAG.getIntPtrConstant(0)); 2902 break; 2903 } 2904 } 2905 break; 2906 case ISD::SELECT_CC: { 2907 Tmp1 = Node->getOperand(0); // LHS 2908 Tmp2 = Node->getOperand(1); // RHS 2909 Tmp3 = LegalizeOp(Node->getOperand(2)); // True 2910 Tmp4 = LegalizeOp(Node->getOperand(3)); // False 2911 SDValue CC = Node->getOperand(4); 2912 2913 LegalizeSetCC(Node->getValueType(0), Tmp1, Tmp2, CC); 2914 2915 // If we didn't get both a LHS and RHS back from LegalizeSetCC, 2916 // the LHS is a legal SETCC itself. In this case, we need to compare 2917 // the result against zero to select between true and false values. 2918 if (Tmp2.getNode() == 0) { 2919 Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); 2920 CC = DAG.getCondCode(ISD::SETNE); 2921 } 2922 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4, CC); 2923 2924 // Everything is legal, see if we should expand this op or something. 2925 switch (TLI.getOperationAction(ISD::SELECT_CC, Tmp3.getValueType())) { 2926 default: assert(0 && "This action is not supported yet!"); 2927 case TargetLowering::Legal: break; 2928 case TargetLowering::Custom: 2929 Tmp1 = TLI.LowerOperation(Result, DAG); 2930 if (Tmp1.getNode()) Result = Tmp1; 2931 break; 2932 } 2933 break; 2934 } 2935 case ISD::SETCC: 2936 Tmp1 = Node->getOperand(0); 2937 Tmp2 = Node->getOperand(1); 2938 Tmp3 = Node->getOperand(2); 2939 LegalizeSetCC(Node->getValueType(0), Tmp1, Tmp2, Tmp3); 2940 2941 // If we had to Expand the SetCC operands into a SELECT node, then it may 2942 // not always be possible to return a true LHS & RHS. In this case, just 2943 // return the value we legalized, returned in the LHS 2944 if (Tmp2.getNode() == 0) { 2945 Result = Tmp1; 2946 break; 2947 } 2948 2949 switch (TLI.getOperationAction(ISD::SETCC, Tmp1.getValueType())) { 2950 default: assert(0 && "Cannot handle this action for SETCC yet!"); 2951 case TargetLowering::Custom: 2952 isCustom = true; 2953 // FALLTHROUGH. 2954 case TargetLowering::Legal: 2955 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2956 if (isCustom) { 2957 Tmp4 = TLI.LowerOperation(Result, DAG); 2958 if (Tmp4.getNode()) Result = Tmp4; 2959 } 2960 break; 2961 case TargetLowering::Promote: { 2962 // First step, figure out the appropriate operation to use. 2963 // Allow SETCC to not be supported for all legal data types 2964 // Mostly this targets FP 2965 MVT NewInTy = Node->getOperand(0).getValueType(); 2966 MVT OldVT = NewInTy; OldVT = OldVT; 2967 2968 // Scan for the appropriate larger type to use. 2969 while (1) { 2970 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT()+1); 2971 2972 assert(NewInTy.isInteger() == OldVT.isInteger() && 2973 "Fell off of the edge of the integer world"); 2974 assert(NewInTy.isFloatingPoint() == OldVT.isFloatingPoint() && 2975 "Fell off of the edge of the floating point world"); 2976 2977 // If the target supports SETCC of this type, use it. 2978 if (TLI.isOperationLegal(ISD::SETCC, NewInTy)) 2979 break; 2980 } 2981 if (NewInTy.isInteger()) 2982 assert(0 && "Cannot promote Legal Integer SETCC yet"); 2983 else { 2984 Tmp1 = DAG.getNode(ISD::FP_EXTEND, NewInTy, Tmp1); 2985 Tmp2 = DAG.getNode(ISD::FP_EXTEND, NewInTy, Tmp2); 2986 } 2987 Tmp1 = LegalizeOp(Tmp1); 2988 Tmp2 = LegalizeOp(Tmp2); 2989 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2990 Result = LegalizeOp(Result); 2991 break; 2992 } 2993 case TargetLowering::Expand: 2994 // Expand a setcc node into a select_cc of the same condition, lhs, and 2995 // rhs that selects between const 1 (true) and const 0 (false). 2996 MVT VT = Node->getValueType(0); 2997 Result = DAG.getNode(ISD::SELECT_CC, VT, Tmp1, Tmp2, 2998 DAG.getConstant(1, VT), DAG.getConstant(0, VT), 2999 Tmp3); 3000 break; 3001 } 3002 break; 3003 case ISD::VSETCC: { 3004 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3005 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 3006 SDValue CC = Node->getOperand(2); 3007 3008 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, CC); 3009 3010 // Everything is legal, see if we should expand this op or something. 3011 switch (TLI.getOperationAction(ISD::VSETCC, Tmp1.getValueType())) { 3012 default: assert(0 && "This action is not supported yet!"); 3013 case TargetLowering::Legal: break; 3014 case TargetLowering::Custom: 3015 Tmp1 = TLI.LowerOperation(Result, DAG); 3016 if (Tmp1.getNode()) Result = Tmp1; 3017 break; 3018 } 3019 break; 3020 } 3021 3022 case ISD::SHL_PARTS: 3023 case ISD::SRA_PARTS: 3024 case ISD::SRL_PARTS: { 3025 SmallVector<SDValue, 8> Ops; 3026 bool Changed = false; 3027 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 3028 Ops.push_back(LegalizeOp(Node->getOperand(i))); 3029 Changed |= Ops.back() != Node->getOperand(i); 3030 } 3031 if (Changed) 3032 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 3033 3034 switch (TLI.getOperationAction(Node->getOpcode(), 3035 Node->getValueType(0))) { 3036 default: assert(0 && "This action is not supported yet!"); 3037 case TargetLowering::Legal: break; 3038 case TargetLowering::Custom: 3039 Tmp1 = TLI.LowerOperation(Result, DAG); 3040 if (Tmp1.getNode()) { 3041 SDValue Tmp2, RetVal(0, 0); 3042 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { 3043 Tmp2 = LegalizeOp(Tmp1.getValue(i)); 3044 AddLegalizedOperand(SDValue(Node, i), Tmp2); 3045 if (i == Op.getResNo()) 3046 RetVal = Tmp2; 3047 } 3048 assert(RetVal.getNode() && "Illegal result number"); 3049 return RetVal; 3050 } 3051 break; 3052 } 3053 3054 // Since these produce multiple values, make sure to remember that we 3055 // legalized all of them. 3056 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 3057 AddLegalizedOperand(SDValue(Node, i), Result.getValue(i)); 3058 return Result.getValue(Op.getResNo()); 3059 } 3060 3061 // Binary operators 3062 case ISD::ADD: 3063 case ISD::SUB: 3064 case ISD::MUL: 3065 case ISD::MULHS: 3066 case ISD::MULHU: 3067 case ISD::UDIV: 3068 case ISD::SDIV: 3069 case ISD::AND: 3070 case ISD::OR: 3071 case ISD::XOR: 3072 case ISD::SHL: 3073 case ISD::SRL: 3074 case ISD::SRA: 3075 case ISD::FADD: 3076 case ISD::FSUB: 3077 case ISD::FMUL: 3078 case ISD::FDIV: 3079 case ISD::FPOW: 3080 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3081 switch (getTypeAction(Node->getOperand(1).getValueType())) { 3082 case Expand: assert(0 && "Not possible"); 3083 case Legal: 3084 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the RHS. 3085 break; 3086 case Promote: 3087 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the RHS. 3088 break; 3089 } 3090 3091 if ((Node->getOpcode() == ISD::SHL || 3092 Node->getOpcode() == ISD::SRL || 3093 Node->getOpcode() == ISD::SRA) && 3094 !Node->getValueType(0).isVector()) { 3095 if (TLI.getShiftAmountTy().bitsLT(Tmp2.getValueType())) 3096 Tmp2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Tmp2); 3097 else if (TLI.getShiftAmountTy().bitsGT(Tmp2.getValueType())) 3098 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Tmp2); 3099 } 3100 3101 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3102 3103 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3104 default: assert(0 && "BinOp legalize operation not supported"); 3105 case TargetLowering::Legal: break; 3106 case TargetLowering::Custom: 3107 Tmp1 = TLI.LowerOperation(Result, DAG); 3108 if (Tmp1.getNode()) { 3109 Result = Tmp1; 3110 break; 3111 } 3112 // Fall through if the custom lower can't deal with the operation 3113 case TargetLowering::Expand: { 3114 MVT VT = Op.getValueType(); 3115 3116 // See if multiply or divide can be lowered using two-result operations. 3117 SDVTList VTs = DAG.getVTList(VT, VT); 3118 if (Node->getOpcode() == ISD::MUL) { 3119 // We just need the low half of the multiply; try both the signed 3120 // and unsigned forms. If the target supports both SMUL_LOHI and 3121 // UMUL_LOHI, form a preference by checking which forms of plain 3122 // MULH it supports. 3123 bool HasSMUL_LOHI = TLI.isOperationLegal(ISD::SMUL_LOHI, VT); 3124 bool HasUMUL_LOHI = TLI.isOperationLegal(ISD::UMUL_LOHI, VT); 3125 bool HasMULHS = TLI.isOperationLegal(ISD::MULHS, VT); 3126 bool HasMULHU = TLI.isOperationLegal(ISD::MULHU, VT); 3127 unsigned OpToUse = 0; 3128 if (HasSMUL_LOHI && !HasMULHS) { 3129 OpToUse = ISD::SMUL_LOHI; 3130 } else if (HasUMUL_LOHI && !HasMULHU) { 3131 OpToUse = ISD::UMUL_LOHI; 3132 } else if (HasSMUL_LOHI) { 3133 OpToUse = ISD::SMUL_LOHI; 3134 } else if (HasUMUL_LOHI) { 3135 OpToUse = ISD::UMUL_LOHI; 3136 } 3137 if (OpToUse) { 3138 Result = SDValue(DAG.getNode(OpToUse, VTs, Tmp1, Tmp2).getNode(), 0); 3139 break; 3140 } 3141 } 3142 if (Node->getOpcode() == ISD::MULHS && 3143 TLI.isOperationLegal(ISD::SMUL_LOHI, VT)) { 3144 Result = SDValue(DAG.getNode(ISD::SMUL_LOHI, VTs, Tmp1, Tmp2).getNode(), 3145 1); 3146 break; 3147 } 3148 if (Node->getOpcode() == ISD::MULHU && 3149 TLI.isOperationLegal(ISD::UMUL_LOHI, VT)) { 3150 Result = SDValue(DAG.getNode(ISD::UMUL_LOHI, VTs, Tmp1, Tmp2).getNode(), 3151 1); 3152 break; 3153 } 3154 if (Node->getOpcode() == ISD::SDIV && 3155 TLI.isOperationLegal(ISD::SDIVREM, VT)) { 3156 Result = SDValue(DAG.getNode(ISD::SDIVREM, VTs, Tmp1, Tmp2).getNode(), 3157 0); 3158 break; 3159 } 3160 if (Node->getOpcode() == ISD::UDIV && 3161 TLI.isOperationLegal(ISD::UDIVREM, VT)) { 3162 Result = SDValue(DAG.getNode(ISD::UDIVREM, VTs, Tmp1, Tmp2).getNode(), 3163 0); 3164 break; 3165 } 3166 3167 // Check to see if we have a libcall for this operator. 3168 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3169 bool isSigned = false; 3170 switch (Node->getOpcode()) { 3171 case ISD::UDIV: 3172 case ISD::SDIV: 3173 if (VT == MVT::i32) { 3174 LC = Node->getOpcode() == ISD::UDIV 3175 ? RTLIB::UDIV_I32 : RTLIB::SDIV_I32; 3176 isSigned = Node->getOpcode() == ISD::SDIV; 3177 } 3178 break; 3179 case ISD::MUL: 3180 if (VT == MVT::i32) 3181 LC = RTLIB::MUL_I32; 3182 break; 3183 case ISD::FPOW: 3184 LC = GetFPLibCall(VT, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, 3185 RTLIB::POW_PPCF128); 3186 break; 3187 default: break; 3188 } 3189 if (LC != RTLIB::UNKNOWN_LIBCALL) { 3190 SDValue Dummy; 3191 Result = ExpandLibCall(LC, Node, isSigned, Dummy); 3192 break; 3193 } 3194 3195 assert(Node->getValueType(0).isVector() && 3196 "Cannot expand this binary operator!"); 3197 // Expand the operation into a bunch of nasty scalar code. 3198 Result = LegalizeOp(UnrollVectorOp(Op)); 3199 break; 3200 } 3201 case TargetLowering::Promote: { 3202 switch (Node->getOpcode()) { 3203 default: assert(0 && "Do not know how to promote this BinOp!"); 3204 case ISD::AND: 3205 case ISD::OR: 3206 case ISD::XOR: { 3207 MVT OVT = Node->getValueType(0); 3208 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3209 assert(OVT.isVector() && "Cannot promote this BinOp!"); 3210 // Bit convert each of the values to the new type. 3211 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp1); 3212 Tmp2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp2); 3213 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 3214 // Bit convert the result back the original type. 3215 Result = DAG.getNode(ISD::BIT_CONVERT, OVT, Result); 3216 break; 3217 } 3218 } 3219 } 3220 } 3221 break; 3222 3223 case ISD::SMUL_LOHI: 3224 case ISD::UMUL_LOHI: 3225 case ISD::SDIVREM: 3226 case ISD::UDIVREM: 3227 // These nodes will only be produced by target-specific lowering, so 3228 // they shouldn't be here if they aren't legal. 3229 assert(TLI.isOperationLegal(Node->getOpcode(), Node->getValueType(0)) && 3230 "This must be legal!"); 3231 3232 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3233 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 3234 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3235 break; 3236 3237 case ISD::FCOPYSIGN: // FCOPYSIGN does not require LHS/RHS to match type! 3238 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3239 switch (getTypeAction(Node->getOperand(1).getValueType())) { 3240 case Expand: assert(0 && "Not possible"); 3241 case Legal: 3242 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the RHS. 3243 break; 3244 case Promote: 3245 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the RHS. 3246 break; 3247 } 3248 3249 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3250 3251 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3252 default: assert(0 && "Operation not supported"); 3253 case TargetLowering::Custom: 3254 Tmp1 = TLI.LowerOperation(Result, DAG); 3255 if (Tmp1.getNode()) Result = Tmp1; 3256 break; 3257 case TargetLowering::Legal: break; 3258 case TargetLowering::Expand: { 3259 // If this target supports fabs/fneg natively and select is cheap, 3260 // do this efficiently. 3261 if (!TLI.isSelectExpensive() && 3262 TLI.getOperationAction(ISD::FABS, Tmp1.getValueType()) == 3263 TargetLowering::Legal && 3264 TLI.getOperationAction(ISD::FNEG, Tmp1.getValueType()) == 3265 TargetLowering::Legal) { 3266 // Get the sign bit of the RHS. 3267 MVT IVT = 3268 Tmp2.getValueType() == MVT::f32 ? MVT::i32 : MVT::i64; 3269 SDValue SignBit = DAG.getNode(ISD::BIT_CONVERT, IVT, Tmp2); 3270 SignBit = DAG.getSetCC(TLI.getSetCCResultType(SignBit), 3271 SignBit, DAG.getConstant(0, IVT), ISD::SETLT); 3272 // Get the absolute value of the result. 3273 SDValue AbsVal = DAG.getNode(ISD::FABS, Tmp1.getValueType(), Tmp1); 3274 // Select between the nabs and abs value based on the sign bit of 3275 // the input. 3276 Result = DAG.getNode(ISD::SELECT, AbsVal.getValueType(), SignBit, 3277 DAG.getNode(ISD::FNEG, AbsVal.getValueType(), 3278 AbsVal), 3279 AbsVal); 3280 Result = LegalizeOp(Result); 3281 break; 3282 } 3283 3284 // Otherwise, do bitwise ops! 3285 MVT NVT = 3286 Node->getValueType(0) == MVT::f32 ? MVT::i32 : MVT::i64; 3287 Result = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI); 3288 Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), Result); 3289 Result = LegalizeOp(Result); 3290 break; 3291 } 3292 } 3293 break; 3294 3295 case ISD::ADDC: 3296 case ISD::SUBC: 3297 Tmp1 = LegalizeOp(Node->getOperand(0)); 3298 Tmp2 = LegalizeOp(Node->getOperand(1)); 3299 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3300 // Since this produces two values, make sure to remember that we legalized 3301 // both of them. 3302 AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); 3303 AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); 3304 return Result; 3305 3306 case ISD::ADDE: 3307 case ISD::SUBE: 3308 Tmp1 = LegalizeOp(Node->getOperand(0)); 3309 Tmp2 = LegalizeOp(Node->getOperand(1)); 3310 Tmp3 = LegalizeOp(Node->getOperand(2)); 3311 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 3312 // Since this produces two values, make sure to remember that we legalized 3313 // both of them. 3314 AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); 3315 AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); 3316 return Result; 3317 3318 case ISD::BUILD_PAIR: { 3319 MVT PairTy = Node->getValueType(0); 3320 // TODO: handle the case where the Lo and Hi operands are not of legal type 3321 Tmp1 = LegalizeOp(Node->getOperand(0)); // Lo 3322 Tmp2 = LegalizeOp(Node->getOperand(1)); // Hi 3323 switch (TLI.getOperationAction(ISD::BUILD_PAIR, PairTy)) { 3324 case TargetLowering::Promote: 3325 case TargetLowering::Custom: 3326 assert(0 && "Cannot promote/custom this yet!"); 3327 case TargetLowering::Legal: 3328 if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1)) 3329 Result = DAG.getNode(ISD::BUILD_PAIR, PairTy, Tmp1, Tmp2); 3330 break; 3331 case TargetLowering::Expand: 3332 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, PairTy, Tmp1); 3333 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, PairTy, Tmp2); 3334 Tmp2 = DAG.getNode(ISD::SHL, PairTy, Tmp2, 3335 DAG.getConstant(PairTy.getSizeInBits()/2, 3336 TLI.getShiftAmountTy())); 3337 Result = DAG.getNode(ISD::OR, PairTy, Tmp1, Tmp2); 3338 break; 3339 } 3340 break; 3341 } 3342 3343 case ISD::UREM: 3344 case ISD::SREM: 3345 case ISD::FREM: 3346 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3347 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 3348 3349 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3350 case TargetLowering::Promote: assert(0 && "Cannot promote this yet!"); 3351 case TargetLowering::Custom: 3352 isCustom = true; 3353 // FALLTHROUGH 3354 case TargetLowering::Legal: 3355 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3356 if (isCustom) { 3357 Tmp1 = TLI.LowerOperation(Result, DAG); 3358 if (Tmp1.getNode()) Result = Tmp1; 3359 } 3360 break; 3361 case TargetLowering::Expand: { 3362 unsigned DivOpc= (Node->getOpcode() == ISD::UREM) ? ISD::UDIV : ISD::SDIV; 3363 bool isSigned = DivOpc == ISD::SDIV; 3364 MVT VT = Node->getValueType(0); 3365 3366 // See if remainder can be lowered using two-result operations. 3367 SDVTList VTs = DAG.getVTList(VT, VT); 3368 if (Node->getOpcode() == ISD::SREM && 3369 TLI.isOperationLegal(ISD::SDIVREM, VT)) { 3370 Result = SDValue(DAG.getNode(ISD::SDIVREM, VTs, Tmp1, Tmp2).getNode(), 1); 3371 break; 3372 } 3373 if (Node->getOpcode() == ISD::UREM && 3374 TLI.isOperationLegal(ISD::UDIVREM, VT)) { 3375 Result = SDValue(DAG.getNode(ISD::UDIVREM, VTs, Tmp1, Tmp2).getNode(), 1); 3376 break; 3377 } 3378 3379 if (VT.isInteger()) { 3380 if (TLI.getOperationAction(DivOpc, VT) == 3381 TargetLowering::Legal) { 3382 // X % Y -> X-X/Y*Y 3383 Result = DAG.getNode(DivOpc, VT, Tmp1, Tmp2); 3384 Result = DAG.getNode(ISD::MUL, VT, Result, Tmp2); 3385 Result = DAG.getNode(ISD::SUB, VT, Tmp1, Result); 3386 } else if (VT.isVector()) { 3387 Result = LegalizeOp(UnrollVectorOp(Op)); 3388 } else { 3389 assert(VT == MVT::i32 && 3390 "Cannot expand this binary operator!"); 3391 RTLIB::Libcall LC = Node->getOpcode() == ISD::UREM 3392 ? RTLIB::UREM_I32 : RTLIB::SREM_I32; 3393 SDValue Dummy; 3394 Result = ExpandLibCall(LC, Node, isSigned, Dummy); 3395 } 3396 } else { 3397 assert(VT.isFloatingPoint() && 3398 "remainder op must have integer or floating-point type"); 3399 if (VT.isVector()) { 3400 Result = LegalizeOp(UnrollVectorOp(Op)); 3401 } else { 3402 // Floating point mod -> fmod libcall. 3403 RTLIB::Libcall LC = GetFPLibCall(VT, RTLIB::REM_F32, RTLIB::REM_F64, 3404 RTLIB::REM_F80, RTLIB::REM_PPCF128); 3405 SDValue Dummy; 3406 Result = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Dummy); 3407 } 3408 } 3409 break; 3410 } 3411 } 3412 break; 3413 case ISD::VAARG: { 3414 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3415 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 3416 3417 MVT VT = Node->getValueType(0); 3418 switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) { 3419 default: assert(0 && "This action is not supported yet!"); 3420 case TargetLowering::Custom: 3421 isCustom = true; 3422 // FALLTHROUGH 3423 case TargetLowering::Legal: 3424 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 3425 Result = Result.getValue(0); 3426 Tmp1 = Result.getValue(1); 3427 3428 if (isCustom) { 3429 Tmp2 = TLI.LowerOperation(Result, DAG); 3430 if (Tmp2.getNode()) { 3431 Result = LegalizeOp(Tmp2); 3432 Tmp1 = LegalizeOp(Tmp2.getValue(1)); 3433 } 3434 } 3435 break; 3436 case TargetLowering::Expand: { 3437 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3438 SDValue VAList = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp2, V, 0); 3439 // Increment the pointer, VAList, to the next vaarg 3440 Tmp3 = DAG.getNode(ISD::ADD, TLI.getPointerTy(), VAList, 3441 DAG.getConstant(TLI.getTargetData()->getABITypeSize(VT.getTypeForMVT()), 3442 TLI.getPointerTy())); 3443 // Store the incremented VAList to the legalized pointer 3444 Tmp3 = DAG.getStore(VAList.getValue(1), Tmp3, Tmp2, V, 0); 3445 // Load the actual argument out of the pointer VAList 3446 Result = DAG.getLoad(VT, Tmp3, VAList, NULL, 0); 3447 Tmp1 = LegalizeOp(Result.getValue(1)); 3448 Result = LegalizeOp(Result); 3449 break; 3450 } 3451 } 3452 // Since VAARG produces two values, make sure to remember that we 3453 // legalized both of them. 3454 AddLegalizedOperand(SDValue(Node, 0), Result); 3455 AddLegalizedOperand(SDValue(Node, 1), Tmp1); 3456 return Op.getResNo() ? Tmp1 : Result; 3457 } 3458 3459 case ISD::VACOPY: 3460 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3461 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the dest pointer. 3462 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the source pointer. 3463 3464 switch (TLI.getOperationAction(ISD::VACOPY, MVT::Other)) { 3465 default: assert(0 && "This action is not supported yet!"); 3466 case TargetLowering::Custom: 3467 isCustom = true; 3468 // FALLTHROUGH 3469 case TargetLowering::Legal: 3470 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, 3471 Node->getOperand(3), Node->getOperand(4)); 3472 if (isCustom) { 3473 Tmp1 = TLI.LowerOperation(Result, DAG); 3474 if (Tmp1.getNode()) Result = Tmp1; 3475 } 3476 break; 3477 case TargetLowering::Expand: 3478 // This defaults to loading a pointer from the input and storing it to the 3479 // output, returning the chain. 3480 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 3481 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 3482 Tmp4 = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp3, VS, 0); 3483 Result = DAG.getStore(Tmp4.getValue(1), Tmp4, Tmp2, VD, 0); 3484 break; 3485 } 3486 break; 3487 3488 case ISD::VAEND: 3489 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3490 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 3491 3492 switch (TLI.getOperationAction(ISD::VAEND, MVT::Other)) { 3493 default: assert(0 && "This action is not supported yet!"); 3494 case TargetLowering::Custom: 3495 isCustom = true; 3496 // FALLTHROUGH 3497 case TargetLowering::Legal: 3498 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 3499 if (isCustom) { 3500 Tmp1 = TLI.LowerOperation(Tmp1, DAG); 3501 if (Tmp1.getNode()) Result = Tmp1; 3502 } 3503 break; 3504 case TargetLowering::Expand: 3505 Result = Tmp1; // Default to a no-op, return the chain 3506 break; 3507 } 3508 break; 3509 3510 case ISD::VASTART: 3511 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3512 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 3513 3514 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 3515 3516 switch (TLI.getOperationAction(ISD::VASTART, MVT::Other)) { 3517 default: assert(0 && "This action is not supported yet!"); 3518 case TargetLowering::Legal: break; 3519 case TargetLowering::Custom: 3520 Tmp1 = TLI.LowerOperation(Result, DAG); 3521 if (Tmp1.getNode()) Result = Tmp1; 3522 break; 3523 } 3524 break; 3525 3526 case ISD::ROTL: 3527 case ISD::ROTR: 3528 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3529 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 3530 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3531 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3532 default: 3533 assert(0 && "ROTL/ROTR legalize operation not supported"); 3534 break; 3535 case TargetLowering::Legal: 3536 break; 3537 case TargetLowering::Custom: 3538 Tmp1 = TLI.LowerOperation(Result, DAG); 3539 if (Tmp1.getNode()) Result = Tmp1; 3540 break; 3541 case TargetLowering::Promote: 3542 assert(0 && "Do not know how to promote ROTL/ROTR"); 3543 break; 3544 case TargetLowering::Expand: 3545 assert(0 && "Do not know how to expand ROTL/ROTR"); 3546 break; 3547 } 3548 break; 3549 3550 case ISD::BSWAP: 3551 Tmp1 = LegalizeOp(Node->getOperand(0)); // Op 3552 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3553 case TargetLowering::Custom: 3554 assert(0 && "Cannot custom legalize this yet!"); 3555 case TargetLowering::Legal: 3556 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3557 break; 3558 case TargetLowering::Promote: { 3559 MVT OVT = Tmp1.getValueType(); 3560 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3561 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 3562 3563 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); 3564 Tmp1 = DAG.getNode(ISD::BSWAP, NVT, Tmp1); 3565 Result = DAG.getNode(ISD::SRL, NVT, Tmp1, 3566 DAG.getConstant(DiffBits, TLI.getShiftAmountTy())); 3567 break; 3568 } 3569 case TargetLowering::Expand: 3570 Result = ExpandBSWAP(Tmp1); 3571 break; 3572 } 3573 break; 3574 3575 case ISD::CTPOP: 3576 case ISD::CTTZ: 3577 case ISD::CTLZ: 3578 Tmp1 = LegalizeOp(Node->getOperand(0)); // Op 3579 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3580 case TargetLowering::Custom: 3581 case TargetLowering::Legal: 3582 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3583 if (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)) == 3584 TargetLowering::Custom) { 3585 Tmp1 = TLI.LowerOperation(Result, DAG); 3586 if (Tmp1.getNode()) { 3587 Result = Tmp1; 3588 } 3589 } 3590 break; 3591 case TargetLowering::Promote: { 3592 MVT OVT = Tmp1.getValueType(); 3593 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3594 3595 // Zero extend the argument. 3596 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); 3597 // Perform the larger operation, then subtract if needed. 3598 Tmp1 = DAG.getNode(Node->getOpcode(), Node->getValueType(0), Tmp1); 3599 switch (Node->getOpcode()) { 3600 case ISD::CTPOP: 3601 Result = Tmp1; 3602 break; 3603 case ISD::CTTZ: 3604 //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) 3605 Tmp2 = DAG.getSetCC(TLI.getSetCCResultType(Tmp1), Tmp1, 3606 DAG.getConstant(NVT.getSizeInBits(), NVT), 3607 ISD::SETEQ); 3608 Result = DAG.getNode(ISD::SELECT, NVT, Tmp2, 3609 DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1); 3610 break; 3611 case ISD::CTLZ: 3612 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 3613 Result = DAG.getNode(ISD::SUB, NVT, Tmp1, 3614 DAG.getConstant(NVT.getSizeInBits() - 3615 OVT.getSizeInBits(), NVT)); 3616 break; 3617 } 3618 break; 3619 } 3620 case TargetLowering::Expand: 3621 Result = ExpandBitCount(Node->getOpcode(), Tmp1); 3622 break; 3623 } 3624 break; 3625 3626 // Unary operators 3627 case ISD::FABS: 3628 case ISD::FNEG: 3629 case ISD::FSQRT: 3630 case ISD::FSIN: 3631 case ISD::FCOS: 3632 case ISD::FLOG: 3633 case ISD::FLOG2: 3634 case ISD::FLOG10: 3635 case ISD::FEXP: 3636 case ISD::FEXP2: 3637 case ISD::FTRUNC: 3638 case ISD::FFLOOR: 3639 case ISD::FCEIL: 3640 case ISD::FRINT: 3641 case ISD::FNEARBYINT: 3642 Tmp1 = LegalizeOp(Node->getOperand(0)); 3643 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3644 case TargetLowering::Promote: 3645 case TargetLowering::Custom: 3646 isCustom = true; 3647 // FALLTHROUGH 3648 case TargetLowering::Legal: 3649 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3650 if (isCustom) { 3651 Tmp1 = TLI.LowerOperation(Result, DAG); 3652 if (Tmp1.getNode()) Result = Tmp1; 3653 } 3654 break; 3655 case TargetLowering::Expand: 3656 switch (Node->getOpcode()) { 3657 default: assert(0 && "Unreachable!"); 3658 case ISD::FNEG: 3659 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 3660 Tmp2 = DAG.getConstantFP(-0.0, Node->getValueType(0)); 3661 Result = DAG.getNode(ISD::FSUB, Node->getValueType(0), Tmp2, Tmp1); 3662 break; 3663 case ISD::FABS: { 3664 // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X). 3665 MVT VT = Node->getValueType(0); 3666 Tmp2 = DAG.getConstantFP(0.0, VT); 3667 Tmp2 = DAG.getSetCC(TLI.getSetCCResultType(Tmp1), Tmp1, Tmp2, 3668 ISD::SETUGT); 3669 Tmp3 = DAG.getNode(ISD::FNEG, VT, Tmp1); 3670 Result = DAG.getNode(ISD::SELECT, VT, Tmp2, Tmp1, Tmp3); 3671 break; 3672 } 3673 case ISD::FSQRT: 3674 case ISD::FSIN: 3675 case ISD::FCOS: 3676 case ISD::FLOG: 3677 case ISD::FLOG2: 3678 case ISD::FLOG10: 3679 case ISD::FEXP: 3680 case ISD::FEXP2: 3681 case ISD::FTRUNC: 3682 case ISD::FFLOOR: 3683 case ISD::FCEIL: 3684 case ISD::FRINT: 3685 case ISD::FNEARBYINT: { 3686 MVT VT = Node->getValueType(0); 3687 3688 // Expand unsupported unary vector operators by unrolling them. 3689 if (VT.isVector()) { 3690 Result = LegalizeOp(UnrollVectorOp(Op)); 3691 break; 3692 } 3693 3694 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3695 switch(Node->getOpcode()) { 3696 case ISD::FSQRT: 3697 LC = GetFPLibCall(VT, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 3698 RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128); 3699 break; 3700 case ISD::FSIN: 3701 LC = GetFPLibCall(VT, RTLIB::SIN_F32, RTLIB::SIN_F64, 3702 RTLIB::SIN_F80, RTLIB::SIN_PPCF128); 3703 break; 3704 case ISD::FCOS: 3705 LC = GetFPLibCall(VT, RTLIB::COS_F32, RTLIB::COS_F64, 3706 RTLIB::COS_F80, RTLIB::COS_PPCF128); 3707 break; 3708 case ISD::FLOG: 3709 LC = GetFPLibCall(VT, RTLIB::LOG_F32, RTLIB::LOG_F64, 3710 RTLIB::LOG_F80, RTLIB::LOG_PPCF128); 3711 break; 3712 case ISD::FLOG2: 3713 LC = GetFPLibCall(VT, RTLIB::LOG2_F32, RTLIB::LOG2_F64, 3714 RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128); 3715 break; 3716 case ISD::FLOG10: 3717 LC = GetFPLibCall(VT, RTLIB::LOG10_F32, RTLIB::LOG10_F64, 3718 RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128); 3719 break; 3720 case ISD::FEXP: 3721 LC = GetFPLibCall(VT, RTLIB::EXP_F32, RTLIB::EXP_F64, 3722 RTLIB::EXP_F80, RTLIB::EXP_PPCF128); 3723 break; 3724 case ISD::FEXP2: 3725 LC = GetFPLibCall(VT, RTLIB::EXP2_F32, RTLIB::EXP2_F64, 3726 RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128); 3727 break; 3728 case ISD::FTRUNC: 3729 LC = GetFPLibCall(VT, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 3730 RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128); 3731 break; 3732 case ISD::FFLOOR: 3733 LC = GetFPLibCall(VT, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 3734 RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128); 3735 break; 3736 case ISD::FCEIL: 3737 LC = GetFPLibCall(VT, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 3738 RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128); 3739 break; 3740 case ISD::FRINT: 3741 LC = GetFPLibCall(VT, RTLIB::RINT_F32, RTLIB::RINT_F64, 3742 RTLIB::RINT_F80, RTLIB::RINT_PPCF128); 3743 break; 3744 case ISD::FNEARBYINT: 3745 LC = GetFPLibCall(VT, RTLIB::NEARBYINT_F32, RTLIB::NEARBYINT_F64, 3746 RTLIB::NEARBYINT_F80, RTLIB::NEARBYINT_PPCF128); 3747 break; 3748 break; 3749 default: assert(0 && "Unreachable!"); 3750 } 3751 SDValue Dummy; 3752 Result = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Dummy); 3753 break; 3754 } 3755 } 3756 break; 3757 } 3758 break; 3759 case ISD::FPOWI: { 3760 MVT VT = Node->getValueType(0); 3761 3762 // Expand unsupported unary vector operators by unrolling them. 3763 if (VT.isVector()) { 3764 Result = LegalizeOp(UnrollVectorOp(Op)); 3765 break; 3766 } 3767 3768 // We always lower FPOWI into a libcall. No target support for it yet. 3769 RTLIB::Libcall LC = GetFPLibCall(VT, RTLIB::POWI_F32, RTLIB::POWI_F64, 3770 RTLIB::POWI_F80, RTLIB::POWI_PPCF128); 3771 SDValue Dummy; 3772 Result = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Dummy); 3773 break; 3774 } 3775 case ISD::BIT_CONVERT: 3776 if (!isTypeLegal(Node->getOperand(0).getValueType())) { 3777 Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 3778 Node->getValueType(0)); 3779 } else if (Op.getOperand(0).getValueType().isVector()) { 3780 // The input has to be a vector type, we have to either scalarize it, pack 3781 // it, or convert it based on whether the input vector type is legal. 3782 SDNode *InVal = Node->getOperand(0).getNode(); 3783 int InIx = Node->getOperand(0).getResNo(); 3784 unsigned NumElems = InVal->getValueType(InIx).getVectorNumElements(); 3785 MVT EVT = InVal->getValueType(InIx).getVectorElementType(); 3786 3787 // Figure out if there is a simple type corresponding to this Vector 3788 // type. If so, convert to the vector type. 3789 MVT TVT = MVT::getVectorVT(EVT, NumElems); 3790 if (TLI.isTypeLegal(TVT)) { 3791 // Turn this into a bit convert of the vector input. 3792 Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), 3793 LegalizeOp(Node->getOperand(0))); 3794 break; 3795 } else if (NumElems == 1) { 3796 // Turn this into a bit convert of the scalar input. 3797 Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), 3798 ScalarizeVectorOp(Node->getOperand(0))); 3799 break; 3800 } else { 3801 // FIXME: UNIMP! Store then reload 3802 assert(0 && "Cast from unsupported vector type not implemented yet!"); 3803 } 3804 } else { 3805 switch (TLI.getOperationAction(ISD::BIT_CONVERT, 3806 Node->getOperand(0).getValueType())) { 3807 default: assert(0 && "Unknown operation action!"); 3808 case TargetLowering::Expand: 3809 Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 3810 Node->getValueType(0)); 3811 break; 3812 case TargetLowering::Legal: 3813 Tmp1 = LegalizeOp(Node->getOperand(0)); 3814 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3815 break; 3816 } 3817 } 3818 break; 3819 3820 // Conversion operators. The source and destination have different types. 3821 case ISD::SINT_TO_FP: 3822 case ISD::UINT_TO_FP: { 3823 bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP; 3824 Result = LegalizeINT_TO_FP(Result, isSigned, 3825 Node->getValueType(0), Node->getOperand(0)); 3826 break; 3827 } 3828 case ISD::TRUNCATE: 3829 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3830 case Legal: 3831 Tmp1 = LegalizeOp(Node->getOperand(0)); 3832 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3833 break; 3834 case Expand: 3835 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 3836 3837 // Since the result is legal, we should just be able to truncate the low 3838 // part of the source. 3839 Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), Tmp1); 3840 break; 3841 case Promote: 3842 Result = PromoteOp(Node->getOperand(0)); 3843 Result = DAG.getNode(ISD::TRUNCATE, Op.getValueType(), Result); 3844 break; 3845 } 3846 break; 3847 3848 case ISD::FP_TO_SINT: 3849 case ISD::FP_TO_UINT: 3850 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3851 case Legal: 3852 Tmp1 = LegalizeOp(Node->getOperand(0)); 3853 3854 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))){ 3855 default: assert(0 && "Unknown operation action!"); 3856 case TargetLowering::Custom: 3857 isCustom = true; 3858 // FALLTHROUGH 3859 case TargetLowering::Legal: 3860 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3861 if (isCustom) { 3862 Tmp1 = TLI.LowerOperation(Result, DAG); 3863 if (Tmp1.getNode()) Result = Tmp1; 3864 } 3865 break; 3866 case TargetLowering::Promote: 3867 Result = PromoteLegalFP_TO_INT(Tmp1, Node->getValueType(0), 3868 Node->getOpcode() == ISD::FP_TO_SINT); 3869 break; 3870 case TargetLowering::Expand: 3871 if (Node->getOpcode() == ISD::FP_TO_UINT) { 3872 SDValue True, False; 3873 MVT VT = Node->getOperand(0).getValueType(); 3874 MVT NVT = Node->getValueType(0); 3875 const uint64_t zero[] = {0, 0}; 3876 APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero)); 3877 APInt x = APInt::getSignBit(NVT.getSizeInBits()); 3878 (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven); 3879 Tmp2 = DAG.getConstantFP(apf, VT); 3880 Tmp3 = DAG.getSetCC(TLI.getSetCCResultType(Node->getOperand(0)), 3881 Node->getOperand(0), Tmp2, ISD::SETLT); 3882 True = DAG.getNode(ISD::FP_TO_SINT, NVT, Node->getOperand(0)); 3883 False = DAG.getNode(ISD::FP_TO_SINT, NVT, 3884 DAG.getNode(ISD::FSUB, VT, Node->getOperand(0), 3885 Tmp2)); 3886 False = DAG.getNode(ISD::XOR, NVT, False, 3887 DAG.getConstant(x, NVT)); 3888 Result = DAG.getNode(ISD::SELECT, NVT, Tmp3, True, False); 3889 break; 3890 } else { 3891 assert(0 && "Do not know how to expand FP_TO_SINT yet!"); 3892 } 3893 break; 3894 } 3895 break; 3896 case Expand: { 3897 MVT VT = Op.getValueType(); 3898 MVT OVT = Node->getOperand(0).getValueType(); 3899 // Convert ppcf128 to i32 3900 if (OVT == MVT::ppcf128 && VT == MVT::i32) { 3901 if (Node->getOpcode() == ISD::FP_TO_SINT) { 3902 Result = DAG.getNode(ISD::FP_ROUND_INREG, MVT::ppcf128, 3903 Node->getOperand(0), DAG.getValueType(MVT::f64)); 3904 Result = DAG.getNode(ISD::FP_ROUND, MVT::f64, Result, 3905 DAG.getIntPtrConstant(1)); 3906 Result = DAG.getNode(ISD::FP_TO_SINT, VT, Result); 3907 } else { 3908 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 3909 APFloat apf = APFloat(APInt(128, 2, TwoE31)); 3910 Tmp2 = DAG.getConstantFP(apf, OVT); 3911 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 3912 // FIXME: generated code sucks. 3913 Result = DAG.getNode(ISD::SELECT_CC, VT, Node->getOperand(0), Tmp2, 3914 DAG.getNode(ISD::ADD, MVT::i32, 3915 DAG.getNode(ISD::FP_TO_SINT, VT, 3916 DAG.getNode(ISD::FSUB, OVT, 3917 Node->getOperand(0), Tmp2)), 3918 DAG.getConstant(0x80000000, MVT::i32)), 3919 DAG.getNode(ISD::FP_TO_SINT, VT, 3920 Node->getOperand(0)), 3921 DAG.getCondCode(ISD::SETGE)); 3922 } 3923 break; 3924 } 3925 // Convert f32 / f64 to i32 / i64 / i128. 3926 RTLIB::Libcall LC = (Node->getOpcode() == ISD::FP_TO_SINT) ? 3927 RTLIB::getFPTOSINT(OVT, VT) : RTLIB::getFPTOUINT(OVT, VT); 3928 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpectd fp-to-int conversion!"); 3929 SDValue Dummy; 3930 Result = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Dummy); 3931 break; 3932 } 3933 case Promote: 3934 Tmp1 = PromoteOp(Node->getOperand(0)); 3935 Result = DAG.UpdateNodeOperands(Result, LegalizeOp(Tmp1)); 3936 Result = LegalizeOp(Result); 3937 break; 3938 } 3939 break; 3940 3941 case ISD::FP_EXTEND: { 3942 MVT DstVT = Op.getValueType(); 3943 MVT SrcVT = Op.getOperand(0).getValueType(); 3944 if (TLI.getConvertAction(SrcVT, DstVT) == TargetLowering::Expand) { 3945 // The only other way we can lower this is to turn it into a STORE, 3946 // LOAD pair, targetting a temporary location (a stack slot). 3947 Result = EmitStackConvert(Node->getOperand(0), SrcVT, DstVT); 3948 break; 3949 } 3950 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3951 case Expand: assert(0 && "Shouldn't need to expand other operators here!"); 3952 case Legal: 3953 Tmp1 = LegalizeOp(Node->getOperand(0)); 3954 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3955 break; 3956 case Promote: 3957 Tmp1 = PromoteOp(Node->getOperand(0)); 3958 Result = DAG.getNode(ISD::FP_EXTEND, Op.getValueType(), Tmp1); 3959 break; 3960 } 3961 break; 3962 } 3963 case ISD::FP_ROUND: { 3964 MVT DstVT = Op.getValueType(); 3965 MVT SrcVT = Op.getOperand(0).getValueType(); 3966 if (TLI.getConvertAction(SrcVT, DstVT) == TargetLowering::Expand) { 3967 if (SrcVT == MVT::ppcf128) { 3968 SDValue Lo; 3969 ExpandOp(Node->getOperand(0), Lo, Result); 3970 // Round it the rest of the way (e.g. to f32) if needed. 3971 if (DstVT!=MVT::f64) 3972 Result = DAG.getNode(ISD::FP_ROUND, DstVT, Result, Op.getOperand(1)); 3973 break; 3974 } 3975 // The only other way we can lower this is to turn it into a STORE, 3976 // LOAD pair, targetting a temporary location (a stack slot). 3977 Result = EmitStackConvert(Node->getOperand(0), DstVT, DstVT); 3978 break; 3979 } 3980 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3981 case Expand: assert(0 && "Shouldn't need to expand other operators here!"); 3982 case Legal: 3983 Tmp1 = LegalizeOp(Node->getOperand(0)); 3984 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 3985 break; 3986 case Promote: 3987 Tmp1 = PromoteOp(Node->getOperand(0)); 3988 Result = DAG.getNode(ISD::FP_ROUND, Op.getValueType(), Tmp1, 3989 Node->getOperand(1)); 3990 break; 3991 } 3992 break; 3993 } 3994 case ISD::ANY_EXTEND: 3995 case ISD::ZERO_EXTEND: 3996 case ISD::SIGN_EXTEND: 3997 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3998 case Expand: assert(0 && "Shouldn't need to expand other operators here!"); 3999 case Legal: 4000 Tmp1 = LegalizeOp(Node->getOperand(0)); 4001 Result = DAG.UpdateNodeOperands(Result, Tmp1); 4002 if (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)) == 4003 TargetLowering::Custom) { 4004 Tmp1 = TLI.LowerOperation(Result, DAG); 4005 if (Tmp1.getNode()) Result = Tmp1; 4006 } 4007 break; 4008 case Promote: 4009 switch (Node->getOpcode()) { 4010 case ISD::ANY_EXTEND: 4011 Tmp1 = PromoteOp(Node->getOperand(0)); 4012 Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Tmp1); 4013 break; 4014 case ISD::ZERO_EXTEND: 4015 Result = PromoteOp(Node->getOperand(0)); 4016 Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Result); 4017 Result = DAG.getZeroExtendInReg(Result, 4018 Node->getOperand(0).getValueType()); 4019 break; 4020 case ISD::SIGN_EXTEND: 4021 Result = PromoteOp(Node->getOperand(0)); 4022 Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Result); 4023 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 4024 Result, 4025 DAG.getValueType(Node->getOperand(0).getValueType())); 4026 break; 4027 } 4028 } 4029 break; 4030 case ISD::FP_ROUND_INREG: 4031 case ISD::SIGN_EXTEND_INREG: { 4032 Tmp1 = LegalizeOp(Node->getOperand(0)); 4033 MVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 4034 4035 // If this operation is not supported, convert it to a shl/shr or load/store 4036 // pair. 4037 switch (TLI.getOperationAction(Node->getOpcode(), ExtraVT)) { 4038 default: assert(0 && "This action not supported for this op yet!"); 4039 case TargetLowering::Legal: 4040 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 4041 break; 4042 case TargetLowering::Expand: 4043 // If this is an integer extend and shifts are supported, do that. 4044 if (Node->getOpcode() == ISD::SIGN_EXTEND_INREG) { 4045 // NOTE: we could fall back on load/store here too for targets without 4046 // SAR. However, it is doubtful that any exist. 4047 unsigned BitsDiff = Node->getValueType(0).getSizeInBits() - 4048 ExtraVT.getSizeInBits(); 4049 SDValue ShiftCst = DAG.getConstant(BitsDiff, TLI.getShiftAmountTy()); 4050 Result = DAG.getNode(ISD::SHL, Node->getValueType(0), 4051 Node->getOperand(0), ShiftCst); 4052 Result = DAG.getNode(ISD::SRA, Node->getValueType(0), 4053 Result, ShiftCst); 4054 } else if (Node->getOpcode() == ISD::FP_ROUND_INREG) { 4055 // The only way we can lower this is to turn it into a TRUNCSTORE, 4056 // EXTLOAD pair, targetting a temporary location (a stack slot). 4057 4058 // NOTE: there is a choice here between constantly creating new stack 4059 // slots and always reusing the same one. We currently always create 4060 // new ones, as reuse may inhibit scheduling. 4061 Result = EmitStackConvert(Node->getOperand(0), ExtraVT, 4062 Node->getValueType(0)); 4063 } else { 4064 assert(0 && "Unknown op"); 4065 } 4066 break; 4067 } 4068 break; 4069 } 4070 case ISD::TRAMPOLINE: { 4071 SDValue Ops[6]; 4072 for (unsigned i = 0; i != 6; ++i) 4073 Ops[i] = LegalizeOp(Node->getOperand(i)); 4074 Result = DAG.UpdateNodeOperands(Result, Ops, 6); 4075 // The only option for this node is to custom lower it. 4076 Result = TLI.LowerOperation(Result, DAG); 4077 assert(Result.getNode() && "Should always custom lower!"); 4078 4079 // Since trampoline produces two values, make sure to remember that we 4080 // legalized both of them. 4081 Tmp1 = LegalizeOp(Result.getValue(1)); 4082 Result = LegalizeOp(Result); 4083 AddLegalizedOperand(SDValue(Node, 0), Result); 4084 AddLegalizedOperand(SDValue(Node, 1), Tmp1); 4085 return Op.getResNo() ? Tmp1 : Result; 4086 } 4087 case ISD::FLT_ROUNDS_: { 4088 MVT VT = Node->getValueType(0); 4089 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 4090 default: assert(0 && "This action not supported for this op yet!"); 4091 case TargetLowering::Custom: 4092 Result = TLI.LowerOperation(Op, DAG); 4093 if (Result.getNode()) break; 4094 // Fall Thru 4095 case TargetLowering::Legal: 4096 // If this operation is not supported, lower it to constant 1 4097 Result = DAG.getConstant(1, VT); 4098 break; 4099 } 4100 break; 4101 } 4102 case ISD::TRAP: { 4103 MVT VT = Node->getValueType(0); 4104 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 4105 default: assert(0 && "This action not supported for this op yet!"); 4106 case TargetLowering::Legal: 4107 Tmp1 = LegalizeOp(Node->getOperand(0)); 4108 Result = DAG.UpdateNodeOperands(Result, Tmp1); 4109 break; 4110 case TargetLowering::Custom: 4111 Result = TLI.LowerOperation(Op, DAG); 4112 if (Result.getNode()) break; 4113 // Fall Thru 4114 case TargetLowering::Expand: 4115 // If this operation is not supported, lower it to 'abort()' call 4116 Tmp1 = LegalizeOp(Node->getOperand(0)); 4117 TargetLowering::ArgListTy Args; 4118 std::pair<SDValue,SDValue> CallResult = 4119 TLI.LowerCallTo(Tmp1, Type::VoidTy, 4120 false, false, false, false, CallingConv::C, false, 4121 DAG.getExternalSymbol("abort", TLI.getPointerTy()), 4122 Args, DAG); 4123 Result = CallResult.second; 4124 break; 4125 } 4126 break; 4127 } 4128 } 4129 4130 assert(Result.getValueType() == Op.getValueType() && 4131 "Bad legalization!"); 4132 4133 // Make sure that the generated code is itself legal. 4134 if (Result != Op) 4135 Result = LegalizeOp(Result); 4136 4137 // Note that LegalizeOp may be reentered even from single-use nodes, which 4138 // means that we always must cache transformed nodes. 4139 AddLegalizedOperand(Op, Result); 4140 return Result; 4141} 4142 4143/// PromoteOp - Given an operation that produces a value in an invalid type, 4144/// promote it to compute the value into a larger type. The produced value will 4145/// have the correct bits for the low portion of the register, but no guarantee 4146/// is made about the top bits: it may be zero, sign-extended, or garbage. 4147SDValue SelectionDAGLegalize::PromoteOp(SDValue Op) { 4148 MVT VT = Op.getValueType(); 4149 MVT NVT = TLI.getTypeToTransformTo(VT); 4150 assert(getTypeAction(VT) == Promote && 4151 "Caller should expand or legalize operands that are not promotable!"); 4152 assert(NVT.bitsGT(VT) && NVT.isInteger() == VT.isInteger() && 4153 "Cannot promote to smaller type!"); 4154 4155 SDValue Tmp1, Tmp2, Tmp3; 4156 SDValue Result; 4157 SDNode *Node = Op.getNode(); 4158 4159 DenseMap<SDValue, SDValue>::iterator I = PromotedNodes.find(Op); 4160 if (I != PromotedNodes.end()) return I->second; 4161 4162 switch (Node->getOpcode()) { 4163 case ISD::CopyFromReg: 4164 assert(0 && "CopyFromReg must be legal!"); 4165 default: 4166#ifndef NDEBUG 4167 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 4168#endif 4169 assert(0 && "Do not know how to promote this operator!"); 4170 abort(); 4171 case ISD::UNDEF: 4172 Result = DAG.getNode(ISD::UNDEF, NVT); 4173 break; 4174 case ISD::Constant: 4175 if (VT != MVT::i1) 4176 Result = DAG.getNode(ISD::SIGN_EXTEND, NVT, Op); 4177 else 4178 Result = DAG.getNode(ISD::ZERO_EXTEND, NVT, Op); 4179 assert(isa<ConstantSDNode>(Result) && "Didn't constant fold zext?"); 4180 break; 4181 case ISD::ConstantFP: 4182 Result = DAG.getNode(ISD::FP_EXTEND, NVT, Op); 4183 assert(isa<ConstantFPSDNode>(Result) && "Didn't constant fold fp_extend?"); 4184 break; 4185 4186 case ISD::SETCC: 4187 assert(isTypeLegal(TLI.getSetCCResultType(Node->getOperand(0))) 4188 && "SetCC type is not legal??"); 4189 Result = DAG.getNode(ISD::SETCC, 4190 TLI.getSetCCResultType(Node->getOperand(0)), 4191 Node->getOperand(0), Node->getOperand(1), 4192 Node->getOperand(2)); 4193 break; 4194 4195 case ISD::TRUNCATE: 4196 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4197 case Legal: 4198 Result = LegalizeOp(Node->getOperand(0)); 4199 assert(Result.getValueType().bitsGE(NVT) && 4200 "This truncation doesn't make sense!"); 4201 if (Result.getValueType().bitsGT(NVT)) // Truncate to NVT instead of VT 4202 Result = DAG.getNode(ISD::TRUNCATE, NVT, Result); 4203 break; 4204 case Promote: 4205 // The truncation is not required, because we don't guarantee anything 4206 // about high bits anyway. 4207 Result = PromoteOp(Node->getOperand(0)); 4208 break; 4209 case Expand: 4210 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 4211 // Truncate the low part of the expanded value to the result type 4212 Result = DAG.getNode(ISD::TRUNCATE, NVT, Tmp1); 4213 } 4214 break; 4215 case ISD::SIGN_EXTEND: 4216 case ISD::ZERO_EXTEND: 4217 case ISD::ANY_EXTEND: 4218 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4219 case Expand: assert(0 && "BUG: Smaller reg should have been promoted!"); 4220 case Legal: 4221 // Input is legal? Just do extend all the way to the larger type. 4222 Result = DAG.getNode(Node->getOpcode(), NVT, Node->getOperand(0)); 4223 break; 4224 case Promote: 4225 // Promote the reg if it's smaller. 4226 Result = PromoteOp(Node->getOperand(0)); 4227 // The high bits are not guaranteed to be anything. Insert an extend. 4228 if (Node->getOpcode() == ISD::SIGN_EXTEND) 4229 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Result, 4230 DAG.getValueType(Node->getOperand(0).getValueType())); 4231 else if (Node->getOpcode() == ISD::ZERO_EXTEND) 4232 Result = DAG.getZeroExtendInReg(Result, 4233 Node->getOperand(0).getValueType()); 4234 break; 4235 } 4236 break; 4237 case ISD::BIT_CONVERT: 4238 Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 4239 Node->getValueType(0)); 4240 Result = PromoteOp(Result); 4241 break; 4242 4243 case ISD::FP_EXTEND: 4244 assert(0 && "Case not implemented. Dynamically dead with 2 FP types!"); 4245 case ISD::FP_ROUND: 4246 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4247 case Expand: assert(0 && "BUG: Cannot expand FP regs!"); 4248 case Promote: assert(0 && "Unreachable with 2 FP types!"); 4249 case Legal: 4250 if (Node->getConstantOperandVal(1) == 0) { 4251 // Input is legal? Do an FP_ROUND_INREG. 4252 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Node->getOperand(0), 4253 DAG.getValueType(VT)); 4254 } else { 4255 // Just remove the truncate, it isn't affecting the value. 4256 Result = DAG.getNode(ISD::FP_ROUND, NVT, Node->getOperand(0), 4257 Node->getOperand(1)); 4258 } 4259 break; 4260 } 4261 break; 4262 case ISD::SINT_TO_FP: 4263 case ISD::UINT_TO_FP: 4264 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4265 case Legal: 4266 // No extra round required here. 4267 Result = DAG.getNode(Node->getOpcode(), NVT, Node->getOperand(0)); 4268 break; 4269 4270 case Promote: 4271 Result = PromoteOp(Node->getOperand(0)); 4272 if (Node->getOpcode() == ISD::SINT_TO_FP) 4273 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 4274 Result, 4275 DAG.getValueType(Node->getOperand(0).getValueType())); 4276 else 4277 Result = DAG.getZeroExtendInReg(Result, 4278 Node->getOperand(0).getValueType()); 4279 // No extra round required here. 4280 Result = DAG.getNode(Node->getOpcode(), NVT, Result); 4281 break; 4282 case Expand: 4283 Result = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, NVT, 4284 Node->getOperand(0)); 4285 // Round if we cannot tolerate excess precision. 4286 if (NoExcessFPPrecision) 4287 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4288 DAG.getValueType(VT)); 4289 break; 4290 } 4291 break; 4292 4293 case ISD::SIGN_EXTEND_INREG: 4294 Result = PromoteOp(Node->getOperand(0)); 4295 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Result, 4296 Node->getOperand(1)); 4297 break; 4298 case ISD::FP_TO_SINT: 4299 case ISD::FP_TO_UINT: 4300 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4301 case Legal: 4302 case Expand: 4303 Tmp1 = Node->getOperand(0); 4304 break; 4305 case Promote: 4306 // The input result is prerounded, so we don't have to do anything 4307 // special. 4308 Tmp1 = PromoteOp(Node->getOperand(0)); 4309 break; 4310 } 4311 // If we're promoting a UINT to a larger size, check to see if the new node 4312 // will be legal. If it isn't, check to see if FP_TO_SINT is legal, since 4313 // we can use that instead. This allows us to generate better code for 4314 // FP_TO_UINT for small destination sizes on targets where FP_TO_UINT is not 4315 // legal, such as PowerPC. 4316 if (Node->getOpcode() == ISD::FP_TO_UINT && 4317 !TLI.isOperationLegal(ISD::FP_TO_UINT, NVT) && 4318 (TLI.isOperationLegal(ISD::FP_TO_SINT, NVT) || 4319 TLI.getOperationAction(ISD::FP_TO_SINT, NVT)==TargetLowering::Custom)){ 4320 Result = DAG.getNode(ISD::FP_TO_SINT, NVT, Tmp1); 4321 } else { 4322 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 4323 } 4324 break; 4325 4326 case ISD::FABS: 4327 case ISD::FNEG: 4328 Tmp1 = PromoteOp(Node->getOperand(0)); 4329 assert(Tmp1.getValueType() == NVT); 4330 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 4331 // NOTE: we do not have to do any extra rounding here for 4332 // NoExcessFPPrecision, because we know the input will have the appropriate 4333 // precision, and these operations don't modify precision at all. 4334 break; 4335 4336 case ISD::FLOG: 4337 case ISD::FLOG2: 4338 case ISD::FLOG10: 4339 case ISD::FEXP: 4340 case ISD::FEXP2: 4341 case ISD::FSQRT: 4342 case ISD::FSIN: 4343 case ISD::FCOS: 4344 case ISD::FTRUNC: 4345 case ISD::FFLOOR: 4346 case ISD::FCEIL: 4347 case ISD::FRINT: 4348 case ISD::FNEARBYINT: 4349 Tmp1 = PromoteOp(Node->getOperand(0)); 4350 assert(Tmp1.getValueType() == NVT); 4351 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 4352 if (NoExcessFPPrecision) 4353 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4354 DAG.getValueType(VT)); 4355 break; 4356 4357 case ISD::FPOW: 4358 case ISD::FPOWI: { 4359 // Promote f32 pow(i) to f64 pow(i). Note that this could insert a libcall 4360 // directly as well, which may be better. 4361 Tmp1 = PromoteOp(Node->getOperand(0)); 4362 Tmp2 = Node->getOperand(1); 4363 if (Node->getOpcode() == ISD::FPOW) 4364 Tmp2 = PromoteOp(Tmp2); 4365 assert(Tmp1.getValueType() == NVT); 4366 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 4367 if (NoExcessFPPrecision) 4368 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4369 DAG.getValueType(VT)); 4370 break; 4371 } 4372 4373 case ISD::ATOMIC_CMP_SWAP_8: 4374 case ISD::ATOMIC_CMP_SWAP_16: 4375 case ISD::ATOMIC_CMP_SWAP_32: 4376 case ISD::ATOMIC_CMP_SWAP_64: { 4377 AtomicSDNode* AtomNode = cast<AtomicSDNode>(Node); 4378 Tmp2 = PromoteOp(Node->getOperand(2)); 4379 Tmp3 = PromoteOp(Node->getOperand(3)); 4380 Result = DAG.getAtomic(Node->getOpcode(), AtomNode->getChain(), 4381 AtomNode->getBasePtr(), Tmp2, Tmp3, 4382 AtomNode->getSrcValue(), 4383 AtomNode->getAlignment()); 4384 // Remember that we legalized the chain. 4385 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 4386 break; 4387 } 4388 case ISD::ATOMIC_LOAD_ADD_8: 4389 case ISD::ATOMIC_LOAD_SUB_8: 4390 case ISD::ATOMIC_LOAD_AND_8: 4391 case ISD::ATOMIC_LOAD_OR_8: 4392 case ISD::ATOMIC_LOAD_XOR_8: 4393 case ISD::ATOMIC_LOAD_NAND_8: 4394 case ISD::ATOMIC_LOAD_MIN_8: 4395 case ISD::ATOMIC_LOAD_MAX_8: 4396 case ISD::ATOMIC_LOAD_UMIN_8: 4397 case ISD::ATOMIC_LOAD_UMAX_8: 4398 case ISD::ATOMIC_SWAP_8: 4399 case ISD::ATOMIC_LOAD_ADD_16: 4400 case ISD::ATOMIC_LOAD_SUB_16: 4401 case ISD::ATOMIC_LOAD_AND_16: 4402 case ISD::ATOMIC_LOAD_OR_16: 4403 case ISD::ATOMIC_LOAD_XOR_16: 4404 case ISD::ATOMIC_LOAD_NAND_16: 4405 case ISD::ATOMIC_LOAD_MIN_16: 4406 case ISD::ATOMIC_LOAD_MAX_16: 4407 case ISD::ATOMIC_LOAD_UMIN_16: 4408 case ISD::ATOMIC_LOAD_UMAX_16: 4409 case ISD::ATOMIC_SWAP_16: 4410 case ISD::ATOMIC_LOAD_ADD_32: 4411 case ISD::ATOMIC_LOAD_SUB_32: 4412 case ISD::ATOMIC_LOAD_AND_32: 4413 case ISD::ATOMIC_LOAD_OR_32: 4414 case ISD::ATOMIC_LOAD_XOR_32: 4415 case ISD::ATOMIC_LOAD_NAND_32: 4416 case ISD::ATOMIC_LOAD_MIN_32: 4417 case ISD::ATOMIC_LOAD_MAX_32: 4418 case ISD::ATOMIC_LOAD_UMIN_32: 4419 case ISD::ATOMIC_LOAD_UMAX_32: 4420 case ISD::ATOMIC_SWAP_32: 4421 case ISD::ATOMIC_LOAD_ADD_64: 4422 case ISD::ATOMIC_LOAD_SUB_64: 4423 case ISD::ATOMIC_LOAD_AND_64: 4424 case ISD::ATOMIC_LOAD_OR_64: 4425 case ISD::ATOMIC_LOAD_XOR_64: 4426 case ISD::ATOMIC_LOAD_NAND_64: 4427 case ISD::ATOMIC_LOAD_MIN_64: 4428 case ISD::ATOMIC_LOAD_MAX_64: 4429 case ISD::ATOMIC_LOAD_UMIN_64: 4430 case ISD::ATOMIC_LOAD_UMAX_64: 4431 case ISD::ATOMIC_SWAP_64: { 4432 AtomicSDNode* AtomNode = cast<AtomicSDNode>(Node); 4433 Tmp2 = PromoteOp(Node->getOperand(2)); 4434 Result = DAG.getAtomic(Node->getOpcode(), AtomNode->getChain(), 4435 AtomNode->getBasePtr(), Tmp2, 4436 AtomNode->getSrcValue(), 4437 AtomNode->getAlignment()); 4438 // Remember that we legalized the chain. 4439 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 4440 break; 4441 } 4442 4443 case ISD::AND: 4444 case ISD::OR: 4445 case ISD::XOR: 4446 case ISD::ADD: 4447 case ISD::SUB: 4448 case ISD::MUL: 4449 // The input may have strange things in the top bits of the registers, but 4450 // these operations don't care. They may have weird bits going out, but 4451 // that too is okay if they are integer operations. 4452 Tmp1 = PromoteOp(Node->getOperand(0)); 4453 Tmp2 = PromoteOp(Node->getOperand(1)); 4454 assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT); 4455 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 4456 break; 4457 case ISD::FADD: 4458 case ISD::FSUB: 4459 case ISD::FMUL: 4460 Tmp1 = PromoteOp(Node->getOperand(0)); 4461 Tmp2 = PromoteOp(Node->getOperand(1)); 4462 assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT); 4463 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 4464 4465 // Floating point operations will give excess precision that we may not be 4466 // able to tolerate. If we DO allow excess precision, just leave it, 4467 // otherwise excise it. 4468 // FIXME: Why would we need to round FP ops more than integer ones? 4469 // Is Round(Add(Add(A,B),C)) != Round(Add(Round(Add(A,B)), C)) 4470 if (NoExcessFPPrecision) 4471 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4472 DAG.getValueType(VT)); 4473 break; 4474 4475 case ISD::SDIV: 4476 case ISD::SREM: 4477 // These operators require that their input be sign extended. 4478 Tmp1 = PromoteOp(Node->getOperand(0)); 4479 Tmp2 = PromoteOp(Node->getOperand(1)); 4480 if (NVT.isInteger()) { 4481 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, 4482 DAG.getValueType(VT)); 4483 Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp2, 4484 DAG.getValueType(VT)); 4485 } 4486 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 4487 4488 // Perform FP_ROUND: this is probably overly pessimistic. 4489 if (NVT.isFloatingPoint() && NoExcessFPPrecision) 4490 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4491 DAG.getValueType(VT)); 4492 break; 4493 case ISD::FDIV: 4494 case ISD::FREM: 4495 case ISD::FCOPYSIGN: 4496 // These operators require that their input be fp extended. 4497 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4498 case Expand: assert(0 && "not implemented"); 4499 case Legal: Tmp1 = LegalizeOp(Node->getOperand(0)); break; 4500 case Promote: Tmp1 = PromoteOp(Node->getOperand(0)); break; 4501 } 4502 switch (getTypeAction(Node->getOperand(1).getValueType())) { 4503 case Expand: assert(0 && "not implemented"); 4504 case Legal: Tmp2 = LegalizeOp(Node->getOperand(1)); break; 4505 case Promote: Tmp2 = PromoteOp(Node->getOperand(1)); break; 4506 } 4507 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 4508 4509 // Perform FP_ROUND: this is probably overly pessimistic. 4510 if (NoExcessFPPrecision && Node->getOpcode() != ISD::FCOPYSIGN) 4511 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4512 DAG.getValueType(VT)); 4513 break; 4514 4515 case ISD::UDIV: 4516 case ISD::UREM: 4517 // These operators require that their input be zero extended. 4518 Tmp1 = PromoteOp(Node->getOperand(0)); 4519 Tmp2 = PromoteOp(Node->getOperand(1)); 4520 assert(NVT.isInteger() && "Operators don't apply to FP!"); 4521 Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); 4522 Tmp2 = DAG.getZeroExtendInReg(Tmp2, VT); 4523 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 4524 break; 4525 4526 case ISD::SHL: 4527 Tmp1 = PromoteOp(Node->getOperand(0)); 4528 Result = DAG.getNode(ISD::SHL, NVT, Tmp1, Node->getOperand(1)); 4529 break; 4530 case ISD::SRA: 4531 // The input value must be properly sign extended. 4532 Tmp1 = PromoteOp(Node->getOperand(0)); 4533 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, 4534 DAG.getValueType(VT)); 4535 Result = DAG.getNode(ISD::SRA, NVT, Tmp1, Node->getOperand(1)); 4536 break; 4537 case ISD::SRL: 4538 // The input value must be properly zero extended. 4539 Tmp1 = PromoteOp(Node->getOperand(0)); 4540 Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); 4541 Result = DAG.getNode(ISD::SRL, NVT, Tmp1, Node->getOperand(1)); 4542 break; 4543 4544 case ISD::VAARG: 4545 Tmp1 = Node->getOperand(0); // Get the chain. 4546 Tmp2 = Node->getOperand(1); // Get the pointer. 4547 if (TLI.getOperationAction(ISD::VAARG, VT) == TargetLowering::Custom) { 4548 Tmp3 = DAG.getVAArg(VT, Tmp1, Tmp2, Node->getOperand(2)); 4549 Result = TLI.LowerOperation(Tmp3, DAG); 4550 } else { 4551 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 4552 SDValue VAList = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp2, V, 0); 4553 // Increment the pointer, VAList, to the next vaarg 4554 Tmp3 = DAG.getNode(ISD::ADD, TLI.getPointerTy(), VAList, 4555 DAG.getConstant(VT.getSizeInBits()/8, 4556 TLI.getPointerTy())); 4557 // Store the incremented VAList to the legalized pointer 4558 Tmp3 = DAG.getStore(VAList.getValue(1), Tmp3, Tmp2, V, 0); 4559 // Load the actual argument out of the pointer VAList 4560 Result = DAG.getExtLoad(ISD::EXTLOAD, NVT, Tmp3, VAList, NULL, 0, VT); 4561 } 4562 // Remember that we legalized the chain. 4563 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 4564 break; 4565 4566 case ISD::LOAD: { 4567 LoadSDNode *LD = cast<LoadSDNode>(Node); 4568 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(Node) 4569 ? ISD::EXTLOAD : LD->getExtensionType(); 4570 Result = DAG.getExtLoad(ExtType, NVT, 4571 LD->getChain(), LD->getBasePtr(), 4572 LD->getSrcValue(), LD->getSrcValueOffset(), 4573 LD->getMemoryVT(), 4574 LD->isVolatile(), 4575 LD->getAlignment()); 4576 // Remember that we legalized the chain. 4577 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 4578 break; 4579 } 4580 case ISD::SELECT: { 4581 Tmp2 = PromoteOp(Node->getOperand(1)); // Legalize the op0 4582 Tmp3 = PromoteOp(Node->getOperand(2)); // Legalize the op1 4583 4584 MVT VT2 = Tmp2.getValueType(); 4585 assert(VT2 == Tmp3.getValueType() 4586 && "PromoteOp SELECT: Operands 2 and 3 ValueTypes don't match"); 4587 // Ensure that the resulting node is at least the same size as the operands' 4588 // value types, because we cannot assume that TLI.getSetCCValueType() is 4589 // constant. 4590 Result = DAG.getNode(ISD::SELECT, VT2, Node->getOperand(0), Tmp2, Tmp3); 4591 break; 4592 } 4593 case ISD::SELECT_CC: 4594 Tmp2 = PromoteOp(Node->getOperand(2)); // True 4595 Tmp3 = PromoteOp(Node->getOperand(3)); // False 4596 Result = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0), 4597 Node->getOperand(1), Tmp2, Tmp3, Node->getOperand(4)); 4598 break; 4599 case ISD::BSWAP: 4600 Tmp1 = Node->getOperand(0); 4601 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); 4602 Tmp1 = DAG.getNode(ISD::BSWAP, NVT, Tmp1); 4603 Result = DAG.getNode(ISD::SRL, NVT, Tmp1, 4604 DAG.getConstant(NVT.getSizeInBits() - 4605 VT.getSizeInBits(), 4606 TLI.getShiftAmountTy())); 4607 break; 4608 case ISD::CTPOP: 4609 case ISD::CTTZ: 4610 case ISD::CTLZ: 4611 // Zero extend the argument 4612 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Node->getOperand(0)); 4613 // Perform the larger operation, then subtract if needed. 4614 Tmp1 = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 4615 switch(Node->getOpcode()) { 4616 case ISD::CTPOP: 4617 Result = Tmp1; 4618 break; 4619 case ISD::CTTZ: 4620 // if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) 4621 Tmp2 = DAG.getSetCC(TLI.getSetCCResultType(Tmp1), Tmp1, 4622 DAG.getConstant(NVT.getSizeInBits(), NVT), 4623 ISD::SETEQ); 4624 Result = DAG.getNode(ISD::SELECT, NVT, Tmp2, 4625 DAG.getConstant(VT.getSizeInBits(), NVT), Tmp1); 4626 break; 4627 case ISD::CTLZ: 4628 //Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4629 Result = DAG.getNode(ISD::SUB, NVT, Tmp1, 4630 DAG.getConstant(NVT.getSizeInBits() - 4631 VT.getSizeInBits(), NVT)); 4632 break; 4633 } 4634 break; 4635 case ISD::EXTRACT_SUBVECTOR: 4636 Result = PromoteOp(ExpandEXTRACT_SUBVECTOR(Op)); 4637 break; 4638 case ISD::EXTRACT_VECTOR_ELT: 4639 Result = PromoteOp(ExpandEXTRACT_VECTOR_ELT(Op)); 4640 break; 4641 } 4642 4643 assert(Result.getNode() && "Didn't set a result!"); 4644 4645 // Make sure the result is itself legal. 4646 Result = LegalizeOp(Result); 4647 4648 // Remember that we promoted this! 4649 AddPromotedOperand(Op, Result); 4650 return Result; 4651} 4652 4653/// ExpandEXTRACT_VECTOR_ELT - Expand an EXTRACT_VECTOR_ELT operation into 4654/// a legal EXTRACT_VECTOR_ELT operation, scalar code, or memory traffic, 4655/// based on the vector type. The return type of this matches the element type 4656/// of the vector, which may not be legal for the target. 4657SDValue SelectionDAGLegalize::ExpandEXTRACT_VECTOR_ELT(SDValue Op) { 4658 // We know that operand #0 is the Vec vector. If the index is a constant 4659 // or if the invec is a supported hardware type, we can use it. Otherwise, 4660 // lower to a store then an indexed load. 4661 SDValue Vec = Op.getOperand(0); 4662 SDValue Idx = Op.getOperand(1); 4663 4664 MVT TVT = Vec.getValueType(); 4665 unsigned NumElems = TVT.getVectorNumElements(); 4666 4667 switch (TLI.getOperationAction(ISD::EXTRACT_VECTOR_ELT, TVT)) { 4668 default: assert(0 && "This action is not supported yet!"); 4669 case TargetLowering::Custom: { 4670 Vec = LegalizeOp(Vec); 4671 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 4672 SDValue Tmp3 = TLI.LowerOperation(Op, DAG); 4673 if (Tmp3.getNode()) 4674 return Tmp3; 4675 break; 4676 } 4677 case TargetLowering::Legal: 4678 if (isTypeLegal(TVT)) { 4679 Vec = LegalizeOp(Vec); 4680 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 4681 return Op; 4682 } 4683 break; 4684 case TargetLowering::Promote: 4685 assert(TVT.isVector() && "not vector type"); 4686 // fall thru to expand since vectors are by default are promote 4687 case TargetLowering::Expand: 4688 break; 4689 } 4690 4691 if (NumElems == 1) { 4692 // This must be an access of the only element. Return it. 4693 Op = ScalarizeVectorOp(Vec); 4694 } else if (!TLI.isTypeLegal(TVT) && isa<ConstantSDNode>(Idx)) { 4695 unsigned NumLoElts = 1 << Log2_32(NumElems-1); 4696 ConstantSDNode *CIdx = cast<ConstantSDNode>(Idx); 4697 SDValue Lo, Hi; 4698 SplitVectorOp(Vec, Lo, Hi); 4699 if (CIdx->getZExtValue() < NumLoElts) { 4700 Vec = Lo; 4701 } else { 4702 Vec = Hi; 4703 Idx = DAG.getConstant(CIdx->getZExtValue() - NumLoElts, 4704 Idx.getValueType()); 4705 } 4706 4707 // It's now an extract from the appropriate high or low part. Recurse. 4708 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 4709 Op = ExpandEXTRACT_VECTOR_ELT(Op); 4710 } else { 4711 // Store the value to a temporary stack slot, then LOAD the scalar 4712 // element back out. 4713 SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); 4714 SDValue Ch = DAG.getStore(DAG.getEntryNode(), Vec, StackPtr, NULL, 0); 4715 4716 // Add the offset to the index. 4717 unsigned EltSize = Op.getValueType().getSizeInBits()/8; 4718 Idx = DAG.getNode(ISD::MUL, Idx.getValueType(), Idx, 4719 DAG.getConstant(EltSize, Idx.getValueType())); 4720 4721 if (Idx.getValueType().bitsGT(TLI.getPointerTy())) 4722 Idx = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), Idx); 4723 else 4724 Idx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), Idx); 4725 4726 StackPtr = DAG.getNode(ISD::ADD, Idx.getValueType(), Idx, StackPtr); 4727 4728 Op = DAG.getLoad(Op.getValueType(), Ch, StackPtr, NULL, 0); 4729 } 4730 return Op; 4731} 4732 4733/// ExpandEXTRACT_SUBVECTOR - Expand a EXTRACT_SUBVECTOR operation. For now 4734/// we assume the operation can be split if it is not already legal. 4735SDValue SelectionDAGLegalize::ExpandEXTRACT_SUBVECTOR(SDValue Op) { 4736 // We know that operand #0 is the Vec vector. For now we assume the index 4737 // is a constant and that the extracted result is a supported hardware type. 4738 SDValue Vec = Op.getOperand(0); 4739 SDValue Idx = LegalizeOp(Op.getOperand(1)); 4740 4741 unsigned NumElems = Vec.getValueType().getVectorNumElements(); 4742 4743 if (NumElems == Op.getValueType().getVectorNumElements()) { 4744 // This must be an access of the desired vector length. Return it. 4745 return Vec; 4746 } 4747 4748 ConstantSDNode *CIdx = cast<ConstantSDNode>(Idx); 4749 SDValue Lo, Hi; 4750 SplitVectorOp(Vec, Lo, Hi); 4751 if (CIdx->getZExtValue() < NumElems/2) { 4752 Vec = Lo; 4753 } else { 4754 Vec = Hi; 4755 Idx = DAG.getConstant(CIdx->getZExtValue() - NumElems/2, 4756 Idx.getValueType()); 4757 } 4758 4759 // It's now an extract from the appropriate high or low part. Recurse. 4760 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 4761 return ExpandEXTRACT_SUBVECTOR(Op); 4762} 4763 4764/// LegalizeSetCCOperands - Attempts to create a legal LHS and RHS for a SETCC 4765/// with condition CC on the current target. This usually involves legalizing 4766/// or promoting the arguments. In the case where LHS and RHS must be expanded, 4767/// there may be no choice but to create a new SetCC node to represent the 4768/// legalized value of setcc lhs, rhs. In this case, the value is returned in 4769/// LHS, and the SDValue returned in RHS has a nil SDNode value. 4770void SelectionDAGLegalize::LegalizeSetCCOperands(SDValue &LHS, 4771 SDValue &RHS, 4772 SDValue &CC) { 4773 SDValue Tmp1, Tmp2, Tmp3, Result; 4774 4775 switch (getTypeAction(LHS.getValueType())) { 4776 case Legal: 4777 Tmp1 = LegalizeOp(LHS); // LHS 4778 Tmp2 = LegalizeOp(RHS); // RHS 4779 break; 4780 case Promote: 4781 Tmp1 = PromoteOp(LHS); // LHS 4782 Tmp2 = PromoteOp(RHS); // RHS 4783 4784 // If this is an FP compare, the operands have already been extended. 4785 if (LHS.getValueType().isInteger()) { 4786 MVT VT = LHS.getValueType(); 4787 MVT NVT = TLI.getTypeToTransformTo(VT); 4788 4789 // Otherwise, we have to insert explicit sign or zero extends. Note 4790 // that we could insert sign extends for ALL conditions, but zero extend 4791 // is cheaper on many machines (an AND instead of two shifts), so prefer 4792 // it. 4793 switch (cast<CondCodeSDNode>(CC)->get()) { 4794 default: assert(0 && "Unknown integer comparison!"); 4795 case ISD::SETEQ: 4796 case ISD::SETNE: 4797 case ISD::SETUGE: 4798 case ISD::SETUGT: 4799 case ISD::SETULE: 4800 case ISD::SETULT: 4801 // ALL of these operations will work if we either sign or zero extend 4802 // the operands (including the unsigned comparisons!). Zero extend is 4803 // usually a simpler/cheaper operation, so prefer it. 4804 Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); 4805 Tmp2 = DAG.getZeroExtendInReg(Tmp2, VT); 4806 break; 4807 case ISD::SETGE: 4808 case ISD::SETGT: 4809 case ISD::SETLT: 4810 case ISD::SETLE: 4811 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, 4812 DAG.getValueType(VT)); 4813 Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp2, 4814 DAG.getValueType(VT)); 4815 Tmp1 = LegalizeOp(Tmp1); // Relegalize new nodes. 4816 Tmp2 = LegalizeOp(Tmp2); // Relegalize new nodes. 4817 break; 4818 } 4819 } 4820 break; 4821 case Expand: { 4822 MVT VT = LHS.getValueType(); 4823 if (VT == MVT::f32 || VT == MVT::f64) { 4824 // Expand into one or more soft-fp libcall(s). 4825 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 4826 switch (cast<CondCodeSDNode>(CC)->get()) { 4827 case ISD::SETEQ: 4828 case ISD::SETOEQ: 4829 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64; 4830 break; 4831 case ISD::SETNE: 4832 case ISD::SETUNE: 4833 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : RTLIB::UNE_F64; 4834 break; 4835 case ISD::SETGE: 4836 case ISD::SETOGE: 4837 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64; 4838 break; 4839 case ISD::SETLT: 4840 case ISD::SETOLT: 4841 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 4842 break; 4843 case ISD::SETLE: 4844 case ISD::SETOLE: 4845 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64; 4846 break; 4847 case ISD::SETGT: 4848 case ISD::SETOGT: 4849 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64; 4850 break; 4851 case ISD::SETUO: 4852 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64; 4853 break; 4854 case ISD::SETO: 4855 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : RTLIB::O_F64; 4856 break; 4857 default: 4858 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64; 4859 switch (cast<CondCodeSDNode>(CC)->get()) { 4860 case ISD::SETONE: 4861 // SETONE = SETOLT | SETOGT 4862 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 4863 // Fallthrough 4864 case ISD::SETUGT: 4865 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64; 4866 break; 4867 case ISD::SETUGE: 4868 LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64; 4869 break; 4870 case ISD::SETULT: 4871 LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 4872 break; 4873 case ISD::SETULE: 4874 LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64; 4875 break; 4876 case ISD::SETUEQ: 4877 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64; 4878 break; 4879 default: assert(0 && "Unsupported FP setcc!"); 4880 } 4881 } 4882 4883 SDValue Dummy; 4884 SDValue Ops[2] = { LHS, RHS }; 4885 Tmp1 = ExpandLibCall(LC1, DAG.getMergeValues(Ops, 2).getNode(), 4886 false /*sign irrelevant*/, Dummy); 4887 Tmp2 = DAG.getConstant(0, MVT::i32); 4888 CC = DAG.getCondCode(TLI.getCmpLibcallCC(LC1)); 4889 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 4890 Tmp1 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultType(Tmp1), Tmp1, Tmp2, 4891 CC); 4892 LHS = ExpandLibCall(LC2, DAG.getMergeValues(Ops, 2).getNode(), 4893 false /*sign irrelevant*/, Dummy); 4894 Tmp2 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultType(LHS), LHS, Tmp2, 4895 DAG.getCondCode(TLI.getCmpLibcallCC(LC2))); 4896 Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp2); 4897 Tmp2 = SDValue(); 4898 } 4899 LHS = LegalizeOp(Tmp1); 4900 RHS = Tmp2; 4901 return; 4902 } 4903 4904 SDValue LHSLo, LHSHi, RHSLo, RHSHi; 4905 ExpandOp(LHS, LHSLo, LHSHi); 4906 ExpandOp(RHS, RHSLo, RHSHi); 4907 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 4908 4909 if (VT==MVT::ppcf128) { 4910 // FIXME: This generated code sucks. We want to generate 4911 // FCMPU crN, hi1, hi2 4912 // BNE crN, L: 4913 // FCMPU crN, lo1, lo2 4914 // The following can be improved, but not that much. 4915 Tmp1 = DAG.getSetCC(TLI.getSetCCResultType(LHSHi), LHSHi, RHSHi, 4916 ISD::SETOEQ); 4917 Tmp2 = DAG.getSetCC(TLI.getSetCCResultType(LHSLo), LHSLo, RHSLo, CCCode); 4918 Tmp3 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2); 4919 Tmp1 = DAG.getSetCC(TLI.getSetCCResultType(LHSHi), LHSHi, RHSHi, 4920 ISD::SETUNE); 4921 Tmp2 = DAG.getSetCC(TLI.getSetCCResultType(LHSHi), LHSHi, RHSHi, CCCode); 4922 Tmp1 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2); 4923 Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp3); 4924 Tmp2 = SDValue(); 4925 break; 4926 } 4927 4928 switch (CCCode) { 4929 case ISD::SETEQ: 4930 case ISD::SETNE: 4931 if (RHSLo == RHSHi) 4932 if (ConstantSDNode *RHSCST = dyn_cast<ConstantSDNode>(RHSLo)) 4933 if (RHSCST->isAllOnesValue()) { 4934 // Comparison to -1. 4935 Tmp1 = DAG.getNode(ISD::AND, LHSLo.getValueType(), LHSLo, LHSHi); 4936 Tmp2 = RHSLo; 4937 break; 4938 } 4939 4940 Tmp1 = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSLo, RHSLo); 4941 Tmp2 = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSHi, RHSHi); 4942 Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp2); 4943 Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); 4944 break; 4945 default: 4946 // If this is a comparison of the sign bit, just look at the top part. 4947 // X > -1, x < 0 4948 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(RHS)) 4949 if ((cast<CondCodeSDNode>(CC)->get() == ISD::SETLT && 4950 CST->isNullValue()) || // X < 0 4951 (cast<CondCodeSDNode>(CC)->get() == ISD::SETGT && 4952 CST->isAllOnesValue())) { // X > -1 4953 Tmp1 = LHSHi; 4954 Tmp2 = RHSHi; 4955 break; 4956 } 4957 4958 // FIXME: This generated code sucks. 4959 ISD::CondCode LowCC; 4960 switch (CCCode) { 4961 default: assert(0 && "Unknown integer setcc!"); 4962 case ISD::SETLT: 4963 case ISD::SETULT: LowCC = ISD::SETULT; break; 4964 case ISD::SETGT: 4965 case ISD::SETUGT: LowCC = ISD::SETUGT; break; 4966 case ISD::SETLE: 4967 case ISD::SETULE: LowCC = ISD::SETULE; break; 4968 case ISD::SETGE: 4969 case ISD::SETUGE: LowCC = ISD::SETUGE; break; 4970 } 4971 4972 // Tmp1 = lo(op1) < lo(op2) // Always unsigned comparison 4973 // Tmp2 = hi(op1) < hi(op2) // Signedness depends on operands 4974 // dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2; 4975 4976 // NOTE: on targets without efficient SELECT of bools, we can always use 4977 // this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3) 4978 TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, false, true, NULL); 4979 Tmp1 = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSLo), LHSLo, RHSLo, 4980 LowCC, false, DagCombineInfo); 4981 if (!Tmp1.getNode()) 4982 Tmp1 = DAG.getSetCC(TLI.getSetCCResultType(LHSLo), LHSLo, RHSLo, LowCC); 4983 Tmp2 = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSHi), LHSHi, RHSHi, 4984 CCCode, false, DagCombineInfo); 4985 if (!Tmp2.getNode()) 4986 Tmp2 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultType(LHSHi), LHSHi, 4987 RHSHi,CC); 4988 4989 ConstantSDNode *Tmp1C = dyn_cast<ConstantSDNode>(Tmp1.getNode()); 4990 ConstantSDNode *Tmp2C = dyn_cast<ConstantSDNode>(Tmp2.getNode()); 4991 if ((Tmp1C && Tmp1C->isNullValue()) || 4992 (Tmp2C && Tmp2C->isNullValue() && 4993 (CCCode == ISD::SETLE || CCCode == ISD::SETGE || 4994 CCCode == ISD::SETUGE || CCCode == ISD::SETULE)) || 4995 (Tmp2C && Tmp2C->getAPIntValue() == 1 && 4996 (CCCode == ISD::SETLT || CCCode == ISD::SETGT || 4997 CCCode == ISD::SETUGT || CCCode == ISD::SETULT))) { 4998 // low part is known false, returns high part. 4999 // For LE / GE, if high part is known false, ignore the low part. 5000 // For LT / GT, if high part is known true, ignore the low part. 5001 Tmp1 = Tmp2; 5002 Tmp2 = SDValue(); 5003 } else { 5004 Result = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSHi), LHSHi, RHSHi, 5005 ISD::SETEQ, false, DagCombineInfo); 5006 if (!Result.getNode()) 5007 Result=DAG.getSetCC(TLI.getSetCCResultType(LHSHi), LHSHi, RHSHi, 5008 ISD::SETEQ); 5009 Result = LegalizeOp(DAG.getNode(ISD::SELECT, Tmp1.getValueType(), 5010 Result, Tmp1, Tmp2)); 5011 Tmp1 = Result; 5012 Tmp2 = SDValue(); 5013 } 5014 } 5015 } 5016 } 5017 LHS = Tmp1; 5018 RHS = Tmp2; 5019} 5020 5021/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and 5022/// condition code CC on the current target. This routine assumes LHS and rHS 5023/// have already been legalized by LegalizeSetCCOperands. It expands SETCC with 5024/// illegal condition code into AND / OR of multiple SETCC values. 5025void SelectionDAGLegalize::LegalizeSetCCCondCode(MVT VT, 5026 SDValue &LHS, SDValue &RHS, 5027 SDValue &CC) { 5028 MVT OpVT = LHS.getValueType(); 5029 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 5030 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 5031 default: assert(0 && "Unknown condition code action!"); 5032 case TargetLowering::Legal: 5033 // Nothing to do. 5034 break; 5035 case TargetLowering::Expand: { 5036 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 5037 unsigned Opc = 0; 5038 switch (CCCode) { 5039 default: assert(0 && "Don't know how to expand this condition!"); abort(); 5040 case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO; Opc = ISD::AND; break; 5041 case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO; Opc = ISD::AND; break; 5042 case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO; Opc = ISD::AND; break; 5043 case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO; Opc = ISD::AND; break; 5044 case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO; Opc = ISD::AND; break; 5045 case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO; Opc = ISD::AND; break; 5046 case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR; break; 5047 case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR; break; 5048 case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR; break; 5049 case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR; break; 5050 case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR; break; 5051 case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR; break; 5052 // FIXME: Implement more expansions. 5053 } 5054 5055 SDValue SetCC1 = DAG.getSetCC(VT, LHS, RHS, CC1); 5056 SDValue SetCC2 = DAG.getSetCC(VT, LHS, RHS, CC2); 5057 LHS = DAG.getNode(Opc, VT, SetCC1, SetCC2); 5058 RHS = SDValue(); 5059 CC = SDValue(); 5060 break; 5061 } 5062 } 5063} 5064 5065/// EmitStackConvert - Emit a store/load combination to the stack. This stores 5066/// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 5067/// a load from the stack slot to DestVT, extending it if needed. 5068/// The resultant code need not be legal. 5069SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, 5070 MVT SlotVT, 5071 MVT DestVT) { 5072 // Create the stack frame object. 5073 unsigned SrcAlign = TLI.getTargetData()->getPrefTypeAlignment( 5074 SrcOp.getValueType().getTypeForMVT()); 5075 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); 5076 5077 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 5078 int SPFI = StackPtrFI->getIndex(); 5079 5080 unsigned SrcSize = SrcOp.getValueType().getSizeInBits(); 5081 unsigned SlotSize = SlotVT.getSizeInBits(); 5082 unsigned DestSize = DestVT.getSizeInBits(); 5083 unsigned DestAlign = TLI.getTargetData()->getPrefTypeAlignment( 5084 DestVT.getTypeForMVT()); 5085 5086 // Emit a store to the stack slot. Use a truncstore if the input value is 5087 // later than DestVT. 5088 SDValue Store; 5089 5090 if (SrcSize > SlotSize) 5091 Store = DAG.getTruncStore(DAG.getEntryNode(), SrcOp, FIPtr, 5092 PseudoSourceValue::getFixedStack(SPFI), 0, 5093 SlotVT, false, SrcAlign); 5094 else { 5095 assert(SrcSize == SlotSize && "Invalid store"); 5096 Store = DAG.getStore(DAG.getEntryNode(), SrcOp, FIPtr, 5097 PseudoSourceValue::getFixedStack(SPFI), 0, 5098 false, SrcAlign); 5099 } 5100 5101 // Result is a load from the stack slot. 5102 if (SlotSize == DestSize) 5103 return DAG.getLoad(DestVT, Store, FIPtr, NULL, 0, false, DestAlign); 5104 5105 assert(SlotSize < DestSize && "Unknown extension!"); 5106 return DAG.getExtLoad(ISD::EXTLOAD, DestVT, Store, FIPtr, NULL, 0, SlotVT, 5107 false, DestAlign); 5108} 5109 5110SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 5111 // Create a vector sized/aligned stack slot, store the value to element #0, 5112 // then load the whole vector back out. 5113 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 5114 5115 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 5116 int SPFI = StackPtrFI->getIndex(); 5117 5118 SDValue Ch = DAG.getStore(DAG.getEntryNode(), Node->getOperand(0), StackPtr, 5119 PseudoSourceValue::getFixedStack(SPFI), 0); 5120 return DAG.getLoad(Node->getValueType(0), Ch, StackPtr, 5121 PseudoSourceValue::getFixedStack(SPFI), 0); 5122} 5123 5124 5125/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't 5126/// support the operation, but do support the resultant vector type. 5127SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 5128 5129 // If the only non-undef value is the low element, turn this into a 5130 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 5131 unsigned NumElems = Node->getNumOperands(); 5132 bool isOnlyLowElement = true; 5133 SDValue SplatValue = Node->getOperand(0); 5134 5135 // FIXME: it would be far nicer to change this into map<SDValue,uint64_t> 5136 // and use a bitmask instead of a list of elements. 5137 std::map<SDValue, std::vector<unsigned> > Values; 5138 Values[SplatValue].push_back(0); 5139 bool isConstant = true; 5140 if (!isa<ConstantFPSDNode>(SplatValue) && !isa<ConstantSDNode>(SplatValue) && 5141 SplatValue.getOpcode() != ISD::UNDEF) 5142 isConstant = false; 5143 5144 for (unsigned i = 1; i < NumElems; ++i) { 5145 SDValue V = Node->getOperand(i); 5146 Values[V].push_back(i); 5147 if (V.getOpcode() != ISD::UNDEF) 5148 isOnlyLowElement = false; 5149 if (SplatValue != V) 5150 SplatValue = SDValue(0,0); 5151 5152 // If this isn't a constant element or an undef, we can't use a constant 5153 // pool load. 5154 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V) && 5155 V.getOpcode() != ISD::UNDEF) 5156 isConstant = false; 5157 } 5158 5159 if (isOnlyLowElement) { 5160 // If the low element is an undef too, then this whole things is an undef. 5161 if (Node->getOperand(0).getOpcode() == ISD::UNDEF) 5162 return DAG.getNode(ISD::UNDEF, Node->getValueType(0)); 5163 // Otherwise, turn this into a scalar_to_vector node. 5164 return DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), 5165 Node->getOperand(0)); 5166 } 5167 5168 // If all elements are constants, create a load from the constant pool. 5169 if (isConstant) { 5170 MVT VT = Node->getValueType(0); 5171 std::vector<Constant*> CV; 5172 for (unsigned i = 0, e = NumElems; i != e; ++i) { 5173 if (ConstantFPSDNode *V = 5174 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 5175 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 5176 } else if (ConstantSDNode *V = 5177 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 5178 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 5179 } else { 5180 assert(Node->getOperand(i).getOpcode() == ISD::UNDEF); 5181 const Type *OpNTy = 5182 Node->getOperand(0).getValueType().getTypeForMVT(); 5183 CV.push_back(UndefValue::get(OpNTy)); 5184 } 5185 } 5186 Constant *CP = ConstantVector::get(CV); 5187 SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy()); 5188 unsigned Alignment = 1 << cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 5189 return DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, 5190 PseudoSourceValue::getConstantPool(), 0, 5191 false, Alignment); 5192 } 5193 5194 if (SplatValue.getNode()) { // Splat of one value? 5195 // Build the shuffle constant vector: <0, 0, 0, 0> 5196 MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems); 5197 SDValue Zero = DAG.getConstant(0, MaskVT.getVectorElementType()); 5198 std::vector<SDValue> ZeroVec(NumElems, Zero); 5199 SDValue SplatMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 5200 &ZeroVec[0], ZeroVec.size()); 5201 5202 // If the target supports VECTOR_SHUFFLE and this shuffle mask, use it. 5203 if (isShuffleLegal(Node->getValueType(0), SplatMask)) { 5204 // Get the splatted value into the low element of a vector register. 5205 SDValue LowValVec = 5206 DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), SplatValue); 5207 5208 // Return shuffle(LowValVec, undef, <0,0,0,0>) 5209 return DAG.getNode(ISD::VECTOR_SHUFFLE, Node->getValueType(0), LowValVec, 5210 DAG.getNode(ISD::UNDEF, Node->getValueType(0)), 5211 SplatMask); 5212 } 5213 } 5214 5215 // If there are only two unique elements, we may be able to turn this into a 5216 // vector shuffle. 5217 if (Values.size() == 2) { 5218 // Get the two values in deterministic order. 5219 SDValue Val1 = Node->getOperand(1); 5220 SDValue Val2; 5221 std::map<SDValue, std::vector<unsigned> >::iterator MI = Values.begin(); 5222 if (MI->first != Val1) 5223 Val2 = MI->first; 5224 else 5225 Val2 = (++MI)->first; 5226 5227 // If Val1 is an undef, make sure end ends up as Val2, to ensure that our 5228 // vector shuffle has the undef vector on the RHS. 5229 if (Val1.getOpcode() == ISD::UNDEF) 5230 std::swap(Val1, Val2); 5231 5232 // Build the shuffle constant vector: e.g. <0, 4, 0, 4> 5233 MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems); 5234 MVT MaskEltVT = MaskVT.getVectorElementType(); 5235 std::vector<SDValue> MaskVec(NumElems); 5236 5237 // Set elements of the shuffle mask for Val1. 5238 std::vector<unsigned> &Val1Elts = Values[Val1]; 5239 for (unsigned i = 0, e = Val1Elts.size(); i != e; ++i) 5240 MaskVec[Val1Elts[i]] = DAG.getConstant(0, MaskEltVT); 5241 5242 // Set elements of the shuffle mask for Val2. 5243 std::vector<unsigned> &Val2Elts = Values[Val2]; 5244 for (unsigned i = 0, e = Val2Elts.size(); i != e; ++i) 5245 if (Val2.getOpcode() != ISD::UNDEF) 5246 MaskVec[Val2Elts[i]] = DAG.getConstant(NumElems, MaskEltVT); 5247 else 5248 MaskVec[Val2Elts[i]] = DAG.getNode(ISD::UNDEF, MaskEltVT); 5249 5250 SDValue ShuffleMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 5251 &MaskVec[0], MaskVec.size()); 5252 5253 // If the target supports SCALAR_TO_VECTOR and this shuffle mask, use it. 5254 if (TLI.isOperationLegal(ISD::SCALAR_TO_VECTOR, Node->getValueType(0)) && 5255 isShuffleLegal(Node->getValueType(0), ShuffleMask)) { 5256 Val1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), Val1); 5257 Val2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), Val2); 5258 SDValue Ops[] = { Val1, Val2, ShuffleMask }; 5259 5260 // Return shuffle(LoValVec, HiValVec, <0,1,0,1>) 5261 return DAG.getNode(ISD::VECTOR_SHUFFLE, Node->getValueType(0), Ops, 3); 5262 } 5263 } 5264 5265 // Otherwise, we can't handle this case efficiently. Allocate a sufficiently 5266 // aligned object on the stack, store each element into it, then load 5267 // the result as a vector. 5268 MVT VT = Node->getValueType(0); 5269 // Create the stack frame object. 5270 SDValue FIPtr = DAG.CreateStackTemporary(VT); 5271 5272 // Emit a store of each element to the stack slot. 5273 SmallVector<SDValue, 8> Stores; 5274 unsigned TypeByteSize = Node->getOperand(0).getValueType().getSizeInBits()/8; 5275 // Store (in the right endianness) the elements to memory. 5276 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 5277 // Ignore undef elements. 5278 if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue; 5279 5280 unsigned Offset = TypeByteSize*i; 5281 5282 SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType()); 5283 Idx = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr, Idx); 5284 5285 Stores.push_back(DAG.getStore(DAG.getEntryNode(), Node->getOperand(i), Idx, 5286 NULL, 0)); 5287 } 5288 5289 SDValue StoreChain; 5290 if (!Stores.empty()) // Not all undef elements? 5291 StoreChain = DAG.getNode(ISD::TokenFactor, MVT::Other, 5292 &Stores[0], Stores.size()); 5293 else 5294 StoreChain = DAG.getEntryNode(); 5295 5296 // Result is a load from the stack slot. 5297 return DAG.getLoad(VT, StoreChain, FIPtr, NULL, 0); 5298} 5299 5300void SelectionDAGLegalize::ExpandShiftParts(unsigned NodeOp, 5301 SDValue Op, SDValue Amt, 5302 SDValue &Lo, SDValue &Hi) { 5303 // Expand the subcomponents. 5304 SDValue LHSL, LHSH; 5305 ExpandOp(Op, LHSL, LHSH); 5306 5307 SDValue Ops[] = { LHSL, LHSH, Amt }; 5308 MVT VT = LHSL.getValueType(); 5309 Lo = DAG.getNode(NodeOp, DAG.getNodeValueTypes(VT, VT), 2, Ops, 3); 5310 Hi = Lo.getValue(1); 5311} 5312 5313 5314/// ExpandShift - Try to find a clever way to expand this shift operation out to 5315/// smaller elements. If we can't find a way that is more efficient than a 5316/// libcall on this target, return false. Otherwise, return true with the 5317/// low-parts expanded into Lo and Hi. 5318bool SelectionDAGLegalize::ExpandShift(unsigned Opc, SDValue Op,SDValue Amt, 5319 SDValue &Lo, SDValue &Hi) { 5320 assert((Opc == ISD::SHL || Opc == ISD::SRA || Opc == ISD::SRL) && 5321 "This is not a shift!"); 5322 5323 MVT NVT = TLI.getTypeToTransformTo(Op.getValueType()); 5324 SDValue ShAmt = LegalizeOp(Amt); 5325 MVT ShTy = ShAmt.getValueType(); 5326 unsigned ShBits = ShTy.getSizeInBits(); 5327 unsigned VTBits = Op.getValueType().getSizeInBits(); 5328 unsigned NVTBits = NVT.getSizeInBits(); 5329 5330 // Handle the case when Amt is an immediate. 5331 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Amt.getNode())) { 5332 unsigned Cst = CN->getZExtValue(); 5333 // Expand the incoming operand to be shifted, so that we have its parts 5334 SDValue InL, InH; 5335 ExpandOp(Op, InL, InH); 5336 switch(Opc) { 5337 case ISD::SHL: 5338 if (Cst > VTBits) { 5339 Lo = DAG.getConstant(0, NVT); 5340 Hi = DAG.getConstant(0, NVT); 5341 } else if (Cst > NVTBits) { 5342 Lo = DAG.getConstant(0, NVT); 5343 Hi = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Cst-NVTBits,ShTy)); 5344 } else if (Cst == NVTBits) { 5345 Lo = DAG.getConstant(0, NVT); 5346 Hi = InL; 5347 } else { 5348 Lo = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Cst, ShTy)); 5349 Hi = DAG.getNode(ISD::OR, NVT, 5350 DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(Cst, ShTy)), 5351 DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(NVTBits-Cst, ShTy))); 5352 } 5353 return true; 5354 case ISD::SRL: 5355 if (Cst > VTBits) { 5356 Lo = DAG.getConstant(0, NVT); 5357 Hi = DAG.getConstant(0, NVT); 5358 } else if (Cst > NVTBits) { 5359 Lo = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Cst-NVTBits,ShTy)); 5360 Hi = DAG.getConstant(0, NVT); 5361 } else if (Cst == NVTBits) { 5362 Lo = InH; 5363 Hi = DAG.getConstant(0, NVT); 5364 } else { 5365 Lo = DAG.getNode(ISD::OR, NVT, 5366 DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(Cst, ShTy)), 5367 DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(NVTBits-Cst, ShTy))); 5368 Hi = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Cst, ShTy)); 5369 } 5370 return true; 5371 case ISD::SRA: 5372 if (Cst > VTBits) { 5373 Hi = Lo = DAG.getNode(ISD::SRA, NVT, InH, 5374 DAG.getConstant(NVTBits-1, ShTy)); 5375 } else if (Cst > NVTBits) { 5376 Lo = DAG.getNode(ISD::SRA, NVT, InH, 5377 DAG.getConstant(Cst-NVTBits, ShTy)); 5378 Hi = DAG.getNode(ISD::SRA, NVT, InH, 5379 DAG.getConstant(NVTBits-1, ShTy)); 5380 } else if (Cst == NVTBits) { 5381 Lo = InH; 5382 Hi = DAG.getNode(ISD::SRA, NVT, InH, 5383 DAG.getConstant(NVTBits-1, ShTy)); 5384 } else { 5385 Lo = DAG.getNode(ISD::OR, NVT, 5386 DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(Cst, ShTy)), 5387 DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(NVTBits-Cst, ShTy))); 5388 Hi = DAG.getNode(ISD::SRA, NVT, InH, DAG.getConstant(Cst, ShTy)); 5389 } 5390 return true; 5391 } 5392 } 5393 5394 // Okay, the shift amount isn't constant. However, if we can tell that it is 5395 // >= 32 or < 32, we can still simplify it, without knowing the actual value. 5396 APInt Mask = APInt::getHighBitsSet(ShBits, ShBits - Log2_32(NVTBits)); 5397 APInt KnownZero, KnownOne; 5398 DAG.ComputeMaskedBits(Amt, Mask, KnownZero, KnownOne); 5399 5400 // If we know that if any of the high bits of the shift amount are one, then 5401 // we can do this as a couple of simple shifts. 5402 if (KnownOne.intersects(Mask)) { 5403 // Mask out the high bit, which we know is set. 5404 Amt = DAG.getNode(ISD::AND, Amt.getValueType(), Amt, 5405 DAG.getConstant(~Mask, Amt.getValueType())); 5406 5407 // Expand the incoming operand to be shifted, so that we have its parts 5408 SDValue InL, InH; 5409 ExpandOp(Op, InL, InH); 5410 switch(Opc) { 5411 case ISD::SHL: 5412 Lo = DAG.getConstant(0, NVT); // Low part is zero. 5413 Hi = DAG.getNode(ISD::SHL, NVT, InL, Amt); // High part from Lo part. 5414 return true; 5415 case ISD::SRL: 5416 Hi = DAG.getConstant(0, NVT); // Hi part is zero. 5417 Lo = DAG.getNode(ISD::SRL, NVT, InH, Amt); // Lo part from Hi part. 5418 return true; 5419 case ISD::SRA: 5420 Hi = DAG.getNode(ISD::SRA, NVT, InH, // Sign extend high part. 5421 DAG.getConstant(NVTBits-1, Amt.getValueType())); 5422 Lo = DAG.getNode(ISD::SRA, NVT, InH, Amt); // Lo part from Hi part. 5423 return true; 5424 } 5425 } 5426 5427 // If we know that the high bits of the shift amount are all zero, then we can 5428 // do this as a couple of simple shifts. 5429 if ((KnownZero & Mask) == Mask) { 5430 // Compute 32-amt. 5431 SDValue Amt2 = DAG.getNode(ISD::SUB, Amt.getValueType(), 5432 DAG.getConstant(NVTBits, Amt.getValueType()), 5433 Amt); 5434 5435 // Expand the incoming operand to be shifted, so that we have its parts 5436 SDValue InL, InH; 5437 ExpandOp(Op, InL, InH); 5438 switch(Opc) { 5439 case ISD::SHL: 5440 Lo = DAG.getNode(ISD::SHL, NVT, InL, Amt); 5441 Hi = DAG.getNode(ISD::OR, NVT, 5442 DAG.getNode(ISD::SHL, NVT, InH, Amt), 5443 DAG.getNode(ISD::SRL, NVT, InL, Amt2)); 5444 return true; 5445 case ISD::SRL: 5446 Hi = DAG.getNode(ISD::SRL, NVT, InH, Amt); 5447 Lo = DAG.getNode(ISD::OR, NVT, 5448 DAG.getNode(ISD::SRL, NVT, InL, Amt), 5449 DAG.getNode(ISD::SHL, NVT, InH, Amt2)); 5450 return true; 5451 case ISD::SRA: 5452 Hi = DAG.getNode(ISD::SRA, NVT, InH, Amt); 5453 Lo = DAG.getNode(ISD::OR, NVT, 5454 DAG.getNode(ISD::SRL, NVT, InL, Amt), 5455 DAG.getNode(ISD::SHL, NVT, InH, Amt2)); 5456 return true; 5457 } 5458 } 5459 5460 return false; 5461} 5462 5463 5464// ExpandLibCall - Expand a node into a call to a libcall. If the result value 5465// does not fit into a register, return the lo part and set the hi part to the 5466// by-reg argument. If it does fit into a single register, return the result 5467// and leave the Hi part unset. 5468SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 5469 bool isSigned, SDValue &Hi) { 5470 assert(!IsLegalizingCall && "Cannot overlap legalization of calls!"); 5471 // The input chain to this libcall is the entry node of the function. 5472 // Legalizing the call will automatically add the previous call to the 5473 // dependence. 5474 SDValue InChain = DAG.getEntryNode(); 5475 5476 TargetLowering::ArgListTy Args; 5477 TargetLowering::ArgListEntry Entry; 5478 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 5479 MVT ArgVT = Node->getOperand(i).getValueType(); 5480 const Type *ArgTy = ArgVT.getTypeForMVT(); 5481 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; 5482 Entry.isSExt = isSigned; 5483 Entry.isZExt = !isSigned; 5484 Args.push_back(Entry); 5485 } 5486 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 5487 TLI.getPointerTy()); 5488 5489 // Splice the libcall in wherever FindInputOutputChains tells us to. 5490 const Type *RetTy = Node->getValueType(0).getTypeForMVT(); 5491 std::pair<SDValue,SDValue> CallInfo = 5492 TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false, 5493 CallingConv::C, false, Callee, Args, DAG); 5494 5495 // Legalize the call sequence, starting with the chain. This will advance 5496 // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that 5497 // was added by LowerCallTo (guaranteeing proper serialization of calls). 5498 LegalizeOp(CallInfo.second); 5499 SDValue Result; 5500 switch (getTypeAction(CallInfo.first.getValueType())) { 5501 default: assert(0 && "Unknown thing"); 5502 case Legal: 5503 Result = CallInfo.first; 5504 break; 5505 case Expand: 5506 ExpandOp(CallInfo.first, Result, Hi); 5507 break; 5508 } 5509 return Result; 5510} 5511 5512/// LegalizeINT_TO_FP - Legalize a [US]INT_TO_FP operation. 5513/// 5514SDValue SelectionDAGLegalize:: 5515LegalizeINT_TO_FP(SDValue Result, bool isSigned, MVT DestTy, SDValue Op) { 5516 bool isCustom = false; 5517 SDValue Tmp1; 5518 switch (getTypeAction(Op.getValueType())) { 5519 case Legal: 5520 switch (TLI.getOperationAction(isSigned ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 5521 Op.getValueType())) { 5522 default: assert(0 && "Unknown operation action!"); 5523 case TargetLowering::Custom: 5524 isCustom = true; 5525 // FALLTHROUGH 5526 case TargetLowering::Legal: 5527 Tmp1 = LegalizeOp(Op); 5528 if (Result.getNode()) 5529 Result = DAG.UpdateNodeOperands(Result, Tmp1); 5530 else 5531 Result = DAG.getNode(isSigned ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 5532 DestTy, Tmp1); 5533 if (isCustom) { 5534 Tmp1 = TLI.LowerOperation(Result, DAG); 5535 if (Tmp1.getNode()) Result = Tmp1; 5536 } 5537 break; 5538 case TargetLowering::Expand: 5539 Result = ExpandLegalINT_TO_FP(isSigned, LegalizeOp(Op), DestTy); 5540 break; 5541 case TargetLowering::Promote: 5542 Result = PromoteLegalINT_TO_FP(LegalizeOp(Op), DestTy, isSigned); 5543 break; 5544 } 5545 break; 5546 case Expand: 5547 Result = ExpandIntToFP(isSigned, DestTy, Op); 5548 break; 5549 case Promote: 5550 Tmp1 = PromoteOp(Op); 5551 if (isSigned) { 5552 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, Tmp1.getValueType(), 5553 Tmp1, DAG.getValueType(Op.getValueType())); 5554 } else { 5555 Tmp1 = DAG.getZeroExtendInReg(Tmp1, 5556 Op.getValueType()); 5557 } 5558 if (Result.getNode()) 5559 Result = DAG.UpdateNodeOperands(Result, Tmp1); 5560 else 5561 Result = DAG.getNode(isSigned ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 5562 DestTy, Tmp1); 5563 Result = LegalizeOp(Result); // The 'op' is not necessarily legal! 5564 break; 5565 } 5566 return Result; 5567} 5568 5569/// ExpandIntToFP - Expand a [US]INT_TO_FP operation. 5570/// 5571SDValue SelectionDAGLegalize:: 5572ExpandIntToFP(bool isSigned, MVT DestTy, SDValue Source) { 5573 MVT SourceVT = Source.getValueType(); 5574 bool ExpandSource = getTypeAction(SourceVT) == Expand; 5575 5576 // Expand unsupported int-to-fp vector casts by unrolling them. 5577 if (DestTy.isVector()) { 5578 if (!ExpandSource) 5579 return LegalizeOp(UnrollVectorOp(Source)); 5580 MVT DestEltTy = DestTy.getVectorElementType(); 5581 if (DestTy.getVectorNumElements() == 1) { 5582 SDValue Scalar = ScalarizeVectorOp(Source); 5583 SDValue Result = LegalizeINT_TO_FP(SDValue(), isSigned, 5584 DestEltTy, Scalar); 5585 return DAG.getNode(ISD::BUILD_VECTOR, DestTy, Result); 5586 } 5587 SDValue Lo, Hi; 5588 SplitVectorOp(Source, Lo, Hi); 5589 MVT SplitDestTy = MVT::getVectorVT(DestEltTy, 5590 DestTy.getVectorNumElements() / 2); 5591 SDValue LoResult = LegalizeINT_TO_FP(SDValue(), isSigned, SplitDestTy, Lo); 5592 SDValue HiResult = LegalizeINT_TO_FP(SDValue(), isSigned, SplitDestTy, Hi); 5593 return LegalizeOp(DAG.getNode(ISD::CONCAT_VECTORS, DestTy, LoResult, 5594 HiResult)); 5595 } 5596 5597 // Special case for i32 source to take advantage of UINTTOFP_I32_F32, etc. 5598 if (!isSigned && SourceVT != MVT::i32) { 5599 // The integer value loaded will be incorrectly if the 'sign bit' of the 5600 // incoming integer is set. To handle this, we dynamically test to see if 5601 // it is set, and, if so, add a fudge factor. 5602 SDValue Hi; 5603 if (ExpandSource) { 5604 SDValue Lo; 5605 ExpandOp(Source, Lo, Hi); 5606 Source = DAG.getNode(ISD::BUILD_PAIR, SourceVT, Lo, Hi); 5607 } else { 5608 // The comparison for the sign bit will use the entire operand. 5609 Hi = Source; 5610 } 5611 5612 // Check to see if the target has a custom way to lower this. If so, use 5613 // it. (Note we've already expanded the operand in this case.) 5614 switch (TLI.getOperationAction(ISD::UINT_TO_FP, SourceVT)) { 5615 default: assert(0 && "This action not implemented for this operation!"); 5616 case TargetLowering::Legal: 5617 case TargetLowering::Expand: 5618 break; // This case is handled below. 5619 case TargetLowering::Custom: { 5620 SDValue NV = TLI.LowerOperation(DAG.getNode(ISD::UINT_TO_FP, DestTy, 5621 Source), DAG); 5622 if (NV.getNode()) 5623 return LegalizeOp(NV); 5624 break; // The target decided this was legal after all 5625 } 5626 } 5627 5628 // If this is unsigned, and not supported, first perform the conversion to 5629 // signed, then adjust the result if the sign bit is set. 5630 SDValue SignedConv = ExpandIntToFP(true, DestTy, Source); 5631 5632 SDValue SignSet = DAG.getSetCC(TLI.getSetCCResultType(Hi), Hi, 5633 DAG.getConstant(0, Hi.getValueType()), 5634 ISD::SETLT); 5635 SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); 5636 SDValue CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(), 5637 SignSet, Four, Zero); 5638 uint64_t FF = 0x5f800000ULL; 5639 if (TLI.isLittleEndian()) FF <<= 32; 5640 static Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF); 5641 5642 SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); 5643 unsigned Alignment = 1 << cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 5644 CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset); 5645 Alignment = std::min(Alignment, 4u); 5646 SDValue FudgeInReg; 5647 if (DestTy == MVT::f32) 5648 FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx, 5649 PseudoSourceValue::getConstantPool(), 0, 5650 false, Alignment); 5651 else if (DestTy.bitsGT(MVT::f32)) 5652 // FIXME: Avoid the extend by construction the right constantpool? 5653 FudgeInReg = DAG.getExtLoad(ISD::EXTLOAD, DestTy, DAG.getEntryNode(), 5654 CPIdx, 5655 PseudoSourceValue::getConstantPool(), 0, 5656 MVT::f32, false, Alignment); 5657 else 5658 assert(0 && "Unexpected conversion"); 5659 5660 MVT SCVT = SignedConv.getValueType(); 5661 if (SCVT != DestTy) { 5662 // Destination type needs to be expanded as well. The FADD now we are 5663 // constructing will be expanded into a libcall. 5664 if (SCVT.getSizeInBits() != DestTy.getSizeInBits()) { 5665 assert(SCVT.getSizeInBits() * 2 == DestTy.getSizeInBits()); 5666 SignedConv = DAG.getNode(ISD::BUILD_PAIR, DestTy, 5667 SignedConv, SignedConv.getValue(1)); 5668 } 5669 SignedConv = DAG.getNode(ISD::BIT_CONVERT, DestTy, SignedConv); 5670 } 5671 return DAG.getNode(ISD::FADD, DestTy, SignedConv, FudgeInReg); 5672 } 5673 5674 // Check to see if the target has a custom way to lower this. If so, use it. 5675 switch (TLI.getOperationAction(ISD::SINT_TO_FP, SourceVT)) { 5676 default: assert(0 && "This action not implemented for this operation!"); 5677 case TargetLowering::Legal: 5678 case TargetLowering::Expand: 5679 break; // This case is handled below. 5680 case TargetLowering::Custom: { 5681 SDValue NV = TLI.LowerOperation(DAG.getNode(ISD::SINT_TO_FP, DestTy, 5682 Source), DAG); 5683 if (NV.getNode()) 5684 return LegalizeOp(NV); 5685 break; // The target decided this was legal after all 5686 } 5687 } 5688 5689 // Expand the source, then glue it back together for the call. We must expand 5690 // the source in case it is shared (this pass of legalize must traverse it). 5691 if (ExpandSource) { 5692 SDValue SrcLo, SrcHi; 5693 ExpandOp(Source, SrcLo, SrcHi); 5694 Source = DAG.getNode(ISD::BUILD_PAIR, SourceVT, SrcLo, SrcHi); 5695 } 5696 5697 RTLIB::Libcall LC = isSigned ? 5698 RTLIB::getSINTTOFP(SourceVT, DestTy) : 5699 RTLIB::getUINTTOFP(SourceVT, DestTy); 5700 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unknown int value type"); 5701 5702 Source = DAG.getNode(ISD::SINT_TO_FP, DestTy, Source); 5703 SDValue HiPart; 5704 SDValue Result = ExpandLibCall(LC, Source.getNode(), isSigned, HiPart); 5705 if (Result.getValueType() != DestTy && HiPart.getNode()) 5706 Result = DAG.getNode(ISD::BUILD_PAIR, DestTy, Result, HiPart); 5707 return Result; 5708} 5709 5710/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a 5711/// INT_TO_FP operation of the specified operand when the target requests that 5712/// we expand it. At this point, we know that the result and operand types are 5713/// legal for the target. 5714SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, 5715 SDValue Op0, 5716 MVT DestVT) { 5717 if (Op0.getValueType() == MVT::i32) { 5718 // simple 32-bit [signed|unsigned] integer to float/double expansion 5719 5720 // Get the stack frame index of a 8 byte buffer. 5721 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 5722 5723 // word offset constant for Hi/Lo address computation 5724 SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy()); 5725 // set up Hi and Lo (into buffer) address based on endian 5726 SDValue Hi = StackSlot; 5727 SDValue Lo = DAG.getNode(ISD::ADD, TLI.getPointerTy(), StackSlot,WordOff); 5728 if (TLI.isLittleEndian()) 5729 std::swap(Hi, Lo); 5730 5731 // if signed map to unsigned space 5732 SDValue Op0Mapped; 5733 if (isSigned) { 5734 // constant used to invert sign bit (signed to unsigned mapping) 5735 SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32); 5736 Op0Mapped = DAG.getNode(ISD::XOR, MVT::i32, Op0, SignBit); 5737 } else { 5738 Op0Mapped = Op0; 5739 } 5740 // store the lo of the constructed double - based on integer input 5741 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), 5742 Op0Mapped, Lo, NULL, 0); 5743 // initial hi portion of constructed double 5744 SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32); 5745 // store the hi of the constructed double - biased exponent 5746 SDValue Store2=DAG.getStore(Store1, InitialHi, Hi, NULL, 0); 5747 // load the constructed double 5748 SDValue Load = DAG.getLoad(MVT::f64, Store2, StackSlot, NULL, 0); 5749 // FP constant to bias correct the final result 5750 SDValue Bias = DAG.getConstantFP(isSigned ? 5751 BitsToDouble(0x4330000080000000ULL) 5752 : BitsToDouble(0x4330000000000000ULL), 5753 MVT::f64); 5754 // subtract the bias 5755 SDValue Sub = DAG.getNode(ISD::FSUB, MVT::f64, Load, Bias); 5756 // final result 5757 SDValue Result; 5758 // handle final rounding 5759 if (DestVT == MVT::f64) { 5760 // do nothing 5761 Result = Sub; 5762 } else if (DestVT.bitsLT(MVT::f64)) { 5763 Result = DAG.getNode(ISD::FP_ROUND, DestVT, Sub, 5764 DAG.getIntPtrConstant(0)); 5765 } else if (DestVT.bitsGT(MVT::f64)) { 5766 Result = DAG.getNode(ISD::FP_EXTEND, DestVT, Sub); 5767 } 5768 return Result; 5769 } 5770 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 5771 SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, DestVT, Op0); 5772 5773 SDValue SignSet = DAG.getSetCC(TLI.getSetCCResultType(Op0), Op0, 5774 DAG.getConstant(0, Op0.getValueType()), 5775 ISD::SETLT); 5776 SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); 5777 SDValue CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(), 5778 SignSet, Four, Zero); 5779 5780 // If the sign bit of the integer is set, the large number will be treated 5781 // as a negative number. To counteract this, the dynamic code adds an 5782 // offset depending on the data type. 5783 uint64_t FF; 5784 switch (Op0.getValueType().getSimpleVT()) { 5785 default: assert(0 && "Unsupported integer type!"); 5786 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 5787 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 5788 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 5789 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 5790 } 5791 if (TLI.isLittleEndian()) FF <<= 32; 5792 static Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF); 5793 5794 SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); 5795 unsigned Alignment = 1 << cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 5796 CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset); 5797 Alignment = std::min(Alignment, 4u); 5798 SDValue FudgeInReg; 5799 if (DestVT == MVT::f32) 5800 FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx, 5801 PseudoSourceValue::getConstantPool(), 0, 5802 false, Alignment); 5803 else { 5804 FudgeInReg = 5805 LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, DestVT, 5806 DAG.getEntryNode(), CPIdx, 5807 PseudoSourceValue::getConstantPool(), 0, 5808 MVT::f32, false, Alignment)); 5809 } 5810 5811 return DAG.getNode(ISD::FADD, DestVT, Tmp1, FudgeInReg); 5812} 5813 5814/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a 5815/// *INT_TO_FP operation of the specified operand when the target requests that 5816/// we promote it. At this point, we know that the result and operand types are 5817/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 5818/// operation that takes a larger input. 5819SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, 5820 MVT DestVT, 5821 bool isSigned) { 5822 // First step, figure out the appropriate *INT_TO_FP operation to use. 5823 MVT NewInTy = LegalOp.getValueType(); 5824 5825 unsigned OpToUse = 0; 5826 5827 // Scan for the appropriate larger type to use. 5828 while (1) { 5829 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT()+1); 5830 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 5831 5832 // If the target supports SINT_TO_FP of this type, use it. 5833 switch (TLI.getOperationAction(ISD::SINT_TO_FP, NewInTy)) { 5834 default: break; 5835 case TargetLowering::Legal: 5836 if (!TLI.isTypeLegal(NewInTy)) 5837 break; // Can't use this datatype. 5838 // FALL THROUGH. 5839 case TargetLowering::Custom: 5840 OpToUse = ISD::SINT_TO_FP; 5841 break; 5842 } 5843 if (OpToUse) break; 5844 if (isSigned) continue; 5845 5846 // If the target supports UINT_TO_FP of this type, use it. 5847 switch (TLI.getOperationAction(ISD::UINT_TO_FP, NewInTy)) { 5848 default: break; 5849 case TargetLowering::Legal: 5850 if (!TLI.isTypeLegal(NewInTy)) 5851 break; // Can't use this datatype. 5852 // FALL THROUGH. 5853 case TargetLowering::Custom: 5854 OpToUse = ISD::UINT_TO_FP; 5855 break; 5856 } 5857 if (OpToUse) break; 5858 5859 // Otherwise, try a larger type. 5860 } 5861 5862 // Okay, we found the operation and type to use. Zero extend our input to the 5863 // desired type then run the operation on it. 5864 return DAG.getNode(OpToUse, DestVT, 5865 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5866 NewInTy, LegalOp)); 5867} 5868 5869/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a 5870/// FP_TO_*INT operation of the specified operand when the target requests that 5871/// we promote it. At this point, we know that the result and operand types are 5872/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 5873/// operation that returns a larger result. 5874SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, 5875 MVT DestVT, 5876 bool isSigned) { 5877 // First step, figure out the appropriate FP_TO*INT operation to use. 5878 MVT NewOutTy = DestVT; 5879 5880 unsigned OpToUse = 0; 5881 5882 // Scan for the appropriate larger type to use. 5883 while (1) { 5884 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT()+1); 5885 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 5886 5887 // If the target supports FP_TO_SINT returning this type, use it. 5888 switch (TLI.getOperationAction(ISD::FP_TO_SINT, NewOutTy)) { 5889 default: break; 5890 case TargetLowering::Legal: 5891 if (!TLI.isTypeLegal(NewOutTy)) 5892 break; // Can't use this datatype. 5893 // FALL THROUGH. 5894 case TargetLowering::Custom: 5895 OpToUse = ISD::FP_TO_SINT; 5896 break; 5897 } 5898 if (OpToUse) break; 5899 5900 // If the target supports FP_TO_UINT of this type, use it. 5901 switch (TLI.getOperationAction(ISD::FP_TO_UINT, NewOutTy)) { 5902 default: break; 5903 case TargetLowering::Legal: 5904 if (!TLI.isTypeLegal(NewOutTy)) 5905 break; // Can't use this datatype. 5906 // FALL THROUGH. 5907 case TargetLowering::Custom: 5908 OpToUse = ISD::FP_TO_UINT; 5909 break; 5910 } 5911 if (OpToUse) break; 5912 5913 // Otherwise, try a larger type. 5914 } 5915 5916 5917 // Okay, we found the operation and type to use. 5918 SDValue Operation = DAG.getNode(OpToUse, NewOutTy, LegalOp); 5919 5920 // If the operation produces an invalid type, it must be custom lowered. Use 5921 // the target lowering hooks to expand it. Just keep the low part of the 5922 // expanded operation, we know that we're truncating anyway. 5923 if (getTypeAction(NewOutTy) == Expand) { 5924 Operation = SDValue(TLI.ReplaceNodeResults(Operation.getNode(), DAG), 0); 5925 assert(Operation.getNode() && "Didn't return anything"); 5926 } 5927 5928 // Truncate the result of the extended FP_TO_*INT operation to the desired 5929 // size. 5930 return DAG.getNode(ISD::TRUNCATE, DestVT, Operation); 5931} 5932 5933/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation. 5934/// 5935SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op) { 5936 MVT VT = Op.getValueType(); 5937 MVT SHVT = TLI.getShiftAmountTy(); 5938 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 5939 switch (VT.getSimpleVT()) { 5940 default: assert(0 && "Unhandled Expand type in BSWAP!"); abort(); 5941 case MVT::i16: 5942 Tmp2 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT)); 5943 Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT)); 5944 return DAG.getNode(ISD::OR, VT, Tmp1, Tmp2); 5945 case MVT::i32: 5946 Tmp4 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(24, SHVT)); 5947 Tmp3 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT)); 5948 Tmp2 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT)); 5949 Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(24, SHVT)); 5950 Tmp3 = DAG.getNode(ISD::AND, VT, Tmp3, DAG.getConstant(0xFF0000, VT)); 5951 Tmp2 = DAG.getNode(ISD::AND, VT, Tmp2, DAG.getConstant(0xFF00, VT)); 5952 Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp3); 5953 Tmp2 = DAG.getNode(ISD::OR, VT, Tmp2, Tmp1); 5954 return DAG.getNode(ISD::OR, VT, Tmp4, Tmp2); 5955 case MVT::i64: 5956 Tmp8 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(56, SHVT)); 5957 Tmp7 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(40, SHVT)); 5958 Tmp6 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(24, SHVT)); 5959 Tmp5 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT)); 5960 Tmp4 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT)); 5961 Tmp3 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(24, SHVT)); 5962 Tmp2 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(40, SHVT)); 5963 Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(56, SHVT)); 5964 Tmp7 = DAG.getNode(ISD::AND, VT, Tmp7, DAG.getConstant(255ULL<<48, VT)); 5965 Tmp6 = DAG.getNode(ISD::AND, VT, Tmp6, DAG.getConstant(255ULL<<40, VT)); 5966 Tmp5 = DAG.getNode(ISD::AND, VT, Tmp5, DAG.getConstant(255ULL<<32, VT)); 5967 Tmp4 = DAG.getNode(ISD::AND, VT, Tmp4, DAG.getConstant(255ULL<<24, VT)); 5968 Tmp3 = DAG.getNode(ISD::AND, VT, Tmp3, DAG.getConstant(255ULL<<16, VT)); 5969 Tmp2 = DAG.getNode(ISD::AND, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT)); 5970 Tmp8 = DAG.getNode(ISD::OR, VT, Tmp8, Tmp7); 5971 Tmp6 = DAG.getNode(ISD::OR, VT, Tmp6, Tmp5); 5972 Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp3); 5973 Tmp2 = DAG.getNode(ISD::OR, VT, Tmp2, Tmp1); 5974 Tmp8 = DAG.getNode(ISD::OR, VT, Tmp8, Tmp6); 5975 Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp2); 5976 return DAG.getNode(ISD::OR, VT, Tmp8, Tmp4); 5977 } 5978} 5979 5980/// ExpandBitCount - Expand the specified bitcount instruction into operations. 5981/// 5982SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op) { 5983 switch (Opc) { 5984 default: assert(0 && "Cannot expand this yet!"); 5985 case ISD::CTPOP: { 5986 static const uint64_t mask[6] = { 5987 0x5555555555555555ULL, 0x3333333333333333ULL, 5988 0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL, 5989 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL 5990 }; 5991 MVT VT = Op.getValueType(); 5992 MVT ShVT = TLI.getShiftAmountTy(); 5993 unsigned len = VT.getSizeInBits(); 5994 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 5995 //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8]) 5996 SDValue Tmp2 = DAG.getConstant(mask[i], VT); 5997 SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT); 5998 Op = DAG.getNode(ISD::ADD, VT, DAG.getNode(ISD::AND, VT, Op, Tmp2), 5999 DAG.getNode(ISD::AND, VT, 6000 DAG.getNode(ISD::SRL, VT, Op, Tmp3),Tmp2)); 6001 } 6002 return Op; 6003 } 6004 case ISD::CTLZ: { 6005 // for now, we do this: 6006 // x = x | (x >> 1); 6007 // x = x | (x >> 2); 6008 // ... 6009 // x = x | (x >>16); 6010 // x = x | (x >>32); // for 64-bit input 6011 // return popcount(~x); 6012 // 6013 // but see also: http://www.hackersdelight.org/HDcode/nlz.cc 6014 MVT VT = Op.getValueType(); 6015 MVT ShVT = TLI.getShiftAmountTy(); 6016 unsigned len = VT.getSizeInBits(); 6017 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 6018 SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT); 6019 Op = DAG.getNode(ISD::OR, VT, Op, DAG.getNode(ISD::SRL, VT, Op, Tmp3)); 6020 } 6021 Op = DAG.getNode(ISD::XOR, VT, Op, DAG.getConstant(~0ULL, VT)); 6022 return DAG.getNode(ISD::CTPOP, VT, Op); 6023 } 6024 case ISD::CTTZ: { 6025 // for now, we use: { return popcount(~x & (x - 1)); } 6026 // unless the target has ctlz but not ctpop, in which case we use: 6027 // { return 32 - nlz(~x & (x-1)); } 6028 // see also http://www.hackersdelight.org/HDcode/ntz.cc 6029 MVT VT = Op.getValueType(); 6030 SDValue Tmp2 = DAG.getConstant(~0ULL, VT); 6031 SDValue Tmp3 = DAG.getNode(ISD::AND, VT, 6032 DAG.getNode(ISD::XOR, VT, Op, Tmp2), 6033 DAG.getNode(ISD::SUB, VT, Op, DAG.getConstant(1, VT))); 6034 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 6035 if (!TLI.isOperationLegal(ISD::CTPOP, VT) && 6036 TLI.isOperationLegal(ISD::CTLZ, VT)) 6037 return DAG.getNode(ISD::SUB, VT, 6038 DAG.getConstant(VT.getSizeInBits(), VT), 6039 DAG.getNode(ISD::CTLZ, VT, Tmp3)); 6040 return DAG.getNode(ISD::CTPOP, VT, Tmp3); 6041 } 6042 } 6043} 6044 6045/// ExpandOp - Expand the specified SDValue into its two component pieces 6046/// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, the 6047/// LegalizedNodes map is filled in for any results that are not expanded, the 6048/// ExpandedNodes map is filled in for any results that are expanded, and the 6049/// Lo/Hi values are returned. 6050void SelectionDAGLegalize::ExpandOp(SDValue Op, SDValue &Lo, SDValue &Hi){ 6051 MVT VT = Op.getValueType(); 6052 MVT NVT = TLI.getTypeToTransformTo(VT); 6053 SDNode *Node = Op.getNode(); 6054 assert(getTypeAction(VT) == Expand && "Not an expanded type!"); 6055 assert(((NVT.isInteger() && NVT.bitsLT(VT)) || VT.isFloatingPoint() || 6056 VT.isVector()) && "Cannot expand to FP value or to larger int value!"); 6057 6058 // See if we already expanded it. 6059 DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator I 6060 = ExpandedNodes.find(Op); 6061 if (I != ExpandedNodes.end()) { 6062 Lo = I->second.first; 6063 Hi = I->second.second; 6064 return; 6065 } 6066 6067 switch (Node->getOpcode()) { 6068 case ISD::CopyFromReg: 6069 assert(0 && "CopyFromReg must be legal!"); 6070 case ISD::FP_ROUND_INREG: 6071 if (VT == MVT::ppcf128 && 6072 TLI.getOperationAction(ISD::FP_ROUND_INREG, VT) == 6073 TargetLowering::Custom) { 6074 SDValue SrcLo, SrcHi, Src; 6075 ExpandOp(Op.getOperand(0), SrcLo, SrcHi); 6076 Src = DAG.getNode(ISD::BUILD_PAIR, VT, SrcLo, SrcHi); 6077 SDValue Result = TLI.LowerOperation( 6078 DAG.getNode(ISD::FP_ROUND_INREG, VT, Src, Op.getOperand(1)), DAG); 6079 assert(Result.getNode()->getOpcode() == ISD::BUILD_PAIR); 6080 Lo = Result.getNode()->getOperand(0); 6081 Hi = Result.getNode()->getOperand(1); 6082 break; 6083 } 6084 // fall through 6085 default: 6086#ifndef NDEBUG 6087 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 6088#endif 6089 assert(0 && "Do not know how to expand this operator!"); 6090 abort(); 6091 case ISD::EXTRACT_ELEMENT: 6092 ExpandOp(Node->getOperand(0), Lo, Hi); 6093 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) 6094 return ExpandOp(Hi, Lo, Hi); 6095 return ExpandOp(Lo, Lo, Hi); 6096 case ISD::EXTRACT_VECTOR_ELT: 6097 // ExpandEXTRACT_VECTOR_ELT tolerates invalid result types. 6098 Lo = ExpandEXTRACT_VECTOR_ELT(Op); 6099 return ExpandOp(Lo, Lo, Hi); 6100 case ISD::UNDEF: 6101 Lo = DAG.getNode(ISD::UNDEF, NVT); 6102 Hi = DAG.getNode(ISD::UNDEF, NVT); 6103 break; 6104 case ISD::Constant: { 6105 unsigned NVTBits = NVT.getSizeInBits(); 6106 const APInt &Cst = cast<ConstantSDNode>(Node)->getAPIntValue(); 6107 Lo = DAG.getConstant(APInt(Cst).trunc(NVTBits), NVT); 6108 Hi = DAG.getConstant(Cst.lshr(NVTBits).trunc(NVTBits), NVT); 6109 break; 6110 } 6111 case ISD::ConstantFP: { 6112 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 6113 if (CFP->getValueType(0) == MVT::ppcf128) { 6114 APInt api = CFP->getValueAPF().bitcastToAPInt(); 6115 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &api.getRawData()[1])), 6116 MVT::f64); 6117 Hi = DAG.getConstantFP(APFloat(APInt(64, 1, &api.getRawData()[0])), 6118 MVT::f64); 6119 break; 6120 } 6121 Lo = ExpandConstantFP(CFP, false, DAG, TLI); 6122 if (getTypeAction(Lo.getValueType()) == Expand) 6123 ExpandOp(Lo, Lo, Hi); 6124 break; 6125 } 6126 case ISD::BUILD_PAIR: 6127 // Return the operands. 6128 Lo = Node->getOperand(0); 6129 Hi = Node->getOperand(1); 6130 break; 6131 6132 case ISD::MERGE_VALUES: 6133 if (Node->getNumValues() == 1) { 6134 ExpandOp(Op.getOperand(0), Lo, Hi); 6135 break; 6136 } 6137 // FIXME: For now only expand i64,chain = MERGE_VALUES (x, y) 6138 assert(Op.getResNo() == 0 && Node->getNumValues() == 2 && 6139 Op.getValue(1).getValueType() == MVT::Other && 6140 "unhandled MERGE_VALUES"); 6141 ExpandOp(Op.getOperand(0), Lo, Hi); 6142 // Remember that we legalized the chain. 6143 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Op.getOperand(1))); 6144 break; 6145 6146 case ISD::SIGN_EXTEND_INREG: 6147 ExpandOp(Node->getOperand(0), Lo, Hi); 6148 // sext_inreg the low part if needed. 6149 Lo = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Lo, Node->getOperand(1)); 6150 6151 // The high part gets the sign extension from the lo-part. This handles 6152 // things like sextinreg V:i64 from i8. 6153 Hi = DAG.getNode(ISD::SRA, NVT, Lo, 6154 DAG.getConstant(NVT.getSizeInBits()-1, 6155 TLI.getShiftAmountTy())); 6156 break; 6157 6158 case ISD::BSWAP: { 6159 ExpandOp(Node->getOperand(0), Lo, Hi); 6160 SDValue TempLo = DAG.getNode(ISD::BSWAP, NVT, Hi); 6161 Hi = DAG.getNode(ISD::BSWAP, NVT, Lo); 6162 Lo = TempLo; 6163 break; 6164 } 6165 6166 case ISD::CTPOP: 6167 ExpandOp(Node->getOperand(0), Lo, Hi); 6168 Lo = DAG.getNode(ISD::ADD, NVT, // ctpop(HL) -> ctpop(H)+ctpop(L) 6169 DAG.getNode(ISD::CTPOP, NVT, Lo), 6170 DAG.getNode(ISD::CTPOP, NVT, Hi)); 6171 Hi = DAG.getConstant(0, NVT); 6172 break; 6173 6174 case ISD::CTLZ: { 6175 // ctlz (HL) -> ctlz(H) != 32 ? ctlz(H) : (ctlz(L)+32) 6176 ExpandOp(Node->getOperand(0), Lo, Hi); 6177 SDValue BitsC = DAG.getConstant(NVT.getSizeInBits(), NVT); 6178 SDValue HLZ = DAG.getNode(ISD::CTLZ, NVT, Hi); 6179 SDValue TopNotZero = DAG.getSetCC(TLI.getSetCCResultType(HLZ), HLZ, BitsC, 6180 ISD::SETNE); 6181 SDValue LowPart = DAG.getNode(ISD::CTLZ, NVT, Lo); 6182 LowPart = DAG.getNode(ISD::ADD, NVT, LowPart, BitsC); 6183 6184 Lo = DAG.getNode(ISD::SELECT, NVT, TopNotZero, HLZ, LowPart); 6185 Hi = DAG.getConstant(0, NVT); 6186 break; 6187 } 6188 6189 case ISD::CTTZ: { 6190 // cttz (HL) -> cttz(L) != 32 ? cttz(L) : (cttz(H)+32) 6191 ExpandOp(Node->getOperand(0), Lo, Hi); 6192 SDValue BitsC = DAG.getConstant(NVT.getSizeInBits(), NVT); 6193 SDValue LTZ = DAG.getNode(ISD::CTTZ, NVT, Lo); 6194 SDValue BotNotZero = DAG.getSetCC(TLI.getSetCCResultType(LTZ), LTZ, BitsC, 6195 ISD::SETNE); 6196 SDValue HiPart = DAG.getNode(ISD::CTTZ, NVT, Hi); 6197 HiPart = DAG.getNode(ISD::ADD, NVT, HiPart, BitsC); 6198 6199 Lo = DAG.getNode(ISD::SELECT, NVT, BotNotZero, LTZ, HiPart); 6200 Hi = DAG.getConstant(0, NVT); 6201 break; 6202 } 6203 6204 case ISD::VAARG: { 6205 SDValue Ch = Node->getOperand(0); // Legalize the chain. 6206 SDValue Ptr = Node->getOperand(1); // Legalize the pointer. 6207 Lo = DAG.getVAArg(NVT, Ch, Ptr, Node->getOperand(2)); 6208 Hi = DAG.getVAArg(NVT, Lo.getValue(1), Ptr, Node->getOperand(2)); 6209 6210 // Remember that we legalized the chain. 6211 Hi = LegalizeOp(Hi); 6212 AddLegalizedOperand(Op.getValue(1), Hi.getValue(1)); 6213 if (TLI.isBigEndian()) 6214 std::swap(Lo, Hi); 6215 break; 6216 } 6217 6218 case ISD::LOAD: { 6219 LoadSDNode *LD = cast<LoadSDNode>(Node); 6220 SDValue Ch = LD->getChain(); // Legalize the chain. 6221 SDValue Ptr = LD->getBasePtr(); // Legalize the pointer. 6222 ISD::LoadExtType ExtType = LD->getExtensionType(); 6223 const Value *SV = LD->getSrcValue(); 6224 int SVOffset = LD->getSrcValueOffset(); 6225 unsigned Alignment = LD->getAlignment(); 6226 bool isVolatile = LD->isVolatile(); 6227 6228 if (ExtType == ISD::NON_EXTLOAD) { 6229 Lo = DAG.getLoad(NVT, Ch, Ptr, SV, SVOffset, 6230 isVolatile, Alignment); 6231 if (VT == MVT::f32 || VT == MVT::f64) { 6232 // f32->i32 or f64->i64 one to one expansion. 6233 // Remember that we legalized the chain. 6234 AddLegalizedOperand(SDValue(Node, 1), LegalizeOp(Lo.getValue(1))); 6235 // Recursively expand the new load. 6236 if (getTypeAction(NVT) == Expand) 6237 ExpandOp(Lo, Lo, Hi); 6238 break; 6239 } 6240 6241 // Increment the pointer to the other half. 6242 unsigned IncrementSize = Lo.getValueType().getSizeInBits()/8; 6243 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 6244 DAG.getIntPtrConstant(IncrementSize)); 6245 SVOffset += IncrementSize; 6246 Alignment = MinAlign(Alignment, IncrementSize); 6247 Hi = DAG.getLoad(NVT, Ch, Ptr, SV, SVOffset, 6248 isVolatile, Alignment); 6249 6250 // Build a factor node to remember that this load is independent of the 6251 // other one. 6252 SDValue TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 6253 Hi.getValue(1)); 6254 6255 // Remember that we legalized the chain. 6256 AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF)); 6257 if (TLI.isBigEndian()) 6258 std::swap(Lo, Hi); 6259 } else { 6260 MVT EVT = LD->getMemoryVT(); 6261 6262 if ((VT == MVT::f64 && EVT == MVT::f32) || 6263 (VT == MVT::ppcf128 && (EVT==MVT::f64 || EVT==MVT::f32))) { 6264 // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND 6265 SDValue Load = DAG.getLoad(EVT, Ch, Ptr, SV, 6266 SVOffset, isVolatile, Alignment); 6267 // Remember that we legalized the chain. 6268 AddLegalizedOperand(SDValue(Node, 1), LegalizeOp(Load.getValue(1))); 6269 ExpandOp(DAG.getNode(ISD::FP_EXTEND, VT, Load), Lo, Hi); 6270 break; 6271 } 6272 6273 if (EVT == NVT) 6274 Lo = DAG.getLoad(NVT, Ch, Ptr, SV, 6275 SVOffset, isVolatile, Alignment); 6276 else 6277 Lo = DAG.getExtLoad(ExtType, NVT, Ch, Ptr, SV, 6278 SVOffset, EVT, isVolatile, 6279 Alignment); 6280 6281 // Remember that we legalized the chain. 6282 AddLegalizedOperand(SDValue(Node, 1), LegalizeOp(Lo.getValue(1))); 6283 6284 if (ExtType == ISD::SEXTLOAD) { 6285 // The high part is obtained by SRA'ing all but one of the bits of the 6286 // lo part. 6287 unsigned LoSize = Lo.getValueType().getSizeInBits(); 6288 Hi = DAG.getNode(ISD::SRA, NVT, Lo, 6289 DAG.getConstant(LoSize-1, TLI.getShiftAmountTy())); 6290 } else if (ExtType == ISD::ZEXTLOAD) { 6291 // The high part is just a zero. 6292 Hi = DAG.getConstant(0, NVT); 6293 } else /* if (ExtType == ISD::EXTLOAD) */ { 6294 // The high part is undefined. 6295 Hi = DAG.getNode(ISD::UNDEF, NVT); 6296 } 6297 } 6298 break; 6299 } 6300 case ISD::AND: 6301 case ISD::OR: 6302 case ISD::XOR: { // Simple logical operators -> two trivial pieces. 6303 SDValue LL, LH, RL, RH; 6304 ExpandOp(Node->getOperand(0), LL, LH); 6305 ExpandOp(Node->getOperand(1), RL, RH); 6306 Lo = DAG.getNode(Node->getOpcode(), NVT, LL, RL); 6307 Hi = DAG.getNode(Node->getOpcode(), NVT, LH, RH); 6308 break; 6309 } 6310 case ISD::SELECT: { 6311 SDValue LL, LH, RL, RH; 6312 ExpandOp(Node->getOperand(1), LL, LH); 6313 ExpandOp(Node->getOperand(2), RL, RH); 6314 if (getTypeAction(NVT) == Expand) 6315 NVT = TLI.getTypeToExpandTo(NVT); 6316 Lo = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), LL, RL); 6317 if (VT != MVT::f32) 6318 Hi = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), LH, RH); 6319 break; 6320 } 6321 case ISD::SELECT_CC: { 6322 SDValue TL, TH, FL, FH; 6323 ExpandOp(Node->getOperand(2), TL, TH); 6324 ExpandOp(Node->getOperand(3), FL, FH); 6325 if (getTypeAction(NVT) == Expand) 6326 NVT = TLI.getTypeToExpandTo(NVT); 6327 Lo = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0), 6328 Node->getOperand(1), TL, FL, Node->getOperand(4)); 6329 if (VT != MVT::f32) 6330 Hi = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0), 6331 Node->getOperand(1), TH, FH, Node->getOperand(4)); 6332 break; 6333 } 6334 case ISD::ANY_EXTEND: 6335 // The low part is any extension of the input (which degenerates to a copy). 6336 Lo = DAG.getNode(ISD::ANY_EXTEND, NVT, Node->getOperand(0)); 6337 // The high part is undefined. 6338 Hi = DAG.getNode(ISD::UNDEF, NVT); 6339 break; 6340 case ISD::SIGN_EXTEND: { 6341 // The low part is just a sign extension of the input (which degenerates to 6342 // a copy). 6343 Lo = DAG.getNode(ISD::SIGN_EXTEND, NVT, Node->getOperand(0)); 6344 6345 // The high part is obtained by SRA'ing all but one of the bits of the lo 6346 // part. 6347 unsigned LoSize = Lo.getValueType().getSizeInBits(); 6348 Hi = DAG.getNode(ISD::SRA, NVT, Lo, 6349 DAG.getConstant(LoSize-1, TLI.getShiftAmountTy())); 6350 break; 6351 } 6352 case ISD::ZERO_EXTEND: 6353 // The low part is just a zero extension of the input (which degenerates to 6354 // a copy). 6355 Lo = DAG.getNode(ISD::ZERO_EXTEND, NVT, Node->getOperand(0)); 6356 6357 // The high part is just a zero. 6358 Hi = DAG.getConstant(0, NVT); 6359 break; 6360 6361 case ISD::TRUNCATE: { 6362 // The input value must be larger than this value. Expand *it*. 6363 SDValue NewLo; 6364 ExpandOp(Node->getOperand(0), NewLo, Hi); 6365 6366 // The low part is now either the right size, or it is closer. If not the 6367 // right size, make an illegal truncate so we recursively expand it. 6368 if (NewLo.getValueType() != Node->getValueType(0)) 6369 NewLo = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), NewLo); 6370 ExpandOp(NewLo, Lo, Hi); 6371 break; 6372 } 6373 6374 case ISD::BIT_CONVERT: { 6375 SDValue Tmp; 6376 if (TLI.getOperationAction(ISD::BIT_CONVERT, VT) == TargetLowering::Custom){ 6377 // If the target wants to, allow it to lower this itself. 6378 switch (getTypeAction(Node->getOperand(0).getValueType())) { 6379 case Expand: assert(0 && "cannot expand FP!"); 6380 case Legal: Tmp = LegalizeOp(Node->getOperand(0)); break; 6381 case Promote: Tmp = PromoteOp (Node->getOperand(0)); break; 6382 } 6383 Tmp = TLI.LowerOperation(DAG.getNode(ISD::BIT_CONVERT, VT, Tmp), DAG); 6384 } 6385 6386 // f32 / f64 must be expanded to i32 / i64. 6387 if (VT == MVT::f32 || VT == MVT::f64) { 6388 Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 6389 if (getTypeAction(NVT) == Expand) 6390 ExpandOp(Lo, Lo, Hi); 6391 break; 6392 } 6393 6394 // If source operand will be expanded to the same type as VT, i.e. 6395 // i64 <- f64, i32 <- f32, expand the source operand instead. 6396 MVT VT0 = Node->getOperand(0).getValueType(); 6397 if (getTypeAction(VT0) == Expand && TLI.getTypeToTransformTo(VT0) == VT) { 6398 ExpandOp(Node->getOperand(0), Lo, Hi); 6399 break; 6400 } 6401 6402 // Turn this into a load/store pair by default. 6403 if (Tmp.getNode() == 0) 6404 Tmp = EmitStackConvert(Node->getOperand(0), VT, VT); 6405 6406 ExpandOp(Tmp, Lo, Hi); 6407 break; 6408 } 6409 6410 case ISD::READCYCLECOUNTER: { 6411 assert(TLI.getOperationAction(ISD::READCYCLECOUNTER, VT) == 6412 TargetLowering::Custom && 6413 "Must custom expand ReadCycleCounter"); 6414 SDValue Tmp = TLI.LowerOperation(Op, DAG); 6415 assert(Tmp.getNode() && "Node must be custom expanded!"); 6416 ExpandOp(Tmp.getValue(0), Lo, Hi); 6417 AddLegalizedOperand(SDValue(Node, 1), // Remember we legalized the chain. 6418 LegalizeOp(Tmp.getValue(1))); 6419 break; 6420 } 6421 6422 case ISD::ATOMIC_CMP_SWAP_64: { 6423 // This operation does not need a loop. 6424 SDValue Tmp = TLI.LowerOperation(Op, DAG); 6425 assert(Tmp.getNode() && "Node must be custom expanded!"); 6426 ExpandOp(Tmp.getValue(0), Lo, Hi); 6427 AddLegalizedOperand(SDValue(Node, 1), // Remember we legalized the chain. 6428 LegalizeOp(Tmp.getValue(1))); 6429 break; 6430 } 6431 6432 case ISD::ATOMIC_LOAD_ADD_64: 6433 case ISD::ATOMIC_LOAD_SUB_64: 6434 case ISD::ATOMIC_LOAD_AND_64: 6435 case ISD::ATOMIC_LOAD_OR_64: 6436 case ISD::ATOMIC_LOAD_XOR_64: 6437 case ISD::ATOMIC_LOAD_NAND_64: 6438 case ISD::ATOMIC_SWAP_64: { 6439 // These operations require a loop to be generated. We can't do that yet, 6440 // so substitute a target-dependent pseudo and expand that later. 6441 SDValue In2Lo, In2Hi, In2; 6442 ExpandOp(Op.getOperand(2), In2Lo, In2Hi); 6443 In2 = DAG.getNode(ISD::BUILD_PAIR, VT, In2Lo, In2Hi); 6444 AtomicSDNode* Anode = cast<AtomicSDNode>(Node); 6445 SDValue Replace = 6446 DAG.getAtomic(Op.getOpcode(), Op.getOperand(0), Op.getOperand(1), In2, 6447 Anode->getSrcValue(), Anode->getAlignment()); 6448 SDValue Result = TLI.LowerOperation(Replace, DAG); 6449 ExpandOp(Result.getValue(0), Lo, Hi); 6450 // Remember that we legalized the chain. 6451 AddLegalizedOperand(SDValue(Node,1), LegalizeOp(Result.getValue(1))); 6452 break; 6453 } 6454 6455 // These operators cannot be expanded directly, emit them as calls to 6456 // library functions. 6457 case ISD::FP_TO_SINT: { 6458 if (TLI.getOperationAction(ISD::FP_TO_SINT, VT) == TargetLowering::Custom) { 6459 SDValue Op; 6460 switch (getTypeAction(Node->getOperand(0).getValueType())) { 6461 case Expand: assert(0 && "cannot expand FP!"); 6462 case Legal: Op = LegalizeOp(Node->getOperand(0)); break; 6463 case Promote: Op = PromoteOp (Node->getOperand(0)); break; 6464 } 6465 6466 Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_SINT, VT, Op), DAG); 6467 6468 // Now that the custom expander is done, expand the result, which is still 6469 // VT. 6470 if (Op.getNode()) { 6471 ExpandOp(Op, Lo, Hi); 6472 break; 6473 } 6474 } 6475 6476 RTLIB::Libcall LC = RTLIB::getFPTOSINT(Node->getOperand(0).getValueType(), 6477 VT); 6478 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected uint-to-fp conversion!"); 6479 Lo = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Hi); 6480 break; 6481 } 6482 6483 case ISD::FP_TO_UINT: { 6484 if (TLI.getOperationAction(ISD::FP_TO_UINT, VT) == TargetLowering::Custom) { 6485 SDValue Op; 6486 switch (getTypeAction(Node->getOperand(0).getValueType())) { 6487 case Expand: assert(0 && "cannot expand FP!"); 6488 case Legal: Op = LegalizeOp(Node->getOperand(0)); break; 6489 case Promote: Op = PromoteOp (Node->getOperand(0)); break; 6490 } 6491 6492 Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_UINT, VT, Op), DAG); 6493 6494 // Now that the custom expander is done, expand the result. 6495 if (Op.getNode()) { 6496 ExpandOp(Op, Lo, Hi); 6497 break; 6498 } 6499 } 6500 6501 RTLIB::Libcall LC = RTLIB::getFPTOUINT(Node->getOperand(0).getValueType(), 6502 VT); 6503 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-uint conversion!"); 6504 Lo = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Hi); 6505 break; 6506 } 6507 6508 case ISD::SHL: { 6509 // If the target wants custom lowering, do so. 6510 SDValue ShiftAmt = LegalizeOp(Node->getOperand(1)); 6511 if (TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Custom) { 6512 SDValue Op = DAG.getNode(ISD::SHL, VT, Node->getOperand(0), ShiftAmt); 6513 Op = TLI.LowerOperation(Op, DAG); 6514 if (Op.getNode()) { 6515 // Now that the custom expander is done, expand the result, which is 6516 // still VT. 6517 ExpandOp(Op, Lo, Hi); 6518 break; 6519 } 6520 } 6521 6522 // If ADDC/ADDE are supported and if the shift amount is a constant 1, emit 6523 // this X << 1 as X+X. 6524 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(ShiftAmt)) { 6525 if (ShAmt->getAPIntValue() == 1 && TLI.isOperationLegal(ISD::ADDC, NVT) && 6526 TLI.isOperationLegal(ISD::ADDE, NVT)) { 6527 SDValue LoOps[2], HiOps[3]; 6528 ExpandOp(Node->getOperand(0), LoOps[0], HiOps[0]); 6529 SDVTList VTList = DAG.getVTList(LoOps[0].getValueType(), MVT::Flag); 6530 LoOps[1] = LoOps[0]; 6531 Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); 6532 6533 HiOps[1] = HiOps[0]; 6534 HiOps[2] = Lo.getValue(1); 6535 Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); 6536 break; 6537 } 6538 } 6539 6540 // If we can emit an efficient shift operation, do so now. 6541 if (ExpandShift(ISD::SHL, Node->getOperand(0), ShiftAmt, Lo, Hi)) 6542 break; 6543 6544 // If this target supports SHL_PARTS, use it. 6545 TargetLowering::LegalizeAction Action = 6546 TLI.getOperationAction(ISD::SHL_PARTS, NVT); 6547 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 6548 Action == TargetLowering::Custom) { 6549 ExpandShiftParts(ISD::SHL_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi); 6550 break; 6551 } 6552 6553 // Otherwise, emit a libcall. 6554 Lo = ExpandLibCall(RTLIB::SHL_I64, Node, false/*left shift=unsigned*/, Hi); 6555 break; 6556 } 6557 6558 case ISD::SRA: { 6559 // If the target wants custom lowering, do so. 6560 SDValue ShiftAmt = LegalizeOp(Node->getOperand(1)); 6561 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Custom) { 6562 SDValue Op = DAG.getNode(ISD::SRA, VT, Node->getOperand(0), ShiftAmt); 6563 Op = TLI.LowerOperation(Op, DAG); 6564 if (Op.getNode()) { 6565 // Now that the custom expander is done, expand the result, which is 6566 // still VT. 6567 ExpandOp(Op, Lo, Hi); 6568 break; 6569 } 6570 } 6571 6572 // If we can emit an efficient shift operation, do so now. 6573 if (ExpandShift(ISD::SRA, Node->getOperand(0), ShiftAmt, Lo, Hi)) 6574 break; 6575 6576 // If this target supports SRA_PARTS, use it. 6577 TargetLowering::LegalizeAction Action = 6578 TLI.getOperationAction(ISD::SRA_PARTS, NVT); 6579 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 6580 Action == TargetLowering::Custom) { 6581 ExpandShiftParts(ISD::SRA_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi); 6582 break; 6583 } 6584 6585 // Otherwise, emit a libcall. 6586 Lo = ExpandLibCall(RTLIB::SRA_I64, Node, true/*ashr is signed*/, Hi); 6587 break; 6588 } 6589 6590 case ISD::SRL: { 6591 // If the target wants custom lowering, do so. 6592 SDValue ShiftAmt = LegalizeOp(Node->getOperand(1)); 6593 if (TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Custom) { 6594 SDValue Op = DAG.getNode(ISD::SRL, VT, Node->getOperand(0), ShiftAmt); 6595 Op = TLI.LowerOperation(Op, DAG); 6596 if (Op.getNode()) { 6597 // Now that the custom expander is done, expand the result, which is 6598 // still VT. 6599 ExpandOp(Op, Lo, Hi); 6600 break; 6601 } 6602 } 6603 6604 // If we can emit an efficient shift operation, do so now. 6605 if (ExpandShift(ISD::SRL, Node->getOperand(0), ShiftAmt, Lo, Hi)) 6606 break; 6607 6608 // If this target supports SRL_PARTS, use it. 6609 TargetLowering::LegalizeAction Action = 6610 TLI.getOperationAction(ISD::SRL_PARTS, NVT); 6611 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 6612 Action == TargetLowering::Custom) { 6613 ExpandShiftParts(ISD::SRL_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi); 6614 break; 6615 } 6616 6617 // Otherwise, emit a libcall. 6618 Lo = ExpandLibCall(RTLIB::SRL_I64, Node, false/*lshr is unsigned*/, Hi); 6619 break; 6620 } 6621 6622 case ISD::ADD: 6623 case ISD::SUB: { 6624 // If the target wants to custom expand this, let them. 6625 if (TLI.getOperationAction(Node->getOpcode(), VT) == 6626 TargetLowering::Custom) { 6627 SDValue Result = TLI.LowerOperation(Op, DAG); 6628 if (Result.getNode()) { 6629 ExpandOp(Result, Lo, Hi); 6630 break; 6631 } 6632 } 6633 // Expand the subcomponents. 6634 SDValue LHSL, LHSH, RHSL, RHSH; 6635 ExpandOp(Node->getOperand(0), LHSL, LHSH); 6636 ExpandOp(Node->getOperand(1), RHSL, RHSH); 6637 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 6638 SDValue LoOps[2], HiOps[3]; 6639 LoOps[0] = LHSL; 6640 LoOps[1] = RHSL; 6641 HiOps[0] = LHSH; 6642 HiOps[1] = RHSH; 6643 6644 //cascaded check to see if any smaller size has a a carry flag. 6645 unsigned OpV = Node->getOpcode() == ISD::ADD ? ISD::ADDC : ISD::SUBC; 6646 bool hasCarry = false; 6647 for (unsigned BitSize = NVT.getSizeInBits(); BitSize != 0; BitSize /= 2) { 6648 MVT AVT = MVT::getIntegerVT(BitSize); 6649 if (TLI.isOperationLegal(OpV, AVT)) { 6650 hasCarry = true; 6651 break; 6652 } 6653 } 6654 6655 if(hasCarry) { 6656 if (Node->getOpcode() == ISD::ADD) { 6657 Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); 6658 HiOps[2] = Lo.getValue(1); 6659 Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); 6660 } else { 6661 Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2); 6662 HiOps[2] = Lo.getValue(1); 6663 Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3); 6664 } 6665 break; 6666 } else { 6667 if (Node->getOpcode() == ISD::ADD) { 6668 Lo = DAG.getNode(ISD::ADD, VTList, LoOps, 2); 6669 Hi = DAG.getNode(ISD::ADD, VTList, HiOps, 2); 6670 SDValue Cmp1 = DAG.getSetCC(TLI.getSetCCResultType(Lo), 6671 Lo, LoOps[0], ISD::SETULT); 6672 SDValue Carry1 = DAG.getNode(ISD::SELECT, NVT, Cmp1, 6673 DAG.getConstant(1, NVT), 6674 DAG.getConstant(0, NVT)); 6675 SDValue Cmp2 = DAG.getSetCC(TLI.getSetCCResultType(Lo), 6676 Lo, LoOps[1], ISD::SETULT); 6677 SDValue Carry2 = DAG.getNode(ISD::SELECT, NVT, Cmp2, 6678 DAG.getConstant(1, NVT), 6679 Carry1); 6680 Hi = DAG.getNode(ISD::ADD, NVT, Hi, Carry2); 6681 } else { 6682 Lo = DAG.getNode(ISD::SUB, VTList, LoOps, 2); 6683 Hi = DAG.getNode(ISD::SUB, VTList, HiOps, 2); 6684 SDValue Cmp = DAG.getSetCC(NVT, LoOps[0], LoOps[1], ISD::SETULT); 6685 SDValue Borrow = DAG.getNode(ISD::SELECT, NVT, Cmp, 6686 DAG.getConstant(1, NVT), 6687 DAG.getConstant(0, NVT)); 6688 Hi = DAG.getNode(ISD::SUB, NVT, Hi, Borrow); 6689 } 6690 break; 6691 } 6692 } 6693 6694 case ISD::ADDC: 6695 case ISD::SUBC: { 6696 // Expand the subcomponents. 6697 SDValue LHSL, LHSH, RHSL, RHSH; 6698 ExpandOp(Node->getOperand(0), LHSL, LHSH); 6699 ExpandOp(Node->getOperand(1), RHSL, RHSH); 6700 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 6701 SDValue LoOps[2] = { LHSL, RHSL }; 6702 SDValue HiOps[3] = { LHSH, RHSH }; 6703 6704 if (Node->getOpcode() == ISD::ADDC) { 6705 Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); 6706 HiOps[2] = Lo.getValue(1); 6707 Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); 6708 } else { 6709 Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2); 6710 HiOps[2] = Lo.getValue(1); 6711 Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3); 6712 } 6713 // Remember that we legalized the flag. 6714 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1))); 6715 break; 6716 } 6717 case ISD::ADDE: 6718 case ISD::SUBE: { 6719 // Expand the subcomponents. 6720 SDValue LHSL, LHSH, RHSL, RHSH; 6721 ExpandOp(Node->getOperand(0), LHSL, LHSH); 6722 ExpandOp(Node->getOperand(1), RHSL, RHSH); 6723 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 6724 SDValue LoOps[3] = { LHSL, RHSL, Node->getOperand(2) }; 6725 SDValue HiOps[3] = { LHSH, RHSH }; 6726 6727 Lo = DAG.getNode(Node->getOpcode(), VTList, LoOps, 3); 6728 HiOps[2] = Lo.getValue(1); 6729 Hi = DAG.getNode(Node->getOpcode(), VTList, HiOps, 3); 6730 6731 // Remember that we legalized the flag. 6732 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1))); 6733 break; 6734 } 6735 case ISD::MUL: { 6736 // If the target wants to custom expand this, let them. 6737 if (TLI.getOperationAction(ISD::MUL, VT) == TargetLowering::Custom) { 6738 SDValue New = TLI.LowerOperation(Op, DAG); 6739 if (New.getNode()) { 6740 ExpandOp(New, Lo, Hi); 6741 break; 6742 } 6743 } 6744 6745 bool HasMULHS = TLI.isOperationLegal(ISD::MULHS, NVT); 6746 bool HasMULHU = TLI.isOperationLegal(ISD::MULHU, NVT); 6747 bool HasSMUL_LOHI = TLI.isOperationLegal(ISD::SMUL_LOHI, NVT); 6748 bool HasUMUL_LOHI = TLI.isOperationLegal(ISD::UMUL_LOHI, NVT); 6749 if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) { 6750 SDValue LL, LH, RL, RH; 6751 ExpandOp(Node->getOperand(0), LL, LH); 6752 ExpandOp(Node->getOperand(1), RL, RH); 6753 unsigned OuterBitSize = Op.getValueSizeInBits(); 6754 unsigned InnerBitSize = RH.getValueSizeInBits(); 6755 unsigned LHSSB = DAG.ComputeNumSignBits(Op.getOperand(0)); 6756 unsigned RHSSB = DAG.ComputeNumSignBits(Op.getOperand(1)); 6757 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 6758 if (DAG.MaskedValueIsZero(Node->getOperand(0), HighMask) && 6759 DAG.MaskedValueIsZero(Node->getOperand(1), HighMask)) { 6760 // The inputs are both zero-extended. 6761 if (HasUMUL_LOHI) { 6762 // We can emit a umul_lohi. 6763 Lo = DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL); 6764 Hi = SDValue(Lo.getNode(), 1); 6765 break; 6766 } 6767 if (HasMULHU) { 6768 // We can emit a mulhu+mul. 6769 Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); 6770 Hi = DAG.getNode(ISD::MULHU, NVT, LL, RL); 6771 break; 6772 } 6773 } 6774 if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) { 6775 // The input values are both sign-extended. 6776 if (HasSMUL_LOHI) { 6777 // We can emit a smul_lohi. 6778 Lo = DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL); 6779 Hi = SDValue(Lo.getNode(), 1); 6780 break; 6781 } 6782 if (HasMULHS) { 6783 // We can emit a mulhs+mul. 6784 Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); 6785 Hi = DAG.getNode(ISD::MULHS, NVT, LL, RL); 6786 break; 6787 } 6788 } 6789 if (HasUMUL_LOHI) { 6790 // Lo,Hi = umul LHS, RHS. 6791 SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, 6792 DAG.getVTList(NVT, NVT), LL, RL); 6793 Lo = UMulLOHI; 6794 Hi = UMulLOHI.getValue(1); 6795 RH = DAG.getNode(ISD::MUL, NVT, LL, RH); 6796 LH = DAG.getNode(ISD::MUL, NVT, LH, RL); 6797 Hi = DAG.getNode(ISD::ADD, NVT, Hi, RH); 6798 Hi = DAG.getNode(ISD::ADD, NVT, Hi, LH); 6799 break; 6800 } 6801 if (HasMULHU) { 6802 Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); 6803 Hi = DAG.getNode(ISD::MULHU, NVT, LL, RL); 6804 RH = DAG.getNode(ISD::MUL, NVT, LL, RH); 6805 LH = DAG.getNode(ISD::MUL, NVT, LH, RL); 6806 Hi = DAG.getNode(ISD::ADD, NVT, Hi, RH); 6807 Hi = DAG.getNode(ISD::ADD, NVT, Hi, LH); 6808 break; 6809 } 6810 } 6811 6812 // If nothing else, we can make a libcall. 6813 Lo = ExpandLibCall(RTLIB::MUL_I64, Node, false/*sign irrelevant*/, Hi); 6814 break; 6815 } 6816 case ISD::SDIV: 6817 Lo = ExpandLibCall(RTLIB::SDIV_I64, Node, true, Hi); 6818 break; 6819 case ISD::UDIV: 6820 Lo = ExpandLibCall(RTLIB::UDIV_I64, Node, true, Hi); 6821 break; 6822 case ISD::SREM: 6823 Lo = ExpandLibCall(RTLIB::SREM_I64, Node, true, Hi); 6824 break; 6825 case ISD::UREM: 6826 Lo = ExpandLibCall(RTLIB::UREM_I64, Node, true, Hi); 6827 break; 6828 6829 case ISD::FADD: 6830 Lo = ExpandLibCall(GetFPLibCall(VT, RTLIB::ADD_F32, 6831 RTLIB::ADD_F64, 6832 RTLIB::ADD_F80, 6833 RTLIB::ADD_PPCF128), 6834 Node, false, Hi); 6835 break; 6836 case ISD::FSUB: 6837 Lo = ExpandLibCall(GetFPLibCall(VT, RTLIB::SUB_F32, 6838 RTLIB::SUB_F64, 6839 RTLIB::SUB_F80, 6840 RTLIB::SUB_PPCF128), 6841 Node, false, Hi); 6842 break; 6843 case ISD::FMUL: 6844 Lo = ExpandLibCall(GetFPLibCall(VT, RTLIB::MUL_F32, 6845 RTLIB::MUL_F64, 6846 RTLIB::MUL_F80, 6847 RTLIB::MUL_PPCF128), 6848 Node, false, Hi); 6849 break; 6850 case ISD::FDIV: 6851 Lo = ExpandLibCall(GetFPLibCall(VT, RTLIB::DIV_F32, 6852 RTLIB::DIV_F64, 6853 RTLIB::DIV_F80, 6854 RTLIB::DIV_PPCF128), 6855 Node, false, Hi); 6856 break; 6857 case ISD::FP_EXTEND: { 6858 if (VT == MVT::ppcf128) { 6859 assert(Node->getOperand(0).getValueType()==MVT::f32 || 6860 Node->getOperand(0).getValueType()==MVT::f64); 6861 const uint64_t zero = 0; 6862 if (Node->getOperand(0).getValueType()==MVT::f32) 6863 Hi = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Node->getOperand(0)); 6864 else 6865 Hi = Node->getOperand(0); 6866 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); 6867 break; 6868 } 6869 RTLIB::Libcall LC = RTLIB::getFPEXT(Node->getOperand(0).getValueType(), VT); 6870 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_EXTEND!"); 6871 Lo = ExpandLibCall(LC, Node, true, Hi); 6872 break; 6873 } 6874 case ISD::FP_ROUND: { 6875 RTLIB::Libcall LC = RTLIB::getFPROUND(Node->getOperand(0).getValueType(), 6876 VT); 6877 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_ROUND!"); 6878 Lo = ExpandLibCall(LC, Node, true, Hi); 6879 break; 6880 } 6881 case ISD::FSQRT: 6882 case ISD::FSIN: 6883 case ISD::FCOS: 6884 case ISD::FLOG: 6885 case ISD::FLOG2: 6886 case ISD::FLOG10: 6887 case ISD::FEXP: 6888 case ISD::FEXP2: 6889 case ISD::FTRUNC: 6890 case ISD::FFLOOR: 6891 case ISD::FCEIL: 6892 case ISD::FRINT: 6893 case ISD::FNEARBYINT: 6894 case ISD::FPOW: 6895 case ISD::FPOWI: { 6896 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 6897 switch(Node->getOpcode()) { 6898 case ISD::FSQRT: 6899 LC = GetFPLibCall(VT, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 6900 RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128); 6901 break; 6902 case ISD::FSIN: 6903 LC = GetFPLibCall(VT, RTLIB::SIN_F32, RTLIB::SIN_F64, 6904 RTLIB::SIN_F80, RTLIB::SIN_PPCF128); 6905 break; 6906 case ISD::FCOS: 6907 LC = GetFPLibCall(VT, RTLIB::COS_F32, RTLIB::COS_F64, 6908 RTLIB::COS_F80, RTLIB::COS_PPCF128); 6909 break; 6910 case ISD::FLOG: 6911 LC = GetFPLibCall(VT, RTLIB::LOG_F32, RTLIB::LOG_F64, 6912 RTLIB::LOG_F80, RTLIB::LOG_PPCF128); 6913 break; 6914 case ISD::FLOG2: 6915 LC = GetFPLibCall(VT, RTLIB::LOG2_F32, RTLIB::LOG2_F64, 6916 RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128); 6917 break; 6918 case ISD::FLOG10: 6919 LC = GetFPLibCall(VT, RTLIB::LOG10_F32, RTLIB::LOG10_F64, 6920 RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128); 6921 break; 6922 case ISD::FEXP: 6923 LC = GetFPLibCall(VT, RTLIB::EXP_F32, RTLIB::EXP_F64, 6924 RTLIB::EXP_F80, RTLIB::EXP_PPCF128); 6925 break; 6926 case ISD::FEXP2: 6927 LC = GetFPLibCall(VT, RTLIB::EXP2_F32, RTLIB::EXP2_F64, 6928 RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128); 6929 break; 6930 case ISD::FTRUNC: 6931 LC = GetFPLibCall(VT, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 6932 RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128); 6933 break; 6934 case ISD::FFLOOR: 6935 LC = GetFPLibCall(VT, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 6936 RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128); 6937 break; 6938 case ISD::FCEIL: 6939 LC = GetFPLibCall(VT, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 6940 RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128); 6941 break; 6942 case ISD::FRINT: 6943 LC = GetFPLibCall(VT, RTLIB::RINT_F32, RTLIB::RINT_F64, 6944 RTLIB::RINT_F80, RTLIB::RINT_PPCF128); 6945 break; 6946 case ISD::FNEARBYINT: 6947 LC = GetFPLibCall(VT, RTLIB::NEARBYINT_F32, RTLIB::NEARBYINT_F64, 6948 RTLIB::NEARBYINT_F80, RTLIB::NEARBYINT_PPCF128); 6949 break; 6950 case ISD::FPOW: 6951 LC = GetFPLibCall(VT, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, 6952 RTLIB::POW_PPCF128); 6953 break; 6954 case ISD::FPOWI: 6955 LC = GetFPLibCall(VT, RTLIB::POWI_F32, RTLIB::POWI_F64, RTLIB::POWI_F80, 6956 RTLIB::POWI_PPCF128); 6957 break; 6958 default: assert(0 && "Unreachable!"); 6959 } 6960 Lo = ExpandLibCall(LC, Node, false, Hi); 6961 break; 6962 } 6963 case ISD::FABS: { 6964 if (VT == MVT::ppcf128) { 6965 SDValue Tmp; 6966 ExpandOp(Node->getOperand(0), Lo, Tmp); 6967 Hi = DAG.getNode(ISD::FABS, NVT, Tmp); 6968 // lo = hi==fabs(hi) ? lo : -lo; 6969 Lo = DAG.getNode(ISD::SELECT_CC, NVT, Hi, Tmp, 6970 Lo, DAG.getNode(ISD::FNEG, NVT, Lo), 6971 DAG.getCondCode(ISD::SETEQ)); 6972 break; 6973 } 6974 SDValue Mask = (VT == MVT::f64) 6975 ? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT) 6976 : DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT); 6977 Mask = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask); 6978 Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 6979 Lo = DAG.getNode(ISD::AND, NVT, Lo, Mask); 6980 if (getTypeAction(NVT) == Expand) 6981 ExpandOp(Lo, Lo, Hi); 6982 break; 6983 } 6984 case ISD::FNEG: { 6985 if (VT == MVT::ppcf128) { 6986 ExpandOp(Node->getOperand(0), Lo, Hi); 6987 Lo = DAG.getNode(ISD::FNEG, MVT::f64, Lo); 6988 Hi = DAG.getNode(ISD::FNEG, MVT::f64, Hi); 6989 break; 6990 } 6991 SDValue Mask = (VT == MVT::f64) 6992 ? DAG.getConstantFP(BitsToDouble(1ULL << 63), VT) 6993 : DAG.getConstantFP(BitsToFloat(1U << 31), VT); 6994 Mask = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask); 6995 Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 6996 Lo = DAG.getNode(ISD::XOR, NVT, Lo, Mask); 6997 if (getTypeAction(NVT) == Expand) 6998 ExpandOp(Lo, Lo, Hi); 6999 break; 7000 } 7001 case ISD::FCOPYSIGN: { 7002 Lo = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI); 7003 if (getTypeAction(NVT) == Expand) 7004 ExpandOp(Lo, Lo, Hi); 7005 break; 7006 } 7007 case ISD::SINT_TO_FP: 7008 case ISD::UINT_TO_FP: { 7009 bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP; 7010 MVT SrcVT = Node->getOperand(0).getValueType(); 7011 7012 // Promote the operand if needed. Do this before checking for 7013 // ppcf128 so conversions of i16 and i8 work. 7014 if (getTypeAction(SrcVT) == Promote) { 7015 SDValue Tmp = PromoteOp(Node->getOperand(0)); 7016 Tmp = isSigned 7017 ? DAG.getNode(ISD::SIGN_EXTEND_INREG, Tmp.getValueType(), Tmp, 7018 DAG.getValueType(SrcVT)) 7019 : DAG.getZeroExtendInReg(Tmp, SrcVT); 7020 Node = DAG.UpdateNodeOperands(Op, Tmp).getNode(); 7021 SrcVT = Node->getOperand(0).getValueType(); 7022 } 7023 7024 if (VT == MVT::ppcf128 && SrcVT == MVT::i32) { 7025 static const uint64_t zero = 0; 7026 if (isSigned) { 7027 Hi = LegalizeOp(DAG.getNode(ISD::SINT_TO_FP, MVT::f64, 7028 Node->getOperand(0))); 7029 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); 7030 } else { 7031 static const uint64_t TwoE32[] = { 0x41f0000000000000LL, 0 }; 7032 Hi = LegalizeOp(DAG.getNode(ISD::SINT_TO_FP, MVT::f64, 7033 Node->getOperand(0))); 7034 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); 7035 Hi = DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi); 7036 // X>=0 ? {(f64)x, 0} : {(f64)x, 0} + 2^32 7037 ExpandOp(DAG.getNode(ISD::SELECT_CC, MVT::ppcf128, Node->getOperand(0), 7038 DAG.getConstant(0, MVT::i32), 7039 DAG.getNode(ISD::FADD, MVT::ppcf128, Hi, 7040 DAG.getConstantFP( 7041 APFloat(APInt(128, 2, TwoE32)), 7042 MVT::ppcf128)), 7043 Hi, 7044 DAG.getCondCode(ISD::SETLT)), 7045 Lo, Hi); 7046 } 7047 break; 7048 } 7049 if (VT == MVT::ppcf128 && SrcVT == MVT::i64 && !isSigned) { 7050 // si64->ppcf128 done by libcall, below 7051 static const uint64_t TwoE64[] = { 0x43f0000000000000LL, 0 }; 7052 ExpandOp(DAG.getNode(ISD::SINT_TO_FP, MVT::ppcf128, Node->getOperand(0)), 7053 Lo, Hi); 7054 Hi = DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi); 7055 // x>=0 ? (ppcf128)(i64)x : (ppcf128)(i64)x + 2^64 7056 ExpandOp(DAG.getNode(ISD::SELECT_CC, MVT::ppcf128, Node->getOperand(0), 7057 DAG.getConstant(0, MVT::i64), 7058 DAG.getNode(ISD::FADD, MVT::ppcf128, Hi, 7059 DAG.getConstantFP( 7060 APFloat(APInt(128, 2, TwoE64)), 7061 MVT::ppcf128)), 7062 Hi, 7063 DAG.getCondCode(ISD::SETLT)), 7064 Lo, Hi); 7065 break; 7066 } 7067 7068 Lo = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, VT, 7069 Node->getOperand(0)); 7070 if (getTypeAction(Lo.getValueType()) == Expand) 7071 // float to i32 etc. can be 'expanded' to a single node. 7072 ExpandOp(Lo, Lo, Hi); 7073 break; 7074 } 7075 } 7076 7077 // Make sure the resultant values have been legalized themselves, unless this 7078 // is a type that requires multi-step expansion. 7079 if (getTypeAction(NVT) != Expand && NVT != MVT::isVoid) { 7080 Lo = LegalizeOp(Lo); 7081 if (Hi.getNode()) 7082 // Don't legalize the high part if it is expanded to a single node. 7083 Hi = LegalizeOp(Hi); 7084 } 7085 7086 // Remember in a map if the values will be reused later. 7087 bool isNew = 7088 ExpandedNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi))).second; 7089 assert(isNew && "Value already expanded?!?"); 7090} 7091 7092/// SplitVectorOp - Given an operand of vector type, break it down into 7093/// two smaller values, still of vector type. 7094void SelectionDAGLegalize::SplitVectorOp(SDValue Op, SDValue &Lo, 7095 SDValue &Hi) { 7096 assert(Op.getValueType().isVector() && "Cannot split non-vector type!"); 7097 SDNode *Node = Op.getNode(); 7098 unsigned NumElements = Op.getValueType().getVectorNumElements(); 7099 assert(NumElements > 1 && "Cannot split a single element vector!"); 7100 7101 MVT NewEltVT = Op.getValueType().getVectorElementType(); 7102 7103 unsigned NewNumElts_Lo = 1 << Log2_32(NumElements-1); 7104 unsigned NewNumElts_Hi = NumElements - NewNumElts_Lo; 7105 7106 MVT NewVT_Lo = MVT::getVectorVT(NewEltVT, NewNumElts_Lo); 7107 MVT NewVT_Hi = MVT::getVectorVT(NewEltVT, NewNumElts_Hi); 7108 7109 // See if we already split it. 7110 std::map<SDValue, std::pair<SDValue, SDValue> >::iterator I 7111 = SplitNodes.find(Op); 7112 if (I != SplitNodes.end()) { 7113 Lo = I->second.first; 7114 Hi = I->second.second; 7115 return; 7116 } 7117 7118 switch (Node->getOpcode()) { 7119 default: 7120#ifndef NDEBUG 7121 Node->dump(&DAG); 7122#endif 7123 assert(0 && "Unhandled operation in SplitVectorOp!"); 7124 case ISD::UNDEF: 7125 Lo = DAG.getNode(ISD::UNDEF, NewVT_Lo); 7126 Hi = DAG.getNode(ISD::UNDEF, NewVT_Hi); 7127 break; 7128 case ISD::BUILD_PAIR: 7129 Lo = Node->getOperand(0); 7130 Hi = Node->getOperand(1); 7131 break; 7132 case ISD::INSERT_VECTOR_ELT: { 7133 if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Node->getOperand(2))) { 7134 SplitVectorOp(Node->getOperand(0), Lo, Hi); 7135 unsigned Index = Idx->getZExtValue(); 7136 SDValue ScalarOp = Node->getOperand(1); 7137 if (Index < NewNumElts_Lo) 7138 Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, NewVT_Lo, Lo, ScalarOp, 7139 DAG.getIntPtrConstant(Index)); 7140 else 7141 Hi = DAG.getNode(ISD::INSERT_VECTOR_ELT, NewVT_Hi, Hi, ScalarOp, 7142 DAG.getIntPtrConstant(Index - NewNumElts_Lo)); 7143 break; 7144 } 7145 SDValue Tmp = PerformInsertVectorEltInMemory(Node->getOperand(0), 7146 Node->getOperand(1), 7147 Node->getOperand(2)); 7148 SplitVectorOp(Tmp, Lo, Hi); 7149 break; 7150 } 7151 case ISD::VECTOR_SHUFFLE: { 7152 // Build the low part. 7153 SDValue Mask = Node->getOperand(2); 7154 SmallVector<SDValue, 8> Ops; 7155 MVT PtrVT = TLI.getPointerTy(); 7156 7157 // Insert all of the elements from the input that are needed. We use 7158 // buildvector of extractelement here because the input vectors will have 7159 // to be legalized, so this makes the code simpler. 7160 for (unsigned i = 0; i != NewNumElts_Lo; ++i) { 7161 SDValue IdxNode = Mask.getOperand(i); 7162 if (IdxNode.getOpcode() == ISD::UNDEF) { 7163 Ops.push_back(DAG.getNode(ISD::UNDEF, NewEltVT)); 7164 continue; 7165 } 7166 unsigned Idx = cast<ConstantSDNode>(IdxNode)->getZExtValue(); 7167 SDValue InVec = Node->getOperand(0); 7168 if (Idx >= NumElements) { 7169 InVec = Node->getOperand(1); 7170 Idx -= NumElements; 7171 } 7172 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, NewEltVT, InVec, 7173 DAG.getConstant(Idx, PtrVT))); 7174 } 7175 Lo = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Lo, &Ops[0], Ops.size()); 7176 Ops.clear(); 7177 7178 for (unsigned i = NewNumElts_Lo; i != NumElements; ++i) { 7179 SDValue IdxNode = Mask.getOperand(i); 7180 if (IdxNode.getOpcode() == ISD::UNDEF) { 7181 Ops.push_back(DAG.getNode(ISD::UNDEF, NewEltVT)); 7182 continue; 7183 } 7184 unsigned Idx = cast<ConstantSDNode>(IdxNode)->getZExtValue(); 7185 SDValue InVec = Node->getOperand(0); 7186 if (Idx >= NumElements) { 7187 InVec = Node->getOperand(1); 7188 Idx -= NumElements; 7189 } 7190 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, NewEltVT, InVec, 7191 DAG.getConstant(Idx, PtrVT))); 7192 } 7193 Hi = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Hi, &Ops[0], Ops.size()); 7194 break; 7195 } 7196 case ISD::BUILD_VECTOR: { 7197 SmallVector<SDValue, 8> LoOps(Node->op_begin(), 7198 Node->op_begin()+NewNumElts_Lo); 7199 Lo = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Lo, &LoOps[0], LoOps.size()); 7200 7201 SmallVector<SDValue, 8> HiOps(Node->op_begin()+NewNumElts_Lo, 7202 Node->op_end()); 7203 Hi = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Hi, &HiOps[0], HiOps.size()); 7204 break; 7205 } 7206 case ISD::CONCAT_VECTORS: { 7207 // FIXME: Handle non-power-of-two vectors? 7208 unsigned NewNumSubvectors = Node->getNumOperands() / 2; 7209 if (NewNumSubvectors == 1) { 7210 Lo = Node->getOperand(0); 7211 Hi = Node->getOperand(1); 7212 } else { 7213 SmallVector<SDValue, 8> LoOps(Node->op_begin(), 7214 Node->op_begin()+NewNumSubvectors); 7215 Lo = DAG.getNode(ISD::CONCAT_VECTORS, NewVT_Lo, &LoOps[0], LoOps.size()); 7216 7217 SmallVector<SDValue, 8> HiOps(Node->op_begin()+NewNumSubvectors, 7218 Node->op_end()); 7219 Hi = DAG.getNode(ISD::CONCAT_VECTORS, NewVT_Hi, &HiOps[0], HiOps.size()); 7220 } 7221 break; 7222 } 7223 case ISD::SELECT: { 7224 SDValue Cond = Node->getOperand(0); 7225 7226 SDValue LL, LH, RL, RH; 7227 SplitVectorOp(Node->getOperand(1), LL, LH); 7228 SplitVectorOp(Node->getOperand(2), RL, RH); 7229 7230 if (Cond.getValueType().isVector()) { 7231 // Handle a vector merge. 7232 SDValue CL, CH; 7233 SplitVectorOp(Cond, CL, CH); 7234 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, CL, LL, RL); 7235 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, CH, LH, RH); 7236 } else { 7237 // Handle a simple select with vector operands. 7238 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, Cond, LL, RL); 7239 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, Cond, LH, RH); 7240 } 7241 break; 7242 } 7243 case ISD::SELECT_CC: { 7244 SDValue CondLHS = Node->getOperand(0); 7245 SDValue CondRHS = Node->getOperand(1); 7246 SDValue CondCode = Node->getOperand(4); 7247 7248 SDValue LL, LH, RL, RH; 7249 SplitVectorOp(Node->getOperand(2), LL, LH); 7250 SplitVectorOp(Node->getOperand(3), RL, RH); 7251 7252 // Handle a simple select with vector operands. 7253 Lo = DAG.getNode(ISD::SELECT_CC, NewVT_Lo, CondLHS, CondRHS, 7254 LL, RL, CondCode); 7255 Hi = DAG.getNode(ISD::SELECT_CC, NewVT_Hi, CondLHS, CondRHS, 7256 LH, RH, CondCode); 7257 break; 7258 } 7259 case ISD::VSETCC: { 7260 SDValue LL, LH, RL, RH; 7261 SplitVectorOp(Node->getOperand(0), LL, LH); 7262 SplitVectorOp(Node->getOperand(1), RL, RH); 7263 Lo = DAG.getNode(ISD::VSETCC, NewVT_Lo, LL, RL, Node->getOperand(2)); 7264 Hi = DAG.getNode(ISD::VSETCC, NewVT_Hi, LH, RH, Node->getOperand(2)); 7265 break; 7266 } 7267 case ISD::ADD: 7268 case ISD::SUB: 7269 case ISD::MUL: 7270 case ISD::FADD: 7271 case ISD::FSUB: 7272 case ISD::FMUL: 7273 case ISD::SDIV: 7274 case ISD::UDIV: 7275 case ISD::FDIV: 7276 case ISD::FPOW: 7277 case ISD::AND: 7278 case ISD::OR: 7279 case ISD::XOR: 7280 case ISD::UREM: 7281 case ISD::SREM: 7282 case ISD::FREM: { 7283 SDValue LL, LH, RL, RH; 7284 SplitVectorOp(Node->getOperand(0), LL, LH); 7285 SplitVectorOp(Node->getOperand(1), RL, RH); 7286 7287 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, LL, RL); 7288 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, LH, RH); 7289 break; 7290 } 7291 case ISD::FP_ROUND: 7292 case ISD::FPOWI: { 7293 SDValue L, H; 7294 SplitVectorOp(Node->getOperand(0), L, H); 7295 7296 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, L, Node->getOperand(1)); 7297 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, H, Node->getOperand(1)); 7298 break; 7299 } 7300 case ISD::CTTZ: 7301 case ISD::CTLZ: 7302 case ISD::CTPOP: 7303 case ISD::FNEG: 7304 case ISD::FABS: 7305 case ISD::FSQRT: 7306 case ISD::FSIN: 7307 case ISD::FCOS: 7308 case ISD::FLOG: 7309 case ISD::FLOG2: 7310 case ISD::FLOG10: 7311 case ISD::FEXP: 7312 case ISD::FEXP2: 7313 case ISD::FP_TO_SINT: 7314 case ISD::FP_TO_UINT: 7315 case ISD::SINT_TO_FP: 7316 case ISD::UINT_TO_FP: 7317 case ISD::TRUNCATE: 7318 case ISD::ANY_EXTEND: 7319 case ISD::SIGN_EXTEND: 7320 case ISD::ZERO_EXTEND: 7321 case ISD::FP_EXTEND: { 7322 SDValue L, H; 7323 SplitVectorOp(Node->getOperand(0), L, H); 7324 7325 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, L); 7326 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, H); 7327 break; 7328 } 7329 case ISD::LOAD: { 7330 LoadSDNode *LD = cast<LoadSDNode>(Node); 7331 SDValue Ch = LD->getChain(); 7332 SDValue Ptr = LD->getBasePtr(); 7333 ISD::LoadExtType ExtType = LD->getExtensionType(); 7334 const Value *SV = LD->getSrcValue(); 7335 int SVOffset = LD->getSrcValueOffset(); 7336 MVT MemoryVT = LD->getMemoryVT(); 7337 unsigned Alignment = LD->getAlignment(); 7338 bool isVolatile = LD->isVolatile(); 7339 7340 assert(LD->isUnindexed() && "Indexed vector loads are not supported yet!"); 7341 SDValue Offset = DAG.getNode(ISD::UNDEF, Ptr.getValueType()); 7342 7343 MVT MemNewEltVT = MemoryVT.getVectorElementType(); 7344 MVT MemNewVT_Lo = MVT::getVectorVT(MemNewEltVT, NewNumElts_Lo); 7345 MVT MemNewVT_Hi = MVT::getVectorVT(MemNewEltVT, NewNumElts_Hi); 7346 7347 Lo = DAG.getLoad(ISD::UNINDEXED, ExtType, 7348 NewVT_Lo, Ch, Ptr, Offset, 7349 SV, SVOffset, MemNewVT_Lo, isVolatile, Alignment); 7350 unsigned IncrementSize = NewNumElts_Lo * MemNewEltVT.getSizeInBits()/8; 7351 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 7352 DAG.getIntPtrConstant(IncrementSize)); 7353 SVOffset += IncrementSize; 7354 Alignment = MinAlign(Alignment, IncrementSize); 7355 Hi = DAG.getLoad(ISD::UNINDEXED, ExtType, 7356 NewVT_Hi, Ch, Ptr, Offset, 7357 SV, SVOffset, MemNewVT_Hi, isVolatile, Alignment); 7358 7359 // Build a factor node to remember that this load is independent of the 7360 // other one. 7361 SDValue TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 7362 Hi.getValue(1)); 7363 7364 // Remember that we legalized the chain. 7365 AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF)); 7366 break; 7367 } 7368 case ISD::BIT_CONVERT: { 7369 // We know the result is a vector. The input may be either a vector or a 7370 // scalar value. 7371 SDValue InOp = Node->getOperand(0); 7372 if (!InOp.getValueType().isVector() || 7373 InOp.getValueType().getVectorNumElements() == 1) { 7374 // The input is a scalar or single-element vector. 7375 // Lower to a store/load so that it can be split. 7376 // FIXME: this could be improved probably. 7377 unsigned LdAlign = TLI.getTargetData()->getPrefTypeAlignment( 7378 Op.getValueType().getTypeForMVT()); 7379 SDValue Ptr = DAG.CreateStackTemporary(InOp.getValueType(), LdAlign); 7380 int FI = cast<FrameIndexSDNode>(Ptr.getNode())->getIndex(); 7381 7382 SDValue St = DAG.getStore(DAG.getEntryNode(), 7383 InOp, Ptr, 7384 PseudoSourceValue::getFixedStack(FI), 0); 7385 InOp = DAG.getLoad(Op.getValueType(), St, Ptr, 7386 PseudoSourceValue::getFixedStack(FI), 0); 7387 } 7388 // Split the vector and convert each of the pieces now. 7389 SplitVectorOp(InOp, Lo, Hi); 7390 Lo = DAG.getNode(ISD::BIT_CONVERT, NewVT_Lo, Lo); 7391 Hi = DAG.getNode(ISD::BIT_CONVERT, NewVT_Hi, Hi); 7392 break; 7393 } 7394 } 7395 7396 // Remember in a map if the values will be reused later. 7397 bool isNew = 7398 SplitNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi))).second; 7399 assert(isNew && "Value already split?!?"); 7400} 7401 7402 7403/// ScalarizeVectorOp - Given an operand of single-element vector type 7404/// (e.g. v1f32), convert it into the equivalent operation that returns a 7405/// scalar (e.g. f32) value. 7406SDValue SelectionDAGLegalize::ScalarizeVectorOp(SDValue Op) { 7407 assert(Op.getValueType().isVector() && "Bad ScalarizeVectorOp invocation!"); 7408 SDNode *Node = Op.getNode(); 7409 MVT NewVT = Op.getValueType().getVectorElementType(); 7410 assert(Op.getValueType().getVectorNumElements() == 1); 7411 7412 // See if we already scalarized it. 7413 std::map<SDValue, SDValue>::iterator I = ScalarizedNodes.find(Op); 7414 if (I != ScalarizedNodes.end()) return I->second; 7415 7416 SDValue Result; 7417 switch (Node->getOpcode()) { 7418 default: 7419#ifndef NDEBUG 7420 Node->dump(&DAG); cerr << "\n"; 7421#endif 7422 assert(0 && "Unknown vector operation in ScalarizeVectorOp!"); 7423 case ISD::ADD: 7424 case ISD::FADD: 7425 case ISD::SUB: 7426 case ISD::FSUB: 7427 case ISD::MUL: 7428 case ISD::FMUL: 7429 case ISD::SDIV: 7430 case ISD::UDIV: 7431 case ISD::FDIV: 7432 case ISD::SREM: 7433 case ISD::UREM: 7434 case ISD::FREM: 7435 case ISD::FPOW: 7436 case ISD::AND: 7437 case ISD::OR: 7438 case ISD::XOR: 7439 Result = DAG.getNode(Node->getOpcode(), 7440 NewVT, 7441 ScalarizeVectorOp(Node->getOperand(0)), 7442 ScalarizeVectorOp(Node->getOperand(1))); 7443 break; 7444 case ISD::FNEG: 7445 case ISD::FABS: 7446 case ISD::FSQRT: 7447 case ISD::FSIN: 7448 case ISD::FCOS: 7449 case ISD::FLOG: 7450 case ISD::FLOG2: 7451 case ISD::FLOG10: 7452 case ISD::FEXP: 7453 case ISD::FEXP2: 7454 case ISD::FP_TO_SINT: 7455 case ISD::FP_TO_UINT: 7456 case ISD::SINT_TO_FP: 7457 case ISD::UINT_TO_FP: 7458 case ISD::SIGN_EXTEND: 7459 case ISD::ZERO_EXTEND: 7460 case ISD::ANY_EXTEND: 7461 case ISD::TRUNCATE: 7462 case ISD::FP_EXTEND: 7463 Result = DAG.getNode(Node->getOpcode(), 7464 NewVT, 7465 ScalarizeVectorOp(Node->getOperand(0))); 7466 break; 7467 case ISD::FPOWI: 7468 case ISD::FP_ROUND: 7469 Result = DAG.getNode(Node->getOpcode(), 7470 NewVT, 7471 ScalarizeVectorOp(Node->getOperand(0)), 7472 Node->getOperand(1)); 7473 break; 7474 case ISD::LOAD: { 7475 LoadSDNode *LD = cast<LoadSDNode>(Node); 7476 SDValue Ch = LegalizeOp(LD->getChain()); // Legalize the chain. 7477 SDValue Ptr = LegalizeOp(LD->getBasePtr()); // Legalize the pointer. 7478 ISD::LoadExtType ExtType = LD->getExtensionType(); 7479 const Value *SV = LD->getSrcValue(); 7480 int SVOffset = LD->getSrcValueOffset(); 7481 MVT MemoryVT = LD->getMemoryVT(); 7482 unsigned Alignment = LD->getAlignment(); 7483 bool isVolatile = LD->isVolatile(); 7484 7485 assert(LD->isUnindexed() && "Indexed vector loads are not supported yet!"); 7486 SDValue Offset = DAG.getNode(ISD::UNDEF, Ptr.getValueType()); 7487 7488 Result = DAG.getLoad(ISD::UNINDEXED, ExtType, 7489 NewVT, Ch, Ptr, Offset, SV, SVOffset, 7490 MemoryVT.getVectorElementType(), 7491 isVolatile, Alignment); 7492 7493 // Remember that we legalized the chain. 7494 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 7495 break; 7496 } 7497 case ISD::BUILD_VECTOR: 7498 Result = Node->getOperand(0); 7499 break; 7500 case ISD::INSERT_VECTOR_ELT: 7501 // Returning the inserted scalar element. 7502 Result = Node->getOperand(1); 7503 break; 7504 case ISD::CONCAT_VECTORS: 7505 assert(Node->getOperand(0).getValueType() == NewVT && 7506 "Concat of non-legal vectors not yet supported!"); 7507 Result = Node->getOperand(0); 7508 break; 7509 case ISD::VECTOR_SHUFFLE: { 7510 // Figure out if the scalar is the LHS or RHS and return it. 7511 SDValue EltNum = Node->getOperand(2).getOperand(0); 7512 if (cast<ConstantSDNode>(EltNum)->getZExtValue()) 7513 Result = ScalarizeVectorOp(Node->getOperand(1)); 7514 else 7515 Result = ScalarizeVectorOp(Node->getOperand(0)); 7516 break; 7517 } 7518 case ISD::EXTRACT_SUBVECTOR: 7519 Result = Node->getOperand(0); 7520 assert(Result.getValueType() == NewVT); 7521 break; 7522 case ISD::BIT_CONVERT: { 7523 SDValue Op0 = Op.getOperand(0); 7524 if (Op0.getValueType().getVectorNumElements() == 1) 7525 Op0 = ScalarizeVectorOp(Op0); 7526 Result = DAG.getNode(ISD::BIT_CONVERT, NewVT, Op0); 7527 break; 7528 } 7529 case ISD::SELECT: 7530 Result = DAG.getNode(ISD::SELECT, NewVT, Op.getOperand(0), 7531 ScalarizeVectorOp(Op.getOperand(1)), 7532 ScalarizeVectorOp(Op.getOperand(2))); 7533 break; 7534 case ISD::SELECT_CC: 7535 Result = DAG.getNode(ISD::SELECT_CC, NewVT, Node->getOperand(0), 7536 Node->getOperand(1), 7537 ScalarizeVectorOp(Op.getOperand(2)), 7538 ScalarizeVectorOp(Op.getOperand(3)), 7539 Node->getOperand(4)); 7540 break; 7541 case ISD::VSETCC: { 7542 SDValue Op0 = ScalarizeVectorOp(Op.getOperand(0)); 7543 SDValue Op1 = ScalarizeVectorOp(Op.getOperand(1)); 7544 Result = DAG.getNode(ISD::SETCC, TLI.getSetCCResultType(Op0), Op0, Op1, 7545 Op.getOperand(2)); 7546 Result = DAG.getNode(ISD::SELECT, NewVT, Result, 7547 DAG.getConstant(-1ULL, NewVT), 7548 DAG.getConstant(0ULL, NewVT)); 7549 break; 7550 } 7551 } 7552 7553 if (TLI.isTypeLegal(NewVT)) 7554 Result = LegalizeOp(Result); 7555 bool isNew = ScalarizedNodes.insert(std::make_pair(Op, Result)).second; 7556 assert(isNew && "Value already scalarized?"); 7557 return Result; 7558} 7559 7560 7561SDValue SelectionDAGLegalize::WidenVectorOp(SDValue Op, MVT WidenVT) { 7562 std::map<SDValue, SDValue>::iterator I = WidenNodes.find(Op); 7563 if (I != WidenNodes.end()) return I->second; 7564 7565 MVT VT = Op.getValueType(); 7566 assert(VT.isVector() && "Cannot widen non-vector type!"); 7567 7568 SDValue Result; 7569 SDNode *Node = Op.getNode(); 7570 MVT EVT = VT.getVectorElementType(); 7571 7572 unsigned NumElts = VT.getVectorNumElements(); 7573 unsigned NewNumElts = WidenVT.getVectorNumElements(); 7574 assert(NewNumElts > NumElts && "Cannot widen to smaller type!"); 7575 assert(NewNumElts < 17); 7576 7577 // When widen is called, it is assumed that it is more efficient to use a 7578 // wide type. The default action is to widen to operation to a wider legal 7579 // vector type and then do the operation if it is legal by calling LegalizeOp 7580 // again. If there is no vector equivalent, we will unroll the operation, do 7581 // it, and rebuild the vector. If most of the operations are vectorizible to 7582 // the legal type, the resulting code will be more efficient. If this is not 7583 // the case, the resulting code will preform badly as we end up generating 7584 // code to pack/unpack the results. It is the function that calls widen 7585 // that is responsible for seeing this doesn't happen. 7586 switch (Node->getOpcode()) { 7587 default: 7588#ifndef NDEBUG 7589 Node->dump(&DAG); 7590#endif 7591 assert(0 && "Unexpected operation in WidenVectorOp!"); 7592 break; 7593 case ISD::CopyFromReg: 7594 assert(0 && "CopyFromReg must be legal!"); 7595 case ISD::UNDEF: 7596 case ISD::Constant: 7597 case ISD::ConstantFP: 7598 // To build a vector of these elements, clients should call BuildVector 7599 // and with each element instead of creating a node with a vector type 7600 assert(0 && "Unexpected operation in WidenVectorOp!"); 7601 case ISD::VAARG: 7602 // Variable Arguments with vector types doesn't make any sense to me 7603 assert(0 && "Unexpected operation in WidenVectorOp!"); 7604 break; 7605 case ISD::BUILD_VECTOR: { 7606 // Build a vector with undefined for the new nodes 7607 SDValueVector NewOps(Node->op_begin(), Node->op_end()); 7608 for (unsigned i = NumElts; i < NewNumElts; ++i) { 7609 NewOps.push_back(DAG.getNode(ISD::UNDEF,EVT)); 7610 } 7611 Result = DAG.getNode(ISD::BUILD_VECTOR, WidenVT, &NewOps[0], NewOps.size()); 7612 break; 7613 } 7614 case ISD::INSERT_VECTOR_ELT: { 7615 SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT); 7616 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, WidenVT, Tmp1, 7617 Node->getOperand(1), Node->getOperand(2)); 7618 break; 7619 } 7620 case ISD::VECTOR_SHUFFLE: { 7621 SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT); 7622 SDValue Tmp2 = WidenVectorOp(Node->getOperand(1), WidenVT); 7623 // VECTOR_SHUFFLE 3rd operand must be a constant build vector that is 7624 // used as permutation array. We build the vector here instead of widening 7625 // because we don't want to legalize and have it turned to something else. 7626 SDValue PermOp = Node->getOperand(2); 7627 SDValueVector NewOps; 7628 MVT PVT = PermOp.getValueType().getVectorElementType(); 7629 for (unsigned i = 0; i < NumElts; ++i) { 7630 if (PermOp.getOperand(i).getOpcode() == ISD::UNDEF) { 7631 NewOps.push_back(PermOp.getOperand(i)); 7632 } else { 7633 unsigned Idx = 7634 cast<ConstantSDNode>(PermOp.getOperand(i))->getZExtValue(); 7635 if (Idx < NumElts) { 7636 NewOps.push_back(PermOp.getOperand(i)); 7637 } 7638 else { 7639 NewOps.push_back(DAG.getConstant(Idx + NewNumElts - NumElts, 7640 PermOp.getOperand(i).getValueType())); 7641 } 7642 } 7643 } 7644 for (unsigned i = NumElts; i < NewNumElts; ++i) { 7645 NewOps.push_back(DAG.getNode(ISD::UNDEF,PVT)); 7646 } 7647 7648 SDValue Tmp3 = DAG.getNode(ISD::BUILD_VECTOR, 7649 MVT::getVectorVT(PVT, NewOps.size()), 7650 &NewOps[0], NewOps.size()); 7651 7652 Result = DAG.getNode(ISD::VECTOR_SHUFFLE, WidenVT, Tmp1, Tmp2, Tmp3); 7653 break; 7654 } 7655 case ISD::LOAD: { 7656 // If the load widen returns true, we can use a single load for the 7657 // vector. Otherwise, it is returning a token factor for multiple 7658 // loads. 7659 SDValue TFOp; 7660 if (LoadWidenVectorOp(Result, TFOp, Op, WidenVT)) 7661 AddLegalizedOperand(Op.getValue(1), LegalizeOp(TFOp.getValue(1))); 7662 else 7663 AddLegalizedOperand(Op.getValue(1), LegalizeOp(TFOp.getValue(0))); 7664 break; 7665 } 7666 7667 case ISD::BIT_CONVERT: { 7668 SDValue Tmp1 = Node->getOperand(0); 7669 // Converts between two different types so we need to determine 7670 // the correct widen type for the input operand. 7671 MVT TVT = Tmp1.getValueType(); 7672 assert(TVT.isVector() && "can not widen non vector type"); 7673 MVT TEVT = TVT.getVectorElementType(); 7674 assert(WidenVT.getSizeInBits() % EVT.getSizeInBits() == 0 && 7675 "can not widen bit bit convert that are not multiple of element type"); 7676 MVT TWidenVT = MVT::getVectorVT(TEVT, 7677 WidenVT.getSizeInBits()/EVT.getSizeInBits()); 7678 Tmp1 = WidenVectorOp(Tmp1, TWidenVT); 7679 assert(Tmp1.getValueType().getSizeInBits() == WidenVT.getSizeInBits()); 7680 Result = DAG.getNode(Node->getOpcode(), WidenVT, Tmp1); 7681 7682 TargetLowering::LegalizeAction action = 7683 TLI.getOperationAction(Node->getOpcode(), WidenVT); 7684 switch (action) { 7685 default: assert(0 && "action not supported"); 7686 case TargetLowering::Legal: 7687 break; 7688 case TargetLowering::Promote: 7689 // We defer the promotion to when we legalize the op 7690 break; 7691 case TargetLowering::Expand: 7692 // Expand the operation into a bunch of nasty scalar code. 7693 Result = LegalizeOp(UnrollVectorOp(Result)); 7694 break; 7695 } 7696 break; 7697 } 7698 7699 case ISD::SINT_TO_FP: 7700 case ISD::UINT_TO_FP: 7701 case ISD::FP_TO_SINT: 7702 case ISD::FP_TO_UINT: { 7703 SDValue Tmp1 = Node->getOperand(0); 7704 // Converts between two different types so we need to determine 7705 // the correct widen type for the input operand. 7706 MVT TVT = Tmp1.getValueType(); 7707 assert(TVT.isVector() && "can not widen non vector type"); 7708 MVT TEVT = TVT.getVectorElementType(); 7709 MVT TWidenVT = MVT::getVectorVT(TEVT, NewNumElts); 7710 Tmp1 = WidenVectorOp(Tmp1, TWidenVT); 7711 assert(Tmp1.getValueType().getVectorNumElements() == NewNumElts); 7712 Result = DAG.getNode(Node->getOpcode(), WidenVT, Tmp1); 7713 7714 TargetLowering::LegalizeAction action = 7715 TLI.getOperationAction(Node->getOpcode(), WidenVT); 7716 switch (action) { 7717 default: assert(0 && "action not supported"); 7718 case TargetLowering::Legal: 7719 break; 7720 case TargetLowering::Promote: 7721 // We defer the promotion to when we legalize the op 7722 break; 7723 case TargetLowering::Expand: 7724 // Expand the operation into a bunch of nasty scalar code. 7725 Result = LegalizeOp(UnrollVectorOp(Result)); 7726 break; 7727 } 7728 break; 7729 } 7730 7731 case ISD::FP_EXTEND: 7732 assert(0 && "Case not implemented. Dynamically dead with 2 FP types!"); 7733 case ISD::TRUNCATE: 7734 case ISD::SIGN_EXTEND: 7735 case ISD::ZERO_EXTEND: 7736 case ISD::ANY_EXTEND: 7737 case ISD::FP_ROUND: 7738 case ISD::SIGN_EXTEND_INREG: 7739 case ISD::FABS: 7740 case ISD::FNEG: 7741 case ISD::FSQRT: 7742 case ISD::FSIN: 7743 case ISD::FCOS: { 7744 // Unary op widening 7745 SDValue Tmp1; 7746 TargetLowering::LegalizeAction action = 7747 TLI.getOperationAction(Node->getOpcode(), WidenVT); 7748 7749 Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT); 7750 assert(Tmp1.getValueType() == WidenVT); 7751 Result = DAG.getNode(Node->getOpcode(), WidenVT, Tmp1); 7752 switch (action) { 7753 default: assert(0 && "action not supported"); 7754 case TargetLowering::Legal: 7755 break; 7756 case TargetLowering::Promote: 7757 // We defer the promotion to when we legalize the op 7758 break; 7759 case TargetLowering::Expand: 7760 // Expand the operation into a bunch of nasty scalar code. 7761 Result = LegalizeOp(UnrollVectorOp(Result)); 7762 break; 7763 } 7764 break; 7765 } 7766 case ISD::FPOW: 7767 case ISD::FPOWI: 7768 case ISD::ADD: 7769 case ISD::SUB: 7770 case ISD::MUL: 7771 case ISD::MULHS: 7772 case ISD::MULHU: 7773 case ISD::AND: 7774 case ISD::OR: 7775 case ISD::XOR: 7776 case ISD::FADD: 7777 case ISD::FSUB: 7778 case ISD::FMUL: 7779 case ISD::SDIV: 7780 case ISD::SREM: 7781 case ISD::FDIV: 7782 case ISD::FREM: 7783 case ISD::FCOPYSIGN: 7784 case ISD::UDIV: 7785 case ISD::UREM: 7786 case ISD::BSWAP: { 7787 // Binary op widening 7788 TargetLowering::LegalizeAction action = 7789 TLI.getOperationAction(Node->getOpcode(), WidenVT); 7790 7791 SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT); 7792 SDValue Tmp2 = WidenVectorOp(Node->getOperand(1), WidenVT); 7793 assert(Tmp1.getValueType() == WidenVT && Tmp2.getValueType() == WidenVT); 7794 Result = DAG.getNode(Node->getOpcode(), WidenVT, Tmp1, Tmp2); 7795 switch (action) { 7796 default: assert(0 && "action not supported"); 7797 case TargetLowering::Legal: 7798 break; 7799 case TargetLowering::Promote: 7800 // We defer the promotion to when we legalize the op 7801 break; 7802 case TargetLowering::Expand: 7803 // Expand the operation into a bunch of nasty scalar code by first 7804 // Widening to the right type and then unroll the beast. 7805 Result = LegalizeOp(UnrollVectorOp(Result)); 7806 break; 7807 } 7808 break; 7809 } 7810 7811 case ISD::SHL: 7812 case ISD::SRA: 7813 case ISD::SRL: { 7814 // Binary op with one non vector operand 7815 TargetLowering::LegalizeAction action = 7816 TLI.getOperationAction(Node->getOpcode(), WidenVT); 7817 7818 SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT); 7819 assert(Tmp1.getValueType() == WidenVT); 7820 Result = DAG.getNode(Node->getOpcode(), WidenVT, Tmp1, Node->getOperand(1)); 7821 switch (action) { 7822 default: assert(0 && "action not supported"); 7823 case TargetLowering::Legal: 7824 break; 7825 case TargetLowering::Promote: 7826 // We defer the promotion to when we legalize the op 7827 break; 7828 case TargetLowering::Expand: 7829 // Expand the operation into a bunch of nasty scalar code. 7830 Result = LegalizeOp(UnrollVectorOp(Result)); 7831 break; 7832 } 7833 break; 7834 } 7835 case ISD::EXTRACT_VECTOR_ELT: { 7836 SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT); 7837 assert(Tmp1.getValueType() == WidenVT); 7838 Result = DAG.getNode(Node->getOpcode(), EVT, Tmp1, Node->getOperand(1)); 7839 break; 7840 } 7841 case ISD::CONCAT_VECTORS: { 7842 // We concurrently support only widen on a multiple of the incoming vector. 7843 // We could widen on a multiple of the incoming operand if necessary. 7844 unsigned NumConcat = NewNumElts / NumElts; 7845 assert(NewNumElts % NumElts == 0 && "Can widen only a multiple of vector"); 7846 std::vector<SDValue> UnOps(NumElts, DAG.getNode(ISD::UNDEF, 7847 VT.getVectorElementType())); 7848 SDValue UndefVal = DAG.getNode(ISD::BUILD_VECTOR, VT, 7849 &UnOps[0], UnOps.size()); 7850 SmallVector<SDValue, 8> MOps; 7851 MOps.push_back(Op); 7852 for (unsigned i = 1; i != NumConcat; ++i) { 7853 MOps.push_back(UndefVal); 7854 } 7855 Result = LegalizeOp(DAG.getNode(ISD::CONCAT_VECTORS, WidenVT, 7856 &MOps[0], MOps.size())); 7857 break; 7858 } 7859 case ISD::EXTRACT_SUBVECTOR: { 7860 SDValue Tmp1; 7861 7862 // The incoming vector might already be the proper type 7863 if (Node->getOperand(0).getValueType() != WidenVT) 7864 Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT); 7865 else 7866 Tmp1 = Node->getOperand(0); 7867 assert(Tmp1.getValueType() == WidenVT); 7868 Result = DAG.getNode(Node->getOpcode(), WidenVT, Tmp1, Node->getOperand(1)); 7869 break; 7870 } 7871 7872 case ISD::SELECT: { 7873 TargetLowering::LegalizeAction action = 7874 TLI.getOperationAction(Node->getOpcode(), WidenVT); 7875 7876 // Determine new condition widen type and widen 7877 SDValue Cond1 = Node->getOperand(0); 7878 MVT CondVT = Cond1.getValueType(); 7879 assert(CondVT.isVector() && "can not widen non vector type"); 7880 MVT CondEVT = CondVT.getVectorElementType(); 7881 MVT CondWidenVT = MVT::getVectorVT(CondEVT, NewNumElts); 7882 Cond1 = WidenVectorOp(Cond1, CondWidenVT); 7883 assert(Cond1.getValueType() == CondWidenVT && "Condition not widen"); 7884 7885 SDValue Tmp1 = WidenVectorOp(Node->getOperand(1), WidenVT); 7886 SDValue Tmp2 = WidenVectorOp(Node->getOperand(2), WidenVT); 7887 assert(Tmp1.getValueType() == WidenVT && Tmp2.getValueType() == WidenVT); 7888 Result = DAG.getNode(Node->getOpcode(), WidenVT, Cond1, Tmp1, Tmp2); 7889 switch (action) { 7890 default: assert(0 && "action not supported"); 7891 case TargetLowering::Legal: 7892 break; 7893 case TargetLowering::Promote: 7894 // We defer the promotion to when we legalize the op 7895 break; 7896 case TargetLowering::Expand: 7897 // Expand the operation into a bunch of nasty scalar code by first 7898 // Widening to the right type and then unroll the beast. 7899 Result = LegalizeOp(UnrollVectorOp(Result)); 7900 break; 7901 } 7902 break; 7903 } 7904 7905 case ISD::SELECT_CC: { 7906 TargetLowering::LegalizeAction action = 7907 TLI.getOperationAction(Node->getOpcode(), WidenVT); 7908 7909 // Determine new condition widen type and widen 7910 SDValue Cond1 = Node->getOperand(0); 7911 SDValue Cond2 = Node->getOperand(1); 7912 MVT CondVT = Cond1.getValueType(); 7913 assert(CondVT.isVector() && "can not widen non vector type"); 7914 assert(CondVT == Cond2.getValueType() && "mismatch lhs/rhs"); 7915 MVT CondEVT = CondVT.getVectorElementType(); 7916 MVT CondWidenVT = MVT::getVectorVT(CondEVT, NewNumElts); 7917 Cond1 = WidenVectorOp(Cond1, CondWidenVT); 7918 Cond2 = WidenVectorOp(Cond2, CondWidenVT); 7919 assert(Cond1.getValueType() == CondWidenVT && 7920 Cond2.getValueType() == CondWidenVT && "condition not widen"); 7921 7922 SDValue Tmp1 = WidenVectorOp(Node->getOperand(2), WidenVT); 7923 SDValue Tmp2 = WidenVectorOp(Node->getOperand(3), WidenVT); 7924 assert(Tmp1.getValueType() == WidenVT && Tmp2.getValueType() == WidenVT && 7925 "operands not widen"); 7926 Result = DAG.getNode(Node->getOpcode(), WidenVT, Cond1, Cond2, Tmp1, 7927 Tmp2, Node->getOperand(4)); 7928 switch (action) { 7929 default: assert(0 && "action not supported"); 7930 case TargetLowering::Legal: 7931 break; 7932 case TargetLowering::Promote: 7933 // We defer the promotion to when we legalize the op 7934 break; 7935 case TargetLowering::Expand: 7936 // Expand the operation into a bunch of nasty scalar code by first 7937 // Widening to the right type and then unroll the beast. 7938 Result = LegalizeOp(UnrollVectorOp(Result)); 7939 break; 7940 } 7941 break; 7942 } 7943 case ISD::VSETCC: { 7944 // Determine widen for the operand 7945 SDValue Tmp1 = Node->getOperand(0); 7946 MVT TmpVT = Tmp1.getValueType(); 7947 assert(TmpVT.isVector() && "can not widen non vector type"); 7948 MVT TmpEVT = TmpVT.getVectorElementType(); 7949 MVT TmpWidenVT = MVT::getVectorVT(TmpEVT, NewNumElts); 7950 Tmp1 = WidenVectorOp(Tmp1, TmpWidenVT); 7951 SDValue Tmp2 = WidenVectorOp(Node->getOperand(1), TmpWidenVT); 7952 Result = DAG.getNode(Node->getOpcode(), WidenVT, Tmp1, Tmp2, 7953 Node->getOperand(2)); 7954 break; 7955 } 7956 case ISD::ATOMIC_CMP_SWAP_8: 7957 case ISD::ATOMIC_CMP_SWAP_16: 7958 case ISD::ATOMIC_CMP_SWAP_32: 7959 case ISD::ATOMIC_CMP_SWAP_64: 7960 case ISD::ATOMIC_LOAD_ADD_8: 7961 case ISD::ATOMIC_LOAD_SUB_8: 7962 case ISD::ATOMIC_LOAD_AND_8: 7963 case ISD::ATOMIC_LOAD_OR_8: 7964 case ISD::ATOMIC_LOAD_XOR_8: 7965 case ISD::ATOMIC_LOAD_NAND_8: 7966 case ISD::ATOMIC_LOAD_MIN_8: 7967 case ISD::ATOMIC_LOAD_MAX_8: 7968 case ISD::ATOMIC_LOAD_UMIN_8: 7969 case ISD::ATOMIC_LOAD_UMAX_8: 7970 case ISD::ATOMIC_SWAP_8: 7971 case ISD::ATOMIC_LOAD_ADD_16: 7972 case ISD::ATOMIC_LOAD_SUB_16: 7973 case ISD::ATOMIC_LOAD_AND_16: 7974 case ISD::ATOMIC_LOAD_OR_16: 7975 case ISD::ATOMIC_LOAD_XOR_16: 7976 case ISD::ATOMIC_LOAD_NAND_16: 7977 case ISD::ATOMIC_LOAD_MIN_16: 7978 case ISD::ATOMIC_LOAD_MAX_16: 7979 case ISD::ATOMIC_LOAD_UMIN_16: 7980 case ISD::ATOMIC_LOAD_UMAX_16: 7981 case ISD::ATOMIC_SWAP_16: 7982 case ISD::ATOMIC_LOAD_ADD_32: 7983 case ISD::ATOMIC_LOAD_SUB_32: 7984 case ISD::ATOMIC_LOAD_AND_32: 7985 case ISD::ATOMIC_LOAD_OR_32: 7986 case ISD::ATOMIC_LOAD_XOR_32: 7987 case ISD::ATOMIC_LOAD_NAND_32: 7988 case ISD::ATOMIC_LOAD_MIN_32: 7989 case ISD::ATOMIC_LOAD_MAX_32: 7990 case ISD::ATOMIC_LOAD_UMIN_32: 7991 case ISD::ATOMIC_LOAD_UMAX_32: 7992 case ISD::ATOMIC_SWAP_32: 7993 case ISD::ATOMIC_LOAD_ADD_64: 7994 case ISD::ATOMIC_LOAD_SUB_64: 7995 case ISD::ATOMIC_LOAD_AND_64: 7996 case ISD::ATOMIC_LOAD_OR_64: 7997 case ISD::ATOMIC_LOAD_XOR_64: 7998 case ISD::ATOMIC_LOAD_NAND_64: 7999 case ISD::ATOMIC_LOAD_MIN_64: 8000 case ISD::ATOMIC_LOAD_MAX_64: 8001 case ISD::ATOMIC_LOAD_UMIN_64: 8002 case ISD::ATOMIC_LOAD_UMAX_64: 8003 case ISD::ATOMIC_SWAP_64: { 8004 // For now, we assume that using vectors for these operations don't make 8005 // much sense so we just split it. We return an empty result 8006 SDValue X, Y; 8007 SplitVectorOp(Op, X, Y); 8008 return Result; 8009 break; 8010 } 8011 8012 } // end switch (Node->getOpcode()) 8013 8014 assert(Result.getNode() && "Didn't set a result!"); 8015 if (Result != Op) 8016 Result = LegalizeOp(Result); 8017 8018 AddWidenedOperand(Op, Result); 8019 return Result; 8020} 8021 8022// Utility function to find a legal vector type and its associated element 8023// type from a preferred width and whose vector type must be the same size 8024// as the VVT. 8025// TLI: Target lowering used to determine legal types 8026// Width: Preferred width of element type 8027// VVT: Vector value type whose size we must match. 8028// Returns VecEVT and EVT - the vector type and its associated element type 8029static void FindWidenVecType(TargetLowering &TLI, unsigned Width, MVT VVT, 8030 MVT& EVT, MVT& VecEVT) { 8031 // We start with the preferred width, make it a power of 2 and see if 8032 // we can find a vector type of that width. If not, we reduce it by 8033 // another power of 2. If we have widen the type, a vector of bytes should 8034 // always be legal. 8035 assert(TLI.isTypeLegal(VVT)); 8036 unsigned EWidth = Width + 1; 8037 do { 8038 assert(EWidth > 0); 8039 EWidth = (1 << Log2_32(EWidth-1)); 8040 EVT = MVT::getIntegerVT(EWidth); 8041 unsigned NumEVT = VVT.getSizeInBits()/EWidth; 8042 VecEVT = MVT::getVectorVT(EVT, NumEVT); 8043 } while (!TLI.isTypeLegal(VecEVT) || 8044 VVT.getSizeInBits() != VecEVT.getSizeInBits()); 8045} 8046 8047SDValue SelectionDAGLegalize::genWidenVectorLoads(SDValueVector& LdChain, 8048 SDValue Chain, 8049 SDValue BasePtr, 8050 const Value *SV, 8051 int SVOffset, 8052 unsigned Alignment, 8053 bool isVolatile, 8054 unsigned LdWidth, 8055 MVT ResType) { 8056 // We assume that we have good rules to handle loading power of two loads so 8057 // we break down the operations to power of 2 loads. The strategy is to 8058 // load the largest power of 2 that we can easily transform to a legal vector 8059 // and then insert into that vector, and the cast the result into the legal 8060 // vector that we want. This avoids unnecessary stack converts. 8061 // TODO: If the Ldwidth is legal, alignment is the same as the LdWidth, and 8062 // the load is nonvolatile, we an use a wider load for the value. 8063 // Find a vector length we can load a large chunk 8064 MVT EVT, VecEVT; 8065 unsigned EVTWidth; 8066 FindWidenVecType(TLI, LdWidth, ResType, EVT, VecEVT); 8067 EVTWidth = EVT.getSizeInBits(); 8068 8069 SDValue LdOp = DAG.getLoad(EVT, Chain, BasePtr, SV, SVOffset, 8070 isVolatile, Alignment); 8071 SDValue VecOp = DAG.getNode(ISD::SCALAR_TO_VECTOR, VecEVT, LdOp); 8072 LdChain.push_back(LdOp.getValue(1)); 8073 8074 // Check if we can load the element with one instruction 8075 if (LdWidth == EVTWidth) { 8076 return DAG.getNode(ISD::BIT_CONVERT, ResType, VecOp); 8077 } 8078 8079 // The vector element order is endianness dependent. 8080 unsigned Idx = 1; 8081 LdWidth -= EVTWidth; 8082 unsigned Offset = 0; 8083 8084 while (LdWidth > 0) { 8085 unsigned Increment = EVTWidth / 8; 8086 Offset += Increment; 8087 BasePtr = DAG.getNode(ISD::ADD, BasePtr.getValueType(), BasePtr, 8088 DAG.getIntPtrConstant(Increment)); 8089 8090 if (LdWidth < EVTWidth) { 8091 // Our current type we are using is too large, use a smaller size by 8092 // using a smaller power of 2 8093 unsigned oEVTWidth = EVTWidth; 8094 FindWidenVecType(TLI, LdWidth, ResType, EVT, VecEVT); 8095 EVTWidth = EVT.getSizeInBits(); 8096 // Readjust position and vector position based on new load type 8097 Idx = Idx * (oEVTWidth/EVTWidth)+1; 8098 VecOp = DAG.getNode(ISD::BIT_CONVERT, VecEVT, VecOp); 8099 } 8100 8101 SDValue LdOp = DAG.getLoad(EVT, Chain, BasePtr, SV, 8102 SVOffset+Offset, isVolatile, 8103 MinAlign(Alignment, Offset)); 8104 LdChain.push_back(LdOp.getValue(1)); 8105 VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, VecEVT, VecOp, LdOp, 8106 DAG.getIntPtrConstant(Idx++)); 8107 8108 LdWidth -= EVTWidth; 8109 } 8110 8111 return DAG.getNode(ISD::BIT_CONVERT, ResType, VecOp); 8112} 8113 8114bool SelectionDAGLegalize::LoadWidenVectorOp(SDValue& Result, 8115 SDValue& TFOp, 8116 SDValue Op, 8117 MVT NVT) { 8118 // TODO: Add support for ConcatVec and the ability to load many vector 8119 // types (e.g., v4i8). This will not work when a vector register 8120 // to memory mapping is strange (e.g., vector elements are not 8121 // stored in some sequential order). 8122 8123 // It must be true that the widen vector type is bigger than where 8124 // we need to load from. 8125 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 8126 MVT LdVT = LD->getMemoryVT(); 8127 assert(LdVT.isVector() && NVT.isVector()); 8128 assert(LdVT.getVectorElementType() == NVT.getVectorElementType()); 8129 8130 // Load information 8131 SDValue Chain = LD->getChain(); 8132 SDValue BasePtr = LD->getBasePtr(); 8133 int SVOffset = LD->getSrcValueOffset(); 8134 unsigned Alignment = LD->getAlignment(); 8135 bool isVolatile = LD->isVolatile(); 8136 const Value *SV = LD->getSrcValue(); 8137 unsigned int LdWidth = LdVT.getSizeInBits(); 8138 8139 // Load value as a large register 8140 SDValueVector LdChain; 8141 Result = genWidenVectorLoads(LdChain, Chain, BasePtr, SV, SVOffset, 8142 Alignment, isVolatile, LdWidth, NVT); 8143 8144 if (LdChain.size() == 1) { 8145 TFOp = LdChain[0]; 8146 return true; 8147 } 8148 else { 8149 TFOp=DAG.getNode(ISD::TokenFactor, MVT::Other, &LdChain[0], LdChain.size()); 8150 return false; 8151 } 8152} 8153 8154 8155void SelectionDAGLegalize::genWidenVectorStores(SDValueVector& StChain, 8156 SDValue Chain, 8157 SDValue BasePtr, 8158 const Value *SV, 8159 int SVOffset, 8160 unsigned Alignment, 8161 bool isVolatile, 8162 SDValue ValOp, 8163 unsigned StWidth) { 8164 // Breaks the stores into a series of power of 2 width stores. For any 8165 // width, we convert the vector to the vector of element size that we 8166 // want to store. This avoids requiring a stack convert. 8167 8168 // Find a width of the element type we can store with 8169 MVT VVT = ValOp.getValueType(); 8170 MVT EVT, VecEVT; 8171 unsigned EVTWidth; 8172 FindWidenVecType(TLI, StWidth, VVT, EVT, VecEVT); 8173 EVTWidth = EVT.getSizeInBits(); 8174 8175 SDValue VecOp = DAG.getNode(ISD::BIT_CONVERT, VecEVT, ValOp); 8176 SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EVT, VecOp, 8177 DAG.getIntPtrConstant(0)); 8178 SDValue StOp = DAG.getStore(Chain, EOp, BasePtr, SV, SVOffset, 8179 isVolatile, Alignment); 8180 StChain.push_back(StOp); 8181 8182 // Check if we are done 8183 if (StWidth == EVTWidth) { 8184 return; 8185 } 8186 8187 unsigned Idx = 1; 8188 StWidth -= EVTWidth; 8189 unsigned Offset = 0; 8190 8191 while (StWidth > 0) { 8192 unsigned Increment = EVTWidth / 8; 8193 Offset += Increment; 8194 BasePtr = DAG.getNode(ISD::ADD, BasePtr.getValueType(), BasePtr, 8195 DAG.getIntPtrConstant(Increment)); 8196 8197 if (StWidth < EVTWidth) { 8198 // Our current type we are using is too large, use a smaller size by 8199 // using a smaller power of 2 8200 unsigned oEVTWidth = EVTWidth; 8201 FindWidenVecType(TLI, StWidth, VVT, EVT, VecEVT); 8202 EVTWidth = EVT.getSizeInBits(); 8203 // Readjust position and vector position based on new load type 8204 Idx = Idx * (oEVTWidth/EVTWidth)+1; 8205 VecOp = DAG.getNode(ISD::BIT_CONVERT, VecEVT, VecOp); 8206 } 8207 8208 EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EVT, VecOp, 8209 DAG.getIntPtrConstant(Idx)); 8210 StChain.push_back(DAG.getStore(Chain, EOp, BasePtr, SV, 8211 SVOffset + Offset, isVolatile, 8212 MinAlign(Alignment, Offset))); 8213 StWidth -= EVTWidth; 8214 } 8215} 8216 8217 8218SDValue SelectionDAGLegalize::StoreWidenVectorOp(StoreSDNode *ST, 8219 SDValue Chain, 8220 SDValue BasePtr) { 8221 // TODO: It might be cleaner if we can use SplitVector and have more legal 8222 // vector types that can be stored into memory (e.g., v4xi8 can 8223 // be stored as a word). This will not work when a vector register 8224 // to memory mapping is strange (e.g., vector elements are not 8225 // stored in some sequential order). 8226 8227 MVT StVT = ST->getMemoryVT(); 8228 SDValue ValOp = ST->getValue(); 8229 8230 // Check if we have widen this node with another value 8231 std::map<SDValue, SDValue>::iterator I = WidenNodes.find(ValOp); 8232 if (I != WidenNodes.end()) 8233 ValOp = I->second; 8234 8235 MVT VVT = ValOp.getValueType(); 8236 8237 // It must be true that we the widen vector type is bigger than where 8238 // we need to store. 8239 assert(StVT.isVector() && VVT.isVector()); 8240 assert(StVT.getSizeInBits() < VVT.getSizeInBits()); 8241 assert(StVT.getVectorElementType() == VVT.getVectorElementType()); 8242 8243 // Store value 8244 SDValueVector StChain; 8245 genWidenVectorStores(StChain, Chain, BasePtr, ST->getSrcValue(), 8246 ST->getSrcValueOffset(), ST->getAlignment(), 8247 ST->isVolatile(), ValOp, StVT.getSizeInBits()); 8248 if (StChain.size() == 1) 8249 return StChain[0]; 8250 else 8251 return DAG.getNode(ISD::TokenFactor, MVT::Other,&StChain[0],StChain.size()); 8252} 8253 8254 8255// SelectionDAG::Legalize - This is the entry point for the file. 8256// 8257void SelectionDAG::Legalize() { 8258 /// run - This is the main entry point to this class. 8259 /// 8260 SelectionDAGLegalize(*this).LegalizeDAG(); 8261} 8262 8263