ExternalFunctions.cpp revision 26e6e109d559fb644b59231c14346997290dc9d6
1//===-- ExternalFunctions.cpp - Implement External Functions --------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file was developed by the LLVM research group and is distributed under 6// the University of Illinois Open Source License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains both code to deal with invoking "external" functions, but 11// also contains code that implements "exported" external functions. 12// 13// External functions in the interpreter are implemented by 14// using the system's dynamic loader to look up the address of the function 15// we want to invoke. If a function is found, then one of the 16// many lle_* wrapper functions in this file will translate its arguments from 17// GenericValues to the types the function is actually expecting, before the 18// function is called. 19// 20//===----------------------------------------------------------------------===// 21 22#include "Interpreter.h" 23#include "llvm/DerivedTypes.h" 24#include "llvm/Module.h" 25#include "llvm/System/DynamicLibrary.h" 26#include "llvm/Target/TargetData.h" 27#include <cmath> 28#include <csignal> 29#include <map> 30using std::vector; 31 32using namespace llvm; 33 34typedef GenericValue (*ExFunc)(FunctionType *, const vector<GenericValue> &); 35static std::map<const Function *, ExFunc> Functions; 36static std::map<std::string, ExFunc> FuncNames; 37 38static Interpreter *TheInterpreter; 39 40static char getTypeID(const Type *Ty) { 41 switch (Ty->getTypeID()) { 42 case Type::VoidTyID: return 'V'; 43 case Type::BoolTyID: return 'o'; 44 case Type::UByteTyID: return 'B'; 45 case Type::SByteTyID: return 'b'; 46 case Type::UShortTyID: return 'S'; 47 case Type::ShortTyID: return 's'; 48 case Type::UIntTyID: return 'I'; 49 case Type::IntTyID: return 'i'; 50 case Type::ULongTyID: return 'L'; 51 case Type::LongTyID: return 'l'; 52 case Type::FloatTyID: return 'F'; 53 case Type::DoubleTyID: return 'D'; 54 case Type::PointerTyID: return 'P'; 55 case Type::FunctionTyID: return 'M'; 56 case Type::StructTyID: return 'T'; 57 case Type::ArrayTyID: return 'A'; 58 case Type::OpaqueTyID: return 'O'; 59 default: return 'U'; 60 } 61} 62 63static ExFunc lookupFunction(const Function *F) { 64 // Function not found, look it up... start by figuring out what the 65 // composite function name should be. 66 std::string ExtName = "lle_"; 67 const FunctionType *FT = F->getFunctionType(); 68 for (unsigned i = 0, e = FT->getNumContainedTypes(); i != e; ++i) 69 ExtName += getTypeID(FT->getContainedType(i)); 70 ExtName += "_" + F->getName(); 71 72 ExFunc FnPtr = FuncNames[ExtName]; 73 if (FnPtr == 0) 74 FnPtr = 75 (ExFunc)(intptr_t)sys::DynamicLibrary::SearchForAddressOfSymbol(ExtName); 76 if (FnPtr == 0) 77 FnPtr = FuncNames["lle_X_"+F->getName()]; 78 if (FnPtr == 0) // Try calling a generic function... if it exists... 79 FnPtr = (ExFunc)(intptr_t)sys::DynamicLibrary::SearchForAddressOfSymbol( 80 ("lle_X_"+F->getName()).c_str()); 81 if (FnPtr != 0) 82 Functions.insert(std::make_pair(F, FnPtr)); // Cache for later 83 return FnPtr; 84} 85 86GenericValue Interpreter::callExternalFunction(Function *F, 87 const std::vector<GenericValue> &ArgVals) { 88 TheInterpreter = this; 89 90 // Do a lookup to see if the function is in our cache... this should just be a 91 // deferred annotation! 92 std::map<const Function *, ExFunc>::iterator FI = Functions.find(F); 93 ExFunc Fn = (FI == Functions.end()) ? lookupFunction(F) : FI->second; 94 if (Fn == 0) { 95 std::cout << "Tried to execute an unknown external function: " 96 << F->getType()->getDescription() << " " << F->getName() << "\n"; 97 if (F->getName() == "__main") 98 return GenericValue(); 99 abort(); 100 } 101 102 // TODO: FIXME when types are not const! 103 GenericValue Result = Fn(const_cast<FunctionType*>(F->getFunctionType()), 104 ArgVals); 105 return Result; 106} 107 108 109//===----------------------------------------------------------------------===// 110// Functions "exported" to the running application... 111// 112extern "C" { // Don't add C++ manglings to llvm mangling :) 113 114// void putchar(sbyte) 115GenericValue lle_Vb_putchar(FunctionType *M, const vector<GenericValue> &Args) { 116 std::cout << Args[0].SByteVal; 117 return GenericValue(); 118} 119 120// int putchar(int) 121GenericValue lle_ii_putchar(FunctionType *M, const vector<GenericValue> &Args) { 122 std::cout << ((char)Args[0].IntVal) << std::flush; 123 return Args[0]; 124} 125 126// void putchar(ubyte) 127GenericValue lle_VB_putchar(FunctionType *M, const vector<GenericValue> &Args) { 128 std::cout << Args[0].SByteVal << std::flush; 129 return Args[0]; 130} 131 132// void atexit(Function*) 133GenericValue lle_X_atexit(FunctionType *M, const vector<GenericValue> &Args) { 134 assert(Args.size() == 1); 135 TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0])); 136 GenericValue GV; 137 GV.IntVal = 0; 138 return GV; 139} 140 141// void exit(int) 142GenericValue lle_X_exit(FunctionType *M, const vector<GenericValue> &Args) { 143 TheInterpreter->exitCalled(Args[0]); 144 return GenericValue(); 145} 146 147// void abort(void) 148GenericValue lle_X_abort(FunctionType *M, const vector<GenericValue> &Args) { 149 raise (SIGABRT); 150 return GenericValue(); 151} 152 153// void *malloc(uint) 154GenericValue lle_X_malloc(FunctionType *M, const vector<GenericValue> &Args) { 155 assert(Args.size() == 1 && "Malloc expects one argument!"); 156 return PTOGV(malloc(Args[0].UIntVal)); 157} 158 159// void *calloc(uint, uint) 160GenericValue lle_X_calloc(FunctionType *M, const vector<GenericValue> &Args) { 161 assert(Args.size() == 2 && "calloc expects two arguments!"); 162 return PTOGV(calloc(Args[0].UIntVal, Args[1].UIntVal)); 163} 164 165// void free(void *) 166GenericValue lle_X_free(FunctionType *M, const vector<GenericValue> &Args) { 167 assert(Args.size() == 1); 168 free(GVTOP(Args[0])); 169 return GenericValue(); 170} 171 172// int atoi(char *) 173GenericValue lle_X_atoi(FunctionType *M, const vector<GenericValue> &Args) { 174 assert(Args.size() == 1); 175 GenericValue GV; 176 GV.IntVal = atoi((char*)GVTOP(Args[0])); 177 return GV; 178} 179 180// double pow(double, double) 181GenericValue lle_X_pow(FunctionType *M, const vector<GenericValue> &Args) { 182 assert(Args.size() == 2); 183 GenericValue GV; 184 GV.DoubleVal = pow(Args[0].DoubleVal, Args[1].DoubleVal); 185 return GV; 186} 187 188// double exp(double) 189GenericValue lle_X_exp(FunctionType *M, const vector<GenericValue> &Args) { 190 assert(Args.size() == 1); 191 GenericValue GV; 192 GV.DoubleVal = exp(Args[0].DoubleVal); 193 return GV; 194} 195 196// double sqrt(double) 197GenericValue lle_X_sqrt(FunctionType *M, const vector<GenericValue> &Args) { 198 assert(Args.size() == 1); 199 GenericValue GV; 200 GV.DoubleVal = sqrt(Args[0].DoubleVal); 201 return GV; 202} 203 204// double log(double) 205GenericValue lle_X_log(FunctionType *M, const vector<GenericValue> &Args) { 206 assert(Args.size() == 1); 207 GenericValue GV; 208 GV.DoubleVal = log(Args[0].DoubleVal); 209 return GV; 210} 211 212// double floor(double) 213GenericValue lle_X_floor(FunctionType *M, const vector<GenericValue> &Args) { 214 assert(Args.size() == 1); 215 GenericValue GV; 216 GV.DoubleVal = floor(Args[0].DoubleVal); 217 return GV; 218} 219 220#ifdef HAVE_RAND48 221 222// double drand48() 223GenericValue lle_X_drand48(FunctionType *M, const vector<GenericValue> &Args) { 224 assert(Args.size() == 0); 225 GenericValue GV; 226 GV.DoubleVal = drand48(); 227 return GV; 228} 229 230// long lrand48() 231GenericValue lle_X_lrand48(FunctionType *M, const vector<GenericValue> &Args) { 232 assert(Args.size() == 0); 233 GenericValue GV; 234 GV.IntVal = lrand48(); 235 return GV; 236} 237 238// void srand48(long) 239GenericValue lle_X_srand48(FunctionType *M, const vector<GenericValue> &Args) { 240 assert(Args.size() == 1); 241 srand48(Args[0].IntVal); 242 return GenericValue(); 243} 244 245#endif 246 247// int rand() 248GenericValue lle_X_rand(FunctionType *M, const vector<GenericValue> &Args) { 249 assert(Args.size() == 0); 250 GenericValue GV; 251 GV.IntVal = rand(); 252 return GV; 253} 254 255// void srand(uint) 256GenericValue lle_X_srand(FunctionType *M, const vector<GenericValue> &Args) { 257 assert(Args.size() == 1); 258 srand(Args[0].UIntVal); 259 return GenericValue(); 260} 261 262// int puts(const char*) 263GenericValue lle_X_puts(FunctionType *M, const vector<GenericValue> &Args) { 264 assert(Args.size() == 1); 265 GenericValue GV; 266 GV.IntVal = puts((char*)GVTOP(Args[0])); 267 return GV; 268} 269 270// int sprintf(sbyte *, sbyte *, ...) - a very rough implementation to make 271// output useful. 272GenericValue lle_X_sprintf(FunctionType *M, const vector<GenericValue> &Args) { 273 char *OutputBuffer = (char *)GVTOP(Args[0]); 274 const char *FmtStr = (const char *)GVTOP(Args[1]); 275 unsigned ArgNo = 2; 276 277 // printf should return # chars printed. This is completely incorrect, but 278 // close enough for now. 279 GenericValue GV; GV.IntVal = strlen(FmtStr); 280 while (1) { 281 switch (*FmtStr) { 282 case 0: return GV; // Null terminator... 283 default: // Normal nonspecial character 284 sprintf(OutputBuffer++, "%c", *FmtStr++); 285 break; 286 case '\\': { // Handle escape codes 287 sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1)); 288 FmtStr += 2; OutputBuffer += 2; 289 break; 290 } 291 case '%': { // Handle format specifiers 292 char FmtBuf[100] = "", Buffer[1000] = ""; 293 char *FB = FmtBuf; 294 *FB++ = *FmtStr++; 295 char Last = *FB++ = *FmtStr++; 296 unsigned HowLong = 0; 297 while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' && 298 Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' && 299 Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' && 300 Last != 'p' && Last != 's' && Last != '%') { 301 if (Last == 'l' || Last == 'L') HowLong++; // Keep track of l's 302 Last = *FB++ = *FmtStr++; 303 } 304 *FB = 0; 305 306 switch (Last) { 307 case '%': 308 sprintf(Buffer, FmtBuf); break; 309 case 'c': 310 sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal); break; 311 case 'd': case 'i': 312 case 'u': case 'o': 313 case 'x': case 'X': 314 if (HowLong >= 1) { 315 if (HowLong == 1 && 316 TheInterpreter->getModule().getPointerSize()==Module::Pointer64 && 317 sizeof(long) < sizeof(int64_t)) { 318 // Make sure we use %lld with a 64 bit argument because we might be 319 // compiling LLI on a 32 bit compiler. 320 unsigned Size = strlen(FmtBuf); 321 FmtBuf[Size] = FmtBuf[Size-1]; 322 FmtBuf[Size+1] = 0; 323 FmtBuf[Size-1] = 'l'; 324 } 325 sprintf(Buffer, FmtBuf, Args[ArgNo++].ULongVal); 326 } else 327 sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal); break; 328 case 'e': case 'E': case 'g': case 'G': case 'f': 329 sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break; 330 case 'p': 331 sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break; 332 case 's': 333 sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break; 334 default: std::cout << "<unknown printf code '" << *FmtStr << "'!>"; 335 ArgNo++; break; 336 } 337 strcpy(OutputBuffer, Buffer); 338 OutputBuffer += strlen(Buffer); 339 } 340 break; 341 } 342 } 343} 344 345// int printf(sbyte *, ...) - a very rough implementation to make output useful. 346GenericValue lle_X_printf(FunctionType *M, const vector<GenericValue> &Args) { 347 char Buffer[10000]; 348 vector<GenericValue> NewArgs; 349 NewArgs.push_back(PTOGV(Buffer)); 350 NewArgs.insert(NewArgs.end(), Args.begin(), Args.end()); 351 GenericValue GV = lle_X_sprintf(M, NewArgs); 352 std::cout << Buffer; 353 return GV; 354} 355 356static void ByteswapSCANFResults(const char *Fmt, void *Arg0, void *Arg1, 357 void *Arg2, void *Arg3, void *Arg4, void *Arg5, 358 void *Arg6, void *Arg7, void *Arg8) { 359 void *Args[] = { Arg0, Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, 0 }; 360 361 // Loop over the format string, munging read values as appropriate (performs 362 // byteswaps as necessary). 363 unsigned ArgNo = 0; 364 while (*Fmt) { 365 if (*Fmt++ == '%') { 366 // Read any flag characters that may be present... 367 bool Suppress = false; 368 bool Half = false; 369 bool Long = false; 370 bool LongLong = false; // long long or long double 371 372 while (1) { 373 switch (*Fmt++) { 374 case '*': Suppress = true; break; 375 case 'a': /*Allocate = true;*/ break; // We don't need to track this 376 case 'h': Half = true; break; 377 case 'l': Long = true; break; 378 case 'q': 379 case 'L': LongLong = true; break; 380 default: 381 if (Fmt[-1] > '9' || Fmt[-1] < '0') // Ignore field width specs 382 goto Out; 383 } 384 } 385 Out: 386 387 // Read the conversion character 388 if (!Suppress && Fmt[-1] != '%') { // Nothing to do? 389 unsigned Size = 0; 390 const Type *Ty = 0; 391 392 switch (Fmt[-1]) { 393 case 'i': case 'o': case 'u': case 'x': case 'X': case 'n': case 'p': 394 case 'd': 395 if (Long || LongLong) { 396 Size = 8; Ty = Type::ULongTy; 397 } else if (Half) { 398 Size = 4; Ty = Type::UShortTy; 399 } else { 400 Size = 4; Ty = Type::UIntTy; 401 } 402 break; 403 404 case 'e': case 'g': case 'E': 405 case 'f': 406 if (Long || LongLong) { 407 Size = 8; Ty = Type::DoubleTy; 408 } else { 409 Size = 4; Ty = Type::FloatTy; 410 } 411 break; 412 413 case 's': case 'c': case '[': // No byteswap needed 414 Size = 1; 415 Ty = Type::SByteTy; 416 break; 417 418 default: break; 419 } 420 421 if (Size) { 422 GenericValue GV; 423 void *Arg = Args[ArgNo++]; 424 memcpy(&GV, Arg, Size); 425 TheInterpreter->StoreValueToMemory(GV, (GenericValue*)Arg, Ty); 426 } 427 } 428 } 429 } 430} 431 432// int sscanf(const char *format, ...); 433GenericValue lle_X_sscanf(FunctionType *M, const vector<GenericValue> &args) { 434 assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!"); 435 436 char *Args[10]; 437 for (unsigned i = 0; i < args.size(); ++i) 438 Args[i] = (char*)GVTOP(args[i]); 439 440 GenericValue GV; 441 GV.IntVal = sscanf(Args[0], Args[1], Args[2], Args[3], Args[4], 442 Args[5], Args[6], Args[7], Args[8], Args[9]); 443 ByteswapSCANFResults(Args[1], Args[2], Args[3], Args[4], 444 Args[5], Args[6], Args[7], Args[8], Args[9], 0); 445 return GV; 446} 447 448// int scanf(const char *format, ...); 449GenericValue lle_X_scanf(FunctionType *M, const vector<GenericValue> &args) { 450 assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!"); 451 452 char *Args[10]; 453 for (unsigned i = 0; i < args.size(); ++i) 454 Args[i] = (char*)GVTOP(args[i]); 455 456 GenericValue GV; 457 GV.IntVal = scanf(Args[0], Args[1], Args[2], Args[3], Args[4], 458 Args[5], Args[6], Args[7], Args[8], Args[9]); 459 ByteswapSCANFResults(Args[0], Args[1], Args[2], Args[3], Args[4], 460 Args[5], Args[6], Args[7], Args[8], Args[9]); 461 return GV; 462} 463 464 465// int clock(void) - Profiling implementation 466GenericValue lle_i_clock(FunctionType *M, const vector<GenericValue> &Args) { 467 extern unsigned int clock(void); 468 GenericValue GV; GV.IntVal = clock(); 469 return GV; 470} 471 472 473//===----------------------------------------------------------------------===// 474// String Functions... 475//===----------------------------------------------------------------------===// 476 477// int strcmp(const char *S1, const char *S2); 478GenericValue lle_X_strcmp(FunctionType *M, const vector<GenericValue> &Args) { 479 assert(Args.size() == 2); 480 GenericValue Ret; 481 Ret.IntVal = strcmp((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1])); 482 return Ret; 483} 484 485// char *strcat(char *Dest, const char *src); 486GenericValue lle_X_strcat(FunctionType *M, const vector<GenericValue> &Args) { 487 assert(Args.size() == 2); 488 return PTOGV(strcat((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]))); 489} 490 491// char *strcpy(char *Dest, const char *src); 492GenericValue lle_X_strcpy(FunctionType *M, const vector<GenericValue> &Args) { 493 assert(Args.size() == 2); 494 return PTOGV(strcpy((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]))); 495} 496 497static GenericValue size_t_to_GV (size_t n) { 498 GenericValue Ret; 499 if (sizeof (size_t) == sizeof (uint64_t)) { 500 Ret.ULongVal = n; 501 } else { 502 assert (sizeof (size_t) == sizeof (unsigned int)); 503 Ret.UIntVal = n; 504 } 505 return Ret; 506} 507 508static size_t GV_to_size_t (GenericValue GV) { 509 size_t count; 510 if (sizeof (size_t) == sizeof (uint64_t)) { 511 count = (size_t)GV.ULongVal; 512 } else { 513 assert (sizeof (size_t) == sizeof (unsigned int)); 514 count = (size_t)GV.UIntVal; 515 } 516 return count; 517} 518 519// size_t strlen(const char *src); 520GenericValue lle_X_strlen(FunctionType *M, const vector<GenericValue> &Args) { 521 assert(Args.size() == 1); 522 size_t strlenResult = strlen ((char *) GVTOP (Args[0])); 523 return size_t_to_GV (strlenResult); 524} 525 526// char *strdup(const char *src); 527GenericValue lle_X_strdup(FunctionType *M, const vector<GenericValue> &Args) { 528 assert(Args.size() == 1); 529 return PTOGV(strdup((char*)GVTOP(Args[0]))); 530} 531 532// char *__strdup(const char *src); 533GenericValue lle_X___strdup(FunctionType *M, const vector<GenericValue> &Args) { 534 assert(Args.size() == 1); 535 return PTOGV(strdup((char*)GVTOP(Args[0]))); 536} 537 538// void *memset(void *S, int C, size_t N) 539GenericValue lle_X_memset(FunctionType *M, const vector<GenericValue> &Args) { 540 assert(Args.size() == 3); 541 size_t count = GV_to_size_t (Args[2]); 542 return PTOGV(memset(GVTOP(Args[0]), Args[1].IntVal, count)); 543} 544 545// void *memcpy(void *Dest, void *src, size_t Size); 546GenericValue lle_X_memcpy(FunctionType *M, const vector<GenericValue> &Args) { 547 assert(Args.size() == 3); 548 size_t count = GV_to_size_t (Args[2]); 549 return PTOGV(memcpy((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]), count)); 550} 551 552//===----------------------------------------------------------------------===// 553// IO Functions... 554//===----------------------------------------------------------------------===// 555 556// getFILE - Turn a pointer in the host address space into a legit pointer in 557// the interpreter address space. This is an identity transformation. 558#define getFILE(ptr) ((FILE*)ptr) 559 560// FILE *fopen(const char *filename, const char *mode); 561GenericValue lle_X_fopen(FunctionType *M, const vector<GenericValue> &Args) { 562 assert(Args.size() == 2); 563 return PTOGV(fopen((const char *)GVTOP(Args[0]), 564 (const char *)GVTOP(Args[1]))); 565} 566 567// int fclose(FILE *F); 568GenericValue lle_X_fclose(FunctionType *M, const vector<GenericValue> &Args) { 569 assert(Args.size() == 1); 570 GenericValue GV; 571 GV.IntVal = fclose(getFILE(GVTOP(Args[0]))); 572 return GV; 573} 574 575// int feof(FILE *stream); 576GenericValue lle_X_feof(FunctionType *M, const vector<GenericValue> &Args) { 577 assert(Args.size() == 1); 578 GenericValue GV; 579 580 GV.IntVal = feof(getFILE(GVTOP(Args[0]))); 581 return GV; 582} 583 584// size_t fread(void *ptr, size_t size, size_t nitems, FILE *stream); 585GenericValue lle_X_fread(FunctionType *M, const vector<GenericValue> &Args) { 586 assert(Args.size() == 4); 587 size_t result; 588 589 result = fread((void*)GVTOP(Args[0]), GV_to_size_t (Args[1]), 590 GV_to_size_t (Args[2]), getFILE(GVTOP(Args[3]))); 591 return size_t_to_GV (result); 592} 593 594// size_t fwrite(const void *ptr, size_t size, size_t nitems, FILE *stream); 595GenericValue lle_X_fwrite(FunctionType *M, const vector<GenericValue> &Args) { 596 assert(Args.size() == 4); 597 size_t result; 598 599 result = fwrite((void*)GVTOP(Args[0]), GV_to_size_t (Args[1]), 600 GV_to_size_t (Args[2]), getFILE(GVTOP(Args[3]))); 601 return size_t_to_GV (result); 602} 603 604// char *fgets(char *s, int n, FILE *stream); 605GenericValue lle_X_fgets(FunctionType *M, const vector<GenericValue> &Args) { 606 assert(Args.size() == 3); 607 return GVTOP(fgets((char*)GVTOP(Args[0]), Args[1].IntVal, 608 getFILE(GVTOP(Args[2])))); 609} 610 611// FILE *freopen(const char *path, const char *mode, FILE *stream); 612GenericValue lle_X_freopen(FunctionType *M, const vector<GenericValue> &Args) { 613 assert(Args.size() == 3); 614 return PTOGV(freopen((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]), 615 getFILE(GVTOP(Args[2])))); 616} 617 618// int fflush(FILE *stream); 619GenericValue lle_X_fflush(FunctionType *M, const vector<GenericValue> &Args) { 620 assert(Args.size() == 1); 621 GenericValue GV; 622 GV.IntVal = fflush(getFILE(GVTOP(Args[0]))); 623 return GV; 624} 625 626// int getc(FILE *stream); 627GenericValue lle_X_getc(FunctionType *M, const vector<GenericValue> &Args) { 628 assert(Args.size() == 1); 629 GenericValue GV; 630 GV.IntVal = getc(getFILE(GVTOP(Args[0]))); 631 return GV; 632} 633 634// int _IO_getc(FILE *stream); 635GenericValue lle_X__IO_getc(FunctionType *F, const vector<GenericValue> &Args) { 636 return lle_X_getc(F, Args); 637} 638 639// int fputc(int C, FILE *stream); 640GenericValue lle_X_fputc(FunctionType *M, const vector<GenericValue> &Args) { 641 assert(Args.size() == 2); 642 GenericValue GV; 643 GV.IntVal = fputc(Args[0].IntVal, getFILE(GVTOP(Args[1]))); 644 return GV; 645} 646 647// int ungetc(int C, FILE *stream); 648GenericValue lle_X_ungetc(FunctionType *M, const vector<GenericValue> &Args) { 649 assert(Args.size() == 2); 650 GenericValue GV; 651 GV.IntVal = ungetc(Args[0].IntVal, getFILE(GVTOP(Args[1]))); 652 return GV; 653} 654 655// int ferror (FILE *stream); 656GenericValue lle_X_ferror(FunctionType *M, const vector<GenericValue> &Args) { 657 assert(Args.size() == 1); 658 GenericValue GV; 659 GV.IntVal = ferror (getFILE(GVTOP(Args[0]))); 660 return GV; 661} 662 663// int fprintf(FILE *,sbyte *, ...) - a very rough implementation to make output 664// useful. 665GenericValue lle_X_fprintf(FunctionType *M, const vector<GenericValue> &Args) { 666 assert(Args.size() >= 2); 667 char Buffer[10000]; 668 vector<GenericValue> NewArgs; 669 NewArgs.push_back(PTOGV(Buffer)); 670 NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end()); 671 GenericValue GV = lle_X_sprintf(M, NewArgs); 672 673 fputs(Buffer, getFILE(GVTOP(Args[0]))); 674 return GV; 675} 676 677} // End extern "C" 678 679 680void Interpreter::initializeExternalFunctions() { 681 FuncNames["lle_Vb_putchar"] = lle_Vb_putchar; 682 FuncNames["lle_ii_putchar"] = lle_ii_putchar; 683 FuncNames["lle_VB_putchar"] = lle_VB_putchar; 684 FuncNames["lle_X_exit"] = lle_X_exit; 685 FuncNames["lle_X_abort"] = lle_X_abort; 686 FuncNames["lle_X_malloc"] = lle_X_malloc; 687 FuncNames["lle_X_calloc"] = lle_X_calloc; 688 FuncNames["lle_X_free"] = lle_X_free; 689 FuncNames["lle_X_atoi"] = lle_X_atoi; 690 FuncNames["lle_X_pow"] = lle_X_pow; 691 FuncNames["lle_X_exp"] = lle_X_exp; 692 FuncNames["lle_X_log"] = lle_X_log; 693 FuncNames["lle_X_floor"] = lle_X_floor; 694 FuncNames["lle_X_srand"] = lle_X_srand; 695 FuncNames["lle_X_rand"] = lle_X_rand; 696#ifdef HAVE_RAND48 697 FuncNames["lle_X_drand48"] = lle_X_drand48; 698 FuncNames["lle_X_srand48"] = lle_X_srand48; 699 FuncNames["lle_X_lrand48"] = lle_X_lrand48; 700#endif 701 FuncNames["lle_X_sqrt"] = lle_X_sqrt; 702 FuncNames["lle_X_puts"] = lle_X_puts; 703 FuncNames["lle_X_printf"] = lle_X_printf; 704 FuncNames["lle_X_sprintf"] = lle_X_sprintf; 705 FuncNames["lle_X_sscanf"] = lle_X_sscanf; 706 FuncNames["lle_X_scanf"] = lle_X_scanf; 707 FuncNames["lle_i_clock"] = lle_i_clock; 708 709 FuncNames["lle_X_strcmp"] = lle_X_strcmp; 710 FuncNames["lle_X_strcat"] = lle_X_strcat; 711 FuncNames["lle_X_strcpy"] = lle_X_strcpy; 712 FuncNames["lle_X_strlen"] = lle_X_strlen; 713 FuncNames["lle_X___strdup"] = lle_X___strdup; 714 FuncNames["lle_X_memset"] = lle_X_memset; 715 FuncNames["lle_X_memcpy"] = lle_X_memcpy; 716 717 FuncNames["lle_X_fopen"] = lle_X_fopen; 718 FuncNames["lle_X_fclose"] = lle_X_fclose; 719 FuncNames["lle_X_feof"] = lle_X_feof; 720 FuncNames["lle_X_fread"] = lle_X_fread; 721 FuncNames["lle_X_fwrite"] = lle_X_fwrite; 722 FuncNames["lle_X_fgets"] = lle_X_fgets; 723 FuncNames["lle_X_fflush"] = lle_X_fflush; 724 FuncNames["lle_X_fgetc"] = lle_X_getc; 725 FuncNames["lle_X_getc"] = lle_X_getc; 726 FuncNames["lle_X__IO_getc"] = lle_X__IO_getc; 727 FuncNames["lle_X_fputc"] = lle_X_fputc; 728 FuncNames["lle_X_ungetc"] = lle_X_ungetc; 729 FuncNames["lle_X_fprintf"] = lle_X_fprintf; 730 FuncNames["lle_X_freopen"] = lle_X_freopen; 731} 732 733