ExternalFunctions.cpp revision ded2b0d0fb0d4fa09198e3d05da529d2c97214c3
1//===-- ExternalFunctions.cpp - Implement External Functions --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file contains both code to deal with invoking "external" functions, but
11//  also contains code that implements "exported" external functions.
12//
13//  External functions in the interpreter are implemented by
14//  using the system's dynamic loader to look up the address of the function
15//  we want to invoke.  If a function is found, then one of the
16//  many lle_* wrapper functions in this file will translate its arguments from
17//  GenericValues to the types the function is actually expecting, before the
18//  function is called.
19//
20//===----------------------------------------------------------------------===//
21
22#include "Interpreter.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Module.h"
25#include "llvm/Support/Streams.h"
26#include "llvm/System/DynamicLibrary.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/Support/ManagedStatic.h"
29#include <csignal>
30#include <map>
31#include <cmath>
32
33#ifdef __linux__
34#include <cxxabi.h>
35#endif
36
37using std::vector;
38
39using namespace llvm;
40
41typedef GenericValue (*ExFunc)(FunctionType *, const vector<GenericValue> &);
42static ManagedStatic<std::map<const Function *, ExFunc> > Functions;
43static std::map<std::string, ExFunc> FuncNames;
44
45static Interpreter *TheInterpreter;
46
47static char getTypeID(const Type *Ty) {
48  switch (Ty->getTypeID()) {
49  case Type::VoidTyID:    return 'V';
50  case Type::IntegerTyID:
51    switch (cast<IntegerType>(Ty)->getBitWidth()) {
52      case 1:  return 'o';
53      case 8:  return 'B';
54      case 16: return 'S';
55      case 32: return 'I';
56      case 64: return 'L';
57      default: return 'N';
58    }
59  case Type::FloatTyID:   return 'F';
60  case Type::DoubleTyID:  return 'D';
61  case Type::PointerTyID: return 'P';
62  case Type::FunctionTyID:return 'M';
63  case Type::StructTyID:  return 'T';
64  case Type::ArrayTyID:   return 'A';
65  case Type::OpaqueTyID:  return 'O';
66  default: return 'U';
67  }
68}
69
70// Try to find address of external function given a Function object.
71// Please note, that interpreter doesn't know how to assemble a
72// real call in general case (this is JIT job), that's why it assumes,
73// that all external functions has the same (and pretty "general") signature.
74// The typical example of such functions are "lle_X_" ones.
75static ExFunc lookupFunction(const Function *F) {
76  // Function not found, look it up... start by figuring out what the
77  // composite function name should be.
78  std::string ExtName = "lle_";
79  const FunctionType *FT = F->getFunctionType();
80  for (unsigned i = 0, e = FT->getNumContainedTypes(); i != e; ++i)
81    ExtName += getTypeID(FT->getContainedType(i));
82  ExtName += "_" + F->getName();
83
84  ExFunc FnPtr = FuncNames[ExtName];
85  if (FnPtr == 0)
86    FnPtr = FuncNames["lle_X_"+F->getName()];
87  if (FnPtr == 0)  // Try calling a generic function... if it exists...
88    FnPtr = (ExFunc)(intptr_t)sys::DynamicLibrary::SearchForAddressOfSymbol(
89            ("lle_X_"+F->getName()).c_str());
90  if (FnPtr == 0)
91    FnPtr = (ExFunc)(intptr_t)
92      sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName());
93  if (FnPtr != 0)
94    Functions->insert(std::make_pair(F, FnPtr));  // Cache for later
95  return FnPtr;
96}
97
98GenericValue Interpreter::callExternalFunction(Function *F,
99                                     const std::vector<GenericValue> &ArgVals) {
100  TheInterpreter = this;
101
102  // Do a lookup to see if the function is in our cache... this should just be a
103  // deferred annotation!
104  std::map<const Function *, ExFunc>::iterator FI = Functions->find(F);
105  ExFunc Fn = (FI == Functions->end()) ? lookupFunction(F) : FI->second;
106  if (Fn == 0) {
107    cerr << "Tried to execute an unknown external function: "
108         << F->getType()->getDescription() << " " << F->getName() << "\n";
109    if (F->getName() == "__main")
110      return GenericValue();
111    abort();
112  }
113
114  // TODO: FIXME when types are not const!
115  GenericValue Result = Fn(const_cast<FunctionType*>(F->getFunctionType()),
116                           ArgVals);
117  return Result;
118}
119
120
121//===----------------------------------------------------------------------===//
122//  Functions "exported" to the running application...
123//
124extern "C" {  // Don't add C++ manglings to llvm mangling :)
125
126// void putchar(ubyte)
127GenericValue lle_X_putchar(FunctionType *FT, const vector<GenericValue> &Args){
128  cout << ((char)Args[0].IntVal.getZExtValue()) << std::flush;
129  return Args[0];
130}
131
132// void _IO_putc(int c, FILE* fp)
133GenericValue lle_X__IO_putc(FunctionType *FT, const vector<GenericValue> &Args){
134#ifdef __linux__
135  _IO_putc((char)Args[0].IntVal.getZExtValue(), (FILE*) Args[1].PointerVal);
136#else
137  assert(0 && "Can't call _IO_putc on this platform");
138#endif
139  return Args[0];
140}
141
142// void atexit(Function*)
143GenericValue lle_X_atexit(FunctionType *FT, const vector<GenericValue> &Args) {
144  assert(Args.size() == 1);
145  TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0]));
146  GenericValue GV;
147  GV.IntVal = 0;
148  return GV;
149}
150
151// void exit(int)
152GenericValue lle_X_exit(FunctionType *FT, const vector<GenericValue> &Args) {
153  TheInterpreter->exitCalled(Args[0]);
154  return GenericValue();
155}
156
157// void abort(void)
158GenericValue lle_X_abort(FunctionType *FT, const vector<GenericValue> &Args) {
159  raise (SIGABRT);
160  return GenericValue();
161}
162
163// void *malloc(uint)
164GenericValue lle_X_malloc(FunctionType *FT, const vector<GenericValue> &Args) {
165  assert(Args.size() == 1 && "Malloc expects one argument!");
166  assert(isa<PointerType>(FT->getReturnType()) && "malloc must return pointer");
167  return PTOGV(malloc(Args[0].IntVal.getZExtValue()));
168}
169
170// void *calloc(uint, uint)
171GenericValue lle_X_calloc(FunctionType *FT, const vector<GenericValue> &Args) {
172  assert(Args.size() == 2 && "calloc expects two arguments!");
173  assert(isa<PointerType>(FT->getReturnType()) && "calloc must return pointer");
174  return PTOGV(calloc(Args[0].IntVal.getZExtValue(),
175                      Args[1].IntVal.getZExtValue()));
176}
177
178// void *calloc(uint, uint)
179GenericValue lle_X_realloc(FunctionType *FT, const vector<GenericValue> &Args) {
180  assert(Args.size() == 2 && "calloc expects two arguments!");
181  assert(isa<PointerType>(FT->getReturnType()) &&"realloc must return pointer");
182  return PTOGV(realloc(GVTOP(Args[0]), Args[1].IntVal.getZExtValue()));
183}
184
185// void free(void *)
186GenericValue lle_X_free(FunctionType *FT, const vector<GenericValue> &Args) {
187  assert(Args.size() == 1);
188  free(GVTOP(Args[0]));
189  return GenericValue();
190}
191
192// int atoi(char *)
193GenericValue lle_X_atoi(FunctionType *FT, const vector<GenericValue> &Args) {
194  assert(Args.size() == 1);
195  GenericValue GV;
196  GV.IntVal = APInt(32, atoi((char*)GVTOP(Args[0])));
197  return GV;
198}
199
200// double pow(double, double)
201GenericValue lle_X_pow(FunctionType *FT, const vector<GenericValue> &Args) {
202  assert(Args.size() == 2);
203  GenericValue GV;
204  GV.DoubleVal = pow(Args[0].DoubleVal, Args[1].DoubleVal);
205  return GV;
206}
207
208// double sin(double)
209GenericValue lle_X_sin(FunctionType *FT, const vector<GenericValue> &Args) {
210  assert(Args.size() == 1);
211  GenericValue GV;
212  GV.DoubleVal = sin(Args[0].DoubleVal);
213  return GV;
214}
215
216// double cos(double)
217GenericValue lle_X_cos(FunctionType *FT, const vector<GenericValue> &Args) {
218  assert(Args.size() == 1);
219  GenericValue GV;
220  GV.DoubleVal = cos(Args[0].DoubleVal);
221  return GV;
222}
223
224// double exp(double)
225GenericValue lle_X_exp(FunctionType *FT, const vector<GenericValue> &Args) {
226  assert(Args.size() == 1);
227  GenericValue GV;
228  GV.DoubleVal = exp(Args[0].DoubleVal);
229  return GV;
230}
231
232// double sqrt(double)
233GenericValue lle_X_sqrt(FunctionType *FT, const vector<GenericValue> &Args) {
234  assert(Args.size() == 1);
235  GenericValue GV;
236  GV.DoubleVal = sqrt(Args[0].DoubleVal);
237  return GV;
238}
239
240// double log(double)
241GenericValue lle_X_log(FunctionType *FT, const vector<GenericValue> &Args) {
242  assert(Args.size() == 1);
243  GenericValue GV;
244  GV.DoubleVal = log(Args[0].DoubleVal);
245  return GV;
246}
247
248// double floor(double)
249GenericValue lle_X_floor(FunctionType *FT, const vector<GenericValue> &Args) {
250  assert(Args.size() == 1);
251  GenericValue GV;
252  GV.DoubleVal = floor(Args[0].DoubleVal);
253  return GV;
254}
255
256#ifdef HAVE_RAND48
257
258// double drand48()
259GenericValue lle_X_drand48(FunctionType *FT, const vector<GenericValue> &Args) {
260  assert(Args.size() == 0);
261  GenericValue GV;
262  GV.DoubleVal = drand48();
263  return GV;
264}
265
266// long lrand48()
267GenericValue lle_X_lrand48(FunctionType *FT, const vector<GenericValue> &Args) {
268  assert(Args.size() == 0);
269  GenericValue GV;
270  GV.IntVal = APInt(32, lrand48());
271  return GV;
272}
273
274// void srand48(long)
275GenericValue lle_X_srand48(FunctionType *FT, const vector<GenericValue> &Args) {
276  assert(Args.size() == 1);
277  srand48(Args[0].IntVal.getZExtValue());
278  return GenericValue();
279}
280
281#endif
282
283// int rand()
284GenericValue lle_X_rand(FunctionType *FT, const vector<GenericValue> &Args) {
285  assert(Args.size() == 0);
286  GenericValue GV;
287  GV.IntVal = APInt(32, rand());
288  return GV;
289}
290
291// void srand(uint)
292GenericValue lle_X_srand(FunctionType *FT, const vector<GenericValue> &Args) {
293  assert(Args.size() == 1);
294  srand(Args[0].IntVal.getZExtValue());
295  return GenericValue();
296}
297
298// int puts(const char*)
299GenericValue lle_X_puts(FunctionType *FT, const vector<GenericValue> &Args) {
300  assert(Args.size() == 1);
301  GenericValue GV;
302  GV.IntVal = APInt(32, puts((char*)GVTOP(Args[0])));
303  return GV;
304}
305
306// int sprintf(sbyte *, sbyte *, ...) - a very rough implementation to make
307// output useful.
308GenericValue lle_X_sprintf(FunctionType *FT, const vector<GenericValue> &Args) {
309  char *OutputBuffer = (char *)GVTOP(Args[0]);
310  const char *FmtStr = (const char *)GVTOP(Args[1]);
311  unsigned ArgNo = 2;
312
313  // printf should return # chars printed.  This is completely incorrect, but
314  // close enough for now.
315  GenericValue GV;
316  GV.IntVal = APInt(32, strlen(FmtStr));
317  while (1) {
318    switch (*FmtStr) {
319    case 0: return GV;             // Null terminator...
320    default:                       // Normal nonspecial character
321      sprintf(OutputBuffer++, "%c", *FmtStr++);
322      break;
323    case '\\': {                   // Handle escape codes
324      sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1));
325      FmtStr += 2; OutputBuffer += 2;
326      break;
327    }
328    case '%': {                    // Handle format specifiers
329      char FmtBuf[100] = "", Buffer[1000] = "";
330      char *FB = FmtBuf;
331      *FB++ = *FmtStr++;
332      char Last = *FB++ = *FmtStr++;
333      unsigned HowLong = 0;
334      while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' &&
335             Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' &&
336             Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' &&
337             Last != 'p' && Last != 's' && Last != '%') {
338        if (Last == 'l' || Last == 'L') HowLong++;  // Keep track of l's
339        Last = *FB++ = *FmtStr++;
340      }
341      *FB = 0;
342
343      switch (Last) {
344      case '%':
345        sprintf(Buffer, FmtBuf); break;
346      case 'c':
347        sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
348        break;
349      case 'd': case 'i':
350      case 'u': case 'o':
351      case 'x': case 'X':
352        if (HowLong >= 1) {
353          if (HowLong == 1 &&
354              TheInterpreter->getTargetData()->getPointerSizeInBits() == 64 &&
355              sizeof(long) < sizeof(int64_t)) {
356            // Make sure we use %lld with a 64 bit argument because we might be
357            // compiling LLI on a 32 bit compiler.
358            unsigned Size = strlen(FmtBuf);
359            FmtBuf[Size] = FmtBuf[Size-1];
360            FmtBuf[Size+1] = 0;
361            FmtBuf[Size-1] = 'l';
362          }
363          sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue());
364        } else
365          sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
366        break;
367      case 'e': case 'E': case 'g': case 'G': case 'f':
368        sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break;
369      case 'p':
370        sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break;
371      case 's':
372        sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break;
373      default:  cerr << "<unknown printf code '" << *FmtStr << "'!>";
374        ArgNo++; break;
375      }
376      strcpy(OutputBuffer, Buffer);
377      OutputBuffer += strlen(Buffer);
378      }
379      break;
380    }
381  }
382  return GV;
383}
384
385// int printf(sbyte *, ...) - a very rough implementation to make output useful.
386GenericValue lle_X_printf(FunctionType *FT, const vector<GenericValue> &Args) {
387  char Buffer[10000];
388  vector<GenericValue> NewArgs;
389  NewArgs.push_back(PTOGV((void*)&Buffer[0]));
390  NewArgs.insert(NewArgs.end(), Args.begin(), Args.end());
391  GenericValue GV = lle_X_sprintf(FT, NewArgs);
392  cout << Buffer;
393  return GV;
394}
395
396static void ByteswapSCANFResults(const char *Fmt, void *Arg0, void *Arg1,
397                                 void *Arg2, void *Arg3, void *Arg4, void *Arg5,
398                                 void *Arg6, void *Arg7, void *Arg8) {
399  void *Args[] = { Arg0, Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, 0 };
400
401  // Loop over the format string, munging read values as appropriate (performs
402  // byteswaps as necessary).
403  unsigned ArgNo = 0;
404  while (*Fmt) {
405    if (*Fmt++ == '%') {
406      // Read any flag characters that may be present...
407      bool Suppress = false;
408      bool Half = false;
409      bool Long = false;
410      bool LongLong = false;  // long long or long double
411
412      while (1) {
413        switch (*Fmt++) {
414        case '*': Suppress = true; break;
415        case 'a': /*Allocate = true;*/ break;  // We don't need to track this
416        case 'h': Half = true; break;
417        case 'l': Long = true; break;
418        case 'q':
419        case 'L': LongLong = true; break;
420        default:
421          if (Fmt[-1] > '9' || Fmt[-1] < '0')   // Ignore field width specs
422            goto Out;
423        }
424      }
425    Out:
426
427      // Read the conversion character
428      if (!Suppress && Fmt[-1] != '%') { // Nothing to do?
429        unsigned Size = 0;
430        const Type *Ty = 0;
431
432        switch (Fmt[-1]) {
433        case 'i': case 'o': case 'u': case 'x': case 'X': case 'n': case 'p':
434        case 'd':
435          if (Long || LongLong) {
436            Size = 8; Ty = Type::Int64Ty;
437          } else if (Half) {
438            Size = 4; Ty = Type::Int16Ty;
439          } else {
440            Size = 4; Ty = Type::Int32Ty;
441          }
442          break;
443
444        case 'e': case 'g': case 'E':
445        case 'f':
446          if (Long || LongLong) {
447            Size = 8; Ty = Type::DoubleTy;
448          } else {
449            Size = 4; Ty = Type::FloatTy;
450          }
451          break;
452
453        case 's': case 'c': case '[':  // No byteswap needed
454          Size = 1;
455          Ty = Type::Int8Ty;
456          break;
457
458        default: break;
459        }
460
461        if (Size) {
462          GenericValue GV;
463          void *Arg = Args[ArgNo++];
464          memcpy(&GV, Arg, Size);
465          TheInterpreter->StoreValueToMemory(GV, (GenericValue*)Arg, Ty);
466        }
467      }
468    }
469  }
470}
471
472// int sscanf(const char *format, ...);
473GenericValue lle_X_sscanf(FunctionType *FT, const vector<GenericValue> &args) {
474  assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!");
475
476  char *Args[10];
477  for (unsigned i = 0; i < args.size(); ++i)
478    Args[i] = (char*)GVTOP(args[i]);
479
480  GenericValue GV;
481  GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4],
482                        Args[5], Args[6], Args[7], Args[8], Args[9]));
483  ByteswapSCANFResults(Args[1], Args[2], Args[3], Args[4],
484                       Args[5], Args[6], Args[7], Args[8], Args[9], 0);
485  return GV;
486}
487
488// int scanf(const char *format, ...);
489GenericValue lle_X_scanf(FunctionType *FT, const vector<GenericValue> &args) {
490  assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!");
491
492  char *Args[10];
493  for (unsigned i = 0; i < args.size(); ++i)
494    Args[i] = (char*)GVTOP(args[i]);
495
496  GenericValue GV;
497  GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4],
498                        Args[5], Args[6], Args[7], Args[8], Args[9]));
499  ByteswapSCANFResults(Args[0], Args[1], Args[2], Args[3], Args[4],
500                       Args[5], Args[6], Args[7], Args[8], Args[9]);
501  return GV;
502}
503
504
505// int clock(void) - Profiling implementation
506GenericValue lle_i_clock(FunctionType *FT, const vector<GenericValue> &Args) {
507  extern unsigned int clock(void);
508  GenericValue GV;
509  GV.IntVal = APInt(32, clock());
510  return GV;
511}
512
513
514//===----------------------------------------------------------------------===//
515// String Functions...
516//===----------------------------------------------------------------------===//
517
518// int strcmp(const char *S1, const char *S2);
519GenericValue lle_X_strcmp(FunctionType *FT, const vector<GenericValue> &Args) {
520  assert(Args.size() == 2);
521  GenericValue Ret;
522  Ret.IntVal = APInt(32, strcmp((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1])));
523  return Ret;
524}
525
526// char *strcat(char *Dest, const char *src);
527GenericValue lle_X_strcat(FunctionType *FT, const vector<GenericValue> &Args) {
528  assert(Args.size() == 2);
529  assert(isa<PointerType>(FT->getReturnType()) &&"strcat must return pointer");
530  return PTOGV(strcat((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1])));
531}
532
533// char *strcpy(char *Dest, const char *src);
534GenericValue lle_X_strcpy(FunctionType *FT, const vector<GenericValue> &Args) {
535  assert(Args.size() == 2);
536  assert(isa<PointerType>(FT->getReturnType()) &&"strcpy must return pointer");
537  return PTOGV(strcpy((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1])));
538}
539
540static GenericValue size_t_to_GV (size_t n) {
541  GenericValue Ret;
542  if (sizeof (size_t) == sizeof (uint64_t)) {
543    Ret.IntVal = APInt(64, n);
544  } else {
545    assert (sizeof (size_t) == sizeof (unsigned int));
546    Ret.IntVal = APInt(32, n);
547  }
548  return Ret;
549}
550
551static size_t GV_to_size_t (GenericValue GV) {
552  size_t count;
553  if (sizeof (size_t) == sizeof (uint64_t)) {
554    count = (size_t)GV.IntVal.getZExtValue();
555  } else {
556    assert (sizeof (size_t) == sizeof (unsigned int));
557    count = (size_t)GV.IntVal.getZExtValue();
558  }
559  return count;
560}
561
562// size_t strlen(const char *src);
563GenericValue lle_X_strlen(FunctionType *FT, const vector<GenericValue> &Args) {
564  assert(Args.size() == 1);
565  size_t strlenResult = strlen ((char *) GVTOP (Args[0]));
566  return size_t_to_GV (strlenResult);
567}
568
569// char *strdup(const char *src);
570GenericValue lle_X_strdup(FunctionType *FT, const vector<GenericValue> &Args) {
571  assert(Args.size() == 1);
572  assert(isa<PointerType>(FT->getReturnType()) && "strdup must return pointer");
573  return PTOGV(strdup((char*)GVTOP(Args[0])));
574}
575
576// char *__strdup(const char *src);
577GenericValue lle_X___strdup(FunctionType *FT, const vector<GenericValue> &Args) {
578  assert(Args.size() == 1);
579  assert(isa<PointerType>(FT->getReturnType()) &&"_strdup must return pointer");
580  return PTOGV(strdup((char*)GVTOP(Args[0])));
581}
582
583// void *memset(void *S, int C, size_t N)
584GenericValue lle_X_memset(FunctionType *FT, const vector<GenericValue> &Args) {
585  assert(Args.size() == 3);
586  size_t count = GV_to_size_t (Args[2]);
587  assert(isa<PointerType>(FT->getReturnType()) && "memset must return pointer");
588  return PTOGV(memset(GVTOP(Args[0]), uint32_t(Args[1].IntVal.getZExtValue()),
589                      count));
590}
591
592// void *memcpy(void *Dest, void *src, size_t Size);
593GenericValue lle_X_memcpy(FunctionType *FT, const vector<GenericValue> &Args) {
594  assert(Args.size() == 3);
595  assert(isa<PointerType>(FT->getReturnType()) && "memcpy must return pointer");
596  size_t count = GV_to_size_t (Args[2]);
597  return PTOGV(memcpy((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]), count));
598}
599
600//===----------------------------------------------------------------------===//
601// IO Functions...
602//===----------------------------------------------------------------------===//
603
604// getFILE - Turn a pointer in the host address space into a legit pointer in
605// the interpreter address space.  This is an identity transformation.
606#define getFILE(ptr) ((FILE*)ptr)
607
608// FILE *fopen(const char *filename, const char *mode);
609GenericValue lle_X_fopen(FunctionType *FT, const vector<GenericValue> &Args) {
610  assert(Args.size() == 2);
611  assert(isa<PointerType>(FT->getReturnType()) && "fopen must return pointer");
612  return PTOGV(fopen((const char *)GVTOP(Args[0]),
613                     (const char *)GVTOP(Args[1])));
614}
615
616// int fclose(FILE *F);
617GenericValue lle_X_fclose(FunctionType *FT, const vector<GenericValue> &Args) {
618  assert(Args.size() == 1);
619  GenericValue GV;
620  GV.IntVal = APInt(32, fclose(getFILE(GVTOP(Args[0]))));
621  return GV;
622}
623
624// int feof(FILE *stream);
625GenericValue lle_X_feof(FunctionType *FT, const vector<GenericValue> &Args) {
626  assert(Args.size() == 1);
627  GenericValue GV;
628
629  GV.IntVal = APInt(32, feof(getFILE(GVTOP(Args[0]))));
630  return GV;
631}
632
633// size_t fread(void *ptr, size_t size, size_t nitems, FILE *stream);
634GenericValue lle_X_fread(FunctionType *FT, const vector<GenericValue> &Args) {
635  assert(Args.size() == 4);
636  size_t result;
637
638  result = fread((void*)GVTOP(Args[0]), GV_to_size_t (Args[1]),
639                 GV_to_size_t (Args[2]), getFILE(GVTOP(Args[3])));
640  return size_t_to_GV (result);
641}
642
643// size_t fwrite(const void *ptr, size_t size, size_t nitems, FILE *stream);
644GenericValue lle_X_fwrite(FunctionType *FT, const vector<GenericValue> &Args) {
645  assert(Args.size() == 4);
646  size_t result;
647
648  result = fwrite((void*)GVTOP(Args[0]), GV_to_size_t (Args[1]),
649                  GV_to_size_t (Args[2]), getFILE(GVTOP(Args[3])));
650  return size_t_to_GV (result);
651}
652
653// char *fgets(char *s, int n, FILE *stream);
654GenericValue lle_X_fgets(FunctionType *FT, const vector<GenericValue> &Args) {
655  assert(Args.size() == 3);
656  return PTOGV(fgets((char*)GVTOP(Args[0]), Args[1].IntVal.getZExtValue(),
657                     getFILE(GVTOP(Args[2]))));
658}
659
660// FILE *freopen(const char *path, const char *mode, FILE *stream);
661GenericValue lle_X_freopen(FunctionType *FT, const vector<GenericValue> &Args) {
662  assert(Args.size() == 3);
663  assert(isa<PointerType>(FT->getReturnType()) &&"freopen must return pointer");
664  return PTOGV(freopen((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]),
665                       getFILE(GVTOP(Args[2]))));
666}
667
668// int fflush(FILE *stream);
669GenericValue lle_X_fflush(FunctionType *FT, const vector<GenericValue> &Args) {
670  assert(Args.size() == 1);
671  GenericValue GV;
672  GV.IntVal = APInt(32, fflush(getFILE(GVTOP(Args[0]))));
673  return GV;
674}
675
676// int getc(FILE *stream);
677GenericValue lle_X_getc(FunctionType *FT, const vector<GenericValue> &Args) {
678  assert(Args.size() == 1);
679  GenericValue GV;
680  GV.IntVal = APInt(32, getc(getFILE(GVTOP(Args[0]))));
681  return GV;
682}
683
684// int _IO_getc(FILE *stream);
685GenericValue lle_X__IO_getc(FunctionType *F, const vector<GenericValue> &Args) {
686  return lle_X_getc(F, Args);
687}
688
689// int fputc(int C, FILE *stream);
690GenericValue lle_X_fputc(FunctionType *FT, const vector<GenericValue> &Args) {
691  assert(Args.size() == 2);
692  GenericValue GV;
693  GV.IntVal = APInt(32, fputc(Args[0].IntVal.getZExtValue(),
694                              getFILE(GVTOP(Args[1]))));
695  return GV;
696}
697
698// int ungetc(int C, FILE *stream);
699GenericValue lle_X_ungetc(FunctionType *FT, const vector<GenericValue> &Args) {
700  assert(Args.size() == 2);
701  GenericValue GV;
702  GV.IntVal = APInt(32, ungetc(Args[0].IntVal.getZExtValue(),
703                               getFILE(GVTOP(Args[1]))));
704  return GV;
705}
706
707// int ferror (FILE *stream);
708GenericValue lle_X_ferror(FunctionType *FT, const vector<GenericValue> &Args) {
709  assert(Args.size() == 1);
710  GenericValue GV;
711  GV.IntVal = APInt(32, ferror (getFILE(GVTOP(Args[0]))));
712  return GV;
713}
714
715// int fprintf(FILE *,sbyte *, ...) - a very rough implementation to make output
716// useful.
717GenericValue lle_X_fprintf(FunctionType *FT, const vector<GenericValue> &Args) {
718  assert(Args.size() >= 2);
719  char Buffer[10000];
720  vector<GenericValue> NewArgs;
721  NewArgs.push_back(PTOGV(Buffer));
722  NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end());
723  GenericValue GV = lle_X_sprintf(FT, NewArgs);
724
725  fputs(Buffer, getFILE(GVTOP(Args[0])));
726  return GV;
727}
728
729// int __cxa_guard_acquire (__guard *g);
730GenericValue lle_X___cxa_guard_acquire(FunctionType *FT,
731                                       const vector<GenericValue> &Args) {
732  assert(Args.size() == 1);
733  GenericValue GV;
734#ifdef __linux__
735  GV.IntVal = APInt(32, __cxxabiv1::__cxa_guard_acquire (
736                          (__cxxabiv1::__guard*)GVTOP(Args[0])));
737#else
738  assert(0 && "Can't call __cxa_guard_acquire on this platform");
739#endif
740  return GV;
741}
742
743// void __cxa_guard_release (__guard *g);
744GenericValue lle_X___cxa_guard_release(FunctionType *FT,
745                                       const vector<GenericValue> &Args) {
746  assert(Args.size() == 1);
747#ifdef __linux__
748  __cxxabiv1::__cxa_guard_release ((__cxxabiv1::__guard*)GVTOP(Args[0]));
749#else
750  assert(0 && "Can't call __cxa_guard_release on this platform");
751#endif
752  return GenericValue();
753}
754
755} // End extern "C"
756
757
758void Interpreter::initializeExternalFunctions() {
759  FuncNames["lle_X_putchar"]      = lle_X_putchar;
760  FuncNames["lle_X__IO_putc"]     = lle_X__IO_putc;
761  FuncNames["lle_X_exit"]         = lle_X_exit;
762  FuncNames["lle_X_abort"]        = lle_X_abort;
763  FuncNames["lle_X_malloc"]       = lle_X_malloc;
764  FuncNames["lle_X_calloc"]       = lle_X_calloc;
765  FuncNames["lle_X_realloc"]      = lle_X_realloc;
766  FuncNames["lle_X_free"]         = lle_X_free;
767  FuncNames["lle_X_atoi"]         = lle_X_atoi;
768  FuncNames["lle_X_pow"]          = lle_X_pow;
769  FuncNames["lle_X_sin"]          = lle_X_sin;
770  FuncNames["lle_X_cos"]          = lle_X_cos;
771  FuncNames["lle_X_exp"]          = lle_X_exp;
772  FuncNames["lle_X_log"]          = lle_X_log;
773  FuncNames["lle_X_floor"]        = lle_X_floor;
774  FuncNames["lle_X_srand"]        = lle_X_srand;
775  FuncNames["lle_X_rand"]         = lle_X_rand;
776#ifdef HAVE_RAND48
777  FuncNames["lle_X_drand48"]      = lle_X_drand48;
778  FuncNames["lle_X_srand48"]      = lle_X_srand48;
779  FuncNames["lle_X_lrand48"]      = lle_X_lrand48;
780#endif
781  FuncNames["lle_X_sqrt"]         = lle_X_sqrt;
782  FuncNames["lle_X_puts"]         = lle_X_puts;
783  FuncNames["lle_X_printf"]       = lle_X_printf;
784  FuncNames["lle_X_sprintf"]      = lle_X_sprintf;
785  FuncNames["lle_X_sscanf"]       = lle_X_sscanf;
786  FuncNames["lle_X_scanf"]        = lle_X_scanf;
787  FuncNames["lle_i_clock"]        = lle_i_clock;
788
789  FuncNames["lle_X_strcmp"]       = lle_X_strcmp;
790  FuncNames["lle_X_strcat"]       = lle_X_strcat;
791  FuncNames["lle_X_strcpy"]       = lle_X_strcpy;
792  FuncNames["lle_X_strlen"]       = lle_X_strlen;
793  FuncNames["lle_X___strdup"]     = lle_X___strdup;
794  FuncNames["lle_X_memset"]       = lle_X_memset;
795  FuncNames["lle_X_memcpy"]       = lle_X_memcpy;
796
797  FuncNames["lle_X_fopen"]        = lle_X_fopen;
798  FuncNames["lle_X_fclose"]       = lle_X_fclose;
799  FuncNames["lle_X_feof"]         = lle_X_feof;
800  FuncNames["lle_X_fread"]        = lle_X_fread;
801  FuncNames["lle_X_fwrite"]       = lle_X_fwrite;
802  FuncNames["lle_X_fgets"]        = lle_X_fgets;
803  FuncNames["lle_X_fflush"]       = lle_X_fflush;
804  FuncNames["lle_X_fgetc"]        = lle_X_getc;
805  FuncNames["lle_X_getc"]         = lle_X_getc;
806  FuncNames["lle_X__IO_getc"]     = lle_X__IO_getc;
807  FuncNames["lle_X_fputc"]        = lle_X_fputc;
808  FuncNames["lle_X_ungetc"]       = lle_X_ungetc;
809  FuncNames["lle_X_fprintf"]      = lle_X_fprintf;
810  FuncNames["lle_X_freopen"]      = lle_X_freopen;
811
812  FuncNames["lle_X___cxa_guard_acquire"] = lle_X___cxa_guard_acquire;
813  FuncNames["lle_X____cxa_guard_release"] = lle_X___cxa_guard_release;
814}
815
816