ExternalFunctions.cpp revision e4a5743d87bb5b389c4505c51714364062704a7b
1//===-- ExternalFunctions.cpp - Implement External Functions --------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains both code to deal with invoking "external" functions, but 11// also contains code that implements "exported" external functions. 12// 13// There are currently two mechanisms for handling external functions in the 14// Interpreter. The first is to implement lle_* wrapper functions that are 15// specific to well-known library functions which manually translate the 16// arguments from GenericValues and make the call. If such a wrapper does 17// not exist, and libffi is available, then the Interpreter will attempt to 18// invoke the function using libffi, after finding its address. 19// 20//===----------------------------------------------------------------------===// 21 22#include "Interpreter.h" 23#include "llvm/DerivedTypes.h" 24#include "llvm/Module.h" 25#include "llvm/Config/config.h" // Detect libffi 26#include "llvm/Support/ErrorHandling.h" 27#include "llvm/System/DynamicLibrary.h" 28#include "llvm/Target/TargetData.h" 29#include "llvm/Support/ManagedStatic.h" 30#include "llvm/System/Mutex.h" 31#include <csignal> 32#include <cstdio> 33#include <map> 34#include <cmath> 35#include <cstring> 36// Some platforms may need malloc.h for alloca. 37#ifdef HAVE_MALLOC_H 38#include <malloc.h> 39#endif 40 41#ifdef HAVE_FFI_CALL 42#ifdef HAVE_FFI_H 43#include <ffi.h> 44#define USE_LIBFFI 45#elif HAVE_FFI_FFI_H 46#include <ffi/ffi.h> 47#define USE_LIBFFI 48#endif 49#endif 50 51using namespace llvm; 52 53static ManagedStatic<sys::Mutex> FunctionsLock; 54 55typedef GenericValue (*ExFunc)(const FunctionType *, 56 const std::vector<GenericValue> &); 57static ManagedStatic<std::map<const Function *, ExFunc> > ExportedFunctions; 58static std::map<std::string, ExFunc> FuncNames; 59 60#ifdef USE_LIBFFI 61typedef void (*RawFunc)(); 62static ManagedStatic<std::map<const Function *, RawFunc> > RawFunctions; 63#endif 64 65static Interpreter *TheInterpreter; 66 67static char getTypeID(const Type *Ty) { 68 switch (Ty->getTypeID()) { 69 case Type::VoidTyID: return 'V'; 70 case Type::IntegerTyID: 71 switch (cast<IntegerType>(Ty)->getBitWidth()) { 72 case 1: return 'o'; 73 case 8: return 'B'; 74 case 16: return 'S'; 75 case 32: return 'I'; 76 case 64: return 'L'; 77 default: return 'N'; 78 } 79 case Type::FloatTyID: return 'F'; 80 case Type::DoubleTyID: return 'D'; 81 case Type::PointerTyID: return 'P'; 82 case Type::FunctionTyID:return 'M'; 83 case Type::StructTyID: return 'T'; 84 case Type::ArrayTyID: return 'A'; 85 case Type::OpaqueTyID: return 'O'; 86 default: return 'U'; 87 } 88} 89 90// Try to find address of external function given a Function object. 91// Please note, that interpreter doesn't know how to assemble a 92// real call in general case (this is JIT job), that's why it assumes, 93// that all external functions has the same (and pretty "general") signature. 94// The typical example of such functions are "lle_X_" ones. 95static ExFunc lookupFunction(const Function *F) { 96 // Function not found, look it up... start by figuring out what the 97 // composite function name should be. 98 std::string ExtName = "lle_"; 99 const FunctionType *FT = F->getFunctionType(); 100 for (unsigned i = 0, e = FT->getNumContainedTypes(); i != e; ++i) 101 ExtName += getTypeID(FT->getContainedType(i)); 102 ExtName + "_" + F->getNameStr(); 103 104 sys::ScopedLock Writer(*FunctionsLock); 105 ExFunc FnPtr = FuncNames[ExtName]; 106 if (FnPtr == 0) 107 FnPtr = FuncNames["lle_X_" + F->getNameStr()]; 108 if (FnPtr == 0) // Try calling a generic function... if it exists... 109 FnPtr = (ExFunc)(intptr_t) 110 sys::DynamicLibrary::SearchForAddressOfSymbol("lle_X_"+F->getNameStr()); 111 if (FnPtr != 0) 112 ExportedFunctions->insert(std::make_pair(F, FnPtr)); // Cache for later 113 return FnPtr; 114} 115 116#ifdef USE_LIBFFI 117static ffi_type *ffiTypeFor(const Type *Ty) { 118 switch (Ty->getTypeID()) { 119 case Type::VoidTyID: return &ffi_type_void; 120 case Type::IntegerTyID: 121 switch (cast<IntegerType>(Ty)->getBitWidth()) { 122 case 8: return &ffi_type_sint8; 123 case 16: return &ffi_type_sint16; 124 case 32: return &ffi_type_sint32; 125 case 64: return &ffi_type_sint64; 126 } 127 case Type::FloatTyID: return &ffi_type_float; 128 case Type::DoubleTyID: return &ffi_type_double; 129 case Type::PointerTyID: return &ffi_type_pointer; 130 default: break; 131 } 132 // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc. 133 llvm_report_error("Type could not be mapped for use with libffi."); 134 return NULL; 135} 136 137static void *ffiValueFor(const Type *Ty, const GenericValue &AV, 138 void *ArgDataPtr) { 139 switch (Ty->getTypeID()) { 140 case Type::IntegerTyID: 141 switch (cast<IntegerType>(Ty)->getBitWidth()) { 142 case 8: { 143 int8_t *I8Ptr = (int8_t *) ArgDataPtr; 144 *I8Ptr = (int8_t) AV.IntVal.getZExtValue(); 145 return ArgDataPtr; 146 } 147 case 16: { 148 int16_t *I16Ptr = (int16_t *) ArgDataPtr; 149 *I16Ptr = (int16_t) AV.IntVal.getZExtValue(); 150 return ArgDataPtr; 151 } 152 case 32: { 153 int32_t *I32Ptr = (int32_t *) ArgDataPtr; 154 *I32Ptr = (int32_t) AV.IntVal.getZExtValue(); 155 return ArgDataPtr; 156 } 157 case 64: { 158 int64_t *I64Ptr = (int64_t *) ArgDataPtr; 159 *I64Ptr = (int64_t) AV.IntVal.getZExtValue(); 160 return ArgDataPtr; 161 } 162 } 163 case Type::FloatTyID: { 164 float *FloatPtr = (float *) ArgDataPtr; 165 *FloatPtr = AV.DoubleVal; 166 return ArgDataPtr; 167 } 168 case Type::DoubleTyID: { 169 double *DoublePtr = (double *) ArgDataPtr; 170 *DoublePtr = AV.DoubleVal; 171 return ArgDataPtr; 172 } 173 case Type::PointerTyID: { 174 void **PtrPtr = (void **) ArgDataPtr; 175 *PtrPtr = GVTOP(AV); 176 return ArgDataPtr; 177 } 178 default: break; 179 } 180 // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc. 181 llvm_report_error("Type value could not be mapped for use with libffi."); 182 return NULL; 183} 184 185static bool ffiInvoke(RawFunc Fn, Function *F, 186 const std::vector<GenericValue> &ArgVals, 187 const TargetData *TD, GenericValue &Result) { 188 ffi_cif cif; 189 const FunctionType *FTy = F->getFunctionType(); 190 const unsigned NumArgs = F->arg_size(); 191 192 // TODO: We don't have type information about the remaining arguments, because 193 // this information is never passed into ExecutionEngine::runFunction(). 194 if (ArgVals.size() > NumArgs && F->isVarArg()) { 195 llvm_report_error("Calling external var arg function '" + F->getName() 196 + "' is not supported by the Interpreter."); 197 } 198 199 unsigned ArgBytes = 0; 200 201 std::vector<ffi_type*> args(NumArgs); 202 for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end(); 203 A != E; ++A) { 204 const unsigned ArgNo = A->getArgNo(); 205 const Type *ArgTy = FTy->getParamType(ArgNo); 206 args[ArgNo] = ffiTypeFor(ArgTy); 207 ArgBytes += TD->getTypeStoreSize(ArgTy); 208 } 209 210 uint8_t *ArgData = (uint8_t*) alloca(ArgBytes); 211 uint8_t *ArgDataPtr = ArgData; 212 std::vector<void*> values(NumArgs); 213 for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end(); 214 A != E; ++A) { 215 const unsigned ArgNo = A->getArgNo(); 216 const Type *ArgTy = FTy->getParamType(ArgNo); 217 values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr); 218 ArgDataPtr += TD->getTypeStoreSize(ArgTy); 219 } 220 221 const Type *RetTy = FTy->getReturnType(); 222 ffi_type *rtype = ffiTypeFor(RetTy); 223 224 if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, &args[0]) == FFI_OK) { 225 void *ret = NULL; 226 if (RetTy->getTypeID() != Type::VoidTyID) 227 ret = alloca(TD->getTypeStoreSize(RetTy)); 228 ffi_call(&cif, Fn, ret, &values[0]); 229 switch (RetTy->getTypeID()) { 230 case Type::IntegerTyID: 231 switch (cast<IntegerType>(RetTy)->getBitWidth()) { 232 case 8: Result.IntVal = APInt(8 , *(int8_t *) ret); break; 233 case 16: Result.IntVal = APInt(16, *(int16_t*) ret); break; 234 case 32: Result.IntVal = APInt(32, *(int32_t*) ret); break; 235 case 64: Result.IntVal = APInt(64, *(int64_t*) ret); break; 236 } 237 break; 238 case Type::FloatTyID: Result.FloatVal = *(float *) ret; break; 239 case Type::DoubleTyID: Result.DoubleVal = *(double*) ret; break; 240 case Type::PointerTyID: Result.PointerVal = *(void **) ret; break; 241 default: break; 242 } 243 return true; 244 } 245 246 return false; 247} 248#endif // USE_LIBFFI 249 250GenericValue Interpreter::callExternalFunction(Function *F, 251 const std::vector<GenericValue> &ArgVals) { 252 TheInterpreter = this; 253 254 FunctionsLock->acquire(); 255 256 // Do a lookup to see if the function is in our cache... this should just be a 257 // deferred annotation! 258 std::map<const Function *, ExFunc>::iterator FI = ExportedFunctions->find(F); 259 if (ExFunc Fn = (FI == ExportedFunctions->end()) ? lookupFunction(F) 260 : FI->second) { 261 FunctionsLock->release(); 262 return Fn(F->getFunctionType(), ArgVals); 263 } 264 265#ifdef USE_LIBFFI 266 std::map<const Function *, RawFunc>::iterator RF = RawFunctions->find(F); 267 RawFunc RawFn; 268 if (RF == RawFunctions->end()) { 269 RawFn = (RawFunc)(intptr_t) 270 sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName()); 271 if (RawFn != 0) 272 RawFunctions->insert(std::make_pair(F, RawFn)); // Cache for later 273 } else { 274 RawFn = RF->second; 275 } 276 277 FunctionsLock->release(); 278 279 GenericValue Result; 280 if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getTargetData(), Result)) 281 return Result; 282#endif // USE_LIBFFI 283 284 if (F->getName() == "__main") 285 errs() << "Tried to execute an unknown external function: " 286 << F->getType()->getDescription() << " __main\n"; 287 else 288 llvm_report_error("Tried to execute an unknown external function: " + 289 F->getType()->getDescription() + " " +F->getName()); 290 return GenericValue(); 291} 292 293 294//===----------------------------------------------------------------------===// 295// Functions "exported" to the running application... 296// 297 298// Visual Studio warns about returning GenericValue in extern "C" linkage 299#ifdef _MSC_VER 300 #pragma warning(disable : 4190) 301#endif 302 303extern "C" { // Don't add C++ manglings to llvm mangling :) 304 305// void atexit(Function*) 306GenericValue lle_X_atexit(const FunctionType *FT, 307 const std::vector<GenericValue> &Args) { 308 assert(Args.size() == 1); 309 TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0])); 310 GenericValue GV; 311 GV.IntVal = 0; 312 return GV; 313} 314 315// void exit(int) 316GenericValue lle_X_exit(const FunctionType *FT, 317 const std::vector<GenericValue> &Args) { 318 TheInterpreter->exitCalled(Args[0]); 319 return GenericValue(); 320} 321 322// void abort(void) 323GenericValue lle_X_abort(const FunctionType *FT, 324 const std::vector<GenericValue> &Args) { 325 //FIXME: should we report or raise here? 326 //llvm_report_error("Interpreted program raised SIGABRT"); 327 raise (SIGABRT); 328 return GenericValue(); 329} 330 331// int sprintf(char *, const char *, ...) - a very rough implementation to make 332// output useful. 333GenericValue lle_X_sprintf(const FunctionType *FT, 334 const std::vector<GenericValue> &Args) { 335 char *OutputBuffer = (char *)GVTOP(Args[0]); 336 const char *FmtStr = (const char *)GVTOP(Args[1]); 337 unsigned ArgNo = 2; 338 339 // printf should return # chars printed. This is completely incorrect, but 340 // close enough for now. 341 GenericValue GV; 342 GV.IntVal = APInt(32, strlen(FmtStr)); 343 while (1) { 344 switch (*FmtStr) { 345 case 0: return GV; // Null terminator... 346 default: // Normal nonspecial character 347 sprintf(OutputBuffer++, "%c", *FmtStr++); 348 break; 349 case '\\': { // Handle escape codes 350 sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1)); 351 FmtStr += 2; OutputBuffer += 2; 352 break; 353 } 354 case '%': { // Handle format specifiers 355 char FmtBuf[100] = "", Buffer[1000] = ""; 356 char *FB = FmtBuf; 357 *FB++ = *FmtStr++; 358 char Last = *FB++ = *FmtStr++; 359 unsigned HowLong = 0; 360 while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' && 361 Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' && 362 Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' && 363 Last != 'p' && Last != 's' && Last != '%') { 364 if (Last == 'l' || Last == 'L') HowLong++; // Keep track of l's 365 Last = *FB++ = *FmtStr++; 366 } 367 *FB = 0; 368 369 switch (Last) { 370 case '%': 371 strcpy(Buffer, "%"); break; 372 case 'c': 373 sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue())); 374 break; 375 case 'd': case 'i': 376 case 'u': case 'o': 377 case 'x': case 'X': 378 if (HowLong >= 1) { 379 if (HowLong == 1 && 380 TheInterpreter->getTargetData()->getPointerSizeInBits() == 64 && 381 sizeof(long) < sizeof(int64_t)) { 382 // Make sure we use %lld with a 64 bit argument because we might be 383 // compiling LLI on a 32 bit compiler. 384 unsigned Size = strlen(FmtBuf); 385 FmtBuf[Size] = FmtBuf[Size-1]; 386 FmtBuf[Size+1] = 0; 387 FmtBuf[Size-1] = 'l'; 388 } 389 sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue()); 390 } else 391 sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue())); 392 break; 393 case 'e': case 'E': case 'g': case 'G': case 'f': 394 sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break; 395 case 'p': 396 sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break; 397 case 's': 398 sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break; 399 default: 400 errs() << "<unknown printf code '" << *FmtStr << "'!>"; 401 ArgNo++; break; 402 } 403 strcpy(OutputBuffer, Buffer); 404 OutputBuffer += strlen(Buffer); 405 } 406 break; 407 } 408 } 409 return GV; 410} 411 412// int printf(const char *, ...) - a very rough implementation to make output 413// useful. 414GenericValue lle_X_printf(const FunctionType *FT, 415 const std::vector<GenericValue> &Args) { 416 char Buffer[10000]; 417 std::vector<GenericValue> NewArgs; 418 NewArgs.push_back(PTOGV((void*)&Buffer[0])); 419 NewArgs.insert(NewArgs.end(), Args.begin(), Args.end()); 420 GenericValue GV = lle_X_sprintf(FT, NewArgs); 421 outs() << Buffer; 422 return GV; 423} 424 425static void ByteswapSCANFResults(LLVMContext &C, 426 const char *Fmt, void *Arg0, void *Arg1, 427 void *Arg2, void *Arg3, void *Arg4, void *Arg5, 428 void *Arg6, void *Arg7, void *Arg8) { 429 void *Args[] = { Arg0, Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, 0 }; 430 431 // Loop over the format string, munging read values as appropriate (performs 432 // byteswaps as necessary). 433 unsigned ArgNo = 0; 434 while (*Fmt) { 435 if (*Fmt++ == '%') { 436 // Read any flag characters that may be present... 437 bool Suppress = false; 438 bool Half = false; 439 bool Long = false; 440 bool LongLong = false; // long long or long double 441 442 while (1) { 443 switch (*Fmt++) { 444 case '*': Suppress = true; break; 445 case 'a': /*Allocate = true;*/ break; // We don't need to track this 446 case 'h': Half = true; break; 447 case 'l': Long = true; break; 448 case 'q': 449 case 'L': LongLong = true; break; 450 default: 451 if (Fmt[-1] > '9' || Fmt[-1] < '0') // Ignore field width specs 452 goto Out; 453 } 454 } 455 Out: 456 457 // Read the conversion character 458 if (!Suppress && Fmt[-1] != '%') { // Nothing to do? 459 unsigned Size = 0; 460 const Type *Ty = 0; 461 462 switch (Fmt[-1]) { 463 case 'i': case 'o': case 'u': case 'x': case 'X': case 'n': case 'p': 464 case 'd': 465 if (Long || LongLong) { 466 Size = 8; Ty = Type::getInt64Ty(C); 467 } else if (Half) { 468 Size = 4; Ty = Type::getInt16Ty(C); 469 } else { 470 Size = 4; Ty = Type::getInt32Ty(C); 471 } 472 break; 473 474 case 'e': case 'g': case 'E': 475 case 'f': 476 if (Long || LongLong) { 477 Size = 8; Ty = Type::getDoubleTy(C); 478 } else { 479 Size = 4; Ty = Type::getFloatTy(C); 480 } 481 break; 482 483 case 's': case 'c': case '[': // No byteswap needed 484 Size = 1; 485 Ty = Type::getInt8Ty(C); 486 break; 487 488 default: break; 489 } 490 491 if (Size) { 492 GenericValue GV; 493 void *Arg = Args[ArgNo++]; 494 memcpy(&GV, Arg, Size); 495 TheInterpreter->StoreValueToMemory(GV, (GenericValue*)Arg, Ty); 496 } 497 } 498 } 499 } 500} 501 502// int sscanf(const char *format, ...); 503GenericValue lle_X_sscanf(const FunctionType *FT, 504 const std::vector<GenericValue> &args) { 505 assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!"); 506 507 char *Args[10]; 508 for (unsigned i = 0; i < args.size(); ++i) 509 Args[i] = (char*)GVTOP(args[i]); 510 511 GenericValue GV; 512 GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4], 513 Args[5], Args[6], Args[7], Args[8], Args[9])); 514 ByteswapSCANFResults(FT->getContext(), 515 Args[1], Args[2], Args[3], Args[4], 516 Args[5], Args[6], Args[7], Args[8], Args[9], 0); 517 return GV; 518} 519 520// int scanf(const char *format, ...); 521GenericValue lle_X_scanf(const FunctionType *FT, 522 const std::vector<GenericValue> &args) { 523 assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!"); 524 525 char *Args[10]; 526 for (unsigned i = 0; i < args.size(); ++i) 527 Args[i] = (char*)GVTOP(args[i]); 528 529 GenericValue GV; 530 GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4], 531 Args[5], Args[6], Args[7], Args[8], Args[9])); 532 ByteswapSCANFResults(FT->getContext(), 533 Args[0], Args[1], Args[2], Args[3], Args[4], 534 Args[5], Args[6], Args[7], Args[8], Args[9]); 535 return GV; 536} 537 538// int fprintf(FILE *, const char *, ...) - a very rough implementation to make 539// output useful. 540GenericValue lle_X_fprintf(const FunctionType *FT, 541 const std::vector<GenericValue> &Args) { 542 assert(Args.size() >= 2); 543 char Buffer[10000]; 544 std::vector<GenericValue> NewArgs; 545 NewArgs.push_back(PTOGV(Buffer)); 546 NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end()); 547 GenericValue GV = lle_X_sprintf(FT, NewArgs); 548 549 fputs(Buffer, (FILE *) GVTOP(Args[0])); 550 return GV; 551} 552 553} // End extern "C" 554 555// Done with externals; turn the warning back on 556#ifdef _MSC_VER 557 #pragma warning(default: 4190) 558#endif 559 560 561void Interpreter::initializeExternalFunctions() { 562 sys::ScopedLock Writer(*FunctionsLock); 563 FuncNames["lle_X_atexit"] = lle_X_atexit; 564 FuncNames["lle_X_exit"] = lle_X_exit; 565 FuncNames["lle_X_abort"] = lle_X_abort; 566 567 FuncNames["lle_X_printf"] = lle_X_printf; 568 FuncNames["lle_X_sprintf"] = lle_X_sprintf; 569 FuncNames["lle_X_sscanf"] = lle_X_sscanf; 570 FuncNames["lle_X_scanf"] = lle_X_scanf; 571 FuncNames["lle_X_fprintf"] = lle_X_fprintf; 572} 573