ARMConstantIslandPass.cpp revision 1997473cf72957d0e70322e2fe6fe2ab141c58a6
1//===-- ARMConstantIslandPass.cpp - ARM constant islands --------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file was developed by Chris Lattner and is distributed under the 6// University of Illinois Open Source License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains a pass that splits the constant pool up into 'islands' 11// which are scattered through-out the function. This is required due to the 12// limited pc-relative displacements that ARM has. 13// 14//===----------------------------------------------------------------------===// 15 16#define DEBUG_TYPE "arm-cp-islands" 17#include "ARM.h" 18#include "ARMMachineFunctionInfo.h" 19#include "ARMInstrInfo.h" 20#include "llvm/CodeGen/MachineConstantPool.h" 21#include "llvm/CodeGen/MachineFunctionPass.h" 22#include "llvm/CodeGen/MachineInstrBuilder.h" 23#include "llvm/Target/TargetData.h" 24#include "llvm/Target/TargetMachine.h" 25#include "llvm/Support/Compiler.h" 26#include "llvm/Support/Debug.h" 27#include "llvm/ADT/SmallVector.h" 28#include "llvm/ADT/STLExtras.h" 29#include "llvm/ADT/Statistic.h" 30using namespace llvm; 31 32STATISTIC(NumCPEs, "Number of constpool entries"); 33STATISTIC(NumSplit, "Number of uncond branches inserted"); 34STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 35STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 36 37namespace { 38 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM 39 /// requires constant pool entries to be scattered among the instructions 40 /// inside a function. To do this, it completely ignores the normal LLVM 41 /// constant pool; instead, it places constants wherever it feels like with 42 /// special instructions. 43 /// 44 /// The terminology used in this pass includes: 45 /// Islands - Clumps of constants placed in the function. 46 /// Water - Potential places where an island could be formed. 47 /// CPE - A constant pool entry that has been placed somewhere, which 48 /// tracks a list of users. 49 class VISIBILITY_HIDDEN ARMConstantIslands : public MachineFunctionPass { 50 /// NextUID - Assign unique ID's to CPE's. 51 unsigned NextUID; 52 53 /// BBSizes - The size of each MachineBasicBlock in bytes of code, indexed 54 /// by MBB Number. The two-byte pads required for Thumb alignment are 55 /// counted as part of the following block (i.e., the offset and size for 56 /// a padded block will both be ==2 mod 4). 57 std::vector<unsigned> BBSizes; 58 59 /// BBOffsets - the offset of each MBB in bytes, starting from 0. 60 /// The two-byte pads required for Thumb alignment are counted as part of 61 /// the following block. 62 std::vector<unsigned> BBOffsets; 63 64 /// WaterList - A sorted list of basic blocks where islands could be placed 65 /// (i.e. blocks that don't fall through to the following block, due 66 /// to a return, unreachable, or unconditional branch). 67 std::vector<MachineBasicBlock*> WaterList; 68 69 /// CPUser - One user of a constant pool, keeping the machine instruction 70 /// pointer, the constant pool being referenced, and the max displacement 71 /// allowed from the instruction to the CP. 72 struct CPUser { 73 MachineInstr *MI; 74 MachineInstr *CPEMI; 75 unsigned MaxDisp; 76 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp) 77 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp) {} 78 }; 79 80 /// CPUsers - Keep track of all of the machine instructions that use various 81 /// constant pools and their max displacement. 82 std::vector<CPUser> CPUsers; 83 84 /// CPEntry - One per constant pool entry, keeping the machine instruction 85 /// pointer, the constpool index, and the number of CPUser's which 86 /// reference this entry. 87 struct CPEntry { 88 MachineInstr *CPEMI; 89 unsigned CPI; 90 unsigned RefCount; 91 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) 92 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} 93 }; 94 95 /// CPEntries - Keep track of all of the constant pool entry machine 96 /// instructions. For each original constpool index (i.e. those that 97 /// existed upon entry to this pass), it keeps a vector of entries. 98 /// Original elements are cloned as we go along; the clones are 99 /// put in the vector of the original element, but have distinct CPIs. 100 std::vector<std::vector<CPEntry> > CPEntries; 101 102 /// ImmBranch - One per immediate branch, keeping the machine instruction 103 /// pointer, conditional or unconditional, the max displacement, 104 /// and (if isCond is true) the corresponding unconditional branch 105 /// opcode. 106 struct ImmBranch { 107 MachineInstr *MI; 108 unsigned MaxDisp : 31; 109 bool isCond : 1; 110 int UncondBr; 111 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr) 112 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} 113 }; 114 115 /// Branches - Keep track of all the immediate branch instructions. 116 /// 117 std::vector<ImmBranch> ImmBranches; 118 119 /// PushPopMIs - Keep track of all the Thumb push / pop instructions. 120 /// 121 SmallVector<MachineInstr*, 4> PushPopMIs; 122 123 /// HasFarJump - True if any far jump instruction has been emitted during 124 /// the branch fix up pass. 125 bool HasFarJump; 126 127 const TargetInstrInfo *TII; 128 ARMFunctionInfo *AFI; 129 bool isThumb; 130 public: 131 static char ID; 132 ARMConstantIslands() : MachineFunctionPass((intptr_t)&ID) {} 133 134 virtual bool runOnMachineFunction(MachineFunction &Fn); 135 136 virtual const char *getPassName() const { 137 return "ARM constant island placement and branch shortening pass"; 138 } 139 140 private: 141 void DoInitialPlacement(MachineFunction &Fn, 142 std::vector<MachineInstr*> &CPEMIs); 143 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 144 void InitialFunctionScan(MachineFunction &Fn, 145 const std::vector<MachineInstr*> &CPEMIs); 146 MachineBasicBlock *SplitBlockBeforeInstr(MachineInstr *MI); 147 void UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB); 148 void AdjustBBOffsetsAfter(MachineBasicBlock *BB, int delta); 149 bool DecrementOldEntry(unsigned CPI, MachineInstr* CPEMI); 150 int LookForExistingCPEntry(CPUser& U, unsigned UserOffset); 151 bool LookForWater(CPUser&U, unsigned UserOffset, 152 MachineBasicBlock** NewMBB); 153 MachineBasicBlock* AcceptWater(MachineBasicBlock *WaterBB, 154 std::vector<MachineBasicBlock*>::iterator IP); 155 void CreateNewWater(unsigned CPUserIndex, unsigned UserOffset, 156 MachineBasicBlock** NewMBB); 157 bool HandleConstantPoolUser(MachineFunction &Fn, unsigned CPUserIndex); 158 void RemoveDeadCPEMI(MachineInstr *CPEMI); 159 bool RemoveUnusedCPEntries(); 160 bool CPEIsInRange(MachineInstr *MI, unsigned UserOffset, 161 MachineInstr *CPEMI, unsigned Disp, 162 bool DoDump); 163 bool WaterIsInRange(unsigned UserOffset, MachineBasicBlock *Water, 164 unsigned Disp); 165 bool OffsetIsInRange(unsigned UserOffset, unsigned TrialOffset, 166 unsigned Disp, bool NegativeOK); 167 bool BBIsInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); 168 bool FixUpImmediateBr(MachineFunction &Fn, ImmBranch &Br); 169 bool FixUpConditionalBr(MachineFunction &Fn, ImmBranch &Br); 170 bool FixUpUnconditionalBr(MachineFunction &Fn, ImmBranch &Br); 171 bool UndoLRSpillRestore(); 172 173 unsigned GetOffsetOf(MachineInstr *MI) const; 174 void dumpBBs(); 175 void verify(MachineFunction &Fn); 176 }; 177 char ARMConstantIslands::ID = 0; 178} 179 180/// verify - check BBOffsets, BBSizes, alignment of islands 181void ARMConstantIslands::verify(MachineFunction &Fn) { 182 assert(BBOffsets.size() == BBSizes.size()); 183 for (unsigned i = 1, e = BBOffsets.size(); i != e; ++i) 184 assert(BBOffsets[i-1]+BBSizes[i-1] == BBOffsets[i]); 185 if (isThumb) { 186 for (MachineFunction::iterator MBBI = Fn.begin(), E = Fn.end(); 187 MBBI != E; ++MBBI) { 188 MachineBasicBlock *MBB = MBBI; 189 if (!MBB->empty() && 190 MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) 191 assert((BBOffsets[MBB->getNumber()]%4 == 0 && 192 BBSizes[MBB->getNumber()]%4 == 0) || 193 (BBOffsets[MBB->getNumber()]%4 != 0 && 194 BBSizes[MBB->getNumber()]%4 != 0)); 195 } 196 } 197} 198 199/// print block size and offset information - debugging 200void ARMConstantIslands::dumpBBs() { 201 for (unsigned J = 0, E = BBOffsets.size(); J !=E; ++J) { 202 DOUT << "block" << J << " offset" << BBOffsets[J] << 203 " size" << BBSizes[J] << "\n"; 204 } 205} 206 207/// createARMConstantIslandPass - returns an instance of the constpool 208/// island pass. 209FunctionPass *llvm::createARMConstantIslandPass() { 210 return new ARMConstantIslands(); 211} 212 213bool ARMConstantIslands::runOnMachineFunction(MachineFunction &Fn) { 214 MachineConstantPool &MCP = *Fn.getConstantPool(); 215 216 TII = Fn.getTarget().getInstrInfo(); 217 AFI = Fn.getInfo<ARMFunctionInfo>(); 218 isThumb = AFI->isThumbFunction(); 219 220 HasFarJump = false; 221 222 // Renumber all of the machine basic blocks in the function, guaranteeing that 223 // the numbers agree with the position of the block in the function. 224 Fn.RenumberBlocks(); 225 226 /// Thumb functions containing constant pools get 2-byte alignment. This is so 227 /// we can keep exact track of where the alignment padding goes. Set default. 228 AFI->setAlign(isThumb ? 1U : 2U); 229 230 // Perform the initial placement of the constant pool entries. To start with, 231 // we put them all at the end of the function. 232 std::vector<MachineInstr*> CPEMIs; 233 if (!MCP.isEmpty()) { 234 DoInitialPlacement(Fn, CPEMIs); 235 if (isThumb) 236 AFI->setAlign(2U); 237 } 238 239 /// The next UID to take is the first unused one. 240 NextUID = CPEMIs.size(); 241 242 // Do the initial scan of the function, building up information about the 243 // sizes of each block, the location of all the water, and finding all of the 244 // constant pool users. 245 InitialFunctionScan(Fn, CPEMIs); 246 CPEMIs.clear(); 247 248 /// Remove dead constant pool entries. 249 RemoveUnusedCPEntries(); 250 251 // Iteratively place constant pool entries and fix up branches until there 252 // is no change. 253 bool MadeChange = false; 254 while (true) { 255 bool Change = false; 256 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) 257 Change |= HandleConstantPoolUser(Fn, i); 258 DEBUG(dumpBBs()); 259 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) 260 Change |= FixUpImmediateBr(Fn, ImmBranches[i]); 261 DEBUG(dumpBBs()); 262 if (!Change) 263 break; 264 MadeChange = true; 265 } 266 267 // After a while, this might be made debug-only, but it is not expensive. 268 verify(Fn); 269 270 // If LR has been forced spilled and no far jumps (i.e. BL) has been issued. 271 // Undo the spill / restore of LR if possible. 272 if (!HasFarJump && AFI->isLRSpilledForFarJump() && isThumb) 273 MadeChange |= UndoLRSpillRestore(); 274 275 BBSizes.clear(); 276 BBOffsets.clear(); 277 WaterList.clear(); 278 CPUsers.clear(); 279 CPEntries.clear(); 280 ImmBranches.clear(); 281 PushPopMIs.clear(); 282 283 return MadeChange; 284} 285 286/// DoInitialPlacement - Perform the initial placement of the constant pool 287/// entries. To start with, we put them all at the end of the function. 288void ARMConstantIslands::DoInitialPlacement(MachineFunction &Fn, 289 std::vector<MachineInstr*> &CPEMIs){ 290 // Create the basic block to hold the CPE's. 291 MachineBasicBlock *BB = new MachineBasicBlock(); 292 Fn.getBasicBlockList().push_back(BB); 293 294 // Add all of the constants from the constant pool to the end block, use an 295 // identity mapping of CPI's to CPE's. 296 const std::vector<MachineConstantPoolEntry> &CPs = 297 Fn.getConstantPool()->getConstants(); 298 299 const TargetData &TD = *Fn.getTarget().getTargetData(); 300 for (unsigned i = 0, e = CPs.size(); i != e; ++i) { 301 unsigned Size = TD.getTypeSize(CPs[i].getType()); 302 // Verify that all constant pool entries are a multiple of 4 bytes. If not, 303 // we would have to pad them out or something so that instructions stay 304 // aligned. 305 assert((Size & 3) == 0 && "CP Entry not multiple of 4 bytes!"); 306 MachineInstr *CPEMI = 307 BuildMI(BB, TII->get(ARM::CONSTPOOL_ENTRY)) 308 .addImm(i).addConstantPoolIndex(i).addImm(Size); 309 CPEMIs.push_back(CPEMI); 310 311 // Add a new CPEntry, but no corresponding CPUser yet. 312 std::vector<CPEntry> CPEs; 313 CPEs.push_back(CPEntry(CPEMI, i)); 314 CPEntries.push_back(CPEs); 315 NumCPEs++; 316 DOUT << "Moved CPI#" << i << " to end of function as #" << i << "\n"; 317 } 318} 319 320/// BBHasFallthrough - Return true if the specified basic block can fallthrough 321/// into the block immediately after it. 322static bool BBHasFallthrough(MachineBasicBlock *MBB) { 323 // Get the next machine basic block in the function. 324 MachineFunction::iterator MBBI = MBB; 325 if (next(MBBI) == MBB->getParent()->end()) // Can't fall off end of function. 326 return false; 327 328 MachineBasicBlock *NextBB = next(MBBI); 329 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), 330 E = MBB->succ_end(); I != E; ++I) 331 if (*I == NextBB) 332 return true; 333 334 return false; 335} 336 337/// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 338/// look up the corresponding CPEntry. 339ARMConstantIslands::CPEntry 340*ARMConstantIslands::findConstPoolEntry(unsigned CPI, 341 const MachineInstr *CPEMI) { 342 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 343 // Number of entries per constpool index should be small, just do a 344 // linear search. 345 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 346 if (CPEs[i].CPEMI == CPEMI) 347 return &CPEs[i]; 348 } 349 return NULL; 350} 351 352/// InitialFunctionScan - Do the initial scan of the function, building up 353/// information about the sizes of each block, the location of all the water, 354/// and finding all of the constant pool users. 355void ARMConstantIslands::InitialFunctionScan(MachineFunction &Fn, 356 const std::vector<MachineInstr*> &CPEMIs) { 357 unsigned Offset = 0; 358 for (MachineFunction::iterator MBBI = Fn.begin(), E = Fn.end(); 359 MBBI != E; ++MBBI) { 360 MachineBasicBlock &MBB = *MBBI; 361 362 // If this block doesn't fall through into the next MBB, then this is 363 // 'water' that a constant pool island could be placed. 364 if (!BBHasFallthrough(&MBB)) 365 WaterList.push_back(&MBB); 366 367 unsigned MBBSize = 0; 368 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 369 I != E; ++I) { 370 // Add instruction size to MBBSize. 371 MBBSize += ARM::GetInstSize(I); 372 373 int Opc = I->getOpcode(); 374 if (TII->isBranch(Opc)) { 375 bool isCond = false; 376 unsigned Bits = 0; 377 unsigned Scale = 1; 378 int UOpc = Opc; 379 switch (Opc) { 380 case ARM::tBR_JTr: 381 // A Thumb table jump may involve padding; for the offsets to 382 // be right, functions containing these must be 4-byte aligned. 383 AFI->setAlign(2U); 384 if ((Offset+MBBSize)%4 != 0) 385 MBBSize += 2; // padding 386 continue; // Does not get an entry in ImmBranches 387 default: 388 continue; // Ignore other JT branches 389 case ARM::Bcc: 390 isCond = true; 391 UOpc = ARM::B; 392 // Fallthrough 393 case ARM::B: 394 Bits = 24; 395 Scale = 4; 396 break; 397 case ARM::tBcc: 398 isCond = true; 399 UOpc = ARM::tB; 400 Bits = 8; 401 Scale = 2; 402 break; 403 case ARM::tB: 404 Bits = 11; 405 Scale = 2; 406 break; 407 } 408 409 // Record this immediate branch. 410 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 411 ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc)); 412 } 413 414 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) 415 PushPopMIs.push_back(I); 416 417 // Scan the instructions for constant pool operands. 418 for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) 419 if (I->getOperand(op).isConstantPoolIndex()) { 420 // We found one. The addressing mode tells us the max displacement 421 // from the PC that this instruction permits. 422 423 // Basic size info comes from the TSFlags field. 424 unsigned Bits = 0; 425 unsigned Scale = 1; 426 unsigned TSFlags = I->getInstrDescriptor()->TSFlags; 427 switch (TSFlags & ARMII::AddrModeMask) { 428 default: 429 // Constant pool entries can reach anything. 430 if (I->getOpcode() == ARM::CONSTPOOL_ENTRY) 431 continue; 432 if (I->getOpcode() == ARM::tLEApcrel) { 433 Bits = 8; // Taking the address of a CP entry. 434 break; 435 } 436 assert(0 && "Unknown addressing mode for CP reference!"); 437 case ARMII::AddrMode1: // AM1: 8 bits << 2 438 Bits = 8; 439 Scale = 4; // Taking the address of a CP entry. 440 break; 441 case ARMII::AddrMode2: 442 Bits = 12; // +-offset_12 443 break; 444 case ARMII::AddrMode3: 445 Bits = 8; // +-offset_8 446 break; 447 // addrmode4 has no immediate offset. 448 case ARMII::AddrMode5: 449 Bits = 8; 450 Scale = 4; // +-(offset_8*4) 451 break; 452 case ARMII::AddrModeT1: 453 Bits = 5; // +offset_5 454 break; 455 case ARMII::AddrModeT2: 456 Bits = 5; 457 Scale = 2; // +(offset_5*2) 458 break; 459 case ARMII::AddrModeT4: 460 Bits = 5; 461 Scale = 4; // +(offset_5*4) 462 break; 463 case ARMII::AddrModeTs: 464 Bits = 8; 465 Scale = 4; // +(offset_8*4) 466 break; 467 } 468 469 // Remember that this is a user of a CP entry. 470 unsigned CPI = I->getOperand(op).getConstantPoolIndex(); 471 MachineInstr *CPEMI = CPEMIs[CPI]; 472 unsigned MaxOffs = ((1 << Bits)-1) * Scale; 473 CPUsers.push_back(CPUser(I, CPEMI, MaxOffs)); 474 475 // Increment corresponding CPEntry reference count. 476 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 477 assert(CPE && "Cannot find a corresponding CPEntry!"); 478 CPE->RefCount++; 479 480 // Instructions can only use one CP entry, don't bother scanning the 481 // rest of the operands. 482 break; 483 } 484 } 485 486 // In thumb mode, if this block is a constpool island, we may need padding 487 // so it's aligned on 4 byte boundary. 488 if (isThumb && 489 !MBB.empty() && 490 MBB.begin()->getOpcode() == ARM::CONSTPOOL_ENTRY && 491 (Offset%4) != 0) 492 MBBSize += 2; 493 494 BBSizes.push_back(MBBSize); 495 BBOffsets.push_back(Offset); 496 Offset += MBBSize; 497 } 498} 499 500/// GetOffsetOf - Return the current offset of the specified machine instruction 501/// from the start of the function. This offset changes as stuff is moved 502/// around inside the function. 503unsigned ARMConstantIslands::GetOffsetOf(MachineInstr *MI) const { 504 MachineBasicBlock *MBB = MI->getParent(); 505 506 // The offset is composed of two things: the sum of the sizes of all MBB's 507 // before this instruction's block, and the offset from the start of the block 508 // it is in. 509 unsigned Offset = BBOffsets[MBB->getNumber()]; 510 511 // If we're looking for a CONSTPOOL_ENTRY in Thumb, see if this block has 512 // alignment padding, and compensate if so. 513 if (isThumb && 514 MI->getOpcode() == ARM::CONSTPOOL_ENTRY && 515 Offset%4 != 0) 516 Offset += 2; 517 518 // Sum instructions before MI in MBB. 519 for (MachineBasicBlock::iterator I = MBB->begin(); ; ++I) { 520 assert(I != MBB->end() && "Didn't find MI in its own basic block?"); 521 if (&*I == MI) return Offset; 522 Offset += ARM::GetInstSize(I); 523 } 524} 525 526/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 527/// ID. 528static bool CompareMBBNumbers(const MachineBasicBlock *LHS, 529 const MachineBasicBlock *RHS) { 530 return LHS->getNumber() < RHS->getNumber(); 531} 532 533/// UpdateForInsertedWaterBlock - When a block is newly inserted into the 534/// machine function, it upsets all of the block numbers. Renumber the blocks 535/// and update the arrays that parallel this numbering. 536void ARMConstantIslands::UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB) { 537 // Renumber the MBB's to keep them consequtive. 538 NewBB->getParent()->RenumberBlocks(NewBB); 539 540 // Insert a size into BBSizes to align it properly with the (newly 541 // renumbered) block numbers. 542 BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0); 543 544 // Likewise for BBOffsets. 545 BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0); 546 547 // Next, update WaterList. Specifically, we need to add NewMBB as having 548 // available water after it. 549 std::vector<MachineBasicBlock*>::iterator IP = 550 std::lower_bound(WaterList.begin(), WaterList.end(), NewBB, 551 CompareMBBNumbers); 552 WaterList.insert(IP, NewBB); 553} 554 555 556/// Split the basic block containing MI into two blocks, which are joined by 557/// an unconditional branch. Update datastructures and renumber blocks to 558/// account for this change and returns the newly created block. 559MachineBasicBlock *ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr *MI) { 560 MachineBasicBlock *OrigBB = MI->getParent(); 561 562 // Create a new MBB for the code after the OrigBB. 563 MachineBasicBlock *NewBB = new MachineBasicBlock(OrigBB->getBasicBlock()); 564 MachineFunction::iterator MBBI = OrigBB; ++MBBI; 565 OrigBB->getParent()->getBasicBlockList().insert(MBBI, NewBB); 566 567 // Splice the instructions starting with MI over to NewBB. 568 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 569 570 // Add an unconditional branch from OrigBB to NewBB. 571 // Note the new unconditional branch is not being recorded. 572 BuildMI(OrigBB, TII->get(isThumb ? ARM::tB : ARM::B)).addMBB(NewBB); 573 NumSplit++; 574 575 // Update the CFG. All succs of OrigBB are now succs of NewBB. 576 while (!OrigBB->succ_empty()) { 577 MachineBasicBlock *Succ = *OrigBB->succ_begin(); 578 OrigBB->removeSuccessor(Succ); 579 NewBB->addSuccessor(Succ); 580 581 // This pass should be run after register allocation, so there should be no 582 // PHI nodes to update. 583 assert((Succ->empty() || Succ->begin()->getOpcode() != TargetInstrInfo::PHI) 584 && "PHI nodes should be eliminated by now!"); 585 } 586 587 // OrigBB branches to NewBB. 588 OrigBB->addSuccessor(NewBB); 589 590 // Update internal data structures to account for the newly inserted MBB. 591 // This is almost the same as UpdateForInsertedWaterBlock, except that 592 // the Water goes after OrigBB, not NewBB. 593 NewBB->getParent()->RenumberBlocks(NewBB); 594 595 // Insert a size into BBSizes to align it properly with the (newly 596 // renumbered) block numbers. 597 BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0); 598 599 // Likewise for BBOffsets. 600 BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0); 601 602 // Next, update WaterList. Specifically, we need to add OrigMBB as having 603 // available water after it (but not if it's already there, which happens 604 // when splitting before a conditional branch that is followed by an 605 // unconditional branch - in that case we want to insert NewBB). 606 std::vector<MachineBasicBlock*>::iterator IP = 607 std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB, 608 CompareMBBNumbers); 609 MachineBasicBlock* WaterBB = *IP; 610 if (WaterBB == OrigBB) 611 WaterList.insert(next(IP), NewBB); 612 else 613 WaterList.insert(IP, OrigBB); 614 615 // Figure out how large the first NewMBB is. (It cannot 616 // contain a constpool_entry or tablejump.) 617 unsigned NewBBSize = 0; 618 for (MachineBasicBlock::iterator I = NewBB->begin(), E = NewBB->end(); 619 I != E; ++I) 620 NewBBSize += ARM::GetInstSize(I); 621 622 unsigned OrigBBI = OrigBB->getNumber(); 623 unsigned NewBBI = NewBB->getNumber(); 624 // Set the size of NewBB in BBSizes. 625 BBSizes[NewBBI] = NewBBSize; 626 627 // We removed instructions from UserMBB, subtract that off from its size. 628 // Add 2 or 4 to the block to count the unconditional branch we added to it. 629 unsigned delta = isThumb ? 2 : 4; 630 BBSizes[OrigBBI] -= NewBBSize - delta; 631 632 // ...and adjust BBOffsets for NewBB accordingly. 633 BBOffsets[NewBBI] = BBOffsets[OrigBBI] + BBSizes[OrigBBI]; 634 635 // All BBOffsets following these blocks must be modified. 636 AdjustBBOffsetsAfter(NewBB, delta); 637 638 return NewBB; 639} 640 641/// OffsetIsInRange - Checks whether UserOffset (the location of a constant pool 642/// reference) is within MaxDisp of TrialOffset (a proposed location of a 643/// constant pool entry). 644bool ARMConstantIslands::OffsetIsInRange(unsigned UserOffset, 645 unsigned TrialOffset, unsigned MaxDisp, bool NegativeOK) { 646 // On Thumb offsets==2 mod 4 are rounded down by the hardware for 647 // purposes of the displacement computation; compensate for that here. 648 // Effectively, the valid range of displacements is 2 bytes smaller for such 649 // references. 650 if (isThumb && UserOffset%4 !=0) 651 UserOffset -= 2; 652 // CPEs will be rounded up to a multiple of 4. 653 if (isThumb && TrialOffset%4 != 0) 654 TrialOffset += 2; 655 656 if (UserOffset <= TrialOffset) { 657 // User before the Trial. 658 if (TrialOffset-UserOffset <= MaxDisp) 659 return true; 660 } else if (NegativeOK) { 661 if (UserOffset-TrialOffset <= MaxDisp) 662 return true; 663 } 664 return false; 665} 666 667/// WaterIsInRange - Returns true if a CPE placed after the specified 668/// Water (a basic block) will be in range for the specific MI. 669 670bool ARMConstantIslands::WaterIsInRange(unsigned UserOffset, 671 MachineBasicBlock* Water, unsigned MaxDisp) 672{ 673 MachineFunction::iterator I = next(MachineFunction::iterator(Water)); 674 unsigned CPEOffset = BBOffsets[Water->getNumber()] + 675 BBSizes[Water->getNumber()]; 676 677 // If the CPE is to be inserted before the instruction, that will raise 678 // the offset of the instruction. (Currently applies only to ARM, so 679 // no alignment compensation attempted here.) 680 if (CPEOffset < UserOffset) 681 UserOffset += 4; 682 683 return OffsetIsInRange (UserOffset, CPEOffset, MaxDisp, !isThumb); 684} 685 686/// CPEIsInRange - Returns true if the distance between specific MI and 687/// specific ConstPool entry instruction can fit in MI's displacement field. 688bool ARMConstantIslands::CPEIsInRange(MachineInstr *MI, unsigned UserOffset, 689 MachineInstr *CPEMI, 690 unsigned MaxDisp, bool DoDump) { 691 unsigned CPEOffset = GetOffsetOf(CPEMI); 692 assert(CPEOffset%4 == 0 && "Misaligned CPE"); 693 694 if (DoDump) { 695 DOUT << "User of CPE#" << CPEMI->getOperand(0).getImm() 696 << " max delta=" << MaxDisp 697 << " insn address=" << UserOffset 698 << " CPE address=" << CPEOffset 699 << " offset=" << int(CPEOffset-UserOffset) << "\t" << *MI; 700 } 701 702 return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, !isThumb); 703} 704 705/// BBIsJumpedOver - Return true of the specified basic block's only predecessor 706/// unconditionally branches to its only successor. 707static bool BBIsJumpedOver(MachineBasicBlock *MBB) { 708 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 709 return false; 710 711 MachineBasicBlock *Succ = *MBB->succ_begin(); 712 MachineBasicBlock *Pred = *MBB->pred_begin(); 713 MachineInstr *PredMI = &Pred->back(); 714 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB) 715 return PredMI->getOperand(0).getMBB() == Succ; 716 return false; 717} 718 719void ARMConstantIslands::AdjustBBOffsetsAfter(MachineBasicBlock *BB, 720 int delta) { 721 MachineFunction::iterator MBBI = BB; MBBI = next(MBBI); 722 for(unsigned i=BB->getNumber()+1; i<BB->getParent()->getNumBlockIDs(); i++) { 723 BBOffsets[i] += delta; 724 // If some existing blocks have padding, adjust the padding as needed, a 725 // bit tricky. delta can be negative so don't use % on that. 726 if (isThumb) { 727 MachineBasicBlock *MBB = MBBI; 728 if (!MBB->empty()) { 729 // Constant pool entries require padding. 730 if (MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) { 731 unsigned oldOffset = BBOffsets[i] - delta; 732 if (oldOffset%4==0 && BBOffsets[i]%4!=0) { 733 // add new padding 734 BBSizes[i] += 2; 735 delta += 2; 736 } else if (oldOffset%4!=0 && BBOffsets[i]%4==0) { 737 // remove existing padding 738 BBSizes[i] -=2; 739 delta -= 2; 740 } 741 } 742 // Thumb jump tables require padding. They can be at the end, or 743 // followed by an unconditional branch. 744 MachineInstr *ThumbJTMI = NULL; 745 if (prior(MBB->end())->getOpcode() == ARM::tBR_JTr) 746 ThumbJTMI = prior(MBB->end()); 747 else if (prior(MBB->end()) != MBB->begin() && 748 prior(prior(MBB->end()))->getOpcode() == ARM::tBR_JTr) 749 ThumbJTMI = prior(prior(MBB->end())); 750 if (ThumbJTMI) { 751 unsigned newMIOffset = GetOffsetOf(ThumbJTMI); 752 unsigned oldMIOffset = newMIOffset - delta; 753 if (oldMIOffset%4 == 0 && newMIOffset%4 != 0) { 754 // remove existing padding 755 BBSizes[i] -= 2; 756 delta -= 2; 757 } else if (oldMIOffset%4 != 0 && newMIOffset%4 == 0) { 758 // add new padding 759 BBSizes[i] += 2; 760 delta += 2; 761 } 762 } 763 if (delta==0) 764 return; 765 } 766 MBBI = next(MBBI); 767 } 768 } 769} 770 771/// DecrementOldEntry - find the constant pool entry with index CPI 772/// and instruction CPEMI, and decrement its refcount. If the refcount 773/// becomes 0 remove the entry and instruction. Returns true if we removed 774/// the entry, false if we didn't. 775 776bool ARMConstantIslands::DecrementOldEntry(unsigned CPI, MachineInstr *CPEMI) { 777 // Find the old entry. Eliminate it if it is no longer used. 778 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 779 assert(CPE && "Unexpected!"); 780 if (--CPE->RefCount == 0) { 781 RemoveDeadCPEMI(CPEMI); 782 CPE->CPEMI = NULL; 783 NumCPEs--; 784 return true; 785 } 786 return false; 787} 788 789/// LookForCPEntryInRange - see if the currently referenced CPE is in range; 790/// if not, see if an in-range clone of the CPE is in range, and if so, 791/// change the data structures so the user references the clone. Returns: 792/// 0 = no existing entry found 793/// 1 = entry found, and there were no code insertions or deletions 794/// 2 = entry found, and there were code insertions or deletions 795int ARMConstantIslands::LookForExistingCPEntry(CPUser& U, unsigned UserOffset) 796{ 797 MachineInstr *UserMI = U.MI; 798 MachineInstr *CPEMI = U.CPEMI; 799 800 // Check to see if the CPE is already in-range. 801 if (CPEIsInRange(UserMI, UserOffset, CPEMI, U.MaxDisp, true)) { 802 DOUT << "In range\n"; 803 return 1; 804 } 805 806 // No. Look for previously created clones of the CPE that are in range. 807 unsigned CPI = CPEMI->getOperand(1).getConstantPoolIndex(); 808 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 809 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 810 // We already tried this one 811 if (CPEs[i].CPEMI == CPEMI) 812 continue; 813 // Removing CPEs can leave empty entries, skip 814 if (CPEs[i].CPEMI == NULL) 815 continue; 816 if (CPEIsInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.MaxDisp, false)) { 817 DOUT << "Replacing CPE#" << CPI << " with CPE#" << CPEs[i].CPI << "\n"; 818 // Point the CPUser node to the replacement 819 U.CPEMI = CPEs[i].CPEMI; 820 // Change the CPI in the instruction operand to refer to the clone. 821 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) 822 if (UserMI->getOperand(j).isConstantPoolIndex()) { 823 UserMI->getOperand(j).setConstantPoolIndex(CPEs[i].CPI); 824 break; 825 } 826 // Adjust the refcount of the clone... 827 CPEs[i].RefCount++; 828 // ...and the original. If we didn't remove the old entry, none of the 829 // addresses changed, so we don't need another pass. 830 return DecrementOldEntry(CPI, CPEMI) ? 2 : 1; 831 } 832 } 833 return 0; 834} 835 836/// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 837/// the specific unconditional branch instruction. 838static inline unsigned getUnconditionalBrDisp(int Opc) { 839 return (Opc == ARM::tB) ? ((1<<10)-1)*2 : ((1<<23)-1)*4; 840} 841 842/// AcceptWater - Small amount of common code factored out of the following. 843 844MachineBasicBlock* ARMConstantIslands::AcceptWater(MachineBasicBlock *WaterBB, 845 std::vector<MachineBasicBlock*>::iterator IP) { 846 DOUT << "found water in range\n"; 847 // Remove the original WaterList entry; we want subsequent 848 // insertions in this vicinity to go after the one we're 849 // about to insert. This considerably reduces the number 850 // of times we have to move the same CPE more than once. 851 WaterList.erase(IP); 852 // CPE goes before following block (NewMBB). 853 return next(MachineFunction::iterator(WaterBB)); 854} 855 856/// LookForWater - look for an existing entry in the WaterList in which 857/// we can place the CPE referenced from U so it's within range of U's MI. 858/// Returns true if found, false if not. If it returns true, *NewMBB 859/// is set to the WaterList entry. 860/// For ARM, we prefer the water that's farthest away. For Thumb, prefer 861/// water that will not introduce padding to water that will; within each 862/// group, prefer the water that's farthest away. 863 864bool ARMConstantIslands::LookForWater(CPUser &U, unsigned UserOffset, 865 MachineBasicBlock** NewMBB) { 866 std::vector<MachineBasicBlock*>::iterator IPThatWouldPad; 867 MachineBasicBlock* WaterBBThatWouldPad = NULL; 868 if (!WaterList.empty()) { 869 for (std::vector<MachineBasicBlock*>::iterator IP = prior(WaterList.end()), 870 B = WaterList.begin();; --IP) { 871 MachineBasicBlock* WaterBB = *IP; 872 if (WaterIsInRange(UserOffset, WaterBB, U.MaxDisp)) { 873 if (isThumb && 874 (BBOffsets[WaterBB->getNumber()] + 875 BBSizes[WaterBB->getNumber()])%4 != 0) { 876 // This is valid Water, but would introduce padding. Remember 877 // it in case we don't find any Water that doesn't do this. 878 if (!WaterBBThatWouldPad) { 879 WaterBBThatWouldPad = WaterBB; 880 IPThatWouldPad = IP; 881 } 882 } else { 883 *NewMBB = AcceptWater(WaterBB, IP); 884 return true; 885 } 886 } 887 if (IP == B) 888 break; 889 } 890 } 891 if (isThumb && WaterBBThatWouldPad) { 892 *NewMBB = AcceptWater(WaterBBThatWouldPad, IPThatWouldPad); 893 return true; 894 } 895 return false; 896} 897 898/// CreateNewWater - No existing WaterList entry will work for 899/// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 900/// block is used if in range, and the conditional branch munged so control 901/// flow is correct. Otherwise the block is split to create a hole with an 902/// unconditional branch around it. In either case *NewMBB is set to a 903/// block following which the new island can be inserted (the WaterList 904/// is not adjusted). 905 906void ARMConstantIslands::CreateNewWater(unsigned CPUserIndex, 907 unsigned UserOffset, MachineBasicBlock** NewMBB) { 908 CPUser &U = CPUsers[CPUserIndex]; 909 MachineInstr *UserMI = U.MI; 910 MachineInstr *CPEMI = U.CPEMI; 911 MachineBasicBlock *UserMBB = UserMI->getParent(); 912 unsigned OffsetOfNextBlock = BBOffsets[UserMBB->getNumber()] + 913 BBSizes[UserMBB->getNumber()]; 914 assert(OffsetOfNextBlock== BBOffsets[UserMBB->getNumber()+1]); 915 916 // If the use is at the end of the block, or the end of the block 917 // is within range, make new water there. (The addition below is 918 // for the unconditional branch we will be adding: 4 bytes on ARM, 919 // 2 on Thumb. Possible Thumb alignment padding is allowed for 920 // inside OffsetIsInRange. 921 // If the block ends in an unconditional branch already, it is water, 922 // and is known to be out of range, so we'll always be adding a branch.) 923 if (&UserMBB->back() == UserMI || 924 OffsetIsInRange(UserOffset, OffsetOfNextBlock + (isThumb ? 2: 4), 925 U.MaxDisp, !isThumb)) { 926 DOUT << "Split at end of block\n"; 927 if (&UserMBB->back() == UserMI) 928 assert(BBHasFallthrough(UserMBB) && "Expected a fallthrough BB!"); 929 *NewMBB = next(MachineFunction::iterator(UserMBB)); 930 // Add an unconditional branch from UserMBB to fallthrough block. 931 // Record it for branch lengthening; this new branch will not get out of 932 // range, but if the preceding conditional branch is out of range, the 933 // targets will be exchanged, and the altered branch may be out of 934 // range, so the machinery has to know about it. 935 int UncondBr = isThumb ? ARM::tB : ARM::B; 936 BuildMI(UserMBB, TII->get(UncondBr)).addMBB(*NewMBB); 937 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 938 ImmBranches.push_back(ImmBranch(&UserMBB->back(), 939 MaxDisp, false, UncondBr)); 940 int delta = isThumb ? 2 : 4; 941 BBSizes[UserMBB->getNumber()] += delta; 942 AdjustBBOffsetsAfter(UserMBB, delta); 943 } else { 944 // What a big block. Find a place within the block to split it. 945 // This is a little tricky on Thumb since instructions are 2 bytes 946 // and constant pool entries are 4 bytes: if instruction I references 947 // island CPE, and instruction I+1 references CPE', it will 948 // not work well to put CPE as far forward as possible, since then 949 // CPE' cannot immediately follow it (that location is 2 bytes 950 // farther away from I+1 than CPE was from I) and we'd need to create 951 // a new island. So, we make a first guess, then walk through the 952 // instructions between the one currently being looked at and the 953 // possible insertion point, and make sure any other instructions 954 // that reference CPEs will be able to use the same island area; 955 // if not, we back up the insertion point. 956 957 // The 4 in the following is for the unconditional branch we'll be 958 // inserting (allows for long branch on Thumb). Alignment of the 959 // island is handled inside OffsetIsInRange. 960 unsigned BaseInsertOffset = UserOffset + U.MaxDisp -4; 961 // This could point off the end of the block if we've already got 962 // constant pool entries following this block; only the last one is 963 // in the water list. Back past any possible branches (allow for a 964 // conditional and a maximally long unconditional). 965 if (BaseInsertOffset >= BBOffsets[UserMBB->getNumber()+1]) 966 BaseInsertOffset = BBOffsets[UserMBB->getNumber()+1] - 967 (isThumb ? 6 : 8); 968 unsigned EndInsertOffset = BaseInsertOffset + 969 CPEMI->getOperand(2).getImm(); 970 MachineBasicBlock::iterator MI = UserMI; 971 ++MI; 972 unsigned CPUIndex = CPUserIndex+1; 973 for (unsigned Offset = UserOffset+ARM::GetInstSize(UserMI); 974 Offset < BaseInsertOffset; 975 Offset += ARM::GetInstSize(MI), 976 MI = next(MI)) { 977 if (CPUIndex < CPUsers.size() && CPUsers[CPUIndex].MI == MI) { 978 if (!OffsetIsInRange(Offset, EndInsertOffset, 979 CPUsers[CPUIndex].MaxDisp, !isThumb)) { 980 BaseInsertOffset -= (isThumb ? 2 : 4); 981 EndInsertOffset -= (isThumb ? 2 : 4); 982 } 983 // This is overly conservative, as we don't account for CPEMIs 984 // being reused within the block, but it doesn't matter much. 985 EndInsertOffset += CPUsers[CPUIndex].CPEMI->getOperand(2).getImm(); 986 CPUIndex++; 987 } 988 } 989 DOUT << "Split in middle of big block\n"; 990 *NewMBB = SplitBlockBeforeInstr(prior(MI)); 991 } 992} 993 994/// HandleConstantPoolUser - Analyze the specified user, checking to see if it 995/// is out-of-range. If so, pick it up the constant pool value and move it some 996/// place in-range. Return true if we changed any addresses (thus must run 997/// another pass of branch lengthening), false otherwise. 998bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction &Fn, 999 unsigned CPUserIndex){ 1000 CPUser &U = CPUsers[CPUserIndex]; 1001 MachineInstr *UserMI = U.MI; 1002 MachineInstr *CPEMI = U.CPEMI; 1003 unsigned CPI = CPEMI->getOperand(1).getConstantPoolIndex(); 1004 unsigned Size = CPEMI->getOperand(2).getImm(); 1005 MachineBasicBlock *NewMBB; 1006 // Compute this only once, it's expensive. The 4 or 8 is the value the 1007 // hardware keeps in the PC (2 insns ahead of the reference). 1008 unsigned UserOffset = GetOffsetOf(UserMI) + (isThumb ? 4 : 8); 1009 1010 // Special case: tLEApcrel are two instructions MI's. The actual user is the 1011 // second instruction. 1012 if (UserMI->getOpcode() == ARM::tLEApcrel) 1013 UserOffset += 2; 1014 1015 // See if the current entry is within range, or there is a clone of it 1016 // in range. 1017 int result = LookForExistingCPEntry(U, UserOffset); 1018 if (result==1) return false; 1019 else if (result==2) return true; 1020 1021 // No existing clone of this CPE is within range. 1022 // We will be generating a new clone. Get a UID for it. 1023 unsigned ID = NextUID++; 1024 1025 // Look for water where we can place this CPE. We look for the farthest one 1026 // away that will work. Forward references only for now (although later 1027 // we might find some that are backwards). 1028 1029 if (!LookForWater(U, UserOffset, &NewMBB)) { 1030 // No water found. 1031 DOUT << "No water found\n"; 1032 CreateNewWater(CPUserIndex, UserOffset, &NewMBB); 1033 } 1034 1035 // Okay, we know we can put an island before NewMBB now, do it! 1036 MachineBasicBlock *NewIsland = new MachineBasicBlock(); 1037 Fn.getBasicBlockList().insert(NewMBB, NewIsland); 1038 1039 // Update internal data structures to account for the newly inserted MBB. 1040 UpdateForInsertedWaterBlock(NewIsland); 1041 1042 // Decrement the old entry, and remove it if refcount becomes 0. 1043 DecrementOldEntry(CPI, CPEMI); 1044 1045 // Now that we have an island to add the CPE to, clone the original CPE and 1046 // add it to the island. 1047 U.CPEMI = BuildMI(NewIsland, TII->get(ARM::CONSTPOOL_ENTRY)) 1048 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size); 1049 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1050 NumCPEs++; 1051 1052 BBOffsets[NewIsland->getNumber()] = BBOffsets[NewMBB->getNumber()]; 1053 // Compensate for .align 2 in thumb mode. 1054 if (isThumb && BBOffsets[NewIsland->getNumber()]%4 != 0) 1055 Size += 2; 1056 // Increase the size of the island block to account for the new entry. 1057 BBSizes[NewIsland->getNumber()] += Size; 1058 AdjustBBOffsetsAfter(NewIsland, Size); 1059 1060 // Finally, change the CPI in the instruction operand to be ID. 1061 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) 1062 if (UserMI->getOperand(i).isConstantPoolIndex()) { 1063 UserMI->getOperand(i).setConstantPoolIndex(ID); 1064 break; 1065 } 1066 1067 DOUT << " Moved CPE to #" << ID << " CPI=" << CPI << "\t" << *UserMI; 1068 1069 return true; 1070} 1071 1072/// RemoveDeadCPEMI - Remove a dead constant pool entry instruction. Update 1073/// sizes and offsets of impacted basic blocks. 1074void ARMConstantIslands::RemoveDeadCPEMI(MachineInstr *CPEMI) { 1075 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1076 unsigned Size = CPEMI->getOperand(2).getImm(); 1077 CPEMI->eraseFromParent(); 1078 BBSizes[CPEBB->getNumber()] -= Size; 1079 // All succeeding offsets have the current size value added in, fix this. 1080 if (CPEBB->empty()) { 1081 // In thumb mode, the size of island may be padded by two to compensate for 1082 // the alignment requirement. Then it will now be 2 when the block is 1083 // empty, so fix this. 1084 // All succeeding offsets have the current size value added in, fix this. 1085 if (BBSizes[CPEBB->getNumber()] != 0) { 1086 Size += BBSizes[CPEBB->getNumber()]; 1087 BBSizes[CPEBB->getNumber()] = 0; 1088 } 1089 } 1090 AdjustBBOffsetsAfter(CPEBB, -Size); 1091 // An island has only one predecessor BB and one successor BB. Check if 1092 // this BB's predecessor jumps directly to this BB's successor. This 1093 // shouldn't happen currently. 1094 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); 1095 // FIXME: remove the empty blocks after all the work is done? 1096} 1097 1098/// RemoveUnusedCPEntries - Remove constant pool entries whose refcounts 1099/// are zero. 1100bool ARMConstantIslands::RemoveUnusedCPEntries() { 1101 unsigned MadeChange = false; 1102 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 1103 std::vector<CPEntry> &CPEs = CPEntries[i]; 1104 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { 1105 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { 1106 RemoveDeadCPEMI(CPEs[j].CPEMI); 1107 CPEs[j].CPEMI = NULL; 1108 MadeChange = true; 1109 } 1110 } 1111 } 1112 return MadeChange; 1113} 1114 1115/// BBIsInRange - Returns true if the distance between specific MI and 1116/// specific BB can fit in MI's displacement field. 1117bool ARMConstantIslands::BBIsInRange(MachineInstr *MI,MachineBasicBlock *DestBB, 1118 unsigned MaxDisp) { 1119 unsigned PCAdj = isThumb ? 4 : 8; 1120 unsigned BrOffset = GetOffsetOf(MI) + PCAdj; 1121 unsigned DestOffset = BBOffsets[DestBB->getNumber()]; 1122 1123 DOUT << "Branch of destination BB#" << DestBB->getNumber() 1124 << " from BB#" << MI->getParent()->getNumber() 1125 << " max delta=" << MaxDisp 1126 << " from " << GetOffsetOf(MI) << " to " << DestOffset 1127 << " offset " << int(DestOffset-BrOffset) << "\t" << *MI; 1128 1129 if (BrOffset <= DestOffset) { 1130 // Branch before the Dest. 1131 if (DestOffset-BrOffset <= MaxDisp) 1132 return true; 1133 } else { 1134 if (BrOffset-DestOffset <= MaxDisp) 1135 return true; 1136 } 1137 return false; 1138} 1139 1140/// FixUpImmediateBr - Fix up an immediate branch whose destination is too far 1141/// away to fit in its displacement field. 1142bool ARMConstantIslands::FixUpImmediateBr(MachineFunction &Fn, ImmBranch &Br) { 1143 MachineInstr *MI = Br.MI; 1144 MachineBasicBlock *DestBB = MI->getOperand(0).getMachineBasicBlock(); 1145 1146 // Check to see if the DestBB is already in-range. 1147 if (BBIsInRange(MI, DestBB, Br.MaxDisp)) 1148 return false; 1149 1150 if (!Br.isCond) 1151 return FixUpUnconditionalBr(Fn, Br); 1152 return FixUpConditionalBr(Fn, Br); 1153} 1154 1155/// FixUpUnconditionalBr - Fix up an unconditional branch whose destination is 1156/// too far away to fit in its displacement field. If the LR register has been 1157/// spilled in the epilogue, then we can use BL to implement a far jump. 1158/// Otherwise, add an intermediate branch instruction to to a branch. 1159bool 1160ARMConstantIslands::FixUpUnconditionalBr(MachineFunction &Fn, ImmBranch &Br) { 1161 MachineInstr *MI = Br.MI; 1162 MachineBasicBlock *MBB = MI->getParent(); 1163 assert(isThumb && "Expected a Thumb function!"); 1164 1165 // Use BL to implement far jump. 1166 Br.MaxDisp = (1 << 21) * 2; 1167 MI->setInstrDescriptor(TII->get(ARM::tBfar)); 1168 BBSizes[MBB->getNumber()] += 2; 1169 AdjustBBOffsetsAfter(MBB, 2); 1170 HasFarJump = true; 1171 NumUBrFixed++; 1172 1173 DOUT << " Changed B to long jump " << *MI; 1174 1175 return true; 1176} 1177 1178/// FixUpConditionalBr - Fix up a conditional branch whose destination is too 1179/// far away to fit in its displacement field. It is converted to an inverse 1180/// conditional branch + an unconditional branch to the destination. 1181bool 1182ARMConstantIslands::FixUpConditionalBr(MachineFunction &Fn, ImmBranch &Br) { 1183 MachineInstr *MI = Br.MI; 1184 MachineBasicBlock *DestBB = MI->getOperand(0).getMachineBasicBlock(); 1185 1186 // Add a unconditional branch to the destination and invert the branch 1187 // condition to jump over it: 1188 // blt L1 1189 // => 1190 // bge L2 1191 // b L1 1192 // L2: 1193 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImmedValue(); 1194 CC = ARMCC::getOppositeCondition(CC); 1195 1196 // If the branch is at the end of its MBB and that has a fall-through block, 1197 // direct the updated conditional branch to the fall-through block. Otherwise, 1198 // split the MBB before the next instruction. 1199 MachineBasicBlock *MBB = MI->getParent(); 1200 MachineInstr *BMI = &MBB->back(); 1201 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); 1202 1203 NumCBrFixed++; 1204 if (BMI != MI) { 1205 if (next(MachineBasicBlock::iterator(MI)) == MBB->back() && 1206 BMI->getOpcode() == Br.UncondBr) { 1207 // Last MI in the BB is a unconditional branch. Can we simply invert the 1208 // condition and swap destinations: 1209 // beq L1 1210 // b L2 1211 // => 1212 // bne L2 1213 // b L1 1214 MachineBasicBlock *NewDest = BMI->getOperand(0).getMachineBasicBlock(); 1215 if (BBIsInRange(MI, NewDest, Br.MaxDisp)) { 1216 DOUT << " Invert Bcc condition and swap its destination with " << *BMI; 1217 BMI->getOperand(0).setMachineBasicBlock(DestBB); 1218 MI->getOperand(0).setMachineBasicBlock(NewDest); 1219 MI->getOperand(1).setImm(CC); 1220 return true; 1221 } 1222 } 1223 } 1224 1225 if (NeedSplit) { 1226 SplitBlockBeforeInstr(MI); 1227 // No need for the branch to the next block. We're adding a unconditional 1228 // branch to the destination. 1229 int delta = ARM::GetInstSize(&MBB->back()); 1230 BBSizes[MBB->getNumber()] -= delta; 1231 MachineBasicBlock* SplitBB = next(MachineFunction::iterator(MBB)); 1232 AdjustBBOffsetsAfter(SplitBB, -delta); 1233 MBB->back().eraseFromParent(); 1234 // BBOffsets[SplitBB] is wrong temporarily, fixed below 1235 } 1236 MachineBasicBlock *NextBB = next(MachineFunction::iterator(MBB)); 1237 1238 DOUT << " Insert B to BB#" << DestBB->getNumber() 1239 << " also invert condition and change dest. to BB#" 1240 << NextBB->getNumber() << "\n"; 1241 1242 // Insert a new conditional branch and a new unconditional branch. 1243 // Also update the ImmBranch as well as adding a new entry for the new branch. 1244 BuildMI(MBB, TII->get(MI->getOpcode())).addMBB(NextBB).addImm(CC); 1245 Br.MI = &MBB->back(); 1246 BBSizes[MBB->getNumber()] += ARM::GetInstSize(&MBB->back()); 1247 BuildMI(MBB, TII->get(Br.UncondBr)).addMBB(DestBB); 1248 BBSizes[MBB->getNumber()] += ARM::GetInstSize(&MBB->back()); 1249 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1250 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1251 1252 // Remove the old conditional branch. It may or may not still be in MBB. 1253 BBSizes[MI->getParent()->getNumber()] -= ARM::GetInstSize(MI); 1254 MI->eraseFromParent(); 1255 1256 // The net size change is an addition of one unconditional branch. 1257 int delta = ARM::GetInstSize(&MBB->back()); 1258 AdjustBBOffsetsAfter(MBB, delta); 1259 return true; 1260} 1261 1262/// UndoLRSpillRestore - Remove Thumb push / pop instructions that only spills 1263/// LR / restores LR to pc. 1264bool ARMConstantIslands::UndoLRSpillRestore() { 1265 bool MadeChange = false; 1266 for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) { 1267 MachineInstr *MI = PushPopMIs[i]; 1268 if (MI->getNumOperands() == 1) { 1269 if (MI->getOpcode() == ARM::tPOP_RET && 1270 MI->getOperand(0).getReg() == ARM::PC) 1271 BuildMI(MI->getParent(), TII->get(ARM::tBX_RET)); 1272 MI->eraseFromParent(); 1273 MadeChange = true; 1274 } 1275 } 1276 return MadeChange; 1277} 1278