ARMConstantIslandPass.cpp revision 1fc7d715aa35703fcc4a87ece718a8c447e8ee72
1//===-- ARMConstantIslandPass.cpp - ARM constant islands --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains a pass that splits the constant pool up into 'islands'
11// which are scattered through-out the function.  This is required due to the
12// limited pc-relative displacements that ARM has.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "arm-cp-islands"
17#include "ARM.h"
18#include "ARMAddressingModes.h"
19#include "ARMMachineFunctionInfo.h"
20#include "ARMInstrInfo.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/CodeGen/MachineFunctionPass.h"
23#include "llvm/CodeGen/MachineInstrBuilder.h"
24#include "llvm/CodeGen/MachineJumpTableInfo.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/raw_ostream.h"
30#include "llvm/ADT/SmallSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/Support/CommandLine.h"
35#include <algorithm>
36using namespace llvm;
37
38STATISTIC(NumCPEs,       "Number of constpool entries");
39STATISTIC(NumSplit,      "Number of uncond branches inserted");
40STATISTIC(NumCBrFixed,   "Number of cond branches fixed");
41STATISTIC(NumUBrFixed,   "Number of uncond branches fixed");
42STATISTIC(NumTBs,        "Number of table branches generated");
43STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk");
44STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk");
45STATISTIC(NumCBZ,        "Number of CBZ / CBNZ formed");
46STATISTIC(NumJTMoved,    "Number of jump table destination blocks moved");
47
48
49static cl::opt<bool>
50AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(false),
51          cl::desc("Adjust basic block layout to better use TB[BH]"));
52
53namespace {
54  /// ARMConstantIslands - Due to limited PC-relative displacements, ARM
55  /// requires constant pool entries to be scattered among the instructions
56  /// inside a function.  To do this, it completely ignores the normal LLVM
57  /// constant pool; instead, it places constants wherever it feels like with
58  /// special instructions.
59  ///
60  /// The terminology used in this pass includes:
61  ///   Islands - Clumps of constants placed in the function.
62  ///   Water   - Potential places where an island could be formed.
63  ///   CPE     - A constant pool entry that has been placed somewhere, which
64  ///             tracks a list of users.
65  class ARMConstantIslands : public MachineFunctionPass {
66    /// BBSizes - The size of each MachineBasicBlock in bytes of code, indexed
67    /// by MBB Number.  The two-byte pads required for Thumb alignment are
68    /// counted as part of the following block (i.e., the offset and size for
69    /// a padded block will both be ==2 mod 4).
70    std::vector<unsigned> BBSizes;
71
72    /// BBOffsets - the offset of each MBB in bytes, starting from 0.
73    /// The two-byte pads required for Thumb alignment are counted as part of
74    /// the following block.
75    std::vector<unsigned> BBOffsets;
76
77    /// WaterList - A sorted list of basic blocks where islands could be placed
78    /// (i.e. blocks that don't fall through to the following block, due
79    /// to a return, unreachable, or unconditional branch).
80    std::vector<MachineBasicBlock*> WaterList;
81
82    /// NewWaterList - The subset of WaterList that was created since the
83    /// previous iteration by inserting unconditional branches.
84    SmallSet<MachineBasicBlock*, 4> NewWaterList;
85
86    typedef std::vector<MachineBasicBlock*>::iterator water_iterator;
87
88    /// CPUser - One user of a constant pool, keeping the machine instruction
89    /// pointer, the constant pool being referenced, and the max displacement
90    /// allowed from the instruction to the CP.  The HighWaterMark records the
91    /// highest basic block where a new CPEntry can be placed.  To ensure this
92    /// pass terminates, the CP entries are initially placed at the end of the
93    /// function and then move monotonically to lower addresses.  The
94    /// exception to this rule is when the current CP entry for a particular
95    /// CPUser is out of range, but there is another CP entry for the same
96    /// constant value in range.  We want to use the existing in-range CP
97    /// entry, but if it later moves out of range, the search for new water
98    /// should resume where it left off.  The HighWaterMark is used to record
99    /// that point.
100    struct CPUser {
101      MachineInstr *MI;
102      MachineInstr *CPEMI;
103      MachineBasicBlock *HighWaterMark;
104      unsigned MaxDisp;
105      bool NegOk;
106      bool IsSoImm;
107      CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
108             bool neg, bool soimm)
109        : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) {
110        HighWaterMark = CPEMI->getParent();
111      }
112    };
113
114    /// CPUsers - Keep track of all of the machine instructions that use various
115    /// constant pools and their max displacement.
116    std::vector<CPUser> CPUsers;
117
118    /// CPEntry - One per constant pool entry, keeping the machine instruction
119    /// pointer, the constpool index, and the number of CPUser's which
120    /// reference this entry.
121    struct CPEntry {
122      MachineInstr *CPEMI;
123      unsigned CPI;
124      unsigned RefCount;
125      CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
126        : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
127    };
128
129    /// CPEntries - Keep track of all of the constant pool entry machine
130    /// instructions. For each original constpool index (i.e. those that
131    /// existed upon entry to this pass), it keeps a vector of entries.
132    /// Original elements are cloned as we go along; the clones are
133    /// put in the vector of the original element, but have distinct CPIs.
134    std::vector<std::vector<CPEntry> > CPEntries;
135
136    /// ImmBranch - One per immediate branch, keeping the machine instruction
137    /// pointer, conditional or unconditional, the max displacement,
138    /// and (if isCond is true) the corresponding unconditional branch
139    /// opcode.
140    struct ImmBranch {
141      MachineInstr *MI;
142      unsigned MaxDisp : 31;
143      bool isCond : 1;
144      int UncondBr;
145      ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
146        : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
147    };
148
149    /// ImmBranches - Keep track of all the immediate branch instructions.
150    ///
151    std::vector<ImmBranch> ImmBranches;
152
153    /// PushPopMIs - Keep track of all the Thumb push / pop instructions.
154    ///
155    SmallVector<MachineInstr*, 4> PushPopMIs;
156
157    /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions.
158    SmallVector<MachineInstr*, 4> T2JumpTables;
159
160    /// HasFarJump - True if any far jump instruction has been emitted during
161    /// the branch fix up pass.
162    bool HasFarJump;
163
164    const TargetInstrInfo *TII;
165    const ARMSubtarget *STI;
166    ARMFunctionInfo *AFI;
167    bool isThumb;
168    bool isThumb1;
169    bool isThumb2;
170  public:
171    static char ID;
172    ARMConstantIslands() : MachineFunctionPass(&ID) {}
173
174    virtual bool runOnMachineFunction(MachineFunction &MF);
175
176    virtual const char *getPassName() const {
177      return "ARM constant island placement and branch shortening pass";
178    }
179
180  private:
181    void DoInitialPlacement(MachineFunction &MF,
182                            std::vector<MachineInstr*> &CPEMIs);
183    CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
184    void InitialFunctionScan(MachineFunction &MF,
185                             const std::vector<MachineInstr*> &CPEMIs);
186    MachineBasicBlock *SplitBlockBeforeInstr(MachineInstr *MI);
187    void UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB);
188    void AdjustBBOffsetsAfter(MachineBasicBlock *BB, int delta);
189    bool DecrementOldEntry(unsigned CPI, MachineInstr* CPEMI);
190    int LookForExistingCPEntry(CPUser& U, unsigned UserOffset);
191    bool LookForWater(CPUser&U, unsigned UserOffset, water_iterator &WaterIter);
192    void CreateNewWater(unsigned CPUserIndex, unsigned UserOffset,
193                        MachineBasicBlock *&NewMBB);
194    bool HandleConstantPoolUser(MachineFunction &MF, unsigned CPUserIndex);
195    void RemoveDeadCPEMI(MachineInstr *CPEMI);
196    bool RemoveUnusedCPEntries();
197    bool CPEIsInRange(MachineInstr *MI, unsigned UserOffset,
198                      MachineInstr *CPEMI, unsigned Disp, bool NegOk,
199                      bool DoDump = false);
200    bool WaterIsInRange(unsigned UserOffset, MachineBasicBlock *Water,
201                        CPUser &U);
202    bool OffsetIsInRange(unsigned UserOffset, unsigned TrialOffset,
203                         unsigned Disp, bool NegativeOK, bool IsSoImm = false);
204    bool BBIsInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
205    bool FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br);
206    bool FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br);
207    bool FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br);
208    bool UndoLRSpillRestore();
209    bool OptimizeThumb2Instructions(MachineFunction &MF);
210    bool OptimizeThumb2Branches(MachineFunction &MF);
211    bool OptimizeThumb2JumpTables(MachineFunction &MF);
212    MachineBasicBlock *AdjustJTTargetBlockForward(MachineBasicBlock *BB,
213                                                  MachineBasicBlock *JTBB);
214
215    unsigned GetOffsetOf(MachineInstr *MI) const;
216    void dumpBBs();
217    void verify(MachineFunction &MF);
218  };
219  char ARMConstantIslands::ID = 0;
220}
221
222/// verify - check BBOffsets, BBSizes, alignment of islands
223void ARMConstantIslands::verify(MachineFunction &MF) {
224  assert(BBOffsets.size() == BBSizes.size());
225  for (unsigned i = 1, e = BBOffsets.size(); i != e; ++i)
226    assert(BBOffsets[i-1]+BBSizes[i-1] == BBOffsets[i]);
227  if (!isThumb)
228    return;
229#ifndef NDEBUG
230  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
231       MBBI != E; ++MBBI) {
232    MachineBasicBlock *MBB = MBBI;
233    if (!MBB->empty() &&
234        MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) {
235      unsigned MBBId = MBB->getNumber();
236      assert((BBOffsets[MBBId]%4 == 0 && BBSizes[MBBId]%4 == 0) ||
237             (BBOffsets[MBBId]%4 != 0 && BBSizes[MBBId]%4 != 0));
238    }
239  }
240#endif
241}
242
243/// print block size and offset information - debugging
244void ARMConstantIslands::dumpBBs() {
245  for (unsigned J = 0, E = BBOffsets.size(); J !=E; ++J) {
246    DEBUG(errs() << "block " << J << " offset " << BBOffsets[J]
247                 << " size " << BBSizes[J] << "\n");
248  }
249}
250
251/// createARMConstantIslandPass - returns an instance of the constpool
252/// island pass.
253FunctionPass *llvm::createARMConstantIslandPass() {
254  return new ARMConstantIslands();
255}
256
257bool ARMConstantIslands::runOnMachineFunction(MachineFunction &MF) {
258  MachineConstantPool &MCP = *MF.getConstantPool();
259
260  TII = MF.getTarget().getInstrInfo();
261  AFI = MF.getInfo<ARMFunctionInfo>();
262  STI = &MF.getTarget().getSubtarget<ARMSubtarget>();
263
264  isThumb = AFI->isThumbFunction();
265  isThumb1 = AFI->isThumb1OnlyFunction();
266  isThumb2 = AFI->isThumb2Function();
267
268  HasFarJump = false;
269
270  // Renumber all of the machine basic blocks in the function, guaranteeing that
271  // the numbers agree with the position of the block in the function.
272  MF.RenumberBlocks();
273
274  // Thumb1 functions containing constant pools get 4-byte alignment.
275  // This is so we can keep exact track of where the alignment padding goes.
276
277  // Set default. Thumb1 function is 2-byte aligned, ARM and Thumb2 are 4-byte
278  // aligned.
279  AFI->setAlign(isThumb1 ? 1U : 2U);
280
281  // Perform the initial placement of the constant pool entries.  To start with,
282  // we put them all at the end of the function.
283  std::vector<MachineInstr*> CPEMIs;
284  if (!MCP.isEmpty()) {
285    DoInitialPlacement(MF, CPEMIs);
286    if (isThumb1)
287      AFI->setAlign(2U);
288  }
289
290  /// The next UID to take is the first unused one.
291  AFI->initConstPoolEntryUId(CPEMIs.size());
292
293  // Do the initial scan of the function, building up information about the
294  // sizes of each block, the location of all the water, and finding all of the
295  // constant pool users.
296  InitialFunctionScan(MF, CPEMIs);
297  CPEMIs.clear();
298
299  /// Remove dead constant pool entries.
300  RemoveUnusedCPEntries();
301
302  // Iteratively place constant pool entries and fix up branches until there
303  // is no change.
304  bool MadeChange = false;
305  unsigned NoCPIters = 0, NoBRIters = 0;
306  while (true) {
307    bool CPChange = false;
308    for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
309      CPChange |= HandleConstantPoolUser(MF, i);
310    if (CPChange && ++NoCPIters > 30)
311      llvm_unreachable("Constant Island pass failed to converge!");
312    DEBUG(dumpBBs());
313
314    // Clear NewWaterList now.  If we split a block for branches, it should
315    // appear as "new water" for the next iteration of constant pool placement.
316    NewWaterList.clear();
317
318    bool BRChange = false;
319    for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
320      BRChange |= FixUpImmediateBr(MF, ImmBranches[i]);
321    if (BRChange && ++NoBRIters > 30)
322      llvm_unreachable("Branch Fix Up pass failed to converge!");
323    DEBUG(dumpBBs());
324
325    if (!CPChange && !BRChange)
326      break;
327    MadeChange = true;
328  }
329
330  // Shrink 32-bit Thumb2 branch, load, and store instructions.
331  if (isThumb2)
332    MadeChange |= OptimizeThumb2Instructions(MF);
333
334  // After a while, this might be made debug-only, but it is not expensive.
335  verify(MF);
336
337  // If LR has been forced spilled and no far jumps (i.e. BL) has been issued.
338  // Undo the spill / restore of LR if possible.
339  if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump())
340    MadeChange |= UndoLRSpillRestore();
341
342  BBSizes.clear();
343  BBOffsets.clear();
344  WaterList.clear();
345  CPUsers.clear();
346  CPEntries.clear();
347  ImmBranches.clear();
348  PushPopMIs.clear();
349  T2JumpTables.clear();
350
351  return MadeChange;
352}
353
354/// DoInitialPlacement - Perform the initial placement of the constant pool
355/// entries.  To start with, we put them all at the end of the function.
356void ARMConstantIslands::DoInitialPlacement(MachineFunction &MF,
357                                        std::vector<MachineInstr*> &CPEMIs) {
358  // Create the basic block to hold the CPE's.
359  MachineBasicBlock *BB = MF.CreateMachineBasicBlock();
360  MF.push_back(BB);
361
362  // Add all of the constants from the constant pool to the end block, use an
363  // identity mapping of CPI's to CPE's.
364  const std::vector<MachineConstantPoolEntry> &CPs =
365    MF.getConstantPool()->getConstants();
366
367  const TargetData &TD = *MF.getTarget().getTargetData();
368  for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
369    unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
370    // Verify that all constant pool entries are a multiple of 4 bytes.  If not,
371    // we would have to pad them out or something so that instructions stay
372    // aligned.
373    assert((Size & 3) == 0 && "CP Entry not multiple of 4 bytes!");
374    MachineInstr *CPEMI =
375      BuildMI(BB, DebugLoc::getUnknownLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
376                           .addImm(i).addConstantPoolIndex(i).addImm(Size);
377    CPEMIs.push_back(CPEMI);
378
379    // Add a new CPEntry, but no corresponding CPUser yet.
380    std::vector<CPEntry> CPEs;
381    CPEs.push_back(CPEntry(CPEMI, i));
382    CPEntries.push_back(CPEs);
383    NumCPEs++;
384    DEBUG(errs() << "Moved CPI#" << i << " to end of function as #" << i
385                 << "\n");
386  }
387}
388
389/// BBHasFallthrough - Return true if the specified basic block can fallthrough
390/// into the block immediately after it.
391static bool BBHasFallthrough(MachineBasicBlock *MBB) {
392  // Get the next machine basic block in the function.
393  MachineFunction::iterator MBBI = MBB;
394  if (next(MBBI) == MBB->getParent()->end())  // Can't fall off end of function.
395    return false;
396
397  MachineBasicBlock *NextBB = next(MBBI);
398  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
399       E = MBB->succ_end(); I != E; ++I)
400    if (*I == NextBB)
401      return true;
402
403  return false;
404}
405
406/// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
407/// look up the corresponding CPEntry.
408ARMConstantIslands::CPEntry
409*ARMConstantIslands::findConstPoolEntry(unsigned CPI,
410                                        const MachineInstr *CPEMI) {
411  std::vector<CPEntry> &CPEs = CPEntries[CPI];
412  // Number of entries per constpool index should be small, just do a
413  // linear search.
414  for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
415    if (CPEs[i].CPEMI == CPEMI)
416      return &CPEs[i];
417  }
418  return NULL;
419}
420
421/// InitialFunctionScan - Do the initial scan of the function, building up
422/// information about the sizes of each block, the location of all the water,
423/// and finding all of the constant pool users.
424void ARMConstantIslands::InitialFunctionScan(MachineFunction &MF,
425                                 const std::vector<MachineInstr*> &CPEMIs) {
426  unsigned Offset = 0;
427  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
428       MBBI != E; ++MBBI) {
429    MachineBasicBlock &MBB = *MBBI;
430
431    // If this block doesn't fall through into the next MBB, then this is
432    // 'water' that a constant pool island could be placed.
433    if (!BBHasFallthrough(&MBB))
434      WaterList.push_back(&MBB);
435
436    unsigned MBBSize = 0;
437    for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
438         I != E; ++I) {
439      // Add instruction size to MBBSize.
440      MBBSize += TII->GetInstSizeInBytes(I);
441
442      int Opc = I->getOpcode();
443      if (I->getDesc().isBranch()) {
444        bool isCond = false;
445        unsigned Bits = 0;
446        unsigned Scale = 1;
447        int UOpc = Opc;
448        switch (Opc) {
449        default:
450          continue;  // Ignore other JT branches
451        case ARM::tBR_JTr:
452          // A Thumb1 table jump may involve padding; for the offsets to
453          // be right, functions containing these must be 4-byte aligned.
454          AFI->setAlign(2U);
455          if ((Offset+MBBSize)%4 != 0)
456            // FIXME: Add a pseudo ALIGN instruction instead.
457            MBBSize += 2;           // padding
458          continue;   // Does not get an entry in ImmBranches
459        case ARM::t2BR_JT:
460          T2JumpTables.push_back(I);
461          continue;   // Does not get an entry in ImmBranches
462        case ARM::Bcc:
463          isCond = true;
464          UOpc = ARM::B;
465          // Fallthrough
466        case ARM::B:
467          Bits = 24;
468          Scale = 4;
469          break;
470        case ARM::tBcc:
471          isCond = true;
472          UOpc = ARM::tB;
473          Bits = 8;
474          Scale = 2;
475          break;
476        case ARM::tB:
477          Bits = 11;
478          Scale = 2;
479          break;
480        case ARM::t2Bcc:
481          isCond = true;
482          UOpc = ARM::t2B;
483          Bits = 20;
484          Scale = 2;
485          break;
486        case ARM::t2B:
487          Bits = 24;
488          Scale = 2;
489          break;
490        }
491
492        // Record this immediate branch.
493        unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
494        ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc));
495      }
496
497      if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET)
498        PushPopMIs.push_back(I);
499
500      if (Opc == ARM::CONSTPOOL_ENTRY)
501        continue;
502
503      // Scan the instructions for constant pool operands.
504      for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
505        if (I->getOperand(op).isCPI()) {
506          // We found one.  The addressing mode tells us the max displacement
507          // from the PC that this instruction permits.
508
509          // Basic size info comes from the TSFlags field.
510          unsigned Bits = 0;
511          unsigned Scale = 1;
512          bool NegOk = false;
513          bool IsSoImm = false;
514
515          switch (Opc) {
516          default:
517            llvm_unreachable("Unknown addressing mode for CP reference!");
518            break;
519
520          // Taking the address of a CP entry.
521          case ARM::LEApcrel:
522            // This takes a SoImm, which is 8 bit immediate rotated. We'll
523            // pretend the maximum offset is 255 * 4. Since each instruction
524            // 4 byte wide, this is always correct. We'llc heck for other
525            // displacements that fits in a SoImm as well.
526            Bits = 8;
527            Scale = 4;
528            NegOk = true;
529            IsSoImm = true;
530            break;
531          case ARM::t2LEApcrel:
532            Bits = 12;
533            NegOk = true;
534            break;
535          case ARM::tLEApcrel:
536            Bits = 8;
537            Scale = 4;
538            break;
539
540          case ARM::LDR:
541          case ARM::LDRcp:
542          case ARM::t2LDRpci:
543            Bits = 12;  // +-offset_12
544            NegOk = true;
545            break;
546
547          case ARM::tLDRpci:
548          case ARM::tLDRcp:
549            Bits = 8;
550            Scale = 4;  // +(offset_8*4)
551            break;
552
553          case ARM::VLDRD:
554          case ARM::VLDRS:
555            Bits = 8;
556            Scale = 4;  // +-(offset_8*4)
557            NegOk = true;
558            break;
559          }
560
561          // Remember that this is a user of a CP entry.
562          unsigned CPI = I->getOperand(op).getIndex();
563          MachineInstr *CPEMI = CPEMIs[CPI];
564          unsigned MaxOffs = ((1 << Bits)-1) * Scale;
565          CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm));
566
567          // Increment corresponding CPEntry reference count.
568          CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
569          assert(CPE && "Cannot find a corresponding CPEntry!");
570          CPE->RefCount++;
571
572          // Instructions can only use one CP entry, don't bother scanning the
573          // rest of the operands.
574          break;
575        }
576    }
577
578    // In thumb mode, if this block is a constpool island, we may need padding
579    // so it's aligned on 4 byte boundary.
580    if (isThumb &&
581        !MBB.empty() &&
582        MBB.begin()->getOpcode() == ARM::CONSTPOOL_ENTRY &&
583        (Offset%4) != 0)
584      MBBSize += 2;
585
586    BBSizes.push_back(MBBSize);
587    BBOffsets.push_back(Offset);
588    Offset += MBBSize;
589  }
590}
591
592/// GetOffsetOf - Return the current offset of the specified machine instruction
593/// from the start of the function.  This offset changes as stuff is moved
594/// around inside the function.
595unsigned ARMConstantIslands::GetOffsetOf(MachineInstr *MI) const {
596  MachineBasicBlock *MBB = MI->getParent();
597
598  // The offset is composed of two things: the sum of the sizes of all MBB's
599  // before this instruction's block, and the offset from the start of the block
600  // it is in.
601  unsigned Offset = BBOffsets[MBB->getNumber()];
602
603  // If we're looking for a CONSTPOOL_ENTRY in Thumb, see if this block has
604  // alignment padding, and compensate if so.
605  if (isThumb &&
606      MI->getOpcode() == ARM::CONSTPOOL_ENTRY &&
607      Offset%4 != 0)
608    Offset += 2;
609
610  // Sum instructions before MI in MBB.
611  for (MachineBasicBlock::iterator I = MBB->begin(); ; ++I) {
612    assert(I != MBB->end() && "Didn't find MI in its own basic block?");
613    if (&*I == MI) return Offset;
614    Offset += TII->GetInstSizeInBytes(I);
615  }
616}
617
618/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
619/// ID.
620static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
621                              const MachineBasicBlock *RHS) {
622  return LHS->getNumber() < RHS->getNumber();
623}
624
625/// UpdateForInsertedWaterBlock - When a block is newly inserted into the
626/// machine function, it upsets all of the block numbers.  Renumber the blocks
627/// and update the arrays that parallel this numbering.
628void ARMConstantIslands::UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
629  // Renumber the MBB's to keep them consequtive.
630  NewBB->getParent()->RenumberBlocks(NewBB);
631
632  // Insert a size into BBSizes to align it properly with the (newly
633  // renumbered) block numbers.
634  BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0);
635
636  // Likewise for BBOffsets.
637  BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0);
638
639  // Next, update WaterList.  Specifically, we need to add NewMBB as having
640  // available water after it.
641  water_iterator IP =
642    std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
643                     CompareMBBNumbers);
644  WaterList.insert(IP, NewBB);
645}
646
647
648/// Split the basic block containing MI into two blocks, which are joined by
649/// an unconditional branch.  Update data structures and renumber blocks to
650/// account for this change and returns the newly created block.
651MachineBasicBlock *ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr *MI) {
652  MachineBasicBlock *OrigBB = MI->getParent();
653  MachineFunction &MF = *OrigBB->getParent();
654
655  // Create a new MBB for the code after the OrigBB.
656  MachineBasicBlock *NewBB =
657    MF.CreateMachineBasicBlock(OrigBB->getBasicBlock());
658  MachineFunction::iterator MBBI = OrigBB; ++MBBI;
659  MF.insert(MBBI, NewBB);
660
661  // Splice the instructions starting with MI over to NewBB.
662  NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
663
664  // Add an unconditional branch from OrigBB to NewBB.
665  // Note the new unconditional branch is not being recorded.
666  // There doesn't seem to be meaningful DebugInfo available; this doesn't
667  // correspond to anything in the source.
668  unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B;
669  BuildMI(OrigBB, DebugLoc::getUnknownLoc(), TII->get(Opc)).addMBB(NewBB);
670  NumSplit++;
671
672  // Update the CFG.  All succs of OrigBB are now succs of NewBB.
673  while (!OrigBB->succ_empty()) {
674    MachineBasicBlock *Succ = *OrigBB->succ_begin();
675    OrigBB->removeSuccessor(Succ);
676    NewBB->addSuccessor(Succ);
677
678    // This pass should be run after register allocation, so there should be no
679    // PHI nodes to update.
680    assert((Succ->empty() || Succ->begin()->getOpcode() != TargetInstrInfo::PHI)
681           && "PHI nodes should be eliminated by now!");
682  }
683
684  // OrigBB branches to NewBB.
685  OrigBB->addSuccessor(NewBB);
686
687  // Update internal data structures to account for the newly inserted MBB.
688  // This is almost the same as UpdateForInsertedWaterBlock, except that
689  // the Water goes after OrigBB, not NewBB.
690  MF.RenumberBlocks(NewBB);
691
692  // Insert a size into BBSizes to align it properly with the (newly
693  // renumbered) block numbers.
694  BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0);
695
696  // Likewise for BBOffsets.
697  BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0);
698
699  // Next, update WaterList.  Specifically, we need to add OrigMBB as having
700  // available water after it (but not if it's already there, which happens
701  // when splitting before a conditional branch that is followed by an
702  // unconditional branch - in that case we want to insert NewBB).
703  water_iterator IP =
704    std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
705                     CompareMBBNumbers);
706  MachineBasicBlock* WaterBB = *IP;
707  if (WaterBB == OrigBB)
708    WaterList.insert(next(IP), NewBB);
709  else
710    WaterList.insert(IP, OrigBB);
711  NewWaterList.insert(OrigBB);
712
713  // Figure out how large the first NewMBB is.  (It cannot
714  // contain a constpool_entry or tablejump.)
715  unsigned NewBBSize = 0;
716  for (MachineBasicBlock::iterator I = NewBB->begin(), E = NewBB->end();
717       I != E; ++I)
718    NewBBSize += TII->GetInstSizeInBytes(I);
719
720  unsigned OrigBBI = OrigBB->getNumber();
721  unsigned NewBBI = NewBB->getNumber();
722  // Set the size of NewBB in BBSizes.
723  BBSizes[NewBBI] = NewBBSize;
724
725  // We removed instructions from UserMBB, subtract that off from its size.
726  // Add 2 or 4 to the block to count the unconditional branch we added to it.
727  int delta = isThumb1 ? 2 : 4;
728  BBSizes[OrigBBI] -= NewBBSize - delta;
729
730  // ...and adjust BBOffsets for NewBB accordingly.
731  BBOffsets[NewBBI] = BBOffsets[OrigBBI] + BBSizes[OrigBBI];
732
733  // All BBOffsets following these blocks must be modified.
734  AdjustBBOffsetsAfter(NewBB, delta);
735
736  return NewBB;
737}
738
739/// OffsetIsInRange - Checks whether UserOffset (the location of a constant pool
740/// reference) is within MaxDisp of TrialOffset (a proposed location of a
741/// constant pool entry).
742bool ARMConstantIslands::OffsetIsInRange(unsigned UserOffset,
743                                         unsigned TrialOffset, unsigned MaxDisp,
744                                         bool NegativeOK, bool IsSoImm) {
745  // On Thumb offsets==2 mod 4 are rounded down by the hardware for
746  // purposes of the displacement computation; compensate for that here.
747  // Effectively, the valid range of displacements is 2 bytes smaller for such
748  // references.
749  unsigned TotalAdj = 0;
750  if (isThumb && UserOffset%4 !=0) {
751    UserOffset -= 2;
752    TotalAdj = 2;
753  }
754  // CPEs will be rounded up to a multiple of 4.
755  if (isThumb && TrialOffset%4 != 0) {
756    TrialOffset += 2;
757    TotalAdj += 2;
758  }
759
760  // In Thumb2 mode, later branch adjustments can shift instructions up and
761  // cause alignment change. In the worst case scenario this can cause the
762  // user's effective address to be subtracted by 2 and the CPE's address to
763  // be plus 2.
764  if (isThumb2 && TotalAdj != 4)
765    MaxDisp -= (4 - TotalAdj);
766
767  if (UserOffset <= TrialOffset) {
768    // User before the Trial.
769    if (TrialOffset - UserOffset <= MaxDisp)
770      return true;
771    // FIXME: Make use full range of soimm values.
772  } else if (NegativeOK) {
773    if (UserOffset - TrialOffset <= MaxDisp)
774      return true;
775    // FIXME: Make use full range of soimm values.
776  }
777  return false;
778}
779
780/// WaterIsInRange - Returns true if a CPE placed after the specified
781/// Water (a basic block) will be in range for the specific MI.
782
783bool ARMConstantIslands::WaterIsInRange(unsigned UserOffset,
784                                        MachineBasicBlock* Water, CPUser &U) {
785  unsigned MaxDisp = U.MaxDisp;
786  unsigned CPEOffset = BBOffsets[Water->getNumber()] +
787                       BBSizes[Water->getNumber()];
788
789  // If the CPE is to be inserted before the instruction, that will raise
790  // the offset of the instruction.
791  if (CPEOffset < UserOffset)
792    UserOffset += U.CPEMI->getOperand(2).getImm();
793
794  return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, U.NegOk, U.IsSoImm);
795}
796
797/// CPEIsInRange - Returns true if the distance between specific MI and
798/// specific ConstPool entry instruction can fit in MI's displacement field.
799bool ARMConstantIslands::CPEIsInRange(MachineInstr *MI, unsigned UserOffset,
800                                      MachineInstr *CPEMI, unsigned MaxDisp,
801                                      bool NegOk, bool DoDump) {
802  unsigned CPEOffset  = GetOffsetOf(CPEMI);
803  assert(CPEOffset%4 == 0 && "Misaligned CPE");
804
805  if (DoDump) {
806    DEBUG(errs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
807                 << " max delta=" << MaxDisp
808                 << " insn address=" << UserOffset
809                 << " CPE address=" << CPEOffset
810                 << " offset=" << int(CPEOffset-UserOffset) << "\t" << *MI);
811  }
812
813  return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
814}
815
816#ifndef NDEBUG
817/// BBIsJumpedOver - Return true of the specified basic block's only predecessor
818/// unconditionally branches to its only successor.
819static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
820  if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
821    return false;
822
823  MachineBasicBlock *Succ = *MBB->succ_begin();
824  MachineBasicBlock *Pred = *MBB->pred_begin();
825  MachineInstr *PredMI = &Pred->back();
826  if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB
827      || PredMI->getOpcode() == ARM::t2B)
828    return PredMI->getOperand(0).getMBB() == Succ;
829  return false;
830}
831#endif // NDEBUG
832
833void ARMConstantIslands::AdjustBBOffsetsAfter(MachineBasicBlock *BB,
834                                              int delta) {
835  MachineFunction::iterator MBBI = BB; MBBI = next(MBBI);
836  for(unsigned i = BB->getNumber()+1, e = BB->getParent()->getNumBlockIDs();
837      i < e; ++i) {
838    BBOffsets[i] += delta;
839    // If some existing blocks have padding, adjust the padding as needed, a
840    // bit tricky.  delta can be negative so don't use % on that.
841    if (!isThumb)
842      continue;
843    MachineBasicBlock *MBB = MBBI;
844    if (!MBB->empty()) {
845      // Constant pool entries require padding.
846      if (MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) {
847        unsigned OldOffset = BBOffsets[i] - delta;
848        if ((OldOffset%4) == 0 && (BBOffsets[i]%4) != 0) {
849          // add new padding
850          BBSizes[i] += 2;
851          delta += 2;
852        } else if ((OldOffset%4) != 0 && (BBOffsets[i]%4) == 0) {
853          // remove existing padding
854          BBSizes[i] -= 2;
855          delta -= 2;
856        }
857      }
858      // Thumb1 jump tables require padding.  They should be at the end;
859      // following unconditional branches are removed by AnalyzeBranch.
860      MachineInstr *ThumbJTMI = prior(MBB->end());
861      if (ThumbJTMI->getOpcode() == ARM::tBR_JTr) {
862        unsigned NewMIOffset = GetOffsetOf(ThumbJTMI);
863        unsigned OldMIOffset = NewMIOffset - delta;
864        if ((OldMIOffset%4) == 0 && (NewMIOffset%4) != 0) {
865          // remove existing padding
866          BBSizes[i] -= 2;
867          delta -= 2;
868        } else if ((OldMIOffset%4) != 0 && (NewMIOffset%4) == 0) {
869          // add new padding
870          BBSizes[i] += 2;
871          delta += 2;
872        }
873      }
874      if (delta==0)
875        return;
876    }
877    MBBI = next(MBBI);
878  }
879}
880
881/// DecrementOldEntry - find the constant pool entry with index CPI
882/// and instruction CPEMI, and decrement its refcount.  If the refcount
883/// becomes 0 remove the entry and instruction.  Returns true if we removed
884/// the entry, false if we didn't.
885
886bool ARMConstantIslands::DecrementOldEntry(unsigned CPI, MachineInstr *CPEMI) {
887  // Find the old entry. Eliminate it if it is no longer used.
888  CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
889  assert(CPE && "Unexpected!");
890  if (--CPE->RefCount == 0) {
891    RemoveDeadCPEMI(CPEMI);
892    CPE->CPEMI = NULL;
893    NumCPEs--;
894    return true;
895  }
896  return false;
897}
898
899/// LookForCPEntryInRange - see if the currently referenced CPE is in range;
900/// if not, see if an in-range clone of the CPE is in range, and if so,
901/// change the data structures so the user references the clone.  Returns:
902/// 0 = no existing entry found
903/// 1 = entry found, and there were no code insertions or deletions
904/// 2 = entry found, and there were code insertions or deletions
905int ARMConstantIslands::LookForExistingCPEntry(CPUser& U, unsigned UserOffset)
906{
907  MachineInstr *UserMI = U.MI;
908  MachineInstr *CPEMI  = U.CPEMI;
909
910  // Check to see if the CPE is already in-range.
911  if (CPEIsInRange(UserMI, UserOffset, CPEMI, U.MaxDisp, U.NegOk, true)) {
912    DEBUG(errs() << "In range\n");
913    return 1;
914  }
915
916  // No.  Look for previously created clones of the CPE that are in range.
917  unsigned CPI = CPEMI->getOperand(1).getIndex();
918  std::vector<CPEntry> &CPEs = CPEntries[CPI];
919  for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
920    // We already tried this one
921    if (CPEs[i].CPEMI == CPEMI)
922      continue;
923    // Removing CPEs can leave empty entries, skip
924    if (CPEs[i].CPEMI == NULL)
925      continue;
926    if (CPEIsInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.MaxDisp, U.NegOk)) {
927      DEBUG(errs() << "Replacing CPE#" << CPI << " with CPE#"
928                   << CPEs[i].CPI << "\n");
929      // Point the CPUser node to the replacement
930      U.CPEMI = CPEs[i].CPEMI;
931      // Change the CPI in the instruction operand to refer to the clone.
932      for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
933        if (UserMI->getOperand(j).isCPI()) {
934          UserMI->getOperand(j).setIndex(CPEs[i].CPI);
935          break;
936        }
937      // Adjust the refcount of the clone...
938      CPEs[i].RefCount++;
939      // ...and the original.  If we didn't remove the old entry, none of the
940      // addresses changed, so we don't need another pass.
941      return DecrementOldEntry(CPI, CPEMI) ? 2 : 1;
942    }
943  }
944  return 0;
945}
946
947/// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
948/// the specific unconditional branch instruction.
949static inline unsigned getUnconditionalBrDisp(int Opc) {
950  switch (Opc) {
951  case ARM::tB:
952    return ((1<<10)-1)*2;
953  case ARM::t2B:
954    return ((1<<23)-1)*2;
955  default:
956    break;
957  }
958
959  return ((1<<23)-1)*4;
960}
961
962/// LookForWater - Look for an existing entry in the WaterList in which
963/// we can place the CPE referenced from U so it's within range of U's MI.
964/// Returns true if found, false if not.  If it returns true, WaterIter
965/// is set to the WaterList entry.  For Thumb, prefer water that will not
966/// introduce padding to water that will.  To ensure that this pass
967/// terminates, the CPE location for a particular CPUser is only allowed to
968/// move to a lower address, so search backward from the end of the list and
969/// prefer the first water that is in range.
970bool ARMConstantIslands::LookForWater(CPUser &U, unsigned UserOffset,
971                                      water_iterator &WaterIter) {
972  if (WaterList.empty())
973    return false;
974
975  bool FoundWaterThatWouldPad = false;
976  water_iterator IPThatWouldPad;
977  for (water_iterator IP = prior(WaterList.end()),
978         B = WaterList.begin();; --IP) {
979    MachineBasicBlock* WaterBB = *IP;
980    // Check if water is in range and is either at a lower address than the
981    // current "high water mark" or a new water block that was created since
982    // the previous iteration by inserting an unconditional branch.  In the
983    // latter case, we want to allow resetting the high water mark back to
984    // this new water since we haven't seen it before.  Inserting branches
985    // should be relatively uncommon and when it does happen, we want to be
986    // sure to take advantage of it for all the CPEs near that block, so that
987    // we don't insert more branches than necessary.
988    if (WaterIsInRange(UserOffset, WaterBB, U) &&
989        (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
990         NewWaterList.count(WaterBB))) {
991      unsigned WBBId = WaterBB->getNumber();
992      if (isThumb &&
993          (BBOffsets[WBBId] + BBSizes[WBBId])%4 != 0) {
994        // This is valid Water, but would introduce padding.  Remember
995        // it in case we don't find any Water that doesn't do this.
996        if (!FoundWaterThatWouldPad) {
997          FoundWaterThatWouldPad = true;
998          IPThatWouldPad = IP;
999        }
1000      } else {
1001        WaterIter = IP;
1002        return true;
1003      }
1004    }
1005    if (IP == B)
1006      break;
1007  }
1008  if (FoundWaterThatWouldPad) {
1009    WaterIter = IPThatWouldPad;
1010    return true;
1011  }
1012  return false;
1013}
1014
1015/// CreateNewWater - No existing WaterList entry will work for
1016/// CPUsers[CPUserIndex], so create a place to put the CPE.  The end of the
1017/// block is used if in range, and the conditional branch munged so control
1018/// flow is correct.  Otherwise the block is split to create a hole with an
1019/// unconditional branch around it.  In either case NewMBB is set to a
1020/// block following which the new island can be inserted (the WaterList
1021/// is not adjusted).
1022void ARMConstantIslands::CreateNewWater(unsigned CPUserIndex,
1023                                        unsigned UserOffset,
1024                                        MachineBasicBlock *&NewMBB) {
1025  CPUser &U = CPUsers[CPUserIndex];
1026  MachineInstr *UserMI = U.MI;
1027  MachineInstr *CPEMI  = U.CPEMI;
1028  MachineBasicBlock *UserMBB = UserMI->getParent();
1029  unsigned OffsetOfNextBlock = BBOffsets[UserMBB->getNumber()] +
1030                               BBSizes[UserMBB->getNumber()];
1031  assert(OffsetOfNextBlock== BBOffsets[UserMBB->getNumber()+1]);
1032
1033  // If the block does not end in an unconditional branch already, and if the
1034  // end of the block is within range, make new water there.  (The addition
1035  // below is for the unconditional branch we will be adding: 4 bytes on ARM +
1036  // Thumb2, 2 on Thumb1.  Possible Thumb1 alignment padding is allowed for
1037  // inside OffsetIsInRange.
1038  if (BBHasFallthrough(UserMBB) &&
1039      OffsetIsInRange(UserOffset, OffsetOfNextBlock + (isThumb1 ? 2: 4),
1040                      U.MaxDisp, U.NegOk, U.IsSoImm)) {
1041    DEBUG(errs() << "Split at end of block\n");
1042    if (&UserMBB->back() == UserMI)
1043      assert(BBHasFallthrough(UserMBB) && "Expected a fallthrough BB!");
1044    NewMBB = next(MachineFunction::iterator(UserMBB));
1045    // Add an unconditional branch from UserMBB to fallthrough block.
1046    // Record it for branch lengthening; this new branch will not get out of
1047    // range, but if the preceding conditional branch is out of range, the
1048    // targets will be exchanged, and the altered branch may be out of
1049    // range, so the machinery has to know about it.
1050    int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B;
1051    BuildMI(UserMBB, DebugLoc::getUnknownLoc(),
1052            TII->get(UncondBr)).addMBB(NewMBB);
1053    unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
1054    ImmBranches.push_back(ImmBranch(&UserMBB->back(),
1055                          MaxDisp, false, UncondBr));
1056    int delta = isThumb1 ? 2 : 4;
1057    BBSizes[UserMBB->getNumber()] += delta;
1058    AdjustBBOffsetsAfter(UserMBB, delta);
1059  } else {
1060    // What a big block.  Find a place within the block to split it.
1061    // This is a little tricky on Thumb1 since instructions are 2 bytes
1062    // and constant pool entries are 4 bytes: if instruction I references
1063    // island CPE, and instruction I+1 references CPE', it will
1064    // not work well to put CPE as far forward as possible, since then
1065    // CPE' cannot immediately follow it (that location is 2 bytes
1066    // farther away from I+1 than CPE was from I) and we'd need to create
1067    // a new island.  So, we make a first guess, then walk through the
1068    // instructions between the one currently being looked at and the
1069    // possible insertion point, and make sure any other instructions
1070    // that reference CPEs will be able to use the same island area;
1071    // if not, we back up the insertion point.
1072
1073    // The 4 in the following is for the unconditional branch we'll be
1074    // inserting (allows for long branch on Thumb1).  Alignment of the
1075    // island is handled inside OffsetIsInRange.
1076    unsigned BaseInsertOffset = UserOffset + U.MaxDisp -4;
1077    // This could point off the end of the block if we've already got
1078    // constant pool entries following this block; only the last one is
1079    // in the water list.  Back past any possible branches (allow for a
1080    // conditional and a maximally long unconditional).
1081    if (BaseInsertOffset >= BBOffsets[UserMBB->getNumber()+1])
1082      BaseInsertOffset = BBOffsets[UserMBB->getNumber()+1] -
1083                              (isThumb1 ? 6 : 8);
1084    unsigned EndInsertOffset = BaseInsertOffset +
1085           CPEMI->getOperand(2).getImm();
1086    MachineBasicBlock::iterator MI = UserMI;
1087    ++MI;
1088    unsigned CPUIndex = CPUserIndex+1;
1089    for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI);
1090         Offset < BaseInsertOffset;
1091         Offset += TII->GetInstSizeInBytes(MI),
1092            MI = next(MI)) {
1093      if (CPUIndex < CPUsers.size() && CPUsers[CPUIndex].MI == MI) {
1094        CPUser &U = CPUsers[CPUIndex];
1095        if (!OffsetIsInRange(Offset, EndInsertOffset,
1096                             U.MaxDisp, U.NegOk, U.IsSoImm)) {
1097          BaseInsertOffset -= (isThumb1 ? 2 : 4);
1098          EndInsertOffset  -= (isThumb1 ? 2 : 4);
1099        }
1100        // This is overly conservative, as we don't account for CPEMIs
1101        // being reused within the block, but it doesn't matter much.
1102        EndInsertOffset += CPUsers[CPUIndex].CPEMI->getOperand(2).getImm();
1103        CPUIndex++;
1104      }
1105    }
1106    DEBUG(errs() << "Split in middle of big block\n");
1107    NewMBB = SplitBlockBeforeInstr(prior(MI));
1108  }
1109}
1110
1111/// HandleConstantPoolUser - Analyze the specified user, checking to see if it
1112/// is out-of-range.  If so, pick up the constant pool value and move it some
1113/// place in-range.  Return true if we changed any addresses (thus must run
1114/// another pass of branch lengthening), false otherwise.
1115bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction &MF,
1116                                                unsigned CPUserIndex) {
1117  CPUser &U = CPUsers[CPUserIndex];
1118  MachineInstr *UserMI = U.MI;
1119  MachineInstr *CPEMI  = U.CPEMI;
1120  unsigned CPI = CPEMI->getOperand(1).getIndex();
1121  unsigned Size = CPEMI->getOperand(2).getImm();
1122  // Compute this only once, it's expensive.  The 4 or 8 is the value the
1123  // hardware keeps in the PC.
1124  unsigned UserOffset = GetOffsetOf(UserMI) + (isThumb ? 4 : 8);
1125
1126  // See if the current entry is within range, or there is a clone of it
1127  // in range.
1128  int result = LookForExistingCPEntry(U, UserOffset);
1129  if (result==1) return false;
1130  else if (result==2) return true;
1131
1132  // No existing clone of this CPE is within range.
1133  // We will be generating a new clone.  Get a UID for it.
1134  unsigned ID = AFI->createConstPoolEntryUId();
1135
1136  // Look for water where we can place this CPE.
1137  MachineBasicBlock *NewIsland = MF.CreateMachineBasicBlock();
1138  MachineBasicBlock *NewMBB;
1139  water_iterator IP;
1140  if (LookForWater(U, UserOffset, IP)) {
1141    DEBUG(errs() << "found water in range\n");
1142    MachineBasicBlock *WaterBB = *IP;
1143
1144    // If the original WaterList entry was "new water" on this iteration,
1145    // propagate that to the new island.  This is just keeping NewWaterList
1146    // updated to match the WaterList, which will be updated below.
1147    if (NewWaterList.count(WaterBB)) {
1148      NewWaterList.erase(WaterBB);
1149      NewWaterList.insert(NewIsland);
1150    }
1151    // The new CPE goes before the following block (NewMBB).
1152    NewMBB = next(MachineFunction::iterator(WaterBB));
1153
1154  } else {
1155    // No water found.
1156    DEBUG(errs() << "No water found\n");
1157    CreateNewWater(CPUserIndex, UserOffset, NewMBB);
1158
1159    // SplitBlockBeforeInstr adds to WaterList, which is important when it is
1160    // called while handling branches so that the water will be seen on the
1161    // next iteration for constant pools, but in this context, we don't want
1162    // it.  Check for this so it will be removed from the WaterList.
1163    // Also remove any entry from NewWaterList.
1164    MachineBasicBlock *WaterBB = prior(MachineFunction::iterator(NewMBB));
1165    IP = std::find(WaterList.begin(), WaterList.end(), WaterBB);
1166    if (IP != WaterList.end())
1167      NewWaterList.erase(WaterBB);
1168
1169    // We are adding new water.  Update NewWaterList.
1170    NewWaterList.insert(NewIsland);
1171  }
1172
1173  // Remove the original WaterList entry; we want subsequent insertions in
1174  // this vicinity to go after the one we're about to insert.  This
1175  // considerably reduces the number of times we have to move the same CPE
1176  // more than once and is also important to ensure the algorithm terminates.
1177  if (IP != WaterList.end())
1178    WaterList.erase(IP);
1179
1180  // Okay, we know we can put an island before NewMBB now, do it!
1181  MF.insert(NewMBB, NewIsland);
1182
1183  // Update internal data structures to account for the newly inserted MBB.
1184  UpdateForInsertedWaterBlock(NewIsland);
1185
1186  // Decrement the old entry, and remove it if refcount becomes 0.
1187  DecrementOldEntry(CPI, CPEMI);
1188
1189  // Now that we have an island to add the CPE to, clone the original CPE and
1190  // add it to the island.
1191  U.HighWaterMark = NewIsland;
1192  U.CPEMI = BuildMI(NewIsland, DebugLoc::getUnknownLoc(),
1193                    TII->get(ARM::CONSTPOOL_ENTRY))
1194                .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
1195  CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1196  NumCPEs++;
1197
1198  BBOffsets[NewIsland->getNumber()] = BBOffsets[NewMBB->getNumber()];
1199  // Compensate for .align 2 in thumb mode.
1200  if (isThumb && BBOffsets[NewIsland->getNumber()]%4 != 0)
1201    Size += 2;
1202  // Increase the size of the island block to account for the new entry.
1203  BBSizes[NewIsland->getNumber()] += Size;
1204  AdjustBBOffsetsAfter(NewIsland, Size);
1205
1206  // Finally, change the CPI in the instruction operand to be ID.
1207  for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
1208    if (UserMI->getOperand(i).isCPI()) {
1209      UserMI->getOperand(i).setIndex(ID);
1210      break;
1211    }
1212
1213  DEBUG(errs() << "  Moved CPE to #" << ID << " CPI=" << CPI
1214           << '\t' << *UserMI);
1215
1216  return true;
1217}
1218
1219/// RemoveDeadCPEMI - Remove a dead constant pool entry instruction. Update
1220/// sizes and offsets of impacted basic blocks.
1221void ARMConstantIslands::RemoveDeadCPEMI(MachineInstr *CPEMI) {
1222  MachineBasicBlock *CPEBB = CPEMI->getParent();
1223  unsigned Size = CPEMI->getOperand(2).getImm();
1224  CPEMI->eraseFromParent();
1225  BBSizes[CPEBB->getNumber()] -= Size;
1226  // All succeeding offsets have the current size value added in, fix this.
1227  if (CPEBB->empty()) {
1228    // In thumb1 mode, the size of island may be padded by two to compensate for
1229    // the alignment requirement.  Then it will now be 2 when the block is
1230    // empty, so fix this.
1231    // All succeeding offsets have the current size value added in, fix this.
1232    if (BBSizes[CPEBB->getNumber()] != 0) {
1233      Size += BBSizes[CPEBB->getNumber()];
1234      BBSizes[CPEBB->getNumber()] = 0;
1235    }
1236  }
1237  AdjustBBOffsetsAfter(CPEBB, -Size);
1238  // An island has only one predecessor BB and one successor BB. Check if
1239  // this BB's predecessor jumps directly to this BB's successor. This
1240  // shouldn't happen currently.
1241  assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
1242  // FIXME: remove the empty blocks after all the work is done?
1243}
1244
1245/// RemoveUnusedCPEntries - Remove constant pool entries whose refcounts
1246/// are zero.
1247bool ARMConstantIslands::RemoveUnusedCPEntries() {
1248  unsigned MadeChange = false;
1249  for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
1250      std::vector<CPEntry> &CPEs = CPEntries[i];
1251      for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
1252        if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
1253          RemoveDeadCPEMI(CPEs[j].CPEMI);
1254          CPEs[j].CPEMI = NULL;
1255          MadeChange = true;
1256        }
1257      }
1258  }
1259  return MadeChange;
1260}
1261
1262/// BBIsInRange - Returns true if the distance between specific MI and
1263/// specific BB can fit in MI's displacement field.
1264bool ARMConstantIslands::BBIsInRange(MachineInstr *MI,MachineBasicBlock *DestBB,
1265                                     unsigned MaxDisp) {
1266  unsigned PCAdj      = isThumb ? 4 : 8;
1267  unsigned BrOffset   = GetOffsetOf(MI) + PCAdj;
1268  unsigned DestOffset = BBOffsets[DestBB->getNumber()];
1269
1270  DEBUG(errs() << "Branch of destination BB#" << DestBB->getNumber()
1271               << " from BB#" << MI->getParent()->getNumber()
1272               << " max delta=" << MaxDisp
1273               << " from " << GetOffsetOf(MI) << " to " << DestOffset
1274               << " offset " << int(DestOffset-BrOffset) << "\t" << *MI);
1275
1276  if (BrOffset <= DestOffset) {
1277    // Branch before the Dest.
1278    if (DestOffset-BrOffset <= MaxDisp)
1279      return true;
1280  } else {
1281    if (BrOffset-DestOffset <= MaxDisp)
1282      return true;
1283  }
1284  return false;
1285}
1286
1287/// FixUpImmediateBr - Fix up an immediate branch whose destination is too far
1288/// away to fit in its displacement field.
1289bool ARMConstantIslands::FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br) {
1290  MachineInstr *MI = Br.MI;
1291  MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1292
1293  // Check to see if the DestBB is already in-range.
1294  if (BBIsInRange(MI, DestBB, Br.MaxDisp))
1295    return false;
1296
1297  if (!Br.isCond)
1298    return FixUpUnconditionalBr(MF, Br);
1299  return FixUpConditionalBr(MF, Br);
1300}
1301
1302/// FixUpUnconditionalBr - Fix up an unconditional branch whose destination is
1303/// too far away to fit in its displacement field. If the LR register has been
1304/// spilled in the epilogue, then we can use BL to implement a far jump.
1305/// Otherwise, add an intermediate branch instruction to a branch.
1306bool
1307ARMConstantIslands::FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br) {
1308  MachineInstr *MI = Br.MI;
1309  MachineBasicBlock *MBB = MI->getParent();
1310  if (!isThumb1)
1311    llvm_unreachable("FixUpUnconditionalBr is Thumb1 only!");
1312
1313  // Use BL to implement far jump.
1314  Br.MaxDisp = (1 << 21) * 2;
1315  MI->setDesc(TII->get(ARM::tBfar));
1316  BBSizes[MBB->getNumber()] += 2;
1317  AdjustBBOffsetsAfter(MBB, 2);
1318  HasFarJump = true;
1319  NumUBrFixed++;
1320
1321  DEBUG(errs() << "  Changed B to long jump " << *MI);
1322
1323  return true;
1324}
1325
1326/// FixUpConditionalBr - Fix up a conditional branch whose destination is too
1327/// far away to fit in its displacement field. It is converted to an inverse
1328/// conditional branch + an unconditional branch to the destination.
1329bool
1330ARMConstantIslands::FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br) {
1331  MachineInstr *MI = Br.MI;
1332  MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1333
1334  // Add an unconditional branch to the destination and invert the branch
1335  // condition to jump over it:
1336  // blt L1
1337  // =>
1338  // bge L2
1339  // b   L1
1340  // L2:
1341  ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm();
1342  CC = ARMCC::getOppositeCondition(CC);
1343  unsigned CCReg = MI->getOperand(2).getReg();
1344
1345  // If the branch is at the end of its MBB and that has a fall-through block,
1346  // direct the updated conditional branch to the fall-through block. Otherwise,
1347  // split the MBB before the next instruction.
1348  MachineBasicBlock *MBB = MI->getParent();
1349  MachineInstr *BMI = &MBB->back();
1350  bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1351
1352  NumCBrFixed++;
1353  if (BMI != MI) {
1354    if (next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) &&
1355        BMI->getOpcode() == Br.UncondBr) {
1356      // Last MI in the BB is an unconditional branch. Can we simply invert the
1357      // condition and swap destinations:
1358      // beq L1
1359      // b   L2
1360      // =>
1361      // bne L2
1362      // b   L1
1363      MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
1364      if (BBIsInRange(MI, NewDest, Br.MaxDisp)) {
1365        DEBUG(errs() << "  Invert Bcc condition and swap its destination with "
1366                     << *BMI);
1367        BMI->getOperand(0).setMBB(DestBB);
1368        MI->getOperand(0).setMBB(NewDest);
1369        MI->getOperand(1).setImm(CC);
1370        return true;
1371      }
1372    }
1373  }
1374
1375  if (NeedSplit) {
1376    SplitBlockBeforeInstr(MI);
1377    // No need for the branch to the next block. We're adding an unconditional
1378    // branch to the destination.
1379    int delta = TII->GetInstSizeInBytes(&MBB->back());
1380    BBSizes[MBB->getNumber()] -= delta;
1381    MachineBasicBlock* SplitBB = next(MachineFunction::iterator(MBB));
1382    AdjustBBOffsetsAfter(SplitBB, -delta);
1383    MBB->back().eraseFromParent();
1384    // BBOffsets[SplitBB] is wrong temporarily, fixed below
1385  }
1386  MachineBasicBlock *NextBB = next(MachineFunction::iterator(MBB));
1387
1388  DEBUG(errs() << "  Insert B to BB#" << DestBB->getNumber()
1389               << " also invert condition and change dest. to BB#"
1390               << NextBB->getNumber() << "\n");
1391
1392  // Insert a new conditional branch and a new unconditional branch.
1393  // Also update the ImmBranch as well as adding a new entry for the new branch.
1394  BuildMI(MBB, DebugLoc::getUnknownLoc(),
1395          TII->get(MI->getOpcode()))
1396    .addMBB(NextBB).addImm(CC).addReg(CCReg);
1397  Br.MI = &MBB->back();
1398  BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back());
1399  BuildMI(MBB, DebugLoc::getUnknownLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1400  BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back());
1401  unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1402  ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1403
1404  // Remove the old conditional branch.  It may or may not still be in MBB.
1405  BBSizes[MI->getParent()->getNumber()] -= TII->GetInstSizeInBytes(MI);
1406  MI->eraseFromParent();
1407
1408  // The net size change is an addition of one unconditional branch.
1409  int delta = TII->GetInstSizeInBytes(&MBB->back());
1410  AdjustBBOffsetsAfter(MBB, delta);
1411  return true;
1412}
1413
1414/// UndoLRSpillRestore - Remove Thumb push / pop instructions that only spills
1415/// LR / restores LR to pc. FIXME: This is done here because it's only possible
1416/// to do this if tBfar is not used.
1417bool ARMConstantIslands::UndoLRSpillRestore() {
1418  bool MadeChange = false;
1419  for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) {
1420    MachineInstr *MI = PushPopMIs[i];
1421    // First two operands are predicates, the third is a zero since there
1422    // is no writeback.
1423    if (MI->getOpcode() == ARM::tPOP_RET &&
1424        MI->getOperand(3).getReg() == ARM::PC &&
1425        MI->getNumExplicitOperands() == 4) {
1426      BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET));
1427      MI->eraseFromParent();
1428      MadeChange = true;
1429    }
1430  }
1431  return MadeChange;
1432}
1433
1434bool ARMConstantIslands::OptimizeThumb2Instructions(MachineFunction &MF) {
1435  bool MadeChange = false;
1436
1437  // Shrink ADR and LDR from constantpool.
1438  for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
1439    CPUser &U = CPUsers[i];
1440    unsigned Opcode = U.MI->getOpcode();
1441    unsigned NewOpc = 0;
1442    unsigned Scale = 1;
1443    unsigned Bits = 0;
1444    switch (Opcode) {
1445    default: break;
1446    case ARM::t2LEApcrel:
1447      if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1448        NewOpc = ARM::tLEApcrel;
1449        Bits = 8;
1450        Scale = 4;
1451      }
1452      break;
1453    case ARM::t2LDRpci:
1454      if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1455        NewOpc = ARM::tLDRpci;
1456        Bits = 8;
1457        Scale = 4;
1458      }
1459      break;
1460    }
1461
1462    if (!NewOpc)
1463      continue;
1464
1465    unsigned UserOffset = GetOffsetOf(U.MI) + 4;
1466    unsigned MaxOffs = ((1 << Bits) - 1) * Scale;
1467    // FIXME: Check if offset is multiple of scale if scale is not 4.
1468    if (CPEIsInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) {
1469      U.MI->setDesc(TII->get(NewOpc));
1470      MachineBasicBlock *MBB = U.MI->getParent();
1471      BBSizes[MBB->getNumber()] -= 2;
1472      AdjustBBOffsetsAfter(MBB, -2);
1473      ++NumT2CPShrunk;
1474      MadeChange = true;
1475    }
1476  }
1477
1478  MadeChange |= OptimizeThumb2Branches(MF);
1479  MadeChange |= OptimizeThumb2JumpTables(MF);
1480  return MadeChange;
1481}
1482
1483bool ARMConstantIslands::OptimizeThumb2Branches(MachineFunction &MF) {
1484  bool MadeChange = false;
1485
1486  for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) {
1487    ImmBranch &Br = ImmBranches[i];
1488    unsigned Opcode = Br.MI->getOpcode();
1489    unsigned NewOpc = 0;
1490    unsigned Scale = 1;
1491    unsigned Bits = 0;
1492    switch (Opcode) {
1493    default: break;
1494    case ARM::t2B:
1495      NewOpc = ARM::tB;
1496      Bits = 11;
1497      Scale = 2;
1498      break;
1499    case ARM::t2Bcc: {
1500      NewOpc = ARM::tBcc;
1501      Bits = 8;
1502      Scale = 2;
1503      break;
1504    }
1505    }
1506    if (NewOpc) {
1507      unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
1508      MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1509      if (BBIsInRange(Br.MI, DestBB, MaxOffs)) {
1510        Br.MI->setDesc(TII->get(NewOpc));
1511        MachineBasicBlock *MBB = Br.MI->getParent();
1512        BBSizes[MBB->getNumber()] -= 2;
1513        AdjustBBOffsetsAfter(MBB, -2);
1514        ++NumT2BrShrunk;
1515        MadeChange = true;
1516      }
1517    }
1518
1519    Opcode = Br.MI->getOpcode();
1520    if (Opcode != ARM::tBcc)
1521      continue;
1522
1523    NewOpc = 0;
1524    unsigned PredReg = 0;
1525    ARMCC::CondCodes Pred = llvm::getInstrPredicate(Br.MI, PredReg);
1526    if (Pred == ARMCC::EQ)
1527      NewOpc = ARM::tCBZ;
1528    else if (Pred == ARMCC::NE)
1529      NewOpc = ARM::tCBNZ;
1530    if (!NewOpc)
1531      continue;
1532    MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1533    // Check if the distance is within 126. Subtract starting offset by 2
1534    // because the cmp will be eliminated.
1535    unsigned BrOffset = GetOffsetOf(Br.MI) + 4 - 2;
1536    unsigned DestOffset = BBOffsets[DestBB->getNumber()];
1537    if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) {
1538      MachineBasicBlock::iterator CmpMI = Br.MI; --CmpMI;
1539      if (CmpMI->getOpcode() == ARM::tCMPzi8) {
1540        unsigned Reg = CmpMI->getOperand(0).getReg();
1541        Pred = llvm::getInstrPredicate(CmpMI, PredReg);
1542        if (Pred == ARMCC::AL &&
1543            CmpMI->getOperand(1).getImm() == 0 &&
1544            isARMLowRegister(Reg)) {
1545          MachineBasicBlock *MBB = Br.MI->getParent();
1546          MachineInstr *NewBR =
1547            BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc))
1548            .addReg(Reg).addMBB(DestBB, Br.MI->getOperand(0).getTargetFlags());
1549          CmpMI->eraseFromParent();
1550          Br.MI->eraseFromParent();
1551          Br.MI = NewBR;
1552          BBSizes[MBB->getNumber()] -= 2;
1553          AdjustBBOffsetsAfter(MBB, -2);
1554          ++NumCBZ;
1555          MadeChange = true;
1556        }
1557      }
1558    }
1559  }
1560
1561  return MadeChange;
1562}
1563
1564
1565/// OptimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller
1566/// jumptables when it's possible.
1567bool ARMConstantIslands::OptimizeThumb2JumpTables(MachineFunction &MF) {
1568  bool MadeChange = false;
1569
1570  // FIXME: After the tables are shrunk, can we get rid some of the
1571  // constantpool tables?
1572  MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
1573  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1574  for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
1575    MachineInstr *MI = T2JumpTables[i];
1576    const TargetInstrDesc &TID = MI->getDesc();
1577    unsigned NumOps = TID.getNumOperands();
1578    unsigned JTOpIdx = NumOps - (TID.isPredicable() ? 3 : 2);
1579    MachineOperand JTOP = MI->getOperand(JTOpIdx);
1580    unsigned JTI = JTOP.getIndex();
1581    assert(JTI < JT.size());
1582
1583    // We prefer if target blocks for the jump table come after the jump
1584    // instruction so we can use TB[BH]. Loop through the target blocks
1585    // and try to adjust them such that that's true.
1586    unsigned JTOffset = GetOffsetOf(MI) + 4;
1587    const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1588    if (AdjustJumpTableBlocks) {
1589      for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
1590        MachineBasicBlock *MBB = JTBBs[j];
1591        unsigned DstOffset = BBOffsets[MBB->getNumber()];
1592
1593        if (DstOffset < JTOffset) {
1594          // The destination precedes the switch. Try to move the block forward
1595          // so we have a positive offset.
1596          MachineBasicBlock *NewBB =
1597            AdjustJTTargetBlockForward(MBB, MI->getParent());
1598          if (NewBB) {
1599            MJTI->ReplaceMBBInJumpTables(JTBBs[j], NewBB);
1600            JTOffset = GetOffsetOf(MI) + 4;
1601            DstOffset = BBOffsets[MBB->getNumber()];
1602          }
1603        }
1604      }
1605    }
1606
1607    bool ByteOk = true;
1608    bool HalfWordOk = true;
1609    JTOffset = GetOffsetOf(MI) + 4;
1610    for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
1611      MachineBasicBlock *MBB = JTBBs[j];
1612      unsigned DstOffset = BBOffsets[MBB->getNumber()];
1613      // Negative offset is not ok. FIXME: We should change BB layout to make
1614      // sure all the branches are forward.
1615      if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2)
1616        ByteOk = false;
1617      unsigned TBHLimit = ((1<<16)-1)*2;
1618      if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit)
1619        HalfWordOk = false;
1620      if (!ByteOk && !HalfWordOk)
1621        break;
1622    }
1623
1624    if (ByteOk || HalfWordOk) {
1625      MachineBasicBlock *MBB = MI->getParent();
1626      unsigned BaseReg = MI->getOperand(0).getReg();
1627      bool BaseRegKill = MI->getOperand(0).isKill();
1628      if (!BaseRegKill)
1629        continue;
1630      unsigned IdxReg = MI->getOperand(1).getReg();
1631      bool IdxRegKill = MI->getOperand(1).isKill();
1632      MachineBasicBlock::iterator PrevI = MI;
1633      if (PrevI == MBB->begin())
1634        continue;
1635
1636      MachineInstr *AddrMI = --PrevI;
1637      bool OptOk = true;
1638      // Examine the instruction that calculate the jumptable entry address.
1639      // If it's not the one just before the t2BR_JT, we won't delete it, then
1640      // it's not worth doing the optimization.
1641      for (unsigned k = 0, eee = AddrMI->getNumOperands(); k != eee; ++k) {
1642        const MachineOperand &MO = AddrMI->getOperand(k);
1643        if (!MO.isReg() || !MO.getReg())
1644          continue;
1645        if (MO.isDef() && MO.getReg() != BaseReg) {
1646          OptOk = false;
1647          break;
1648        }
1649        if (MO.isUse() && !MO.isKill() && MO.getReg() != IdxReg) {
1650          OptOk = false;
1651          break;
1652        }
1653      }
1654      if (!OptOk)
1655        continue;
1656
1657      // The previous instruction should be a tLEApcrel or t2LEApcrelJT, we want
1658      // to delete it as well.
1659      MachineInstr *LeaMI = --PrevI;
1660      if ((LeaMI->getOpcode() != ARM::tLEApcrelJT &&
1661           LeaMI->getOpcode() != ARM::t2LEApcrelJT) ||
1662          LeaMI->getOperand(0).getReg() != BaseReg)
1663        OptOk = false;
1664
1665      if (!OptOk)
1666        continue;
1667
1668      unsigned Opc = ByteOk ? ARM::t2TBB : ARM::t2TBH;
1669      MachineInstr *NewJTMI = BuildMI(MBB, MI->getDebugLoc(), TII->get(Opc))
1670        .addReg(IdxReg, getKillRegState(IdxRegKill))
1671        .addJumpTableIndex(JTI, JTOP.getTargetFlags())
1672        .addImm(MI->getOperand(JTOpIdx+1).getImm());
1673      // FIXME: Insert an "ALIGN" instruction to ensure the next instruction
1674      // is 2-byte aligned. For now, asm printer will fix it up.
1675      unsigned NewSize = TII->GetInstSizeInBytes(NewJTMI);
1676      unsigned OrigSize = TII->GetInstSizeInBytes(AddrMI);
1677      OrigSize += TII->GetInstSizeInBytes(LeaMI);
1678      OrigSize += TII->GetInstSizeInBytes(MI);
1679
1680      AddrMI->eraseFromParent();
1681      LeaMI->eraseFromParent();
1682      MI->eraseFromParent();
1683
1684      int delta = OrigSize - NewSize;
1685      BBSizes[MBB->getNumber()] -= delta;
1686      AdjustBBOffsetsAfter(MBB, -delta);
1687
1688      ++NumTBs;
1689      MadeChange = true;
1690    }
1691  }
1692
1693  return MadeChange;
1694}
1695
1696MachineBasicBlock *ARMConstantIslands::
1697AdjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB)
1698{
1699  MachineFunction &MF = *BB->getParent();
1700
1701  // FIXME: For now, instead of moving the block, we'll create a new block
1702  // immediate following the jump that's an unconditional branch to the
1703  // actual target. This is obviously not what we want for a real solution,
1704  // but it's useful for proof of concept, and it may be a useful fallback
1705  // later for cases where we otherwise can't move a block.
1706
1707  // Create a new MBB for the code after the jump BB.
1708  MachineBasicBlock *NewBB =
1709    MF.CreateMachineBasicBlock(JTBB->getBasicBlock());
1710  MachineFunction::iterator MBBI = JTBB; ++MBBI;
1711  MF.insert(MBBI, NewBB);
1712
1713  // Add an unconditional branch from NewBB to BB.
1714  // There doesn't seem to be meaningful DebugInfo available; this doesn't
1715  // correspond directly to anything in the source.
1716  assert (isThumb2 && "Adjusting for TB[BH] but not in Thumb2?");
1717  BuildMI(NewBB, DebugLoc::getUnknownLoc(), TII->get(ARM::t2B)).addMBB(BB);
1718
1719  // Update the CFG.
1720  NewBB->addSuccessor(BB);
1721  JTBB->removeSuccessor(BB);
1722  JTBB->addSuccessor(NewBB);
1723
1724  // Update internal data structures to account for the newly inserted MBB.
1725  // This is almost the same as UpdateForInsertedWaterBlock, except that
1726  // the Water goes after OrigBB, not NewBB.
1727  MF.RenumberBlocks(NewBB);
1728
1729  // Insert a size into BBSizes to align it properly with the (newly
1730  // renumbered) block numbers.
1731  BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0);
1732
1733  // Likewise for BBOffsets.
1734  BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0);
1735
1736  // Figure out how large the first NewMBB is.
1737  unsigned NewBBSize = 0;
1738  for (MachineBasicBlock::iterator I = NewBB->begin(), E = NewBB->end();
1739       I != E; ++I)
1740    NewBBSize += TII->GetInstSizeInBytes(I);
1741
1742  unsigned NewBBI = NewBB->getNumber();
1743  unsigned JTBBI = JTBB->getNumber();
1744  // Set the size of NewBB in BBSizes.
1745  BBSizes[NewBBI] = NewBBSize;
1746
1747  // ...and adjust BBOffsets for NewBB accordingly.
1748  BBOffsets[NewBBI] = BBOffsets[JTBBI] + BBSizes[JTBBI];
1749
1750  // All BBOffsets following these blocks must be modified.
1751  AdjustBBOffsetsAfter(NewBB, 4);
1752
1753  ++NumJTMoved;
1754  return NewBB;
1755}
1756