ARMConstantIslandPass.cpp revision 1fc7d715aa35703fcc4a87ece718a8c447e8ee72
1//===-- ARMConstantIslandPass.cpp - ARM constant islands --------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains a pass that splits the constant pool up into 'islands' 11// which are scattered through-out the function. This is required due to the 12// limited pc-relative displacements that ARM has. 13// 14//===----------------------------------------------------------------------===// 15 16#define DEBUG_TYPE "arm-cp-islands" 17#include "ARM.h" 18#include "ARMAddressingModes.h" 19#include "ARMMachineFunctionInfo.h" 20#include "ARMInstrInfo.h" 21#include "llvm/CodeGen/MachineConstantPool.h" 22#include "llvm/CodeGen/MachineFunctionPass.h" 23#include "llvm/CodeGen/MachineInstrBuilder.h" 24#include "llvm/CodeGen/MachineJumpTableInfo.h" 25#include "llvm/Target/TargetData.h" 26#include "llvm/Target/TargetMachine.h" 27#include "llvm/Support/Debug.h" 28#include "llvm/Support/ErrorHandling.h" 29#include "llvm/Support/raw_ostream.h" 30#include "llvm/ADT/SmallSet.h" 31#include "llvm/ADT/SmallVector.h" 32#include "llvm/ADT/STLExtras.h" 33#include "llvm/ADT/Statistic.h" 34#include "llvm/Support/CommandLine.h" 35#include <algorithm> 36using namespace llvm; 37 38STATISTIC(NumCPEs, "Number of constpool entries"); 39STATISTIC(NumSplit, "Number of uncond branches inserted"); 40STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 41STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 42STATISTIC(NumTBs, "Number of table branches generated"); 43STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk"); 44STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk"); 45STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed"); 46STATISTIC(NumJTMoved, "Number of jump table destination blocks moved"); 47 48 49static cl::opt<bool> 50AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(false), 51 cl::desc("Adjust basic block layout to better use TB[BH]")); 52 53namespace { 54 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM 55 /// requires constant pool entries to be scattered among the instructions 56 /// inside a function. To do this, it completely ignores the normal LLVM 57 /// constant pool; instead, it places constants wherever it feels like with 58 /// special instructions. 59 /// 60 /// The terminology used in this pass includes: 61 /// Islands - Clumps of constants placed in the function. 62 /// Water - Potential places where an island could be formed. 63 /// CPE - A constant pool entry that has been placed somewhere, which 64 /// tracks a list of users. 65 class ARMConstantIslands : public MachineFunctionPass { 66 /// BBSizes - The size of each MachineBasicBlock in bytes of code, indexed 67 /// by MBB Number. The two-byte pads required for Thumb alignment are 68 /// counted as part of the following block (i.e., the offset and size for 69 /// a padded block will both be ==2 mod 4). 70 std::vector<unsigned> BBSizes; 71 72 /// BBOffsets - the offset of each MBB in bytes, starting from 0. 73 /// The two-byte pads required for Thumb alignment are counted as part of 74 /// the following block. 75 std::vector<unsigned> BBOffsets; 76 77 /// WaterList - A sorted list of basic blocks where islands could be placed 78 /// (i.e. blocks that don't fall through to the following block, due 79 /// to a return, unreachable, or unconditional branch). 80 std::vector<MachineBasicBlock*> WaterList; 81 82 /// NewWaterList - The subset of WaterList that was created since the 83 /// previous iteration by inserting unconditional branches. 84 SmallSet<MachineBasicBlock*, 4> NewWaterList; 85 86 typedef std::vector<MachineBasicBlock*>::iterator water_iterator; 87 88 /// CPUser - One user of a constant pool, keeping the machine instruction 89 /// pointer, the constant pool being referenced, and the max displacement 90 /// allowed from the instruction to the CP. The HighWaterMark records the 91 /// highest basic block where a new CPEntry can be placed. To ensure this 92 /// pass terminates, the CP entries are initially placed at the end of the 93 /// function and then move monotonically to lower addresses. The 94 /// exception to this rule is when the current CP entry for a particular 95 /// CPUser is out of range, but there is another CP entry for the same 96 /// constant value in range. We want to use the existing in-range CP 97 /// entry, but if it later moves out of range, the search for new water 98 /// should resume where it left off. The HighWaterMark is used to record 99 /// that point. 100 struct CPUser { 101 MachineInstr *MI; 102 MachineInstr *CPEMI; 103 MachineBasicBlock *HighWaterMark; 104 unsigned MaxDisp; 105 bool NegOk; 106 bool IsSoImm; 107 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, 108 bool neg, bool soimm) 109 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) { 110 HighWaterMark = CPEMI->getParent(); 111 } 112 }; 113 114 /// CPUsers - Keep track of all of the machine instructions that use various 115 /// constant pools and their max displacement. 116 std::vector<CPUser> CPUsers; 117 118 /// CPEntry - One per constant pool entry, keeping the machine instruction 119 /// pointer, the constpool index, and the number of CPUser's which 120 /// reference this entry. 121 struct CPEntry { 122 MachineInstr *CPEMI; 123 unsigned CPI; 124 unsigned RefCount; 125 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) 126 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} 127 }; 128 129 /// CPEntries - Keep track of all of the constant pool entry machine 130 /// instructions. For each original constpool index (i.e. those that 131 /// existed upon entry to this pass), it keeps a vector of entries. 132 /// Original elements are cloned as we go along; the clones are 133 /// put in the vector of the original element, but have distinct CPIs. 134 std::vector<std::vector<CPEntry> > CPEntries; 135 136 /// ImmBranch - One per immediate branch, keeping the machine instruction 137 /// pointer, conditional or unconditional, the max displacement, 138 /// and (if isCond is true) the corresponding unconditional branch 139 /// opcode. 140 struct ImmBranch { 141 MachineInstr *MI; 142 unsigned MaxDisp : 31; 143 bool isCond : 1; 144 int UncondBr; 145 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr) 146 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} 147 }; 148 149 /// ImmBranches - Keep track of all the immediate branch instructions. 150 /// 151 std::vector<ImmBranch> ImmBranches; 152 153 /// PushPopMIs - Keep track of all the Thumb push / pop instructions. 154 /// 155 SmallVector<MachineInstr*, 4> PushPopMIs; 156 157 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions. 158 SmallVector<MachineInstr*, 4> T2JumpTables; 159 160 /// HasFarJump - True if any far jump instruction has been emitted during 161 /// the branch fix up pass. 162 bool HasFarJump; 163 164 const TargetInstrInfo *TII; 165 const ARMSubtarget *STI; 166 ARMFunctionInfo *AFI; 167 bool isThumb; 168 bool isThumb1; 169 bool isThumb2; 170 public: 171 static char ID; 172 ARMConstantIslands() : MachineFunctionPass(&ID) {} 173 174 virtual bool runOnMachineFunction(MachineFunction &MF); 175 176 virtual const char *getPassName() const { 177 return "ARM constant island placement and branch shortening pass"; 178 } 179 180 private: 181 void DoInitialPlacement(MachineFunction &MF, 182 std::vector<MachineInstr*> &CPEMIs); 183 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 184 void InitialFunctionScan(MachineFunction &MF, 185 const std::vector<MachineInstr*> &CPEMIs); 186 MachineBasicBlock *SplitBlockBeforeInstr(MachineInstr *MI); 187 void UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB); 188 void AdjustBBOffsetsAfter(MachineBasicBlock *BB, int delta); 189 bool DecrementOldEntry(unsigned CPI, MachineInstr* CPEMI); 190 int LookForExistingCPEntry(CPUser& U, unsigned UserOffset); 191 bool LookForWater(CPUser&U, unsigned UserOffset, water_iterator &WaterIter); 192 void CreateNewWater(unsigned CPUserIndex, unsigned UserOffset, 193 MachineBasicBlock *&NewMBB); 194 bool HandleConstantPoolUser(MachineFunction &MF, unsigned CPUserIndex); 195 void RemoveDeadCPEMI(MachineInstr *CPEMI); 196 bool RemoveUnusedCPEntries(); 197 bool CPEIsInRange(MachineInstr *MI, unsigned UserOffset, 198 MachineInstr *CPEMI, unsigned Disp, bool NegOk, 199 bool DoDump = false); 200 bool WaterIsInRange(unsigned UserOffset, MachineBasicBlock *Water, 201 CPUser &U); 202 bool OffsetIsInRange(unsigned UserOffset, unsigned TrialOffset, 203 unsigned Disp, bool NegativeOK, bool IsSoImm = false); 204 bool BBIsInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); 205 bool FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br); 206 bool FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br); 207 bool FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br); 208 bool UndoLRSpillRestore(); 209 bool OptimizeThumb2Instructions(MachineFunction &MF); 210 bool OptimizeThumb2Branches(MachineFunction &MF); 211 bool OptimizeThumb2JumpTables(MachineFunction &MF); 212 MachineBasicBlock *AdjustJTTargetBlockForward(MachineBasicBlock *BB, 213 MachineBasicBlock *JTBB); 214 215 unsigned GetOffsetOf(MachineInstr *MI) const; 216 void dumpBBs(); 217 void verify(MachineFunction &MF); 218 }; 219 char ARMConstantIslands::ID = 0; 220} 221 222/// verify - check BBOffsets, BBSizes, alignment of islands 223void ARMConstantIslands::verify(MachineFunction &MF) { 224 assert(BBOffsets.size() == BBSizes.size()); 225 for (unsigned i = 1, e = BBOffsets.size(); i != e; ++i) 226 assert(BBOffsets[i-1]+BBSizes[i-1] == BBOffsets[i]); 227 if (!isThumb) 228 return; 229#ifndef NDEBUG 230 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); 231 MBBI != E; ++MBBI) { 232 MachineBasicBlock *MBB = MBBI; 233 if (!MBB->empty() && 234 MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) { 235 unsigned MBBId = MBB->getNumber(); 236 assert((BBOffsets[MBBId]%4 == 0 && BBSizes[MBBId]%4 == 0) || 237 (BBOffsets[MBBId]%4 != 0 && BBSizes[MBBId]%4 != 0)); 238 } 239 } 240#endif 241} 242 243/// print block size and offset information - debugging 244void ARMConstantIslands::dumpBBs() { 245 for (unsigned J = 0, E = BBOffsets.size(); J !=E; ++J) { 246 DEBUG(errs() << "block " << J << " offset " << BBOffsets[J] 247 << " size " << BBSizes[J] << "\n"); 248 } 249} 250 251/// createARMConstantIslandPass - returns an instance of the constpool 252/// island pass. 253FunctionPass *llvm::createARMConstantIslandPass() { 254 return new ARMConstantIslands(); 255} 256 257bool ARMConstantIslands::runOnMachineFunction(MachineFunction &MF) { 258 MachineConstantPool &MCP = *MF.getConstantPool(); 259 260 TII = MF.getTarget().getInstrInfo(); 261 AFI = MF.getInfo<ARMFunctionInfo>(); 262 STI = &MF.getTarget().getSubtarget<ARMSubtarget>(); 263 264 isThumb = AFI->isThumbFunction(); 265 isThumb1 = AFI->isThumb1OnlyFunction(); 266 isThumb2 = AFI->isThumb2Function(); 267 268 HasFarJump = false; 269 270 // Renumber all of the machine basic blocks in the function, guaranteeing that 271 // the numbers agree with the position of the block in the function. 272 MF.RenumberBlocks(); 273 274 // Thumb1 functions containing constant pools get 4-byte alignment. 275 // This is so we can keep exact track of where the alignment padding goes. 276 277 // Set default. Thumb1 function is 2-byte aligned, ARM and Thumb2 are 4-byte 278 // aligned. 279 AFI->setAlign(isThumb1 ? 1U : 2U); 280 281 // Perform the initial placement of the constant pool entries. To start with, 282 // we put them all at the end of the function. 283 std::vector<MachineInstr*> CPEMIs; 284 if (!MCP.isEmpty()) { 285 DoInitialPlacement(MF, CPEMIs); 286 if (isThumb1) 287 AFI->setAlign(2U); 288 } 289 290 /// The next UID to take is the first unused one. 291 AFI->initConstPoolEntryUId(CPEMIs.size()); 292 293 // Do the initial scan of the function, building up information about the 294 // sizes of each block, the location of all the water, and finding all of the 295 // constant pool users. 296 InitialFunctionScan(MF, CPEMIs); 297 CPEMIs.clear(); 298 299 /// Remove dead constant pool entries. 300 RemoveUnusedCPEntries(); 301 302 // Iteratively place constant pool entries and fix up branches until there 303 // is no change. 304 bool MadeChange = false; 305 unsigned NoCPIters = 0, NoBRIters = 0; 306 while (true) { 307 bool CPChange = false; 308 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) 309 CPChange |= HandleConstantPoolUser(MF, i); 310 if (CPChange && ++NoCPIters > 30) 311 llvm_unreachable("Constant Island pass failed to converge!"); 312 DEBUG(dumpBBs()); 313 314 // Clear NewWaterList now. If we split a block for branches, it should 315 // appear as "new water" for the next iteration of constant pool placement. 316 NewWaterList.clear(); 317 318 bool BRChange = false; 319 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) 320 BRChange |= FixUpImmediateBr(MF, ImmBranches[i]); 321 if (BRChange && ++NoBRIters > 30) 322 llvm_unreachable("Branch Fix Up pass failed to converge!"); 323 DEBUG(dumpBBs()); 324 325 if (!CPChange && !BRChange) 326 break; 327 MadeChange = true; 328 } 329 330 // Shrink 32-bit Thumb2 branch, load, and store instructions. 331 if (isThumb2) 332 MadeChange |= OptimizeThumb2Instructions(MF); 333 334 // After a while, this might be made debug-only, but it is not expensive. 335 verify(MF); 336 337 // If LR has been forced spilled and no far jumps (i.e. BL) has been issued. 338 // Undo the spill / restore of LR if possible. 339 if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump()) 340 MadeChange |= UndoLRSpillRestore(); 341 342 BBSizes.clear(); 343 BBOffsets.clear(); 344 WaterList.clear(); 345 CPUsers.clear(); 346 CPEntries.clear(); 347 ImmBranches.clear(); 348 PushPopMIs.clear(); 349 T2JumpTables.clear(); 350 351 return MadeChange; 352} 353 354/// DoInitialPlacement - Perform the initial placement of the constant pool 355/// entries. To start with, we put them all at the end of the function. 356void ARMConstantIslands::DoInitialPlacement(MachineFunction &MF, 357 std::vector<MachineInstr*> &CPEMIs) { 358 // Create the basic block to hold the CPE's. 359 MachineBasicBlock *BB = MF.CreateMachineBasicBlock(); 360 MF.push_back(BB); 361 362 // Add all of the constants from the constant pool to the end block, use an 363 // identity mapping of CPI's to CPE's. 364 const std::vector<MachineConstantPoolEntry> &CPs = 365 MF.getConstantPool()->getConstants(); 366 367 const TargetData &TD = *MF.getTarget().getTargetData(); 368 for (unsigned i = 0, e = CPs.size(); i != e; ++i) { 369 unsigned Size = TD.getTypeAllocSize(CPs[i].getType()); 370 // Verify that all constant pool entries are a multiple of 4 bytes. If not, 371 // we would have to pad them out or something so that instructions stay 372 // aligned. 373 assert((Size & 3) == 0 && "CP Entry not multiple of 4 bytes!"); 374 MachineInstr *CPEMI = 375 BuildMI(BB, DebugLoc::getUnknownLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 376 .addImm(i).addConstantPoolIndex(i).addImm(Size); 377 CPEMIs.push_back(CPEMI); 378 379 // Add a new CPEntry, but no corresponding CPUser yet. 380 std::vector<CPEntry> CPEs; 381 CPEs.push_back(CPEntry(CPEMI, i)); 382 CPEntries.push_back(CPEs); 383 NumCPEs++; 384 DEBUG(errs() << "Moved CPI#" << i << " to end of function as #" << i 385 << "\n"); 386 } 387} 388 389/// BBHasFallthrough - Return true if the specified basic block can fallthrough 390/// into the block immediately after it. 391static bool BBHasFallthrough(MachineBasicBlock *MBB) { 392 // Get the next machine basic block in the function. 393 MachineFunction::iterator MBBI = MBB; 394 if (next(MBBI) == MBB->getParent()->end()) // Can't fall off end of function. 395 return false; 396 397 MachineBasicBlock *NextBB = next(MBBI); 398 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), 399 E = MBB->succ_end(); I != E; ++I) 400 if (*I == NextBB) 401 return true; 402 403 return false; 404} 405 406/// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 407/// look up the corresponding CPEntry. 408ARMConstantIslands::CPEntry 409*ARMConstantIslands::findConstPoolEntry(unsigned CPI, 410 const MachineInstr *CPEMI) { 411 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 412 // Number of entries per constpool index should be small, just do a 413 // linear search. 414 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 415 if (CPEs[i].CPEMI == CPEMI) 416 return &CPEs[i]; 417 } 418 return NULL; 419} 420 421/// InitialFunctionScan - Do the initial scan of the function, building up 422/// information about the sizes of each block, the location of all the water, 423/// and finding all of the constant pool users. 424void ARMConstantIslands::InitialFunctionScan(MachineFunction &MF, 425 const std::vector<MachineInstr*> &CPEMIs) { 426 unsigned Offset = 0; 427 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); 428 MBBI != E; ++MBBI) { 429 MachineBasicBlock &MBB = *MBBI; 430 431 // If this block doesn't fall through into the next MBB, then this is 432 // 'water' that a constant pool island could be placed. 433 if (!BBHasFallthrough(&MBB)) 434 WaterList.push_back(&MBB); 435 436 unsigned MBBSize = 0; 437 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 438 I != E; ++I) { 439 // Add instruction size to MBBSize. 440 MBBSize += TII->GetInstSizeInBytes(I); 441 442 int Opc = I->getOpcode(); 443 if (I->getDesc().isBranch()) { 444 bool isCond = false; 445 unsigned Bits = 0; 446 unsigned Scale = 1; 447 int UOpc = Opc; 448 switch (Opc) { 449 default: 450 continue; // Ignore other JT branches 451 case ARM::tBR_JTr: 452 // A Thumb1 table jump may involve padding; for the offsets to 453 // be right, functions containing these must be 4-byte aligned. 454 AFI->setAlign(2U); 455 if ((Offset+MBBSize)%4 != 0) 456 // FIXME: Add a pseudo ALIGN instruction instead. 457 MBBSize += 2; // padding 458 continue; // Does not get an entry in ImmBranches 459 case ARM::t2BR_JT: 460 T2JumpTables.push_back(I); 461 continue; // Does not get an entry in ImmBranches 462 case ARM::Bcc: 463 isCond = true; 464 UOpc = ARM::B; 465 // Fallthrough 466 case ARM::B: 467 Bits = 24; 468 Scale = 4; 469 break; 470 case ARM::tBcc: 471 isCond = true; 472 UOpc = ARM::tB; 473 Bits = 8; 474 Scale = 2; 475 break; 476 case ARM::tB: 477 Bits = 11; 478 Scale = 2; 479 break; 480 case ARM::t2Bcc: 481 isCond = true; 482 UOpc = ARM::t2B; 483 Bits = 20; 484 Scale = 2; 485 break; 486 case ARM::t2B: 487 Bits = 24; 488 Scale = 2; 489 break; 490 } 491 492 // Record this immediate branch. 493 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 494 ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc)); 495 } 496 497 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) 498 PushPopMIs.push_back(I); 499 500 if (Opc == ARM::CONSTPOOL_ENTRY) 501 continue; 502 503 // Scan the instructions for constant pool operands. 504 for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) 505 if (I->getOperand(op).isCPI()) { 506 // We found one. The addressing mode tells us the max displacement 507 // from the PC that this instruction permits. 508 509 // Basic size info comes from the TSFlags field. 510 unsigned Bits = 0; 511 unsigned Scale = 1; 512 bool NegOk = false; 513 bool IsSoImm = false; 514 515 switch (Opc) { 516 default: 517 llvm_unreachable("Unknown addressing mode for CP reference!"); 518 break; 519 520 // Taking the address of a CP entry. 521 case ARM::LEApcrel: 522 // This takes a SoImm, which is 8 bit immediate rotated. We'll 523 // pretend the maximum offset is 255 * 4. Since each instruction 524 // 4 byte wide, this is always correct. We'llc heck for other 525 // displacements that fits in a SoImm as well. 526 Bits = 8; 527 Scale = 4; 528 NegOk = true; 529 IsSoImm = true; 530 break; 531 case ARM::t2LEApcrel: 532 Bits = 12; 533 NegOk = true; 534 break; 535 case ARM::tLEApcrel: 536 Bits = 8; 537 Scale = 4; 538 break; 539 540 case ARM::LDR: 541 case ARM::LDRcp: 542 case ARM::t2LDRpci: 543 Bits = 12; // +-offset_12 544 NegOk = true; 545 break; 546 547 case ARM::tLDRpci: 548 case ARM::tLDRcp: 549 Bits = 8; 550 Scale = 4; // +(offset_8*4) 551 break; 552 553 case ARM::VLDRD: 554 case ARM::VLDRS: 555 Bits = 8; 556 Scale = 4; // +-(offset_8*4) 557 NegOk = true; 558 break; 559 } 560 561 // Remember that this is a user of a CP entry. 562 unsigned CPI = I->getOperand(op).getIndex(); 563 MachineInstr *CPEMI = CPEMIs[CPI]; 564 unsigned MaxOffs = ((1 << Bits)-1) * Scale; 565 CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm)); 566 567 // Increment corresponding CPEntry reference count. 568 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 569 assert(CPE && "Cannot find a corresponding CPEntry!"); 570 CPE->RefCount++; 571 572 // Instructions can only use one CP entry, don't bother scanning the 573 // rest of the operands. 574 break; 575 } 576 } 577 578 // In thumb mode, if this block is a constpool island, we may need padding 579 // so it's aligned on 4 byte boundary. 580 if (isThumb && 581 !MBB.empty() && 582 MBB.begin()->getOpcode() == ARM::CONSTPOOL_ENTRY && 583 (Offset%4) != 0) 584 MBBSize += 2; 585 586 BBSizes.push_back(MBBSize); 587 BBOffsets.push_back(Offset); 588 Offset += MBBSize; 589 } 590} 591 592/// GetOffsetOf - Return the current offset of the specified machine instruction 593/// from the start of the function. This offset changes as stuff is moved 594/// around inside the function. 595unsigned ARMConstantIslands::GetOffsetOf(MachineInstr *MI) const { 596 MachineBasicBlock *MBB = MI->getParent(); 597 598 // The offset is composed of two things: the sum of the sizes of all MBB's 599 // before this instruction's block, and the offset from the start of the block 600 // it is in. 601 unsigned Offset = BBOffsets[MBB->getNumber()]; 602 603 // If we're looking for a CONSTPOOL_ENTRY in Thumb, see if this block has 604 // alignment padding, and compensate if so. 605 if (isThumb && 606 MI->getOpcode() == ARM::CONSTPOOL_ENTRY && 607 Offset%4 != 0) 608 Offset += 2; 609 610 // Sum instructions before MI in MBB. 611 for (MachineBasicBlock::iterator I = MBB->begin(); ; ++I) { 612 assert(I != MBB->end() && "Didn't find MI in its own basic block?"); 613 if (&*I == MI) return Offset; 614 Offset += TII->GetInstSizeInBytes(I); 615 } 616} 617 618/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 619/// ID. 620static bool CompareMBBNumbers(const MachineBasicBlock *LHS, 621 const MachineBasicBlock *RHS) { 622 return LHS->getNumber() < RHS->getNumber(); 623} 624 625/// UpdateForInsertedWaterBlock - When a block is newly inserted into the 626/// machine function, it upsets all of the block numbers. Renumber the blocks 627/// and update the arrays that parallel this numbering. 628void ARMConstantIslands::UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB) { 629 // Renumber the MBB's to keep them consequtive. 630 NewBB->getParent()->RenumberBlocks(NewBB); 631 632 // Insert a size into BBSizes to align it properly with the (newly 633 // renumbered) block numbers. 634 BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0); 635 636 // Likewise for BBOffsets. 637 BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0); 638 639 // Next, update WaterList. Specifically, we need to add NewMBB as having 640 // available water after it. 641 water_iterator IP = 642 std::lower_bound(WaterList.begin(), WaterList.end(), NewBB, 643 CompareMBBNumbers); 644 WaterList.insert(IP, NewBB); 645} 646 647 648/// Split the basic block containing MI into two blocks, which are joined by 649/// an unconditional branch. Update data structures and renumber blocks to 650/// account for this change and returns the newly created block. 651MachineBasicBlock *ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr *MI) { 652 MachineBasicBlock *OrigBB = MI->getParent(); 653 MachineFunction &MF = *OrigBB->getParent(); 654 655 // Create a new MBB for the code after the OrigBB. 656 MachineBasicBlock *NewBB = 657 MF.CreateMachineBasicBlock(OrigBB->getBasicBlock()); 658 MachineFunction::iterator MBBI = OrigBB; ++MBBI; 659 MF.insert(MBBI, NewBB); 660 661 // Splice the instructions starting with MI over to NewBB. 662 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 663 664 // Add an unconditional branch from OrigBB to NewBB. 665 // Note the new unconditional branch is not being recorded. 666 // There doesn't seem to be meaningful DebugInfo available; this doesn't 667 // correspond to anything in the source. 668 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B; 669 BuildMI(OrigBB, DebugLoc::getUnknownLoc(), TII->get(Opc)).addMBB(NewBB); 670 NumSplit++; 671 672 // Update the CFG. All succs of OrigBB are now succs of NewBB. 673 while (!OrigBB->succ_empty()) { 674 MachineBasicBlock *Succ = *OrigBB->succ_begin(); 675 OrigBB->removeSuccessor(Succ); 676 NewBB->addSuccessor(Succ); 677 678 // This pass should be run after register allocation, so there should be no 679 // PHI nodes to update. 680 assert((Succ->empty() || Succ->begin()->getOpcode() != TargetInstrInfo::PHI) 681 && "PHI nodes should be eliminated by now!"); 682 } 683 684 // OrigBB branches to NewBB. 685 OrigBB->addSuccessor(NewBB); 686 687 // Update internal data structures to account for the newly inserted MBB. 688 // This is almost the same as UpdateForInsertedWaterBlock, except that 689 // the Water goes after OrigBB, not NewBB. 690 MF.RenumberBlocks(NewBB); 691 692 // Insert a size into BBSizes to align it properly with the (newly 693 // renumbered) block numbers. 694 BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0); 695 696 // Likewise for BBOffsets. 697 BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0); 698 699 // Next, update WaterList. Specifically, we need to add OrigMBB as having 700 // available water after it (but not if it's already there, which happens 701 // when splitting before a conditional branch that is followed by an 702 // unconditional branch - in that case we want to insert NewBB). 703 water_iterator IP = 704 std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB, 705 CompareMBBNumbers); 706 MachineBasicBlock* WaterBB = *IP; 707 if (WaterBB == OrigBB) 708 WaterList.insert(next(IP), NewBB); 709 else 710 WaterList.insert(IP, OrigBB); 711 NewWaterList.insert(OrigBB); 712 713 // Figure out how large the first NewMBB is. (It cannot 714 // contain a constpool_entry or tablejump.) 715 unsigned NewBBSize = 0; 716 for (MachineBasicBlock::iterator I = NewBB->begin(), E = NewBB->end(); 717 I != E; ++I) 718 NewBBSize += TII->GetInstSizeInBytes(I); 719 720 unsigned OrigBBI = OrigBB->getNumber(); 721 unsigned NewBBI = NewBB->getNumber(); 722 // Set the size of NewBB in BBSizes. 723 BBSizes[NewBBI] = NewBBSize; 724 725 // We removed instructions from UserMBB, subtract that off from its size. 726 // Add 2 or 4 to the block to count the unconditional branch we added to it. 727 int delta = isThumb1 ? 2 : 4; 728 BBSizes[OrigBBI] -= NewBBSize - delta; 729 730 // ...and adjust BBOffsets for NewBB accordingly. 731 BBOffsets[NewBBI] = BBOffsets[OrigBBI] + BBSizes[OrigBBI]; 732 733 // All BBOffsets following these blocks must be modified. 734 AdjustBBOffsetsAfter(NewBB, delta); 735 736 return NewBB; 737} 738 739/// OffsetIsInRange - Checks whether UserOffset (the location of a constant pool 740/// reference) is within MaxDisp of TrialOffset (a proposed location of a 741/// constant pool entry). 742bool ARMConstantIslands::OffsetIsInRange(unsigned UserOffset, 743 unsigned TrialOffset, unsigned MaxDisp, 744 bool NegativeOK, bool IsSoImm) { 745 // On Thumb offsets==2 mod 4 are rounded down by the hardware for 746 // purposes of the displacement computation; compensate for that here. 747 // Effectively, the valid range of displacements is 2 bytes smaller for such 748 // references. 749 unsigned TotalAdj = 0; 750 if (isThumb && UserOffset%4 !=0) { 751 UserOffset -= 2; 752 TotalAdj = 2; 753 } 754 // CPEs will be rounded up to a multiple of 4. 755 if (isThumb && TrialOffset%4 != 0) { 756 TrialOffset += 2; 757 TotalAdj += 2; 758 } 759 760 // In Thumb2 mode, later branch adjustments can shift instructions up and 761 // cause alignment change. In the worst case scenario this can cause the 762 // user's effective address to be subtracted by 2 and the CPE's address to 763 // be plus 2. 764 if (isThumb2 && TotalAdj != 4) 765 MaxDisp -= (4 - TotalAdj); 766 767 if (UserOffset <= TrialOffset) { 768 // User before the Trial. 769 if (TrialOffset - UserOffset <= MaxDisp) 770 return true; 771 // FIXME: Make use full range of soimm values. 772 } else if (NegativeOK) { 773 if (UserOffset - TrialOffset <= MaxDisp) 774 return true; 775 // FIXME: Make use full range of soimm values. 776 } 777 return false; 778} 779 780/// WaterIsInRange - Returns true if a CPE placed after the specified 781/// Water (a basic block) will be in range for the specific MI. 782 783bool ARMConstantIslands::WaterIsInRange(unsigned UserOffset, 784 MachineBasicBlock* Water, CPUser &U) { 785 unsigned MaxDisp = U.MaxDisp; 786 unsigned CPEOffset = BBOffsets[Water->getNumber()] + 787 BBSizes[Water->getNumber()]; 788 789 // If the CPE is to be inserted before the instruction, that will raise 790 // the offset of the instruction. 791 if (CPEOffset < UserOffset) 792 UserOffset += U.CPEMI->getOperand(2).getImm(); 793 794 return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, U.NegOk, U.IsSoImm); 795} 796 797/// CPEIsInRange - Returns true if the distance between specific MI and 798/// specific ConstPool entry instruction can fit in MI's displacement field. 799bool ARMConstantIslands::CPEIsInRange(MachineInstr *MI, unsigned UserOffset, 800 MachineInstr *CPEMI, unsigned MaxDisp, 801 bool NegOk, bool DoDump) { 802 unsigned CPEOffset = GetOffsetOf(CPEMI); 803 assert(CPEOffset%4 == 0 && "Misaligned CPE"); 804 805 if (DoDump) { 806 DEBUG(errs() << "User of CPE#" << CPEMI->getOperand(0).getImm() 807 << " max delta=" << MaxDisp 808 << " insn address=" << UserOffset 809 << " CPE address=" << CPEOffset 810 << " offset=" << int(CPEOffset-UserOffset) << "\t" << *MI); 811 } 812 813 return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, NegOk); 814} 815 816#ifndef NDEBUG 817/// BBIsJumpedOver - Return true of the specified basic block's only predecessor 818/// unconditionally branches to its only successor. 819static bool BBIsJumpedOver(MachineBasicBlock *MBB) { 820 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 821 return false; 822 823 MachineBasicBlock *Succ = *MBB->succ_begin(); 824 MachineBasicBlock *Pred = *MBB->pred_begin(); 825 MachineInstr *PredMI = &Pred->back(); 826 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB 827 || PredMI->getOpcode() == ARM::t2B) 828 return PredMI->getOperand(0).getMBB() == Succ; 829 return false; 830} 831#endif // NDEBUG 832 833void ARMConstantIslands::AdjustBBOffsetsAfter(MachineBasicBlock *BB, 834 int delta) { 835 MachineFunction::iterator MBBI = BB; MBBI = next(MBBI); 836 for(unsigned i = BB->getNumber()+1, e = BB->getParent()->getNumBlockIDs(); 837 i < e; ++i) { 838 BBOffsets[i] += delta; 839 // If some existing blocks have padding, adjust the padding as needed, a 840 // bit tricky. delta can be negative so don't use % on that. 841 if (!isThumb) 842 continue; 843 MachineBasicBlock *MBB = MBBI; 844 if (!MBB->empty()) { 845 // Constant pool entries require padding. 846 if (MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) { 847 unsigned OldOffset = BBOffsets[i] - delta; 848 if ((OldOffset%4) == 0 && (BBOffsets[i]%4) != 0) { 849 // add new padding 850 BBSizes[i] += 2; 851 delta += 2; 852 } else if ((OldOffset%4) != 0 && (BBOffsets[i]%4) == 0) { 853 // remove existing padding 854 BBSizes[i] -= 2; 855 delta -= 2; 856 } 857 } 858 // Thumb1 jump tables require padding. They should be at the end; 859 // following unconditional branches are removed by AnalyzeBranch. 860 MachineInstr *ThumbJTMI = prior(MBB->end()); 861 if (ThumbJTMI->getOpcode() == ARM::tBR_JTr) { 862 unsigned NewMIOffset = GetOffsetOf(ThumbJTMI); 863 unsigned OldMIOffset = NewMIOffset - delta; 864 if ((OldMIOffset%4) == 0 && (NewMIOffset%4) != 0) { 865 // remove existing padding 866 BBSizes[i] -= 2; 867 delta -= 2; 868 } else if ((OldMIOffset%4) != 0 && (NewMIOffset%4) == 0) { 869 // add new padding 870 BBSizes[i] += 2; 871 delta += 2; 872 } 873 } 874 if (delta==0) 875 return; 876 } 877 MBBI = next(MBBI); 878 } 879} 880 881/// DecrementOldEntry - find the constant pool entry with index CPI 882/// and instruction CPEMI, and decrement its refcount. If the refcount 883/// becomes 0 remove the entry and instruction. Returns true if we removed 884/// the entry, false if we didn't. 885 886bool ARMConstantIslands::DecrementOldEntry(unsigned CPI, MachineInstr *CPEMI) { 887 // Find the old entry. Eliminate it if it is no longer used. 888 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 889 assert(CPE && "Unexpected!"); 890 if (--CPE->RefCount == 0) { 891 RemoveDeadCPEMI(CPEMI); 892 CPE->CPEMI = NULL; 893 NumCPEs--; 894 return true; 895 } 896 return false; 897} 898 899/// LookForCPEntryInRange - see if the currently referenced CPE is in range; 900/// if not, see if an in-range clone of the CPE is in range, and if so, 901/// change the data structures so the user references the clone. Returns: 902/// 0 = no existing entry found 903/// 1 = entry found, and there were no code insertions or deletions 904/// 2 = entry found, and there were code insertions or deletions 905int ARMConstantIslands::LookForExistingCPEntry(CPUser& U, unsigned UserOffset) 906{ 907 MachineInstr *UserMI = U.MI; 908 MachineInstr *CPEMI = U.CPEMI; 909 910 // Check to see if the CPE is already in-range. 911 if (CPEIsInRange(UserMI, UserOffset, CPEMI, U.MaxDisp, U.NegOk, true)) { 912 DEBUG(errs() << "In range\n"); 913 return 1; 914 } 915 916 // No. Look for previously created clones of the CPE that are in range. 917 unsigned CPI = CPEMI->getOperand(1).getIndex(); 918 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 919 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 920 // We already tried this one 921 if (CPEs[i].CPEMI == CPEMI) 922 continue; 923 // Removing CPEs can leave empty entries, skip 924 if (CPEs[i].CPEMI == NULL) 925 continue; 926 if (CPEIsInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.MaxDisp, U.NegOk)) { 927 DEBUG(errs() << "Replacing CPE#" << CPI << " with CPE#" 928 << CPEs[i].CPI << "\n"); 929 // Point the CPUser node to the replacement 930 U.CPEMI = CPEs[i].CPEMI; 931 // Change the CPI in the instruction operand to refer to the clone. 932 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) 933 if (UserMI->getOperand(j).isCPI()) { 934 UserMI->getOperand(j).setIndex(CPEs[i].CPI); 935 break; 936 } 937 // Adjust the refcount of the clone... 938 CPEs[i].RefCount++; 939 // ...and the original. If we didn't remove the old entry, none of the 940 // addresses changed, so we don't need another pass. 941 return DecrementOldEntry(CPI, CPEMI) ? 2 : 1; 942 } 943 } 944 return 0; 945} 946 947/// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 948/// the specific unconditional branch instruction. 949static inline unsigned getUnconditionalBrDisp(int Opc) { 950 switch (Opc) { 951 case ARM::tB: 952 return ((1<<10)-1)*2; 953 case ARM::t2B: 954 return ((1<<23)-1)*2; 955 default: 956 break; 957 } 958 959 return ((1<<23)-1)*4; 960} 961 962/// LookForWater - Look for an existing entry in the WaterList in which 963/// we can place the CPE referenced from U so it's within range of U's MI. 964/// Returns true if found, false if not. If it returns true, WaterIter 965/// is set to the WaterList entry. For Thumb, prefer water that will not 966/// introduce padding to water that will. To ensure that this pass 967/// terminates, the CPE location for a particular CPUser is only allowed to 968/// move to a lower address, so search backward from the end of the list and 969/// prefer the first water that is in range. 970bool ARMConstantIslands::LookForWater(CPUser &U, unsigned UserOffset, 971 water_iterator &WaterIter) { 972 if (WaterList.empty()) 973 return false; 974 975 bool FoundWaterThatWouldPad = false; 976 water_iterator IPThatWouldPad; 977 for (water_iterator IP = prior(WaterList.end()), 978 B = WaterList.begin();; --IP) { 979 MachineBasicBlock* WaterBB = *IP; 980 // Check if water is in range and is either at a lower address than the 981 // current "high water mark" or a new water block that was created since 982 // the previous iteration by inserting an unconditional branch. In the 983 // latter case, we want to allow resetting the high water mark back to 984 // this new water since we haven't seen it before. Inserting branches 985 // should be relatively uncommon and when it does happen, we want to be 986 // sure to take advantage of it for all the CPEs near that block, so that 987 // we don't insert more branches than necessary. 988 if (WaterIsInRange(UserOffset, WaterBB, U) && 989 (WaterBB->getNumber() < U.HighWaterMark->getNumber() || 990 NewWaterList.count(WaterBB))) { 991 unsigned WBBId = WaterBB->getNumber(); 992 if (isThumb && 993 (BBOffsets[WBBId] + BBSizes[WBBId])%4 != 0) { 994 // This is valid Water, but would introduce padding. Remember 995 // it in case we don't find any Water that doesn't do this. 996 if (!FoundWaterThatWouldPad) { 997 FoundWaterThatWouldPad = true; 998 IPThatWouldPad = IP; 999 } 1000 } else { 1001 WaterIter = IP; 1002 return true; 1003 } 1004 } 1005 if (IP == B) 1006 break; 1007 } 1008 if (FoundWaterThatWouldPad) { 1009 WaterIter = IPThatWouldPad; 1010 return true; 1011 } 1012 return false; 1013} 1014 1015/// CreateNewWater - No existing WaterList entry will work for 1016/// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 1017/// block is used if in range, and the conditional branch munged so control 1018/// flow is correct. Otherwise the block is split to create a hole with an 1019/// unconditional branch around it. In either case NewMBB is set to a 1020/// block following which the new island can be inserted (the WaterList 1021/// is not adjusted). 1022void ARMConstantIslands::CreateNewWater(unsigned CPUserIndex, 1023 unsigned UserOffset, 1024 MachineBasicBlock *&NewMBB) { 1025 CPUser &U = CPUsers[CPUserIndex]; 1026 MachineInstr *UserMI = U.MI; 1027 MachineInstr *CPEMI = U.CPEMI; 1028 MachineBasicBlock *UserMBB = UserMI->getParent(); 1029 unsigned OffsetOfNextBlock = BBOffsets[UserMBB->getNumber()] + 1030 BBSizes[UserMBB->getNumber()]; 1031 assert(OffsetOfNextBlock== BBOffsets[UserMBB->getNumber()+1]); 1032 1033 // If the block does not end in an unconditional branch already, and if the 1034 // end of the block is within range, make new water there. (The addition 1035 // below is for the unconditional branch we will be adding: 4 bytes on ARM + 1036 // Thumb2, 2 on Thumb1. Possible Thumb1 alignment padding is allowed for 1037 // inside OffsetIsInRange. 1038 if (BBHasFallthrough(UserMBB) && 1039 OffsetIsInRange(UserOffset, OffsetOfNextBlock + (isThumb1 ? 2: 4), 1040 U.MaxDisp, U.NegOk, U.IsSoImm)) { 1041 DEBUG(errs() << "Split at end of block\n"); 1042 if (&UserMBB->back() == UserMI) 1043 assert(BBHasFallthrough(UserMBB) && "Expected a fallthrough BB!"); 1044 NewMBB = next(MachineFunction::iterator(UserMBB)); 1045 // Add an unconditional branch from UserMBB to fallthrough block. 1046 // Record it for branch lengthening; this new branch will not get out of 1047 // range, but if the preceding conditional branch is out of range, the 1048 // targets will be exchanged, and the altered branch may be out of 1049 // range, so the machinery has to know about it. 1050 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B; 1051 BuildMI(UserMBB, DebugLoc::getUnknownLoc(), 1052 TII->get(UncondBr)).addMBB(NewMBB); 1053 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 1054 ImmBranches.push_back(ImmBranch(&UserMBB->back(), 1055 MaxDisp, false, UncondBr)); 1056 int delta = isThumb1 ? 2 : 4; 1057 BBSizes[UserMBB->getNumber()] += delta; 1058 AdjustBBOffsetsAfter(UserMBB, delta); 1059 } else { 1060 // What a big block. Find a place within the block to split it. 1061 // This is a little tricky on Thumb1 since instructions are 2 bytes 1062 // and constant pool entries are 4 bytes: if instruction I references 1063 // island CPE, and instruction I+1 references CPE', it will 1064 // not work well to put CPE as far forward as possible, since then 1065 // CPE' cannot immediately follow it (that location is 2 bytes 1066 // farther away from I+1 than CPE was from I) and we'd need to create 1067 // a new island. So, we make a first guess, then walk through the 1068 // instructions between the one currently being looked at and the 1069 // possible insertion point, and make sure any other instructions 1070 // that reference CPEs will be able to use the same island area; 1071 // if not, we back up the insertion point. 1072 1073 // The 4 in the following is for the unconditional branch we'll be 1074 // inserting (allows for long branch on Thumb1). Alignment of the 1075 // island is handled inside OffsetIsInRange. 1076 unsigned BaseInsertOffset = UserOffset + U.MaxDisp -4; 1077 // This could point off the end of the block if we've already got 1078 // constant pool entries following this block; only the last one is 1079 // in the water list. Back past any possible branches (allow for a 1080 // conditional and a maximally long unconditional). 1081 if (BaseInsertOffset >= BBOffsets[UserMBB->getNumber()+1]) 1082 BaseInsertOffset = BBOffsets[UserMBB->getNumber()+1] - 1083 (isThumb1 ? 6 : 8); 1084 unsigned EndInsertOffset = BaseInsertOffset + 1085 CPEMI->getOperand(2).getImm(); 1086 MachineBasicBlock::iterator MI = UserMI; 1087 ++MI; 1088 unsigned CPUIndex = CPUserIndex+1; 1089 for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI); 1090 Offset < BaseInsertOffset; 1091 Offset += TII->GetInstSizeInBytes(MI), 1092 MI = next(MI)) { 1093 if (CPUIndex < CPUsers.size() && CPUsers[CPUIndex].MI == MI) { 1094 CPUser &U = CPUsers[CPUIndex]; 1095 if (!OffsetIsInRange(Offset, EndInsertOffset, 1096 U.MaxDisp, U.NegOk, U.IsSoImm)) { 1097 BaseInsertOffset -= (isThumb1 ? 2 : 4); 1098 EndInsertOffset -= (isThumb1 ? 2 : 4); 1099 } 1100 // This is overly conservative, as we don't account for CPEMIs 1101 // being reused within the block, but it doesn't matter much. 1102 EndInsertOffset += CPUsers[CPUIndex].CPEMI->getOperand(2).getImm(); 1103 CPUIndex++; 1104 } 1105 } 1106 DEBUG(errs() << "Split in middle of big block\n"); 1107 NewMBB = SplitBlockBeforeInstr(prior(MI)); 1108 } 1109} 1110 1111/// HandleConstantPoolUser - Analyze the specified user, checking to see if it 1112/// is out-of-range. If so, pick up the constant pool value and move it some 1113/// place in-range. Return true if we changed any addresses (thus must run 1114/// another pass of branch lengthening), false otherwise. 1115bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction &MF, 1116 unsigned CPUserIndex) { 1117 CPUser &U = CPUsers[CPUserIndex]; 1118 MachineInstr *UserMI = U.MI; 1119 MachineInstr *CPEMI = U.CPEMI; 1120 unsigned CPI = CPEMI->getOperand(1).getIndex(); 1121 unsigned Size = CPEMI->getOperand(2).getImm(); 1122 // Compute this only once, it's expensive. The 4 or 8 is the value the 1123 // hardware keeps in the PC. 1124 unsigned UserOffset = GetOffsetOf(UserMI) + (isThumb ? 4 : 8); 1125 1126 // See if the current entry is within range, or there is a clone of it 1127 // in range. 1128 int result = LookForExistingCPEntry(U, UserOffset); 1129 if (result==1) return false; 1130 else if (result==2) return true; 1131 1132 // No existing clone of this CPE is within range. 1133 // We will be generating a new clone. Get a UID for it. 1134 unsigned ID = AFI->createConstPoolEntryUId(); 1135 1136 // Look for water where we can place this CPE. 1137 MachineBasicBlock *NewIsland = MF.CreateMachineBasicBlock(); 1138 MachineBasicBlock *NewMBB; 1139 water_iterator IP; 1140 if (LookForWater(U, UserOffset, IP)) { 1141 DEBUG(errs() << "found water in range\n"); 1142 MachineBasicBlock *WaterBB = *IP; 1143 1144 // If the original WaterList entry was "new water" on this iteration, 1145 // propagate that to the new island. This is just keeping NewWaterList 1146 // updated to match the WaterList, which will be updated below. 1147 if (NewWaterList.count(WaterBB)) { 1148 NewWaterList.erase(WaterBB); 1149 NewWaterList.insert(NewIsland); 1150 } 1151 // The new CPE goes before the following block (NewMBB). 1152 NewMBB = next(MachineFunction::iterator(WaterBB)); 1153 1154 } else { 1155 // No water found. 1156 DEBUG(errs() << "No water found\n"); 1157 CreateNewWater(CPUserIndex, UserOffset, NewMBB); 1158 1159 // SplitBlockBeforeInstr adds to WaterList, which is important when it is 1160 // called while handling branches so that the water will be seen on the 1161 // next iteration for constant pools, but in this context, we don't want 1162 // it. Check for this so it will be removed from the WaterList. 1163 // Also remove any entry from NewWaterList. 1164 MachineBasicBlock *WaterBB = prior(MachineFunction::iterator(NewMBB)); 1165 IP = std::find(WaterList.begin(), WaterList.end(), WaterBB); 1166 if (IP != WaterList.end()) 1167 NewWaterList.erase(WaterBB); 1168 1169 // We are adding new water. Update NewWaterList. 1170 NewWaterList.insert(NewIsland); 1171 } 1172 1173 // Remove the original WaterList entry; we want subsequent insertions in 1174 // this vicinity to go after the one we're about to insert. This 1175 // considerably reduces the number of times we have to move the same CPE 1176 // more than once and is also important to ensure the algorithm terminates. 1177 if (IP != WaterList.end()) 1178 WaterList.erase(IP); 1179 1180 // Okay, we know we can put an island before NewMBB now, do it! 1181 MF.insert(NewMBB, NewIsland); 1182 1183 // Update internal data structures to account for the newly inserted MBB. 1184 UpdateForInsertedWaterBlock(NewIsland); 1185 1186 // Decrement the old entry, and remove it if refcount becomes 0. 1187 DecrementOldEntry(CPI, CPEMI); 1188 1189 // Now that we have an island to add the CPE to, clone the original CPE and 1190 // add it to the island. 1191 U.HighWaterMark = NewIsland; 1192 U.CPEMI = BuildMI(NewIsland, DebugLoc::getUnknownLoc(), 1193 TII->get(ARM::CONSTPOOL_ENTRY)) 1194 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size); 1195 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1196 NumCPEs++; 1197 1198 BBOffsets[NewIsland->getNumber()] = BBOffsets[NewMBB->getNumber()]; 1199 // Compensate for .align 2 in thumb mode. 1200 if (isThumb && BBOffsets[NewIsland->getNumber()]%4 != 0) 1201 Size += 2; 1202 // Increase the size of the island block to account for the new entry. 1203 BBSizes[NewIsland->getNumber()] += Size; 1204 AdjustBBOffsetsAfter(NewIsland, Size); 1205 1206 // Finally, change the CPI in the instruction operand to be ID. 1207 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) 1208 if (UserMI->getOperand(i).isCPI()) { 1209 UserMI->getOperand(i).setIndex(ID); 1210 break; 1211 } 1212 1213 DEBUG(errs() << " Moved CPE to #" << ID << " CPI=" << CPI 1214 << '\t' << *UserMI); 1215 1216 return true; 1217} 1218 1219/// RemoveDeadCPEMI - Remove a dead constant pool entry instruction. Update 1220/// sizes and offsets of impacted basic blocks. 1221void ARMConstantIslands::RemoveDeadCPEMI(MachineInstr *CPEMI) { 1222 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1223 unsigned Size = CPEMI->getOperand(2).getImm(); 1224 CPEMI->eraseFromParent(); 1225 BBSizes[CPEBB->getNumber()] -= Size; 1226 // All succeeding offsets have the current size value added in, fix this. 1227 if (CPEBB->empty()) { 1228 // In thumb1 mode, the size of island may be padded by two to compensate for 1229 // the alignment requirement. Then it will now be 2 when the block is 1230 // empty, so fix this. 1231 // All succeeding offsets have the current size value added in, fix this. 1232 if (BBSizes[CPEBB->getNumber()] != 0) { 1233 Size += BBSizes[CPEBB->getNumber()]; 1234 BBSizes[CPEBB->getNumber()] = 0; 1235 } 1236 } 1237 AdjustBBOffsetsAfter(CPEBB, -Size); 1238 // An island has only one predecessor BB and one successor BB. Check if 1239 // this BB's predecessor jumps directly to this BB's successor. This 1240 // shouldn't happen currently. 1241 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); 1242 // FIXME: remove the empty blocks after all the work is done? 1243} 1244 1245/// RemoveUnusedCPEntries - Remove constant pool entries whose refcounts 1246/// are zero. 1247bool ARMConstantIslands::RemoveUnusedCPEntries() { 1248 unsigned MadeChange = false; 1249 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 1250 std::vector<CPEntry> &CPEs = CPEntries[i]; 1251 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { 1252 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { 1253 RemoveDeadCPEMI(CPEs[j].CPEMI); 1254 CPEs[j].CPEMI = NULL; 1255 MadeChange = true; 1256 } 1257 } 1258 } 1259 return MadeChange; 1260} 1261 1262/// BBIsInRange - Returns true if the distance between specific MI and 1263/// specific BB can fit in MI's displacement field. 1264bool ARMConstantIslands::BBIsInRange(MachineInstr *MI,MachineBasicBlock *DestBB, 1265 unsigned MaxDisp) { 1266 unsigned PCAdj = isThumb ? 4 : 8; 1267 unsigned BrOffset = GetOffsetOf(MI) + PCAdj; 1268 unsigned DestOffset = BBOffsets[DestBB->getNumber()]; 1269 1270 DEBUG(errs() << "Branch of destination BB#" << DestBB->getNumber() 1271 << " from BB#" << MI->getParent()->getNumber() 1272 << " max delta=" << MaxDisp 1273 << " from " << GetOffsetOf(MI) << " to " << DestOffset 1274 << " offset " << int(DestOffset-BrOffset) << "\t" << *MI); 1275 1276 if (BrOffset <= DestOffset) { 1277 // Branch before the Dest. 1278 if (DestOffset-BrOffset <= MaxDisp) 1279 return true; 1280 } else { 1281 if (BrOffset-DestOffset <= MaxDisp) 1282 return true; 1283 } 1284 return false; 1285} 1286 1287/// FixUpImmediateBr - Fix up an immediate branch whose destination is too far 1288/// away to fit in its displacement field. 1289bool ARMConstantIslands::FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br) { 1290 MachineInstr *MI = Br.MI; 1291 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1292 1293 // Check to see if the DestBB is already in-range. 1294 if (BBIsInRange(MI, DestBB, Br.MaxDisp)) 1295 return false; 1296 1297 if (!Br.isCond) 1298 return FixUpUnconditionalBr(MF, Br); 1299 return FixUpConditionalBr(MF, Br); 1300} 1301 1302/// FixUpUnconditionalBr - Fix up an unconditional branch whose destination is 1303/// too far away to fit in its displacement field. If the LR register has been 1304/// spilled in the epilogue, then we can use BL to implement a far jump. 1305/// Otherwise, add an intermediate branch instruction to a branch. 1306bool 1307ARMConstantIslands::FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br) { 1308 MachineInstr *MI = Br.MI; 1309 MachineBasicBlock *MBB = MI->getParent(); 1310 if (!isThumb1) 1311 llvm_unreachable("FixUpUnconditionalBr is Thumb1 only!"); 1312 1313 // Use BL to implement far jump. 1314 Br.MaxDisp = (1 << 21) * 2; 1315 MI->setDesc(TII->get(ARM::tBfar)); 1316 BBSizes[MBB->getNumber()] += 2; 1317 AdjustBBOffsetsAfter(MBB, 2); 1318 HasFarJump = true; 1319 NumUBrFixed++; 1320 1321 DEBUG(errs() << " Changed B to long jump " << *MI); 1322 1323 return true; 1324} 1325 1326/// FixUpConditionalBr - Fix up a conditional branch whose destination is too 1327/// far away to fit in its displacement field. It is converted to an inverse 1328/// conditional branch + an unconditional branch to the destination. 1329bool 1330ARMConstantIslands::FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br) { 1331 MachineInstr *MI = Br.MI; 1332 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1333 1334 // Add an unconditional branch to the destination and invert the branch 1335 // condition to jump over it: 1336 // blt L1 1337 // => 1338 // bge L2 1339 // b L1 1340 // L2: 1341 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm(); 1342 CC = ARMCC::getOppositeCondition(CC); 1343 unsigned CCReg = MI->getOperand(2).getReg(); 1344 1345 // If the branch is at the end of its MBB and that has a fall-through block, 1346 // direct the updated conditional branch to the fall-through block. Otherwise, 1347 // split the MBB before the next instruction. 1348 MachineBasicBlock *MBB = MI->getParent(); 1349 MachineInstr *BMI = &MBB->back(); 1350 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); 1351 1352 NumCBrFixed++; 1353 if (BMI != MI) { 1354 if (next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) && 1355 BMI->getOpcode() == Br.UncondBr) { 1356 // Last MI in the BB is an unconditional branch. Can we simply invert the 1357 // condition and swap destinations: 1358 // beq L1 1359 // b L2 1360 // => 1361 // bne L2 1362 // b L1 1363 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); 1364 if (BBIsInRange(MI, NewDest, Br.MaxDisp)) { 1365 DEBUG(errs() << " Invert Bcc condition and swap its destination with " 1366 << *BMI); 1367 BMI->getOperand(0).setMBB(DestBB); 1368 MI->getOperand(0).setMBB(NewDest); 1369 MI->getOperand(1).setImm(CC); 1370 return true; 1371 } 1372 } 1373 } 1374 1375 if (NeedSplit) { 1376 SplitBlockBeforeInstr(MI); 1377 // No need for the branch to the next block. We're adding an unconditional 1378 // branch to the destination. 1379 int delta = TII->GetInstSizeInBytes(&MBB->back()); 1380 BBSizes[MBB->getNumber()] -= delta; 1381 MachineBasicBlock* SplitBB = next(MachineFunction::iterator(MBB)); 1382 AdjustBBOffsetsAfter(SplitBB, -delta); 1383 MBB->back().eraseFromParent(); 1384 // BBOffsets[SplitBB] is wrong temporarily, fixed below 1385 } 1386 MachineBasicBlock *NextBB = next(MachineFunction::iterator(MBB)); 1387 1388 DEBUG(errs() << " Insert B to BB#" << DestBB->getNumber() 1389 << " also invert condition and change dest. to BB#" 1390 << NextBB->getNumber() << "\n"); 1391 1392 // Insert a new conditional branch and a new unconditional branch. 1393 // Also update the ImmBranch as well as adding a new entry for the new branch. 1394 BuildMI(MBB, DebugLoc::getUnknownLoc(), 1395 TII->get(MI->getOpcode())) 1396 .addMBB(NextBB).addImm(CC).addReg(CCReg); 1397 Br.MI = &MBB->back(); 1398 BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back()); 1399 BuildMI(MBB, DebugLoc::getUnknownLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); 1400 BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back()); 1401 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1402 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1403 1404 // Remove the old conditional branch. It may or may not still be in MBB. 1405 BBSizes[MI->getParent()->getNumber()] -= TII->GetInstSizeInBytes(MI); 1406 MI->eraseFromParent(); 1407 1408 // The net size change is an addition of one unconditional branch. 1409 int delta = TII->GetInstSizeInBytes(&MBB->back()); 1410 AdjustBBOffsetsAfter(MBB, delta); 1411 return true; 1412} 1413 1414/// UndoLRSpillRestore - Remove Thumb push / pop instructions that only spills 1415/// LR / restores LR to pc. FIXME: This is done here because it's only possible 1416/// to do this if tBfar is not used. 1417bool ARMConstantIslands::UndoLRSpillRestore() { 1418 bool MadeChange = false; 1419 for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) { 1420 MachineInstr *MI = PushPopMIs[i]; 1421 // First two operands are predicates, the third is a zero since there 1422 // is no writeback. 1423 if (MI->getOpcode() == ARM::tPOP_RET && 1424 MI->getOperand(3).getReg() == ARM::PC && 1425 MI->getNumExplicitOperands() == 4) { 1426 BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET)); 1427 MI->eraseFromParent(); 1428 MadeChange = true; 1429 } 1430 } 1431 return MadeChange; 1432} 1433 1434bool ARMConstantIslands::OptimizeThumb2Instructions(MachineFunction &MF) { 1435 bool MadeChange = false; 1436 1437 // Shrink ADR and LDR from constantpool. 1438 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 1439 CPUser &U = CPUsers[i]; 1440 unsigned Opcode = U.MI->getOpcode(); 1441 unsigned NewOpc = 0; 1442 unsigned Scale = 1; 1443 unsigned Bits = 0; 1444 switch (Opcode) { 1445 default: break; 1446 case ARM::t2LEApcrel: 1447 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1448 NewOpc = ARM::tLEApcrel; 1449 Bits = 8; 1450 Scale = 4; 1451 } 1452 break; 1453 case ARM::t2LDRpci: 1454 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1455 NewOpc = ARM::tLDRpci; 1456 Bits = 8; 1457 Scale = 4; 1458 } 1459 break; 1460 } 1461 1462 if (!NewOpc) 1463 continue; 1464 1465 unsigned UserOffset = GetOffsetOf(U.MI) + 4; 1466 unsigned MaxOffs = ((1 << Bits) - 1) * Scale; 1467 // FIXME: Check if offset is multiple of scale if scale is not 4. 1468 if (CPEIsInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) { 1469 U.MI->setDesc(TII->get(NewOpc)); 1470 MachineBasicBlock *MBB = U.MI->getParent(); 1471 BBSizes[MBB->getNumber()] -= 2; 1472 AdjustBBOffsetsAfter(MBB, -2); 1473 ++NumT2CPShrunk; 1474 MadeChange = true; 1475 } 1476 } 1477 1478 MadeChange |= OptimizeThumb2Branches(MF); 1479 MadeChange |= OptimizeThumb2JumpTables(MF); 1480 return MadeChange; 1481} 1482 1483bool ARMConstantIslands::OptimizeThumb2Branches(MachineFunction &MF) { 1484 bool MadeChange = false; 1485 1486 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) { 1487 ImmBranch &Br = ImmBranches[i]; 1488 unsigned Opcode = Br.MI->getOpcode(); 1489 unsigned NewOpc = 0; 1490 unsigned Scale = 1; 1491 unsigned Bits = 0; 1492 switch (Opcode) { 1493 default: break; 1494 case ARM::t2B: 1495 NewOpc = ARM::tB; 1496 Bits = 11; 1497 Scale = 2; 1498 break; 1499 case ARM::t2Bcc: { 1500 NewOpc = ARM::tBcc; 1501 Bits = 8; 1502 Scale = 2; 1503 break; 1504 } 1505 } 1506 if (NewOpc) { 1507 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 1508 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1509 if (BBIsInRange(Br.MI, DestBB, MaxOffs)) { 1510 Br.MI->setDesc(TII->get(NewOpc)); 1511 MachineBasicBlock *MBB = Br.MI->getParent(); 1512 BBSizes[MBB->getNumber()] -= 2; 1513 AdjustBBOffsetsAfter(MBB, -2); 1514 ++NumT2BrShrunk; 1515 MadeChange = true; 1516 } 1517 } 1518 1519 Opcode = Br.MI->getOpcode(); 1520 if (Opcode != ARM::tBcc) 1521 continue; 1522 1523 NewOpc = 0; 1524 unsigned PredReg = 0; 1525 ARMCC::CondCodes Pred = llvm::getInstrPredicate(Br.MI, PredReg); 1526 if (Pred == ARMCC::EQ) 1527 NewOpc = ARM::tCBZ; 1528 else if (Pred == ARMCC::NE) 1529 NewOpc = ARM::tCBNZ; 1530 if (!NewOpc) 1531 continue; 1532 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1533 // Check if the distance is within 126. Subtract starting offset by 2 1534 // because the cmp will be eliminated. 1535 unsigned BrOffset = GetOffsetOf(Br.MI) + 4 - 2; 1536 unsigned DestOffset = BBOffsets[DestBB->getNumber()]; 1537 if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) { 1538 MachineBasicBlock::iterator CmpMI = Br.MI; --CmpMI; 1539 if (CmpMI->getOpcode() == ARM::tCMPzi8) { 1540 unsigned Reg = CmpMI->getOperand(0).getReg(); 1541 Pred = llvm::getInstrPredicate(CmpMI, PredReg); 1542 if (Pred == ARMCC::AL && 1543 CmpMI->getOperand(1).getImm() == 0 && 1544 isARMLowRegister(Reg)) { 1545 MachineBasicBlock *MBB = Br.MI->getParent(); 1546 MachineInstr *NewBR = 1547 BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc)) 1548 .addReg(Reg).addMBB(DestBB, Br.MI->getOperand(0).getTargetFlags()); 1549 CmpMI->eraseFromParent(); 1550 Br.MI->eraseFromParent(); 1551 Br.MI = NewBR; 1552 BBSizes[MBB->getNumber()] -= 2; 1553 AdjustBBOffsetsAfter(MBB, -2); 1554 ++NumCBZ; 1555 MadeChange = true; 1556 } 1557 } 1558 } 1559 } 1560 1561 return MadeChange; 1562} 1563 1564 1565/// OptimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller 1566/// jumptables when it's possible. 1567bool ARMConstantIslands::OptimizeThumb2JumpTables(MachineFunction &MF) { 1568 bool MadeChange = false; 1569 1570 // FIXME: After the tables are shrunk, can we get rid some of the 1571 // constantpool tables? 1572 MachineJumpTableInfo *MJTI = MF.getJumpTableInfo(); 1573 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1574 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 1575 MachineInstr *MI = T2JumpTables[i]; 1576 const TargetInstrDesc &TID = MI->getDesc(); 1577 unsigned NumOps = TID.getNumOperands(); 1578 unsigned JTOpIdx = NumOps - (TID.isPredicable() ? 3 : 2); 1579 MachineOperand JTOP = MI->getOperand(JTOpIdx); 1580 unsigned JTI = JTOP.getIndex(); 1581 assert(JTI < JT.size()); 1582 1583 // We prefer if target blocks for the jump table come after the jump 1584 // instruction so we can use TB[BH]. Loop through the target blocks 1585 // and try to adjust them such that that's true. 1586 unsigned JTOffset = GetOffsetOf(MI) + 4; 1587 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1588 if (AdjustJumpTableBlocks) { 1589 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 1590 MachineBasicBlock *MBB = JTBBs[j]; 1591 unsigned DstOffset = BBOffsets[MBB->getNumber()]; 1592 1593 if (DstOffset < JTOffset) { 1594 // The destination precedes the switch. Try to move the block forward 1595 // so we have a positive offset. 1596 MachineBasicBlock *NewBB = 1597 AdjustJTTargetBlockForward(MBB, MI->getParent()); 1598 if (NewBB) { 1599 MJTI->ReplaceMBBInJumpTables(JTBBs[j], NewBB); 1600 JTOffset = GetOffsetOf(MI) + 4; 1601 DstOffset = BBOffsets[MBB->getNumber()]; 1602 } 1603 } 1604 } 1605 } 1606 1607 bool ByteOk = true; 1608 bool HalfWordOk = true; 1609 JTOffset = GetOffsetOf(MI) + 4; 1610 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 1611 MachineBasicBlock *MBB = JTBBs[j]; 1612 unsigned DstOffset = BBOffsets[MBB->getNumber()]; 1613 // Negative offset is not ok. FIXME: We should change BB layout to make 1614 // sure all the branches are forward. 1615 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2) 1616 ByteOk = false; 1617 unsigned TBHLimit = ((1<<16)-1)*2; 1618 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit) 1619 HalfWordOk = false; 1620 if (!ByteOk && !HalfWordOk) 1621 break; 1622 } 1623 1624 if (ByteOk || HalfWordOk) { 1625 MachineBasicBlock *MBB = MI->getParent(); 1626 unsigned BaseReg = MI->getOperand(0).getReg(); 1627 bool BaseRegKill = MI->getOperand(0).isKill(); 1628 if (!BaseRegKill) 1629 continue; 1630 unsigned IdxReg = MI->getOperand(1).getReg(); 1631 bool IdxRegKill = MI->getOperand(1).isKill(); 1632 MachineBasicBlock::iterator PrevI = MI; 1633 if (PrevI == MBB->begin()) 1634 continue; 1635 1636 MachineInstr *AddrMI = --PrevI; 1637 bool OptOk = true; 1638 // Examine the instruction that calculate the jumptable entry address. 1639 // If it's not the one just before the t2BR_JT, we won't delete it, then 1640 // it's not worth doing the optimization. 1641 for (unsigned k = 0, eee = AddrMI->getNumOperands(); k != eee; ++k) { 1642 const MachineOperand &MO = AddrMI->getOperand(k); 1643 if (!MO.isReg() || !MO.getReg()) 1644 continue; 1645 if (MO.isDef() && MO.getReg() != BaseReg) { 1646 OptOk = false; 1647 break; 1648 } 1649 if (MO.isUse() && !MO.isKill() && MO.getReg() != IdxReg) { 1650 OptOk = false; 1651 break; 1652 } 1653 } 1654 if (!OptOk) 1655 continue; 1656 1657 // The previous instruction should be a tLEApcrel or t2LEApcrelJT, we want 1658 // to delete it as well. 1659 MachineInstr *LeaMI = --PrevI; 1660 if ((LeaMI->getOpcode() != ARM::tLEApcrelJT && 1661 LeaMI->getOpcode() != ARM::t2LEApcrelJT) || 1662 LeaMI->getOperand(0).getReg() != BaseReg) 1663 OptOk = false; 1664 1665 if (!OptOk) 1666 continue; 1667 1668 unsigned Opc = ByteOk ? ARM::t2TBB : ARM::t2TBH; 1669 MachineInstr *NewJTMI = BuildMI(MBB, MI->getDebugLoc(), TII->get(Opc)) 1670 .addReg(IdxReg, getKillRegState(IdxRegKill)) 1671 .addJumpTableIndex(JTI, JTOP.getTargetFlags()) 1672 .addImm(MI->getOperand(JTOpIdx+1).getImm()); 1673 // FIXME: Insert an "ALIGN" instruction to ensure the next instruction 1674 // is 2-byte aligned. For now, asm printer will fix it up. 1675 unsigned NewSize = TII->GetInstSizeInBytes(NewJTMI); 1676 unsigned OrigSize = TII->GetInstSizeInBytes(AddrMI); 1677 OrigSize += TII->GetInstSizeInBytes(LeaMI); 1678 OrigSize += TII->GetInstSizeInBytes(MI); 1679 1680 AddrMI->eraseFromParent(); 1681 LeaMI->eraseFromParent(); 1682 MI->eraseFromParent(); 1683 1684 int delta = OrigSize - NewSize; 1685 BBSizes[MBB->getNumber()] -= delta; 1686 AdjustBBOffsetsAfter(MBB, -delta); 1687 1688 ++NumTBs; 1689 MadeChange = true; 1690 } 1691 } 1692 1693 return MadeChange; 1694} 1695 1696MachineBasicBlock *ARMConstantIslands:: 1697AdjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) 1698{ 1699 MachineFunction &MF = *BB->getParent(); 1700 1701 // FIXME: For now, instead of moving the block, we'll create a new block 1702 // immediate following the jump that's an unconditional branch to the 1703 // actual target. This is obviously not what we want for a real solution, 1704 // but it's useful for proof of concept, and it may be a useful fallback 1705 // later for cases where we otherwise can't move a block. 1706 1707 // Create a new MBB for the code after the jump BB. 1708 MachineBasicBlock *NewBB = 1709 MF.CreateMachineBasicBlock(JTBB->getBasicBlock()); 1710 MachineFunction::iterator MBBI = JTBB; ++MBBI; 1711 MF.insert(MBBI, NewBB); 1712 1713 // Add an unconditional branch from NewBB to BB. 1714 // There doesn't seem to be meaningful DebugInfo available; this doesn't 1715 // correspond directly to anything in the source. 1716 assert (isThumb2 && "Adjusting for TB[BH] but not in Thumb2?"); 1717 BuildMI(NewBB, DebugLoc::getUnknownLoc(), TII->get(ARM::t2B)).addMBB(BB); 1718 1719 // Update the CFG. 1720 NewBB->addSuccessor(BB); 1721 JTBB->removeSuccessor(BB); 1722 JTBB->addSuccessor(NewBB); 1723 1724 // Update internal data structures to account for the newly inserted MBB. 1725 // This is almost the same as UpdateForInsertedWaterBlock, except that 1726 // the Water goes after OrigBB, not NewBB. 1727 MF.RenumberBlocks(NewBB); 1728 1729 // Insert a size into BBSizes to align it properly with the (newly 1730 // renumbered) block numbers. 1731 BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0); 1732 1733 // Likewise for BBOffsets. 1734 BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0); 1735 1736 // Figure out how large the first NewMBB is. 1737 unsigned NewBBSize = 0; 1738 for (MachineBasicBlock::iterator I = NewBB->begin(), E = NewBB->end(); 1739 I != E; ++I) 1740 NewBBSize += TII->GetInstSizeInBytes(I); 1741 1742 unsigned NewBBI = NewBB->getNumber(); 1743 unsigned JTBBI = JTBB->getNumber(); 1744 // Set the size of NewBB in BBSizes. 1745 BBSizes[NewBBI] = NewBBSize; 1746 1747 // ...and adjust BBOffsets for NewBB accordingly. 1748 BBOffsets[NewBBI] = BBOffsets[JTBBI] + BBSizes[JTBBI]; 1749 1750 // All BBOffsets following these blocks must be modified. 1751 AdjustBBOffsetsAfter(NewBB, 4); 1752 1753 ++NumJTMoved; 1754 return NewBB; 1755} 1756