ARMConstantIslandPass.cpp revision 29836c330ff33e3c6a250a89b3e78abb3a1970c9
1//===-- ARMConstantIslandPass.cpp - ARM constant islands --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under the
6// University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains a pass that splits the constant pool up into 'islands'
11// which are scattered through-out the function.  This is required due to the
12// limited pc-relative displacements that ARM has.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "arm-cp-islands"
17#include "ARM.h"
18#include "ARMMachineFunctionInfo.h"
19#include "ARMInstrInfo.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineFunctionPass.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/Target/TargetData.h"
24#include "llvm/Target/TargetMachine.h"
25#include "llvm/Support/Compiler.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/ADT/Statistic.h"
29#include <iostream>
30using namespace llvm;
31
32STATISTIC(NumSplit, "Number of uncond branches inserted");
33
34namespace {
35  /// ARMConstantIslands - Due to limited pc-relative displacements, ARM
36  /// requires constant pool entries to be scattered among the instructions
37  /// inside a function.  To do this, it completely ignores the normal LLVM
38  /// constant pool, instead, it places constants where-ever it feels like with
39  /// special instructions.
40  ///
41  /// The terminology used in this pass includes:
42  ///   Islands - Clumps of constants placed in the function.
43  ///   Water   - Potential places where an island could be formed.
44  ///   CPE     - A constant pool entry that has been placed somewhere, which
45  ///             tracks a list of users.
46  class VISIBILITY_HIDDEN ARMConstantIslands : public MachineFunctionPass {
47    /// NextUID - Assign unique ID's to CPE's.
48    unsigned NextUID;
49
50    /// BBSizes - The size of each MachineBasicBlock in bytes of code, indexed
51    /// by MBB Number.
52    std::vector<unsigned> BBSizes;
53
54    /// WaterList - A sorted list of basic blocks where islands could be placed
55    /// (i.e. blocks that don't fall through to the following block, due
56    /// to a return, unreachable, or unconditional branch).
57    std::vector<MachineBasicBlock*> WaterList;
58
59    /// CPUser - One user of a constant pool, keeping the machine instruction
60    /// pointer, the constant pool being referenced, and the max displacement
61    /// allowed from the instruction to the CP.
62    struct CPUser {
63      MachineInstr *MI;
64      MachineInstr *CPEMI;
65      unsigned MaxDisp;
66      CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp)
67        : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp) {}
68    };
69
70    /// CPUsers - Keep track of all of the machine instructions that use various
71    /// constant pools and their max displacement.
72    std::vector<CPUser> CPUsers;
73
74    /// ImmBranch - One per immediate branch, keeping the machine instruction
75    /// pointer, conditional or unconditional, the max displacement,
76    /// and (if isCond is true) the corresponding unconditional branch
77    /// opcode.
78    struct ImmBranch {
79      MachineInstr *MI;
80      unsigned MaxDisp : 31;
81      bool isCond : 1;
82      int UncondBr;
83      ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
84        : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
85    };
86
87    /// Branches - Keep track of all the immediate branch instructions.
88    ///
89    std::vector<ImmBranch> ImmBranches;
90
91    const TargetInstrInfo *TII;
92  public:
93    virtual bool runOnMachineFunction(MachineFunction &Fn);
94
95    virtual const char *getPassName() const {
96      return "ARM constant island placement and branch shortening pass";
97    }
98
99  private:
100    void DoInitialPlacement(MachineFunction &Fn,
101                            std::vector<MachineInstr*> &CPEMIs);
102    void InitialFunctionScan(MachineFunction &Fn,
103                             const std::vector<MachineInstr*> &CPEMIs);
104    void SplitBlockBeforeInstr(MachineInstr *MI);
105    void UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB);
106    bool HandleConstantPoolUser(MachineFunction &Fn, CPUser &U);
107    bool BBIsInBranchRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned D);
108    bool FixUpImmediateBranch(MachineFunction &Fn, ImmBranch &Br);
109
110    unsigned GetOffsetOf(MachineInstr *MI) const;
111    unsigned GetOffsetOf(MachineBasicBlock *MBB) const;
112  };
113}
114
115/// createARMConstantIslandPass - returns an instance of the constpool
116/// island pass.
117FunctionPass *llvm::createARMConstantIslandPass() {
118  return new ARMConstantIslands();
119}
120
121bool ARMConstantIslands::runOnMachineFunction(MachineFunction &Fn) {
122  MachineConstantPool &MCP = *Fn.getConstantPool();
123
124  TII = Fn.getTarget().getInstrInfo();
125
126  // Renumber all of the machine basic blocks in the function, guaranteeing that
127  // the numbers agree with the position of the block in the function.
128  Fn.RenumberBlocks();
129
130  // Perform the initial placement of the constant pool entries.  To start with,
131  // we put them all at the end of the function.
132  std::vector<MachineInstr*> CPEMIs;
133  if (!MCP.isEmpty())
134    DoInitialPlacement(Fn, CPEMIs);
135
136  /// The next UID to take is the first unused one.
137  NextUID = CPEMIs.size();
138
139  // Do the initial scan of the function, building up information about the
140  // sizes of each block, the location of all the water, and finding all of the
141  // constant pool users.
142  InitialFunctionScan(Fn, CPEMIs);
143  CPEMIs.clear();
144
145  // Iteratively place constant pool entries until there is no change.
146  bool MadeChange;
147  do {
148    MadeChange = false;
149    for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
150      MadeChange |= HandleConstantPoolUser(Fn, CPUsers[i]);
151    for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
152      MadeChange |= FixUpImmediateBranch(Fn, ImmBranches[i]);
153  } while (MadeChange);
154
155  BBSizes.clear();
156  WaterList.clear();
157  CPUsers.clear();
158  ImmBranches.clear();
159
160  return true;
161}
162
163/// DoInitialPlacement - Perform the initial placement of the constant pool
164/// entries.  To start with, we put them all at the end of the function.
165void ARMConstantIslands::DoInitialPlacement(MachineFunction &Fn,
166                                            std::vector<MachineInstr*> &CPEMIs){
167  // Create the basic block to hold the CPE's.
168  MachineBasicBlock *BB = new MachineBasicBlock();
169  Fn.getBasicBlockList().push_back(BB);
170
171  // Add all of the constants from the constant pool to the end block, use an
172  // identity mapping of CPI's to CPE's.
173  const std::vector<MachineConstantPoolEntry> &CPs =
174    Fn.getConstantPool()->getConstants();
175
176  const TargetData &TD = *Fn.getTarget().getTargetData();
177  for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
178    unsigned Size = TD.getTypeSize(CPs[i].getType());
179    // Verify that all constant pool entries are a multiple of 4 bytes.  If not,
180    // we would have to pad them out or something so that instructions stay
181    // aligned.
182    assert((Size & 3) == 0 && "CP Entry not multiple of 4 bytes!");
183    MachineInstr *CPEMI =
184      BuildMI(BB, TII->get(ARM::CONSTPOOL_ENTRY))
185                           .addImm(i).addConstantPoolIndex(i).addImm(Size);
186    CPEMIs.push_back(CPEMI);
187    DEBUG(std::cerr << "Moved CPI#" << i << " to end of function as #"
188                    << i << "\n");
189  }
190}
191
192/// BBHasFallthrough - Return true of the specified basic block can fallthrough
193/// into the block immediately after it.
194static bool BBHasFallthrough(MachineBasicBlock *MBB) {
195  // Get the next machine basic block in the function.
196  MachineFunction::iterator MBBI = MBB;
197  if (next(MBBI) == MBB->getParent()->end())  // Can't fall off end of function.
198    return false;
199
200  MachineBasicBlock *NextBB = next(MBBI);
201  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
202       E = MBB->succ_end(); I != E; ++I)
203    if (*I == NextBB)
204      return true;
205
206  return false;
207}
208
209/// InitialFunctionScan - Do the initial scan of the function, building up
210/// information about the sizes of each block, the location of all the water,
211/// and finding all of the constant pool users.
212void ARMConstantIslands::InitialFunctionScan(MachineFunction &Fn,
213                                     const std::vector<MachineInstr*> &CPEMIs) {
214  for (MachineFunction::iterator MBBI = Fn.begin(), E = Fn.end();
215       MBBI != E; ++MBBI) {
216    MachineBasicBlock &MBB = *MBBI;
217
218    // If this block doesn't fall through into the next MBB, then this is
219    // 'water' that a constant pool island could be placed.
220    if (!BBHasFallthrough(&MBB))
221      WaterList.push_back(&MBB);
222
223    unsigned MBBSize = 0;
224    for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
225         I != E; ++I) {
226      // Add instruction size to MBBSize.
227      MBBSize += ARM::GetInstSize(I);
228
229      int Opc = I->getOpcode();
230      if (TII->isBranch(Opc)) {
231        bool isCond = false;
232        unsigned Bits = 0;
233        unsigned Scale = 1;
234        int UOpc = Opc;
235        switch (Opc) {
236        default:
237          continue;  // Ignore JT branches
238        case ARM::Bcc:
239          isCond = true;
240          UOpc = ARM::B;
241          // Fallthrough
242        case ARM::B:
243          Bits = 24;
244          Scale = 4;
245          break;
246        case ARM::tBcc:
247          isCond = true;
248          UOpc = ARM::tB;
249          Bits = 8;
250          Scale = 2;
251          break;
252        case ARM::tB:
253          Bits = 11;
254          Scale = 2;
255          break;
256        }
257        unsigned MaxDisp = (1 << (Bits-1)) * Scale;
258        ImmBranches.push_back(ImmBranch(I, MaxDisp, isCond, UOpc));
259      }
260
261      // Scan the instructions for constant pool operands.
262      for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
263        if (I->getOperand(op).isConstantPoolIndex()) {
264          // We found one.  The addressing mode tells us the max displacement
265          // from the PC that this instruction permits.
266          unsigned MaxOffs = 0;
267
268          // Basic size info comes from the TSFlags field.
269          unsigned TSFlags = I->getInstrDescriptor()->TSFlags;
270          switch (TSFlags & ARMII::AddrModeMask) {
271          default:
272            // Constant pool entries can reach anything.
273            if (I->getOpcode() == ARM::CONSTPOOL_ENTRY)
274              continue;
275            assert(0 && "Unknown addressing mode for CP reference!");
276          case ARMII::AddrMode1: // AM1: 8 bits << 2
277            MaxOffs = 1 << (8+2);   // Taking the address of a CP entry.
278            break;
279          case ARMII::AddrMode2:
280            MaxOffs = 1 << 12;   // +-offset_12
281            break;
282          case ARMII::AddrMode3:
283            MaxOffs = 1 << 8;   // +-offset_8
284            break;
285            // addrmode4 has no immediate offset.
286          case ARMII::AddrMode5:
287            MaxOffs = 1 << (8+2);   // +-(offset_8*4)
288            break;
289          case ARMII::AddrModeT1:
290            MaxOffs = 1 << 5;
291            break;
292          case ARMII::AddrModeT2:
293            MaxOffs = 1 << (5+1);
294            break;
295          case ARMII::AddrModeT4:
296            MaxOffs = 1 << (5+2);
297            break;
298          case ARMII::AddrModeTs:
299            MaxOffs = 1 << (8+2);
300            break;
301          }
302
303          // Remember that this is a user of a CP entry.
304          MachineInstr *CPEMI =CPEMIs[I->getOperand(op).getConstantPoolIndex()];
305          CPUsers.push_back(CPUser(I, CPEMI, MaxOffs));
306
307          // Instructions can only use one CP entry, don't bother scanning the
308          // rest of the operands.
309          break;
310        }
311    }
312    BBSizes.push_back(MBBSize);
313  }
314}
315
316/// GetOffsetOf - Return the current offset of the specified machine instruction
317/// from the start of the function.  This offset changes as stuff is moved
318/// around inside the function.
319unsigned ARMConstantIslands::GetOffsetOf(MachineInstr *MI) const {
320  MachineBasicBlock *MBB = MI->getParent();
321
322  // The offset is composed of two things: the sum of the sizes of all MBB's
323  // before this instruction's block, and the offset from the start of the block
324  // it is in.
325  unsigned Offset = 0;
326
327  // Sum block sizes before MBB.
328  for (unsigned BB = 0, e = MBB->getNumber(); BB != e; ++BB)
329    Offset += BBSizes[BB];
330
331  // Sum instructions before MI in MBB.
332  for (MachineBasicBlock::iterator I = MBB->begin(); ; ++I) {
333    assert(I != MBB->end() && "Didn't find MI in its own basic block?");
334    if (&*I == MI) return Offset;
335    Offset += ARM::GetInstSize(I);
336  }
337}
338
339/// GetOffsetOf - Return the current offset of the specified machine BB
340/// from the start of the function.  This offset changes as stuff is moved
341/// around inside the function.
342unsigned ARMConstantIslands::GetOffsetOf(MachineBasicBlock *MBB) const {
343  // Sum block sizes before MBB.
344  unsigned Offset = 0;
345  for (unsigned BB = 0, e = MBB->getNumber(); BB != e; ++BB)
346    Offset += BBSizes[BB];
347
348  return Offset;
349}
350
351/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
352/// ID.
353static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
354                              const MachineBasicBlock *RHS) {
355  return LHS->getNumber() < RHS->getNumber();
356}
357
358/// UpdateForInsertedWaterBlock - When a block is newly inserted into the
359/// machine function, it upsets all of the block numbers.  Renumber the blocks
360/// and update the arrays that parallel this numbering.
361void ARMConstantIslands::UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
362  // Renumber the MBB's to keep them consequtive.
363  NewBB->getParent()->RenumberBlocks(NewBB);
364
365  // Insert a size into BBSizes to align it properly with the (newly
366  // renumbered) block numbers.
367  BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0);
368
369  // Next, update WaterList.  Specifically, we need to add NewMBB as having
370  // available water after it.
371  std::vector<MachineBasicBlock*>::iterator IP =
372    std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
373                     CompareMBBNumbers);
374  WaterList.insert(IP, NewBB);
375}
376
377
378/// Split the basic block containing MI into two blocks, which are joined by
379/// an unconditional branch.  Update datastructures and renumber blocks to
380/// account for this change.
381void ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr *MI) {
382  MachineBasicBlock *OrigBB = MI->getParent();
383  const ARMFunctionInfo *AFI = OrigBB->getParent()->getInfo<ARMFunctionInfo>();
384  bool isThumb = AFI->isThumbFunction();
385
386  // Create a new MBB for the code after the OrigBB.
387  MachineBasicBlock *NewBB = new MachineBasicBlock(OrigBB->getBasicBlock());
388  MachineFunction::iterator MBBI = OrigBB; ++MBBI;
389  OrigBB->getParent()->getBasicBlockList().insert(MBBI, NewBB);
390
391  // Splice the instructions starting with MI over to NewBB.
392  NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
393
394  // Add an unconditional branch from OrigBB to NewBB.
395  BuildMI(OrigBB, TII->get(isThumb ? ARM::tB : ARM::B)).addMBB(NewBB);
396  NumSplit++;
397
398  // Update the CFG.  All succs of OrigBB are now succs of NewBB.
399  while (!OrigBB->succ_empty()) {
400    MachineBasicBlock *Succ = *OrigBB->succ_begin();
401    OrigBB->removeSuccessor(Succ);
402    NewBB->addSuccessor(Succ);
403
404    // This pass should be run after register allocation, so there should be no
405    // PHI nodes to update.
406    assert((Succ->empty() || Succ->begin()->getOpcode() != TargetInstrInfo::PHI)
407           && "PHI nodes should be eliminated by now!");
408  }
409
410  // OrigBB branches to NewBB.
411  OrigBB->addSuccessor(NewBB);
412
413  // Update internal data structures to account for the newly inserted MBB.
414  UpdateForInsertedWaterBlock(NewBB);
415
416  // Figure out how large the first NewMBB is.
417  unsigned NewBBSize = 0;
418  for (MachineBasicBlock::iterator I = NewBB->begin(), E = NewBB->end();
419       I != E; ++I)
420    NewBBSize += ARM::GetInstSize(I);
421
422  // Set the size of NewBB in BBSizes.
423  BBSizes[NewBB->getNumber()] = NewBBSize;
424
425  // We removed instructions from UserMBB, subtract that off from its size.
426  // Add 2 or 4 to the block to count the unconditional branch we added to it.
427  BBSizes[OrigBB->getNumber()] -= NewBBSize - (isThumb ? 2 : 4);
428}
429
430/// HandleConstantPoolUser - Analyze the specified user, checking to see if it
431/// is out-of-range.  If so, pick it up the constant pool value and move it some
432/// place in-range.
433bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction &Fn, CPUser &U){
434  MachineInstr *UserMI = U.MI;
435  MachineInstr *CPEMI  = U.CPEMI;
436
437  unsigned UserOffset = GetOffsetOf(UserMI);
438  unsigned CPEOffset  = GetOffsetOf(CPEMI);
439
440  DEBUG(std::cerr << "User of CPE#" << CPEMI->getOperand(0).getImm()
441                  << " max delta=" << U.MaxDisp
442                  << " at offset " << int(UserOffset-CPEOffset) << "\t"
443                  << *UserMI);
444
445  // Check to see if the CPE is already in-range.
446  if (UserOffset < CPEOffset) {
447    // User before the CPE.
448    if (CPEOffset-UserOffset <= U.MaxDisp)
449      return false;
450  } else {
451    if (UserOffset-CPEOffset <= U.MaxDisp)
452      return false;
453  }
454
455
456  // Solution guaranteed to work: split the user's MBB right before the user and
457  // insert a clone the CPE into the newly created water.
458
459  // If the user isn't at the start of its MBB, or if there is a fall-through
460  // into the user's MBB, split the MBB before the User.
461  MachineBasicBlock *UserMBB = UserMI->getParent();
462  if (&UserMBB->front() != UserMI ||
463      UserMBB == &Fn.front() || // entry MBB of function.
464      BBHasFallthrough(prior(MachineFunction::iterator(UserMBB)))) {
465    // TODO: Search for the best place to split the code.  In practice, using
466    // loop nesting information to insert these guys outside of loops would be
467    // sufficient.
468    SplitBlockBeforeInstr(UserMI);
469
470    // UserMI's BB may have changed.
471    UserMBB = UserMI->getParent();
472  }
473
474  // Okay, we know we can put an island before UserMBB now, do it!
475  MachineBasicBlock *NewIsland = new MachineBasicBlock();
476  Fn.getBasicBlockList().insert(UserMBB, NewIsland);
477
478  // Update internal data structures to account for the newly inserted MBB.
479  UpdateForInsertedWaterBlock(NewIsland);
480
481  // Now that we have an island to add the CPE to, clone the original CPE and
482  // add it to the island.
483  unsigned ID  = NextUID++;
484  unsigned CPI = CPEMI->getOperand(1).getConstantPoolIndex();
485  unsigned Size = CPEMI->getOperand(2).getImm();
486
487  // Build a new CPE for this user.
488  U.CPEMI = BuildMI(NewIsland, TII->get(ARM::CONSTPOOL_ENTRY))
489                .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
490
491  // Increase the size of the island block to account for the new entry.
492  BBSizes[NewIsland->getNumber()] += Size;
493
494  // Finally, change the CPI in the instruction operand to be ID.
495  for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
496    if (UserMI->getOperand(i).isConstantPoolIndex()) {
497      UserMI->getOperand(i).setConstantPoolIndex(ID);
498      break;
499    }
500
501  DEBUG(std::cerr << "  Moved CPE to #" << ID << " CPI=" << CPI << "\t"
502                  << *UserMI);
503
504
505  return true;
506}
507
508/// BBIsInBranchRange - Returns true is the distance between specific MI and
509/// specific BB can fit in MI's displacement field.
510bool ARMConstantIslands::BBIsInBranchRange(MachineInstr *MI,
511                                           MachineBasicBlock *DestBB,
512                                           unsigned MaxDisp) {
513  unsigned BrOffset   = GetOffsetOf(MI);
514  unsigned DestOffset = GetOffsetOf(DestBB);
515
516  // Check to see if the destination BB is in range.
517  if (BrOffset < DestOffset) {
518    if (DestOffset - BrOffset < MaxDisp)
519      return true;
520  } else {
521    if (BrOffset - DestOffset <= MaxDisp)
522      return true;
523  }
524  return false;
525}
526
527static inline unsigned getUncondBranchDisp(int Opc) {
528  return (Opc == ARM::tB) ? (1<<10)*2 : (1<<23)*4;
529}
530
531/// FixUpImmediateBranch - Fix up immediate branches whose destination is too
532/// far away to fit in its displacement field. If it is a conditional branch,
533/// then it is converted to an inverse conditional branch + an unconditional
534/// branch to the destination. If it is an unconditional branch, then it is
535/// converted to a branch to a branch.
536bool
537ARMConstantIslands::FixUpImmediateBranch(MachineFunction &Fn, ImmBranch &Br) {
538  MachineInstr *MI = Br.MI;
539  MachineBasicBlock *DestBB = MI->getOperand(0).getMachineBasicBlock();
540
541  if (BBIsInBranchRange(MI, DestBB, Br.MaxDisp))
542    return false;
543
544  if (!Br.isCond) {
545    // Unconditional branch. We have to insert a branch somewhere to perform
546    // a two level branch (branch to branch). FIXME: not yet implemented.
547    assert(false && "Can't handle unconditional branch yet!");
548    return false;
549  }
550
551  // Otherwise, add a unconditional branch to the destination and
552  // invert the branch condition to jump over it:
553  // blt L1
554  // =>
555  // bge L2
556  // b   L1
557  // L2:
558  ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImmedValue();
559  CC = ARMCC::getOppositeCondition(CC);
560
561  // If the branch is at the end of its MBB and that has a fall-through block,
562  // direct the updated conditional branch to the fall-through block. Otherwise,
563  // split the MBB before the next instruction.
564  MachineBasicBlock *MBB = MI->getParent();
565  MachineInstr *BackMI = &MBB->back();
566  bool NeedSplit = (BackMI != MI) || !BBHasFallthrough(MBB);
567
568  if (BackMI != MI) {
569    if (next(MachineBasicBlock::iterator(MI)) == MBB->back() &&
570        BackMI->getOpcode() == Br.UncondBr) {
571      // Last MI in the BB is a unconditional branch. Can we simply invert the
572      // condition and swap destinations:
573      // beq L1
574      // b   L2
575      // =>
576      // bne L2
577      // b   L1
578      MachineBasicBlock *NewDest = BackMI->getOperand(0).getMachineBasicBlock();
579      if (BBIsInBranchRange(MI, NewDest, Br.MaxDisp)) {
580        BackMI->getOperand(0).setMachineBasicBlock(DestBB);
581        MI->getOperand(0).setMachineBasicBlock(NewDest);
582        MI->getOperand(1).setImm(CC);
583        return true;
584      }
585    }
586  }
587
588  if (NeedSplit) {
589    SplitBlockBeforeInstr(MI);
590    // No need for the branch to the next block. We're adding a unconditional
591    // branch to the destination.
592    MBB->back().eraseFromParent();
593  }
594  MachineBasicBlock *NextBB = next(MachineFunction::iterator(MBB));
595
596  // Insert a unconditional branch and replace the conditional branch.
597  // Also update the ImmBranch as well as adding a new entry for the new branch.
598  BuildMI(MBB, TII->get(MI->getOpcode())).addMBB(NextBB).addImm(CC);
599  Br.MI = &MBB->back();
600  BuildMI(MBB, TII->get(Br.UncondBr)).addMBB(DestBB);
601  unsigned MaxDisp = getUncondBranchDisp(Br.UncondBr);
602  ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
603  MI->eraseFromParent();
604
605  // Increase the size of MBB to account for the new unconditional branch.
606  BBSizes[MBB->getNumber()] += ARM::GetInstSize(&MBB->back());
607  return true;
608}
609