ARMConstantIslandPass.cpp revision 29836c330ff33e3c6a250a89b3e78abb3a1970c9
1//===-- ARMConstantIslandPass.cpp - ARM constant islands --------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file was developed by Chris Lattner and is distributed under the 6// University of Illinois Open Source License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains a pass that splits the constant pool up into 'islands' 11// which are scattered through-out the function. This is required due to the 12// limited pc-relative displacements that ARM has. 13// 14//===----------------------------------------------------------------------===// 15 16#define DEBUG_TYPE "arm-cp-islands" 17#include "ARM.h" 18#include "ARMMachineFunctionInfo.h" 19#include "ARMInstrInfo.h" 20#include "llvm/CodeGen/MachineConstantPool.h" 21#include "llvm/CodeGen/MachineFunctionPass.h" 22#include "llvm/CodeGen/MachineInstrBuilder.h" 23#include "llvm/Target/TargetData.h" 24#include "llvm/Target/TargetMachine.h" 25#include "llvm/Support/Compiler.h" 26#include "llvm/Support/Debug.h" 27#include "llvm/ADT/STLExtras.h" 28#include "llvm/ADT/Statistic.h" 29#include <iostream> 30using namespace llvm; 31 32STATISTIC(NumSplit, "Number of uncond branches inserted"); 33 34namespace { 35 /// ARMConstantIslands - Due to limited pc-relative displacements, ARM 36 /// requires constant pool entries to be scattered among the instructions 37 /// inside a function. To do this, it completely ignores the normal LLVM 38 /// constant pool, instead, it places constants where-ever it feels like with 39 /// special instructions. 40 /// 41 /// The terminology used in this pass includes: 42 /// Islands - Clumps of constants placed in the function. 43 /// Water - Potential places where an island could be formed. 44 /// CPE - A constant pool entry that has been placed somewhere, which 45 /// tracks a list of users. 46 class VISIBILITY_HIDDEN ARMConstantIslands : public MachineFunctionPass { 47 /// NextUID - Assign unique ID's to CPE's. 48 unsigned NextUID; 49 50 /// BBSizes - The size of each MachineBasicBlock in bytes of code, indexed 51 /// by MBB Number. 52 std::vector<unsigned> BBSizes; 53 54 /// WaterList - A sorted list of basic blocks where islands could be placed 55 /// (i.e. blocks that don't fall through to the following block, due 56 /// to a return, unreachable, or unconditional branch). 57 std::vector<MachineBasicBlock*> WaterList; 58 59 /// CPUser - One user of a constant pool, keeping the machine instruction 60 /// pointer, the constant pool being referenced, and the max displacement 61 /// allowed from the instruction to the CP. 62 struct CPUser { 63 MachineInstr *MI; 64 MachineInstr *CPEMI; 65 unsigned MaxDisp; 66 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp) 67 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp) {} 68 }; 69 70 /// CPUsers - Keep track of all of the machine instructions that use various 71 /// constant pools and their max displacement. 72 std::vector<CPUser> CPUsers; 73 74 /// ImmBranch - One per immediate branch, keeping the machine instruction 75 /// pointer, conditional or unconditional, the max displacement, 76 /// and (if isCond is true) the corresponding unconditional branch 77 /// opcode. 78 struct ImmBranch { 79 MachineInstr *MI; 80 unsigned MaxDisp : 31; 81 bool isCond : 1; 82 int UncondBr; 83 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr) 84 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} 85 }; 86 87 /// Branches - Keep track of all the immediate branch instructions. 88 /// 89 std::vector<ImmBranch> ImmBranches; 90 91 const TargetInstrInfo *TII; 92 public: 93 virtual bool runOnMachineFunction(MachineFunction &Fn); 94 95 virtual const char *getPassName() const { 96 return "ARM constant island placement and branch shortening pass"; 97 } 98 99 private: 100 void DoInitialPlacement(MachineFunction &Fn, 101 std::vector<MachineInstr*> &CPEMIs); 102 void InitialFunctionScan(MachineFunction &Fn, 103 const std::vector<MachineInstr*> &CPEMIs); 104 void SplitBlockBeforeInstr(MachineInstr *MI); 105 void UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB); 106 bool HandleConstantPoolUser(MachineFunction &Fn, CPUser &U); 107 bool BBIsInBranchRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned D); 108 bool FixUpImmediateBranch(MachineFunction &Fn, ImmBranch &Br); 109 110 unsigned GetOffsetOf(MachineInstr *MI) const; 111 unsigned GetOffsetOf(MachineBasicBlock *MBB) const; 112 }; 113} 114 115/// createARMConstantIslandPass - returns an instance of the constpool 116/// island pass. 117FunctionPass *llvm::createARMConstantIslandPass() { 118 return new ARMConstantIslands(); 119} 120 121bool ARMConstantIslands::runOnMachineFunction(MachineFunction &Fn) { 122 MachineConstantPool &MCP = *Fn.getConstantPool(); 123 124 TII = Fn.getTarget().getInstrInfo(); 125 126 // Renumber all of the machine basic blocks in the function, guaranteeing that 127 // the numbers agree with the position of the block in the function. 128 Fn.RenumberBlocks(); 129 130 // Perform the initial placement of the constant pool entries. To start with, 131 // we put them all at the end of the function. 132 std::vector<MachineInstr*> CPEMIs; 133 if (!MCP.isEmpty()) 134 DoInitialPlacement(Fn, CPEMIs); 135 136 /// The next UID to take is the first unused one. 137 NextUID = CPEMIs.size(); 138 139 // Do the initial scan of the function, building up information about the 140 // sizes of each block, the location of all the water, and finding all of the 141 // constant pool users. 142 InitialFunctionScan(Fn, CPEMIs); 143 CPEMIs.clear(); 144 145 // Iteratively place constant pool entries until there is no change. 146 bool MadeChange; 147 do { 148 MadeChange = false; 149 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) 150 MadeChange |= HandleConstantPoolUser(Fn, CPUsers[i]); 151 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) 152 MadeChange |= FixUpImmediateBranch(Fn, ImmBranches[i]); 153 } while (MadeChange); 154 155 BBSizes.clear(); 156 WaterList.clear(); 157 CPUsers.clear(); 158 ImmBranches.clear(); 159 160 return true; 161} 162 163/// DoInitialPlacement - Perform the initial placement of the constant pool 164/// entries. To start with, we put them all at the end of the function. 165void ARMConstantIslands::DoInitialPlacement(MachineFunction &Fn, 166 std::vector<MachineInstr*> &CPEMIs){ 167 // Create the basic block to hold the CPE's. 168 MachineBasicBlock *BB = new MachineBasicBlock(); 169 Fn.getBasicBlockList().push_back(BB); 170 171 // Add all of the constants from the constant pool to the end block, use an 172 // identity mapping of CPI's to CPE's. 173 const std::vector<MachineConstantPoolEntry> &CPs = 174 Fn.getConstantPool()->getConstants(); 175 176 const TargetData &TD = *Fn.getTarget().getTargetData(); 177 for (unsigned i = 0, e = CPs.size(); i != e; ++i) { 178 unsigned Size = TD.getTypeSize(CPs[i].getType()); 179 // Verify that all constant pool entries are a multiple of 4 bytes. If not, 180 // we would have to pad them out or something so that instructions stay 181 // aligned. 182 assert((Size & 3) == 0 && "CP Entry not multiple of 4 bytes!"); 183 MachineInstr *CPEMI = 184 BuildMI(BB, TII->get(ARM::CONSTPOOL_ENTRY)) 185 .addImm(i).addConstantPoolIndex(i).addImm(Size); 186 CPEMIs.push_back(CPEMI); 187 DEBUG(std::cerr << "Moved CPI#" << i << " to end of function as #" 188 << i << "\n"); 189 } 190} 191 192/// BBHasFallthrough - Return true of the specified basic block can fallthrough 193/// into the block immediately after it. 194static bool BBHasFallthrough(MachineBasicBlock *MBB) { 195 // Get the next machine basic block in the function. 196 MachineFunction::iterator MBBI = MBB; 197 if (next(MBBI) == MBB->getParent()->end()) // Can't fall off end of function. 198 return false; 199 200 MachineBasicBlock *NextBB = next(MBBI); 201 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), 202 E = MBB->succ_end(); I != E; ++I) 203 if (*I == NextBB) 204 return true; 205 206 return false; 207} 208 209/// InitialFunctionScan - Do the initial scan of the function, building up 210/// information about the sizes of each block, the location of all the water, 211/// and finding all of the constant pool users. 212void ARMConstantIslands::InitialFunctionScan(MachineFunction &Fn, 213 const std::vector<MachineInstr*> &CPEMIs) { 214 for (MachineFunction::iterator MBBI = Fn.begin(), E = Fn.end(); 215 MBBI != E; ++MBBI) { 216 MachineBasicBlock &MBB = *MBBI; 217 218 // If this block doesn't fall through into the next MBB, then this is 219 // 'water' that a constant pool island could be placed. 220 if (!BBHasFallthrough(&MBB)) 221 WaterList.push_back(&MBB); 222 223 unsigned MBBSize = 0; 224 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 225 I != E; ++I) { 226 // Add instruction size to MBBSize. 227 MBBSize += ARM::GetInstSize(I); 228 229 int Opc = I->getOpcode(); 230 if (TII->isBranch(Opc)) { 231 bool isCond = false; 232 unsigned Bits = 0; 233 unsigned Scale = 1; 234 int UOpc = Opc; 235 switch (Opc) { 236 default: 237 continue; // Ignore JT branches 238 case ARM::Bcc: 239 isCond = true; 240 UOpc = ARM::B; 241 // Fallthrough 242 case ARM::B: 243 Bits = 24; 244 Scale = 4; 245 break; 246 case ARM::tBcc: 247 isCond = true; 248 UOpc = ARM::tB; 249 Bits = 8; 250 Scale = 2; 251 break; 252 case ARM::tB: 253 Bits = 11; 254 Scale = 2; 255 break; 256 } 257 unsigned MaxDisp = (1 << (Bits-1)) * Scale; 258 ImmBranches.push_back(ImmBranch(I, MaxDisp, isCond, UOpc)); 259 } 260 261 // Scan the instructions for constant pool operands. 262 for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) 263 if (I->getOperand(op).isConstantPoolIndex()) { 264 // We found one. The addressing mode tells us the max displacement 265 // from the PC that this instruction permits. 266 unsigned MaxOffs = 0; 267 268 // Basic size info comes from the TSFlags field. 269 unsigned TSFlags = I->getInstrDescriptor()->TSFlags; 270 switch (TSFlags & ARMII::AddrModeMask) { 271 default: 272 // Constant pool entries can reach anything. 273 if (I->getOpcode() == ARM::CONSTPOOL_ENTRY) 274 continue; 275 assert(0 && "Unknown addressing mode for CP reference!"); 276 case ARMII::AddrMode1: // AM1: 8 bits << 2 277 MaxOffs = 1 << (8+2); // Taking the address of a CP entry. 278 break; 279 case ARMII::AddrMode2: 280 MaxOffs = 1 << 12; // +-offset_12 281 break; 282 case ARMII::AddrMode3: 283 MaxOffs = 1 << 8; // +-offset_8 284 break; 285 // addrmode4 has no immediate offset. 286 case ARMII::AddrMode5: 287 MaxOffs = 1 << (8+2); // +-(offset_8*4) 288 break; 289 case ARMII::AddrModeT1: 290 MaxOffs = 1 << 5; 291 break; 292 case ARMII::AddrModeT2: 293 MaxOffs = 1 << (5+1); 294 break; 295 case ARMII::AddrModeT4: 296 MaxOffs = 1 << (5+2); 297 break; 298 case ARMII::AddrModeTs: 299 MaxOffs = 1 << (8+2); 300 break; 301 } 302 303 // Remember that this is a user of a CP entry. 304 MachineInstr *CPEMI =CPEMIs[I->getOperand(op).getConstantPoolIndex()]; 305 CPUsers.push_back(CPUser(I, CPEMI, MaxOffs)); 306 307 // Instructions can only use one CP entry, don't bother scanning the 308 // rest of the operands. 309 break; 310 } 311 } 312 BBSizes.push_back(MBBSize); 313 } 314} 315 316/// GetOffsetOf - Return the current offset of the specified machine instruction 317/// from the start of the function. This offset changes as stuff is moved 318/// around inside the function. 319unsigned ARMConstantIslands::GetOffsetOf(MachineInstr *MI) const { 320 MachineBasicBlock *MBB = MI->getParent(); 321 322 // The offset is composed of two things: the sum of the sizes of all MBB's 323 // before this instruction's block, and the offset from the start of the block 324 // it is in. 325 unsigned Offset = 0; 326 327 // Sum block sizes before MBB. 328 for (unsigned BB = 0, e = MBB->getNumber(); BB != e; ++BB) 329 Offset += BBSizes[BB]; 330 331 // Sum instructions before MI in MBB. 332 for (MachineBasicBlock::iterator I = MBB->begin(); ; ++I) { 333 assert(I != MBB->end() && "Didn't find MI in its own basic block?"); 334 if (&*I == MI) return Offset; 335 Offset += ARM::GetInstSize(I); 336 } 337} 338 339/// GetOffsetOf - Return the current offset of the specified machine BB 340/// from the start of the function. This offset changes as stuff is moved 341/// around inside the function. 342unsigned ARMConstantIslands::GetOffsetOf(MachineBasicBlock *MBB) const { 343 // Sum block sizes before MBB. 344 unsigned Offset = 0; 345 for (unsigned BB = 0, e = MBB->getNumber(); BB != e; ++BB) 346 Offset += BBSizes[BB]; 347 348 return Offset; 349} 350 351/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 352/// ID. 353static bool CompareMBBNumbers(const MachineBasicBlock *LHS, 354 const MachineBasicBlock *RHS) { 355 return LHS->getNumber() < RHS->getNumber(); 356} 357 358/// UpdateForInsertedWaterBlock - When a block is newly inserted into the 359/// machine function, it upsets all of the block numbers. Renumber the blocks 360/// and update the arrays that parallel this numbering. 361void ARMConstantIslands::UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB) { 362 // Renumber the MBB's to keep them consequtive. 363 NewBB->getParent()->RenumberBlocks(NewBB); 364 365 // Insert a size into BBSizes to align it properly with the (newly 366 // renumbered) block numbers. 367 BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0); 368 369 // Next, update WaterList. Specifically, we need to add NewMBB as having 370 // available water after it. 371 std::vector<MachineBasicBlock*>::iterator IP = 372 std::lower_bound(WaterList.begin(), WaterList.end(), NewBB, 373 CompareMBBNumbers); 374 WaterList.insert(IP, NewBB); 375} 376 377 378/// Split the basic block containing MI into two blocks, which are joined by 379/// an unconditional branch. Update datastructures and renumber blocks to 380/// account for this change. 381void ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr *MI) { 382 MachineBasicBlock *OrigBB = MI->getParent(); 383 const ARMFunctionInfo *AFI = OrigBB->getParent()->getInfo<ARMFunctionInfo>(); 384 bool isThumb = AFI->isThumbFunction(); 385 386 // Create a new MBB for the code after the OrigBB. 387 MachineBasicBlock *NewBB = new MachineBasicBlock(OrigBB->getBasicBlock()); 388 MachineFunction::iterator MBBI = OrigBB; ++MBBI; 389 OrigBB->getParent()->getBasicBlockList().insert(MBBI, NewBB); 390 391 // Splice the instructions starting with MI over to NewBB. 392 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 393 394 // Add an unconditional branch from OrigBB to NewBB. 395 BuildMI(OrigBB, TII->get(isThumb ? ARM::tB : ARM::B)).addMBB(NewBB); 396 NumSplit++; 397 398 // Update the CFG. All succs of OrigBB are now succs of NewBB. 399 while (!OrigBB->succ_empty()) { 400 MachineBasicBlock *Succ = *OrigBB->succ_begin(); 401 OrigBB->removeSuccessor(Succ); 402 NewBB->addSuccessor(Succ); 403 404 // This pass should be run after register allocation, so there should be no 405 // PHI nodes to update. 406 assert((Succ->empty() || Succ->begin()->getOpcode() != TargetInstrInfo::PHI) 407 && "PHI nodes should be eliminated by now!"); 408 } 409 410 // OrigBB branches to NewBB. 411 OrigBB->addSuccessor(NewBB); 412 413 // Update internal data structures to account for the newly inserted MBB. 414 UpdateForInsertedWaterBlock(NewBB); 415 416 // Figure out how large the first NewMBB is. 417 unsigned NewBBSize = 0; 418 for (MachineBasicBlock::iterator I = NewBB->begin(), E = NewBB->end(); 419 I != E; ++I) 420 NewBBSize += ARM::GetInstSize(I); 421 422 // Set the size of NewBB in BBSizes. 423 BBSizes[NewBB->getNumber()] = NewBBSize; 424 425 // We removed instructions from UserMBB, subtract that off from its size. 426 // Add 2 or 4 to the block to count the unconditional branch we added to it. 427 BBSizes[OrigBB->getNumber()] -= NewBBSize - (isThumb ? 2 : 4); 428} 429 430/// HandleConstantPoolUser - Analyze the specified user, checking to see if it 431/// is out-of-range. If so, pick it up the constant pool value and move it some 432/// place in-range. 433bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction &Fn, CPUser &U){ 434 MachineInstr *UserMI = U.MI; 435 MachineInstr *CPEMI = U.CPEMI; 436 437 unsigned UserOffset = GetOffsetOf(UserMI); 438 unsigned CPEOffset = GetOffsetOf(CPEMI); 439 440 DEBUG(std::cerr << "User of CPE#" << CPEMI->getOperand(0).getImm() 441 << " max delta=" << U.MaxDisp 442 << " at offset " << int(UserOffset-CPEOffset) << "\t" 443 << *UserMI); 444 445 // Check to see if the CPE is already in-range. 446 if (UserOffset < CPEOffset) { 447 // User before the CPE. 448 if (CPEOffset-UserOffset <= U.MaxDisp) 449 return false; 450 } else { 451 if (UserOffset-CPEOffset <= U.MaxDisp) 452 return false; 453 } 454 455 456 // Solution guaranteed to work: split the user's MBB right before the user and 457 // insert a clone the CPE into the newly created water. 458 459 // If the user isn't at the start of its MBB, or if there is a fall-through 460 // into the user's MBB, split the MBB before the User. 461 MachineBasicBlock *UserMBB = UserMI->getParent(); 462 if (&UserMBB->front() != UserMI || 463 UserMBB == &Fn.front() || // entry MBB of function. 464 BBHasFallthrough(prior(MachineFunction::iterator(UserMBB)))) { 465 // TODO: Search for the best place to split the code. In practice, using 466 // loop nesting information to insert these guys outside of loops would be 467 // sufficient. 468 SplitBlockBeforeInstr(UserMI); 469 470 // UserMI's BB may have changed. 471 UserMBB = UserMI->getParent(); 472 } 473 474 // Okay, we know we can put an island before UserMBB now, do it! 475 MachineBasicBlock *NewIsland = new MachineBasicBlock(); 476 Fn.getBasicBlockList().insert(UserMBB, NewIsland); 477 478 // Update internal data structures to account for the newly inserted MBB. 479 UpdateForInsertedWaterBlock(NewIsland); 480 481 // Now that we have an island to add the CPE to, clone the original CPE and 482 // add it to the island. 483 unsigned ID = NextUID++; 484 unsigned CPI = CPEMI->getOperand(1).getConstantPoolIndex(); 485 unsigned Size = CPEMI->getOperand(2).getImm(); 486 487 // Build a new CPE for this user. 488 U.CPEMI = BuildMI(NewIsland, TII->get(ARM::CONSTPOOL_ENTRY)) 489 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size); 490 491 // Increase the size of the island block to account for the new entry. 492 BBSizes[NewIsland->getNumber()] += Size; 493 494 // Finally, change the CPI in the instruction operand to be ID. 495 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) 496 if (UserMI->getOperand(i).isConstantPoolIndex()) { 497 UserMI->getOperand(i).setConstantPoolIndex(ID); 498 break; 499 } 500 501 DEBUG(std::cerr << " Moved CPE to #" << ID << " CPI=" << CPI << "\t" 502 << *UserMI); 503 504 505 return true; 506} 507 508/// BBIsInBranchRange - Returns true is the distance between specific MI and 509/// specific BB can fit in MI's displacement field. 510bool ARMConstantIslands::BBIsInBranchRange(MachineInstr *MI, 511 MachineBasicBlock *DestBB, 512 unsigned MaxDisp) { 513 unsigned BrOffset = GetOffsetOf(MI); 514 unsigned DestOffset = GetOffsetOf(DestBB); 515 516 // Check to see if the destination BB is in range. 517 if (BrOffset < DestOffset) { 518 if (DestOffset - BrOffset < MaxDisp) 519 return true; 520 } else { 521 if (BrOffset - DestOffset <= MaxDisp) 522 return true; 523 } 524 return false; 525} 526 527static inline unsigned getUncondBranchDisp(int Opc) { 528 return (Opc == ARM::tB) ? (1<<10)*2 : (1<<23)*4; 529} 530 531/// FixUpImmediateBranch - Fix up immediate branches whose destination is too 532/// far away to fit in its displacement field. If it is a conditional branch, 533/// then it is converted to an inverse conditional branch + an unconditional 534/// branch to the destination. If it is an unconditional branch, then it is 535/// converted to a branch to a branch. 536bool 537ARMConstantIslands::FixUpImmediateBranch(MachineFunction &Fn, ImmBranch &Br) { 538 MachineInstr *MI = Br.MI; 539 MachineBasicBlock *DestBB = MI->getOperand(0).getMachineBasicBlock(); 540 541 if (BBIsInBranchRange(MI, DestBB, Br.MaxDisp)) 542 return false; 543 544 if (!Br.isCond) { 545 // Unconditional branch. We have to insert a branch somewhere to perform 546 // a two level branch (branch to branch). FIXME: not yet implemented. 547 assert(false && "Can't handle unconditional branch yet!"); 548 return false; 549 } 550 551 // Otherwise, add a unconditional branch to the destination and 552 // invert the branch condition to jump over it: 553 // blt L1 554 // => 555 // bge L2 556 // b L1 557 // L2: 558 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImmedValue(); 559 CC = ARMCC::getOppositeCondition(CC); 560 561 // If the branch is at the end of its MBB and that has a fall-through block, 562 // direct the updated conditional branch to the fall-through block. Otherwise, 563 // split the MBB before the next instruction. 564 MachineBasicBlock *MBB = MI->getParent(); 565 MachineInstr *BackMI = &MBB->back(); 566 bool NeedSplit = (BackMI != MI) || !BBHasFallthrough(MBB); 567 568 if (BackMI != MI) { 569 if (next(MachineBasicBlock::iterator(MI)) == MBB->back() && 570 BackMI->getOpcode() == Br.UncondBr) { 571 // Last MI in the BB is a unconditional branch. Can we simply invert the 572 // condition and swap destinations: 573 // beq L1 574 // b L2 575 // => 576 // bne L2 577 // b L1 578 MachineBasicBlock *NewDest = BackMI->getOperand(0).getMachineBasicBlock(); 579 if (BBIsInBranchRange(MI, NewDest, Br.MaxDisp)) { 580 BackMI->getOperand(0).setMachineBasicBlock(DestBB); 581 MI->getOperand(0).setMachineBasicBlock(NewDest); 582 MI->getOperand(1).setImm(CC); 583 return true; 584 } 585 } 586 } 587 588 if (NeedSplit) { 589 SplitBlockBeforeInstr(MI); 590 // No need for the branch to the next block. We're adding a unconditional 591 // branch to the destination. 592 MBB->back().eraseFromParent(); 593 } 594 MachineBasicBlock *NextBB = next(MachineFunction::iterator(MBB)); 595 596 // Insert a unconditional branch and replace the conditional branch. 597 // Also update the ImmBranch as well as adding a new entry for the new branch. 598 BuildMI(MBB, TII->get(MI->getOpcode())).addMBB(NextBB).addImm(CC); 599 Br.MI = &MBB->back(); 600 BuildMI(MBB, TII->get(Br.UncondBr)).addMBB(DestBB); 601 unsigned MaxDisp = getUncondBranchDisp(Br.UncondBr); 602 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 603 MI->eraseFromParent(); 604 605 // Increase the size of MBB to account for the new unconditional branch. 606 BBSizes[MBB->getNumber()] += ARM::GetInstSize(&MBB->back()); 607 return true; 608} 609