ARMConstantIslandPass.cpp revision 39bf051ec2865cd715c41473d2a9fc34ff252534
1//===-- ARMConstantIslandPass.cpp - ARM constant islands --------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains a pass that splits the constant pool up into 'islands' 11// which are scattered through-out the function. This is required due to the 12// limited pc-relative displacements that ARM has. 13// 14//===----------------------------------------------------------------------===// 15 16#define DEBUG_TYPE "arm-cp-islands" 17#include "ARM.h" 18#include "ARMMachineFunctionInfo.h" 19#include "ARMInstrInfo.h" 20#include "llvm/CodeGen/MachineConstantPool.h" 21#include "llvm/CodeGen/MachineFunctionPass.h" 22#include "llvm/CodeGen/MachineInstrBuilder.h" 23#include "llvm/Target/TargetData.h" 24#include "llvm/Target/TargetMachine.h" 25#include "llvm/Support/Compiler.h" 26#include "llvm/Support/Debug.h" 27#include "llvm/ADT/SmallVector.h" 28#include "llvm/ADT/STLExtras.h" 29#include "llvm/ADT/Statistic.h" 30using namespace llvm; 31 32STATISTIC(NumCPEs, "Number of constpool entries"); 33STATISTIC(NumSplit, "Number of uncond branches inserted"); 34STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 35STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 36 37namespace { 38 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM 39 /// requires constant pool entries to be scattered among the instructions 40 /// inside a function. To do this, it completely ignores the normal LLVM 41 /// constant pool; instead, it places constants wherever it feels like with 42 /// special instructions. 43 /// 44 /// The terminology used in this pass includes: 45 /// Islands - Clumps of constants placed in the function. 46 /// Water - Potential places where an island could be formed. 47 /// CPE - A constant pool entry that has been placed somewhere, which 48 /// tracks a list of users. 49 class VISIBILITY_HIDDEN ARMConstantIslands : public MachineFunctionPass { 50 /// BBSizes - The size of each MachineBasicBlock in bytes of code, indexed 51 /// by MBB Number. The two-byte pads required for Thumb alignment are 52 /// counted as part of the following block (i.e., the offset and size for 53 /// a padded block will both be ==2 mod 4). 54 std::vector<unsigned> BBSizes; 55 56 /// BBOffsets - the offset of each MBB in bytes, starting from 0. 57 /// The two-byte pads required for Thumb alignment are counted as part of 58 /// the following block. 59 std::vector<unsigned> BBOffsets; 60 61 /// WaterList - A sorted list of basic blocks where islands could be placed 62 /// (i.e. blocks that don't fall through to the following block, due 63 /// to a return, unreachable, or unconditional branch). 64 std::vector<MachineBasicBlock*> WaterList; 65 66 /// CPUser - One user of a constant pool, keeping the machine instruction 67 /// pointer, the constant pool being referenced, and the max displacement 68 /// allowed from the instruction to the CP. 69 struct CPUser { 70 MachineInstr *MI; 71 MachineInstr *CPEMI; 72 unsigned MaxDisp; 73 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp) 74 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp) {} 75 }; 76 77 /// CPUsers - Keep track of all of the machine instructions that use various 78 /// constant pools and their max displacement. 79 std::vector<CPUser> CPUsers; 80 81 /// CPEntry - One per constant pool entry, keeping the machine instruction 82 /// pointer, the constpool index, and the number of CPUser's which 83 /// reference this entry. 84 struct CPEntry { 85 MachineInstr *CPEMI; 86 unsigned CPI; 87 unsigned RefCount; 88 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) 89 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} 90 }; 91 92 /// CPEntries - Keep track of all of the constant pool entry machine 93 /// instructions. For each original constpool index (i.e. those that 94 /// existed upon entry to this pass), it keeps a vector of entries. 95 /// Original elements are cloned as we go along; the clones are 96 /// put in the vector of the original element, but have distinct CPIs. 97 std::vector<std::vector<CPEntry> > CPEntries; 98 99 /// ImmBranch - One per immediate branch, keeping the machine instruction 100 /// pointer, conditional or unconditional, the max displacement, 101 /// and (if isCond is true) the corresponding unconditional branch 102 /// opcode. 103 struct ImmBranch { 104 MachineInstr *MI; 105 unsigned MaxDisp : 31; 106 bool isCond : 1; 107 int UncondBr; 108 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr) 109 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} 110 }; 111 112 /// ImmBranches - Keep track of all the immediate branch instructions. 113 /// 114 std::vector<ImmBranch> ImmBranches; 115 116 /// PushPopMIs - Keep track of all the Thumb push / pop instructions. 117 /// 118 SmallVector<MachineInstr*, 4> PushPopMIs; 119 120 /// HasFarJump - True if any far jump instruction has been emitted during 121 /// the branch fix up pass. 122 bool HasFarJump; 123 124 const TargetInstrInfo *TII; 125 ARMFunctionInfo *AFI; 126 bool isThumb; 127 public: 128 static char ID; 129 ARMConstantIslands() : MachineFunctionPass(&ID) {} 130 131 virtual bool runOnMachineFunction(MachineFunction &Fn); 132 133 virtual const char *getPassName() const { 134 return "ARM constant island placement and branch shortening pass"; 135 } 136 137 private: 138 void DoInitialPlacement(MachineFunction &Fn, 139 std::vector<MachineInstr*> &CPEMIs); 140 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 141 void InitialFunctionScan(MachineFunction &Fn, 142 const std::vector<MachineInstr*> &CPEMIs); 143 MachineBasicBlock *SplitBlockBeforeInstr(MachineInstr *MI); 144 void UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB); 145 void AdjustBBOffsetsAfter(MachineBasicBlock *BB, int delta); 146 bool DecrementOldEntry(unsigned CPI, MachineInstr* CPEMI); 147 int LookForExistingCPEntry(CPUser& U, unsigned UserOffset); 148 bool LookForWater(CPUser&U, unsigned UserOffset, 149 MachineBasicBlock** NewMBB); 150 MachineBasicBlock* AcceptWater(MachineBasicBlock *WaterBB, 151 std::vector<MachineBasicBlock*>::iterator IP); 152 void CreateNewWater(unsigned CPUserIndex, unsigned UserOffset, 153 MachineBasicBlock** NewMBB); 154 bool HandleConstantPoolUser(MachineFunction &Fn, unsigned CPUserIndex); 155 void RemoveDeadCPEMI(MachineInstr *CPEMI); 156 bool RemoveUnusedCPEntries(); 157 bool CPEIsInRange(MachineInstr *MI, unsigned UserOffset, 158 MachineInstr *CPEMI, unsigned Disp, 159 bool DoDump); 160 bool WaterIsInRange(unsigned UserOffset, MachineBasicBlock *Water, 161 CPUser &U); 162 bool OffsetIsInRange(unsigned UserOffset, unsigned TrialOffset, 163 unsigned Disp, bool NegativeOK); 164 bool BBIsInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); 165 bool FixUpImmediateBr(MachineFunction &Fn, ImmBranch &Br); 166 bool FixUpConditionalBr(MachineFunction &Fn, ImmBranch &Br); 167 bool FixUpUnconditionalBr(MachineFunction &Fn, ImmBranch &Br); 168 bool UndoLRSpillRestore(); 169 170 unsigned GetOffsetOf(MachineInstr *MI) const; 171 void dumpBBs(); 172 void verify(MachineFunction &Fn); 173 }; 174 char ARMConstantIslands::ID = 0; 175} 176 177/// verify - check BBOffsets, BBSizes, alignment of islands 178void ARMConstantIslands::verify(MachineFunction &Fn) { 179 assert(BBOffsets.size() == BBSizes.size()); 180 for (unsigned i = 1, e = BBOffsets.size(); i != e; ++i) 181 assert(BBOffsets[i-1]+BBSizes[i-1] == BBOffsets[i]); 182 if (isThumb) { 183 for (MachineFunction::iterator MBBI = Fn.begin(), E = Fn.end(); 184 MBBI != E; ++MBBI) { 185 MachineBasicBlock *MBB = MBBI; 186 if (!MBB->empty() && 187 MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) 188 assert((BBOffsets[MBB->getNumber()]%4 == 0 && 189 BBSizes[MBB->getNumber()]%4 == 0) || 190 (BBOffsets[MBB->getNumber()]%4 != 0 && 191 BBSizes[MBB->getNumber()]%4 != 0)); 192 } 193 } 194} 195 196/// print block size and offset information - debugging 197void ARMConstantIslands::dumpBBs() { 198 for (unsigned J = 0, E = BBOffsets.size(); J !=E; ++J) { 199 DOUT << "block " << J << " offset " << BBOffsets[J] << 200 " size " << BBSizes[J] << "\n"; 201 } 202} 203 204/// createARMConstantIslandPass - returns an instance of the constpool 205/// island pass. 206FunctionPass *llvm::createARMConstantIslandPass() { 207 return new ARMConstantIslands(); 208} 209 210bool ARMConstantIslands::runOnMachineFunction(MachineFunction &Fn) { 211 MachineConstantPool &MCP = *Fn.getConstantPool(); 212 213 TII = Fn.getTarget().getInstrInfo(); 214 AFI = Fn.getInfo<ARMFunctionInfo>(); 215 isThumb = AFI->isThumbFunction(); 216 217 HasFarJump = false; 218 219 // Renumber all of the machine basic blocks in the function, guaranteeing that 220 // the numbers agree with the position of the block in the function. 221 Fn.RenumberBlocks(); 222 223 /// Thumb functions containing constant pools get 2-byte alignment. 224 /// This is so we can keep exact track of where the alignment padding goes. 225 /// Set default. 226 AFI->setAlign(isThumb ? 1U : 2U); 227 228 // Perform the initial placement of the constant pool entries. To start with, 229 // we put them all at the end of the function. 230 std::vector<MachineInstr*> CPEMIs; 231 if (!MCP.isEmpty()) { 232 DoInitialPlacement(Fn, CPEMIs); 233 if (isThumb) 234 AFI->setAlign(2U); 235 } 236 237 /// The next UID to take is the first unused one. 238 AFI->initConstPoolEntryUId(CPEMIs.size()); 239 240 // Do the initial scan of the function, building up information about the 241 // sizes of each block, the location of all the water, and finding all of the 242 // constant pool users. 243 InitialFunctionScan(Fn, CPEMIs); 244 CPEMIs.clear(); 245 246 /// Remove dead constant pool entries. 247 RemoveUnusedCPEntries(); 248 249 // Iteratively place constant pool entries and fix up branches until there 250 // is no change. 251 bool MadeChange = false; 252 while (true) { 253 bool Change = false; 254 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) 255 Change |= HandleConstantPoolUser(Fn, i); 256 DEBUG(dumpBBs()); 257 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) 258 Change |= FixUpImmediateBr(Fn, ImmBranches[i]); 259 DEBUG(dumpBBs()); 260 if (!Change) 261 break; 262 MadeChange = true; 263 } 264 265 // After a while, this might be made debug-only, but it is not expensive. 266 verify(Fn); 267 268 // If LR has been forced spilled and no far jumps (i.e. BL) has been issued. 269 // Undo the spill / restore of LR if possible. 270 if (!HasFarJump && AFI->isLRSpilledForFarJump() && isThumb) 271 MadeChange |= UndoLRSpillRestore(); 272 273 BBSizes.clear(); 274 BBOffsets.clear(); 275 WaterList.clear(); 276 CPUsers.clear(); 277 CPEntries.clear(); 278 ImmBranches.clear(); 279 PushPopMIs.clear(); 280 281 return MadeChange; 282} 283 284/// DoInitialPlacement - Perform the initial placement of the constant pool 285/// entries. To start with, we put them all at the end of the function. 286void ARMConstantIslands::DoInitialPlacement(MachineFunction &Fn, 287 std::vector<MachineInstr*> &CPEMIs) { 288 // Create the basic block to hold the CPE's. 289 MachineBasicBlock *BB = Fn.CreateMachineBasicBlock(); 290 Fn.push_back(BB); 291 292 // Add all of the constants from the constant pool to the end block, use an 293 // identity mapping of CPI's to CPE's. 294 const std::vector<MachineConstantPoolEntry> &CPs = 295 Fn.getConstantPool()->getConstants(); 296 297 const TargetData &TD = *Fn.getTarget().getTargetData(); 298 for (unsigned i = 0, e = CPs.size(); i != e; ++i) { 299 unsigned Size = TD.getTypeAllocSize(CPs[i].getType()); 300 // Verify that all constant pool entries are a multiple of 4 bytes. If not, 301 // we would have to pad them out or something so that instructions stay 302 // aligned. 303 assert((Size & 3) == 0 && "CP Entry not multiple of 4 bytes!"); 304 MachineInstr *CPEMI = 305 BuildMI(BB, DebugLoc::getUnknownLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 306 .addImm(i).addConstantPoolIndex(i).addImm(Size); 307 CPEMIs.push_back(CPEMI); 308 309 // Add a new CPEntry, but no corresponding CPUser yet. 310 std::vector<CPEntry> CPEs; 311 CPEs.push_back(CPEntry(CPEMI, i)); 312 CPEntries.push_back(CPEs); 313 NumCPEs++; 314 DOUT << "Moved CPI#" << i << " to end of function as #" << i << "\n"; 315 } 316} 317 318/// BBHasFallthrough - Return true if the specified basic block can fallthrough 319/// into the block immediately after it. 320static bool BBHasFallthrough(MachineBasicBlock *MBB) { 321 // Get the next machine basic block in the function. 322 MachineFunction::iterator MBBI = MBB; 323 if (next(MBBI) == MBB->getParent()->end()) // Can't fall off end of function. 324 return false; 325 326 MachineBasicBlock *NextBB = next(MBBI); 327 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), 328 E = MBB->succ_end(); I != E; ++I) 329 if (*I == NextBB) 330 return true; 331 332 return false; 333} 334 335/// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 336/// look up the corresponding CPEntry. 337ARMConstantIslands::CPEntry 338*ARMConstantIslands::findConstPoolEntry(unsigned CPI, 339 const MachineInstr *CPEMI) { 340 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 341 // Number of entries per constpool index should be small, just do a 342 // linear search. 343 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 344 if (CPEs[i].CPEMI == CPEMI) 345 return &CPEs[i]; 346 } 347 return NULL; 348} 349 350/// InitialFunctionScan - Do the initial scan of the function, building up 351/// information about the sizes of each block, the location of all the water, 352/// and finding all of the constant pool users. 353void ARMConstantIslands::InitialFunctionScan(MachineFunction &Fn, 354 const std::vector<MachineInstr*> &CPEMIs) { 355 unsigned Offset = 0; 356 for (MachineFunction::iterator MBBI = Fn.begin(), E = Fn.end(); 357 MBBI != E; ++MBBI) { 358 MachineBasicBlock &MBB = *MBBI; 359 360 // If this block doesn't fall through into the next MBB, then this is 361 // 'water' that a constant pool island could be placed. 362 if (!BBHasFallthrough(&MBB)) 363 WaterList.push_back(&MBB); 364 365 unsigned MBBSize = 0; 366 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 367 I != E; ++I) { 368 // Add instruction size to MBBSize. 369 MBBSize += TII->GetInstSizeInBytes(I); 370 371 int Opc = I->getOpcode(); 372 if (I->getDesc().isBranch()) { 373 bool isCond = false; 374 unsigned Bits = 0; 375 unsigned Scale = 1; 376 int UOpc = Opc; 377 switch (Opc) { 378 case ARM::tBR_JTr: 379 // A Thumb table jump may involve padding; for the offsets to 380 // be right, functions containing these must be 4-byte aligned. 381 AFI->setAlign(2U); 382 if ((Offset+MBBSize)%4 != 0) 383 MBBSize += 2; // padding 384 continue; // Does not get an entry in ImmBranches 385 default: 386 continue; // Ignore other JT branches 387 case ARM::Bcc: 388 isCond = true; 389 UOpc = ARM::B; 390 // Fallthrough 391 case ARM::B: 392 Bits = 24; 393 Scale = 4; 394 break; 395 case ARM::tBcc: 396 isCond = true; 397 UOpc = ARM::tB; 398 Bits = 8; 399 Scale = 2; 400 break; 401 case ARM::tB: 402 Bits = 11; 403 Scale = 2; 404 break; 405 } 406 407 // Record this immediate branch. 408 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 409 ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc)); 410 } 411 412 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) 413 PushPopMIs.push_back(I); 414 415 // Scan the instructions for constant pool operands. 416 for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) 417 if (I->getOperand(op).isCPI()) { 418 // We found one. The addressing mode tells us the max displacement 419 // from the PC that this instruction permits. 420 421 // Basic size info comes from the TSFlags field. 422 unsigned Bits = 0; 423 unsigned Scale = 1; 424 unsigned TSFlags = I->getDesc().TSFlags; 425 switch (TSFlags & ARMII::AddrModeMask) { 426 default: 427 // Constant pool entries can reach anything. 428 if (I->getOpcode() == ARM::CONSTPOOL_ENTRY) 429 continue; 430 if (I->getOpcode() == ARM::tLEApcrel) { 431 Bits = 8; // Taking the address of a CP entry. 432 break; 433 } 434 assert(0 && "Unknown addressing mode for CP reference!"); 435 case ARMII::AddrMode1: // AM1: 8 bits << 2 436 Bits = 8; 437 Scale = 4; // Taking the address of a CP entry. 438 break; 439 case ARMII::AddrMode2: 440 Bits = 12; // +-offset_12 441 break; 442 case ARMII::AddrMode3: 443 Bits = 8; // +-offset_8 444 break; 445 // addrmode4 has no immediate offset. 446 case ARMII::AddrMode5: 447 Bits = 8; 448 Scale = 4; // +-(offset_8*4) 449 break; 450 case ARMII::AddrModeT1: 451 Bits = 5; // +offset_5 452 break; 453 case ARMII::AddrModeT2: 454 Bits = 5; 455 Scale = 2; // +(offset_5*2) 456 break; 457 case ARMII::AddrModeT4: 458 Bits = 5; 459 Scale = 4; // +(offset_5*4) 460 break; 461 case ARMII::AddrModeTs: 462 Bits = 8; 463 Scale = 4; // +(offset_8*4) 464 break; 465 } 466 467 // Remember that this is a user of a CP entry. 468 unsigned CPI = I->getOperand(op).getIndex(); 469 MachineInstr *CPEMI = CPEMIs[CPI]; 470 unsigned MaxOffs = ((1 << Bits)-1) * Scale; 471 CPUsers.push_back(CPUser(I, CPEMI, MaxOffs)); 472 473 // Increment corresponding CPEntry reference count. 474 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 475 assert(CPE && "Cannot find a corresponding CPEntry!"); 476 CPE->RefCount++; 477 478 // Instructions can only use one CP entry, don't bother scanning the 479 // rest of the operands. 480 break; 481 } 482 } 483 484 // In thumb mode, if this block is a constpool island, we may need padding 485 // so it's aligned on 4 byte boundary. 486 if (isThumb && 487 !MBB.empty() && 488 MBB.begin()->getOpcode() == ARM::CONSTPOOL_ENTRY && 489 (Offset%4) != 0) 490 MBBSize += 2; 491 492 BBSizes.push_back(MBBSize); 493 BBOffsets.push_back(Offset); 494 Offset += MBBSize; 495 } 496} 497 498/// GetOffsetOf - Return the current offset of the specified machine instruction 499/// from the start of the function. This offset changes as stuff is moved 500/// around inside the function. 501unsigned ARMConstantIslands::GetOffsetOf(MachineInstr *MI) const { 502 MachineBasicBlock *MBB = MI->getParent(); 503 504 // The offset is composed of two things: the sum of the sizes of all MBB's 505 // before this instruction's block, and the offset from the start of the block 506 // it is in. 507 unsigned Offset = BBOffsets[MBB->getNumber()]; 508 509 // If we're looking for a CONSTPOOL_ENTRY in Thumb, see if this block has 510 // alignment padding, and compensate if so. 511 if (isThumb && 512 MI->getOpcode() == ARM::CONSTPOOL_ENTRY && 513 Offset%4 != 0) 514 Offset += 2; 515 516 // Sum instructions before MI in MBB. 517 for (MachineBasicBlock::iterator I = MBB->begin(); ; ++I) { 518 assert(I != MBB->end() && "Didn't find MI in its own basic block?"); 519 if (&*I == MI) return Offset; 520 Offset += TII->GetInstSizeInBytes(I); 521 } 522} 523 524/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 525/// ID. 526static bool CompareMBBNumbers(const MachineBasicBlock *LHS, 527 const MachineBasicBlock *RHS) { 528 return LHS->getNumber() < RHS->getNumber(); 529} 530 531/// UpdateForInsertedWaterBlock - When a block is newly inserted into the 532/// machine function, it upsets all of the block numbers. Renumber the blocks 533/// and update the arrays that parallel this numbering. 534void ARMConstantIslands::UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB) { 535 // Renumber the MBB's to keep them consequtive. 536 NewBB->getParent()->RenumberBlocks(NewBB); 537 538 // Insert a size into BBSizes to align it properly with the (newly 539 // renumbered) block numbers. 540 BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0); 541 542 // Likewise for BBOffsets. 543 BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0); 544 545 // Next, update WaterList. Specifically, we need to add NewMBB as having 546 // available water after it. 547 std::vector<MachineBasicBlock*>::iterator IP = 548 std::lower_bound(WaterList.begin(), WaterList.end(), NewBB, 549 CompareMBBNumbers); 550 WaterList.insert(IP, NewBB); 551} 552 553 554/// Split the basic block containing MI into two blocks, which are joined by 555/// an unconditional branch. Update datastructures and renumber blocks to 556/// account for this change and returns the newly created block. 557MachineBasicBlock *ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr *MI) { 558 MachineBasicBlock *OrigBB = MI->getParent(); 559 MachineFunction &MF = *OrigBB->getParent(); 560 561 // Create a new MBB for the code after the OrigBB. 562 MachineBasicBlock *NewBB = 563 MF.CreateMachineBasicBlock(OrigBB->getBasicBlock()); 564 MachineFunction::iterator MBBI = OrigBB; ++MBBI; 565 MF.insert(MBBI, NewBB); 566 567 // Splice the instructions starting with MI over to NewBB. 568 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 569 570 // Add an unconditional branch from OrigBB to NewBB. 571 // Note the new unconditional branch is not being recorded. 572 // There doesn't seem to be meaningful DebugInfo available; this doesn't 573 // correspond to anything in the source. 574 BuildMI(OrigBB, DebugLoc::getUnknownLoc(), 575 TII->get(isThumb ? ARM::tB : ARM::B)).addMBB(NewBB); 576 NumSplit++; 577 578 // Update the CFG. All succs of OrigBB are now succs of NewBB. 579 while (!OrigBB->succ_empty()) { 580 MachineBasicBlock *Succ = *OrigBB->succ_begin(); 581 OrigBB->removeSuccessor(Succ); 582 NewBB->addSuccessor(Succ); 583 584 // This pass should be run after register allocation, so there should be no 585 // PHI nodes to update. 586 assert((Succ->empty() || Succ->begin()->getOpcode() != TargetInstrInfo::PHI) 587 && "PHI nodes should be eliminated by now!"); 588 } 589 590 // OrigBB branches to NewBB. 591 OrigBB->addSuccessor(NewBB); 592 593 // Update internal data structures to account for the newly inserted MBB. 594 // This is almost the same as UpdateForInsertedWaterBlock, except that 595 // the Water goes after OrigBB, not NewBB. 596 MF.RenumberBlocks(NewBB); 597 598 // Insert a size into BBSizes to align it properly with the (newly 599 // renumbered) block numbers. 600 BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0); 601 602 // Likewise for BBOffsets. 603 BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0); 604 605 // Next, update WaterList. Specifically, we need to add OrigMBB as having 606 // available water after it (but not if it's already there, which happens 607 // when splitting before a conditional branch that is followed by an 608 // unconditional branch - in that case we want to insert NewBB). 609 std::vector<MachineBasicBlock*>::iterator IP = 610 std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB, 611 CompareMBBNumbers); 612 MachineBasicBlock* WaterBB = *IP; 613 if (WaterBB == OrigBB) 614 WaterList.insert(next(IP), NewBB); 615 else 616 WaterList.insert(IP, OrigBB); 617 618 // Figure out how large the first NewMBB is. (It cannot 619 // contain a constpool_entry or tablejump.) 620 unsigned NewBBSize = 0; 621 for (MachineBasicBlock::iterator I = NewBB->begin(), E = NewBB->end(); 622 I != E; ++I) 623 NewBBSize += TII->GetInstSizeInBytes(I); 624 625 unsigned OrigBBI = OrigBB->getNumber(); 626 unsigned NewBBI = NewBB->getNumber(); 627 // Set the size of NewBB in BBSizes. 628 BBSizes[NewBBI] = NewBBSize; 629 630 // We removed instructions from UserMBB, subtract that off from its size. 631 // Add 2 or 4 to the block to count the unconditional branch we added to it. 632 unsigned delta = isThumb ? 2 : 4; 633 BBSizes[OrigBBI] -= NewBBSize - delta; 634 635 // ...and adjust BBOffsets for NewBB accordingly. 636 BBOffsets[NewBBI] = BBOffsets[OrigBBI] + BBSizes[OrigBBI]; 637 638 // All BBOffsets following these blocks must be modified. 639 AdjustBBOffsetsAfter(NewBB, delta); 640 641 return NewBB; 642} 643 644/// OffsetIsInRange - Checks whether UserOffset (the location of a constant pool 645/// reference) is within MaxDisp of TrialOffset (a proposed location of a 646/// constant pool entry). 647bool ARMConstantIslands::OffsetIsInRange(unsigned UserOffset, 648 unsigned TrialOffset, unsigned MaxDisp, bool NegativeOK) { 649 // On Thumb offsets==2 mod 4 are rounded down by the hardware for 650 // purposes of the displacement computation; compensate for that here. 651 // Effectively, the valid range of displacements is 2 bytes smaller for such 652 // references. 653 if (isThumb && UserOffset%4 !=0) 654 UserOffset -= 2; 655 // CPEs will be rounded up to a multiple of 4. 656 if (isThumb && TrialOffset%4 != 0) 657 TrialOffset += 2; 658 659 if (UserOffset <= TrialOffset) { 660 // User before the Trial. 661 if (TrialOffset-UserOffset <= MaxDisp) 662 return true; 663 } else if (NegativeOK) { 664 if (UserOffset-TrialOffset <= MaxDisp) 665 return true; 666 } 667 return false; 668} 669 670/// WaterIsInRange - Returns true if a CPE placed after the specified 671/// Water (a basic block) will be in range for the specific MI. 672 673bool ARMConstantIslands::WaterIsInRange(unsigned UserOffset, 674 MachineBasicBlock* Water, CPUser &U) 675{ 676 unsigned MaxDisp = U.MaxDisp; 677 MachineFunction::iterator I = next(MachineFunction::iterator(Water)); 678 unsigned CPEOffset = BBOffsets[Water->getNumber()] + 679 BBSizes[Water->getNumber()]; 680 681 // If the CPE is to be inserted before the instruction, that will raise 682 // the offset of the instruction. (Currently applies only to ARM, so 683 // no alignment compensation attempted here.) 684 if (CPEOffset < UserOffset) 685 UserOffset += U.CPEMI->getOperand(2).getImm(); 686 687 return OffsetIsInRange (UserOffset, CPEOffset, MaxDisp, !isThumb); 688} 689 690/// CPEIsInRange - Returns true if the distance between specific MI and 691/// specific ConstPool entry instruction can fit in MI's displacement field. 692bool ARMConstantIslands::CPEIsInRange(MachineInstr *MI, unsigned UserOffset, 693 MachineInstr *CPEMI, 694 unsigned MaxDisp, bool DoDump) { 695 unsigned CPEOffset = GetOffsetOf(CPEMI); 696 assert(CPEOffset%4 == 0 && "Misaligned CPE"); 697 698 if (DoDump) { 699 DOUT << "User of CPE#" << CPEMI->getOperand(0).getImm() 700 << " max delta=" << MaxDisp 701 << " insn address=" << UserOffset 702 << " CPE address=" << CPEOffset 703 << " offset=" << int(CPEOffset-UserOffset) << "\t" << *MI; 704 } 705 706 return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, !isThumb); 707} 708 709#ifndef NDEBUG 710/// BBIsJumpedOver - Return true of the specified basic block's only predecessor 711/// unconditionally branches to its only successor. 712static bool BBIsJumpedOver(MachineBasicBlock *MBB) { 713 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 714 return false; 715 716 MachineBasicBlock *Succ = *MBB->succ_begin(); 717 MachineBasicBlock *Pred = *MBB->pred_begin(); 718 MachineInstr *PredMI = &Pred->back(); 719 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB) 720 return PredMI->getOperand(0).getMBB() == Succ; 721 return false; 722} 723#endif // NDEBUG 724 725void ARMConstantIslands::AdjustBBOffsetsAfter(MachineBasicBlock *BB, 726 int delta) { 727 MachineFunction::iterator MBBI = BB; MBBI = next(MBBI); 728 for(unsigned i=BB->getNumber()+1; i<BB->getParent()->getNumBlockIDs(); i++) { 729 BBOffsets[i] += delta; 730 // If some existing blocks have padding, adjust the padding as needed, a 731 // bit tricky. delta can be negative so don't use % on that. 732 if (isThumb) { 733 MachineBasicBlock *MBB = MBBI; 734 if (!MBB->empty()) { 735 // Constant pool entries require padding. 736 if (MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) { 737 unsigned oldOffset = BBOffsets[i] - delta; 738 if (oldOffset%4==0 && BBOffsets[i]%4!=0) { 739 // add new padding 740 BBSizes[i] += 2; 741 delta += 2; 742 } else if (oldOffset%4!=0 && BBOffsets[i]%4==0) { 743 // remove existing padding 744 BBSizes[i] -=2; 745 delta -= 2; 746 } 747 } 748 // Thumb jump tables require padding. They should be at the end; 749 // following unconditional branches are removed by AnalyzeBranch. 750 MachineInstr *ThumbJTMI = NULL; 751 if (prior(MBB->end())->getOpcode() == ARM::tBR_JTr) 752 ThumbJTMI = prior(MBB->end()); 753 if (ThumbJTMI) { 754 unsigned newMIOffset = GetOffsetOf(ThumbJTMI); 755 unsigned oldMIOffset = newMIOffset - delta; 756 if (oldMIOffset%4 == 0 && newMIOffset%4 != 0) { 757 // remove existing padding 758 BBSizes[i] -= 2; 759 delta -= 2; 760 } else if (oldMIOffset%4 != 0 && newMIOffset%4 == 0) { 761 // add new padding 762 BBSizes[i] += 2; 763 delta += 2; 764 } 765 } 766 if (delta==0) 767 return; 768 } 769 MBBI = next(MBBI); 770 } 771 } 772} 773 774/// DecrementOldEntry - find the constant pool entry with index CPI 775/// and instruction CPEMI, and decrement its refcount. If the refcount 776/// becomes 0 remove the entry and instruction. Returns true if we removed 777/// the entry, false if we didn't. 778 779bool ARMConstantIslands::DecrementOldEntry(unsigned CPI, MachineInstr *CPEMI) { 780 // Find the old entry. Eliminate it if it is no longer used. 781 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 782 assert(CPE && "Unexpected!"); 783 if (--CPE->RefCount == 0) { 784 RemoveDeadCPEMI(CPEMI); 785 CPE->CPEMI = NULL; 786 NumCPEs--; 787 return true; 788 } 789 return false; 790} 791 792/// LookForCPEntryInRange - see if the currently referenced CPE is in range; 793/// if not, see if an in-range clone of the CPE is in range, and if so, 794/// change the data structures so the user references the clone. Returns: 795/// 0 = no existing entry found 796/// 1 = entry found, and there were no code insertions or deletions 797/// 2 = entry found, and there were code insertions or deletions 798int ARMConstantIslands::LookForExistingCPEntry(CPUser& U, unsigned UserOffset) 799{ 800 MachineInstr *UserMI = U.MI; 801 MachineInstr *CPEMI = U.CPEMI; 802 803 // Check to see if the CPE is already in-range. 804 if (CPEIsInRange(UserMI, UserOffset, CPEMI, U.MaxDisp, true)) { 805 DOUT << "In range\n"; 806 return 1; 807 } 808 809 // No. Look for previously created clones of the CPE that are in range. 810 unsigned CPI = CPEMI->getOperand(1).getIndex(); 811 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 812 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 813 // We already tried this one 814 if (CPEs[i].CPEMI == CPEMI) 815 continue; 816 // Removing CPEs can leave empty entries, skip 817 if (CPEs[i].CPEMI == NULL) 818 continue; 819 if (CPEIsInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.MaxDisp, false)) { 820 DOUT << "Replacing CPE#" << CPI << " with CPE#" << CPEs[i].CPI << "\n"; 821 // Point the CPUser node to the replacement 822 U.CPEMI = CPEs[i].CPEMI; 823 // Change the CPI in the instruction operand to refer to the clone. 824 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) 825 if (UserMI->getOperand(j).isCPI()) { 826 UserMI->getOperand(j).setIndex(CPEs[i].CPI); 827 break; 828 } 829 // Adjust the refcount of the clone... 830 CPEs[i].RefCount++; 831 // ...and the original. If we didn't remove the old entry, none of the 832 // addresses changed, so we don't need another pass. 833 return DecrementOldEntry(CPI, CPEMI) ? 2 : 1; 834 } 835 } 836 return 0; 837} 838 839/// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 840/// the specific unconditional branch instruction. 841static inline unsigned getUnconditionalBrDisp(int Opc) { 842 return (Opc == ARM::tB) ? ((1<<10)-1)*2 : ((1<<23)-1)*4; 843} 844 845/// AcceptWater - Small amount of common code factored out of the following. 846 847MachineBasicBlock* ARMConstantIslands::AcceptWater(MachineBasicBlock *WaterBB, 848 std::vector<MachineBasicBlock*>::iterator IP) { 849 DOUT << "found water in range\n"; 850 // Remove the original WaterList entry; we want subsequent 851 // insertions in this vicinity to go after the one we're 852 // about to insert. This considerably reduces the number 853 // of times we have to move the same CPE more than once. 854 WaterList.erase(IP); 855 // CPE goes before following block (NewMBB). 856 return next(MachineFunction::iterator(WaterBB)); 857} 858 859/// LookForWater - look for an existing entry in the WaterList in which 860/// we can place the CPE referenced from U so it's within range of U's MI. 861/// Returns true if found, false if not. If it returns true, *NewMBB 862/// is set to the WaterList entry. 863/// For ARM, we prefer the water that's farthest away. For Thumb, prefer 864/// water that will not introduce padding to water that will; within each 865/// group, prefer the water that's farthest away. 866 867bool ARMConstantIslands::LookForWater(CPUser &U, unsigned UserOffset, 868 MachineBasicBlock** NewMBB) { 869 std::vector<MachineBasicBlock*>::iterator IPThatWouldPad; 870 MachineBasicBlock* WaterBBThatWouldPad = NULL; 871 if (!WaterList.empty()) { 872 for (std::vector<MachineBasicBlock*>::iterator IP = prior(WaterList.end()), 873 B = WaterList.begin();; --IP) { 874 MachineBasicBlock* WaterBB = *IP; 875 if (WaterIsInRange(UserOffset, WaterBB, U)) { 876 if (isThumb && 877 (BBOffsets[WaterBB->getNumber()] + 878 BBSizes[WaterBB->getNumber()])%4 != 0) { 879 // This is valid Water, but would introduce padding. Remember 880 // it in case we don't find any Water that doesn't do this. 881 if (!WaterBBThatWouldPad) { 882 WaterBBThatWouldPad = WaterBB; 883 IPThatWouldPad = IP; 884 } 885 } else { 886 *NewMBB = AcceptWater(WaterBB, IP); 887 return true; 888 } 889 } 890 if (IP == B) 891 break; 892 } 893 } 894 if (isThumb && WaterBBThatWouldPad) { 895 *NewMBB = AcceptWater(WaterBBThatWouldPad, IPThatWouldPad); 896 return true; 897 } 898 return false; 899} 900 901/// CreateNewWater - No existing WaterList entry will work for 902/// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 903/// block is used if in range, and the conditional branch munged so control 904/// flow is correct. Otherwise the block is split to create a hole with an 905/// unconditional branch around it. In either case *NewMBB is set to a 906/// block following which the new island can be inserted (the WaterList 907/// is not adjusted). 908 909void ARMConstantIslands::CreateNewWater(unsigned CPUserIndex, 910 unsigned UserOffset, MachineBasicBlock** NewMBB) { 911 CPUser &U = CPUsers[CPUserIndex]; 912 MachineInstr *UserMI = U.MI; 913 MachineInstr *CPEMI = U.CPEMI; 914 MachineBasicBlock *UserMBB = UserMI->getParent(); 915 unsigned OffsetOfNextBlock = BBOffsets[UserMBB->getNumber()] + 916 BBSizes[UserMBB->getNumber()]; 917 assert(OffsetOfNextBlock== BBOffsets[UserMBB->getNumber()+1]); 918 919 // If the use is at the end of the block, or the end of the block 920 // is within range, make new water there. (The addition below is 921 // for the unconditional branch we will be adding: 4 bytes on ARM, 922 // 2 on Thumb. Possible Thumb alignment padding is allowed for 923 // inside OffsetIsInRange. 924 // If the block ends in an unconditional branch already, it is water, 925 // and is known to be out of range, so we'll always be adding a branch.) 926 if (&UserMBB->back() == UserMI || 927 OffsetIsInRange(UserOffset, OffsetOfNextBlock + (isThumb ? 2: 4), 928 U.MaxDisp, !isThumb)) { 929 DOUT << "Split at end of block\n"; 930 if (&UserMBB->back() == UserMI) 931 assert(BBHasFallthrough(UserMBB) && "Expected a fallthrough BB!"); 932 *NewMBB = next(MachineFunction::iterator(UserMBB)); 933 // Add an unconditional branch from UserMBB to fallthrough block. 934 // Record it for branch lengthening; this new branch will not get out of 935 // range, but if the preceding conditional branch is out of range, the 936 // targets will be exchanged, and the altered branch may be out of 937 // range, so the machinery has to know about it. 938 int UncondBr = isThumb ? ARM::tB : ARM::B; 939 BuildMI(UserMBB, DebugLoc::getUnknownLoc(), 940 TII->get(UncondBr)).addMBB(*NewMBB); 941 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 942 ImmBranches.push_back(ImmBranch(&UserMBB->back(), 943 MaxDisp, false, UncondBr)); 944 int delta = isThumb ? 2 : 4; 945 BBSizes[UserMBB->getNumber()] += delta; 946 AdjustBBOffsetsAfter(UserMBB, delta); 947 } else { 948 // What a big block. Find a place within the block to split it. 949 // This is a little tricky on Thumb since instructions are 2 bytes 950 // and constant pool entries are 4 bytes: if instruction I references 951 // island CPE, and instruction I+1 references CPE', it will 952 // not work well to put CPE as far forward as possible, since then 953 // CPE' cannot immediately follow it (that location is 2 bytes 954 // farther away from I+1 than CPE was from I) and we'd need to create 955 // a new island. So, we make a first guess, then walk through the 956 // instructions between the one currently being looked at and the 957 // possible insertion point, and make sure any other instructions 958 // that reference CPEs will be able to use the same island area; 959 // if not, we back up the insertion point. 960 961 // The 4 in the following is for the unconditional branch we'll be 962 // inserting (allows for long branch on Thumb). Alignment of the 963 // island is handled inside OffsetIsInRange. 964 unsigned BaseInsertOffset = UserOffset + U.MaxDisp -4; 965 // This could point off the end of the block if we've already got 966 // constant pool entries following this block; only the last one is 967 // in the water list. Back past any possible branches (allow for a 968 // conditional and a maximally long unconditional). 969 if (BaseInsertOffset >= BBOffsets[UserMBB->getNumber()+1]) 970 BaseInsertOffset = BBOffsets[UserMBB->getNumber()+1] - 971 (isThumb ? 6 : 8); 972 unsigned EndInsertOffset = BaseInsertOffset + 973 CPEMI->getOperand(2).getImm(); 974 MachineBasicBlock::iterator MI = UserMI; 975 ++MI; 976 unsigned CPUIndex = CPUserIndex+1; 977 for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI); 978 Offset < BaseInsertOffset; 979 Offset += TII->GetInstSizeInBytes(MI), 980 MI = next(MI)) { 981 if (CPUIndex < CPUsers.size() && CPUsers[CPUIndex].MI == MI) { 982 if (!OffsetIsInRange(Offset, EndInsertOffset, 983 CPUsers[CPUIndex].MaxDisp, !isThumb)) { 984 BaseInsertOffset -= (isThumb ? 2 : 4); 985 EndInsertOffset -= (isThumb ? 2 : 4); 986 } 987 // This is overly conservative, as we don't account for CPEMIs 988 // being reused within the block, but it doesn't matter much. 989 EndInsertOffset += CPUsers[CPUIndex].CPEMI->getOperand(2).getImm(); 990 CPUIndex++; 991 } 992 } 993 DOUT << "Split in middle of big block\n"; 994 *NewMBB = SplitBlockBeforeInstr(prior(MI)); 995 } 996} 997 998/// HandleConstantPoolUser - Analyze the specified user, checking to see if it 999/// is out-of-range. If so, pick up the constant pool value and move it some 1000/// place in-range. Return true if we changed any addresses (thus must run 1001/// another pass of branch lengthening), false otherwise. 1002bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction &Fn, 1003 unsigned CPUserIndex) { 1004 CPUser &U = CPUsers[CPUserIndex]; 1005 MachineInstr *UserMI = U.MI; 1006 MachineInstr *CPEMI = U.CPEMI; 1007 unsigned CPI = CPEMI->getOperand(1).getIndex(); 1008 unsigned Size = CPEMI->getOperand(2).getImm(); 1009 MachineBasicBlock *NewMBB; 1010 // Compute this only once, it's expensive. The 4 or 8 is the value the 1011 // hardware keeps in the PC (2 insns ahead of the reference). 1012 unsigned UserOffset = GetOffsetOf(UserMI) + (isThumb ? 4 : 8); 1013 1014 // Special case: tLEApcrel are two instructions MI's. The actual user is the 1015 // second instruction. 1016 if (UserMI->getOpcode() == ARM::tLEApcrel) 1017 UserOffset += 2; 1018 1019 // See if the current entry is within range, or there is a clone of it 1020 // in range. 1021 int result = LookForExistingCPEntry(U, UserOffset); 1022 if (result==1) return false; 1023 else if (result==2) return true; 1024 1025 // No existing clone of this CPE is within range. 1026 // We will be generating a new clone. Get a UID for it. 1027 unsigned ID = AFI->createConstPoolEntryUId(); 1028 1029 // Look for water where we can place this CPE. We look for the farthest one 1030 // away that will work. Forward references only for now (although later 1031 // we might find some that are backwards). 1032 1033 if (!LookForWater(U, UserOffset, &NewMBB)) { 1034 // No water found. 1035 DOUT << "No water found\n"; 1036 CreateNewWater(CPUserIndex, UserOffset, &NewMBB); 1037 } 1038 1039 // Okay, we know we can put an island before NewMBB now, do it! 1040 MachineBasicBlock *NewIsland = Fn.CreateMachineBasicBlock(); 1041 Fn.insert(NewMBB, NewIsland); 1042 1043 // Update internal data structures to account for the newly inserted MBB. 1044 UpdateForInsertedWaterBlock(NewIsland); 1045 1046 // Decrement the old entry, and remove it if refcount becomes 0. 1047 DecrementOldEntry(CPI, CPEMI); 1048 1049 // Now that we have an island to add the CPE to, clone the original CPE and 1050 // add it to the island. 1051 U.CPEMI = BuildMI(NewIsland, DebugLoc::getUnknownLoc(), 1052 TII->get(ARM::CONSTPOOL_ENTRY)) 1053 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size); 1054 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1055 NumCPEs++; 1056 1057 BBOffsets[NewIsland->getNumber()] = BBOffsets[NewMBB->getNumber()]; 1058 // Compensate for .align 2 in thumb mode. 1059 if (isThumb && BBOffsets[NewIsland->getNumber()]%4 != 0) 1060 Size += 2; 1061 // Increase the size of the island block to account for the new entry. 1062 BBSizes[NewIsland->getNumber()] += Size; 1063 AdjustBBOffsetsAfter(NewIsland, Size); 1064 1065 // Finally, change the CPI in the instruction operand to be ID. 1066 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) 1067 if (UserMI->getOperand(i).isCPI()) { 1068 UserMI->getOperand(i).setIndex(ID); 1069 break; 1070 } 1071 1072 DOUT << " Moved CPE to #" << ID << " CPI=" << CPI << "\t" << *UserMI; 1073 1074 return true; 1075} 1076 1077/// RemoveDeadCPEMI - Remove a dead constant pool entry instruction. Update 1078/// sizes and offsets of impacted basic blocks. 1079void ARMConstantIslands::RemoveDeadCPEMI(MachineInstr *CPEMI) { 1080 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1081 unsigned Size = CPEMI->getOperand(2).getImm(); 1082 CPEMI->eraseFromParent(); 1083 BBSizes[CPEBB->getNumber()] -= Size; 1084 // All succeeding offsets have the current size value added in, fix this. 1085 if (CPEBB->empty()) { 1086 // In thumb mode, the size of island may be padded by two to compensate for 1087 // the alignment requirement. Then it will now be 2 when the block is 1088 // empty, so fix this. 1089 // All succeeding offsets have the current size value added in, fix this. 1090 if (BBSizes[CPEBB->getNumber()] != 0) { 1091 Size += BBSizes[CPEBB->getNumber()]; 1092 BBSizes[CPEBB->getNumber()] = 0; 1093 } 1094 } 1095 AdjustBBOffsetsAfter(CPEBB, -Size); 1096 // An island has only one predecessor BB and one successor BB. Check if 1097 // this BB's predecessor jumps directly to this BB's successor. This 1098 // shouldn't happen currently. 1099 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); 1100 // FIXME: remove the empty blocks after all the work is done? 1101} 1102 1103/// RemoveUnusedCPEntries - Remove constant pool entries whose refcounts 1104/// are zero. 1105bool ARMConstantIslands::RemoveUnusedCPEntries() { 1106 unsigned MadeChange = false; 1107 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 1108 std::vector<CPEntry> &CPEs = CPEntries[i]; 1109 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { 1110 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { 1111 RemoveDeadCPEMI(CPEs[j].CPEMI); 1112 CPEs[j].CPEMI = NULL; 1113 MadeChange = true; 1114 } 1115 } 1116 } 1117 return MadeChange; 1118} 1119 1120/// BBIsInRange - Returns true if the distance between specific MI and 1121/// specific BB can fit in MI's displacement field. 1122bool ARMConstantIslands::BBIsInRange(MachineInstr *MI,MachineBasicBlock *DestBB, 1123 unsigned MaxDisp) { 1124 unsigned PCAdj = isThumb ? 4 : 8; 1125 unsigned BrOffset = GetOffsetOf(MI) + PCAdj; 1126 unsigned DestOffset = BBOffsets[DestBB->getNumber()]; 1127 1128 DOUT << "Branch of destination BB#" << DestBB->getNumber() 1129 << " from BB#" << MI->getParent()->getNumber() 1130 << " max delta=" << MaxDisp 1131 << " from " << GetOffsetOf(MI) << " to " << DestOffset 1132 << " offset " << int(DestOffset-BrOffset) << "\t" << *MI; 1133 1134 if (BrOffset <= DestOffset) { 1135 // Branch before the Dest. 1136 if (DestOffset-BrOffset <= MaxDisp) 1137 return true; 1138 } else { 1139 if (BrOffset-DestOffset <= MaxDisp) 1140 return true; 1141 } 1142 return false; 1143} 1144 1145/// FixUpImmediateBr - Fix up an immediate branch whose destination is too far 1146/// away to fit in its displacement field. 1147bool ARMConstantIslands::FixUpImmediateBr(MachineFunction &Fn, ImmBranch &Br) { 1148 MachineInstr *MI = Br.MI; 1149 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1150 1151 // Check to see if the DestBB is already in-range. 1152 if (BBIsInRange(MI, DestBB, Br.MaxDisp)) 1153 return false; 1154 1155 if (!Br.isCond) 1156 return FixUpUnconditionalBr(Fn, Br); 1157 return FixUpConditionalBr(Fn, Br); 1158} 1159 1160/// FixUpUnconditionalBr - Fix up an unconditional branch whose destination is 1161/// too far away to fit in its displacement field. If the LR register has been 1162/// spilled in the epilogue, then we can use BL to implement a far jump. 1163/// Otherwise, add an intermediate branch instruction to a branch. 1164bool 1165ARMConstantIslands::FixUpUnconditionalBr(MachineFunction &Fn, ImmBranch &Br) { 1166 MachineInstr *MI = Br.MI; 1167 MachineBasicBlock *MBB = MI->getParent(); 1168 assert(isThumb && "Expected a Thumb function!"); 1169 1170 // Use BL to implement far jump. 1171 Br.MaxDisp = (1 << 21) * 2; 1172 MI->setDesc(TII->get(ARM::tBfar)); 1173 BBSizes[MBB->getNumber()] += 2; 1174 AdjustBBOffsetsAfter(MBB, 2); 1175 HasFarJump = true; 1176 NumUBrFixed++; 1177 1178 DOUT << " Changed B to long jump " << *MI; 1179 1180 return true; 1181} 1182 1183/// FixUpConditionalBr - Fix up a conditional branch whose destination is too 1184/// far away to fit in its displacement field. It is converted to an inverse 1185/// conditional branch + an unconditional branch to the destination. 1186bool 1187ARMConstantIslands::FixUpConditionalBr(MachineFunction &Fn, ImmBranch &Br) { 1188 MachineInstr *MI = Br.MI; 1189 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1190 1191 // Add an unconditional branch to the destination and invert the branch 1192 // condition to jump over it: 1193 // blt L1 1194 // => 1195 // bge L2 1196 // b L1 1197 // L2: 1198 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm(); 1199 CC = ARMCC::getOppositeCondition(CC); 1200 unsigned CCReg = MI->getOperand(2).getReg(); 1201 1202 // If the branch is at the end of its MBB and that has a fall-through block, 1203 // direct the updated conditional branch to the fall-through block. Otherwise, 1204 // split the MBB before the next instruction. 1205 MachineBasicBlock *MBB = MI->getParent(); 1206 MachineInstr *BMI = &MBB->back(); 1207 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); 1208 1209 NumCBrFixed++; 1210 if (BMI != MI) { 1211 if (next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) && 1212 BMI->getOpcode() == Br.UncondBr) { 1213 // Last MI in the BB is an unconditional branch. Can we simply invert the 1214 // condition and swap destinations: 1215 // beq L1 1216 // b L2 1217 // => 1218 // bne L2 1219 // b L1 1220 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); 1221 if (BBIsInRange(MI, NewDest, Br.MaxDisp)) { 1222 DOUT << " Invert Bcc condition and swap its destination with " << *BMI; 1223 BMI->getOperand(0).setMBB(DestBB); 1224 MI->getOperand(0).setMBB(NewDest); 1225 MI->getOperand(1).setImm(CC); 1226 return true; 1227 } 1228 } 1229 } 1230 1231 if (NeedSplit) { 1232 SplitBlockBeforeInstr(MI); 1233 // No need for the branch to the next block. We're adding an unconditional 1234 // branch to the destination. 1235 int delta = TII->GetInstSizeInBytes(&MBB->back()); 1236 BBSizes[MBB->getNumber()] -= delta; 1237 MachineBasicBlock* SplitBB = next(MachineFunction::iterator(MBB)); 1238 AdjustBBOffsetsAfter(SplitBB, -delta); 1239 MBB->back().eraseFromParent(); 1240 // BBOffsets[SplitBB] is wrong temporarily, fixed below 1241 } 1242 MachineBasicBlock *NextBB = next(MachineFunction::iterator(MBB)); 1243 1244 DOUT << " Insert B to BB#" << DestBB->getNumber() 1245 << " also invert condition and change dest. to BB#" 1246 << NextBB->getNumber() << "\n"; 1247 1248 // Insert a new conditional branch and a new unconditional branch. 1249 // Also update the ImmBranch as well as adding a new entry for the new branch. 1250 BuildMI(MBB, DebugLoc::getUnknownLoc(), 1251 TII->get(MI->getOpcode())) 1252 .addMBB(NextBB).addImm(CC).addReg(CCReg); 1253 Br.MI = &MBB->back(); 1254 BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back()); 1255 BuildMI(MBB, DebugLoc::getUnknownLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); 1256 BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back()); 1257 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1258 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1259 1260 // Remove the old conditional branch. It may or may not still be in MBB. 1261 BBSizes[MI->getParent()->getNumber()] -= TII->GetInstSizeInBytes(MI); 1262 MI->eraseFromParent(); 1263 1264 // The net size change is an addition of one unconditional branch. 1265 int delta = TII->GetInstSizeInBytes(&MBB->back()); 1266 AdjustBBOffsetsAfter(MBB, delta); 1267 return true; 1268} 1269 1270/// UndoLRSpillRestore - Remove Thumb push / pop instructions that only spills 1271/// LR / restores LR to pc. 1272bool ARMConstantIslands::UndoLRSpillRestore() { 1273 bool MadeChange = false; 1274 for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) { 1275 MachineInstr *MI = PushPopMIs[i]; 1276 if (MI->getOpcode() == ARM::tPOP_RET && 1277 MI->getOperand(0).getReg() == ARM::PC && 1278 MI->getNumExplicitOperands() == 1) { 1279 BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET)); 1280 MI->eraseFromParent(); 1281 MadeChange = true; 1282 } 1283 } 1284 return MadeChange; 1285} 1286