ARMConstantIslandPass.cpp revision 3e333637f172c30adf5c8333b592fbde17ff9f78
1//===-- ARMConstantIslandPass.cpp - ARM constant islands --------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains a pass that splits the constant pool up into 'islands' 11// which are scattered through-out the function. This is required due to the 12// limited pc-relative displacements that ARM has. 13// 14//===----------------------------------------------------------------------===// 15 16#define DEBUG_TYPE "arm-cp-islands" 17#include "ARM.h" 18#include "ARMAddressingModes.h" 19#include "ARMMachineFunctionInfo.h" 20#include "ARMInstrInfo.h" 21#include "Thumb2InstrInfo.h" 22#include "llvm/CodeGen/MachineConstantPool.h" 23#include "llvm/CodeGen/MachineFunctionPass.h" 24#include "llvm/CodeGen/MachineJumpTableInfo.h" 25#include "llvm/Target/TargetData.h" 26#include "llvm/Target/TargetMachine.h" 27#include "llvm/Support/Debug.h" 28#include "llvm/Support/ErrorHandling.h" 29#include "llvm/Support/raw_ostream.h" 30#include "llvm/ADT/SmallSet.h" 31#include "llvm/ADT/SmallVector.h" 32#include "llvm/ADT/STLExtras.h" 33#include "llvm/ADT/Statistic.h" 34#include "llvm/Support/CommandLine.h" 35#include <algorithm> 36using namespace llvm; 37 38STATISTIC(NumCPEs, "Number of constpool entries"); 39STATISTIC(NumSplit, "Number of uncond branches inserted"); 40STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 41STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 42STATISTIC(NumTBs, "Number of table branches generated"); 43STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk"); 44STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk"); 45STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed"); 46STATISTIC(NumJTMoved, "Number of jump table destination blocks moved"); 47STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted"); 48 49 50static cl::opt<bool> 51AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true), 52 cl::desc("Adjust basic block layout to better use TB[BH]")); 53 54namespace { 55 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM 56 /// requires constant pool entries to be scattered among the instructions 57 /// inside a function. To do this, it completely ignores the normal LLVM 58 /// constant pool; instead, it places constants wherever it feels like with 59 /// special instructions. 60 /// 61 /// The terminology used in this pass includes: 62 /// Islands - Clumps of constants placed in the function. 63 /// Water - Potential places where an island could be formed. 64 /// CPE - A constant pool entry that has been placed somewhere, which 65 /// tracks a list of users. 66 class ARMConstantIslands : public MachineFunctionPass { 67 /// BBSizes - The size of each MachineBasicBlock in bytes of code, indexed 68 /// by MBB Number. The two-byte pads required for Thumb alignment are 69 /// counted as part of the following block (i.e., the offset and size for 70 /// a padded block will both be ==2 mod 4). 71 std::vector<unsigned> BBSizes; 72 73 /// BBOffsets - the offset of each MBB in bytes, starting from 0. 74 /// The two-byte pads required for Thumb alignment are counted as part of 75 /// the following block. 76 std::vector<unsigned> BBOffsets; 77 78 /// WaterList - A sorted list of basic blocks where islands could be placed 79 /// (i.e. blocks that don't fall through to the following block, due 80 /// to a return, unreachable, or unconditional branch). 81 std::vector<MachineBasicBlock*> WaterList; 82 83 /// NewWaterList - The subset of WaterList that was created since the 84 /// previous iteration by inserting unconditional branches. 85 SmallSet<MachineBasicBlock*, 4> NewWaterList; 86 87 typedef std::vector<MachineBasicBlock*>::iterator water_iterator; 88 89 /// CPUser - One user of a constant pool, keeping the machine instruction 90 /// pointer, the constant pool being referenced, and the max displacement 91 /// allowed from the instruction to the CP. The HighWaterMark records the 92 /// highest basic block where a new CPEntry can be placed. To ensure this 93 /// pass terminates, the CP entries are initially placed at the end of the 94 /// function and then move monotonically to lower addresses. The 95 /// exception to this rule is when the current CP entry for a particular 96 /// CPUser is out of range, but there is another CP entry for the same 97 /// constant value in range. We want to use the existing in-range CP 98 /// entry, but if it later moves out of range, the search for new water 99 /// should resume where it left off. The HighWaterMark is used to record 100 /// that point. 101 struct CPUser { 102 MachineInstr *MI; 103 MachineInstr *CPEMI; 104 MachineBasicBlock *HighWaterMark; 105 unsigned MaxDisp; 106 bool NegOk; 107 bool IsSoImm; 108 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, 109 bool neg, bool soimm) 110 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) { 111 HighWaterMark = CPEMI->getParent(); 112 } 113 }; 114 115 /// CPUsers - Keep track of all of the machine instructions that use various 116 /// constant pools and their max displacement. 117 std::vector<CPUser> CPUsers; 118 119 /// CPEntry - One per constant pool entry, keeping the machine instruction 120 /// pointer, the constpool index, and the number of CPUser's which 121 /// reference this entry. 122 struct CPEntry { 123 MachineInstr *CPEMI; 124 unsigned CPI; 125 unsigned RefCount; 126 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) 127 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} 128 }; 129 130 /// CPEntries - Keep track of all of the constant pool entry machine 131 /// instructions. For each original constpool index (i.e. those that 132 /// existed upon entry to this pass), it keeps a vector of entries. 133 /// Original elements are cloned as we go along; the clones are 134 /// put in the vector of the original element, but have distinct CPIs. 135 std::vector<std::vector<CPEntry> > CPEntries; 136 137 /// ImmBranch - One per immediate branch, keeping the machine instruction 138 /// pointer, conditional or unconditional, the max displacement, 139 /// and (if isCond is true) the corresponding unconditional branch 140 /// opcode. 141 struct ImmBranch { 142 MachineInstr *MI; 143 unsigned MaxDisp : 31; 144 bool isCond : 1; 145 int UncondBr; 146 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr) 147 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} 148 }; 149 150 /// ImmBranches - Keep track of all the immediate branch instructions. 151 /// 152 std::vector<ImmBranch> ImmBranches; 153 154 /// PushPopMIs - Keep track of all the Thumb push / pop instructions. 155 /// 156 SmallVector<MachineInstr*, 4> PushPopMIs; 157 158 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions. 159 SmallVector<MachineInstr*, 4> T2JumpTables; 160 161 /// HasFarJump - True if any far jump instruction has been emitted during 162 /// the branch fix up pass. 163 bool HasFarJump; 164 165 /// HasInlineAsm - True if the function contains inline assembly. 166 bool HasInlineAsm; 167 168 const ARMInstrInfo *TII; 169 const ARMSubtarget *STI; 170 ARMFunctionInfo *AFI; 171 bool isThumb; 172 bool isThumb1; 173 bool isThumb2; 174 public: 175 static char ID; 176 ARMConstantIslands() : MachineFunctionPass(ID) {} 177 178 virtual bool runOnMachineFunction(MachineFunction &MF); 179 180 virtual const char *getPassName() const { 181 return "ARM constant island placement and branch shortening pass"; 182 } 183 184 private: 185 void DoInitialPlacement(MachineFunction &MF, 186 std::vector<MachineInstr*> &CPEMIs); 187 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 188 void JumpTableFunctionScan(MachineFunction &MF); 189 void InitialFunctionScan(MachineFunction &MF, 190 const std::vector<MachineInstr*> &CPEMIs); 191 MachineBasicBlock *SplitBlockBeforeInstr(MachineInstr *MI); 192 void UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB); 193 void AdjustBBOffsetsAfter(MachineBasicBlock *BB, int delta); 194 bool DecrementOldEntry(unsigned CPI, MachineInstr* CPEMI); 195 int LookForExistingCPEntry(CPUser& U, unsigned UserOffset); 196 bool LookForWater(CPUser&U, unsigned UserOffset, water_iterator &WaterIter); 197 void CreateNewWater(unsigned CPUserIndex, unsigned UserOffset, 198 MachineBasicBlock *&NewMBB); 199 bool HandleConstantPoolUser(MachineFunction &MF, unsigned CPUserIndex); 200 void RemoveDeadCPEMI(MachineInstr *CPEMI); 201 bool RemoveUnusedCPEntries(); 202 bool CPEIsInRange(MachineInstr *MI, unsigned UserOffset, 203 MachineInstr *CPEMI, unsigned Disp, bool NegOk, 204 bool DoDump = false); 205 bool WaterIsInRange(unsigned UserOffset, MachineBasicBlock *Water, 206 CPUser &U); 207 bool OffsetIsInRange(unsigned UserOffset, unsigned TrialOffset, 208 unsigned Disp, bool NegativeOK, bool IsSoImm = false); 209 bool BBIsInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); 210 bool FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br); 211 bool FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br); 212 bool FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br); 213 bool UndoLRSpillRestore(); 214 bool OptimizeThumb2Instructions(MachineFunction &MF); 215 bool OptimizeThumb2Branches(MachineFunction &MF); 216 bool ReorderThumb2JumpTables(MachineFunction &MF); 217 bool OptimizeThumb2JumpTables(MachineFunction &MF); 218 MachineBasicBlock *AdjustJTTargetBlockForward(MachineBasicBlock *BB, 219 MachineBasicBlock *JTBB); 220 221 unsigned GetOffsetOf(MachineInstr *MI) const; 222 void dumpBBs(); 223 void verify(MachineFunction &MF); 224 }; 225 char ARMConstantIslands::ID = 0; 226} 227 228/// verify - check BBOffsets, BBSizes, alignment of islands 229void ARMConstantIslands::verify(MachineFunction &MF) { 230 assert(BBOffsets.size() == BBSizes.size()); 231 for (unsigned i = 1, e = BBOffsets.size(); i != e; ++i) 232 assert(BBOffsets[i-1]+BBSizes[i-1] == BBOffsets[i]); 233 if (!isThumb) 234 return; 235#ifndef NDEBUG 236 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); 237 MBBI != E; ++MBBI) { 238 MachineBasicBlock *MBB = MBBI; 239 if (!MBB->empty() && 240 MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) { 241 unsigned MBBId = MBB->getNumber(); 242 assert(HasInlineAsm || 243 (BBOffsets[MBBId]%4 == 0 && BBSizes[MBBId]%4 == 0) || 244 (BBOffsets[MBBId]%4 != 0 && BBSizes[MBBId]%4 != 0)); 245 } 246 } 247 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 248 CPUser &U = CPUsers[i]; 249 unsigned UserOffset = GetOffsetOf(U.MI) + (isThumb ? 4 : 8); 250 unsigned CPEOffset = GetOffsetOf(U.CPEMI); 251 unsigned Disp = UserOffset < CPEOffset ? CPEOffset - UserOffset : 252 UserOffset - CPEOffset; 253 assert(Disp <= U.MaxDisp || "Constant pool entry out of range!"); 254 } 255#endif 256} 257 258/// print block size and offset information - debugging 259void ARMConstantIslands::dumpBBs() { 260 for (unsigned J = 0, E = BBOffsets.size(); J !=E; ++J) { 261 DEBUG(errs() << "block " << J << " offset " << BBOffsets[J] 262 << " size " << BBSizes[J] << "\n"); 263 } 264} 265 266/// createARMConstantIslandPass - returns an instance of the constpool 267/// island pass. 268FunctionPass *llvm::createARMConstantIslandPass() { 269 return new ARMConstantIslands(); 270} 271 272bool ARMConstantIslands::runOnMachineFunction(MachineFunction &MF) { 273 MachineConstantPool &MCP = *MF.getConstantPool(); 274 275 TII = (const ARMInstrInfo*)MF.getTarget().getInstrInfo(); 276 AFI = MF.getInfo<ARMFunctionInfo>(); 277 STI = &MF.getTarget().getSubtarget<ARMSubtarget>(); 278 279 isThumb = AFI->isThumbFunction(); 280 isThumb1 = AFI->isThumb1OnlyFunction(); 281 isThumb2 = AFI->isThumb2Function(); 282 283 HasFarJump = false; 284 HasInlineAsm = false; 285 286 // Renumber all of the machine basic blocks in the function, guaranteeing that 287 // the numbers agree with the position of the block in the function. 288 MF.RenumberBlocks(); 289 290 // Try to reorder and otherwise adjust the block layout to make good use 291 // of the TB[BH] instructions. 292 bool MadeChange = false; 293 if (isThumb2 && AdjustJumpTableBlocks) { 294 JumpTableFunctionScan(MF); 295 MadeChange |= ReorderThumb2JumpTables(MF); 296 // Data is out of date, so clear it. It'll be re-computed later. 297 T2JumpTables.clear(); 298 // Blocks may have shifted around. Keep the numbering up to date. 299 MF.RenumberBlocks(); 300 } 301 302 // Thumb1 functions containing constant pools get 4-byte alignment. 303 // This is so we can keep exact track of where the alignment padding goes. 304 305 // ARM and Thumb2 functions need to be 4-byte aligned. 306 if (!isThumb1) 307 MF.EnsureAlignment(2); // 2 = log2(4) 308 309 // Perform the initial placement of the constant pool entries. To start with, 310 // we put them all at the end of the function. 311 std::vector<MachineInstr*> CPEMIs; 312 if (!MCP.isEmpty()) { 313 DoInitialPlacement(MF, CPEMIs); 314 if (isThumb1) 315 MF.EnsureAlignment(2); // 2 = log2(4) 316 } 317 318 /// The next UID to take is the first unused one. 319 AFI->initConstPoolEntryUId(CPEMIs.size()); 320 321 // Do the initial scan of the function, building up information about the 322 // sizes of each block, the location of all the water, and finding all of the 323 // constant pool users. 324 InitialFunctionScan(MF, CPEMIs); 325 CPEMIs.clear(); 326 DEBUG(dumpBBs()); 327 328 329 /// Remove dead constant pool entries. 330 RemoveUnusedCPEntries(); 331 332 // Iteratively place constant pool entries and fix up branches until there 333 // is no change. 334 unsigned NoCPIters = 0, NoBRIters = 0; 335 while (true) { 336 bool CPChange = false; 337 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) 338 CPChange |= HandleConstantPoolUser(MF, i); 339 if (CPChange && ++NoCPIters > 30) 340 llvm_unreachable("Constant Island pass failed to converge!"); 341 DEBUG(dumpBBs()); 342 343 // Clear NewWaterList now. If we split a block for branches, it should 344 // appear as "new water" for the next iteration of constant pool placement. 345 NewWaterList.clear(); 346 347 bool BRChange = false; 348 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) 349 BRChange |= FixUpImmediateBr(MF, ImmBranches[i]); 350 if (BRChange && ++NoBRIters > 30) 351 llvm_unreachable("Branch Fix Up pass failed to converge!"); 352 DEBUG(dumpBBs()); 353 354 if (!CPChange && !BRChange) 355 break; 356 MadeChange = true; 357 } 358 359 // Shrink 32-bit Thumb2 branch, load, and store instructions. 360 if (isThumb2 && !STI->prefers32BitThumb()) 361 MadeChange |= OptimizeThumb2Instructions(MF); 362 363 // After a while, this might be made debug-only, but it is not expensive. 364 verify(MF); 365 366 // If LR has been forced spilled and no far jump (i.e. BL) has been issued, 367 // undo the spill / restore of LR if possible. 368 if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump()) 369 MadeChange |= UndoLRSpillRestore(); 370 371 DEBUG(errs() << '\n'; dumpBBs()); 372 373 BBSizes.clear(); 374 BBOffsets.clear(); 375 WaterList.clear(); 376 CPUsers.clear(); 377 CPEntries.clear(); 378 ImmBranches.clear(); 379 PushPopMIs.clear(); 380 T2JumpTables.clear(); 381 382 return MadeChange; 383} 384 385/// DoInitialPlacement - Perform the initial placement of the constant pool 386/// entries. To start with, we put them all at the end of the function. 387void ARMConstantIslands::DoInitialPlacement(MachineFunction &MF, 388 std::vector<MachineInstr*> &CPEMIs) { 389 // Create the basic block to hold the CPE's. 390 MachineBasicBlock *BB = MF.CreateMachineBasicBlock(); 391 MF.push_back(BB); 392 393 // Add all of the constants from the constant pool to the end block, use an 394 // identity mapping of CPI's to CPE's. 395 const std::vector<MachineConstantPoolEntry> &CPs = 396 MF.getConstantPool()->getConstants(); 397 398 const TargetData &TD = *MF.getTarget().getTargetData(); 399 for (unsigned i = 0, e = CPs.size(); i != e; ++i) { 400 unsigned Size = TD.getTypeAllocSize(CPs[i].getType()); 401 // Verify that all constant pool entries are a multiple of 4 bytes. If not, 402 // we would have to pad them out or something so that instructions stay 403 // aligned. 404 assert((Size & 3) == 0 && "CP Entry not multiple of 4 bytes!"); 405 MachineInstr *CPEMI = 406 BuildMI(BB, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 407 .addImm(i).addConstantPoolIndex(i).addImm(Size); 408 CPEMIs.push_back(CPEMI); 409 410 // Add a new CPEntry, but no corresponding CPUser yet. 411 std::vector<CPEntry> CPEs; 412 CPEs.push_back(CPEntry(CPEMI, i)); 413 CPEntries.push_back(CPEs); 414 ++NumCPEs; 415 DEBUG(errs() << "Moved CPI#" << i << " to end of function as #" << i 416 << "\n"); 417 } 418} 419 420/// BBHasFallthrough - Return true if the specified basic block can fallthrough 421/// into the block immediately after it. 422static bool BBHasFallthrough(MachineBasicBlock *MBB) { 423 // Get the next machine basic block in the function. 424 MachineFunction::iterator MBBI = MBB; 425 // Can't fall off end of function. 426 if (llvm::next(MBBI) == MBB->getParent()->end()) 427 return false; 428 429 MachineBasicBlock *NextBB = llvm::next(MBBI); 430 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), 431 E = MBB->succ_end(); I != E; ++I) 432 if (*I == NextBB) 433 return true; 434 435 return false; 436} 437 438/// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 439/// look up the corresponding CPEntry. 440ARMConstantIslands::CPEntry 441*ARMConstantIslands::findConstPoolEntry(unsigned CPI, 442 const MachineInstr *CPEMI) { 443 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 444 // Number of entries per constpool index should be small, just do a 445 // linear search. 446 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 447 if (CPEs[i].CPEMI == CPEMI) 448 return &CPEs[i]; 449 } 450 return NULL; 451} 452 453/// JumpTableFunctionScan - Do a scan of the function, building up 454/// information about the sizes of each block and the locations of all 455/// the jump tables. 456void ARMConstantIslands::JumpTableFunctionScan(MachineFunction &MF) { 457 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); 458 MBBI != E; ++MBBI) { 459 MachineBasicBlock &MBB = *MBBI; 460 461 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 462 I != E; ++I) 463 if (I->getDesc().isBranch() && I->getOpcode() == ARM::t2BR_JT) 464 T2JumpTables.push_back(I); 465 } 466} 467 468/// InitialFunctionScan - Do the initial scan of the function, building up 469/// information about the sizes of each block, the location of all the water, 470/// and finding all of the constant pool users. 471void ARMConstantIslands::InitialFunctionScan(MachineFunction &MF, 472 const std::vector<MachineInstr*> &CPEMIs) { 473 // First thing, see if the function has any inline assembly in it. If so, 474 // we have to be conservative about alignment assumptions, as we don't 475 // know for sure the size of any instructions in the inline assembly. 476 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); 477 MBBI != E; ++MBBI) { 478 MachineBasicBlock &MBB = *MBBI; 479 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 480 I != E; ++I) 481 if (I->getOpcode() == ARM::INLINEASM) 482 HasInlineAsm = true; 483 } 484 485 // Now go back through the instructions and build up our data structures 486 unsigned Offset = 0; 487 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); 488 MBBI != E; ++MBBI) { 489 MachineBasicBlock &MBB = *MBBI; 490 491 // If this block doesn't fall through into the next MBB, then this is 492 // 'water' that a constant pool island could be placed. 493 if (!BBHasFallthrough(&MBB)) 494 WaterList.push_back(&MBB); 495 496 unsigned MBBSize = 0; 497 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 498 I != E; ++I) { 499 if (I->isDebugValue()) 500 continue; 501 // Add instruction size to MBBSize. 502 MBBSize += TII->GetInstSizeInBytes(I); 503 504 int Opc = I->getOpcode(); 505 if (I->getDesc().isBranch()) { 506 bool isCond = false; 507 unsigned Bits = 0; 508 unsigned Scale = 1; 509 int UOpc = Opc; 510 switch (Opc) { 511 default: 512 continue; // Ignore other JT branches 513 case ARM::tBR_JTr: 514 // A Thumb1 table jump may involve padding; for the offsets to 515 // be right, functions containing these must be 4-byte aligned. 516 // tBR_JTr expands to a mov pc followed by .align 2 and then the jump 517 // table entries. So this code checks whether offset of tBR_JTr + 2 518 // is aligned. That is held in Offset+MBBSize, which already has 519 // 2 added in for the size of the mov pc instruction. 520 MF.EnsureAlignment(2U); 521 if ((Offset+MBBSize)%4 != 0 || HasInlineAsm) 522 // FIXME: Add a pseudo ALIGN instruction instead. 523 MBBSize += 2; // padding 524 continue; // Does not get an entry in ImmBranches 525 case ARM::t2BR_JT: 526 T2JumpTables.push_back(I); 527 continue; // Does not get an entry in ImmBranches 528 case ARM::Bcc: 529 isCond = true; 530 UOpc = ARM::B; 531 // Fallthrough 532 case ARM::B: 533 Bits = 24; 534 Scale = 4; 535 break; 536 case ARM::tBcc: 537 isCond = true; 538 UOpc = ARM::tB; 539 Bits = 8; 540 Scale = 2; 541 break; 542 case ARM::tB: 543 Bits = 11; 544 Scale = 2; 545 break; 546 case ARM::t2Bcc: 547 isCond = true; 548 UOpc = ARM::t2B; 549 Bits = 20; 550 Scale = 2; 551 break; 552 case ARM::t2B: 553 Bits = 24; 554 Scale = 2; 555 break; 556 } 557 558 // Record this immediate branch. 559 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 560 ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc)); 561 } 562 563 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) 564 PushPopMIs.push_back(I); 565 566 if (Opc == ARM::CONSTPOOL_ENTRY) 567 continue; 568 569 // Scan the instructions for constant pool operands. 570 for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) 571 if (I->getOperand(op).isCPI()) { 572 // We found one. The addressing mode tells us the max displacement 573 // from the PC that this instruction permits. 574 575 // Basic size info comes from the TSFlags field. 576 unsigned Bits = 0; 577 unsigned Scale = 1; 578 bool NegOk = false; 579 bool IsSoImm = false; 580 581 switch (Opc) { 582 default: 583 llvm_unreachable("Unknown addressing mode for CP reference!"); 584 break; 585 586 // Taking the address of a CP entry. 587 case ARM::LEApcrel: 588 // This takes a SoImm, which is 8 bit immediate rotated. We'll 589 // pretend the maximum offset is 255 * 4. Since each instruction 590 // 4 byte wide, this is always correct. We'll check for other 591 // displacements that fits in a SoImm as well. 592 Bits = 8; 593 Scale = 4; 594 NegOk = true; 595 IsSoImm = true; 596 break; 597 case ARM::t2LEApcrel: 598 Bits = 12; 599 NegOk = true; 600 break; 601 case ARM::tLEApcrel: 602 Bits = 8; 603 Scale = 4; 604 break; 605 606 case ARM::LDRi12: 607 case ARM::LDRcp: 608 case ARM::t2LDRi12: 609 case ARM::t2LDRHi12: 610 case ARM::t2LDRBi12: 611 case ARM::t2LDRSHi12: 612 case ARM::t2LDRSBi12: 613 Bits = 12; // +-offset_12 614 NegOk = true; 615 break; 616 617 case ARM::tLDRpci: 618 Bits = 8; 619 Scale = 4; // +(offset_8*4) 620 break; 621 622 case ARM::VLDRD: 623 case ARM::VLDRS: 624 Bits = 8; 625 Scale = 4; // +-(offset_8*4) 626 NegOk = true; 627 break; 628 } 629 630 // Remember that this is a user of a CP entry. 631 unsigned CPI = I->getOperand(op).getIndex(); 632 MachineInstr *CPEMI = CPEMIs[CPI]; 633 unsigned MaxOffs = ((1 << Bits)-1) * Scale; 634 CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm)); 635 636 // Increment corresponding CPEntry reference count. 637 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 638 assert(CPE && "Cannot find a corresponding CPEntry!"); 639 CPE->RefCount++; 640 641 // Instructions can only use one CP entry, don't bother scanning the 642 // rest of the operands. 643 break; 644 } 645 } 646 647 // In thumb mode, if this block is a constpool island, we may need padding 648 // so it's aligned on 4 byte boundary. 649 if (isThumb && 650 !MBB.empty() && 651 MBB.begin()->getOpcode() == ARM::CONSTPOOL_ENTRY && 652 ((Offset%4) != 0 || HasInlineAsm)) 653 MBBSize += 2; 654 655 BBSizes.push_back(MBBSize); 656 BBOffsets.push_back(Offset); 657 Offset += MBBSize; 658 } 659} 660 661/// GetOffsetOf - Return the current offset of the specified machine instruction 662/// from the start of the function. This offset changes as stuff is moved 663/// around inside the function. 664unsigned ARMConstantIslands::GetOffsetOf(MachineInstr *MI) const { 665 MachineBasicBlock *MBB = MI->getParent(); 666 667 // The offset is composed of two things: the sum of the sizes of all MBB's 668 // before this instruction's block, and the offset from the start of the block 669 // it is in. 670 unsigned Offset = BBOffsets[MBB->getNumber()]; 671 672 // If we're looking for a CONSTPOOL_ENTRY in Thumb, see if this block has 673 // alignment padding, and compensate if so. 674 if (isThumb && 675 MI->getOpcode() == ARM::CONSTPOOL_ENTRY && 676 (Offset%4 != 0 || HasInlineAsm)) 677 Offset += 2; 678 679 // Sum instructions before MI in MBB. 680 for (MachineBasicBlock::iterator I = MBB->begin(); ; ++I) { 681 assert(I != MBB->end() && "Didn't find MI in its own basic block?"); 682 if (&*I == MI) return Offset; 683 Offset += TII->GetInstSizeInBytes(I); 684 } 685} 686 687/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 688/// ID. 689static bool CompareMBBNumbers(const MachineBasicBlock *LHS, 690 const MachineBasicBlock *RHS) { 691 return LHS->getNumber() < RHS->getNumber(); 692} 693 694/// UpdateForInsertedWaterBlock - When a block is newly inserted into the 695/// machine function, it upsets all of the block numbers. Renumber the blocks 696/// and update the arrays that parallel this numbering. 697void ARMConstantIslands::UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB) { 698 // Renumber the MBB's to keep them consequtive. 699 NewBB->getParent()->RenumberBlocks(NewBB); 700 701 // Insert a size into BBSizes to align it properly with the (newly 702 // renumbered) block numbers. 703 BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0); 704 705 // Likewise for BBOffsets. 706 BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0); 707 708 // Next, update WaterList. Specifically, we need to add NewMBB as having 709 // available water after it. 710 water_iterator IP = 711 std::lower_bound(WaterList.begin(), WaterList.end(), NewBB, 712 CompareMBBNumbers); 713 WaterList.insert(IP, NewBB); 714} 715 716 717/// Split the basic block containing MI into two blocks, which are joined by 718/// an unconditional branch. Update data structures and renumber blocks to 719/// account for this change and returns the newly created block. 720MachineBasicBlock *ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr *MI) { 721 MachineBasicBlock *OrigBB = MI->getParent(); 722 MachineFunction &MF = *OrigBB->getParent(); 723 724 // Create a new MBB for the code after the OrigBB. 725 MachineBasicBlock *NewBB = 726 MF.CreateMachineBasicBlock(OrigBB->getBasicBlock()); 727 MachineFunction::iterator MBBI = OrigBB; ++MBBI; 728 MF.insert(MBBI, NewBB); 729 730 // Splice the instructions starting with MI over to NewBB. 731 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 732 733 // Add an unconditional branch from OrigBB to NewBB. 734 // Note the new unconditional branch is not being recorded. 735 // There doesn't seem to be meaningful DebugInfo available; this doesn't 736 // correspond to anything in the source. 737 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B; 738 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB); 739 ++NumSplit; 740 741 // Update the CFG. All succs of OrigBB are now succs of NewBB. 742 while (!OrigBB->succ_empty()) { 743 MachineBasicBlock *Succ = *OrigBB->succ_begin(); 744 OrigBB->removeSuccessor(Succ); 745 NewBB->addSuccessor(Succ); 746 747 // This pass should be run after register allocation, so there should be no 748 // PHI nodes to update. 749 assert((Succ->empty() || !Succ->begin()->isPHI()) 750 && "PHI nodes should be eliminated by now!"); 751 } 752 753 // OrigBB branches to NewBB. 754 OrigBB->addSuccessor(NewBB); 755 756 // Update internal data structures to account for the newly inserted MBB. 757 // This is almost the same as UpdateForInsertedWaterBlock, except that 758 // the Water goes after OrigBB, not NewBB. 759 MF.RenumberBlocks(NewBB); 760 761 // Insert a size into BBSizes to align it properly with the (newly 762 // renumbered) block numbers. 763 BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0); 764 765 // Likewise for BBOffsets. 766 BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0); 767 768 // Next, update WaterList. Specifically, we need to add OrigMBB as having 769 // available water after it (but not if it's already there, which happens 770 // when splitting before a conditional branch that is followed by an 771 // unconditional branch - in that case we want to insert NewBB). 772 water_iterator IP = 773 std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB, 774 CompareMBBNumbers); 775 MachineBasicBlock* WaterBB = *IP; 776 if (WaterBB == OrigBB) 777 WaterList.insert(llvm::next(IP), NewBB); 778 else 779 WaterList.insert(IP, OrigBB); 780 NewWaterList.insert(OrigBB); 781 782 unsigned OrigBBI = OrigBB->getNumber(); 783 unsigned NewBBI = NewBB->getNumber(); 784 785 int delta = isThumb1 ? 2 : 4; 786 787 // Figure out how large the OrigBB is. As the first half of the original 788 // block, it cannot contain a tablejump. The size includes 789 // the new jump we added. (It should be possible to do this without 790 // recounting everything, but it's very confusing, and this is rarely 791 // executed.) 792 unsigned OrigBBSize = 0; 793 for (MachineBasicBlock::iterator I = OrigBB->begin(), E = OrigBB->end(); 794 I != E; ++I) 795 OrigBBSize += TII->GetInstSizeInBytes(I); 796 BBSizes[OrigBBI] = OrigBBSize; 797 798 // ...and adjust BBOffsets for NewBB accordingly. 799 BBOffsets[NewBBI] = BBOffsets[OrigBBI] + BBSizes[OrigBBI]; 800 801 // Figure out how large the NewMBB is. As the second half of the original 802 // block, it may contain a tablejump. 803 unsigned NewBBSize = 0; 804 for (MachineBasicBlock::iterator I = NewBB->begin(), E = NewBB->end(); 805 I != E; ++I) 806 NewBBSize += TII->GetInstSizeInBytes(I); 807 // Set the size of NewBB in BBSizes. It does not include any padding now. 808 BBSizes[NewBBI] = NewBBSize; 809 810 MachineInstr* ThumbJTMI = prior(NewBB->end()); 811 if (ThumbJTMI->getOpcode() == ARM::tBR_JTr) { 812 // We've added another 2-byte instruction before this tablejump, which 813 // means we will always need padding if we didn't before, and vice versa. 814 815 // The original offset of the jump instruction was: 816 unsigned OrigOffset = BBOffsets[OrigBBI] + BBSizes[OrigBBI] - delta; 817 if (OrigOffset%4 == 0) { 818 // We had padding before and now we don't. No net change in code size. 819 delta = 0; 820 } else { 821 // We didn't have padding before and now we do. 822 BBSizes[NewBBI] += 2; 823 delta = 4; 824 } 825 } 826 827 // All BBOffsets following these blocks must be modified. 828 if (delta) 829 AdjustBBOffsetsAfter(NewBB, delta); 830 831 return NewBB; 832} 833 834/// OffsetIsInRange - Checks whether UserOffset (the location of a constant pool 835/// reference) is within MaxDisp of TrialOffset (a proposed location of a 836/// constant pool entry). 837bool ARMConstantIslands::OffsetIsInRange(unsigned UserOffset, 838 unsigned TrialOffset, unsigned MaxDisp, 839 bool NegativeOK, bool IsSoImm) { 840 // On Thumb offsets==2 mod 4 are rounded down by the hardware for 841 // purposes of the displacement computation; compensate for that here. 842 // Effectively, the valid range of displacements is 2 bytes smaller for such 843 // references. 844 unsigned TotalAdj = 0; 845 if (isThumb && UserOffset%4 !=0) { 846 UserOffset -= 2; 847 TotalAdj = 2; 848 } 849 // CPEs will be rounded up to a multiple of 4. 850 if (isThumb && TrialOffset%4 != 0) { 851 TrialOffset += 2; 852 TotalAdj += 2; 853 } 854 855 // In Thumb2 mode, later branch adjustments can shift instructions up and 856 // cause alignment change. In the worst case scenario this can cause the 857 // user's effective address to be subtracted by 2 and the CPE's address to 858 // be plus 2. 859 if (isThumb2 && TotalAdj != 4) 860 MaxDisp -= (4 - TotalAdj); 861 862 if (UserOffset <= TrialOffset) { 863 // User before the Trial. 864 if (TrialOffset - UserOffset <= MaxDisp) 865 return true; 866 // FIXME: Make use full range of soimm values. 867 } else if (NegativeOK) { 868 if (UserOffset - TrialOffset <= MaxDisp) 869 return true; 870 // FIXME: Make use full range of soimm values. 871 } 872 return false; 873} 874 875/// WaterIsInRange - Returns true if a CPE placed after the specified 876/// Water (a basic block) will be in range for the specific MI. 877 878bool ARMConstantIslands::WaterIsInRange(unsigned UserOffset, 879 MachineBasicBlock* Water, CPUser &U) { 880 unsigned MaxDisp = U.MaxDisp; 881 unsigned CPEOffset = BBOffsets[Water->getNumber()] + 882 BBSizes[Water->getNumber()]; 883 884 // If the CPE is to be inserted before the instruction, that will raise 885 // the offset of the instruction. 886 if (CPEOffset < UserOffset) 887 UserOffset += U.CPEMI->getOperand(2).getImm(); 888 889 return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, U.NegOk, U.IsSoImm); 890} 891 892/// CPEIsInRange - Returns true if the distance between specific MI and 893/// specific ConstPool entry instruction can fit in MI's displacement field. 894bool ARMConstantIslands::CPEIsInRange(MachineInstr *MI, unsigned UserOffset, 895 MachineInstr *CPEMI, unsigned MaxDisp, 896 bool NegOk, bool DoDump) { 897 unsigned CPEOffset = GetOffsetOf(CPEMI); 898 assert((CPEOffset%4 == 0 || HasInlineAsm) && "Misaligned CPE"); 899 900 if (DoDump) { 901 DEBUG(errs() << "User of CPE#" << CPEMI->getOperand(0).getImm() 902 << " max delta=" << MaxDisp 903 << " insn address=" << UserOffset 904 << " CPE address=" << CPEOffset 905 << " offset=" << int(CPEOffset-UserOffset) << "\t" << *MI); 906 } 907 908 return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, NegOk); 909} 910 911#ifndef NDEBUG 912/// BBIsJumpedOver - Return true of the specified basic block's only predecessor 913/// unconditionally branches to its only successor. 914static bool BBIsJumpedOver(MachineBasicBlock *MBB) { 915 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 916 return false; 917 918 MachineBasicBlock *Succ = *MBB->succ_begin(); 919 MachineBasicBlock *Pred = *MBB->pred_begin(); 920 MachineInstr *PredMI = &Pred->back(); 921 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB 922 || PredMI->getOpcode() == ARM::t2B) 923 return PredMI->getOperand(0).getMBB() == Succ; 924 return false; 925} 926#endif // NDEBUG 927 928void ARMConstantIslands::AdjustBBOffsetsAfter(MachineBasicBlock *BB, 929 int delta) { 930 MachineFunction::iterator MBBI = BB; MBBI = llvm::next(MBBI); 931 for(unsigned i = BB->getNumber()+1, e = BB->getParent()->getNumBlockIDs(); 932 i < e; ++i) { 933 BBOffsets[i] += delta; 934 // If some existing blocks have padding, adjust the padding as needed, a 935 // bit tricky. delta can be negative so don't use % on that. 936 if (!isThumb) 937 continue; 938 MachineBasicBlock *MBB = MBBI; 939 if (!MBB->empty() && !HasInlineAsm) { 940 // Constant pool entries require padding. 941 if (MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) { 942 unsigned OldOffset = BBOffsets[i] - delta; 943 if ((OldOffset%4) == 0 && (BBOffsets[i]%4) != 0) { 944 // add new padding 945 BBSizes[i] += 2; 946 delta += 2; 947 } else if ((OldOffset%4) != 0 && (BBOffsets[i]%4) == 0) { 948 // remove existing padding 949 BBSizes[i] -= 2; 950 delta -= 2; 951 } 952 } 953 // Thumb1 jump tables require padding. They should be at the end; 954 // following unconditional branches are removed by AnalyzeBranch. 955 // tBR_JTr expands to a mov pc followed by .align 2 and then the jump 956 // table entries. So this code checks whether offset of tBR_JTr 957 // is aligned; if it is, the offset of the jump table following the 958 // instruction will not be aligned, and we need padding. 959 MachineInstr *ThumbJTMI = prior(MBB->end()); 960 if (ThumbJTMI->getOpcode() == ARM::tBR_JTr) { 961 unsigned NewMIOffset = GetOffsetOf(ThumbJTMI); 962 unsigned OldMIOffset = NewMIOffset - delta; 963 if ((OldMIOffset%4) == 0 && (NewMIOffset%4) != 0) { 964 // remove existing padding 965 BBSizes[i] -= 2; 966 delta -= 2; 967 } else if ((OldMIOffset%4) != 0 && (NewMIOffset%4) == 0) { 968 // add new padding 969 BBSizes[i] += 2; 970 delta += 2; 971 } 972 } 973 if (delta==0) 974 return; 975 } 976 MBBI = llvm::next(MBBI); 977 } 978} 979 980/// DecrementOldEntry - find the constant pool entry with index CPI 981/// and instruction CPEMI, and decrement its refcount. If the refcount 982/// becomes 0 remove the entry and instruction. Returns true if we removed 983/// the entry, false if we didn't. 984 985bool ARMConstantIslands::DecrementOldEntry(unsigned CPI, MachineInstr *CPEMI) { 986 // Find the old entry. Eliminate it if it is no longer used. 987 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 988 assert(CPE && "Unexpected!"); 989 if (--CPE->RefCount == 0) { 990 RemoveDeadCPEMI(CPEMI); 991 CPE->CPEMI = NULL; 992 --NumCPEs; 993 return true; 994 } 995 return false; 996} 997 998/// LookForCPEntryInRange - see if the currently referenced CPE is in range; 999/// if not, see if an in-range clone of the CPE is in range, and if so, 1000/// change the data structures so the user references the clone. Returns: 1001/// 0 = no existing entry found 1002/// 1 = entry found, and there were no code insertions or deletions 1003/// 2 = entry found, and there were code insertions or deletions 1004int ARMConstantIslands::LookForExistingCPEntry(CPUser& U, unsigned UserOffset) 1005{ 1006 MachineInstr *UserMI = U.MI; 1007 MachineInstr *CPEMI = U.CPEMI; 1008 1009 // Check to see if the CPE is already in-range. 1010 if (CPEIsInRange(UserMI, UserOffset, CPEMI, U.MaxDisp, U.NegOk, true)) { 1011 DEBUG(errs() << "In range\n"); 1012 return 1; 1013 } 1014 1015 // No. Look for previously created clones of the CPE that are in range. 1016 unsigned CPI = CPEMI->getOperand(1).getIndex(); 1017 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 1018 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 1019 // We already tried this one 1020 if (CPEs[i].CPEMI == CPEMI) 1021 continue; 1022 // Removing CPEs can leave empty entries, skip 1023 if (CPEs[i].CPEMI == NULL) 1024 continue; 1025 if (CPEIsInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.MaxDisp, U.NegOk)) { 1026 DEBUG(errs() << "Replacing CPE#" << CPI << " with CPE#" 1027 << CPEs[i].CPI << "\n"); 1028 // Point the CPUser node to the replacement 1029 U.CPEMI = CPEs[i].CPEMI; 1030 // Change the CPI in the instruction operand to refer to the clone. 1031 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) 1032 if (UserMI->getOperand(j).isCPI()) { 1033 UserMI->getOperand(j).setIndex(CPEs[i].CPI); 1034 break; 1035 } 1036 // Adjust the refcount of the clone... 1037 CPEs[i].RefCount++; 1038 // ...and the original. If we didn't remove the old entry, none of the 1039 // addresses changed, so we don't need another pass. 1040 return DecrementOldEntry(CPI, CPEMI) ? 2 : 1; 1041 } 1042 } 1043 return 0; 1044} 1045 1046/// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 1047/// the specific unconditional branch instruction. 1048static inline unsigned getUnconditionalBrDisp(int Opc) { 1049 switch (Opc) { 1050 case ARM::tB: 1051 return ((1<<10)-1)*2; 1052 case ARM::t2B: 1053 return ((1<<23)-1)*2; 1054 default: 1055 break; 1056 } 1057 1058 return ((1<<23)-1)*4; 1059} 1060 1061/// LookForWater - Look for an existing entry in the WaterList in which 1062/// we can place the CPE referenced from U so it's within range of U's MI. 1063/// Returns true if found, false if not. If it returns true, WaterIter 1064/// is set to the WaterList entry. For Thumb, prefer water that will not 1065/// introduce padding to water that will. To ensure that this pass 1066/// terminates, the CPE location for a particular CPUser is only allowed to 1067/// move to a lower address, so search backward from the end of the list and 1068/// prefer the first water that is in range. 1069bool ARMConstantIslands::LookForWater(CPUser &U, unsigned UserOffset, 1070 water_iterator &WaterIter) { 1071 if (WaterList.empty()) 1072 return false; 1073 1074 bool FoundWaterThatWouldPad = false; 1075 water_iterator IPThatWouldPad; 1076 for (water_iterator IP = prior(WaterList.end()), 1077 B = WaterList.begin();; --IP) { 1078 MachineBasicBlock* WaterBB = *IP; 1079 // Check if water is in range and is either at a lower address than the 1080 // current "high water mark" or a new water block that was created since 1081 // the previous iteration by inserting an unconditional branch. In the 1082 // latter case, we want to allow resetting the high water mark back to 1083 // this new water since we haven't seen it before. Inserting branches 1084 // should be relatively uncommon and when it does happen, we want to be 1085 // sure to take advantage of it for all the CPEs near that block, so that 1086 // we don't insert more branches than necessary. 1087 if (WaterIsInRange(UserOffset, WaterBB, U) && 1088 (WaterBB->getNumber() < U.HighWaterMark->getNumber() || 1089 NewWaterList.count(WaterBB))) { 1090 unsigned WBBId = WaterBB->getNumber(); 1091 if (isThumb && 1092 (BBOffsets[WBBId] + BBSizes[WBBId])%4 != 0) { 1093 // This is valid Water, but would introduce padding. Remember 1094 // it in case we don't find any Water that doesn't do this. 1095 if (!FoundWaterThatWouldPad) { 1096 FoundWaterThatWouldPad = true; 1097 IPThatWouldPad = IP; 1098 } 1099 } else { 1100 WaterIter = IP; 1101 return true; 1102 } 1103 } 1104 if (IP == B) 1105 break; 1106 } 1107 if (FoundWaterThatWouldPad) { 1108 WaterIter = IPThatWouldPad; 1109 return true; 1110 } 1111 return false; 1112} 1113 1114/// CreateNewWater - No existing WaterList entry will work for 1115/// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 1116/// block is used if in range, and the conditional branch munged so control 1117/// flow is correct. Otherwise the block is split to create a hole with an 1118/// unconditional branch around it. In either case NewMBB is set to a 1119/// block following which the new island can be inserted (the WaterList 1120/// is not adjusted). 1121void ARMConstantIslands::CreateNewWater(unsigned CPUserIndex, 1122 unsigned UserOffset, 1123 MachineBasicBlock *&NewMBB) { 1124 CPUser &U = CPUsers[CPUserIndex]; 1125 MachineInstr *UserMI = U.MI; 1126 MachineInstr *CPEMI = U.CPEMI; 1127 MachineBasicBlock *UserMBB = UserMI->getParent(); 1128 unsigned OffsetOfNextBlock = BBOffsets[UserMBB->getNumber()] + 1129 BBSizes[UserMBB->getNumber()]; 1130 assert(OffsetOfNextBlock== BBOffsets[UserMBB->getNumber()+1]); 1131 1132 // If the block does not end in an unconditional branch already, and if the 1133 // end of the block is within range, make new water there. (The addition 1134 // below is for the unconditional branch we will be adding: 4 bytes on ARM + 1135 // Thumb2, 2 on Thumb1. Possible Thumb1 alignment padding is allowed for 1136 // inside OffsetIsInRange. 1137 if (BBHasFallthrough(UserMBB) && 1138 OffsetIsInRange(UserOffset, OffsetOfNextBlock + (isThumb1 ? 2: 4), 1139 U.MaxDisp, U.NegOk, U.IsSoImm)) { 1140 DEBUG(errs() << "Split at end of block\n"); 1141 if (&UserMBB->back() == UserMI) 1142 assert(BBHasFallthrough(UserMBB) && "Expected a fallthrough BB!"); 1143 NewMBB = llvm::next(MachineFunction::iterator(UserMBB)); 1144 // Add an unconditional branch from UserMBB to fallthrough block. 1145 // Record it for branch lengthening; this new branch will not get out of 1146 // range, but if the preceding conditional branch is out of range, the 1147 // targets will be exchanged, and the altered branch may be out of 1148 // range, so the machinery has to know about it. 1149 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B; 1150 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB); 1151 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 1152 ImmBranches.push_back(ImmBranch(&UserMBB->back(), 1153 MaxDisp, false, UncondBr)); 1154 int delta = isThumb1 ? 2 : 4; 1155 BBSizes[UserMBB->getNumber()] += delta; 1156 AdjustBBOffsetsAfter(UserMBB, delta); 1157 } else { 1158 // What a big block. Find a place within the block to split it. 1159 // This is a little tricky on Thumb1 since instructions are 2 bytes 1160 // and constant pool entries are 4 bytes: if instruction I references 1161 // island CPE, and instruction I+1 references CPE', it will 1162 // not work well to put CPE as far forward as possible, since then 1163 // CPE' cannot immediately follow it (that location is 2 bytes 1164 // farther away from I+1 than CPE was from I) and we'd need to create 1165 // a new island. So, we make a first guess, then walk through the 1166 // instructions between the one currently being looked at and the 1167 // possible insertion point, and make sure any other instructions 1168 // that reference CPEs will be able to use the same island area; 1169 // if not, we back up the insertion point. 1170 1171 // The 4 in the following is for the unconditional branch we'll be 1172 // inserting (allows for long branch on Thumb1). Alignment of the 1173 // island is handled inside OffsetIsInRange. 1174 unsigned BaseInsertOffset = UserOffset + U.MaxDisp -4; 1175 // This could point off the end of the block if we've already got 1176 // constant pool entries following this block; only the last one is 1177 // in the water list. Back past any possible branches (allow for a 1178 // conditional and a maximally long unconditional). 1179 if (BaseInsertOffset >= BBOffsets[UserMBB->getNumber()+1]) 1180 BaseInsertOffset = BBOffsets[UserMBB->getNumber()+1] - 1181 (isThumb1 ? 6 : 8); 1182 unsigned EndInsertOffset = BaseInsertOffset + 1183 CPEMI->getOperand(2).getImm(); 1184 MachineBasicBlock::iterator MI = UserMI; 1185 ++MI; 1186 unsigned CPUIndex = CPUserIndex+1; 1187 unsigned NumCPUsers = CPUsers.size(); 1188 MachineInstr *LastIT = 0; 1189 for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI); 1190 Offset < BaseInsertOffset; 1191 Offset += TII->GetInstSizeInBytes(MI), 1192 MI = llvm::next(MI)) { 1193 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) { 1194 CPUser &U = CPUsers[CPUIndex]; 1195 if (!OffsetIsInRange(Offset, EndInsertOffset, 1196 U.MaxDisp, U.NegOk, U.IsSoImm)) { 1197 BaseInsertOffset -= (isThumb1 ? 2 : 4); 1198 EndInsertOffset -= (isThumb1 ? 2 : 4); 1199 } 1200 // This is overly conservative, as we don't account for CPEMIs 1201 // being reused within the block, but it doesn't matter much. 1202 EndInsertOffset += CPUsers[CPUIndex].CPEMI->getOperand(2).getImm(); 1203 CPUIndex++; 1204 } 1205 1206 // Remember the last IT instruction. 1207 if (MI->getOpcode() == ARM::t2IT) 1208 LastIT = MI; 1209 } 1210 1211 DEBUG(errs() << "Split in middle of big block\n"); 1212 --MI; 1213 1214 // Avoid splitting an IT block. 1215 if (LastIT) { 1216 unsigned PredReg = 0; 1217 ARMCC::CondCodes CC = llvm::getITInstrPredicate(MI, PredReg); 1218 if (CC != ARMCC::AL) 1219 MI = LastIT; 1220 } 1221 NewMBB = SplitBlockBeforeInstr(MI); 1222 } 1223} 1224 1225/// HandleConstantPoolUser - Analyze the specified user, checking to see if it 1226/// is out-of-range. If so, pick up the constant pool value and move it some 1227/// place in-range. Return true if we changed any addresses (thus must run 1228/// another pass of branch lengthening), false otherwise. 1229bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction &MF, 1230 unsigned CPUserIndex) { 1231 CPUser &U = CPUsers[CPUserIndex]; 1232 MachineInstr *UserMI = U.MI; 1233 MachineInstr *CPEMI = U.CPEMI; 1234 unsigned CPI = CPEMI->getOperand(1).getIndex(); 1235 unsigned Size = CPEMI->getOperand(2).getImm(); 1236 // Compute this only once, it's expensive. The 4 or 8 is the value the 1237 // hardware keeps in the PC. 1238 unsigned UserOffset = GetOffsetOf(UserMI) + (isThumb ? 4 : 8); 1239 1240 // See if the current entry is within range, or there is a clone of it 1241 // in range. 1242 int result = LookForExistingCPEntry(U, UserOffset); 1243 if (result==1) return false; 1244 else if (result==2) return true; 1245 1246 // No existing clone of this CPE is within range. 1247 // We will be generating a new clone. Get a UID for it. 1248 unsigned ID = AFI->createConstPoolEntryUId(); 1249 1250 // Look for water where we can place this CPE. 1251 MachineBasicBlock *NewIsland = MF.CreateMachineBasicBlock(); 1252 MachineBasicBlock *NewMBB; 1253 water_iterator IP; 1254 if (LookForWater(U, UserOffset, IP)) { 1255 DEBUG(errs() << "found water in range\n"); 1256 MachineBasicBlock *WaterBB = *IP; 1257 1258 // If the original WaterList entry was "new water" on this iteration, 1259 // propagate that to the new island. This is just keeping NewWaterList 1260 // updated to match the WaterList, which will be updated below. 1261 if (NewWaterList.count(WaterBB)) { 1262 NewWaterList.erase(WaterBB); 1263 NewWaterList.insert(NewIsland); 1264 } 1265 // The new CPE goes before the following block (NewMBB). 1266 NewMBB = llvm::next(MachineFunction::iterator(WaterBB)); 1267 1268 } else { 1269 // No water found. 1270 DEBUG(errs() << "No water found\n"); 1271 CreateNewWater(CPUserIndex, UserOffset, NewMBB); 1272 1273 // SplitBlockBeforeInstr adds to WaterList, which is important when it is 1274 // called while handling branches so that the water will be seen on the 1275 // next iteration for constant pools, but in this context, we don't want 1276 // it. Check for this so it will be removed from the WaterList. 1277 // Also remove any entry from NewWaterList. 1278 MachineBasicBlock *WaterBB = prior(MachineFunction::iterator(NewMBB)); 1279 IP = std::find(WaterList.begin(), WaterList.end(), WaterBB); 1280 if (IP != WaterList.end()) 1281 NewWaterList.erase(WaterBB); 1282 1283 // We are adding new water. Update NewWaterList. 1284 NewWaterList.insert(NewIsland); 1285 } 1286 1287 // Remove the original WaterList entry; we want subsequent insertions in 1288 // this vicinity to go after the one we're about to insert. This 1289 // considerably reduces the number of times we have to move the same CPE 1290 // more than once and is also important to ensure the algorithm terminates. 1291 if (IP != WaterList.end()) 1292 WaterList.erase(IP); 1293 1294 // Okay, we know we can put an island before NewMBB now, do it! 1295 MF.insert(NewMBB, NewIsland); 1296 1297 // Update internal data structures to account for the newly inserted MBB. 1298 UpdateForInsertedWaterBlock(NewIsland); 1299 1300 // Decrement the old entry, and remove it if refcount becomes 0. 1301 DecrementOldEntry(CPI, CPEMI); 1302 1303 // Now that we have an island to add the CPE to, clone the original CPE and 1304 // add it to the island. 1305 U.HighWaterMark = NewIsland; 1306 U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 1307 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size); 1308 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1309 ++NumCPEs; 1310 1311 BBOffsets[NewIsland->getNumber()] = BBOffsets[NewMBB->getNumber()]; 1312 // Compensate for .align 2 in thumb mode. 1313 if (isThumb && (BBOffsets[NewIsland->getNumber()]%4 != 0 || HasInlineAsm)) 1314 Size += 2; 1315 // Increase the size of the island block to account for the new entry. 1316 BBSizes[NewIsland->getNumber()] += Size; 1317 AdjustBBOffsetsAfter(NewIsland, Size); 1318 1319 // Finally, change the CPI in the instruction operand to be ID. 1320 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) 1321 if (UserMI->getOperand(i).isCPI()) { 1322 UserMI->getOperand(i).setIndex(ID); 1323 break; 1324 } 1325 1326 DEBUG(errs() << " Moved CPE to #" << ID << " CPI=" << CPI 1327 << '\t' << *UserMI); 1328 1329 return true; 1330} 1331 1332/// RemoveDeadCPEMI - Remove a dead constant pool entry instruction. Update 1333/// sizes and offsets of impacted basic blocks. 1334void ARMConstantIslands::RemoveDeadCPEMI(MachineInstr *CPEMI) { 1335 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1336 unsigned Size = CPEMI->getOperand(2).getImm(); 1337 CPEMI->eraseFromParent(); 1338 BBSizes[CPEBB->getNumber()] -= Size; 1339 // All succeeding offsets have the current size value added in, fix this. 1340 if (CPEBB->empty()) { 1341 // In thumb1 mode, the size of island may be padded by two to compensate for 1342 // the alignment requirement. Then it will now be 2 when the block is 1343 // empty, so fix this. 1344 // All succeeding offsets have the current size value added in, fix this. 1345 if (BBSizes[CPEBB->getNumber()] != 0) { 1346 Size += BBSizes[CPEBB->getNumber()]; 1347 BBSizes[CPEBB->getNumber()] = 0; 1348 } 1349 } 1350 AdjustBBOffsetsAfter(CPEBB, -Size); 1351 // An island has only one predecessor BB and one successor BB. Check if 1352 // this BB's predecessor jumps directly to this BB's successor. This 1353 // shouldn't happen currently. 1354 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); 1355 // FIXME: remove the empty blocks after all the work is done? 1356} 1357 1358/// RemoveUnusedCPEntries - Remove constant pool entries whose refcounts 1359/// are zero. 1360bool ARMConstantIslands::RemoveUnusedCPEntries() { 1361 unsigned MadeChange = false; 1362 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 1363 std::vector<CPEntry> &CPEs = CPEntries[i]; 1364 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { 1365 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { 1366 RemoveDeadCPEMI(CPEs[j].CPEMI); 1367 CPEs[j].CPEMI = NULL; 1368 MadeChange = true; 1369 } 1370 } 1371 } 1372 return MadeChange; 1373} 1374 1375/// BBIsInRange - Returns true if the distance between specific MI and 1376/// specific BB can fit in MI's displacement field. 1377bool ARMConstantIslands::BBIsInRange(MachineInstr *MI,MachineBasicBlock *DestBB, 1378 unsigned MaxDisp) { 1379 unsigned PCAdj = isThumb ? 4 : 8; 1380 unsigned BrOffset = GetOffsetOf(MI) + PCAdj; 1381 unsigned DestOffset = BBOffsets[DestBB->getNumber()]; 1382 1383 DEBUG(errs() << "Branch of destination BB#" << DestBB->getNumber() 1384 << " from BB#" << MI->getParent()->getNumber() 1385 << " max delta=" << MaxDisp 1386 << " from " << GetOffsetOf(MI) << " to " << DestOffset 1387 << " offset " << int(DestOffset-BrOffset) << "\t" << *MI); 1388 1389 if (BrOffset <= DestOffset) { 1390 // Branch before the Dest. 1391 if (DestOffset-BrOffset <= MaxDisp) 1392 return true; 1393 } else { 1394 if (BrOffset-DestOffset <= MaxDisp) 1395 return true; 1396 } 1397 return false; 1398} 1399 1400/// FixUpImmediateBr - Fix up an immediate branch whose destination is too far 1401/// away to fit in its displacement field. 1402bool ARMConstantIslands::FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br) { 1403 MachineInstr *MI = Br.MI; 1404 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1405 1406 // Check to see if the DestBB is already in-range. 1407 if (BBIsInRange(MI, DestBB, Br.MaxDisp)) 1408 return false; 1409 1410 if (!Br.isCond) 1411 return FixUpUnconditionalBr(MF, Br); 1412 return FixUpConditionalBr(MF, Br); 1413} 1414 1415/// FixUpUnconditionalBr - Fix up an unconditional branch whose destination is 1416/// too far away to fit in its displacement field. If the LR register has been 1417/// spilled in the epilogue, then we can use BL to implement a far jump. 1418/// Otherwise, add an intermediate branch instruction to a branch. 1419bool 1420ARMConstantIslands::FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br) { 1421 MachineInstr *MI = Br.MI; 1422 MachineBasicBlock *MBB = MI->getParent(); 1423 if (!isThumb1) 1424 llvm_unreachable("FixUpUnconditionalBr is Thumb1 only!"); 1425 1426 // Use BL to implement far jump. 1427 Br.MaxDisp = (1 << 21) * 2; 1428 MI->setDesc(TII->get(ARM::tBfar)); 1429 BBSizes[MBB->getNumber()] += 2; 1430 AdjustBBOffsetsAfter(MBB, 2); 1431 HasFarJump = true; 1432 ++NumUBrFixed; 1433 1434 DEBUG(errs() << " Changed B to long jump " << *MI); 1435 1436 return true; 1437} 1438 1439/// FixUpConditionalBr - Fix up a conditional branch whose destination is too 1440/// far away to fit in its displacement field. It is converted to an inverse 1441/// conditional branch + an unconditional branch to the destination. 1442bool 1443ARMConstantIslands::FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br) { 1444 MachineInstr *MI = Br.MI; 1445 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1446 1447 // Add an unconditional branch to the destination and invert the branch 1448 // condition to jump over it: 1449 // blt L1 1450 // => 1451 // bge L2 1452 // b L1 1453 // L2: 1454 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm(); 1455 CC = ARMCC::getOppositeCondition(CC); 1456 unsigned CCReg = MI->getOperand(2).getReg(); 1457 1458 // If the branch is at the end of its MBB and that has a fall-through block, 1459 // direct the updated conditional branch to the fall-through block. Otherwise, 1460 // split the MBB before the next instruction. 1461 MachineBasicBlock *MBB = MI->getParent(); 1462 MachineInstr *BMI = &MBB->back(); 1463 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); 1464 1465 ++NumCBrFixed; 1466 if (BMI != MI) { 1467 if (llvm::next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) && 1468 BMI->getOpcode() == Br.UncondBr) { 1469 // Last MI in the BB is an unconditional branch. Can we simply invert the 1470 // condition and swap destinations: 1471 // beq L1 1472 // b L2 1473 // => 1474 // bne L2 1475 // b L1 1476 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); 1477 if (BBIsInRange(MI, NewDest, Br.MaxDisp)) { 1478 DEBUG(errs() << " Invert Bcc condition and swap its destination with " 1479 << *BMI); 1480 BMI->getOperand(0).setMBB(DestBB); 1481 MI->getOperand(0).setMBB(NewDest); 1482 MI->getOperand(1).setImm(CC); 1483 return true; 1484 } 1485 } 1486 } 1487 1488 if (NeedSplit) { 1489 SplitBlockBeforeInstr(MI); 1490 // No need for the branch to the next block. We're adding an unconditional 1491 // branch to the destination. 1492 int delta = TII->GetInstSizeInBytes(&MBB->back()); 1493 BBSizes[MBB->getNumber()] -= delta; 1494 MachineBasicBlock* SplitBB = llvm::next(MachineFunction::iterator(MBB)); 1495 AdjustBBOffsetsAfter(SplitBB, -delta); 1496 MBB->back().eraseFromParent(); 1497 // BBOffsets[SplitBB] is wrong temporarily, fixed below 1498 } 1499 MachineBasicBlock *NextBB = llvm::next(MachineFunction::iterator(MBB)); 1500 1501 DEBUG(errs() << " Insert B to BB#" << DestBB->getNumber() 1502 << " also invert condition and change dest. to BB#" 1503 << NextBB->getNumber() << "\n"); 1504 1505 // Insert a new conditional branch and a new unconditional branch. 1506 // Also update the ImmBranch as well as adding a new entry for the new branch. 1507 BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode())) 1508 .addMBB(NextBB).addImm(CC).addReg(CCReg); 1509 Br.MI = &MBB->back(); 1510 BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back()); 1511 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); 1512 BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back()); 1513 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1514 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1515 1516 // Remove the old conditional branch. It may or may not still be in MBB. 1517 BBSizes[MI->getParent()->getNumber()] -= TII->GetInstSizeInBytes(MI); 1518 MI->eraseFromParent(); 1519 1520 // The net size change is an addition of one unconditional branch. 1521 int delta = TII->GetInstSizeInBytes(&MBB->back()); 1522 AdjustBBOffsetsAfter(MBB, delta); 1523 return true; 1524} 1525 1526/// UndoLRSpillRestore - Remove Thumb push / pop instructions that only spills 1527/// LR / restores LR to pc. FIXME: This is done here because it's only possible 1528/// to do this if tBfar is not used. 1529bool ARMConstantIslands::UndoLRSpillRestore() { 1530 bool MadeChange = false; 1531 for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) { 1532 MachineInstr *MI = PushPopMIs[i]; 1533 // First two operands are predicates. 1534 if (MI->getOpcode() == ARM::tPOP_RET && 1535 MI->getOperand(2).getReg() == ARM::PC && 1536 MI->getNumExplicitOperands() == 3) { 1537 BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET)); 1538 MI->eraseFromParent(); 1539 MadeChange = true; 1540 } 1541 } 1542 return MadeChange; 1543} 1544 1545bool ARMConstantIslands::OptimizeThumb2Instructions(MachineFunction &MF) { 1546 bool MadeChange = false; 1547 1548 // Shrink ADR and LDR from constantpool. 1549 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 1550 CPUser &U = CPUsers[i]; 1551 unsigned Opcode = U.MI->getOpcode(); 1552 unsigned NewOpc = 0; 1553 unsigned Scale = 1; 1554 unsigned Bits = 0; 1555 switch (Opcode) { 1556 default: break; 1557 case ARM::t2LEApcrel: 1558 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1559 NewOpc = ARM::tLEApcrel; 1560 Bits = 8; 1561 Scale = 4; 1562 } 1563 break; 1564 case ARM::t2LDRpci: 1565 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1566 NewOpc = ARM::tLDRpci; 1567 Bits = 8; 1568 Scale = 4; 1569 } 1570 break; 1571 } 1572 1573 if (!NewOpc) 1574 continue; 1575 1576 unsigned UserOffset = GetOffsetOf(U.MI) + 4; 1577 unsigned MaxOffs = ((1 << Bits) - 1) * Scale; 1578 // FIXME: Check if offset is multiple of scale if scale is not 4. 1579 if (CPEIsInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) { 1580 U.MI->setDesc(TII->get(NewOpc)); 1581 MachineBasicBlock *MBB = U.MI->getParent(); 1582 BBSizes[MBB->getNumber()] -= 2; 1583 AdjustBBOffsetsAfter(MBB, -2); 1584 ++NumT2CPShrunk; 1585 MadeChange = true; 1586 } 1587 } 1588 1589 MadeChange |= OptimizeThumb2Branches(MF); 1590 MadeChange |= OptimizeThumb2JumpTables(MF); 1591 return MadeChange; 1592} 1593 1594bool ARMConstantIslands::OptimizeThumb2Branches(MachineFunction &MF) { 1595 bool MadeChange = false; 1596 1597 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) { 1598 ImmBranch &Br = ImmBranches[i]; 1599 unsigned Opcode = Br.MI->getOpcode(); 1600 unsigned NewOpc = 0; 1601 unsigned Scale = 1; 1602 unsigned Bits = 0; 1603 switch (Opcode) { 1604 default: break; 1605 case ARM::t2B: 1606 NewOpc = ARM::tB; 1607 Bits = 11; 1608 Scale = 2; 1609 break; 1610 case ARM::t2Bcc: { 1611 NewOpc = ARM::tBcc; 1612 Bits = 8; 1613 Scale = 2; 1614 break; 1615 } 1616 } 1617 if (NewOpc) { 1618 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 1619 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1620 if (BBIsInRange(Br.MI, DestBB, MaxOffs)) { 1621 Br.MI->setDesc(TII->get(NewOpc)); 1622 MachineBasicBlock *MBB = Br.MI->getParent(); 1623 BBSizes[MBB->getNumber()] -= 2; 1624 AdjustBBOffsetsAfter(MBB, -2); 1625 ++NumT2BrShrunk; 1626 MadeChange = true; 1627 } 1628 } 1629 1630 Opcode = Br.MI->getOpcode(); 1631 if (Opcode != ARM::tBcc) 1632 continue; 1633 1634 NewOpc = 0; 1635 unsigned PredReg = 0; 1636 ARMCC::CondCodes Pred = llvm::getInstrPredicate(Br.MI, PredReg); 1637 if (Pred == ARMCC::EQ) 1638 NewOpc = ARM::tCBZ; 1639 else if (Pred == ARMCC::NE) 1640 NewOpc = ARM::tCBNZ; 1641 if (!NewOpc) 1642 continue; 1643 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1644 // Check if the distance is within 126. Subtract starting offset by 2 1645 // because the cmp will be eliminated. 1646 unsigned BrOffset = GetOffsetOf(Br.MI) + 4 - 2; 1647 unsigned DestOffset = BBOffsets[DestBB->getNumber()]; 1648 if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) { 1649 MachineBasicBlock::iterator CmpMI = Br.MI; --CmpMI; 1650 if (CmpMI->getOpcode() == ARM::tCMPi8) { 1651 unsigned Reg = CmpMI->getOperand(0).getReg(); 1652 Pred = llvm::getInstrPredicate(CmpMI, PredReg); 1653 if (Pred == ARMCC::AL && 1654 CmpMI->getOperand(1).getImm() == 0 && 1655 isARMLowRegister(Reg)) { 1656 MachineBasicBlock *MBB = Br.MI->getParent(); 1657 MachineInstr *NewBR = 1658 BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc)) 1659 .addReg(Reg).addMBB(DestBB, Br.MI->getOperand(0).getTargetFlags()); 1660 CmpMI->eraseFromParent(); 1661 Br.MI->eraseFromParent(); 1662 Br.MI = NewBR; 1663 BBSizes[MBB->getNumber()] -= 2; 1664 AdjustBBOffsetsAfter(MBB, -2); 1665 ++NumCBZ; 1666 MadeChange = true; 1667 } 1668 } 1669 } 1670 } 1671 1672 return MadeChange; 1673} 1674 1675/// OptimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller 1676/// jumptables when it's possible. 1677bool ARMConstantIslands::OptimizeThumb2JumpTables(MachineFunction &MF) { 1678 bool MadeChange = false; 1679 1680 // FIXME: After the tables are shrunk, can we get rid some of the 1681 // constantpool tables? 1682 MachineJumpTableInfo *MJTI = MF.getJumpTableInfo(); 1683 if (MJTI == 0) return false; 1684 1685 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1686 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 1687 MachineInstr *MI = T2JumpTables[i]; 1688 const TargetInstrDesc &TID = MI->getDesc(); 1689 unsigned NumOps = TID.getNumOperands(); 1690 unsigned JTOpIdx = NumOps - (TID.isPredicable() ? 3 : 2); 1691 MachineOperand JTOP = MI->getOperand(JTOpIdx); 1692 unsigned JTI = JTOP.getIndex(); 1693 assert(JTI < JT.size()); 1694 1695 bool ByteOk = true; 1696 bool HalfWordOk = true; 1697 unsigned JTOffset = GetOffsetOf(MI) + 4; 1698 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1699 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 1700 MachineBasicBlock *MBB = JTBBs[j]; 1701 unsigned DstOffset = BBOffsets[MBB->getNumber()]; 1702 // Negative offset is not ok. FIXME: We should change BB layout to make 1703 // sure all the branches are forward. 1704 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2) 1705 ByteOk = false; 1706 unsigned TBHLimit = ((1<<16)-1)*2; 1707 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit) 1708 HalfWordOk = false; 1709 if (!ByteOk && !HalfWordOk) 1710 break; 1711 } 1712 1713 if (ByteOk || HalfWordOk) { 1714 MachineBasicBlock *MBB = MI->getParent(); 1715 unsigned BaseReg = MI->getOperand(0).getReg(); 1716 bool BaseRegKill = MI->getOperand(0).isKill(); 1717 if (!BaseRegKill) 1718 continue; 1719 unsigned IdxReg = MI->getOperand(1).getReg(); 1720 bool IdxRegKill = MI->getOperand(1).isKill(); 1721 1722 // Scan backwards to find the instruction that defines the base 1723 // register. Due to post-RA scheduling, we can't count on it 1724 // immediately preceding the branch instruction. 1725 MachineBasicBlock::iterator PrevI = MI; 1726 MachineBasicBlock::iterator B = MBB->begin(); 1727 while (PrevI != B && !PrevI->definesRegister(BaseReg)) 1728 --PrevI; 1729 1730 // If for some reason we didn't find it, we can't do anything, so 1731 // just skip this one. 1732 if (!PrevI->definesRegister(BaseReg)) 1733 continue; 1734 1735 MachineInstr *AddrMI = PrevI; 1736 bool OptOk = true; 1737 // Examine the instruction that calculates the jumptable entry address. 1738 // Make sure it only defines the base register and kills any uses 1739 // other than the index register. 1740 for (unsigned k = 0, eee = AddrMI->getNumOperands(); k != eee; ++k) { 1741 const MachineOperand &MO = AddrMI->getOperand(k); 1742 if (!MO.isReg() || !MO.getReg()) 1743 continue; 1744 if (MO.isDef() && MO.getReg() != BaseReg) { 1745 OptOk = false; 1746 break; 1747 } 1748 if (MO.isUse() && !MO.isKill() && MO.getReg() != IdxReg) { 1749 OptOk = false; 1750 break; 1751 } 1752 } 1753 if (!OptOk) 1754 continue; 1755 1756 // Now scan back again to find the tLEApcrel or t2LEApcrelJT instruction 1757 // that gave us the initial base register definition. 1758 for (--PrevI; PrevI != B && !PrevI->definesRegister(BaseReg); --PrevI) 1759 ; 1760 1761 // The instruction should be a tLEApcrel or t2LEApcrelJT; we want 1762 // to delete it as well. 1763 MachineInstr *LeaMI = PrevI; 1764 if ((LeaMI->getOpcode() != ARM::tLEApcrelJT && 1765 LeaMI->getOpcode() != ARM::t2LEApcrelJT) || 1766 LeaMI->getOperand(0).getReg() != BaseReg) 1767 OptOk = false; 1768 1769 if (!OptOk) 1770 continue; 1771 1772 unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT; 1773 MachineInstr *NewJTMI = BuildMI(MBB, MI->getDebugLoc(), TII->get(Opc)) 1774 .addReg(IdxReg, getKillRegState(IdxRegKill)) 1775 .addJumpTableIndex(JTI, JTOP.getTargetFlags()) 1776 .addImm(MI->getOperand(JTOpIdx+1).getImm()); 1777 // FIXME: Insert an "ALIGN" instruction to ensure the next instruction 1778 // is 2-byte aligned. For now, asm printer will fix it up. 1779 unsigned NewSize = TII->GetInstSizeInBytes(NewJTMI); 1780 unsigned OrigSize = TII->GetInstSizeInBytes(AddrMI); 1781 OrigSize += TII->GetInstSizeInBytes(LeaMI); 1782 OrigSize += TII->GetInstSizeInBytes(MI); 1783 1784 AddrMI->eraseFromParent(); 1785 LeaMI->eraseFromParent(); 1786 MI->eraseFromParent(); 1787 1788 int delta = OrigSize - NewSize; 1789 BBSizes[MBB->getNumber()] -= delta; 1790 AdjustBBOffsetsAfter(MBB, -delta); 1791 1792 ++NumTBs; 1793 MadeChange = true; 1794 } 1795 } 1796 1797 return MadeChange; 1798} 1799 1800/// ReorderThumb2JumpTables - Adjust the function's block layout to ensure that 1801/// jump tables always branch forwards, since that's what tbb and tbh need. 1802bool ARMConstantIslands::ReorderThumb2JumpTables(MachineFunction &MF) { 1803 bool MadeChange = false; 1804 1805 MachineJumpTableInfo *MJTI = MF.getJumpTableInfo(); 1806 if (MJTI == 0) return false; 1807 1808 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1809 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 1810 MachineInstr *MI = T2JumpTables[i]; 1811 const TargetInstrDesc &TID = MI->getDesc(); 1812 unsigned NumOps = TID.getNumOperands(); 1813 unsigned JTOpIdx = NumOps - (TID.isPredicable() ? 3 : 2); 1814 MachineOperand JTOP = MI->getOperand(JTOpIdx); 1815 unsigned JTI = JTOP.getIndex(); 1816 assert(JTI < JT.size()); 1817 1818 // We prefer if target blocks for the jump table come after the jump 1819 // instruction so we can use TB[BH]. Loop through the target blocks 1820 // and try to adjust them such that that's true. 1821 int JTNumber = MI->getParent()->getNumber(); 1822 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1823 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 1824 MachineBasicBlock *MBB = JTBBs[j]; 1825 int DTNumber = MBB->getNumber(); 1826 1827 if (DTNumber < JTNumber) { 1828 // The destination precedes the switch. Try to move the block forward 1829 // so we have a positive offset. 1830 MachineBasicBlock *NewBB = 1831 AdjustJTTargetBlockForward(MBB, MI->getParent()); 1832 if (NewBB) 1833 MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB); 1834 MadeChange = true; 1835 } 1836 } 1837 } 1838 1839 return MadeChange; 1840} 1841 1842MachineBasicBlock *ARMConstantIslands:: 1843AdjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) 1844{ 1845 MachineFunction &MF = *BB->getParent(); 1846 1847 // If the destination block is terminated by an unconditional branch, 1848 // try to move it; otherwise, create a new block following the jump 1849 // table that branches back to the actual target. This is a very simple 1850 // heuristic. FIXME: We can definitely improve it. 1851 MachineBasicBlock *TBB = 0, *FBB = 0; 1852 SmallVector<MachineOperand, 4> Cond; 1853 SmallVector<MachineOperand, 4> CondPrior; 1854 MachineFunction::iterator BBi = BB; 1855 MachineFunction::iterator OldPrior = prior(BBi); 1856 1857 // If the block terminator isn't analyzable, don't try to move the block 1858 bool B = TII->AnalyzeBranch(*BB, TBB, FBB, Cond); 1859 1860 // If the block ends in an unconditional branch, move it. The prior block 1861 // has to have an analyzable terminator for us to move this one. Be paranoid 1862 // and make sure we're not trying to move the entry block of the function. 1863 if (!B && Cond.empty() && BB != MF.begin() && 1864 !TII->AnalyzeBranch(*OldPrior, TBB, FBB, CondPrior)) { 1865 BB->moveAfter(JTBB); 1866 OldPrior->updateTerminator(); 1867 BB->updateTerminator(); 1868 // Update numbering to account for the block being moved. 1869 MF.RenumberBlocks(); 1870 ++NumJTMoved; 1871 return NULL; 1872 } 1873 1874 // Create a new MBB for the code after the jump BB. 1875 MachineBasicBlock *NewBB = 1876 MF.CreateMachineBasicBlock(JTBB->getBasicBlock()); 1877 MachineFunction::iterator MBBI = JTBB; ++MBBI; 1878 MF.insert(MBBI, NewBB); 1879 1880 // Add an unconditional branch from NewBB to BB. 1881 // There doesn't seem to be meaningful DebugInfo available; this doesn't 1882 // correspond directly to anything in the source. 1883 assert (isThumb2 && "Adjusting for TB[BH] but not in Thumb2?"); 1884 BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)).addMBB(BB); 1885 1886 // Update internal data structures to account for the newly inserted MBB. 1887 MF.RenumberBlocks(NewBB); 1888 1889 // Update the CFG. 1890 NewBB->addSuccessor(BB); 1891 JTBB->removeSuccessor(BB); 1892 JTBB->addSuccessor(NewBB); 1893 1894 ++NumJTInserted; 1895 return NewBB; 1896} 1897