ARMConstantIslandPass.cpp revision 3e572ac2fbdf6aa538500be07b9b050ac008669e
1//===-- ARMConstantIslandPass.cpp - ARM constant islands ------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains a pass that splits the constant pool up into 'islands' 11// which are scattered through-out the function. This is required due to the 12// limited pc-relative displacements that ARM has. 13// 14//===----------------------------------------------------------------------===// 15 16#define DEBUG_TYPE "arm-cp-islands" 17#include "ARM.h" 18#include "ARMMachineFunctionInfo.h" 19#include "ARMInstrInfo.h" 20#include "Thumb2InstrInfo.h" 21#include "MCTargetDesc/ARMAddressingModes.h" 22#include "llvm/CodeGen/MachineConstantPool.h" 23#include "llvm/CodeGen/MachineFunctionPass.h" 24#include "llvm/CodeGen/MachineJumpTableInfo.h" 25#include "llvm/Target/TargetData.h" 26#include "llvm/Target/TargetMachine.h" 27#include "llvm/Support/Debug.h" 28#include "llvm/Support/ErrorHandling.h" 29#include "llvm/Support/raw_ostream.h" 30#include "llvm/ADT/SmallSet.h" 31#include "llvm/ADT/SmallVector.h" 32#include "llvm/ADT/STLExtras.h" 33#include "llvm/ADT/Statistic.h" 34#include "llvm/Support/CommandLine.h" 35#include <algorithm> 36using namespace llvm; 37 38STATISTIC(NumCPEs, "Number of constpool entries"); 39STATISTIC(NumSplit, "Number of uncond branches inserted"); 40STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 41STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 42STATISTIC(NumTBs, "Number of table branches generated"); 43STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk"); 44STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk"); 45STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed"); 46STATISTIC(NumJTMoved, "Number of jump table destination blocks moved"); 47STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted"); 48 49 50static cl::opt<bool> 51AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true), 52 cl::desc("Adjust basic block layout to better use TB[BH]")); 53 54namespace { 55 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM 56 /// requires constant pool entries to be scattered among the instructions 57 /// inside a function. To do this, it completely ignores the normal LLVM 58 /// constant pool; instead, it places constants wherever it feels like with 59 /// special instructions. 60 /// 61 /// The terminology used in this pass includes: 62 /// Islands - Clumps of constants placed in the function. 63 /// Water - Potential places where an island could be formed. 64 /// CPE - A constant pool entry that has been placed somewhere, which 65 /// tracks a list of users. 66 class ARMConstantIslands : public MachineFunctionPass { 67 /// BBSizes - The size of each MachineBasicBlock in bytes of code, indexed 68 /// by MBB Number. The two-byte pads required for Thumb alignment are 69 /// counted as part of the following block (i.e., the offset and size for 70 /// a padded block will both be ==2 mod 4). 71 std::vector<unsigned> BBSizes; 72 73 /// BBOffsets - the offset of each MBB in bytes, starting from 0. 74 /// The two-byte pads required for Thumb alignment are counted as part of 75 /// the following block. 76 std::vector<unsigned> BBOffsets; 77 78 /// WaterList - A sorted list of basic blocks where islands could be placed 79 /// (i.e. blocks that don't fall through to the following block, due 80 /// to a return, unreachable, or unconditional branch). 81 std::vector<MachineBasicBlock*> WaterList; 82 83 /// NewWaterList - The subset of WaterList that was created since the 84 /// previous iteration by inserting unconditional branches. 85 SmallSet<MachineBasicBlock*, 4> NewWaterList; 86 87 typedef std::vector<MachineBasicBlock*>::iterator water_iterator; 88 89 /// CPUser - One user of a constant pool, keeping the machine instruction 90 /// pointer, the constant pool being referenced, and the max displacement 91 /// allowed from the instruction to the CP. The HighWaterMark records the 92 /// highest basic block where a new CPEntry can be placed. To ensure this 93 /// pass terminates, the CP entries are initially placed at the end of the 94 /// function and then move monotonically to lower addresses. The 95 /// exception to this rule is when the current CP entry for a particular 96 /// CPUser is out of range, but there is another CP entry for the same 97 /// constant value in range. We want to use the existing in-range CP 98 /// entry, but if it later moves out of range, the search for new water 99 /// should resume where it left off. The HighWaterMark is used to record 100 /// that point. 101 struct CPUser { 102 MachineInstr *MI; 103 MachineInstr *CPEMI; 104 MachineBasicBlock *HighWaterMark; 105 unsigned MaxDisp; 106 bool NegOk; 107 bool IsSoImm; 108 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, 109 bool neg, bool soimm) 110 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) { 111 HighWaterMark = CPEMI->getParent(); 112 } 113 }; 114 115 /// CPUsers - Keep track of all of the machine instructions that use various 116 /// constant pools and their max displacement. 117 std::vector<CPUser> CPUsers; 118 119 /// CPEntry - One per constant pool entry, keeping the machine instruction 120 /// pointer, the constpool index, and the number of CPUser's which 121 /// reference this entry. 122 struct CPEntry { 123 MachineInstr *CPEMI; 124 unsigned CPI; 125 unsigned RefCount; 126 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) 127 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} 128 }; 129 130 /// CPEntries - Keep track of all of the constant pool entry machine 131 /// instructions. For each original constpool index (i.e. those that 132 /// existed upon entry to this pass), it keeps a vector of entries. 133 /// Original elements are cloned as we go along; the clones are 134 /// put in the vector of the original element, but have distinct CPIs. 135 std::vector<std::vector<CPEntry> > CPEntries; 136 137 /// ImmBranch - One per immediate branch, keeping the machine instruction 138 /// pointer, conditional or unconditional, the max displacement, 139 /// and (if isCond is true) the corresponding unconditional branch 140 /// opcode. 141 struct ImmBranch { 142 MachineInstr *MI; 143 unsigned MaxDisp : 31; 144 bool isCond : 1; 145 int UncondBr; 146 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr) 147 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} 148 }; 149 150 /// ImmBranches - Keep track of all the immediate branch instructions. 151 /// 152 std::vector<ImmBranch> ImmBranches; 153 154 /// PushPopMIs - Keep track of all the Thumb push / pop instructions. 155 /// 156 SmallVector<MachineInstr*, 4> PushPopMIs; 157 158 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions. 159 SmallVector<MachineInstr*, 4> T2JumpTables; 160 161 /// HasFarJump - True if any far jump instruction has been emitted during 162 /// the branch fix up pass. 163 bool HasFarJump; 164 165 /// HasInlineAsm - True if the function contains inline assembly. 166 bool HasInlineAsm; 167 168 const ARMInstrInfo *TII; 169 const ARMSubtarget *STI; 170 ARMFunctionInfo *AFI; 171 bool isThumb; 172 bool isThumb1; 173 bool isThumb2; 174 public: 175 static char ID; 176 ARMConstantIslands() : MachineFunctionPass(ID) {} 177 178 virtual bool runOnMachineFunction(MachineFunction &MF); 179 180 virtual const char *getPassName() const { 181 return "ARM constant island placement and branch shortening pass"; 182 } 183 184 private: 185 void DoInitialPlacement(MachineFunction &MF, 186 std::vector<MachineInstr*> &CPEMIs); 187 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 188 void JumpTableFunctionScan(MachineFunction &MF); 189 void InitialFunctionScan(MachineFunction &MF, 190 const std::vector<MachineInstr*> &CPEMIs); 191 MachineBasicBlock *SplitBlockBeforeInstr(MachineInstr *MI); 192 void UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB); 193 void AdjustBBOffsetsAfter(MachineBasicBlock *BB, int delta); 194 bool DecrementOldEntry(unsigned CPI, MachineInstr* CPEMI); 195 int LookForExistingCPEntry(CPUser& U, unsigned UserOffset); 196 bool LookForWater(CPUser&U, unsigned UserOffset, water_iterator &WaterIter); 197 void CreateNewWater(unsigned CPUserIndex, unsigned UserOffset, 198 MachineBasicBlock *&NewMBB); 199 bool HandleConstantPoolUser(MachineFunction &MF, unsigned CPUserIndex); 200 void RemoveDeadCPEMI(MachineInstr *CPEMI); 201 bool RemoveUnusedCPEntries(); 202 bool CPEIsInRange(MachineInstr *MI, unsigned UserOffset, 203 MachineInstr *CPEMI, unsigned Disp, bool NegOk, 204 bool DoDump = false); 205 bool WaterIsInRange(unsigned UserOffset, MachineBasicBlock *Water, 206 CPUser &U); 207 bool OffsetIsInRange(unsigned UserOffset, unsigned TrialOffset, 208 unsigned Disp, bool NegativeOK, bool IsSoImm = false); 209 bool BBIsInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); 210 bool FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br); 211 bool FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br); 212 bool FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br); 213 bool UndoLRSpillRestore(); 214 bool OptimizeThumb2Instructions(MachineFunction &MF); 215 bool OptimizeThumb2Branches(MachineFunction &MF); 216 bool ReorderThumb2JumpTables(MachineFunction &MF); 217 bool OptimizeThumb2JumpTables(MachineFunction &MF); 218 MachineBasicBlock *AdjustJTTargetBlockForward(MachineBasicBlock *BB, 219 MachineBasicBlock *JTBB); 220 221 unsigned GetOffsetOf(MachineInstr *MI) const; 222 void dumpBBs(); 223 void verify(MachineFunction &MF); 224 }; 225 char ARMConstantIslands::ID = 0; 226} 227 228/// verify - check BBOffsets, BBSizes, alignment of islands 229void ARMConstantIslands::verify(MachineFunction &MF) { 230 assert(BBOffsets.size() == BBSizes.size()); 231 for (unsigned i = 1, e = BBOffsets.size(); i != e; ++i) 232 assert(BBOffsets[i-1]+BBSizes[i-1] == BBOffsets[i]); 233 if (!isThumb) 234 return; 235#ifndef NDEBUG 236 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); 237 MBBI != E; ++MBBI) { 238 MachineBasicBlock *MBB = MBBI; 239 if (!MBB->empty() && 240 MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) { 241 unsigned MBBId = MBB->getNumber(); 242 assert(HasInlineAsm || 243 (BBOffsets[MBBId]%4 == 0 && BBSizes[MBBId]%4 == 0) || 244 (BBOffsets[MBBId]%4 != 0 && BBSizes[MBBId]%4 != 0)); 245 } 246 } 247 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 248 CPUser &U = CPUsers[i]; 249 unsigned UserOffset = GetOffsetOf(U.MI) + (isThumb ? 4 : 8); 250 unsigned CPEOffset = GetOffsetOf(U.CPEMI); 251 unsigned Disp = UserOffset < CPEOffset ? CPEOffset - UserOffset : 252 UserOffset - CPEOffset; 253 assert(Disp <= U.MaxDisp || "Constant pool entry out of range!"); 254 } 255#endif 256} 257 258/// print block size and offset information - debugging 259void ARMConstantIslands::dumpBBs() { 260 for (unsigned J = 0, E = BBOffsets.size(); J !=E; ++J) { 261 DEBUG(errs() << "block " << J << " offset " << BBOffsets[J] 262 << " size " << BBSizes[J] << "\n"); 263 } 264} 265 266/// createARMConstantIslandPass - returns an instance of the constpool 267/// island pass. 268FunctionPass *llvm::createARMConstantIslandPass() { 269 return new ARMConstantIslands(); 270} 271 272bool ARMConstantIslands::runOnMachineFunction(MachineFunction &MF) { 273 MachineConstantPool &MCP = *MF.getConstantPool(); 274 275 TII = (const ARMInstrInfo*)MF.getTarget().getInstrInfo(); 276 AFI = MF.getInfo<ARMFunctionInfo>(); 277 STI = &MF.getTarget().getSubtarget<ARMSubtarget>(); 278 279 isThumb = AFI->isThumbFunction(); 280 isThumb1 = AFI->isThumb1OnlyFunction(); 281 isThumb2 = AFI->isThumb2Function(); 282 283 HasFarJump = false; 284 HasInlineAsm = false; 285 286 // Renumber all of the machine basic blocks in the function, guaranteeing that 287 // the numbers agree with the position of the block in the function. 288 MF.RenumberBlocks(); 289 290 // Try to reorder and otherwise adjust the block layout to make good use 291 // of the TB[BH] instructions. 292 bool MadeChange = false; 293 if (isThumb2 && AdjustJumpTableBlocks) { 294 JumpTableFunctionScan(MF); 295 MadeChange |= ReorderThumb2JumpTables(MF); 296 // Data is out of date, so clear it. It'll be re-computed later. 297 T2JumpTables.clear(); 298 // Blocks may have shifted around. Keep the numbering up to date. 299 MF.RenumberBlocks(); 300 } 301 302 // Thumb1 functions containing constant pools get 4-byte alignment. 303 // This is so we can keep exact track of where the alignment padding goes. 304 305 // ARM and Thumb2 functions need to be 4-byte aligned. 306 if (!isThumb1) 307 MF.EnsureAlignment(2); // 2 = log2(4) 308 309 // Perform the initial placement of the constant pool entries. To start with, 310 // we put them all at the end of the function. 311 std::vector<MachineInstr*> CPEMIs; 312 if (!MCP.isEmpty()) { 313 DoInitialPlacement(MF, CPEMIs); 314 if (isThumb1) 315 MF.EnsureAlignment(2); // 2 = log2(4) 316 } 317 318 /// The next UID to take is the first unused one. 319 AFI->initPICLabelUId(CPEMIs.size()); 320 321 // Do the initial scan of the function, building up information about the 322 // sizes of each block, the location of all the water, and finding all of the 323 // constant pool users. 324 InitialFunctionScan(MF, CPEMIs); 325 CPEMIs.clear(); 326 DEBUG(dumpBBs()); 327 328 329 /// Remove dead constant pool entries. 330 MadeChange |= RemoveUnusedCPEntries(); 331 332 // Iteratively place constant pool entries and fix up branches until there 333 // is no change. 334 unsigned NoCPIters = 0, NoBRIters = 0; 335 while (true) { 336 bool CPChange = false; 337 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) 338 CPChange |= HandleConstantPoolUser(MF, i); 339 if (CPChange && ++NoCPIters > 30) 340 llvm_unreachable("Constant Island pass failed to converge!"); 341 DEBUG(dumpBBs()); 342 343 // Clear NewWaterList now. If we split a block for branches, it should 344 // appear as "new water" for the next iteration of constant pool placement. 345 NewWaterList.clear(); 346 347 bool BRChange = false; 348 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) 349 BRChange |= FixUpImmediateBr(MF, ImmBranches[i]); 350 if (BRChange && ++NoBRIters > 30) 351 llvm_unreachable("Branch Fix Up pass failed to converge!"); 352 DEBUG(dumpBBs()); 353 354 if (!CPChange && !BRChange) 355 break; 356 MadeChange = true; 357 } 358 359 // Shrink 32-bit Thumb2 branch, load, and store instructions. 360 if (isThumb2 && !STI->prefers32BitThumb()) 361 MadeChange |= OptimizeThumb2Instructions(MF); 362 363 // After a while, this might be made debug-only, but it is not expensive. 364 verify(MF); 365 366 // If LR has been forced spilled and no far jump (i.e. BL) has been issued, 367 // undo the spill / restore of LR if possible. 368 if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump()) 369 MadeChange |= UndoLRSpillRestore(); 370 371 // Save the mapping between original and cloned constpool entries. 372 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 373 for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) { 374 const CPEntry & CPE = CPEntries[i][j]; 375 AFI->recordCPEClone(i, CPE.CPI); 376 } 377 } 378 379 DEBUG(errs() << '\n'; dumpBBs()); 380 381 BBSizes.clear(); 382 BBOffsets.clear(); 383 WaterList.clear(); 384 CPUsers.clear(); 385 CPEntries.clear(); 386 ImmBranches.clear(); 387 PushPopMIs.clear(); 388 T2JumpTables.clear(); 389 390 return MadeChange; 391} 392 393/// DoInitialPlacement - Perform the initial placement of the constant pool 394/// entries. To start with, we put them all at the end of the function. 395void ARMConstantIslands::DoInitialPlacement(MachineFunction &MF, 396 std::vector<MachineInstr*> &CPEMIs) { 397 // Create the basic block to hold the CPE's. 398 MachineBasicBlock *BB = MF.CreateMachineBasicBlock(); 399 MF.push_back(BB); 400 401 // Mark the basic block as 4-byte aligned as required by the const-pool. 402 BB->setAlignment(2); 403 404 // Add all of the constants from the constant pool to the end block, use an 405 // identity mapping of CPI's to CPE's. 406 const std::vector<MachineConstantPoolEntry> &CPs = 407 MF.getConstantPool()->getConstants(); 408 409 const TargetData &TD = *MF.getTarget().getTargetData(); 410 for (unsigned i = 0, e = CPs.size(); i != e; ++i) { 411 unsigned Size = TD.getTypeAllocSize(CPs[i].getType()); 412 // Verify that all constant pool entries are a multiple of 4 bytes. If not, 413 // we would have to pad them out or something so that instructions stay 414 // aligned. 415 assert((Size & 3) == 0 && "CP Entry not multiple of 4 bytes!"); 416 MachineInstr *CPEMI = 417 BuildMI(BB, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 418 .addImm(i).addConstantPoolIndex(i).addImm(Size); 419 CPEMIs.push_back(CPEMI); 420 421 // Add a new CPEntry, but no corresponding CPUser yet. 422 std::vector<CPEntry> CPEs; 423 CPEs.push_back(CPEntry(CPEMI, i)); 424 CPEntries.push_back(CPEs); 425 ++NumCPEs; 426 DEBUG(errs() << "Moved CPI#" << i << " to end of function as #" << i 427 << "\n"); 428 } 429} 430 431/// BBHasFallthrough - Return true if the specified basic block can fallthrough 432/// into the block immediately after it. 433static bool BBHasFallthrough(MachineBasicBlock *MBB) { 434 // Get the next machine basic block in the function. 435 MachineFunction::iterator MBBI = MBB; 436 // Can't fall off end of function. 437 if (llvm::next(MBBI) == MBB->getParent()->end()) 438 return false; 439 440 MachineBasicBlock *NextBB = llvm::next(MBBI); 441 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), 442 E = MBB->succ_end(); I != E; ++I) 443 if (*I == NextBB) 444 return true; 445 446 return false; 447} 448 449/// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 450/// look up the corresponding CPEntry. 451ARMConstantIslands::CPEntry 452*ARMConstantIslands::findConstPoolEntry(unsigned CPI, 453 const MachineInstr *CPEMI) { 454 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 455 // Number of entries per constpool index should be small, just do a 456 // linear search. 457 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 458 if (CPEs[i].CPEMI == CPEMI) 459 return &CPEs[i]; 460 } 461 return NULL; 462} 463 464/// JumpTableFunctionScan - Do a scan of the function, building up 465/// information about the sizes of each block and the locations of all 466/// the jump tables. 467void ARMConstantIslands::JumpTableFunctionScan(MachineFunction &MF) { 468 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); 469 MBBI != E; ++MBBI) { 470 MachineBasicBlock &MBB = *MBBI; 471 472 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 473 I != E; ++I) 474 if (I->getDesc().isBranch() && I->getOpcode() == ARM::t2BR_JT) 475 T2JumpTables.push_back(I); 476 } 477} 478 479/// InitialFunctionScan - Do the initial scan of the function, building up 480/// information about the sizes of each block, the location of all the water, 481/// and finding all of the constant pool users. 482void ARMConstantIslands::InitialFunctionScan(MachineFunction &MF, 483 const std::vector<MachineInstr*> &CPEMIs) { 484 // First thing, see if the function has any inline assembly in it. If so, 485 // we have to be conservative about alignment assumptions, as we don't 486 // know for sure the size of any instructions in the inline assembly. 487 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); 488 MBBI != E; ++MBBI) { 489 MachineBasicBlock &MBB = *MBBI; 490 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 491 I != E; ++I) 492 if (I->getOpcode() == ARM::INLINEASM) 493 HasInlineAsm = true; 494 } 495 496 // Now go back through the instructions and build up our data structures. 497 unsigned Offset = 0; 498 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); 499 MBBI != E; ++MBBI) { 500 MachineBasicBlock &MBB = *MBBI; 501 502 // If this block doesn't fall through into the next MBB, then this is 503 // 'water' that a constant pool island could be placed. 504 if (!BBHasFallthrough(&MBB)) 505 WaterList.push_back(&MBB); 506 507 unsigned MBBSize = 0; 508 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 509 I != E; ++I) { 510 if (I->isDebugValue()) 511 continue; 512 // Add instruction size to MBBSize. 513 MBBSize += TII->GetInstSizeInBytes(I); 514 515 int Opc = I->getOpcode(); 516 if (I->getDesc().isBranch()) { 517 bool isCond = false; 518 unsigned Bits = 0; 519 unsigned Scale = 1; 520 int UOpc = Opc; 521 switch (Opc) { 522 default: 523 continue; // Ignore other JT branches 524 case ARM::tBR_JTr: 525 // A Thumb1 table jump may involve padding; for the offsets to 526 // be right, functions containing these must be 4-byte aligned. 527 // tBR_JTr expands to a mov pc followed by .align 2 and then the jump 528 // table entries. So this code checks whether offset of tBR_JTr + 2 529 // is aligned. That is held in Offset+MBBSize, which already has 530 // 2 added in for the size of the mov pc instruction. 531 MF.EnsureAlignment(2U); 532 if ((Offset+MBBSize)%4 != 0 || HasInlineAsm) 533 // FIXME: Add a pseudo ALIGN instruction instead. 534 MBBSize += 2; // padding 535 continue; // Does not get an entry in ImmBranches 536 case ARM::t2BR_JT: 537 T2JumpTables.push_back(I); 538 continue; // Does not get an entry in ImmBranches 539 case ARM::Bcc: 540 isCond = true; 541 UOpc = ARM::B; 542 // Fallthrough 543 case ARM::B: 544 Bits = 24; 545 Scale = 4; 546 break; 547 case ARM::tBcc: 548 isCond = true; 549 UOpc = ARM::tB; 550 Bits = 8; 551 Scale = 2; 552 break; 553 case ARM::tB: 554 Bits = 11; 555 Scale = 2; 556 break; 557 case ARM::t2Bcc: 558 isCond = true; 559 UOpc = ARM::t2B; 560 Bits = 20; 561 Scale = 2; 562 break; 563 case ARM::t2B: 564 Bits = 24; 565 Scale = 2; 566 break; 567 } 568 569 // Record this immediate branch. 570 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 571 ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc)); 572 } 573 574 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) 575 PushPopMIs.push_back(I); 576 577 if (Opc == ARM::CONSTPOOL_ENTRY) 578 continue; 579 580 // Scan the instructions for constant pool operands. 581 for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) 582 if (I->getOperand(op).isCPI()) { 583 // We found one. The addressing mode tells us the max displacement 584 // from the PC that this instruction permits. 585 586 // Basic size info comes from the TSFlags field. 587 unsigned Bits = 0; 588 unsigned Scale = 1; 589 bool NegOk = false; 590 bool IsSoImm = false; 591 592 switch (Opc) { 593 default: 594 llvm_unreachable("Unknown addressing mode for CP reference!"); 595 break; 596 597 // Taking the address of a CP entry. 598 case ARM::LEApcrel: 599 // This takes a SoImm, which is 8 bit immediate rotated. We'll 600 // pretend the maximum offset is 255 * 4. Since each instruction 601 // 4 byte wide, this is always correct. We'll check for other 602 // displacements that fits in a SoImm as well. 603 Bits = 8; 604 Scale = 4; 605 NegOk = true; 606 IsSoImm = true; 607 break; 608 case ARM::t2LEApcrel: 609 Bits = 12; 610 NegOk = true; 611 break; 612 case ARM::tLEApcrel: 613 Bits = 8; 614 Scale = 4; 615 break; 616 617 case ARM::LDRi12: 618 case ARM::LDRcp: 619 case ARM::t2LDRpci: 620 Bits = 12; // +-offset_12 621 NegOk = true; 622 break; 623 624 case ARM::tLDRpci: 625 Bits = 8; 626 Scale = 4; // +(offset_8*4) 627 break; 628 629 case ARM::VLDRD: 630 case ARM::VLDRS: 631 Bits = 8; 632 Scale = 4; // +-(offset_8*4) 633 NegOk = true; 634 break; 635 } 636 637 // Remember that this is a user of a CP entry. 638 unsigned CPI = I->getOperand(op).getIndex(); 639 MachineInstr *CPEMI = CPEMIs[CPI]; 640 unsigned MaxOffs = ((1 << Bits)-1) * Scale; 641 CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm)); 642 643 // Increment corresponding CPEntry reference count. 644 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 645 assert(CPE && "Cannot find a corresponding CPEntry!"); 646 CPE->RefCount++; 647 648 // Instructions can only use one CP entry, don't bother scanning the 649 // rest of the operands. 650 break; 651 } 652 } 653 654 // In thumb mode, if this block is a constpool island, we may need padding 655 // so it's aligned on 4 byte boundary. 656 if (isThumb && 657 !MBB.empty() && 658 MBB.begin()->getOpcode() == ARM::CONSTPOOL_ENTRY && 659 ((Offset%4) != 0 || HasInlineAsm)) 660 MBBSize += 2; 661 662 BBSizes.push_back(MBBSize); 663 BBOffsets.push_back(Offset); 664 Offset += MBBSize; 665 } 666} 667 668/// GetOffsetOf - Return the current offset of the specified machine instruction 669/// from the start of the function. This offset changes as stuff is moved 670/// around inside the function. 671unsigned ARMConstantIslands::GetOffsetOf(MachineInstr *MI) const { 672 MachineBasicBlock *MBB = MI->getParent(); 673 674 // The offset is composed of two things: the sum of the sizes of all MBB's 675 // before this instruction's block, and the offset from the start of the block 676 // it is in. 677 unsigned Offset = BBOffsets[MBB->getNumber()]; 678 679 // If we're looking for a CONSTPOOL_ENTRY in Thumb, see if this block has 680 // alignment padding, and compensate if so. 681 if (isThumb && 682 MI->getOpcode() == ARM::CONSTPOOL_ENTRY && 683 (Offset%4 != 0 || HasInlineAsm)) 684 Offset += 2; 685 686 // Sum instructions before MI in MBB. 687 for (MachineBasicBlock::iterator I = MBB->begin(); ; ++I) { 688 assert(I != MBB->end() && "Didn't find MI in its own basic block?"); 689 if (&*I == MI) return Offset; 690 Offset += TII->GetInstSizeInBytes(I); 691 } 692} 693 694/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 695/// ID. 696static bool CompareMBBNumbers(const MachineBasicBlock *LHS, 697 const MachineBasicBlock *RHS) { 698 return LHS->getNumber() < RHS->getNumber(); 699} 700 701/// UpdateForInsertedWaterBlock - When a block is newly inserted into the 702/// machine function, it upsets all of the block numbers. Renumber the blocks 703/// and update the arrays that parallel this numbering. 704void ARMConstantIslands::UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB) { 705 // Renumber the MBB's to keep them consecutive. 706 NewBB->getParent()->RenumberBlocks(NewBB); 707 708 // Insert a size into BBSizes to align it properly with the (newly 709 // renumbered) block numbers. 710 BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0); 711 712 // Likewise for BBOffsets. 713 BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0); 714 715 // Next, update WaterList. Specifically, we need to add NewMBB as having 716 // available water after it. 717 water_iterator IP = 718 std::lower_bound(WaterList.begin(), WaterList.end(), NewBB, 719 CompareMBBNumbers); 720 WaterList.insert(IP, NewBB); 721} 722 723 724/// Split the basic block containing MI into two blocks, which are joined by 725/// an unconditional branch. Update data structures and renumber blocks to 726/// account for this change and returns the newly created block. 727MachineBasicBlock *ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr *MI) { 728 MachineBasicBlock *OrigBB = MI->getParent(); 729 MachineFunction &MF = *OrigBB->getParent(); 730 731 // Create a new MBB for the code after the OrigBB. 732 MachineBasicBlock *NewBB = 733 MF.CreateMachineBasicBlock(OrigBB->getBasicBlock()); 734 MachineFunction::iterator MBBI = OrigBB; ++MBBI; 735 MF.insert(MBBI, NewBB); 736 737 // Splice the instructions starting with MI over to NewBB. 738 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 739 740 // Add an unconditional branch from OrigBB to NewBB. 741 // Note the new unconditional branch is not being recorded. 742 // There doesn't seem to be meaningful DebugInfo available; this doesn't 743 // correspond to anything in the source. 744 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B; 745 if (!isThumb) 746 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB); 747 else 748 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB) 749 .addImm(ARMCC::AL).addReg(0); 750 ++NumSplit; 751 752 // Update the CFG. All succs of OrigBB are now succs of NewBB. 753 NewBB->transferSuccessors(OrigBB); 754 755 // OrigBB branches to NewBB. 756 OrigBB->addSuccessor(NewBB); 757 758 // Update internal data structures to account for the newly inserted MBB. 759 // This is almost the same as UpdateForInsertedWaterBlock, except that 760 // the Water goes after OrigBB, not NewBB. 761 MF.RenumberBlocks(NewBB); 762 763 // Insert a size into BBSizes to align it properly with the (newly 764 // renumbered) block numbers. 765 BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0); 766 767 // Likewise for BBOffsets. 768 BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0); 769 770 // Next, update WaterList. Specifically, we need to add OrigMBB as having 771 // available water after it (but not if it's already there, which happens 772 // when splitting before a conditional branch that is followed by an 773 // unconditional branch - in that case we want to insert NewBB). 774 water_iterator IP = 775 std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB, 776 CompareMBBNumbers); 777 MachineBasicBlock* WaterBB = *IP; 778 if (WaterBB == OrigBB) 779 WaterList.insert(llvm::next(IP), NewBB); 780 else 781 WaterList.insert(IP, OrigBB); 782 NewWaterList.insert(OrigBB); 783 784 unsigned OrigBBI = OrigBB->getNumber(); 785 unsigned NewBBI = NewBB->getNumber(); 786 787 int delta = isThumb1 ? 2 : 4; 788 789 // Figure out how large the OrigBB is. As the first half of the original 790 // block, it cannot contain a tablejump. The size includes 791 // the new jump we added. (It should be possible to do this without 792 // recounting everything, but it's very confusing, and this is rarely 793 // executed.) 794 unsigned OrigBBSize = 0; 795 for (MachineBasicBlock::iterator I = OrigBB->begin(), E = OrigBB->end(); 796 I != E; ++I) 797 OrigBBSize += TII->GetInstSizeInBytes(I); 798 BBSizes[OrigBBI] = OrigBBSize; 799 800 // ...and adjust BBOffsets for NewBB accordingly. 801 BBOffsets[NewBBI] = BBOffsets[OrigBBI] + BBSizes[OrigBBI]; 802 803 // Figure out how large the NewMBB is. As the second half of the original 804 // block, it may contain a tablejump. 805 unsigned NewBBSize = 0; 806 for (MachineBasicBlock::iterator I = NewBB->begin(), E = NewBB->end(); 807 I != E; ++I) 808 NewBBSize += TII->GetInstSizeInBytes(I); 809 // Set the size of NewBB in BBSizes. It does not include any padding now. 810 BBSizes[NewBBI] = NewBBSize; 811 812 MachineInstr* ThumbJTMI = prior(NewBB->end()); 813 if (ThumbJTMI->getOpcode() == ARM::tBR_JTr) { 814 // We've added another 2-byte instruction before this tablejump, which 815 // means we will always need padding if we didn't before, and vice versa. 816 817 // The original offset of the jump instruction was: 818 unsigned OrigOffset = BBOffsets[OrigBBI] + BBSizes[OrigBBI] - delta; 819 if (OrigOffset%4 == 0) { 820 // We had padding before and now we don't. No net change in code size. 821 delta = 0; 822 } else { 823 // We didn't have padding before and now we do. 824 BBSizes[NewBBI] += 2; 825 delta = 4; 826 } 827 } 828 829 // All BBOffsets following these blocks must be modified. 830 if (delta) 831 AdjustBBOffsetsAfter(NewBB, delta); 832 833 return NewBB; 834} 835 836/// OffsetIsInRange - Checks whether UserOffset (the location of a constant pool 837/// reference) is within MaxDisp of TrialOffset (a proposed location of a 838/// constant pool entry). 839bool ARMConstantIslands::OffsetIsInRange(unsigned UserOffset, 840 unsigned TrialOffset, unsigned MaxDisp, 841 bool NegativeOK, bool IsSoImm) { 842 // On Thumb offsets==2 mod 4 are rounded down by the hardware for 843 // purposes of the displacement computation; compensate for that here. 844 // Effectively, the valid range of displacements is 2 bytes smaller for such 845 // references. 846 unsigned TotalAdj = 0; 847 if (isThumb && UserOffset%4 !=0) { 848 UserOffset -= 2; 849 TotalAdj = 2; 850 } 851 // CPEs will be rounded up to a multiple of 4. 852 if (isThumb && TrialOffset%4 != 0) { 853 TrialOffset += 2; 854 TotalAdj += 2; 855 } 856 857 // In Thumb2 mode, later branch adjustments can shift instructions up and 858 // cause alignment change. In the worst case scenario this can cause the 859 // user's effective address to be subtracted by 2 and the CPE's address to 860 // be plus 2. 861 if (isThumb2 && TotalAdj != 4) 862 MaxDisp -= (4 - TotalAdj); 863 864 if (UserOffset <= TrialOffset) { 865 // User before the Trial. 866 if (TrialOffset - UserOffset <= MaxDisp) 867 return true; 868 // FIXME: Make use full range of soimm values. 869 } else if (NegativeOK) { 870 if (UserOffset - TrialOffset <= MaxDisp) 871 return true; 872 // FIXME: Make use full range of soimm values. 873 } 874 return false; 875} 876 877/// WaterIsInRange - Returns true if a CPE placed after the specified 878/// Water (a basic block) will be in range for the specific MI. 879 880bool ARMConstantIslands::WaterIsInRange(unsigned UserOffset, 881 MachineBasicBlock* Water, CPUser &U) { 882 unsigned MaxDisp = U.MaxDisp; 883 unsigned CPEOffset = BBOffsets[Water->getNumber()] + 884 BBSizes[Water->getNumber()]; 885 886 // If the CPE is to be inserted before the instruction, that will raise 887 // the offset of the instruction. 888 if (CPEOffset < UserOffset) 889 UserOffset += U.CPEMI->getOperand(2).getImm(); 890 891 return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, U.NegOk, U.IsSoImm); 892} 893 894/// CPEIsInRange - Returns true if the distance between specific MI and 895/// specific ConstPool entry instruction can fit in MI's displacement field. 896bool ARMConstantIslands::CPEIsInRange(MachineInstr *MI, unsigned UserOffset, 897 MachineInstr *CPEMI, unsigned MaxDisp, 898 bool NegOk, bool DoDump) { 899 unsigned CPEOffset = GetOffsetOf(CPEMI); 900 assert((CPEOffset%4 == 0 || HasInlineAsm) && "Misaligned CPE"); 901 902 if (DoDump) { 903 DEBUG(errs() << "User of CPE#" << CPEMI->getOperand(0).getImm() 904 << " max delta=" << MaxDisp 905 << " insn address=" << UserOffset 906 << " CPE address=" << CPEOffset 907 << " offset=" << int(CPEOffset-UserOffset) << "\t" << *MI); 908 } 909 910 return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, NegOk); 911} 912 913#ifndef NDEBUG 914/// BBIsJumpedOver - Return true of the specified basic block's only predecessor 915/// unconditionally branches to its only successor. 916static bool BBIsJumpedOver(MachineBasicBlock *MBB) { 917 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 918 return false; 919 920 MachineBasicBlock *Succ = *MBB->succ_begin(); 921 MachineBasicBlock *Pred = *MBB->pred_begin(); 922 MachineInstr *PredMI = &Pred->back(); 923 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB 924 || PredMI->getOpcode() == ARM::t2B) 925 return PredMI->getOperand(0).getMBB() == Succ; 926 return false; 927} 928#endif // NDEBUG 929 930void ARMConstantIslands::AdjustBBOffsetsAfter(MachineBasicBlock *BB, 931 int delta) { 932 MachineFunction::iterator MBBI = BB; MBBI = llvm::next(MBBI); 933 for(unsigned i = BB->getNumber()+1, e = BB->getParent()->getNumBlockIDs(); 934 i < e; ++i) { 935 BBOffsets[i] += delta; 936 // If some existing blocks have padding, adjust the padding as needed, a 937 // bit tricky. delta can be negative so don't use % on that. 938 if (!isThumb) 939 continue; 940 MachineBasicBlock *MBB = MBBI; 941 if (!MBB->empty() && !HasInlineAsm) { 942 // Constant pool entries require padding. 943 if (MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) { 944 unsigned OldOffset = BBOffsets[i] - delta; 945 if ((OldOffset%4) == 0 && (BBOffsets[i]%4) != 0) { 946 // add new padding 947 BBSizes[i] += 2; 948 delta += 2; 949 } else if ((OldOffset%4) != 0 && (BBOffsets[i]%4) == 0) { 950 // remove existing padding 951 BBSizes[i] -= 2; 952 delta -= 2; 953 } 954 } 955 // Thumb1 jump tables require padding. They should be at the end; 956 // following unconditional branches are removed by AnalyzeBranch. 957 // tBR_JTr expands to a mov pc followed by .align 2 and then the jump 958 // table entries. So this code checks whether offset of tBR_JTr 959 // is aligned; if it is, the offset of the jump table following the 960 // instruction will not be aligned, and we need padding. 961 MachineInstr *ThumbJTMI = prior(MBB->end()); 962 if (ThumbJTMI->getOpcode() == ARM::tBR_JTr) { 963 unsigned NewMIOffset = GetOffsetOf(ThumbJTMI); 964 unsigned OldMIOffset = NewMIOffset - delta; 965 if ((OldMIOffset%4) == 0 && (NewMIOffset%4) != 0) { 966 // remove existing padding 967 BBSizes[i] -= 2; 968 delta -= 2; 969 } else if ((OldMIOffset%4) != 0 && (NewMIOffset%4) == 0) { 970 // add new padding 971 BBSizes[i] += 2; 972 delta += 2; 973 } 974 } 975 if (delta==0) 976 return; 977 } 978 MBBI = llvm::next(MBBI); 979 } 980} 981 982/// DecrementOldEntry - find the constant pool entry with index CPI 983/// and instruction CPEMI, and decrement its refcount. If the refcount 984/// becomes 0 remove the entry and instruction. Returns true if we removed 985/// the entry, false if we didn't. 986 987bool ARMConstantIslands::DecrementOldEntry(unsigned CPI, MachineInstr *CPEMI) { 988 // Find the old entry. Eliminate it if it is no longer used. 989 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 990 assert(CPE && "Unexpected!"); 991 if (--CPE->RefCount == 0) { 992 RemoveDeadCPEMI(CPEMI); 993 CPE->CPEMI = NULL; 994 --NumCPEs; 995 return true; 996 } 997 return false; 998} 999 1000/// LookForCPEntryInRange - see if the currently referenced CPE is in range; 1001/// if not, see if an in-range clone of the CPE is in range, and if so, 1002/// change the data structures so the user references the clone. Returns: 1003/// 0 = no existing entry found 1004/// 1 = entry found, and there were no code insertions or deletions 1005/// 2 = entry found, and there were code insertions or deletions 1006int ARMConstantIslands::LookForExistingCPEntry(CPUser& U, unsigned UserOffset) 1007{ 1008 MachineInstr *UserMI = U.MI; 1009 MachineInstr *CPEMI = U.CPEMI; 1010 1011 // Check to see if the CPE is already in-range. 1012 if (CPEIsInRange(UserMI, UserOffset, CPEMI, U.MaxDisp, U.NegOk, true)) { 1013 DEBUG(errs() << "In range\n"); 1014 return 1; 1015 } 1016 1017 // No. Look for previously created clones of the CPE that are in range. 1018 unsigned CPI = CPEMI->getOperand(1).getIndex(); 1019 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 1020 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 1021 // We already tried this one 1022 if (CPEs[i].CPEMI == CPEMI) 1023 continue; 1024 // Removing CPEs can leave empty entries, skip 1025 if (CPEs[i].CPEMI == NULL) 1026 continue; 1027 if (CPEIsInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.MaxDisp, U.NegOk)) { 1028 DEBUG(errs() << "Replacing CPE#" << CPI << " with CPE#" 1029 << CPEs[i].CPI << "\n"); 1030 // Point the CPUser node to the replacement 1031 U.CPEMI = CPEs[i].CPEMI; 1032 // Change the CPI in the instruction operand to refer to the clone. 1033 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) 1034 if (UserMI->getOperand(j).isCPI()) { 1035 UserMI->getOperand(j).setIndex(CPEs[i].CPI); 1036 break; 1037 } 1038 // Adjust the refcount of the clone... 1039 CPEs[i].RefCount++; 1040 // ...and the original. If we didn't remove the old entry, none of the 1041 // addresses changed, so we don't need another pass. 1042 return DecrementOldEntry(CPI, CPEMI) ? 2 : 1; 1043 } 1044 } 1045 return 0; 1046} 1047 1048/// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 1049/// the specific unconditional branch instruction. 1050static inline unsigned getUnconditionalBrDisp(int Opc) { 1051 switch (Opc) { 1052 case ARM::tB: 1053 return ((1<<10)-1)*2; 1054 case ARM::t2B: 1055 return ((1<<23)-1)*2; 1056 default: 1057 break; 1058 } 1059 1060 return ((1<<23)-1)*4; 1061} 1062 1063/// LookForWater - Look for an existing entry in the WaterList in which 1064/// we can place the CPE referenced from U so it's within range of U's MI. 1065/// Returns true if found, false if not. If it returns true, WaterIter 1066/// is set to the WaterList entry. For Thumb, prefer water that will not 1067/// introduce padding to water that will. To ensure that this pass 1068/// terminates, the CPE location for a particular CPUser is only allowed to 1069/// move to a lower address, so search backward from the end of the list and 1070/// prefer the first water that is in range. 1071bool ARMConstantIslands::LookForWater(CPUser &U, unsigned UserOffset, 1072 water_iterator &WaterIter) { 1073 if (WaterList.empty()) 1074 return false; 1075 1076 bool FoundWaterThatWouldPad = false; 1077 water_iterator IPThatWouldPad; 1078 for (water_iterator IP = prior(WaterList.end()), 1079 B = WaterList.begin();; --IP) { 1080 MachineBasicBlock* WaterBB = *IP; 1081 // Check if water is in range and is either at a lower address than the 1082 // current "high water mark" or a new water block that was created since 1083 // the previous iteration by inserting an unconditional branch. In the 1084 // latter case, we want to allow resetting the high water mark back to 1085 // this new water since we haven't seen it before. Inserting branches 1086 // should be relatively uncommon and when it does happen, we want to be 1087 // sure to take advantage of it for all the CPEs near that block, so that 1088 // we don't insert more branches than necessary. 1089 if (WaterIsInRange(UserOffset, WaterBB, U) && 1090 (WaterBB->getNumber() < U.HighWaterMark->getNumber() || 1091 NewWaterList.count(WaterBB))) { 1092 unsigned WBBId = WaterBB->getNumber(); 1093 if (isThumb && 1094 (BBOffsets[WBBId] + BBSizes[WBBId])%4 != 0) { 1095 // This is valid Water, but would introduce padding. Remember 1096 // it in case we don't find any Water that doesn't do this. 1097 if (!FoundWaterThatWouldPad) { 1098 FoundWaterThatWouldPad = true; 1099 IPThatWouldPad = IP; 1100 } 1101 } else { 1102 WaterIter = IP; 1103 return true; 1104 } 1105 } 1106 if (IP == B) 1107 break; 1108 } 1109 if (FoundWaterThatWouldPad) { 1110 WaterIter = IPThatWouldPad; 1111 return true; 1112 } 1113 return false; 1114} 1115 1116/// CreateNewWater - No existing WaterList entry will work for 1117/// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 1118/// block is used if in range, and the conditional branch munged so control 1119/// flow is correct. Otherwise the block is split to create a hole with an 1120/// unconditional branch around it. In either case NewMBB is set to a 1121/// block following which the new island can be inserted (the WaterList 1122/// is not adjusted). 1123void ARMConstantIslands::CreateNewWater(unsigned CPUserIndex, 1124 unsigned UserOffset, 1125 MachineBasicBlock *&NewMBB) { 1126 CPUser &U = CPUsers[CPUserIndex]; 1127 MachineInstr *UserMI = U.MI; 1128 MachineInstr *CPEMI = U.CPEMI; 1129 MachineBasicBlock *UserMBB = UserMI->getParent(); 1130 unsigned OffsetOfNextBlock = BBOffsets[UserMBB->getNumber()] + 1131 BBSizes[UserMBB->getNumber()]; 1132 assert(OffsetOfNextBlock== BBOffsets[UserMBB->getNumber()+1]); 1133 1134 // If the block does not end in an unconditional branch already, and if the 1135 // end of the block is within range, make new water there. (The addition 1136 // below is for the unconditional branch we will be adding: 4 bytes on ARM + 1137 // Thumb2, 2 on Thumb1. Possible Thumb1 alignment padding is allowed for 1138 // inside OffsetIsInRange. 1139 if (BBHasFallthrough(UserMBB) && 1140 OffsetIsInRange(UserOffset, OffsetOfNextBlock + (isThumb1 ? 2: 4), 1141 U.MaxDisp, U.NegOk, U.IsSoImm)) { 1142 DEBUG(errs() << "Split at end of block\n"); 1143 if (&UserMBB->back() == UserMI) 1144 assert(BBHasFallthrough(UserMBB) && "Expected a fallthrough BB!"); 1145 NewMBB = llvm::next(MachineFunction::iterator(UserMBB)); 1146 // Add an unconditional branch from UserMBB to fallthrough block. 1147 // Record it for branch lengthening; this new branch will not get out of 1148 // range, but if the preceding conditional branch is out of range, the 1149 // targets will be exchanged, and the altered branch may be out of 1150 // range, so the machinery has to know about it. 1151 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B; 1152 if (!isThumb) 1153 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB); 1154 else 1155 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB) 1156 .addImm(ARMCC::AL).addReg(0); 1157 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 1158 ImmBranches.push_back(ImmBranch(&UserMBB->back(), 1159 MaxDisp, false, UncondBr)); 1160 int delta = isThumb1 ? 2 : 4; 1161 BBSizes[UserMBB->getNumber()] += delta; 1162 AdjustBBOffsetsAfter(UserMBB, delta); 1163 } else { 1164 // What a big block. Find a place within the block to split it. 1165 // This is a little tricky on Thumb1 since instructions are 2 bytes 1166 // and constant pool entries are 4 bytes: if instruction I references 1167 // island CPE, and instruction I+1 references CPE', it will 1168 // not work well to put CPE as far forward as possible, since then 1169 // CPE' cannot immediately follow it (that location is 2 bytes 1170 // farther away from I+1 than CPE was from I) and we'd need to create 1171 // a new island. So, we make a first guess, then walk through the 1172 // instructions between the one currently being looked at and the 1173 // possible insertion point, and make sure any other instructions 1174 // that reference CPEs will be able to use the same island area; 1175 // if not, we back up the insertion point. 1176 1177 // The 4 in the following is for the unconditional branch we'll be 1178 // inserting (allows for long branch on Thumb1). Alignment of the 1179 // island is handled inside OffsetIsInRange. 1180 unsigned BaseInsertOffset = UserOffset + U.MaxDisp -4; 1181 // This could point off the end of the block if we've already got 1182 // constant pool entries following this block; only the last one is 1183 // in the water list. Back past any possible branches (allow for a 1184 // conditional and a maximally long unconditional). 1185 if (BaseInsertOffset >= BBOffsets[UserMBB->getNumber()+1]) 1186 BaseInsertOffset = BBOffsets[UserMBB->getNumber()+1] - 1187 (isThumb1 ? 6 : 8); 1188 unsigned EndInsertOffset = BaseInsertOffset + 1189 CPEMI->getOperand(2).getImm(); 1190 MachineBasicBlock::iterator MI = UserMI; 1191 ++MI; 1192 unsigned CPUIndex = CPUserIndex+1; 1193 unsigned NumCPUsers = CPUsers.size(); 1194 MachineInstr *LastIT = 0; 1195 for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI); 1196 Offset < BaseInsertOffset; 1197 Offset += TII->GetInstSizeInBytes(MI), 1198 MI = llvm::next(MI)) { 1199 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) { 1200 CPUser &U = CPUsers[CPUIndex]; 1201 if (!OffsetIsInRange(Offset, EndInsertOffset, 1202 U.MaxDisp, U.NegOk, U.IsSoImm)) { 1203 BaseInsertOffset -= (isThumb1 ? 2 : 4); 1204 EndInsertOffset -= (isThumb1 ? 2 : 4); 1205 } 1206 // This is overly conservative, as we don't account for CPEMIs 1207 // being reused within the block, but it doesn't matter much. 1208 EndInsertOffset += CPUsers[CPUIndex].CPEMI->getOperand(2).getImm(); 1209 CPUIndex++; 1210 } 1211 1212 // Remember the last IT instruction. 1213 if (MI->getOpcode() == ARM::t2IT) 1214 LastIT = MI; 1215 } 1216 1217 DEBUG(errs() << "Split in middle of big block\n"); 1218 --MI; 1219 1220 // Avoid splitting an IT block. 1221 if (LastIT) { 1222 unsigned PredReg = 0; 1223 ARMCC::CondCodes CC = llvm::getITInstrPredicate(MI, PredReg); 1224 if (CC != ARMCC::AL) 1225 MI = LastIT; 1226 } 1227 NewMBB = SplitBlockBeforeInstr(MI); 1228 } 1229} 1230 1231/// HandleConstantPoolUser - Analyze the specified user, checking to see if it 1232/// is out-of-range. If so, pick up the constant pool value and move it some 1233/// place in-range. Return true if we changed any addresses (thus must run 1234/// another pass of branch lengthening), false otherwise. 1235bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction &MF, 1236 unsigned CPUserIndex) { 1237 CPUser &U = CPUsers[CPUserIndex]; 1238 MachineInstr *UserMI = U.MI; 1239 MachineInstr *CPEMI = U.CPEMI; 1240 unsigned CPI = CPEMI->getOperand(1).getIndex(); 1241 unsigned Size = CPEMI->getOperand(2).getImm(); 1242 // Compute this only once, it's expensive. The 4 or 8 is the value the 1243 // hardware keeps in the PC. 1244 unsigned UserOffset = GetOffsetOf(UserMI) + (isThumb ? 4 : 8); 1245 1246 // See if the current entry is within range, or there is a clone of it 1247 // in range. 1248 int result = LookForExistingCPEntry(U, UserOffset); 1249 if (result==1) return false; 1250 else if (result==2) return true; 1251 1252 // No existing clone of this CPE is within range. 1253 // We will be generating a new clone. Get a UID for it. 1254 unsigned ID = AFI->createPICLabelUId(); 1255 1256 // Look for water where we can place this CPE. 1257 MachineBasicBlock *NewIsland = MF.CreateMachineBasicBlock(); 1258 MachineBasicBlock *NewMBB; 1259 water_iterator IP; 1260 if (LookForWater(U, UserOffset, IP)) { 1261 DEBUG(errs() << "found water in range\n"); 1262 MachineBasicBlock *WaterBB = *IP; 1263 1264 // If the original WaterList entry was "new water" on this iteration, 1265 // propagate that to the new island. This is just keeping NewWaterList 1266 // updated to match the WaterList, which will be updated below. 1267 if (NewWaterList.count(WaterBB)) { 1268 NewWaterList.erase(WaterBB); 1269 NewWaterList.insert(NewIsland); 1270 } 1271 // The new CPE goes before the following block (NewMBB). 1272 NewMBB = llvm::next(MachineFunction::iterator(WaterBB)); 1273 1274 } else { 1275 // No water found. 1276 DEBUG(errs() << "No water found\n"); 1277 CreateNewWater(CPUserIndex, UserOffset, NewMBB); 1278 1279 // SplitBlockBeforeInstr adds to WaterList, which is important when it is 1280 // called while handling branches so that the water will be seen on the 1281 // next iteration for constant pools, but in this context, we don't want 1282 // it. Check for this so it will be removed from the WaterList. 1283 // Also remove any entry from NewWaterList. 1284 MachineBasicBlock *WaterBB = prior(MachineFunction::iterator(NewMBB)); 1285 IP = std::find(WaterList.begin(), WaterList.end(), WaterBB); 1286 if (IP != WaterList.end()) 1287 NewWaterList.erase(WaterBB); 1288 1289 // We are adding new water. Update NewWaterList. 1290 NewWaterList.insert(NewIsland); 1291 } 1292 1293 // Remove the original WaterList entry; we want subsequent insertions in 1294 // this vicinity to go after the one we're about to insert. This 1295 // considerably reduces the number of times we have to move the same CPE 1296 // more than once and is also important to ensure the algorithm terminates. 1297 if (IP != WaterList.end()) 1298 WaterList.erase(IP); 1299 1300 // Okay, we know we can put an island before NewMBB now, do it! 1301 MF.insert(NewMBB, NewIsland); 1302 1303 // Update internal data structures to account for the newly inserted MBB. 1304 UpdateForInsertedWaterBlock(NewIsland); 1305 1306 // Decrement the old entry, and remove it if refcount becomes 0. 1307 DecrementOldEntry(CPI, CPEMI); 1308 1309 // Now that we have an island to add the CPE to, clone the original CPE and 1310 // add it to the island. 1311 U.HighWaterMark = NewIsland; 1312 U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 1313 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size); 1314 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1315 ++NumCPEs; 1316 1317 // Mark the basic block as 4-byte aligned as required by the const-pool entry. 1318 NewIsland->setAlignment(2); 1319 1320 BBOffsets[NewIsland->getNumber()] = BBOffsets[NewMBB->getNumber()]; 1321 // Compensate for .align 2 in thumb mode. 1322 if (isThumb && (BBOffsets[NewIsland->getNumber()]%4 != 0 || HasInlineAsm)) 1323 Size += 2; 1324 // Increase the size of the island block to account for the new entry. 1325 BBSizes[NewIsland->getNumber()] += Size; 1326 AdjustBBOffsetsAfter(NewIsland, Size); 1327 1328 // Finally, change the CPI in the instruction operand to be ID. 1329 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) 1330 if (UserMI->getOperand(i).isCPI()) { 1331 UserMI->getOperand(i).setIndex(ID); 1332 break; 1333 } 1334 1335 DEBUG(errs() << " Moved CPE to #" << ID << " CPI=" << CPI 1336 << '\t' << *UserMI); 1337 1338 return true; 1339} 1340 1341/// RemoveDeadCPEMI - Remove a dead constant pool entry instruction. Update 1342/// sizes and offsets of impacted basic blocks. 1343void ARMConstantIslands::RemoveDeadCPEMI(MachineInstr *CPEMI) { 1344 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1345 unsigned Size = CPEMI->getOperand(2).getImm(); 1346 CPEMI->eraseFromParent(); 1347 BBSizes[CPEBB->getNumber()] -= Size; 1348 // All succeeding offsets have the current size value added in, fix this. 1349 if (CPEBB->empty()) { 1350 // In thumb1 mode, the size of island may be padded by two to compensate for 1351 // the alignment requirement. Then it will now be 2 when the block is 1352 // empty, so fix this. 1353 // All succeeding offsets have the current size value added in, fix this. 1354 if (BBSizes[CPEBB->getNumber()] != 0) { 1355 Size += BBSizes[CPEBB->getNumber()]; 1356 BBSizes[CPEBB->getNumber()] = 0; 1357 } 1358 } 1359 AdjustBBOffsetsAfter(CPEBB, -Size); 1360 // An island has only one predecessor BB and one successor BB. Check if 1361 // this BB's predecessor jumps directly to this BB's successor. This 1362 // shouldn't happen currently. 1363 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); 1364 // FIXME: remove the empty blocks after all the work is done? 1365} 1366 1367/// RemoveUnusedCPEntries - Remove constant pool entries whose refcounts 1368/// are zero. 1369bool ARMConstantIslands::RemoveUnusedCPEntries() { 1370 unsigned MadeChange = false; 1371 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 1372 std::vector<CPEntry> &CPEs = CPEntries[i]; 1373 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { 1374 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { 1375 RemoveDeadCPEMI(CPEs[j].CPEMI); 1376 CPEs[j].CPEMI = NULL; 1377 MadeChange = true; 1378 } 1379 } 1380 } 1381 return MadeChange; 1382} 1383 1384/// BBIsInRange - Returns true if the distance between specific MI and 1385/// specific BB can fit in MI's displacement field. 1386bool ARMConstantIslands::BBIsInRange(MachineInstr *MI,MachineBasicBlock *DestBB, 1387 unsigned MaxDisp) { 1388 unsigned PCAdj = isThumb ? 4 : 8; 1389 unsigned BrOffset = GetOffsetOf(MI) + PCAdj; 1390 unsigned DestOffset = BBOffsets[DestBB->getNumber()]; 1391 1392 DEBUG(errs() << "Branch of destination BB#" << DestBB->getNumber() 1393 << " from BB#" << MI->getParent()->getNumber() 1394 << " max delta=" << MaxDisp 1395 << " from " << GetOffsetOf(MI) << " to " << DestOffset 1396 << " offset " << int(DestOffset-BrOffset) << "\t" << *MI); 1397 1398 if (BrOffset <= DestOffset) { 1399 // Branch before the Dest. 1400 if (DestOffset-BrOffset <= MaxDisp) 1401 return true; 1402 } else { 1403 if (BrOffset-DestOffset <= MaxDisp) 1404 return true; 1405 } 1406 return false; 1407} 1408 1409/// FixUpImmediateBr - Fix up an immediate branch whose destination is too far 1410/// away to fit in its displacement field. 1411bool ARMConstantIslands::FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br) { 1412 MachineInstr *MI = Br.MI; 1413 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1414 1415 // Check to see if the DestBB is already in-range. 1416 if (BBIsInRange(MI, DestBB, Br.MaxDisp)) 1417 return false; 1418 1419 if (!Br.isCond) 1420 return FixUpUnconditionalBr(MF, Br); 1421 return FixUpConditionalBr(MF, Br); 1422} 1423 1424/// FixUpUnconditionalBr - Fix up an unconditional branch whose destination is 1425/// too far away to fit in its displacement field. If the LR register has been 1426/// spilled in the epilogue, then we can use BL to implement a far jump. 1427/// Otherwise, add an intermediate branch instruction to a branch. 1428bool 1429ARMConstantIslands::FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br) { 1430 MachineInstr *MI = Br.MI; 1431 MachineBasicBlock *MBB = MI->getParent(); 1432 if (!isThumb1) 1433 llvm_unreachable("FixUpUnconditionalBr is Thumb1 only!"); 1434 1435 // Use BL to implement far jump. 1436 Br.MaxDisp = (1 << 21) * 2; 1437 MI->setDesc(TII->get(ARM::tBfar)); 1438 BBSizes[MBB->getNumber()] += 2; 1439 AdjustBBOffsetsAfter(MBB, 2); 1440 HasFarJump = true; 1441 ++NumUBrFixed; 1442 1443 DEBUG(errs() << " Changed B to long jump " << *MI); 1444 1445 return true; 1446} 1447 1448/// FixUpConditionalBr - Fix up a conditional branch whose destination is too 1449/// far away to fit in its displacement field. It is converted to an inverse 1450/// conditional branch + an unconditional branch to the destination. 1451bool 1452ARMConstantIslands::FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br) { 1453 MachineInstr *MI = Br.MI; 1454 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1455 1456 // Add an unconditional branch to the destination and invert the branch 1457 // condition to jump over it: 1458 // blt L1 1459 // => 1460 // bge L2 1461 // b L1 1462 // L2: 1463 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm(); 1464 CC = ARMCC::getOppositeCondition(CC); 1465 unsigned CCReg = MI->getOperand(2).getReg(); 1466 1467 // If the branch is at the end of its MBB and that has a fall-through block, 1468 // direct the updated conditional branch to the fall-through block. Otherwise, 1469 // split the MBB before the next instruction. 1470 MachineBasicBlock *MBB = MI->getParent(); 1471 MachineInstr *BMI = &MBB->back(); 1472 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); 1473 1474 ++NumCBrFixed; 1475 if (BMI != MI) { 1476 if (llvm::next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) && 1477 BMI->getOpcode() == Br.UncondBr) { 1478 // Last MI in the BB is an unconditional branch. Can we simply invert the 1479 // condition and swap destinations: 1480 // beq L1 1481 // b L2 1482 // => 1483 // bne L2 1484 // b L1 1485 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); 1486 if (BBIsInRange(MI, NewDest, Br.MaxDisp)) { 1487 DEBUG(errs() << " Invert Bcc condition and swap its destination with " 1488 << *BMI); 1489 BMI->getOperand(0).setMBB(DestBB); 1490 MI->getOperand(0).setMBB(NewDest); 1491 MI->getOperand(1).setImm(CC); 1492 return true; 1493 } 1494 } 1495 } 1496 1497 if (NeedSplit) { 1498 SplitBlockBeforeInstr(MI); 1499 // No need for the branch to the next block. We're adding an unconditional 1500 // branch to the destination. 1501 int delta = TII->GetInstSizeInBytes(&MBB->back()); 1502 BBSizes[MBB->getNumber()] -= delta; 1503 MachineBasicBlock* SplitBB = llvm::next(MachineFunction::iterator(MBB)); 1504 AdjustBBOffsetsAfter(SplitBB, -delta); 1505 MBB->back().eraseFromParent(); 1506 // BBOffsets[SplitBB] is wrong temporarily, fixed below 1507 } 1508 MachineBasicBlock *NextBB = llvm::next(MachineFunction::iterator(MBB)); 1509 1510 DEBUG(errs() << " Insert B to BB#" << DestBB->getNumber() 1511 << " also invert condition and change dest. to BB#" 1512 << NextBB->getNumber() << "\n"); 1513 1514 // Insert a new conditional branch and a new unconditional branch. 1515 // Also update the ImmBranch as well as adding a new entry for the new branch. 1516 BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode())) 1517 .addMBB(NextBB).addImm(CC).addReg(CCReg); 1518 Br.MI = &MBB->back(); 1519 BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back()); 1520 if (isThumb) 1521 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB) 1522 .addImm(ARMCC::AL).addReg(0); 1523 else 1524 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); 1525 BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back()); 1526 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1527 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1528 1529 // Remove the old conditional branch. It may or may not still be in MBB. 1530 BBSizes[MI->getParent()->getNumber()] -= TII->GetInstSizeInBytes(MI); 1531 MI->eraseFromParent(); 1532 1533 // The net size change is an addition of one unconditional branch. 1534 int delta = TII->GetInstSizeInBytes(&MBB->back()); 1535 AdjustBBOffsetsAfter(MBB, delta); 1536 return true; 1537} 1538 1539/// UndoLRSpillRestore - Remove Thumb push / pop instructions that only spills 1540/// LR / restores LR to pc. FIXME: This is done here because it's only possible 1541/// to do this if tBfar is not used. 1542bool ARMConstantIslands::UndoLRSpillRestore() { 1543 bool MadeChange = false; 1544 for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) { 1545 MachineInstr *MI = PushPopMIs[i]; 1546 // First two operands are predicates. 1547 if (MI->getOpcode() == ARM::tPOP_RET && 1548 MI->getOperand(2).getReg() == ARM::PC && 1549 MI->getNumExplicitOperands() == 3) { 1550 // Create the new insn and copy the predicate from the old. 1551 BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET)) 1552 .addOperand(MI->getOperand(0)) 1553 .addOperand(MI->getOperand(1)); 1554 MI->eraseFromParent(); 1555 MadeChange = true; 1556 } 1557 } 1558 return MadeChange; 1559} 1560 1561bool ARMConstantIslands::OptimizeThumb2Instructions(MachineFunction &MF) { 1562 bool MadeChange = false; 1563 1564 // Shrink ADR and LDR from constantpool. 1565 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 1566 CPUser &U = CPUsers[i]; 1567 unsigned Opcode = U.MI->getOpcode(); 1568 unsigned NewOpc = 0; 1569 unsigned Scale = 1; 1570 unsigned Bits = 0; 1571 switch (Opcode) { 1572 default: break; 1573 case ARM::t2LEApcrel: 1574 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1575 NewOpc = ARM::tLEApcrel; 1576 Bits = 8; 1577 Scale = 4; 1578 } 1579 break; 1580 case ARM::t2LDRpci: 1581 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1582 NewOpc = ARM::tLDRpci; 1583 Bits = 8; 1584 Scale = 4; 1585 } 1586 break; 1587 } 1588 1589 if (!NewOpc) 1590 continue; 1591 1592 unsigned UserOffset = GetOffsetOf(U.MI) + 4; 1593 unsigned MaxOffs = ((1 << Bits) - 1) * Scale; 1594 // FIXME: Check if offset is multiple of scale if scale is not 4. 1595 if (CPEIsInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) { 1596 U.MI->setDesc(TII->get(NewOpc)); 1597 MachineBasicBlock *MBB = U.MI->getParent(); 1598 BBSizes[MBB->getNumber()] -= 2; 1599 AdjustBBOffsetsAfter(MBB, -2); 1600 ++NumT2CPShrunk; 1601 MadeChange = true; 1602 } 1603 } 1604 1605 MadeChange |= OptimizeThumb2Branches(MF); 1606 MadeChange |= OptimizeThumb2JumpTables(MF); 1607 return MadeChange; 1608} 1609 1610bool ARMConstantIslands::OptimizeThumb2Branches(MachineFunction &MF) { 1611 bool MadeChange = false; 1612 1613 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) { 1614 ImmBranch &Br = ImmBranches[i]; 1615 unsigned Opcode = Br.MI->getOpcode(); 1616 unsigned NewOpc = 0; 1617 unsigned Scale = 1; 1618 unsigned Bits = 0; 1619 switch (Opcode) { 1620 default: break; 1621 case ARM::t2B: 1622 NewOpc = ARM::tB; 1623 Bits = 11; 1624 Scale = 2; 1625 break; 1626 case ARM::t2Bcc: { 1627 NewOpc = ARM::tBcc; 1628 Bits = 8; 1629 Scale = 2; 1630 break; 1631 } 1632 } 1633 if (NewOpc) { 1634 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 1635 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1636 if (BBIsInRange(Br.MI, DestBB, MaxOffs)) { 1637 Br.MI->setDesc(TII->get(NewOpc)); 1638 MachineBasicBlock *MBB = Br.MI->getParent(); 1639 BBSizes[MBB->getNumber()] -= 2; 1640 AdjustBBOffsetsAfter(MBB, -2); 1641 ++NumT2BrShrunk; 1642 MadeChange = true; 1643 } 1644 } 1645 1646 Opcode = Br.MI->getOpcode(); 1647 if (Opcode != ARM::tBcc) 1648 continue; 1649 1650 NewOpc = 0; 1651 unsigned PredReg = 0; 1652 ARMCC::CondCodes Pred = llvm::getInstrPredicate(Br.MI, PredReg); 1653 if (Pred == ARMCC::EQ) 1654 NewOpc = ARM::tCBZ; 1655 else if (Pred == ARMCC::NE) 1656 NewOpc = ARM::tCBNZ; 1657 if (!NewOpc) 1658 continue; 1659 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1660 // Check if the distance is within 126. Subtract starting offset by 2 1661 // because the cmp will be eliminated. 1662 unsigned BrOffset = GetOffsetOf(Br.MI) + 4 - 2; 1663 unsigned DestOffset = BBOffsets[DestBB->getNumber()]; 1664 if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) { 1665 MachineBasicBlock::iterator CmpMI = Br.MI; 1666 if (CmpMI != Br.MI->getParent()->begin()) { 1667 --CmpMI; 1668 if (CmpMI->getOpcode() == ARM::tCMPi8) { 1669 unsigned Reg = CmpMI->getOperand(0).getReg(); 1670 Pred = llvm::getInstrPredicate(CmpMI, PredReg); 1671 if (Pred == ARMCC::AL && 1672 CmpMI->getOperand(1).getImm() == 0 && 1673 isARMLowRegister(Reg)) { 1674 MachineBasicBlock *MBB = Br.MI->getParent(); 1675 MachineInstr *NewBR = 1676 BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc)) 1677 .addReg(Reg).addMBB(DestBB,Br.MI->getOperand(0).getTargetFlags()); 1678 CmpMI->eraseFromParent(); 1679 Br.MI->eraseFromParent(); 1680 Br.MI = NewBR; 1681 BBSizes[MBB->getNumber()] -= 2; 1682 AdjustBBOffsetsAfter(MBB, -2); 1683 ++NumCBZ; 1684 MadeChange = true; 1685 } 1686 } 1687 } 1688 } 1689 } 1690 1691 return MadeChange; 1692} 1693 1694/// OptimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller 1695/// jumptables when it's possible. 1696bool ARMConstantIslands::OptimizeThumb2JumpTables(MachineFunction &MF) { 1697 bool MadeChange = false; 1698 1699 // FIXME: After the tables are shrunk, can we get rid some of the 1700 // constantpool tables? 1701 MachineJumpTableInfo *MJTI = MF.getJumpTableInfo(); 1702 if (MJTI == 0) return false; 1703 1704 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1705 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 1706 MachineInstr *MI = T2JumpTables[i]; 1707 const MCInstrDesc &MCID = MI->getDesc(); 1708 unsigned NumOps = MCID.getNumOperands(); 1709 unsigned JTOpIdx = NumOps - (MCID.isPredicable() ? 3 : 2); 1710 MachineOperand JTOP = MI->getOperand(JTOpIdx); 1711 unsigned JTI = JTOP.getIndex(); 1712 assert(JTI < JT.size()); 1713 1714 bool ByteOk = true; 1715 bool HalfWordOk = true; 1716 unsigned JTOffset = GetOffsetOf(MI) + 4; 1717 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1718 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 1719 MachineBasicBlock *MBB = JTBBs[j]; 1720 unsigned DstOffset = BBOffsets[MBB->getNumber()]; 1721 // Negative offset is not ok. FIXME: We should change BB layout to make 1722 // sure all the branches are forward. 1723 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2) 1724 ByteOk = false; 1725 unsigned TBHLimit = ((1<<16)-1)*2; 1726 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit) 1727 HalfWordOk = false; 1728 if (!ByteOk && !HalfWordOk) 1729 break; 1730 } 1731 1732 if (ByteOk || HalfWordOk) { 1733 MachineBasicBlock *MBB = MI->getParent(); 1734 unsigned BaseReg = MI->getOperand(0).getReg(); 1735 bool BaseRegKill = MI->getOperand(0).isKill(); 1736 if (!BaseRegKill) 1737 continue; 1738 unsigned IdxReg = MI->getOperand(1).getReg(); 1739 bool IdxRegKill = MI->getOperand(1).isKill(); 1740 1741 // Scan backwards to find the instruction that defines the base 1742 // register. Due to post-RA scheduling, we can't count on it 1743 // immediately preceding the branch instruction. 1744 MachineBasicBlock::iterator PrevI = MI; 1745 MachineBasicBlock::iterator B = MBB->begin(); 1746 while (PrevI != B && !PrevI->definesRegister(BaseReg)) 1747 --PrevI; 1748 1749 // If for some reason we didn't find it, we can't do anything, so 1750 // just skip this one. 1751 if (!PrevI->definesRegister(BaseReg)) 1752 continue; 1753 1754 MachineInstr *AddrMI = PrevI; 1755 bool OptOk = true; 1756 // Examine the instruction that calculates the jumptable entry address. 1757 // Make sure it only defines the base register and kills any uses 1758 // other than the index register. 1759 for (unsigned k = 0, eee = AddrMI->getNumOperands(); k != eee; ++k) { 1760 const MachineOperand &MO = AddrMI->getOperand(k); 1761 if (!MO.isReg() || !MO.getReg()) 1762 continue; 1763 if (MO.isDef() && MO.getReg() != BaseReg) { 1764 OptOk = false; 1765 break; 1766 } 1767 if (MO.isUse() && !MO.isKill() && MO.getReg() != IdxReg) { 1768 OptOk = false; 1769 break; 1770 } 1771 } 1772 if (!OptOk) 1773 continue; 1774 1775 // Now scan back again to find the tLEApcrel or t2LEApcrelJT instruction 1776 // that gave us the initial base register definition. 1777 for (--PrevI; PrevI != B && !PrevI->definesRegister(BaseReg); --PrevI) 1778 ; 1779 1780 // The instruction should be a tLEApcrel or t2LEApcrelJT; we want 1781 // to delete it as well. 1782 MachineInstr *LeaMI = PrevI; 1783 if ((LeaMI->getOpcode() != ARM::tLEApcrelJT && 1784 LeaMI->getOpcode() != ARM::t2LEApcrelJT) || 1785 LeaMI->getOperand(0).getReg() != BaseReg) 1786 OptOk = false; 1787 1788 if (!OptOk) 1789 continue; 1790 1791 unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT; 1792 MachineInstr *NewJTMI = BuildMI(MBB, MI->getDebugLoc(), TII->get(Opc)) 1793 .addReg(IdxReg, getKillRegState(IdxRegKill)) 1794 .addJumpTableIndex(JTI, JTOP.getTargetFlags()) 1795 .addImm(MI->getOperand(JTOpIdx+1).getImm()); 1796 // FIXME: Insert an "ALIGN" instruction to ensure the next instruction 1797 // is 2-byte aligned. For now, asm printer will fix it up. 1798 unsigned NewSize = TII->GetInstSizeInBytes(NewJTMI); 1799 unsigned OrigSize = TII->GetInstSizeInBytes(AddrMI); 1800 OrigSize += TII->GetInstSizeInBytes(LeaMI); 1801 OrigSize += TII->GetInstSizeInBytes(MI); 1802 1803 AddrMI->eraseFromParent(); 1804 LeaMI->eraseFromParent(); 1805 MI->eraseFromParent(); 1806 1807 int delta = OrigSize - NewSize; 1808 BBSizes[MBB->getNumber()] -= delta; 1809 AdjustBBOffsetsAfter(MBB, -delta); 1810 1811 ++NumTBs; 1812 MadeChange = true; 1813 } 1814 } 1815 1816 return MadeChange; 1817} 1818 1819/// ReorderThumb2JumpTables - Adjust the function's block layout to ensure that 1820/// jump tables always branch forwards, since that's what tbb and tbh need. 1821bool ARMConstantIslands::ReorderThumb2JumpTables(MachineFunction &MF) { 1822 bool MadeChange = false; 1823 1824 MachineJumpTableInfo *MJTI = MF.getJumpTableInfo(); 1825 if (MJTI == 0) return false; 1826 1827 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1828 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 1829 MachineInstr *MI = T2JumpTables[i]; 1830 const MCInstrDesc &MCID = MI->getDesc(); 1831 unsigned NumOps = MCID.getNumOperands(); 1832 unsigned JTOpIdx = NumOps - (MCID.isPredicable() ? 3 : 2); 1833 MachineOperand JTOP = MI->getOperand(JTOpIdx); 1834 unsigned JTI = JTOP.getIndex(); 1835 assert(JTI < JT.size()); 1836 1837 // We prefer if target blocks for the jump table come after the jump 1838 // instruction so we can use TB[BH]. Loop through the target blocks 1839 // and try to adjust them such that that's true. 1840 int JTNumber = MI->getParent()->getNumber(); 1841 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1842 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 1843 MachineBasicBlock *MBB = JTBBs[j]; 1844 int DTNumber = MBB->getNumber(); 1845 1846 if (DTNumber < JTNumber) { 1847 // The destination precedes the switch. Try to move the block forward 1848 // so we have a positive offset. 1849 MachineBasicBlock *NewBB = 1850 AdjustJTTargetBlockForward(MBB, MI->getParent()); 1851 if (NewBB) 1852 MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB); 1853 MadeChange = true; 1854 } 1855 } 1856 } 1857 1858 return MadeChange; 1859} 1860 1861MachineBasicBlock *ARMConstantIslands:: 1862AdjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) 1863{ 1864 MachineFunction &MF = *BB->getParent(); 1865 1866 // If the destination block is terminated by an unconditional branch, 1867 // try to move it; otherwise, create a new block following the jump 1868 // table that branches back to the actual target. This is a very simple 1869 // heuristic. FIXME: We can definitely improve it. 1870 MachineBasicBlock *TBB = 0, *FBB = 0; 1871 SmallVector<MachineOperand, 4> Cond; 1872 SmallVector<MachineOperand, 4> CondPrior; 1873 MachineFunction::iterator BBi = BB; 1874 MachineFunction::iterator OldPrior = prior(BBi); 1875 1876 // If the block terminator isn't analyzable, don't try to move the block 1877 bool B = TII->AnalyzeBranch(*BB, TBB, FBB, Cond); 1878 1879 // If the block ends in an unconditional branch, move it. The prior block 1880 // has to have an analyzable terminator for us to move this one. Be paranoid 1881 // and make sure we're not trying to move the entry block of the function. 1882 if (!B && Cond.empty() && BB != MF.begin() && 1883 !TII->AnalyzeBranch(*OldPrior, TBB, FBB, CondPrior)) { 1884 BB->moveAfter(JTBB); 1885 OldPrior->updateTerminator(); 1886 BB->updateTerminator(); 1887 // Update numbering to account for the block being moved. 1888 MF.RenumberBlocks(); 1889 ++NumJTMoved; 1890 return NULL; 1891 } 1892 1893 // Create a new MBB for the code after the jump BB. 1894 MachineBasicBlock *NewBB = 1895 MF.CreateMachineBasicBlock(JTBB->getBasicBlock()); 1896 MachineFunction::iterator MBBI = JTBB; ++MBBI; 1897 MF.insert(MBBI, NewBB); 1898 1899 // Add an unconditional branch from NewBB to BB. 1900 // There doesn't seem to be meaningful DebugInfo available; this doesn't 1901 // correspond directly to anything in the source. 1902 assert (isThumb2 && "Adjusting for TB[BH] but not in Thumb2?"); 1903 BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)).addMBB(BB) 1904 .addImm(ARMCC::AL).addReg(0); 1905 1906 // Update internal data structures to account for the newly inserted MBB. 1907 MF.RenumberBlocks(NewBB); 1908 1909 // Update the CFG. 1910 NewBB->addSuccessor(BB); 1911 JTBB->removeSuccessor(BB); 1912 JTBB->addSuccessor(NewBB); 1913 1914 ++NumJTInserted; 1915 return NewBB; 1916} 1917