ARMConstantIslandPass.cpp revision 6726b6d75a8b679068a58cb954ba97cf9d1690ba
1//===-- ARMConstantIslandPass.cpp - ARM constant islands --------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains a pass that splits the constant pool up into 'islands' 11// which are scattered through-out the function. This is required due to the 12// limited pc-relative displacements that ARM has. 13// 14//===----------------------------------------------------------------------===// 15 16#define DEBUG_TYPE "arm-cp-islands" 17#include "ARM.h" 18#include "ARMAddressingModes.h" 19#include "ARMMachineFunctionInfo.h" 20#include "ARMInstrInfo.h" 21#include "llvm/CodeGen/MachineConstantPool.h" 22#include "llvm/CodeGen/MachineFunctionPass.h" 23#include "llvm/CodeGen/MachineInstrBuilder.h" 24#include "llvm/CodeGen/MachineJumpTableInfo.h" 25#include "llvm/Target/TargetData.h" 26#include "llvm/Target/TargetMachine.h" 27#include "llvm/Support/Compiler.h" 28#include "llvm/Support/Debug.h" 29#include "llvm/Support/ErrorHandling.h" 30#include "llvm/Support/raw_ostream.h" 31#include "llvm/ADT/SmallSet.h" 32#include "llvm/ADT/SmallVector.h" 33#include "llvm/ADT/STLExtras.h" 34#include "llvm/ADT/Statistic.h" 35#include <algorithm> 36using namespace llvm; 37 38STATISTIC(NumCPEs, "Number of constpool entries"); 39STATISTIC(NumSplit, "Number of uncond branches inserted"); 40STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 41STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 42STATISTIC(NumTBs, "Number of table branches generated"); 43STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk"); 44STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk"); 45 46namespace { 47 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM 48 /// requires constant pool entries to be scattered among the instructions 49 /// inside a function. To do this, it completely ignores the normal LLVM 50 /// constant pool; instead, it places constants wherever it feels like with 51 /// special instructions. 52 /// 53 /// The terminology used in this pass includes: 54 /// Islands - Clumps of constants placed in the function. 55 /// Water - Potential places where an island could be formed. 56 /// CPE - A constant pool entry that has been placed somewhere, which 57 /// tracks a list of users. 58 class ARMConstantIslands : public MachineFunctionPass { 59 /// BBSizes - The size of each MachineBasicBlock in bytes of code, indexed 60 /// by MBB Number. The two-byte pads required for Thumb alignment are 61 /// counted as part of the following block (i.e., the offset and size for 62 /// a padded block will both be ==2 mod 4). 63 std::vector<unsigned> BBSizes; 64 65 /// BBOffsets - the offset of each MBB in bytes, starting from 0. 66 /// The two-byte pads required for Thumb alignment are counted as part of 67 /// the following block. 68 std::vector<unsigned> BBOffsets; 69 70 /// WaterList - A sorted list of basic blocks where islands could be placed 71 /// (i.e. blocks that don't fall through to the following block, due 72 /// to a return, unreachable, or unconditional branch). 73 std::vector<MachineBasicBlock*> WaterList; 74 75 /// NewWaterList - The subset of WaterList that was created since the 76 /// previous iteration by inserting unconditional branches. 77 SmallSet<MachineBasicBlock*, 4> NewWaterList; 78 79 typedef std::vector<MachineBasicBlock*>::iterator water_iterator; 80 81 /// CPUser - One user of a constant pool, keeping the machine instruction 82 /// pointer, the constant pool being referenced, and the max displacement 83 /// allowed from the instruction to the CP. The HighWaterMark records the 84 /// highest basic block where a new CPEntry can be placed. To ensure this 85 /// pass terminates, the CP entries are initially placed at the end of the 86 /// function and then move monotonically to lower addresses. The 87 /// exception to this rule is when the current CP entry for a particular 88 /// CPUser is out of range, but there is another CP entry for the same 89 /// constant value in range. We want to use the existing in-range CP 90 /// entry, but if it later moves out of range, the search for new water 91 /// should resume where it left off. The HighWaterMark is used to record 92 /// that point. 93 struct CPUser { 94 MachineInstr *MI; 95 MachineInstr *CPEMI; 96 MachineBasicBlock *HighWaterMark; 97 unsigned MaxDisp; 98 bool NegOk; 99 bool IsSoImm; 100 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, 101 bool neg, bool soimm) 102 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) { 103 HighWaterMark = CPEMI->getParent(); 104 } 105 }; 106 107 /// CPUsers - Keep track of all of the machine instructions that use various 108 /// constant pools and their max displacement. 109 std::vector<CPUser> CPUsers; 110 111 /// CPEntry - One per constant pool entry, keeping the machine instruction 112 /// pointer, the constpool index, and the number of CPUser's which 113 /// reference this entry. 114 struct CPEntry { 115 MachineInstr *CPEMI; 116 unsigned CPI; 117 unsigned RefCount; 118 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) 119 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} 120 }; 121 122 /// CPEntries - Keep track of all of the constant pool entry machine 123 /// instructions. For each original constpool index (i.e. those that 124 /// existed upon entry to this pass), it keeps a vector of entries. 125 /// Original elements are cloned as we go along; the clones are 126 /// put in the vector of the original element, but have distinct CPIs. 127 std::vector<std::vector<CPEntry> > CPEntries; 128 129 /// ImmBranch - One per immediate branch, keeping the machine instruction 130 /// pointer, conditional or unconditional, the max displacement, 131 /// and (if isCond is true) the corresponding unconditional branch 132 /// opcode. 133 struct ImmBranch { 134 MachineInstr *MI; 135 unsigned MaxDisp : 31; 136 bool isCond : 1; 137 int UncondBr; 138 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr) 139 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} 140 }; 141 142 /// ImmBranches - Keep track of all the immediate branch instructions. 143 /// 144 std::vector<ImmBranch> ImmBranches; 145 146 /// PushPopMIs - Keep track of all the Thumb push / pop instructions. 147 /// 148 SmallVector<MachineInstr*, 4> PushPopMIs; 149 150 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions. 151 SmallVector<MachineInstr*, 4> T2JumpTables; 152 153 /// HasFarJump - True if any far jump instruction has been emitted during 154 /// the branch fix up pass. 155 bool HasFarJump; 156 157 const TargetInstrInfo *TII; 158 const ARMSubtarget *STI; 159 ARMFunctionInfo *AFI; 160 bool isThumb; 161 bool isThumb1; 162 bool isThumb2; 163 public: 164 static char ID; 165 ARMConstantIslands() : MachineFunctionPass(&ID) {} 166 167 virtual bool runOnMachineFunction(MachineFunction &MF); 168 169 virtual const char *getPassName() const { 170 return "ARM constant island placement and branch shortening pass"; 171 } 172 173 private: 174 void DoInitialPlacement(MachineFunction &MF, 175 std::vector<MachineInstr*> &CPEMIs); 176 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 177 void InitialFunctionScan(MachineFunction &MF, 178 const std::vector<MachineInstr*> &CPEMIs); 179 MachineBasicBlock *SplitBlockBeforeInstr(MachineInstr *MI); 180 void UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB); 181 void AdjustBBOffsetsAfter(MachineBasicBlock *BB, int delta); 182 bool DecrementOldEntry(unsigned CPI, MachineInstr* CPEMI); 183 int LookForExistingCPEntry(CPUser& U, unsigned UserOffset); 184 bool LookForWater(CPUser&U, unsigned UserOffset, water_iterator &WaterIter); 185 void CreateNewWater(unsigned CPUserIndex, unsigned UserOffset, 186 MachineBasicBlock *&NewMBB); 187 bool HandleConstantPoolUser(MachineFunction &MF, unsigned CPUserIndex); 188 void RemoveDeadCPEMI(MachineInstr *CPEMI); 189 bool RemoveUnusedCPEntries(); 190 bool CPEIsInRange(MachineInstr *MI, unsigned UserOffset, 191 MachineInstr *CPEMI, unsigned Disp, bool NegOk, 192 bool DoDump = false); 193 bool WaterIsInRange(unsigned UserOffset, MachineBasicBlock *Water, 194 CPUser &U); 195 bool OffsetIsInRange(unsigned UserOffset, unsigned TrialOffset, 196 unsigned Disp, bool NegativeOK, bool IsSoImm = false); 197 bool BBIsInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); 198 bool FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br); 199 bool FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br); 200 bool FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br); 201 bool UndoLRSpillRestore(); 202 bool OptimizeThumb2Instructions(MachineFunction &MF); 203 bool OptimizeThumb2Branches(MachineFunction &MF); 204 bool OptimizeThumb2JumpTables(MachineFunction &MF); 205 206 unsigned GetOffsetOf(MachineInstr *MI) const; 207 void dumpBBs(); 208 void verify(MachineFunction &MF); 209 }; 210 char ARMConstantIslands::ID = 0; 211} 212 213/// verify - check BBOffsets, BBSizes, alignment of islands 214void ARMConstantIslands::verify(MachineFunction &MF) { 215 assert(BBOffsets.size() == BBSizes.size()); 216 for (unsigned i = 1, e = BBOffsets.size(); i != e; ++i) 217 assert(BBOffsets[i-1]+BBSizes[i-1] == BBOffsets[i]); 218 if (!isThumb) 219 return; 220#ifndef NDEBUG 221 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); 222 MBBI != E; ++MBBI) { 223 MachineBasicBlock *MBB = MBBI; 224 if (!MBB->empty() && 225 MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) { 226 unsigned MBBId = MBB->getNumber(); 227 assert((BBOffsets[MBBId]%4 == 0 && BBSizes[MBBId]%4 == 0) || 228 (BBOffsets[MBBId]%4 != 0 && BBSizes[MBBId]%4 != 0)); 229 } 230 } 231#endif 232} 233 234/// print block size and offset information - debugging 235void ARMConstantIslands::dumpBBs() { 236 for (unsigned J = 0, E = BBOffsets.size(); J !=E; ++J) { 237 DEBUG(errs() << "block " << J << " offset " << BBOffsets[J] 238 << " size " << BBSizes[J] << "\n"); 239 } 240} 241 242/// createARMConstantIslandPass - returns an instance of the constpool 243/// island pass. 244FunctionPass *llvm::createARMConstantIslandPass() { 245 return new ARMConstantIslands(); 246} 247 248bool ARMConstantIslands::runOnMachineFunction(MachineFunction &MF) { 249 MachineConstantPool &MCP = *MF.getConstantPool(); 250 251 TII = MF.getTarget().getInstrInfo(); 252 AFI = MF.getInfo<ARMFunctionInfo>(); 253 STI = &MF.getTarget().getSubtarget<ARMSubtarget>(); 254 255 isThumb = AFI->isThumbFunction(); 256 isThumb1 = AFI->isThumb1OnlyFunction(); 257 isThumb2 = AFI->isThumb2Function(); 258 259 HasFarJump = false; 260 261 // Renumber all of the machine basic blocks in the function, guaranteeing that 262 // the numbers agree with the position of the block in the function. 263 MF.RenumberBlocks(); 264 265 // Thumb1 functions containing constant pools get 4-byte alignment. 266 // This is so we can keep exact track of where the alignment padding goes. 267 268 // Set default. Thumb1 function is 2-byte aligned, ARM and Thumb2 are 4-byte 269 // aligned. 270 AFI->setAlign(isThumb1 ? 1U : 2U); 271 272 // Perform the initial placement of the constant pool entries. To start with, 273 // we put them all at the end of the function. 274 std::vector<MachineInstr*> CPEMIs; 275 if (!MCP.isEmpty()) { 276 DoInitialPlacement(MF, CPEMIs); 277 if (isThumb1) 278 AFI->setAlign(2U); 279 } 280 281 /// The next UID to take is the first unused one. 282 AFI->initConstPoolEntryUId(CPEMIs.size()); 283 284 // Do the initial scan of the function, building up information about the 285 // sizes of each block, the location of all the water, and finding all of the 286 // constant pool users. 287 InitialFunctionScan(MF, CPEMIs); 288 CPEMIs.clear(); 289 290 /// Remove dead constant pool entries. 291 RemoveUnusedCPEntries(); 292 293 // Iteratively place constant pool entries and fix up branches until there 294 // is no change. 295 bool MadeChange = false; 296 unsigned NoCPIters = 0, NoBRIters = 0; 297 while (true) { 298 bool CPChange = false; 299 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) 300 CPChange |= HandleConstantPoolUser(MF, i); 301 if (CPChange && ++NoCPIters > 30) 302 llvm_unreachable("Constant Island pass failed to converge!"); 303 DEBUG(dumpBBs()); 304 305 // Clear NewWaterList now. If we split a block for branches, it should 306 // appear as "new water" for the next iteration of constant pool placement. 307 NewWaterList.clear(); 308 309 bool BRChange = false; 310 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) 311 BRChange |= FixUpImmediateBr(MF, ImmBranches[i]); 312 if (BRChange && ++NoBRIters > 30) 313 llvm_unreachable("Branch Fix Up pass failed to converge!"); 314 DEBUG(dumpBBs()); 315 316 if (!CPChange && !BRChange) 317 break; 318 MadeChange = true; 319 } 320 321 // Shrink 32-bit Thumb2 branch, load, and store instructions. 322 if (isThumb2) 323 MadeChange |= OptimizeThumb2Instructions(MF); 324 325 // After a while, this might be made debug-only, but it is not expensive. 326 verify(MF); 327 328 // If LR has been forced spilled and no far jumps (i.e. BL) has been issued. 329 // Undo the spill / restore of LR if possible. 330 if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump()) 331 MadeChange |= UndoLRSpillRestore(); 332 333 BBSizes.clear(); 334 BBOffsets.clear(); 335 WaterList.clear(); 336 CPUsers.clear(); 337 CPEntries.clear(); 338 ImmBranches.clear(); 339 PushPopMIs.clear(); 340 T2JumpTables.clear(); 341 342 return MadeChange; 343} 344 345/// DoInitialPlacement - Perform the initial placement of the constant pool 346/// entries. To start with, we put them all at the end of the function. 347void ARMConstantIslands::DoInitialPlacement(MachineFunction &MF, 348 std::vector<MachineInstr*> &CPEMIs) { 349 // Create the basic block to hold the CPE's. 350 MachineBasicBlock *BB = MF.CreateMachineBasicBlock(); 351 MF.push_back(BB); 352 353 // Add all of the constants from the constant pool to the end block, use an 354 // identity mapping of CPI's to CPE's. 355 const std::vector<MachineConstantPoolEntry> &CPs = 356 MF.getConstantPool()->getConstants(); 357 358 const TargetData &TD = *MF.getTarget().getTargetData(); 359 for (unsigned i = 0, e = CPs.size(); i != e; ++i) { 360 unsigned Size = TD.getTypeAllocSize(CPs[i].getType()); 361 // Verify that all constant pool entries are a multiple of 4 bytes. If not, 362 // we would have to pad them out or something so that instructions stay 363 // aligned. 364 assert((Size & 3) == 0 && "CP Entry not multiple of 4 bytes!"); 365 MachineInstr *CPEMI = 366 BuildMI(BB, DebugLoc::getUnknownLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 367 .addImm(i).addConstantPoolIndex(i).addImm(Size); 368 CPEMIs.push_back(CPEMI); 369 370 // Add a new CPEntry, but no corresponding CPUser yet. 371 std::vector<CPEntry> CPEs; 372 CPEs.push_back(CPEntry(CPEMI, i)); 373 CPEntries.push_back(CPEs); 374 NumCPEs++; 375 DEBUG(errs() << "Moved CPI#" << i << " to end of function as #" << i 376 << "\n"); 377 } 378} 379 380/// BBHasFallthrough - Return true if the specified basic block can fallthrough 381/// into the block immediately after it. 382static bool BBHasFallthrough(MachineBasicBlock *MBB) { 383 // Get the next machine basic block in the function. 384 MachineFunction::iterator MBBI = MBB; 385 if (next(MBBI) == MBB->getParent()->end()) // Can't fall off end of function. 386 return false; 387 388 MachineBasicBlock *NextBB = next(MBBI); 389 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), 390 E = MBB->succ_end(); I != E; ++I) 391 if (*I == NextBB) 392 return true; 393 394 return false; 395} 396 397/// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 398/// look up the corresponding CPEntry. 399ARMConstantIslands::CPEntry 400*ARMConstantIslands::findConstPoolEntry(unsigned CPI, 401 const MachineInstr *CPEMI) { 402 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 403 // Number of entries per constpool index should be small, just do a 404 // linear search. 405 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 406 if (CPEs[i].CPEMI == CPEMI) 407 return &CPEs[i]; 408 } 409 return NULL; 410} 411 412/// InitialFunctionScan - Do the initial scan of the function, building up 413/// information about the sizes of each block, the location of all the water, 414/// and finding all of the constant pool users. 415void ARMConstantIslands::InitialFunctionScan(MachineFunction &MF, 416 const std::vector<MachineInstr*> &CPEMIs) { 417 unsigned Offset = 0; 418 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); 419 MBBI != E; ++MBBI) { 420 MachineBasicBlock &MBB = *MBBI; 421 422 // If this block doesn't fall through into the next MBB, then this is 423 // 'water' that a constant pool island could be placed. 424 if (!BBHasFallthrough(&MBB)) 425 WaterList.push_back(&MBB); 426 427 unsigned MBBSize = 0; 428 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 429 I != E; ++I) { 430 // Add instruction size to MBBSize. 431 MBBSize += TII->GetInstSizeInBytes(I); 432 433 int Opc = I->getOpcode(); 434 if (I->getDesc().isBranch()) { 435 bool isCond = false; 436 unsigned Bits = 0; 437 unsigned Scale = 1; 438 int UOpc = Opc; 439 switch (Opc) { 440 default: 441 continue; // Ignore other JT branches 442 case ARM::tBR_JTr: 443 // A Thumb1 table jump may involve padding; for the offsets to 444 // be right, functions containing these must be 4-byte aligned. 445 AFI->setAlign(2U); 446 if ((Offset+MBBSize)%4 != 0) 447 // FIXME: Add a pseudo ALIGN instruction instead. 448 MBBSize += 2; // padding 449 continue; // Does not get an entry in ImmBranches 450 case ARM::t2BR_JT: 451 T2JumpTables.push_back(I); 452 continue; // Does not get an entry in ImmBranches 453 case ARM::Bcc: 454 isCond = true; 455 UOpc = ARM::B; 456 // Fallthrough 457 case ARM::B: 458 Bits = 24; 459 Scale = 4; 460 break; 461 case ARM::tBcc: 462 isCond = true; 463 UOpc = ARM::tB; 464 Bits = 8; 465 Scale = 2; 466 break; 467 case ARM::tB: 468 Bits = 11; 469 Scale = 2; 470 break; 471 case ARM::t2Bcc: 472 isCond = true; 473 UOpc = ARM::t2B; 474 Bits = 20; 475 Scale = 2; 476 break; 477 case ARM::t2B: 478 Bits = 24; 479 Scale = 2; 480 break; 481 } 482 483 // Record this immediate branch. 484 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 485 ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc)); 486 } 487 488 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) 489 PushPopMIs.push_back(I); 490 491 if (Opc == ARM::CONSTPOOL_ENTRY) 492 continue; 493 494 // Scan the instructions for constant pool operands. 495 for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) 496 if (I->getOperand(op).isCPI()) { 497 // We found one. The addressing mode tells us the max displacement 498 // from the PC that this instruction permits. 499 500 // Basic size info comes from the TSFlags field. 501 unsigned Bits = 0; 502 unsigned Scale = 1; 503 bool NegOk = false; 504 bool IsSoImm = false; 505 506 switch (Opc) { 507 default: 508 llvm_unreachable("Unknown addressing mode for CP reference!"); 509 break; 510 511 // Taking the address of a CP entry. 512 case ARM::LEApcrel: 513 // This takes a SoImm, which is 8 bit immediate rotated. We'll 514 // pretend the maximum offset is 255 * 4. Since each instruction 515 // 4 byte wide, this is always correct. We'llc heck for other 516 // displacements that fits in a SoImm as well. 517 Bits = 8; 518 Scale = 4; 519 NegOk = true; 520 IsSoImm = true; 521 break; 522 case ARM::t2LEApcrel: 523 Bits = 12; 524 NegOk = true; 525 break; 526 case ARM::tLEApcrel: 527 Bits = 8; 528 Scale = 4; 529 break; 530 531 case ARM::LDR: 532 case ARM::LDRcp: 533 case ARM::t2LDRpci: 534 Bits = 12; // +-offset_12 535 NegOk = true; 536 break; 537 538 case ARM::tLDRpci: 539 case ARM::tLDRcp: 540 Bits = 8; 541 Scale = 4; // +(offset_8*4) 542 break; 543 544 case ARM::FLDD: 545 case ARM::FLDS: 546 Bits = 8; 547 Scale = 4; // +-(offset_8*4) 548 NegOk = true; 549 break; 550 } 551 552 // Remember that this is a user of a CP entry. 553 unsigned CPI = I->getOperand(op).getIndex(); 554 MachineInstr *CPEMI = CPEMIs[CPI]; 555 unsigned MaxOffs = ((1 << Bits)-1) * Scale; 556 CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm)); 557 558 // Increment corresponding CPEntry reference count. 559 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 560 assert(CPE && "Cannot find a corresponding CPEntry!"); 561 CPE->RefCount++; 562 563 // Instructions can only use one CP entry, don't bother scanning the 564 // rest of the operands. 565 break; 566 } 567 } 568 569 // In thumb mode, if this block is a constpool island, we may need padding 570 // so it's aligned on 4 byte boundary. 571 if (isThumb && 572 !MBB.empty() && 573 MBB.begin()->getOpcode() == ARM::CONSTPOOL_ENTRY && 574 (Offset%4) != 0) 575 MBBSize += 2; 576 577 BBSizes.push_back(MBBSize); 578 BBOffsets.push_back(Offset); 579 Offset += MBBSize; 580 } 581} 582 583/// GetOffsetOf - Return the current offset of the specified machine instruction 584/// from the start of the function. This offset changes as stuff is moved 585/// around inside the function. 586unsigned ARMConstantIslands::GetOffsetOf(MachineInstr *MI) const { 587 MachineBasicBlock *MBB = MI->getParent(); 588 589 // The offset is composed of two things: the sum of the sizes of all MBB's 590 // before this instruction's block, and the offset from the start of the block 591 // it is in. 592 unsigned Offset = BBOffsets[MBB->getNumber()]; 593 594 // If we're looking for a CONSTPOOL_ENTRY in Thumb, see if this block has 595 // alignment padding, and compensate if so. 596 if (isThumb && 597 MI->getOpcode() == ARM::CONSTPOOL_ENTRY && 598 Offset%4 != 0) 599 Offset += 2; 600 601 // Sum instructions before MI in MBB. 602 for (MachineBasicBlock::iterator I = MBB->begin(); ; ++I) { 603 assert(I != MBB->end() && "Didn't find MI in its own basic block?"); 604 if (&*I == MI) return Offset; 605 Offset += TII->GetInstSizeInBytes(I); 606 } 607} 608 609/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 610/// ID. 611static bool CompareMBBNumbers(const MachineBasicBlock *LHS, 612 const MachineBasicBlock *RHS) { 613 return LHS->getNumber() < RHS->getNumber(); 614} 615 616/// UpdateForInsertedWaterBlock - When a block is newly inserted into the 617/// machine function, it upsets all of the block numbers. Renumber the blocks 618/// and update the arrays that parallel this numbering. 619void ARMConstantIslands::UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB) { 620 // Renumber the MBB's to keep them consequtive. 621 NewBB->getParent()->RenumberBlocks(NewBB); 622 623 // Insert a size into BBSizes to align it properly with the (newly 624 // renumbered) block numbers. 625 BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0); 626 627 // Likewise for BBOffsets. 628 BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0); 629 630 // Next, update WaterList. Specifically, we need to add NewMBB as having 631 // available water after it. 632 water_iterator IP = 633 std::lower_bound(WaterList.begin(), WaterList.end(), NewBB, 634 CompareMBBNumbers); 635 WaterList.insert(IP, NewBB); 636} 637 638 639/// Split the basic block containing MI into two blocks, which are joined by 640/// an unconditional branch. Update data structures and renumber blocks to 641/// account for this change and returns the newly created block. 642MachineBasicBlock *ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr *MI) { 643 MachineBasicBlock *OrigBB = MI->getParent(); 644 MachineFunction &MF = *OrigBB->getParent(); 645 646 // Create a new MBB for the code after the OrigBB. 647 MachineBasicBlock *NewBB = 648 MF.CreateMachineBasicBlock(OrigBB->getBasicBlock()); 649 MachineFunction::iterator MBBI = OrigBB; ++MBBI; 650 MF.insert(MBBI, NewBB); 651 652 // Splice the instructions starting with MI over to NewBB. 653 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 654 655 // Add an unconditional branch from OrigBB to NewBB. 656 // Note the new unconditional branch is not being recorded. 657 // There doesn't seem to be meaningful DebugInfo available; this doesn't 658 // correspond to anything in the source. 659 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B; 660 BuildMI(OrigBB, DebugLoc::getUnknownLoc(), TII->get(Opc)).addMBB(NewBB); 661 NumSplit++; 662 663 // Update the CFG. All succs of OrigBB are now succs of NewBB. 664 while (!OrigBB->succ_empty()) { 665 MachineBasicBlock *Succ = *OrigBB->succ_begin(); 666 OrigBB->removeSuccessor(Succ); 667 NewBB->addSuccessor(Succ); 668 669 // This pass should be run after register allocation, so there should be no 670 // PHI nodes to update. 671 assert((Succ->empty() || Succ->begin()->getOpcode() != TargetInstrInfo::PHI) 672 && "PHI nodes should be eliminated by now!"); 673 } 674 675 // OrigBB branches to NewBB. 676 OrigBB->addSuccessor(NewBB); 677 678 // Update internal data structures to account for the newly inserted MBB. 679 // This is almost the same as UpdateForInsertedWaterBlock, except that 680 // the Water goes after OrigBB, not NewBB. 681 MF.RenumberBlocks(NewBB); 682 683 // Insert a size into BBSizes to align it properly with the (newly 684 // renumbered) block numbers. 685 BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0); 686 687 // Likewise for BBOffsets. 688 BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0); 689 690 // Next, update WaterList. Specifically, we need to add OrigMBB as having 691 // available water after it (but not if it's already there, which happens 692 // when splitting before a conditional branch that is followed by an 693 // unconditional branch - in that case we want to insert NewBB). 694 water_iterator IP = 695 std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB, 696 CompareMBBNumbers); 697 MachineBasicBlock* WaterBB = *IP; 698 if (WaterBB == OrigBB) 699 WaterList.insert(next(IP), NewBB); 700 else 701 WaterList.insert(IP, OrigBB); 702 NewWaterList.insert(OrigBB); 703 704 // Figure out how large the first NewMBB is. (It cannot 705 // contain a constpool_entry or tablejump.) 706 unsigned NewBBSize = 0; 707 for (MachineBasicBlock::iterator I = NewBB->begin(), E = NewBB->end(); 708 I != E; ++I) 709 NewBBSize += TII->GetInstSizeInBytes(I); 710 711 unsigned OrigBBI = OrigBB->getNumber(); 712 unsigned NewBBI = NewBB->getNumber(); 713 // Set the size of NewBB in BBSizes. 714 BBSizes[NewBBI] = NewBBSize; 715 716 // We removed instructions from UserMBB, subtract that off from its size. 717 // Add 2 or 4 to the block to count the unconditional branch we added to it. 718 int delta = isThumb1 ? 2 : 4; 719 BBSizes[OrigBBI] -= NewBBSize - delta; 720 721 // ...and adjust BBOffsets for NewBB accordingly. 722 BBOffsets[NewBBI] = BBOffsets[OrigBBI] + BBSizes[OrigBBI]; 723 724 // All BBOffsets following these blocks must be modified. 725 AdjustBBOffsetsAfter(NewBB, delta); 726 727 return NewBB; 728} 729 730/// OffsetIsInRange - Checks whether UserOffset (the location of a constant pool 731/// reference) is within MaxDisp of TrialOffset (a proposed location of a 732/// constant pool entry). 733bool ARMConstantIslands::OffsetIsInRange(unsigned UserOffset, 734 unsigned TrialOffset, unsigned MaxDisp, 735 bool NegativeOK, bool IsSoImm) { 736 // On Thumb offsets==2 mod 4 are rounded down by the hardware for 737 // purposes of the displacement computation; compensate for that here. 738 // Effectively, the valid range of displacements is 2 bytes smaller for such 739 // references. 740 unsigned TotalAdj = 0; 741 if (isThumb && UserOffset%4 !=0) { 742 UserOffset -= 2; 743 TotalAdj = 2; 744 } 745 // CPEs will be rounded up to a multiple of 4. 746 if (isThumb && TrialOffset%4 != 0) { 747 TrialOffset += 2; 748 TotalAdj += 2; 749 } 750 751 // In Thumb2 mode, later branch adjustments can shift instructions up and 752 // cause alignment change. In the worst case scenario this can cause the 753 // user's effective address to be subtracted by 2 and the CPE's address to 754 // be plus 2. 755 if (isThumb2 && TotalAdj != 4) 756 MaxDisp -= (4 - TotalAdj); 757 758 if (UserOffset <= TrialOffset) { 759 // User before the Trial. 760 if (TrialOffset - UserOffset <= MaxDisp) 761 return true; 762 // FIXME: Make use full range of soimm values. 763 } else if (NegativeOK) { 764 if (UserOffset - TrialOffset <= MaxDisp) 765 return true; 766 // FIXME: Make use full range of soimm values. 767 } 768 return false; 769} 770 771/// WaterIsInRange - Returns true if a CPE placed after the specified 772/// Water (a basic block) will be in range for the specific MI. 773 774bool ARMConstantIslands::WaterIsInRange(unsigned UserOffset, 775 MachineBasicBlock* Water, CPUser &U) { 776 unsigned MaxDisp = U.MaxDisp; 777 unsigned CPEOffset = BBOffsets[Water->getNumber()] + 778 BBSizes[Water->getNumber()]; 779 780 // If the CPE is to be inserted before the instruction, that will raise 781 // the offset of the instruction. 782 if (CPEOffset < UserOffset) 783 UserOffset += U.CPEMI->getOperand(2).getImm(); 784 785 return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, U.NegOk, U.IsSoImm); 786} 787 788/// CPEIsInRange - Returns true if the distance between specific MI and 789/// specific ConstPool entry instruction can fit in MI's displacement field. 790bool ARMConstantIslands::CPEIsInRange(MachineInstr *MI, unsigned UserOffset, 791 MachineInstr *CPEMI, unsigned MaxDisp, 792 bool NegOk, bool DoDump) { 793 unsigned CPEOffset = GetOffsetOf(CPEMI); 794 assert(CPEOffset%4 == 0 && "Misaligned CPE"); 795 796 if (DoDump) { 797 DEBUG(errs() << "User of CPE#" << CPEMI->getOperand(0).getImm() 798 << " max delta=" << MaxDisp 799 << " insn address=" << UserOffset 800 << " CPE address=" << CPEOffset 801 << " offset=" << int(CPEOffset-UserOffset) << "\t" << *MI); 802 } 803 804 return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, NegOk); 805} 806 807#ifndef NDEBUG 808/// BBIsJumpedOver - Return true of the specified basic block's only predecessor 809/// unconditionally branches to its only successor. 810static bool BBIsJumpedOver(MachineBasicBlock *MBB) { 811 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 812 return false; 813 814 MachineBasicBlock *Succ = *MBB->succ_begin(); 815 MachineBasicBlock *Pred = *MBB->pred_begin(); 816 MachineInstr *PredMI = &Pred->back(); 817 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB 818 || PredMI->getOpcode() == ARM::t2B) 819 return PredMI->getOperand(0).getMBB() == Succ; 820 return false; 821} 822#endif // NDEBUG 823 824void ARMConstantIslands::AdjustBBOffsetsAfter(MachineBasicBlock *BB, 825 int delta) { 826 MachineFunction::iterator MBBI = BB; MBBI = next(MBBI); 827 for(unsigned i = BB->getNumber()+1, e = BB->getParent()->getNumBlockIDs(); 828 i < e; ++i) { 829 BBOffsets[i] += delta; 830 // If some existing blocks have padding, adjust the padding as needed, a 831 // bit tricky. delta can be negative so don't use % on that. 832 if (!isThumb) 833 continue; 834 MachineBasicBlock *MBB = MBBI; 835 if (!MBB->empty()) { 836 // Constant pool entries require padding. 837 if (MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) { 838 unsigned OldOffset = BBOffsets[i] - delta; 839 if ((OldOffset%4) == 0 && (BBOffsets[i]%4) != 0) { 840 // add new padding 841 BBSizes[i] += 2; 842 delta += 2; 843 } else if ((OldOffset%4) != 0 && (BBOffsets[i]%4) == 0) { 844 // remove existing padding 845 BBSizes[i] -= 2; 846 delta -= 2; 847 } 848 } 849 // Thumb1 jump tables require padding. They should be at the end; 850 // following unconditional branches are removed by AnalyzeBranch. 851 MachineInstr *ThumbJTMI = prior(MBB->end()); 852 if (ThumbJTMI->getOpcode() == ARM::tBR_JTr) { 853 unsigned NewMIOffset = GetOffsetOf(ThumbJTMI); 854 unsigned OldMIOffset = NewMIOffset - delta; 855 if ((OldMIOffset%4) == 0 && (NewMIOffset%4) != 0) { 856 // remove existing padding 857 BBSizes[i] -= 2; 858 delta -= 2; 859 } else if ((OldMIOffset%4) != 0 && (NewMIOffset%4) == 0) { 860 // add new padding 861 BBSizes[i] += 2; 862 delta += 2; 863 } 864 } 865 if (delta==0) 866 return; 867 } 868 MBBI = next(MBBI); 869 } 870} 871 872/// DecrementOldEntry - find the constant pool entry with index CPI 873/// and instruction CPEMI, and decrement its refcount. If the refcount 874/// becomes 0 remove the entry and instruction. Returns true if we removed 875/// the entry, false if we didn't. 876 877bool ARMConstantIslands::DecrementOldEntry(unsigned CPI, MachineInstr *CPEMI) { 878 // Find the old entry. Eliminate it if it is no longer used. 879 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 880 assert(CPE && "Unexpected!"); 881 if (--CPE->RefCount == 0) { 882 RemoveDeadCPEMI(CPEMI); 883 CPE->CPEMI = NULL; 884 NumCPEs--; 885 return true; 886 } 887 return false; 888} 889 890/// LookForCPEntryInRange - see if the currently referenced CPE is in range; 891/// if not, see if an in-range clone of the CPE is in range, and if so, 892/// change the data structures so the user references the clone. Returns: 893/// 0 = no existing entry found 894/// 1 = entry found, and there were no code insertions or deletions 895/// 2 = entry found, and there were code insertions or deletions 896int ARMConstantIslands::LookForExistingCPEntry(CPUser& U, unsigned UserOffset) 897{ 898 MachineInstr *UserMI = U.MI; 899 MachineInstr *CPEMI = U.CPEMI; 900 901 // Check to see if the CPE is already in-range. 902 if (CPEIsInRange(UserMI, UserOffset, CPEMI, U.MaxDisp, U.NegOk, true)) { 903 DEBUG(errs() << "In range\n"); 904 return 1; 905 } 906 907 // No. Look for previously created clones of the CPE that are in range. 908 unsigned CPI = CPEMI->getOperand(1).getIndex(); 909 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 910 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 911 // We already tried this one 912 if (CPEs[i].CPEMI == CPEMI) 913 continue; 914 // Removing CPEs can leave empty entries, skip 915 if (CPEs[i].CPEMI == NULL) 916 continue; 917 if (CPEIsInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.MaxDisp, U.NegOk)) { 918 DEBUG(errs() << "Replacing CPE#" << CPI << " with CPE#" 919 << CPEs[i].CPI << "\n"); 920 // Point the CPUser node to the replacement 921 U.CPEMI = CPEs[i].CPEMI; 922 // Change the CPI in the instruction operand to refer to the clone. 923 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) 924 if (UserMI->getOperand(j).isCPI()) { 925 UserMI->getOperand(j).setIndex(CPEs[i].CPI); 926 break; 927 } 928 // Adjust the refcount of the clone... 929 CPEs[i].RefCount++; 930 // ...and the original. If we didn't remove the old entry, none of the 931 // addresses changed, so we don't need another pass. 932 return DecrementOldEntry(CPI, CPEMI) ? 2 : 1; 933 } 934 } 935 return 0; 936} 937 938/// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 939/// the specific unconditional branch instruction. 940static inline unsigned getUnconditionalBrDisp(int Opc) { 941 switch (Opc) { 942 case ARM::tB: 943 return ((1<<10)-1)*2; 944 case ARM::t2B: 945 return ((1<<23)-1)*2; 946 default: 947 break; 948 } 949 950 return ((1<<23)-1)*4; 951} 952 953/// LookForWater - Look for an existing entry in the WaterList in which 954/// we can place the CPE referenced from U so it's within range of U's MI. 955/// Returns true if found, false if not. If it returns true, WaterIter 956/// is set to the WaterList entry. For Thumb, prefer water that will not 957/// introduce padding to water that will. To ensure that this pass 958/// terminates, the CPE location for a particular CPUser is only allowed to 959/// move to a lower address, so search backward from the end of the list and 960/// prefer the first water that is in range. 961bool ARMConstantIslands::LookForWater(CPUser &U, unsigned UserOffset, 962 water_iterator &WaterIter) { 963 if (WaterList.empty()) 964 return false; 965 966 bool FoundWaterThatWouldPad = false; 967 water_iterator IPThatWouldPad; 968 for (water_iterator IP = prior(WaterList.end()), 969 B = WaterList.begin();; --IP) { 970 MachineBasicBlock* WaterBB = *IP; 971 // Check if water is in range and is either at a lower address than the 972 // current "high water mark" or a new water block that was created since 973 // the previous iteration by inserting an unconditional branch. In the 974 // latter case, we want to allow resetting the high water mark back to 975 // this new water since we haven't seen it before. Inserting branches 976 // should be relatively uncommon and when it does happen, we want to be 977 // sure to take advantage of it for all the CPEs near that block, so that 978 // we don't insert more branches than necessary. 979 if (WaterIsInRange(UserOffset, WaterBB, U) && 980 (WaterBB->getNumber() < U.HighWaterMark->getNumber() || 981 NewWaterList.count(WaterBB))) { 982 unsigned WBBId = WaterBB->getNumber(); 983 if (isThumb && 984 (BBOffsets[WBBId] + BBSizes[WBBId])%4 != 0) { 985 // This is valid Water, but would introduce padding. Remember 986 // it in case we don't find any Water that doesn't do this. 987 if (!FoundWaterThatWouldPad) { 988 FoundWaterThatWouldPad = true; 989 IPThatWouldPad = IP; 990 } 991 } else { 992 WaterIter = IP; 993 return true; 994 } 995 } 996 if (IP == B) 997 break; 998 } 999 if (FoundWaterThatWouldPad) { 1000 WaterIter = IPThatWouldPad; 1001 return true; 1002 } 1003 return false; 1004} 1005 1006/// CreateNewWater - No existing WaterList entry will work for 1007/// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 1008/// block is used if in range, and the conditional branch munged so control 1009/// flow is correct. Otherwise the block is split to create a hole with an 1010/// unconditional branch around it. In either case NewMBB is set to a 1011/// block following which the new island can be inserted (the WaterList 1012/// is not adjusted). 1013void ARMConstantIslands::CreateNewWater(unsigned CPUserIndex, 1014 unsigned UserOffset, 1015 MachineBasicBlock *&NewMBB) { 1016 CPUser &U = CPUsers[CPUserIndex]; 1017 MachineInstr *UserMI = U.MI; 1018 MachineInstr *CPEMI = U.CPEMI; 1019 MachineBasicBlock *UserMBB = UserMI->getParent(); 1020 unsigned OffsetOfNextBlock = BBOffsets[UserMBB->getNumber()] + 1021 BBSizes[UserMBB->getNumber()]; 1022 assert(OffsetOfNextBlock== BBOffsets[UserMBB->getNumber()+1]); 1023 1024 // If the block does not end in an unconditional branch already, and if the 1025 // end of the block is within range, make new water there. (The addition 1026 // below is for the unconditional branch we will be adding: 4 bytes on ARM + 1027 // Thumb2, 2 on Thumb1. Possible Thumb1 alignment padding is allowed for 1028 // inside OffsetIsInRange. 1029 if (BBHasFallthrough(UserMBB) && 1030 OffsetIsInRange(UserOffset, OffsetOfNextBlock + (isThumb1 ? 2: 4), 1031 U.MaxDisp, U.NegOk, U.IsSoImm)) { 1032 DEBUG(errs() << "Split at end of block\n"); 1033 if (&UserMBB->back() == UserMI) 1034 assert(BBHasFallthrough(UserMBB) && "Expected a fallthrough BB!"); 1035 NewMBB = next(MachineFunction::iterator(UserMBB)); 1036 // Add an unconditional branch from UserMBB to fallthrough block. 1037 // Record it for branch lengthening; this new branch will not get out of 1038 // range, but if the preceding conditional branch is out of range, the 1039 // targets will be exchanged, and the altered branch may be out of 1040 // range, so the machinery has to know about it. 1041 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B; 1042 BuildMI(UserMBB, DebugLoc::getUnknownLoc(), 1043 TII->get(UncondBr)).addMBB(NewMBB); 1044 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 1045 ImmBranches.push_back(ImmBranch(&UserMBB->back(), 1046 MaxDisp, false, UncondBr)); 1047 int delta = isThumb1 ? 2 : 4; 1048 BBSizes[UserMBB->getNumber()] += delta; 1049 AdjustBBOffsetsAfter(UserMBB, delta); 1050 } else { 1051 // What a big block. Find a place within the block to split it. 1052 // This is a little tricky on Thumb1 since instructions are 2 bytes 1053 // and constant pool entries are 4 bytes: if instruction I references 1054 // island CPE, and instruction I+1 references CPE', it will 1055 // not work well to put CPE as far forward as possible, since then 1056 // CPE' cannot immediately follow it (that location is 2 bytes 1057 // farther away from I+1 than CPE was from I) and we'd need to create 1058 // a new island. So, we make a first guess, then walk through the 1059 // instructions between the one currently being looked at and the 1060 // possible insertion point, and make sure any other instructions 1061 // that reference CPEs will be able to use the same island area; 1062 // if not, we back up the insertion point. 1063 1064 // The 4 in the following is for the unconditional branch we'll be 1065 // inserting (allows for long branch on Thumb1). Alignment of the 1066 // island is handled inside OffsetIsInRange. 1067 unsigned BaseInsertOffset = UserOffset + U.MaxDisp -4; 1068 // This could point off the end of the block if we've already got 1069 // constant pool entries following this block; only the last one is 1070 // in the water list. Back past any possible branches (allow for a 1071 // conditional and a maximally long unconditional). 1072 if (BaseInsertOffset >= BBOffsets[UserMBB->getNumber()+1]) 1073 BaseInsertOffset = BBOffsets[UserMBB->getNumber()+1] - 1074 (isThumb1 ? 6 : 8); 1075 unsigned EndInsertOffset = BaseInsertOffset + 1076 CPEMI->getOperand(2).getImm(); 1077 MachineBasicBlock::iterator MI = UserMI; 1078 ++MI; 1079 unsigned CPUIndex = CPUserIndex+1; 1080 for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI); 1081 Offset < BaseInsertOffset; 1082 Offset += TII->GetInstSizeInBytes(MI), 1083 MI = next(MI)) { 1084 if (CPUIndex < CPUsers.size() && CPUsers[CPUIndex].MI == MI) { 1085 CPUser &U = CPUsers[CPUIndex]; 1086 if (!OffsetIsInRange(Offset, EndInsertOffset, 1087 U.MaxDisp, U.NegOk, U.IsSoImm)) { 1088 BaseInsertOffset -= (isThumb1 ? 2 : 4); 1089 EndInsertOffset -= (isThumb1 ? 2 : 4); 1090 } 1091 // This is overly conservative, as we don't account for CPEMIs 1092 // being reused within the block, but it doesn't matter much. 1093 EndInsertOffset += CPUsers[CPUIndex].CPEMI->getOperand(2).getImm(); 1094 CPUIndex++; 1095 } 1096 } 1097 DEBUG(errs() << "Split in middle of big block\n"); 1098 NewMBB = SplitBlockBeforeInstr(prior(MI)); 1099 } 1100} 1101 1102/// HandleConstantPoolUser - Analyze the specified user, checking to see if it 1103/// is out-of-range. If so, pick up the constant pool value and move it some 1104/// place in-range. Return true if we changed any addresses (thus must run 1105/// another pass of branch lengthening), false otherwise. 1106bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction &MF, 1107 unsigned CPUserIndex) { 1108 CPUser &U = CPUsers[CPUserIndex]; 1109 MachineInstr *UserMI = U.MI; 1110 MachineInstr *CPEMI = U.CPEMI; 1111 unsigned CPI = CPEMI->getOperand(1).getIndex(); 1112 unsigned Size = CPEMI->getOperand(2).getImm(); 1113 // Compute this only once, it's expensive. The 4 or 8 is the value the 1114 // hardware keeps in the PC. 1115 unsigned UserOffset = GetOffsetOf(UserMI) + (isThumb ? 4 : 8); 1116 1117 // See if the current entry is within range, or there is a clone of it 1118 // in range. 1119 int result = LookForExistingCPEntry(U, UserOffset); 1120 if (result==1) return false; 1121 else if (result==2) return true; 1122 1123 // No existing clone of this CPE is within range. 1124 // We will be generating a new clone. Get a UID for it. 1125 unsigned ID = AFI->createConstPoolEntryUId(); 1126 1127 // Look for water where we can place this CPE. 1128 MachineBasicBlock *NewIsland = MF.CreateMachineBasicBlock(); 1129 MachineBasicBlock *NewMBB; 1130 water_iterator IP; 1131 if (LookForWater(U, UserOffset, IP)) { 1132 DEBUG(errs() << "found water in range\n"); 1133 MachineBasicBlock *WaterBB = *IP; 1134 1135 // If the original WaterList entry was "new water" on this iteration, 1136 // propagate that to the new island. This is just keeping NewWaterList 1137 // updated to match the WaterList, which will be updated below. 1138 if (NewWaterList.count(WaterBB)) { 1139 NewWaterList.erase(WaterBB); 1140 NewWaterList.insert(NewIsland); 1141 } 1142 // The new CPE goes before the following block (NewMBB). 1143 NewMBB = next(MachineFunction::iterator(WaterBB)); 1144 1145 } else { 1146 // No water found. 1147 DEBUG(errs() << "No water found\n"); 1148 CreateNewWater(CPUserIndex, UserOffset, NewMBB); 1149 1150 // SplitBlockBeforeInstr adds to WaterList, which is important when it is 1151 // called while handling branches so that the water will be seen on the 1152 // next iteration for constant pools, but in this context, we don't want 1153 // it. Check for this so it will be removed from the WaterList. 1154 // Also remove any entry from NewWaterList. 1155 MachineBasicBlock *WaterBB = prior(MachineFunction::iterator(NewMBB)); 1156 IP = std::find(WaterList.begin(), WaterList.end(), WaterBB); 1157 if (IP != WaterList.end()) 1158 NewWaterList.erase(WaterBB); 1159 1160 // We are adding new water. Update NewWaterList. 1161 NewWaterList.insert(NewIsland); 1162 } 1163 1164 // Remove the original WaterList entry; we want subsequent insertions in 1165 // this vicinity to go after the one we're about to insert. This 1166 // considerably reduces the number of times we have to move the same CPE 1167 // more than once and is also important to ensure the algorithm terminates. 1168 if (IP != WaterList.end()) 1169 WaterList.erase(IP); 1170 1171 // Okay, we know we can put an island before NewMBB now, do it! 1172 MF.insert(NewMBB, NewIsland); 1173 1174 // Update internal data structures to account for the newly inserted MBB. 1175 UpdateForInsertedWaterBlock(NewIsland); 1176 1177 // Decrement the old entry, and remove it if refcount becomes 0. 1178 DecrementOldEntry(CPI, CPEMI); 1179 1180 // Now that we have an island to add the CPE to, clone the original CPE and 1181 // add it to the island. 1182 U.HighWaterMark = NewIsland; 1183 U.CPEMI = BuildMI(NewIsland, DebugLoc::getUnknownLoc(), 1184 TII->get(ARM::CONSTPOOL_ENTRY)) 1185 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size); 1186 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1187 NumCPEs++; 1188 1189 BBOffsets[NewIsland->getNumber()] = BBOffsets[NewMBB->getNumber()]; 1190 // Compensate for .align 2 in thumb mode. 1191 if (isThumb && BBOffsets[NewIsland->getNumber()]%4 != 0) 1192 Size += 2; 1193 // Increase the size of the island block to account for the new entry. 1194 BBSizes[NewIsland->getNumber()] += Size; 1195 AdjustBBOffsetsAfter(NewIsland, Size); 1196 1197 // Finally, change the CPI in the instruction operand to be ID. 1198 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) 1199 if (UserMI->getOperand(i).isCPI()) { 1200 UserMI->getOperand(i).setIndex(ID); 1201 break; 1202 } 1203 1204 DEBUG(errs() << " Moved CPE to #" << ID << " CPI=" << CPI 1205 << '\t' << *UserMI); 1206 1207 return true; 1208} 1209 1210/// RemoveDeadCPEMI - Remove a dead constant pool entry instruction. Update 1211/// sizes and offsets of impacted basic blocks. 1212void ARMConstantIslands::RemoveDeadCPEMI(MachineInstr *CPEMI) { 1213 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1214 unsigned Size = CPEMI->getOperand(2).getImm(); 1215 CPEMI->eraseFromParent(); 1216 BBSizes[CPEBB->getNumber()] -= Size; 1217 // All succeeding offsets have the current size value added in, fix this. 1218 if (CPEBB->empty()) { 1219 // In thumb1 mode, the size of island may be padded by two to compensate for 1220 // the alignment requirement. Then it will now be 2 when the block is 1221 // empty, so fix this. 1222 // All succeeding offsets have the current size value added in, fix this. 1223 if (BBSizes[CPEBB->getNumber()] != 0) { 1224 Size += BBSizes[CPEBB->getNumber()]; 1225 BBSizes[CPEBB->getNumber()] = 0; 1226 } 1227 } 1228 AdjustBBOffsetsAfter(CPEBB, -Size); 1229 // An island has only one predecessor BB and one successor BB. Check if 1230 // this BB's predecessor jumps directly to this BB's successor. This 1231 // shouldn't happen currently. 1232 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); 1233 // FIXME: remove the empty blocks after all the work is done? 1234} 1235 1236/// RemoveUnusedCPEntries - Remove constant pool entries whose refcounts 1237/// are zero. 1238bool ARMConstantIslands::RemoveUnusedCPEntries() { 1239 unsigned MadeChange = false; 1240 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 1241 std::vector<CPEntry> &CPEs = CPEntries[i]; 1242 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { 1243 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { 1244 RemoveDeadCPEMI(CPEs[j].CPEMI); 1245 CPEs[j].CPEMI = NULL; 1246 MadeChange = true; 1247 } 1248 } 1249 } 1250 return MadeChange; 1251} 1252 1253/// BBIsInRange - Returns true if the distance between specific MI and 1254/// specific BB can fit in MI's displacement field. 1255bool ARMConstantIslands::BBIsInRange(MachineInstr *MI,MachineBasicBlock *DestBB, 1256 unsigned MaxDisp) { 1257 unsigned PCAdj = isThumb ? 4 : 8; 1258 unsigned BrOffset = GetOffsetOf(MI) + PCAdj; 1259 unsigned DestOffset = BBOffsets[DestBB->getNumber()]; 1260 1261 DEBUG(errs() << "Branch of destination BB#" << DestBB->getNumber() 1262 << " from BB#" << MI->getParent()->getNumber() 1263 << " max delta=" << MaxDisp 1264 << " from " << GetOffsetOf(MI) << " to " << DestOffset 1265 << " offset " << int(DestOffset-BrOffset) << "\t" << *MI); 1266 1267 if (BrOffset <= DestOffset) { 1268 // Branch before the Dest. 1269 if (DestOffset-BrOffset <= MaxDisp) 1270 return true; 1271 } else { 1272 if (BrOffset-DestOffset <= MaxDisp) 1273 return true; 1274 } 1275 return false; 1276} 1277 1278/// FixUpImmediateBr - Fix up an immediate branch whose destination is too far 1279/// away to fit in its displacement field. 1280bool ARMConstantIslands::FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br) { 1281 MachineInstr *MI = Br.MI; 1282 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1283 1284 // Check to see if the DestBB is already in-range. 1285 if (BBIsInRange(MI, DestBB, Br.MaxDisp)) 1286 return false; 1287 1288 if (!Br.isCond) 1289 return FixUpUnconditionalBr(MF, Br); 1290 return FixUpConditionalBr(MF, Br); 1291} 1292 1293/// FixUpUnconditionalBr - Fix up an unconditional branch whose destination is 1294/// too far away to fit in its displacement field. If the LR register has been 1295/// spilled in the epilogue, then we can use BL to implement a far jump. 1296/// Otherwise, add an intermediate branch instruction to a branch. 1297bool 1298ARMConstantIslands::FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br) { 1299 MachineInstr *MI = Br.MI; 1300 MachineBasicBlock *MBB = MI->getParent(); 1301 if (!isThumb1) 1302 llvm_unreachable("FixUpUnconditionalBr is Thumb1 only!"); 1303 1304 // Use BL to implement far jump. 1305 Br.MaxDisp = (1 << 21) * 2; 1306 MI->setDesc(TII->get(ARM::tBfar)); 1307 BBSizes[MBB->getNumber()] += 2; 1308 AdjustBBOffsetsAfter(MBB, 2); 1309 HasFarJump = true; 1310 NumUBrFixed++; 1311 1312 DEBUG(errs() << " Changed B to long jump " << *MI); 1313 1314 return true; 1315} 1316 1317/// FixUpConditionalBr - Fix up a conditional branch whose destination is too 1318/// far away to fit in its displacement field. It is converted to an inverse 1319/// conditional branch + an unconditional branch to the destination. 1320bool 1321ARMConstantIslands::FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br) { 1322 MachineInstr *MI = Br.MI; 1323 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1324 1325 // Add an unconditional branch to the destination and invert the branch 1326 // condition to jump over it: 1327 // blt L1 1328 // => 1329 // bge L2 1330 // b L1 1331 // L2: 1332 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm(); 1333 CC = ARMCC::getOppositeCondition(CC); 1334 unsigned CCReg = MI->getOperand(2).getReg(); 1335 1336 // If the branch is at the end of its MBB and that has a fall-through block, 1337 // direct the updated conditional branch to the fall-through block. Otherwise, 1338 // split the MBB before the next instruction. 1339 MachineBasicBlock *MBB = MI->getParent(); 1340 MachineInstr *BMI = &MBB->back(); 1341 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); 1342 1343 NumCBrFixed++; 1344 if (BMI != MI) { 1345 if (next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) && 1346 BMI->getOpcode() == Br.UncondBr) { 1347 // Last MI in the BB is an unconditional branch. Can we simply invert the 1348 // condition and swap destinations: 1349 // beq L1 1350 // b L2 1351 // => 1352 // bne L2 1353 // b L1 1354 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); 1355 if (BBIsInRange(MI, NewDest, Br.MaxDisp)) { 1356 DEBUG(errs() << " Invert Bcc condition and swap its destination with " 1357 << *BMI); 1358 BMI->getOperand(0).setMBB(DestBB); 1359 MI->getOperand(0).setMBB(NewDest); 1360 MI->getOperand(1).setImm(CC); 1361 return true; 1362 } 1363 } 1364 } 1365 1366 if (NeedSplit) { 1367 SplitBlockBeforeInstr(MI); 1368 // No need for the branch to the next block. We're adding an unconditional 1369 // branch to the destination. 1370 int delta = TII->GetInstSizeInBytes(&MBB->back()); 1371 BBSizes[MBB->getNumber()] -= delta; 1372 MachineBasicBlock* SplitBB = next(MachineFunction::iterator(MBB)); 1373 AdjustBBOffsetsAfter(SplitBB, -delta); 1374 MBB->back().eraseFromParent(); 1375 // BBOffsets[SplitBB] is wrong temporarily, fixed below 1376 } 1377 MachineBasicBlock *NextBB = next(MachineFunction::iterator(MBB)); 1378 1379 DEBUG(errs() << " Insert B to BB#" << DestBB->getNumber() 1380 << " also invert condition and change dest. to BB#" 1381 << NextBB->getNumber() << "\n"); 1382 1383 // Insert a new conditional branch and a new unconditional branch. 1384 // Also update the ImmBranch as well as adding a new entry for the new branch. 1385 BuildMI(MBB, DebugLoc::getUnknownLoc(), 1386 TII->get(MI->getOpcode())) 1387 .addMBB(NextBB).addImm(CC).addReg(CCReg); 1388 Br.MI = &MBB->back(); 1389 BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back()); 1390 BuildMI(MBB, DebugLoc::getUnknownLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); 1391 BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back()); 1392 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1393 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1394 1395 // Remove the old conditional branch. It may or may not still be in MBB. 1396 BBSizes[MI->getParent()->getNumber()] -= TII->GetInstSizeInBytes(MI); 1397 MI->eraseFromParent(); 1398 1399 // The net size change is an addition of one unconditional branch. 1400 int delta = TII->GetInstSizeInBytes(&MBB->back()); 1401 AdjustBBOffsetsAfter(MBB, delta); 1402 return true; 1403} 1404 1405/// UndoLRSpillRestore - Remove Thumb push / pop instructions that only spills 1406/// LR / restores LR to pc. FIXME: This is done here because it's only possible 1407/// to do this if tBfar is not used. 1408bool ARMConstantIslands::UndoLRSpillRestore() { 1409 bool MadeChange = false; 1410 for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) { 1411 MachineInstr *MI = PushPopMIs[i]; 1412 // First two operands are predicates, the third is a zero since there 1413 // is no writeback. 1414 if (MI->getOpcode() == ARM::tPOP_RET && 1415 MI->getOperand(3).getReg() == ARM::PC && 1416 MI->getNumExplicitOperands() == 4) { 1417 BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET)); 1418 MI->eraseFromParent(); 1419 MadeChange = true; 1420 } 1421 } 1422 return MadeChange; 1423} 1424 1425bool ARMConstantIslands::OptimizeThumb2Instructions(MachineFunction &MF) { 1426 bool MadeChange = false; 1427 1428 // Shrink ADR and LDR from constantpool. 1429 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 1430 CPUser &U = CPUsers[i]; 1431 unsigned Opcode = U.MI->getOpcode(); 1432 unsigned NewOpc = 0; 1433 unsigned Scale = 1; 1434 unsigned Bits = 0; 1435 switch (Opcode) { 1436 default: break; 1437 case ARM::t2LEApcrel: 1438 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1439 NewOpc = ARM::tLEApcrel; 1440 Bits = 8; 1441 Scale = 4; 1442 } 1443 break; 1444 case ARM::t2LDRpci: 1445 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1446 NewOpc = ARM::tLDRpci; 1447 Bits = 8; 1448 Scale = 4; 1449 } 1450 break; 1451 } 1452 1453 if (!NewOpc) 1454 continue; 1455 1456 unsigned UserOffset = GetOffsetOf(U.MI) + 4; 1457 unsigned MaxOffs = ((1 << Bits) - 1) * Scale; 1458 // FIXME: Check if offset is multiple of scale if scale is not 4. 1459 if (CPEIsInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) { 1460 U.MI->setDesc(TII->get(NewOpc)); 1461 MachineBasicBlock *MBB = U.MI->getParent(); 1462 BBSizes[MBB->getNumber()] -= 2; 1463 AdjustBBOffsetsAfter(MBB, -2); 1464 ++NumT2CPShrunk; 1465 MadeChange = true; 1466 } 1467 } 1468 1469 MadeChange |= OptimizeThumb2Branches(MF); 1470 MadeChange |= OptimizeThumb2JumpTables(MF); 1471 return MadeChange; 1472} 1473 1474bool ARMConstantIslands::OptimizeThumb2Branches(MachineFunction &MF) { 1475 bool MadeChange = false; 1476 1477 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) { 1478 ImmBranch &Br = ImmBranches[i]; 1479 unsigned Opcode = Br.MI->getOpcode(); 1480 unsigned NewOpc = 0; 1481 unsigned Scale = 1; 1482 unsigned Bits = 0; 1483 switch (Opcode) { 1484 default: break; 1485 case ARM::t2B: 1486 NewOpc = ARM::tB; 1487 Bits = 11; 1488 Scale = 2; 1489 break; 1490 case ARM::t2Bcc: 1491 NewOpc = ARM::tBcc; 1492 Bits = 8; 1493 Scale = 2; 1494 break; 1495 } 1496 if (!NewOpc) 1497 continue; 1498 1499 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 1500 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1501 if (BBIsInRange(Br.MI, DestBB, MaxOffs)) { 1502 Br.MI->setDesc(TII->get(NewOpc)); 1503 MachineBasicBlock *MBB = Br.MI->getParent(); 1504 BBSizes[MBB->getNumber()] -= 2; 1505 AdjustBBOffsetsAfter(MBB, -2); 1506 ++NumT2BrShrunk; 1507 MadeChange = true; 1508 } 1509 } 1510 1511 return MadeChange; 1512} 1513 1514 1515/// OptimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller 1516/// jumptables when it's possible. 1517bool ARMConstantIslands::OptimizeThumb2JumpTables(MachineFunction &MF) { 1518 bool MadeChange = false; 1519 1520 // FIXME: After the tables are shrunk, can we get rid some of the 1521 // constantpool tables? 1522 const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo(); 1523 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1524 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 1525 MachineInstr *MI = T2JumpTables[i]; 1526 const TargetInstrDesc &TID = MI->getDesc(); 1527 unsigned NumOps = TID.getNumOperands(); 1528 unsigned JTOpIdx = NumOps - (TID.isPredicable() ? 3 : 2); 1529 MachineOperand JTOP = MI->getOperand(JTOpIdx); 1530 unsigned JTI = JTOP.getIndex(); 1531 assert(JTI < JT.size()); 1532 1533 bool ByteOk = true; 1534 bool HalfWordOk = true; 1535 unsigned JTOffset = GetOffsetOf(MI) + 4; 1536 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1537 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 1538 MachineBasicBlock *MBB = JTBBs[j]; 1539 unsigned DstOffset = BBOffsets[MBB->getNumber()]; 1540 // Negative offset is not ok. FIXME: We should change BB layout to make 1541 // sure all the branches are forward. 1542 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2) 1543 ByteOk = false; 1544 unsigned TBHLimit = ((1<<16)-1)*2; 1545 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit) 1546 HalfWordOk = false; 1547 if (!ByteOk && !HalfWordOk) 1548 break; 1549 } 1550 1551 if (ByteOk || HalfWordOk) { 1552 MachineBasicBlock *MBB = MI->getParent(); 1553 unsigned BaseReg = MI->getOperand(0).getReg(); 1554 bool BaseRegKill = MI->getOperand(0).isKill(); 1555 if (!BaseRegKill) 1556 continue; 1557 unsigned IdxReg = MI->getOperand(1).getReg(); 1558 bool IdxRegKill = MI->getOperand(1).isKill(); 1559 MachineBasicBlock::iterator PrevI = MI; 1560 if (PrevI == MBB->begin()) 1561 continue; 1562 1563 MachineInstr *AddrMI = --PrevI; 1564 bool OptOk = true; 1565 // Examine the instruction that calculate the jumptable entry address. 1566 // If it's not the one just before the t2BR_JT, we won't delete it, then 1567 // it's not worth doing the optimization. 1568 for (unsigned k = 0, eee = AddrMI->getNumOperands(); k != eee; ++k) { 1569 const MachineOperand &MO = AddrMI->getOperand(k); 1570 if (!MO.isReg() || !MO.getReg()) 1571 continue; 1572 if (MO.isDef() && MO.getReg() != BaseReg) { 1573 OptOk = false; 1574 break; 1575 } 1576 if (MO.isUse() && !MO.isKill() && MO.getReg() != IdxReg) { 1577 OptOk = false; 1578 break; 1579 } 1580 } 1581 if (!OptOk) 1582 continue; 1583 1584 // The previous instruction should be a tLEApcrel or t2LEApcrelJT, we want 1585 // to delete it as well. 1586 MachineInstr *LeaMI = --PrevI; 1587 if ((LeaMI->getOpcode() != ARM::tLEApcrelJT && 1588 LeaMI->getOpcode() != ARM::t2LEApcrelJT) || 1589 LeaMI->getOperand(0).getReg() != BaseReg) 1590 OptOk = false; 1591 1592 if (!OptOk) 1593 continue; 1594 1595 unsigned Opc = ByteOk ? ARM::t2TBB : ARM::t2TBH; 1596 MachineInstr *NewJTMI = BuildMI(MBB, MI->getDebugLoc(), TII->get(Opc)) 1597 .addReg(IdxReg, getKillRegState(IdxRegKill)) 1598 .addJumpTableIndex(JTI, JTOP.getTargetFlags()) 1599 .addImm(MI->getOperand(JTOpIdx+1).getImm()); 1600 // FIXME: Insert an "ALIGN" instruction to ensure the next instruction 1601 // is 2-byte aligned. For now, asm printer will fix it up. 1602 unsigned NewSize = TII->GetInstSizeInBytes(NewJTMI); 1603 unsigned OrigSize = TII->GetInstSizeInBytes(AddrMI); 1604 OrigSize += TII->GetInstSizeInBytes(LeaMI); 1605 OrigSize += TII->GetInstSizeInBytes(MI); 1606 1607 AddrMI->eraseFromParent(); 1608 LeaMI->eraseFromParent(); 1609 MI->eraseFromParent(); 1610 1611 int delta = OrigSize - NewSize; 1612 BBSizes[MBB->getNumber()] -= delta; 1613 AdjustBBOffsetsAfter(MBB, -delta); 1614 1615 ++NumTBs; 1616 MadeChange = true; 1617 } 1618 } 1619 1620 return MadeChange; 1621} 1622