ARMConstantIslandPass.cpp revision 7a465250564d2ae0cc53ebe58732a751daa43e8d
1//===-- ARMConstantIslandPass.cpp - ARM constant islands ------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains a pass that splits the constant pool up into 'islands' 11// which are scattered through-out the function. This is required due to the 12// limited pc-relative displacements that ARM has. 13// 14//===----------------------------------------------------------------------===// 15 16#define DEBUG_TYPE "arm-cp-islands" 17#include "ARM.h" 18#include "ARMMachineFunctionInfo.h" 19#include "ARMInstrInfo.h" 20#include "Thumb2InstrInfo.h" 21#include "MCTargetDesc/ARMAddressingModes.h" 22#include "llvm/CodeGen/MachineConstantPool.h" 23#include "llvm/CodeGen/MachineFunctionPass.h" 24#include "llvm/CodeGen/MachineJumpTableInfo.h" 25#include "llvm/Target/TargetData.h" 26#include "llvm/Target/TargetMachine.h" 27#include "llvm/Support/Debug.h" 28#include "llvm/Support/ErrorHandling.h" 29#include "llvm/Support/Format.h" 30#include "llvm/Support/raw_ostream.h" 31#include "llvm/ADT/SmallSet.h" 32#include "llvm/ADT/SmallVector.h" 33#include "llvm/ADT/STLExtras.h" 34#include "llvm/ADT/Statistic.h" 35#include "llvm/Support/CommandLine.h" 36#include <algorithm> 37using namespace llvm; 38 39STATISTIC(NumCPEs, "Number of constpool entries"); 40STATISTIC(NumSplit, "Number of uncond branches inserted"); 41STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 42STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 43STATISTIC(NumTBs, "Number of table branches generated"); 44STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk"); 45STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk"); 46STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed"); 47STATISTIC(NumJTMoved, "Number of jump table destination blocks moved"); 48STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted"); 49 50 51static cl::opt<bool> 52AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true), 53 cl::desc("Adjust basic block layout to better use TB[BH]")); 54 55// FIXME: This option should be removed once it has received sufficient testing. 56static cl::opt<bool> 57AlignConstantIslands("arm-align-constant-islands", cl::Hidden, cl::init(true), 58 cl::desc("Align constant islands in code")); 59 60/// UnknownPadding - Return the worst case padding that could result from 61/// unknown offset bits. This does not include alignment padding caused by 62/// known offset bits. 63/// 64/// @param LogAlign log2(alignment) 65/// @param KnownBits Number of known low offset bits. 66static inline unsigned UnknownPadding(unsigned LogAlign, unsigned KnownBits) { 67 if (KnownBits < LogAlign) 68 return (1u << LogAlign) - (1u << KnownBits); 69 return 0; 70} 71 72/// WorstCaseAlign - Assuming only the low KnownBits bits in Offset are exact, 73/// add padding such that: 74/// 75/// 1. The result is aligned to 1 << LogAlign. 76/// 77/// 2. No other value of the unknown bits would require more padding. 78/// 79/// This may add more padding than is required to satisfy just one of the 80/// constraints. It is necessary to compute alignment this way to guarantee 81/// that we don't underestimate the padding before an aligned block. If the 82/// real padding before a block is larger than we think, constant pool entries 83/// may go out of range. 84static inline unsigned WorstCaseAlign(unsigned Offset, unsigned LogAlign, 85 unsigned KnownBits) { 86 // Add the worst possible padding that the unknown bits could cause. 87 Offset += UnknownPadding(LogAlign, KnownBits); 88 89 // Then align the result. 90 return RoundUpToAlignment(Offset, 1u << LogAlign); 91} 92 93namespace { 94 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM 95 /// requires constant pool entries to be scattered among the instructions 96 /// inside a function. To do this, it completely ignores the normal LLVM 97 /// constant pool; instead, it places constants wherever it feels like with 98 /// special instructions. 99 /// 100 /// The terminology used in this pass includes: 101 /// Islands - Clumps of constants placed in the function. 102 /// Water - Potential places where an island could be formed. 103 /// CPE - A constant pool entry that has been placed somewhere, which 104 /// tracks a list of users. 105 class ARMConstantIslands : public MachineFunctionPass { 106 /// BasicBlockInfo - Information about the offset and size of a single 107 /// basic block. 108 struct BasicBlockInfo { 109 /// Offset - Distance from the beginning of the function to the beginning 110 /// of this basic block. 111 /// 112 /// The offset is always aligned as required by the basic block. 113 unsigned Offset; 114 115 /// Size - Size of the basic block in bytes. If the block contains 116 /// inline assembly, this is a worst case estimate. 117 /// 118 /// The size does not include any alignment padding whether from the 119 /// beginning of the block, or from an aligned jump table at the end. 120 unsigned Size; 121 122 /// KnownBits - The number of low bits in Offset that are known to be 123 /// exact. The remaining bits of Offset are an upper bound. 124 uint8_t KnownBits; 125 126 /// Unalign - When non-zero, the block contains instructions (inline asm) 127 /// of unknown size. The real size may be smaller than Size bytes by a 128 /// multiple of 1 << Unalign. 129 uint8_t Unalign; 130 131 /// PostAlign - When non-zero, the block terminator contains a .align 132 /// directive, so the end of the block is aligned to 1 << PostAlign 133 /// bytes. 134 uint8_t PostAlign; 135 136 BasicBlockInfo() : Offset(0), Size(0), KnownBits(0), Unalign(0), 137 PostAlign(0) {} 138 139 /// Compute the number of known offset bits internally to this block. 140 /// This number should be used to predict worst case padding when 141 /// splitting the block. 142 unsigned internalKnownBits() const { 143 return Unalign ? Unalign : KnownBits; 144 } 145 146 /// Compute the offset immediately following this block. If LogAlign is 147 /// specified, return the offset the successor block will get if it has 148 /// this alignment. 149 unsigned postOffset(unsigned LogAlign = 0) const { 150 unsigned PO = Offset + Size; 151 unsigned LA = std::max(unsigned(PostAlign), LogAlign); 152 if (!LA) 153 return PO; 154 // Add alignment padding from the terminator. 155 return WorstCaseAlign(PO, LA, internalKnownBits()); 156 } 157 158 /// Compute the number of known low bits of postOffset. If this block 159 /// contains inline asm, the number of known bits drops to the 160 /// instruction alignment. An aligned terminator may increase the number 161 /// of know bits. 162 /// If LogAlign is given, also consider the alignment of the next block. 163 unsigned postKnownBits(unsigned LogAlign = 0) const { 164 return std::max(std::max(unsigned(PostAlign), LogAlign), 165 internalKnownBits()); 166 } 167 }; 168 169 std::vector<BasicBlockInfo> BBInfo; 170 171 /// WaterList - A sorted list of basic blocks where islands could be placed 172 /// (i.e. blocks that don't fall through to the following block, due 173 /// to a return, unreachable, or unconditional branch). 174 std::vector<MachineBasicBlock*> WaterList; 175 176 /// NewWaterList - The subset of WaterList that was created since the 177 /// previous iteration by inserting unconditional branches. 178 SmallSet<MachineBasicBlock*, 4> NewWaterList; 179 180 typedef std::vector<MachineBasicBlock*>::iterator water_iterator; 181 182 /// CPUser - One user of a constant pool, keeping the machine instruction 183 /// pointer, the constant pool being referenced, and the max displacement 184 /// allowed from the instruction to the CP. The HighWaterMark records the 185 /// highest basic block where a new CPEntry can be placed. To ensure this 186 /// pass terminates, the CP entries are initially placed at the end of the 187 /// function and then move monotonically to lower addresses. The 188 /// exception to this rule is when the current CP entry for a particular 189 /// CPUser is out of range, but there is another CP entry for the same 190 /// constant value in range. We want to use the existing in-range CP 191 /// entry, but if it later moves out of range, the search for new water 192 /// should resume where it left off. The HighWaterMark is used to record 193 /// that point. 194 struct CPUser { 195 MachineInstr *MI; 196 MachineInstr *CPEMI; 197 MachineBasicBlock *HighWaterMark; 198 private: 199 unsigned MaxDisp; 200 public: 201 bool NegOk; 202 bool IsSoImm; 203 bool KnownAlignment; 204 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, 205 bool neg, bool soimm) 206 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm), 207 KnownAlignment(false) { 208 HighWaterMark = CPEMI->getParent(); 209 } 210 /// getMaxDisp - Returns the maximum displacement supported by MI. 211 /// Correct for unknown alignment. 212 unsigned getMaxDisp() const { 213 return KnownAlignment ? MaxDisp : MaxDisp - 2; 214 } 215 }; 216 217 /// CPUsers - Keep track of all of the machine instructions that use various 218 /// constant pools and their max displacement. 219 std::vector<CPUser> CPUsers; 220 221 /// CPEntry - One per constant pool entry, keeping the machine instruction 222 /// pointer, the constpool index, and the number of CPUser's which 223 /// reference this entry. 224 struct CPEntry { 225 MachineInstr *CPEMI; 226 unsigned CPI; 227 unsigned RefCount; 228 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) 229 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} 230 }; 231 232 /// CPEntries - Keep track of all of the constant pool entry machine 233 /// instructions. For each original constpool index (i.e. those that 234 /// existed upon entry to this pass), it keeps a vector of entries. 235 /// Original elements are cloned as we go along; the clones are 236 /// put in the vector of the original element, but have distinct CPIs. 237 std::vector<std::vector<CPEntry> > CPEntries; 238 239 /// ImmBranch - One per immediate branch, keeping the machine instruction 240 /// pointer, conditional or unconditional, the max displacement, 241 /// and (if isCond is true) the corresponding unconditional branch 242 /// opcode. 243 struct ImmBranch { 244 MachineInstr *MI; 245 unsigned MaxDisp : 31; 246 bool isCond : 1; 247 int UncondBr; 248 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr) 249 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} 250 }; 251 252 /// ImmBranches - Keep track of all the immediate branch instructions. 253 /// 254 std::vector<ImmBranch> ImmBranches; 255 256 /// PushPopMIs - Keep track of all the Thumb push / pop instructions. 257 /// 258 SmallVector<MachineInstr*, 4> PushPopMIs; 259 260 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions. 261 SmallVector<MachineInstr*, 4> T2JumpTables; 262 263 /// HasFarJump - True if any far jump instruction has been emitted during 264 /// the branch fix up pass. 265 bool HasFarJump; 266 267 MachineFunction *MF; 268 MachineConstantPool *MCP; 269 const ARMInstrInfo *TII; 270 const ARMSubtarget *STI; 271 ARMFunctionInfo *AFI; 272 bool isThumb; 273 bool isThumb1; 274 bool isThumb2; 275 public: 276 static char ID; 277 ARMConstantIslands() : MachineFunctionPass(ID) {} 278 279 virtual bool runOnMachineFunction(MachineFunction &MF); 280 281 virtual const char *getPassName() const { 282 return "ARM constant island placement and branch shortening pass"; 283 } 284 285 private: 286 void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs); 287 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 288 unsigned getCPELogAlign(const MachineInstr *CPEMI); 289 void scanFunctionJumpTables(); 290 void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs); 291 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI); 292 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB); 293 void adjustBBOffsetsAfter(MachineBasicBlock *BB); 294 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI); 295 int findInRangeCPEntry(CPUser& U, unsigned UserOffset); 296 bool findAvailableWater(CPUser&U, unsigned UserOffset, 297 water_iterator &WaterIter); 298 void createNewWater(unsigned CPUserIndex, unsigned UserOffset, 299 MachineBasicBlock *&NewMBB); 300 bool handleConstantPoolUser(unsigned CPUserIndex); 301 void removeDeadCPEMI(MachineInstr *CPEMI); 302 bool removeUnusedCPEntries(); 303 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 304 MachineInstr *CPEMI, unsigned Disp, bool NegOk, 305 bool DoDump = false); 306 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, 307 CPUser &U, unsigned &Growth); 308 bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); 309 bool fixupImmediateBr(ImmBranch &Br); 310 bool fixupConditionalBr(ImmBranch &Br); 311 bool fixupUnconditionalBr(ImmBranch &Br); 312 bool undoLRSpillRestore(); 313 bool mayOptimizeThumb2Instruction(const MachineInstr *MI) const; 314 bool optimizeThumb2Instructions(); 315 bool optimizeThumb2Branches(); 316 bool reorderThumb2JumpTables(); 317 bool optimizeThumb2JumpTables(); 318 MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB, 319 MachineBasicBlock *JTBB); 320 321 void computeBlockSize(MachineBasicBlock *MBB); 322 unsigned getOffsetOf(MachineInstr *MI) const; 323 unsigned getUserOffset(CPUser&) const; 324 void dumpBBs(); 325 void verify(); 326 327 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 328 unsigned Disp, bool NegativeOK, bool IsSoImm = false); 329 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 330 const CPUser &U) { 331 return isOffsetInRange(UserOffset, TrialOffset, 332 U.getMaxDisp(), U.NegOk, U.IsSoImm); 333 } 334 }; 335 char ARMConstantIslands::ID = 0; 336} 337 338/// verify - check BBOffsets, BBSizes, alignment of islands 339void ARMConstantIslands::verify() { 340#ifndef NDEBUG 341 for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); 342 MBBI != E; ++MBBI) { 343 MachineBasicBlock *MBB = MBBI; 344 unsigned Align = MBB->getAlignment(); 345 unsigned MBBId = MBB->getNumber(); 346 assert(BBInfo[MBBId].Offset % (1u << Align) == 0); 347 assert(!MBBId || BBInfo[MBBId - 1].postOffset() <= BBInfo[MBBId].Offset); 348 } 349 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 350 CPUser &U = CPUsers[i]; 351 unsigned UserOffset = getUserOffset(U); 352 assert(isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp(), 353 U.NegOk) && "Constant pool entry out of range!"); 354 } 355#endif 356} 357 358/// print block size and offset information - debugging 359void ARMConstantIslands::dumpBBs() { 360 DEBUG({ 361 for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) { 362 const BasicBlockInfo &BBI = BBInfo[J]; 363 dbgs() << format("%08x BB#%u\t", BBI.Offset, J) 364 << " kb=" << unsigned(BBI.KnownBits) 365 << " ua=" << unsigned(BBI.Unalign) 366 << " pa=" << unsigned(BBI.PostAlign) 367 << format(" size=%#x\n", BBInfo[J].Size); 368 } 369 }); 370} 371 372/// createARMConstantIslandPass - returns an instance of the constpool 373/// island pass. 374FunctionPass *llvm::createARMConstantIslandPass() { 375 return new ARMConstantIslands(); 376} 377 378bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) { 379 MF = &mf; 380 MCP = mf.getConstantPool(); 381 382 DEBUG(dbgs() << "***** ARMConstantIslands: " 383 << MCP->getConstants().size() << " CP entries, aligned to " 384 << MCP->getConstantPoolAlignment() << " bytes *****\n"); 385 386 TII = (const ARMInstrInfo*)MF->getTarget().getInstrInfo(); 387 AFI = MF->getInfo<ARMFunctionInfo>(); 388 STI = &MF->getTarget().getSubtarget<ARMSubtarget>(); 389 390 isThumb = AFI->isThumbFunction(); 391 isThumb1 = AFI->isThumb1OnlyFunction(); 392 isThumb2 = AFI->isThumb2Function(); 393 394 HasFarJump = false; 395 396 // Renumber all of the machine basic blocks in the function, guaranteeing that 397 // the numbers agree with the position of the block in the function. 398 MF->RenumberBlocks(); 399 400 // Try to reorder and otherwise adjust the block layout to make good use 401 // of the TB[BH] instructions. 402 bool MadeChange = false; 403 if (isThumb2 && AdjustJumpTableBlocks) { 404 scanFunctionJumpTables(); 405 MadeChange |= reorderThumb2JumpTables(); 406 // Data is out of date, so clear it. It'll be re-computed later. 407 T2JumpTables.clear(); 408 // Blocks may have shifted around. Keep the numbering up to date. 409 MF->RenumberBlocks(); 410 } 411 412 // Thumb1 functions containing constant pools get 4-byte alignment. 413 // This is so we can keep exact track of where the alignment padding goes. 414 415 // ARM and Thumb2 functions need to be 4-byte aligned. 416 if (!isThumb1) 417 MF->EnsureAlignment(2); // 2 = log2(4) 418 419 // Perform the initial placement of the constant pool entries. To start with, 420 // we put them all at the end of the function. 421 std::vector<MachineInstr*> CPEMIs; 422 if (!MCP->isEmpty()) 423 doInitialPlacement(CPEMIs); 424 425 /// The next UID to take is the first unused one. 426 AFI->initPICLabelUId(CPEMIs.size()); 427 428 // Do the initial scan of the function, building up information about the 429 // sizes of each block, the location of all the water, and finding all of the 430 // constant pool users. 431 initializeFunctionInfo(CPEMIs); 432 CPEMIs.clear(); 433 DEBUG(dumpBBs()); 434 435 436 /// Remove dead constant pool entries. 437 MadeChange |= removeUnusedCPEntries(); 438 439 // Iteratively place constant pool entries and fix up branches until there 440 // is no change. 441 unsigned NoCPIters = 0, NoBRIters = 0; 442 while (true) { 443 DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n'); 444 bool CPChange = false; 445 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) 446 CPChange |= handleConstantPoolUser(i); 447 if (CPChange && ++NoCPIters > 30) 448 report_fatal_error("Constant Island pass failed to converge!"); 449 DEBUG(dumpBBs()); 450 451 // Clear NewWaterList now. If we split a block for branches, it should 452 // appear as "new water" for the next iteration of constant pool placement. 453 NewWaterList.clear(); 454 455 DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n'); 456 bool BRChange = false; 457 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) 458 BRChange |= fixupImmediateBr(ImmBranches[i]); 459 if (BRChange && ++NoBRIters > 30) 460 report_fatal_error("Branch Fix Up pass failed to converge!"); 461 DEBUG(dumpBBs()); 462 463 if (!CPChange && !BRChange) 464 break; 465 MadeChange = true; 466 } 467 468 // Shrink 32-bit Thumb2 branch, load, and store instructions. 469 if (isThumb2 && !STI->prefers32BitThumb()) 470 MadeChange |= optimizeThumb2Instructions(); 471 472 // After a while, this might be made debug-only, but it is not expensive. 473 verify(); 474 475 // If LR has been forced spilled and no far jump (i.e. BL) has been issued, 476 // undo the spill / restore of LR if possible. 477 if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump()) 478 MadeChange |= undoLRSpillRestore(); 479 480 // Save the mapping between original and cloned constpool entries. 481 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 482 for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) { 483 const CPEntry & CPE = CPEntries[i][j]; 484 AFI->recordCPEClone(i, CPE.CPI); 485 } 486 } 487 488 DEBUG(dbgs() << '\n'; dumpBBs()); 489 490 BBInfo.clear(); 491 WaterList.clear(); 492 CPUsers.clear(); 493 CPEntries.clear(); 494 ImmBranches.clear(); 495 PushPopMIs.clear(); 496 T2JumpTables.clear(); 497 498 return MadeChange; 499} 500 501/// doInitialPlacement - Perform the initial placement of the constant pool 502/// entries. To start with, we put them all at the end of the function. 503void 504ARMConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) { 505 // Create the basic block to hold the CPE's. 506 MachineBasicBlock *BB = MF->CreateMachineBasicBlock(); 507 MF->push_back(BB); 508 509 // MachineConstantPool measures alignment in bytes. We measure in log2(bytes). 510 unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment()); 511 512 // Mark the basic block as required by the const-pool. 513 // If AlignConstantIslands isn't set, use 4-byte alignment for everything. 514 BB->setAlignment(AlignConstantIslands ? MaxAlign : 2); 515 516 // The function needs to be as aligned as the basic blocks. The linker may 517 // move functions around based on their alignment. 518 MF->EnsureAlignment(BB->getAlignment()); 519 520 // Order the entries in BB by descending alignment. That ensures correct 521 // alignment of all entries as long as BB is sufficiently aligned. Keep 522 // track of the insertion point for each alignment. We are going to bucket 523 // sort the entries as they are created. 524 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end()); 525 526 // Add all of the constants from the constant pool to the end block, use an 527 // identity mapping of CPI's to CPE's. 528 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants(); 529 530 const TargetData &TD = *MF->getTarget().getTargetData(); 531 for (unsigned i = 0, e = CPs.size(); i != e; ++i) { 532 unsigned Size = TD.getTypeAllocSize(CPs[i].getType()); 533 assert(Size >= 4 && "Too small constant pool entry"); 534 unsigned Align = CPs[i].getAlignment(); 535 assert(isPowerOf2_32(Align) && "Invalid alignment"); 536 // Verify that all constant pool entries are a multiple of their alignment. 537 // If not, we would have to pad them out so that instructions stay aligned. 538 assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!"); 539 540 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment. 541 unsigned LogAlign = Log2_32(Align); 542 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign]; 543 MachineInstr *CPEMI = 544 BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 545 .addImm(i).addConstantPoolIndex(i).addImm(Size); 546 CPEMIs.push_back(CPEMI); 547 548 // Ensure that future entries with higher alignment get inserted before 549 // CPEMI. This is bucket sort with iterators. 550 for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a) 551 if (InsPoint[a] == InsAt) 552 InsPoint[a] = CPEMI; 553 554 // Add a new CPEntry, but no corresponding CPUser yet. 555 std::vector<CPEntry> CPEs; 556 CPEs.push_back(CPEntry(CPEMI, i)); 557 CPEntries.push_back(CPEs); 558 ++NumCPEs; 559 DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = " 560 << Size << ", align = " << Align <<'\n'); 561 } 562 DEBUG(BB->dump()); 563} 564 565/// BBHasFallthrough - Return true if the specified basic block can fallthrough 566/// into the block immediately after it. 567static bool BBHasFallthrough(MachineBasicBlock *MBB) { 568 // Get the next machine basic block in the function. 569 MachineFunction::iterator MBBI = MBB; 570 // Can't fall off end of function. 571 if (llvm::next(MBBI) == MBB->getParent()->end()) 572 return false; 573 574 MachineBasicBlock *NextBB = llvm::next(MBBI); 575 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), 576 E = MBB->succ_end(); I != E; ++I) 577 if (*I == NextBB) 578 return true; 579 580 return false; 581} 582 583/// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 584/// look up the corresponding CPEntry. 585ARMConstantIslands::CPEntry 586*ARMConstantIslands::findConstPoolEntry(unsigned CPI, 587 const MachineInstr *CPEMI) { 588 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 589 // Number of entries per constpool index should be small, just do a 590 // linear search. 591 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 592 if (CPEs[i].CPEMI == CPEMI) 593 return &CPEs[i]; 594 } 595 return NULL; 596} 597 598/// getCPELogAlign - Returns the required alignment of the constant pool entry 599/// represented by CPEMI. Alignment is measured in log2(bytes) units. 600unsigned ARMConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) { 601 assert(CPEMI && CPEMI->getOpcode() == ARM::CONSTPOOL_ENTRY); 602 603 // Everything is 4-byte aligned unless AlignConstantIslands is set. 604 if (!AlignConstantIslands) 605 return 2; 606 607 unsigned CPI = CPEMI->getOperand(1).getIndex(); 608 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index."); 609 unsigned Align = MCP->getConstants()[CPI].getAlignment(); 610 assert(isPowerOf2_32(Align) && "Invalid CPE alignment"); 611 return Log2_32(Align); 612} 613 614/// scanFunctionJumpTables - Do a scan of the function, building up 615/// information about the sizes of each block and the locations of all 616/// the jump tables. 617void ARMConstantIslands::scanFunctionJumpTables() { 618 for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); 619 MBBI != E; ++MBBI) { 620 MachineBasicBlock &MBB = *MBBI; 621 622 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 623 I != E; ++I) 624 if (I->isBranch() && I->getOpcode() == ARM::t2BR_JT) 625 T2JumpTables.push_back(I); 626 } 627} 628 629/// initializeFunctionInfo - Do the initial scan of the function, building up 630/// information about the sizes of each block, the location of all the water, 631/// and finding all of the constant pool users. 632void ARMConstantIslands:: 633initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) { 634 BBInfo.clear(); 635 BBInfo.resize(MF->getNumBlockIDs()); 636 637 // First thing, compute the size of all basic blocks, and see if the function 638 // has any inline assembly in it. If so, we have to be conservative about 639 // alignment assumptions, as we don't know for sure the size of any 640 // instructions in the inline assembly. 641 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) 642 computeBlockSize(I); 643 644 // The known bits of the entry block offset are determined by the function 645 // alignment. 646 BBInfo.front().KnownBits = MF->getAlignment(); 647 648 // Compute block offsets and known bits. 649 adjustBBOffsetsAfter(MF->begin()); 650 651 // Now go back through the instructions and build up our data structures. 652 for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); 653 MBBI != E; ++MBBI) { 654 MachineBasicBlock &MBB = *MBBI; 655 656 // If this block doesn't fall through into the next MBB, then this is 657 // 'water' that a constant pool island could be placed. 658 if (!BBHasFallthrough(&MBB)) 659 WaterList.push_back(&MBB); 660 661 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 662 I != E; ++I) { 663 if (I->isDebugValue()) 664 continue; 665 666 int Opc = I->getOpcode(); 667 if (I->isBranch()) { 668 bool isCond = false; 669 unsigned Bits = 0; 670 unsigned Scale = 1; 671 int UOpc = Opc; 672 switch (Opc) { 673 default: 674 continue; // Ignore other JT branches 675 case ARM::t2BR_JT: 676 T2JumpTables.push_back(I); 677 continue; // Does not get an entry in ImmBranches 678 case ARM::Bcc: 679 isCond = true; 680 UOpc = ARM::B; 681 // Fallthrough 682 case ARM::B: 683 Bits = 24; 684 Scale = 4; 685 break; 686 case ARM::tBcc: 687 isCond = true; 688 UOpc = ARM::tB; 689 Bits = 8; 690 Scale = 2; 691 break; 692 case ARM::tB: 693 Bits = 11; 694 Scale = 2; 695 break; 696 case ARM::t2Bcc: 697 isCond = true; 698 UOpc = ARM::t2B; 699 Bits = 20; 700 Scale = 2; 701 break; 702 case ARM::t2B: 703 Bits = 24; 704 Scale = 2; 705 break; 706 } 707 708 // Record this immediate branch. 709 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 710 ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc)); 711 } 712 713 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) 714 PushPopMIs.push_back(I); 715 716 if (Opc == ARM::CONSTPOOL_ENTRY) 717 continue; 718 719 // Scan the instructions for constant pool operands. 720 for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) 721 if (I->getOperand(op).isCPI()) { 722 // We found one. The addressing mode tells us the max displacement 723 // from the PC that this instruction permits. 724 725 // Basic size info comes from the TSFlags field. 726 unsigned Bits = 0; 727 unsigned Scale = 1; 728 bool NegOk = false; 729 bool IsSoImm = false; 730 731 switch (Opc) { 732 default: 733 llvm_unreachable("Unknown addressing mode for CP reference!"); 734 735 // Taking the address of a CP entry. 736 case ARM::LEApcrel: 737 // This takes a SoImm, which is 8 bit immediate rotated. We'll 738 // pretend the maximum offset is 255 * 4. Since each instruction 739 // 4 byte wide, this is always correct. We'll check for other 740 // displacements that fits in a SoImm as well. 741 Bits = 8; 742 Scale = 4; 743 NegOk = true; 744 IsSoImm = true; 745 break; 746 case ARM::t2LEApcrel: 747 Bits = 12; 748 NegOk = true; 749 break; 750 case ARM::tLEApcrel: 751 Bits = 8; 752 Scale = 4; 753 break; 754 755 case ARM::LDRi12: 756 case ARM::LDRcp: 757 case ARM::t2LDRpci: 758 Bits = 12; // +-offset_12 759 NegOk = true; 760 break; 761 762 case ARM::tLDRpci: 763 Bits = 8; 764 Scale = 4; // +(offset_8*4) 765 break; 766 767 case ARM::VLDRD: 768 case ARM::VLDRS: 769 Bits = 8; 770 Scale = 4; // +-(offset_8*4) 771 NegOk = true; 772 break; 773 } 774 775 // Remember that this is a user of a CP entry. 776 unsigned CPI = I->getOperand(op).getIndex(); 777 MachineInstr *CPEMI = CPEMIs[CPI]; 778 unsigned MaxOffs = ((1 << Bits)-1) * Scale; 779 CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm)); 780 781 // Increment corresponding CPEntry reference count. 782 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 783 assert(CPE && "Cannot find a corresponding CPEntry!"); 784 CPE->RefCount++; 785 786 // Instructions can only use one CP entry, don't bother scanning the 787 // rest of the operands. 788 break; 789 } 790 } 791 } 792} 793 794/// computeBlockSize - Compute the size and some alignment information for MBB. 795/// This function updates BBInfo directly. 796void ARMConstantIslands::computeBlockSize(MachineBasicBlock *MBB) { 797 BasicBlockInfo &BBI = BBInfo[MBB->getNumber()]; 798 BBI.Size = 0; 799 BBI.Unalign = 0; 800 BBI.PostAlign = 0; 801 802 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; 803 ++I) { 804 BBI.Size += TII->GetInstSizeInBytes(I); 805 // For inline asm, GetInstSizeInBytes returns a conservative estimate. 806 // The actual size may be smaller, but still a multiple of the instr size. 807 if (I->isInlineAsm()) 808 BBI.Unalign = isThumb ? 1 : 2; 809 // Also consider instructions that may be shrunk later. 810 else if (isThumb && mayOptimizeThumb2Instruction(I)) 811 BBI.Unalign = 1; 812 } 813 814 // tBR_JTr contains a .align 2 directive. 815 if (!MBB->empty() && MBB->back().getOpcode() == ARM::tBR_JTr) { 816 BBI.PostAlign = 2; 817 MBB->getParent()->EnsureAlignment(2); 818 } 819} 820 821/// getOffsetOf - Return the current offset of the specified machine instruction 822/// from the start of the function. This offset changes as stuff is moved 823/// around inside the function. 824unsigned ARMConstantIslands::getOffsetOf(MachineInstr *MI) const { 825 MachineBasicBlock *MBB = MI->getParent(); 826 827 // The offset is composed of two things: the sum of the sizes of all MBB's 828 // before this instruction's block, and the offset from the start of the block 829 // it is in. 830 unsigned Offset = BBInfo[MBB->getNumber()].Offset; 831 832 // Sum instructions before MI in MBB. 833 for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) { 834 assert(I != MBB->end() && "Didn't find MI in its own basic block?"); 835 Offset += TII->GetInstSizeInBytes(I); 836 } 837 return Offset; 838} 839 840/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 841/// ID. 842static bool CompareMBBNumbers(const MachineBasicBlock *LHS, 843 const MachineBasicBlock *RHS) { 844 return LHS->getNumber() < RHS->getNumber(); 845} 846 847/// updateForInsertedWaterBlock - When a block is newly inserted into the 848/// machine function, it upsets all of the block numbers. Renumber the blocks 849/// and update the arrays that parallel this numbering. 850void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) { 851 // Renumber the MBB's to keep them consecutive. 852 NewBB->getParent()->RenumberBlocks(NewBB); 853 854 // Insert an entry into BBInfo to align it properly with the (newly 855 // renumbered) block numbers. 856 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 857 858 // Next, update WaterList. Specifically, we need to add NewMBB as having 859 // available water after it. 860 water_iterator IP = 861 std::lower_bound(WaterList.begin(), WaterList.end(), NewBB, 862 CompareMBBNumbers); 863 WaterList.insert(IP, NewBB); 864} 865 866 867/// Split the basic block containing MI into two blocks, which are joined by 868/// an unconditional branch. Update data structures and renumber blocks to 869/// account for this change and returns the newly created block. 870MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) { 871 MachineBasicBlock *OrigBB = MI->getParent(); 872 873 // Create a new MBB for the code after the OrigBB. 874 MachineBasicBlock *NewBB = 875 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock()); 876 MachineFunction::iterator MBBI = OrigBB; ++MBBI; 877 MF->insert(MBBI, NewBB); 878 879 // Splice the instructions starting with MI over to NewBB. 880 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 881 882 // Add an unconditional branch from OrigBB to NewBB. 883 // Note the new unconditional branch is not being recorded. 884 // There doesn't seem to be meaningful DebugInfo available; this doesn't 885 // correspond to anything in the source. 886 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B; 887 if (!isThumb) 888 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB); 889 else 890 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB) 891 .addImm(ARMCC::AL).addReg(0); 892 ++NumSplit; 893 894 // Update the CFG. All succs of OrigBB are now succs of NewBB. 895 NewBB->transferSuccessors(OrigBB); 896 897 // OrigBB branches to NewBB. 898 OrigBB->addSuccessor(NewBB); 899 900 // Update internal data structures to account for the newly inserted MBB. 901 // This is almost the same as updateForInsertedWaterBlock, except that 902 // the Water goes after OrigBB, not NewBB. 903 MF->RenumberBlocks(NewBB); 904 905 // Insert an entry into BBInfo to align it properly with the (newly 906 // renumbered) block numbers. 907 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 908 909 // Next, update WaterList. Specifically, we need to add OrigMBB as having 910 // available water after it (but not if it's already there, which happens 911 // when splitting before a conditional branch that is followed by an 912 // unconditional branch - in that case we want to insert NewBB). 913 water_iterator IP = 914 std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB, 915 CompareMBBNumbers); 916 MachineBasicBlock* WaterBB = *IP; 917 if (WaterBB == OrigBB) 918 WaterList.insert(llvm::next(IP), NewBB); 919 else 920 WaterList.insert(IP, OrigBB); 921 NewWaterList.insert(OrigBB); 922 923 // Figure out how large the OrigBB is. As the first half of the original 924 // block, it cannot contain a tablejump. The size includes 925 // the new jump we added. (It should be possible to do this without 926 // recounting everything, but it's very confusing, and this is rarely 927 // executed.) 928 computeBlockSize(OrigBB); 929 930 // Figure out how large the NewMBB is. As the second half of the original 931 // block, it may contain a tablejump. 932 computeBlockSize(NewBB); 933 934 // All BBOffsets following these blocks must be modified. 935 adjustBBOffsetsAfter(OrigBB); 936 937 return NewBB; 938} 939 940/// getUserOffset - Compute the offset of U.MI as seen by the hardware 941/// displacement computation. Update U.KnownAlignment to match its current 942/// basic block location. 943unsigned ARMConstantIslands::getUserOffset(CPUser &U) const { 944 unsigned UserOffset = getOffsetOf(U.MI); 945 const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()]; 946 unsigned KnownBits = BBI.internalKnownBits(); 947 948 // The value read from PC is offset from the actual instruction address. 949 UserOffset += (isThumb ? 4 : 8); 950 951 // Because of inline assembly, we may not know the alignment (mod 4) of U.MI. 952 // Make sure U.getMaxDisp() returns a constrained range. 953 U.KnownAlignment = (KnownBits >= 2); 954 955 // On Thumb, offsets==2 mod 4 are rounded down by the hardware for 956 // purposes of the displacement computation; compensate for that here. 957 // For unknown alignments, getMaxDisp() constrains the range instead. 958 if (isThumb && U.KnownAlignment) 959 UserOffset &= ~3u; 960 961 return UserOffset; 962} 963 964/// isOffsetInRange - Checks whether UserOffset (the location of a constant pool 965/// reference) is within MaxDisp of TrialOffset (a proposed location of a 966/// constant pool entry). 967/// UserOffset is computed by getUserOffset above to include PC adjustments. If 968/// the mod 4 alignment of UserOffset is not known, the uncertainty must be 969/// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that. 970bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset, 971 unsigned TrialOffset, unsigned MaxDisp, 972 bool NegativeOK, bool IsSoImm) { 973 if (UserOffset <= TrialOffset) { 974 // User before the Trial. 975 if (TrialOffset - UserOffset <= MaxDisp) 976 return true; 977 // FIXME: Make use full range of soimm values. 978 } else if (NegativeOK) { 979 if (UserOffset - TrialOffset <= MaxDisp) 980 return true; 981 // FIXME: Make use full range of soimm values. 982 } 983 return false; 984} 985 986/// isWaterInRange - Returns true if a CPE placed after the specified 987/// Water (a basic block) will be in range for the specific MI. 988/// 989/// Compute how much the function will grow by inserting a CPE after Water. 990bool ARMConstantIslands::isWaterInRange(unsigned UserOffset, 991 MachineBasicBlock* Water, CPUser &U, 992 unsigned &Growth) { 993 unsigned CPELogAlign = getCPELogAlign(U.CPEMI); 994 unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign); 995 unsigned NextBlockOffset, NextBlockAlignment; 996 MachineFunction::const_iterator NextBlock = Water; 997 if (++NextBlock == MF->end()) { 998 NextBlockOffset = BBInfo[Water->getNumber()].postOffset(); 999 NextBlockAlignment = 0; 1000 } else { 1001 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset; 1002 NextBlockAlignment = NextBlock->getAlignment(); 1003 } 1004 unsigned Size = U.CPEMI->getOperand(2).getImm(); 1005 unsigned CPEEnd = CPEOffset + Size; 1006 1007 // The CPE may be able to hide in the alignment padding before the next 1008 // block. It may also cause more padding to be required if it is more aligned 1009 // that the next block. 1010 if (CPEEnd > NextBlockOffset) { 1011 Growth = CPEEnd - NextBlockOffset; 1012 // Compute the padding that would go at the end of the CPE to align the next 1013 // block. 1014 Growth += OffsetToAlignment(CPEEnd, 1u << NextBlockAlignment); 1015 1016 // If the CPE is to be inserted before the instruction, that will raise 1017 // the offset of the instruction. Also account for unknown alignment padding 1018 // in blocks between CPE and the user. 1019 if (CPEOffset < UserOffset) 1020 UserOffset += Growth + UnknownPadding(MF->getAlignment(), CPELogAlign); 1021 } else 1022 // CPE fits in existing padding. 1023 Growth = 0; 1024 1025 return isOffsetInRange(UserOffset, CPEOffset, U); 1026} 1027 1028/// isCPEntryInRange - Returns true if the distance between specific MI and 1029/// specific ConstPool entry instruction can fit in MI's displacement field. 1030bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 1031 MachineInstr *CPEMI, unsigned MaxDisp, 1032 bool NegOk, bool DoDump) { 1033 unsigned CPEOffset = getOffsetOf(CPEMI); 1034 assert(CPEOffset % 4 == 0 && "Misaligned CPE"); 1035 1036 if (DoDump) { 1037 DEBUG({ 1038 unsigned Block = MI->getParent()->getNumber(); 1039 const BasicBlockInfo &BBI = BBInfo[Block]; 1040 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm() 1041 << " max delta=" << MaxDisp 1042 << format(" insn address=%#x", UserOffset) 1043 << " in BB#" << Block << ": " 1044 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI 1045 << format("CPE address=%#x offset=%+d: ", CPEOffset, 1046 int(CPEOffset-UserOffset)); 1047 }); 1048 } 1049 1050 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk); 1051} 1052 1053#ifndef NDEBUG 1054/// BBIsJumpedOver - Return true of the specified basic block's only predecessor 1055/// unconditionally branches to its only successor. 1056static bool BBIsJumpedOver(MachineBasicBlock *MBB) { 1057 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 1058 return false; 1059 1060 MachineBasicBlock *Succ = *MBB->succ_begin(); 1061 MachineBasicBlock *Pred = *MBB->pred_begin(); 1062 MachineInstr *PredMI = &Pred->back(); 1063 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB 1064 || PredMI->getOpcode() == ARM::t2B) 1065 return PredMI->getOperand(0).getMBB() == Succ; 1066 return false; 1067} 1068#endif // NDEBUG 1069 1070void ARMConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) { 1071 unsigned BBNum = BB->getNumber(); 1072 for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) { 1073 // Get the offset and known bits at the end of the layout predecessor. 1074 // Include the alignment of the current block. 1075 unsigned LogAlign = MF->getBlockNumbered(i)->getAlignment(); 1076 unsigned Offset = BBInfo[i - 1].postOffset(LogAlign); 1077 unsigned KnownBits = BBInfo[i - 1].postKnownBits(LogAlign); 1078 1079 // This is where block i begins. Stop if the offset is already correct, 1080 // and we have updated 2 blocks. This is the maximum number of blocks 1081 // changed before calling this function. 1082 if (i > BBNum + 2 && 1083 BBInfo[i].Offset == Offset && 1084 BBInfo[i].KnownBits == KnownBits) 1085 break; 1086 1087 BBInfo[i].Offset = Offset; 1088 BBInfo[i].KnownBits = KnownBits; 1089 } 1090} 1091 1092/// decrementCPEReferenceCount - find the constant pool entry with index CPI 1093/// and instruction CPEMI, and decrement its refcount. If the refcount 1094/// becomes 0 remove the entry and instruction. Returns true if we removed 1095/// the entry, false if we didn't. 1096 1097bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI, 1098 MachineInstr *CPEMI) { 1099 // Find the old entry. Eliminate it if it is no longer used. 1100 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 1101 assert(CPE && "Unexpected!"); 1102 if (--CPE->RefCount == 0) { 1103 removeDeadCPEMI(CPEMI); 1104 CPE->CPEMI = NULL; 1105 --NumCPEs; 1106 return true; 1107 } 1108 return false; 1109} 1110 1111/// LookForCPEntryInRange - see if the currently referenced CPE is in range; 1112/// if not, see if an in-range clone of the CPE is in range, and if so, 1113/// change the data structures so the user references the clone. Returns: 1114/// 0 = no existing entry found 1115/// 1 = entry found, and there were no code insertions or deletions 1116/// 2 = entry found, and there were code insertions or deletions 1117int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) 1118{ 1119 MachineInstr *UserMI = U.MI; 1120 MachineInstr *CPEMI = U.CPEMI; 1121 1122 // Check to see if the CPE is already in-range. 1123 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk, 1124 true)) { 1125 DEBUG(dbgs() << "In range\n"); 1126 return 1; 1127 } 1128 1129 // No. Look for previously created clones of the CPE that are in range. 1130 unsigned CPI = CPEMI->getOperand(1).getIndex(); 1131 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 1132 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 1133 // We already tried this one 1134 if (CPEs[i].CPEMI == CPEMI) 1135 continue; 1136 // Removing CPEs can leave empty entries, skip 1137 if (CPEs[i].CPEMI == NULL) 1138 continue; 1139 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(), 1140 U.NegOk)) { 1141 DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" 1142 << CPEs[i].CPI << "\n"); 1143 // Point the CPUser node to the replacement 1144 U.CPEMI = CPEs[i].CPEMI; 1145 // Change the CPI in the instruction operand to refer to the clone. 1146 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) 1147 if (UserMI->getOperand(j).isCPI()) { 1148 UserMI->getOperand(j).setIndex(CPEs[i].CPI); 1149 break; 1150 } 1151 // Adjust the refcount of the clone... 1152 CPEs[i].RefCount++; 1153 // ...and the original. If we didn't remove the old entry, none of the 1154 // addresses changed, so we don't need another pass. 1155 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; 1156 } 1157 } 1158 return 0; 1159} 1160 1161/// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 1162/// the specific unconditional branch instruction. 1163static inline unsigned getUnconditionalBrDisp(int Opc) { 1164 switch (Opc) { 1165 case ARM::tB: 1166 return ((1<<10)-1)*2; 1167 case ARM::t2B: 1168 return ((1<<23)-1)*2; 1169 default: 1170 break; 1171 } 1172 1173 return ((1<<23)-1)*4; 1174} 1175 1176/// findAvailableWater - Look for an existing entry in the WaterList in which 1177/// we can place the CPE referenced from U so it's within range of U's MI. 1178/// Returns true if found, false if not. If it returns true, WaterIter 1179/// is set to the WaterList entry. For Thumb, prefer water that will not 1180/// introduce padding to water that will. To ensure that this pass 1181/// terminates, the CPE location for a particular CPUser is only allowed to 1182/// move to a lower address, so search backward from the end of the list and 1183/// prefer the first water that is in range. 1184bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset, 1185 water_iterator &WaterIter) { 1186 if (WaterList.empty()) 1187 return false; 1188 1189 unsigned BestGrowth = ~0u; 1190 for (water_iterator IP = prior(WaterList.end()), B = WaterList.begin();; 1191 --IP) { 1192 MachineBasicBlock* WaterBB = *IP; 1193 // Check if water is in range and is either at a lower address than the 1194 // current "high water mark" or a new water block that was created since 1195 // the previous iteration by inserting an unconditional branch. In the 1196 // latter case, we want to allow resetting the high water mark back to 1197 // this new water since we haven't seen it before. Inserting branches 1198 // should be relatively uncommon and when it does happen, we want to be 1199 // sure to take advantage of it for all the CPEs near that block, so that 1200 // we don't insert more branches than necessary. 1201 unsigned Growth; 1202 if (isWaterInRange(UserOffset, WaterBB, U, Growth) && 1203 (WaterBB->getNumber() < U.HighWaterMark->getNumber() || 1204 NewWaterList.count(WaterBB)) && Growth < BestGrowth) { 1205 // This is the least amount of required padding seen so far. 1206 BestGrowth = Growth; 1207 WaterIter = IP; 1208 DEBUG(dbgs() << "Found water after BB#" << WaterBB->getNumber() 1209 << " Growth=" << Growth << '\n'); 1210 1211 // Keep looking unless it is perfect. 1212 if (BestGrowth == 0) 1213 return true; 1214 } 1215 if (IP == B) 1216 break; 1217 } 1218 return BestGrowth != ~0u; 1219} 1220 1221/// createNewWater - No existing WaterList entry will work for 1222/// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 1223/// block is used if in range, and the conditional branch munged so control 1224/// flow is correct. Otherwise the block is split to create a hole with an 1225/// unconditional branch around it. In either case NewMBB is set to a 1226/// block following which the new island can be inserted (the WaterList 1227/// is not adjusted). 1228void ARMConstantIslands::createNewWater(unsigned CPUserIndex, 1229 unsigned UserOffset, 1230 MachineBasicBlock *&NewMBB) { 1231 CPUser &U = CPUsers[CPUserIndex]; 1232 MachineInstr *UserMI = U.MI; 1233 MachineInstr *CPEMI = U.CPEMI; 1234 unsigned CPELogAlign = getCPELogAlign(CPEMI); 1235 MachineBasicBlock *UserMBB = UserMI->getParent(); 1236 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()]; 1237 1238 // If the block does not end in an unconditional branch already, and if the 1239 // end of the block is within range, make new water there. (The addition 1240 // below is for the unconditional branch we will be adding: 4 bytes on ARM + 1241 // Thumb2, 2 on Thumb1. 1242 if (BBHasFallthrough(UserMBB)) { 1243 // Size of branch to insert. 1244 unsigned Delta = isThumb1 ? 2 : 4; 1245 // End of UserBlock after adding a branch. 1246 unsigned UserBlockEnd = UserBBI.postOffset() + Delta; 1247 // Compute the offset where the CPE will begin. 1248 unsigned CPEOffset = WorstCaseAlign(UserBlockEnd, CPELogAlign, 1249 UserBBI.postKnownBits()); 1250 1251 if (isOffsetInRange(UserOffset, CPEOffset, U)) { 1252 DEBUG(dbgs() << "Split at end of BB#" << UserMBB->getNumber() 1253 << format(", expected CPE offset %#x\n", CPEOffset)); 1254 NewMBB = llvm::next(MachineFunction::iterator(UserMBB)); 1255 // Add an unconditional branch from UserMBB to fallthrough block. Record 1256 // it for branch lengthening; this new branch will not get out of range, 1257 // but if the preceding conditional branch is out of range, the targets 1258 // will be exchanged, and the altered branch may be out of range, so the 1259 // machinery has to know about it. 1260 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B; 1261 if (!isThumb) 1262 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB); 1263 else 1264 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB) 1265 .addImm(ARMCC::AL).addReg(0); 1266 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 1267 ImmBranches.push_back(ImmBranch(&UserMBB->back(), 1268 MaxDisp, false, UncondBr)); 1269 BBInfo[UserMBB->getNumber()].Size += Delta; 1270 adjustBBOffsetsAfter(UserMBB); 1271 return; 1272 } 1273 } 1274 1275 // What a big block. Find a place within the block to split it. This is a 1276 // little tricky on Thumb1 since instructions are 2 bytes and constant pool 1277 // entries are 4 bytes: if instruction I references island CPE, and 1278 // instruction I+1 references CPE', it will not work well to put CPE as far 1279 // forward as possible, since then CPE' cannot immediately follow it (that 1280 // location is 2 bytes farther away from I+1 than CPE was from I) and we'd 1281 // need to create a new island. So, we make a first guess, then walk through 1282 // the instructions between the one currently being looked at and the 1283 // possible insertion point, and make sure any other instructions that 1284 // reference CPEs will be able to use the same island area; if not, we back 1285 // up the insertion point. 1286 1287 // Try to split the block so it's fully aligned. Compute the latest split 1288 // point where we can add a 4-byte branch instruction, and then 1289 // WorstCaseAlign to LogAlign. 1290 unsigned LogAlign = MF->getAlignment(); 1291 assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry"); 1292 unsigned KnownBits = UserBBI.internalKnownBits(); 1293 unsigned UPad = UnknownPadding(LogAlign, KnownBits); 1294 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp(); 1295 DEBUG(dbgs() << format("Split in middle of big block before %#x", 1296 BaseInsertOffset)); 1297 1298 // Account for alignment and unknown padding. 1299 BaseInsertOffset &= ~((1u << LogAlign) - 1); 1300 BaseInsertOffset -= UPad; 1301 1302 // The 4 in the following is for the unconditional branch we'll be inserting 1303 // (allows for long branch on Thumb1). Alignment of the island is handled 1304 // inside isOffsetInRange. 1305 BaseInsertOffset -= 4; 1306 1307 DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset) 1308 << " la=" << LogAlign 1309 << " kb=" << KnownBits 1310 << " up=" << UPad << '\n'); 1311 1312 // This could point off the end of the block if we've already got constant 1313 // pool entries following this block; only the last one is in the water list. 1314 // Back past any possible branches (allow for a conditional and a maximally 1315 // long unconditional). 1316 if (BaseInsertOffset >= BBInfo[UserMBB->getNumber()+1].Offset) 1317 BaseInsertOffset = BBInfo[UserMBB->getNumber()+1].Offset - 1318 (isThumb1 ? 6 : 8); 1319 unsigned EndInsertOffset = 1320 WorstCaseAlign(BaseInsertOffset + 4, LogAlign, KnownBits) + 1321 CPEMI->getOperand(2).getImm(); 1322 MachineBasicBlock::iterator MI = UserMI; 1323 ++MI; 1324 unsigned CPUIndex = CPUserIndex+1; 1325 unsigned NumCPUsers = CPUsers.size(); 1326 MachineInstr *LastIT = 0; 1327 for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI); 1328 Offset < BaseInsertOffset; 1329 Offset += TII->GetInstSizeInBytes(MI), 1330 MI = llvm::next(MI)) { 1331 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) { 1332 CPUser &U = CPUsers[CPUIndex]; 1333 if (!isOffsetInRange(Offset, EndInsertOffset, U)) { 1334 // Shift intertion point by one unit of alignment so it is within reach. 1335 BaseInsertOffset -= 1u << LogAlign; 1336 EndInsertOffset -= 1u << LogAlign; 1337 } 1338 // This is overly conservative, as we don't account for CPEMIs being 1339 // reused within the block, but it doesn't matter much. Also assume CPEs 1340 // are added in order with alignment padding. We may eventually be able 1341 // to pack the aligned CPEs better. 1342 EndInsertOffset = RoundUpToAlignment(EndInsertOffset, 1343 1u << getCPELogAlign(U.CPEMI)) + 1344 U.CPEMI->getOperand(2).getImm(); 1345 CPUIndex++; 1346 } 1347 1348 // Remember the last IT instruction. 1349 if (MI->getOpcode() == ARM::t2IT) 1350 LastIT = MI; 1351 } 1352 1353 --MI; 1354 1355 // Avoid splitting an IT block. 1356 if (LastIT) { 1357 unsigned PredReg = 0; 1358 ARMCC::CondCodes CC = llvm::getITInstrPredicate(MI, PredReg); 1359 if (CC != ARMCC::AL) 1360 MI = LastIT; 1361 } 1362 NewMBB = splitBlockBeforeInstr(MI); 1363} 1364 1365/// handleConstantPoolUser - Analyze the specified user, checking to see if it 1366/// is out-of-range. If so, pick up the constant pool value and move it some 1367/// place in-range. Return true if we changed any addresses (thus must run 1368/// another pass of branch lengthening), false otherwise. 1369bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) { 1370 CPUser &U = CPUsers[CPUserIndex]; 1371 MachineInstr *UserMI = U.MI; 1372 MachineInstr *CPEMI = U.CPEMI; 1373 unsigned CPI = CPEMI->getOperand(1).getIndex(); 1374 unsigned Size = CPEMI->getOperand(2).getImm(); 1375 // Compute this only once, it's expensive. 1376 unsigned UserOffset = getUserOffset(U); 1377 1378 // See if the current entry is within range, or there is a clone of it 1379 // in range. 1380 int result = findInRangeCPEntry(U, UserOffset); 1381 if (result==1) return false; 1382 else if (result==2) return true; 1383 1384 // No existing clone of this CPE is within range. 1385 // We will be generating a new clone. Get a UID for it. 1386 unsigned ID = AFI->createPICLabelUId(); 1387 1388 // Look for water where we can place this CPE. 1389 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock(); 1390 MachineBasicBlock *NewMBB; 1391 water_iterator IP; 1392 if (findAvailableWater(U, UserOffset, IP)) { 1393 DEBUG(dbgs() << "Found water in range\n"); 1394 MachineBasicBlock *WaterBB = *IP; 1395 1396 // If the original WaterList entry was "new water" on this iteration, 1397 // propagate that to the new island. This is just keeping NewWaterList 1398 // updated to match the WaterList, which will be updated below. 1399 if (NewWaterList.count(WaterBB)) { 1400 NewWaterList.erase(WaterBB); 1401 NewWaterList.insert(NewIsland); 1402 } 1403 // The new CPE goes before the following block (NewMBB). 1404 NewMBB = llvm::next(MachineFunction::iterator(WaterBB)); 1405 1406 } else { 1407 // No water found. 1408 DEBUG(dbgs() << "No water found\n"); 1409 createNewWater(CPUserIndex, UserOffset, NewMBB); 1410 1411 // splitBlockBeforeInstr adds to WaterList, which is important when it is 1412 // called while handling branches so that the water will be seen on the 1413 // next iteration for constant pools, but in this context, we don't want 1414 // it. Check for this so it will be removed from the WaterList. 1415 // Also remove any entry from NewWaterList. 1416 MachineBasicBlock *WaterBB = prior(MachineFunction::iterator(NewMBB)); 1417 IP = std::find(WaterList.begin(), WaterList.end(), WaterBB); 1418 if (IP != WaterList.end()) 1419 NewWaterList.erase(WaterBB); 1420 1421 // We are adding new water. Update NewWaterList. 1422 NewWaterList.insert(NewIsland); 1423 } 1424 1425 // Remove the original WaterList entry; we want subsequent insertions in 1426 // this vicinity to go after the one we're about to insert. This 1427 // considerably reduces the number of times we have to move the same CPE 1428 // more than once and is also important to ensure the algorithm terminates. 1429 if (IP != WaterList.end()) 1430 WaterList.erase(IP); 1431 1432 // Okay, we know we can put an island before NewMBB now, do it! 1433 MF->insert(NewMBB, NewIsland); 1434 1435 // Update internal data structures to account for the newly inserted MBB. 1436 updateForInsertedWaterBlock(NewIsland); 1437 1438 // Decrement the old entry, and remove it if refcount becomes 0. 1439 decrementCPEReferenceCount(CPI, CPEMI); 1440 1441 // Now that we have an island to add the CPE to, clone the original CPE and 1442 // add it to the island. 1443 U.HighWaterMark = NewIsland; 1444 U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 1445 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size); 1446 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1447 ++NumCPEs; 1448 1449 // Mark the basic block as aligned as required by the const-pool entry. 1450 NewIsland->setAlignment(getCPELogAlign(U.CPEMI)); 1451 1452 // Increase the size of the island block to account for the new entry. 1453 BBInfo[NewIsland->getNumber()].Size += Size; 1454 adjustBBOffsetsAfter(llvm::prior(MachineFunction::iterator(NewIsland))); 1455 1456 // Finally, change the CPI in the instruction operand to be ID. 1457 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) 1458 if (UserMI->getOperand(i).isCPI()) { 1459 UserMI->getOperand(i).setIndex(ID); 1460 break; 1461 } 1462 1463 DEBUG(dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI 1464 << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset)); 1465 1466 return true; 1467} 1468 1469/// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update 1470/// sizes and offsets of impacted basic blocks. 1471void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) { 1472 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1473 unsigned Size = CPEMI->getOperand(2).getImm(); 1474 CPEMI->eraseFromParent(); 1475 BBInfo[CPEBB->getNumber()].Size -= Size; 1476 // All succeeding offsets have the current size value added in, fix this. 1477 if (CPEBB->empty()) { 1478 BBInfo[CPEBB->getNumber()].Size = 0; 1479 1480 // This block no longer needs to be aligned. <rdar://problem/10534709>. 1481 CPEBB->setAlignment(0); 1482 } else 1483 // Entries are sorted by descending alignment, so realign from the front. 1484 CPEBB->setAlignment(getCPELogAlign(CPEBB->begin())); 1485 1486 adjustBBOffsetsAfter(CPEBB); 1487 // An island has only one predecessor BB and one successor BB. Check if 1488 // this BB's predecessor jumps directly to this BB's successor. This 1489 // shouldn't happen currently. 1490 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); 1491 // FIXME: remove the empty blocks after all the work is done? 1492} 1493 1494/// removeUnusedCPEntries - Remove constant pool entries whose refcounts 1495/// are zero. 1496bool ARMConstantIslands::removeUnusedCPEntries() { 1497 unsigned MadeChange = false; 1498 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 1499 std::vector<CPEntry> &CPEs = CPEntries[i]; 1500 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { 1501 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { 1502 removeDeadCPEMI(CPEs[j].CPEMI); 1503 CPEs[j].CPEMI = NULL; 1504 MadeChange = true; 1505 } 1506 } 1507 } 1508 return MadeChange; 1509} 1510 1511/// isBBInRange - Returns true if the distance between specific MI and 1512/// specific BB can fit in MI's displacement field. 1513bool ARMConstantIslands::isBBInRange(MachineInstr *MI,MachineBasicBlock *DestBB, 1514 unsigned MaxDisp) { 1515 unsigned PCAdj = isThumb ? 4 : 8; 1516 unsigned BrOffset = getOffsetOf(MI) + PCAdj; 1517 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1518 1519 DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber() 1520 << " from BB#" << MI->getParent()->getNumber() 1521 << " max delta=" << MaxDisp 1522 << " from " << getOffsetOf(MI) << " to " << DestOffset 1523 << " offset " << int(DestOffset-BrOffset) << "\t" << *MI); 1524 1525 if (BrOffset <= DestOffset) { 1526 // Branch before the Dest. 1527 if (DestOffset-BrOffset <= MaxDisp) 1528 return true; 1529 } else { 1530 if (BrOffset-DestOffset <= MaxDisp) 1531 return true; 1532 } 1533 return false; 1534} 1535 1536/// fixupImmediateBr - Fix up an immediate branch whose destination is too far 1537/// away to fit in its displacement field. 1538bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) { 1539 MachineInstr *MI = Br.MI; 1540 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1541 1542 // Check to see if the DestBB is already in-range. 1543 if (isBBInRange(MI, DestBB, Br.MaxDisp)) 1544 return false; 1545 1546 if (!Br.isCond) 1547 return fixupUnconditionalBr(Br); 1548 return fixupConditionalBr(Br); 1549} 1550 1551/// fixupUnconditionalBr - Fix up an unconditional branch whose destination is 1552/// too far away to fit in its displacement field. If the LR register has been 1553/// spilled in the epilogue, then we can use BL to implement a far jump. 1554/// Otherwise, add an intermediate branch instruction to a branch. 1555bool 1556ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) { 1557 MachineInstr *MI = Br.MI; 1558 MachineBasicBlock *MBB = MI->getParent(); 1559 if (!isThumb1) 1560 llvm_unreachable("fixupUnconditionalBr is Thumb1 only!"); 1561 1562 // Use BL to implement far jump. 1563 Br.MaxDisp = (1 << 21) * 2; 1564 MI->setDesc(TII->get(ARM::tBfar)); 1565 BBInfo[MBB->getNumber()].Size += 2; 1566 adjustBBOffsetsAfter(MBB); 1567 HasFarJump = true; 1568 ++NumUBrFixed; 1569 1570 DEBUG(dbgs() << " Changed B to long jump " << *MI); 1571 1572 return true; 1573} 1574 1575/// fixupConditionalBr - Fix up a conditional branch whose destination is too 1576/// far away to fit in its displacement field. It is converted to an inverse 1577/// conditional branch + an unconditional branch to the destination. 1578bool 1579ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) { 1580 MachineInstr *MI = Br.MI; 1581 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1582 1583 // Add an unconditional branch to the destination and invert the branch 1584 // condition to jump over it: 1585 // blt L1 1586 // => 1587 // bge L2 1588 // b L1 1589 // L2: 1590 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm(); 1591 CC = ARMCC::getOppositeCondition(CC); 1592 unsigned CCReg = MI->getOperand(2).getReg(); 1593 1594 // If the branch is at the end of its MBB and that has a fall-through block, 1595 // direct the updated conditional branch to the fall-through block. Otherwise, 1596 // split the MBB before the next instruction. 1597 MachineBasicBlock *MBB = MI->getParent(); 1598 MachineInstr *BMI = &MBB->back(); 1599 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); 1600 1601 ++NumCBrFixed; 1602 if (BMI != MI) { 1603 if (llvm::next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) && 1604 BMI->getOpcode() == Br.UncondBr) { 1605 // Last MI in the BB is an unconditional branch. Can we simply invert the 1606 // condition and swap destinations: 1607 // beq L1 1608 // b L2 1609 // => 1610 // bne L2 1611 // b L1 1612 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); 1613 if (isBBInRange(MI, NewDest, Br.MaxDisp)) { 1614 DEBUG(dbgs() << " Invert Bcc condition and swap its destination with " 1615 << *BMI); 1616 BMI->getOperand(0).setMBB(DestBB); 1617 MI->getOperand(0).setMBB(NewDest); 1618 MI->getOperand(1).setImm(CC); 1619 return true; 1620 } 1621 } 1622 } 1623 1624 if (NeedSplit) { 1625 splitBlockBeforeInstr(MI); 1626 // No need for the branch to the next block. We're adding an unconditional 1627 // branch to the destination. 1628 int delta = TII->GetInstSizeInBytes(&MBB->back()); 1629 BBInfo[MBB->getNumber()].Size -= delta; 1630 MBB->back().eraseFromParent(); 1631 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below 1632 } 1633 MachineBasicBlock *NextBB = llvm::next(MachineFunction::iterator(MBB)); 1634 1635 DEBUG(dbgs() << " Insert B to BB#" << DestBB->getNumber() 1636 << " also invert condition and change dest. to BB#" 1637 << NextBB->getNumber() << "\n"); 1638 1639 // Insert a new conditional branch and a new unconditional branch. 1640 // Also update the ImmBranch as well as adding a new entry for the new branch. 1641 BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode())) 1642 .addMBB(NextBB).addImm(CC).addReg(CCReg); 1643 Br.MI = &MBB->back(); 1644 BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back()); 1645 if (isThumb) 1646 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB) 1647 .addImm(ARMCC::AL).addReg(0); 1648 else 1649 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); 1650 BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back()); 1651 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1652 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1653 1654 // Remove the old conditional branch. It may or may not still be in MBB. 1655 BBInfo[MI->getParent()->getNumber()].Size -= TII->GetInstSizeInBytes(MI); 1656 MI->eraseFromParent(); 1657 adjustBBOffsetsAfter(MBB); 1658 return true; 1659} 1660 1661/// undoLRSpillRestore - Remove Thumb push / pop instructions that only spills 1662/// LR / restores LR to pc. FIXME: This is done here because it's only possible 1663/// to do this if tBfar is not used. 1664bool ARMConstantIslands::undoLRSpillRestore() { 1665 bool MadeChange = false; 1666 for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) { 1667 MachineInstr *MI = PushPopMIs[i]; 1668 // First two operands are predicates. 1669 if (MI->getOpcode() == ARM::tPOP_RET && 1670 MI->getOperand(2).getReg() == ARM::PC && 1671 MI->getNumExplicitOperands() == 3) { 1672 // Create the new insn and copy the predicate from the old. 1673 BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET)) 1674 .addOperand(MI->getOperand(0)) 1675 .addOperand(MI->getOperand(1)); 1676 MI->eraseFromParent(); 1677 MadeChange = true; 1678 } 1679 } 1680 return MadeChange; 1681} 1682 1683// mayOptimizeThumb2Instruction - Returns true if optimizeThumb2Instructions 1684// below may shrink MI. 1685bool 1686ARMConstantIslands::mayOptimizeThumb2Instruction(const MachineInstr *MI) const { 1687 switch(MI->getOpcode()) { 1688 // optimizeThumb2Instructions. 1689 case ARM::t2LEApcrel: 1690 case ARM::t2LDRpci: 1691 // optimizeThumb2Branches. 1692 case ARM::t2B: 1693 case ARM::t2Bcc: 1694 case ARM::tBcc: 1695 // optimizeThumb2JumpTables. 1696 case ARM::t2BR_JT: 1697 return true; 1698 } 1699 return false; 1700} 1701 1702bool ARMConstantIslands::optimizeThumb2Instructions() { 1703 bool MadeChange = false; 1704 1705 // Shrink ADR and LDR from constantpool. 1706 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 1707 CPUser &U = CPUsers[i]; 1708 unsigned Opcode = U.MI->getOpcode(); 1709 unsigned NewOpc = 0; 1710 unsigned Scale = 1; 1711 unsigned Bits = 0; 1712 switch (Opcode) { 1713 default: break; 1714 case ARM::t2LEApcrel: 1715 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1716 NewOpc = ARM::tLEApcrel; 1717 Bits = 8; 1718 Scale = 4; 1719 } 1720 break; 1721 case ARM::t2LDRpci: 1722 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1723 NewOpc = ARM::tLDRpci; 1724 Bits = 8; 1725 Scale = 4; 1726 } 1727 break; 1728 } 1729 1730 if (!NewOpc) 1731 continue; 1732 1733 unsigned UserOffset = getUserOffset(U); 1734 unsigned MaxOffs = ((1 << Bits) - 1) * Scale; 1735 1736 // Be conservative with inline asm. 1737 if (!U.KnownAlignment) 1738 MaxOffs -= 2; 1739 1740 // FIXME: Check if offset is multiple of scale if scale is not 4. 1741 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) { 1742 U.MI->setDesc(TII->get(NewOpc)); 1743 MachineBasicBlock *MBB = U.MI->getParent(); 1744 BBInfo[MBB->getNumber()].Size -= 2; 1745 adjustBBOffsetsAfter(MBB); 1746 ++NumT2CPShrunk; 1747 MadeChange = true; 1748 } 1749 } 1750 1751 MadeChange |= optimizeThumb2Branches(); 1752 MadeChange |= optimizeThumb2JumpTables(); 1753 return MadeChange; 1754} 1755 1756bool ARMConstantIslands::optimizeThumb2Branches() { 1757 bool MadeChange = false; 1758 1759 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) { 1760 ImmBranch &Br = ImmBranches[i]; 1761 unsigned Opcode = Br.MI->getOpcode(); 1762 unsigned NewOpc = 0; 1763 unsigned Scale = 1; 1764 unsigned Bits = 0; 1765 switch (Opcode) { 1766 default: break; 1767 case ARM::t2B: 1768 NewOpc = ARM::tB; 1769 Bits = 11; 1770 Scale = 2; 1771 break; 1772 case ARM::t2Bcc: { 1773 NewOpc = ARM::tBcc; 1774 Bits = 8; 1775 Scale = 2; 1776 break; 1777 } 1778 } 1779 if (NewOpc) { 1780 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 1781 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1782 if (isBBInRange(Br.MI, DestBB, MaxOffs)) { 1783 Br.MI->setDesc(TII->get(NewOpc)); 1784 MachineBasicBlock *MBB = Br.MI->getParent(); 1785 BBInfo[MBB->getNumber()].Size -= 2; 1786 adjustBBOffsetsAfter(MBB); 1787 ++NumT2BrShrunk; 1788 MadeChange = true; 1789 } 1790 } 1791 1792 Opcode = Br.MI->getOpcode(); 1793 if (Opcode != ARM::tBcc) 1794 continue; 1795 1796 // If the conditional branch doesn't kill CPSR, then CPSR can be liveout 1797 // so this transformation is not safe. 1798 if (!Br.MI->killsRegister(ARM::CPSR)) 1799 continue; 1800 1801 NewOpc = 0; 1802 unsigned PredReg = 0; 1803 ARMCC::CondCodes Pred = llvm::getInstrPredicate(Br.MI, PredReg); 1804 if (Pred == ARMCC::EQ) 1805 NewOpc = ARM::tCBZ; 1806 else if (Pred == ARMCC::NE) 1807 NewOpc = ARM::tCBNZ; 1808 if (!NewOpc) 1809 continue; 1810 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1811 // Check if the distance is within 126. Subtract starting offset by 2 1812 // because the cmp will be eliminated. 1813 unsigned BrOffset = getOffsetOf(Br.MI) + 4 - 2; 1814 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1815 if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) { 1816 MachineBasicBlock::iterator CmpMI = Br.MI; 1817 if (CmpMI != Br.MI->getParent()->begin()) { 1818 --CmpMI; 1819 if (CmpMI->getOpcode() == ARM::tCMPi8) { 1820 unsigned Reg = CmpMI->getOperand(0).getReg(); 1821 Pred = llvm::getInstrPredicate(CmpMI, PredReg); 1822 if (Pred == ARMCC::AL && 1823 CmpMI->getOperand(1).getImm() == 0 && 1824 isARMLowRegister(Reg)) { 1825 MachineBasicBlock *MBB = Br.MI->getParent(); 1826 MachineInstr *NewBR = 1827 BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc)) 1828 .addReg(Reg).addMBB(DestBB,Br.MI->getOperand(0).getTargetFlags()); 1829 CmpMI->eraseFromParent(); 1830 Br.MI->eraseFromParent(); 1831 Br.MI = NewBR; 1832 BBInfo[MBB->getNumber()].Size -= 2; 1833 adjustBBOffsetsAfter(MBB); 1834 ++NumCBZ; 1835 MadeChange = true; 1836 } 1837 } 1838 } 1839 } 1840 } 1841 1842 return MadeChange; 1843} 1844 1845/// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller 1846/// jumptables when it's possible. 1847bool ARMConstantIslands::optimizeThumb2JumpTables() { 1848 bool MadeChange = false; 1849 1850 // FIXME: After the tables are shrunk, can we get rid some of the 1851 // constantpool tables? 1852 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1853 if (MJTI == 0) return false; 1854 1855 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1856 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 1857 MachineInstr *MI = T2JumpTables[i]; 1858 const MCInstrDesc &MCID = MI->getDesc(); 1859 unsigned NumOps = MCID.getNumOperands(); 1860 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 3 : 2); 1861 MachineOperand JTOP = MI->getOperand(JTOpIdx); 1862 unsigned JTI = JTOP.getIndex(); 1863 assert(JTI < JT.size()); 1864 1865 bool ByteOk = true; 1866 bool HalfWordOk = true; 1867 unsigned JTOffset = getOffsetOf(MI) + 4; 1868 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1869 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 1870 MachineBasicBlock *MBB = JTBBs[j]; 1871 unsigned DstOffset = BBInfo[MBB->getNumber()].Offset; 1872 // Negative offset is not ok. FIXME: We should change BB layout to make 1873 // sure all the branches are forward. 1874 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2) 1875 ByteOk = false; 1876 unsigned TBHLimit = ((1<<16)-1)*2; 1877 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit) 1878 HalfWordOk = false; 1879 if (!ByteOk && !HalfWordOk) 1880 break; 1881 } 1882 1883 if (ByteOk || HalfWordOk) { 1884 MachineBasicBlock *MBB = MI->getParent(); 1885 unsigned BaseReg = MI->getOperand(0).getReg(); 1886 bool BaseRegKill = MI->getOperand(0).isKill(); 1887 if (!BaseRegKill) 1888 continue; 1889 unsigned IdxReg = MI->getOperand(1).getReg(); 1890 bool IdxRegKill = MI->getOperand(1).isKill(); 1891 1892 // Scan backwards to find the instruction that defines the base 1893 // register. Due to post-RA scheduling, we can't count on it 1894 // immediately preceding the branch instruction. 1895 MachineBasicBlock::iterator PrevI = MI; 1896 MachineBasicBlock::iterator B = MBB->begin(); 1897 while (PrevI != B && !PrevI->definesRegister(BaseReg)) 1898 --PrevI; 1899 1900 // If for some reason we didn't find it, we can't do anything, so 1901 // just skip this one. 1902 if (!PrevI->definesRegister(BaseReg)) 1903 continue; 1904 1905 MachineInstr *AddrMI = PrevI; 1906 bool OptOk = true; 1907 // Examine the instruction that calculates the jumptable entry address. 1908 // Make sure it only defines the base register and kills any uses 1909 // other than the index register. 1910 for (unsigned k = 0, eee = AddrMI->getNumOperands(); k != eee; ++k) { 1911 const MachineOperand &MO = AddrMI->getOperand(k); 1912 if (!MO.isReg() || !MO.getReg()) 1913 continue; 1914 if (MO.isDef() && MO.getReg() != BaseReg) { 1915 OptOk = false; 1916 break; 1917 } 1918 if (MO.isUse() && !MO.isKill() && MO.getReg() != IdxReg) { 1919 OptOk = false; 1920 break; 1921 } 1922 } 1923 if (!OptOk) 1924 continue; 1925 1926 // Now scan back again to find the tLEApcrel or t2LEApcrelJT instruction 1927 // that gave us the initial base register definition. 1928 for (--PrevI; PrevI != B && !PrevI->definesRegister(BaseReg); --PrevI) 1929 ; 1930 1931 // The instruction should be a tLEApcrel or t2LEApcrelJT; we want 1932 // to delete it as well. 1933 MachineInstr *LeaMI = PrevI; 1934 if ((LeaMI->getOpcode() != ARM::tLEApcrelJT && 1935 LeaMI->getOpcode() != ARM::t2LEApcrelJT) || 1936 LeaMI->getOperand(0).getReg() != BaseReg) 1937 OptOk = false; 1938 1939 if (!OptOk) 1940 continue; 1941 1942 unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT; 1943 MachineInstr *NewJTMI = BuildMI(MBB, MI->getDebugLoc(), TII->get(Opc)) 1944 .addReg(IdxReg, getKillRegState(IdxRegKill)) 1945 .addJumpTableIndex(JTI, JTOP.getTargetFlags()) 1946 .addImm(MI->getOperand(JTOpIdx+1).getImm()); 1947 // FIXME: Insert an "ALIGN" instruction to ensure the next instruction 1948 // is 2-byte aligned. For now, asm printer will fix it up. 1949 unsigned NewSize = TII->GetInstSizeInBytes(NewJTMI); 1950 unsigned OrigSize = TII->GetInstSizeInBytes(AddrMI); 1951 OrigSize += TII->GetInstSizeInBytes(LeaMI); 1952 OrigSize += TII->GetInstSizeInBytes(MI); 1953 1954 AddrMI->eraseFromParent(); 1955 LeaMI->eraseFromParent(); 1956 MI->eraseFromParent(); 1957 1958 int delta = OrigSize - NewSize; 1959 BBInfo[MBB->getNumber()].Size -= delta; 1960 adjustBBOffsetsAfter(MBB); 1961 1962 ++NumTBs; 1963 MadeChange = true; 1964 } 1965 } 1966 1967 return MadeChange; 1968} 1969 1970/// reorderThumb2JumpTables - Adjust the function's block layout to ensure that 1971/// jump tables always branch forwards, since that's what tbb and tbh need. 1972bool ARMConstantIslands::reorderThumb2JumpTables() { 1973 bool MadeChange = false; 1974 1975 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1976 if (MJTI == 0) return false; 1977 1978 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1979 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 1980 MachineInstr *MI = T2JumpTables[i]; 1981 const MCInstrDesc &MCID = MI->getDesc(); 1982 unsigned NumOps = MCID.getNumOperands(); 1983 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 3 : 2); 1984 MachineOperand JTOP = MI->getOperand(JTOpIdx); 1985 unsigned JTI = JTOP.getIndex(); 1986 assert(JTI < JT.size()); 1987 1988 // We prefer if target blocks for the jump table come after the jump 1989 // instruction so we can use TB[BH]. Loop through the target blocks 1990 // and try to adjust them such that that's true. 1991 int JTNumber = MI->getParent()->getNumber(); 1992 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1993 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 1994 MachineBasicBlock *MBB = JTBBs[j]; 1995 int DTNumber = MBB->getNumber(); 1996 1997 if (DTNumber < JTNumber) { 1998 // The destination precedes the switch. Try to move the block forward 1999 // so we have a positive offset. 2000 MachineBasicBlock *NewBB = 2001 adjustJTTargetBlockForward(MBB, MI->getParent()); 2002 if (NewBB) 2003 MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB); 2004 MadeChange = true; 2005 } 2006 } 2007 } 2008 2009 return MadeChange; 2010} 2011 2012MachineBasicBlock *ARMConstantIslands:: 2013adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) { 2014 // If the destination block is terminated by an unconditional branch, 2015 // try to move it; otherwise, create a new block following the jump 2016 // table that branches back to the actual target. This is a very simple 2017 // heuristic. FIXME: We can definitely improve it. 2018 MachineBasicBlock *TBB = 0, *FBB = 0; 2019 SmallVector<MachineOperand, 4> Cond; 2020 SmallVector<MachineOperand, 4> CondPrior; 2021 MachineFunction::iterator BBi = BB; 2022 MachineFunction::iterator OldPrior = prior(BBi); 2023 2024 // If the block terminator isn't analyzable, don't try to move the block 2025 bool B = TII->AnalyzeBranch(*BB, TBB, FBB, Cond); 2026 2027 // If the block ends in an unconditional branch, move it. The prior block 2028 // has to have an analyzable terminator for us to move this one. Be paranoid 2029 // and make sure we're not trying to move the entry block of the function. 2030 if (!B && Cond.empty() && BB != MF->begin() && 2031 !TII->AnalyzeBranch(*OldPrior, TBB, FBB, CondPrior)) { 2032 BB->moveAfter(JTBB); 2033 OldPrior->updateTerminator(); 2034 BB->updateTerminator(); 2035 // Update numbering to account for the block being moved. 2036 MF->RenumberBlocks(); 2037 ++NumJTMoved; 2038 return NULL; 2039 } 2040 2041 // Create a new MBB for the code after the jump BB. 2042 MachineBasicBlock *NewBB = 2043 MF->CreateMachineBasicBlock(JTBB->getBasicBlock()); 2044 MachineFunction::iterator MBBI = JTBB; ++MBBI; 2045 MF->insert(MBBI, NewBB); 2046 2047 // Add an unconditional branch from NewBB to BB. 2048 // There doesn't seem to be meaningful DebugInfo available; this doesn't 2049 // correspond directly to anything in the source. 2050 assert (isThumb2 && "Adjusting for TB[BH] but not in Thumb2?"); 2051 BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)).addMBB(BB) 2052 .addImm(ARMCC::AL).addReg(0); 2053 2054 // Update internal data structures to account for the newly inserted MBB. 2055 MF->RenumberBlocks(NewBB); 2056 2057 // Update the CFG. 2058 NewBB->addSuccessor(BB); 2059 JTBB->removeSuccessor(BB); 2060 JTBB->addSuccessor(NewBB); 2061 2062 ++NumJTInserted; 2063 return NewBB; 2064} 2065