ARMConstantIslandPass.cpp revision 7a4c071cd9f67599eba21e902079d0e85f2abf97
1//===-- ARMConstantIslandPass.cpp - ARM constant islands ------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains a pass that splits the constant pool up into 'islands' 11// which are scattered through-out the function. This is required due to the 12// limited pc-relative displacements that ARM has. 13// 14//===----------------------------------------------------------------------===// 15 16#define DEBUG_TYPE "arm-cp-islands" 17#include "ARM.h" 18#include "ARMMachineFunctionInfo.h" 19#include "Thumb2InstrInfo.h" 20#include "MCTargetDesc/ARMAddressingModes.h" 21#include "llvm/CodeGen/MachineConstantPool.h" 22#include "llvm/CodeGen/MachineFunctionPass.h" 23#include "llvm/CodeGen/MachineJumpTableInfo.h" 24#include "llvm/CodeGen/MachineRegisterInfo.h" 25#include "llvm/Target/TargetData.h" 26#include "llvm/Target/TargetMachine.h" 27#include "llvm/Support/Debug.h" 28#include "llvm/Support/ErrorHandling.h" 29#include "llvm/Support/Format.h" 30#include "llvm/Support/raw_ostream.h" 31#include "llvm/ADT/SmallSet.h" 32#include "llvm/ADT/SmallVector.h" 33#include "llvm/ADT/STLExtras.h" 34#include "llvm/ADT/Statistic.h" 35#include "llvm/Support/CommandLine.h" 36#include <algorithm> 37using namespace llvm; 38 39STATISTIC(NumCPEs, "Number of constpool entries"); 40STATISTIC(NumSplit, "Number of uncond branches inserted"); 41STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 42STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 43STATISTIC(NumTBs, "Number of table branches generated"); 44STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk"); 45STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk"); 46STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed"); 47STATISTIC(NumJTMoved, "Number of jump table destination blocks moved"); 48STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted"); 49 50 51static cl::opt<bool> 52AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true), 53 cl::desc("Adjust basic block layout to better use TB[BH]")); 54 55// FIXME: This option should be removed once it has received sufficient testing. 56static cl::opt<bool> 57AlignConstantIslands("arm-align-constant-islands", cl::Hidden, cl::init(true), 58 cl::desc("Align constant islands in code")); 59 60/// UnknownPadding - Return the worst case padding that could result from 61/// unknown offset bits. This does not include alignment padding caused by 62/// known offset bits. 63/// 64/// @param LogAlign log2(alignment) 65/// @param KnownBits Number of known low offset bits. 66static inline unsigned UnknownPadding(unsigned LogAlign, unsigned KnownBits) { 67 if (KnownBits < LogAlign) 68 return (1u << LogAlign) - (1u << KnownBits); 69 return 0; 70} 71 72/// WorstCaseAlign - Assuming only the low KnownBits bits in Offset are exact, 73/// add padding such that: 74/// 75/// 1. The result is aligned to 1 << LogAlign. 76/// 77/// 2. No other value of the unknown bits would require more padding. 78/// 79/// This may add more padding than is required to satisfy just one of the 80/// constraints. It is necessary to compute alignment this way to guarantee 81/// that we don't underestimate the padding before an aligned block. If the 82/// real padding before a block is larger than we think, constant pool entries 83/// may go out of range. 84static inline unsigned WorstCaseAlign(unsigned Offset, unsigned LogAlign, 85 unsigned KnownBits) { 86 // Add the worst possible padding that the unknown bits could cause. 87 Offset += UnknownPadding(LogAlign, KnownBits); 88 89 // Then align the result. 90 return RoundUpToAlignment(Offset, 1u << LogAlign); 91} 92 93namespace { 94 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM 95 /// requires constant pool entries to be scattered among the instructions 96 /// inside a function. To do this, it completely ignores the normal LLVM 97 /// constant pool; instead, it places constants wherever it feels like with 98 /// special instructions. 99 /// 100 /// The terminology used in this pass includes: 101 /// Islands - Clumps of constants placed in the function. 102 /// Water - Potential places where an island could be formed. 103 /// CPE - A constant pool entry that has been placed somewhere, which 104 /// tracks a list of users. 105 class ARMConstantIslands : public MachineFunctionPass { 106 /// BasicBlockInfo - Information about the offset and size of a single 107 /// basic block. 108 struct BasicBlockInfo { 109 /// Offset - Distance from the beginning of the function to the beginning 110 /// of this basic block. 111 /// 112 /// The offset is always aligned as required by the basic block. 113 unsigned Offset; 114 115 /// Size - Size of the basic block in bytes. If the block contains 116 /// inline assembly, this is a worst case estimate. 117 /// 118 /// The size does not include any alignment padding whether from the 119 /// beginning of the block, or from an aligned jump table at the end. 120 unsigned Size; 121 122 /// KnownBits - The number of low bits in Offset that are known to be 123 /// exact. The remaining bits of Offset are an upper bound. 124 uint8_t KnownBits; 125 126 /// Unalign - When non-zero, the block contains instructions (inline asm) 127 /// of unknown size. The real size may be smaller than Size bytes by a 128 /// multiple of 1 << Unalign. 129 uint8_t Unalign; 130 131 /// PostAlign - When non-zero, the block terminator contains a .align 132 /// directive, so the end of the block is aligned to 1 << PostAlign 133 /// bytes. 134 uint8_t PostAlign; 135 136 BasicBlockInfo() : Offset(0), Size(0), KnownBits(0), Unalign(0), 137 PostAlign(0) {} 138 139 /// Compute the number of known offset bits internally to this block. 140 /// This number should be used to predict worst case padding when 141 /// splitting the block. 142 unsigned internalKnownBits() const { 143 return Unalign ? Unalign : KnownBits; 144 } 145 146 /// Compute the offset immediately following this block. If LogAlign is 147 /// specified, return the offset the successor block will get if it has 148 /// this alignment. 149 unsigned postOffset(unsigned LogAlign = 0) const { 150 unsigned PO = Offset + Size; 151 unsigned LA = std::max(unsigned(PostAlign), LogAlign); 152 if (!LA) 153 return PO; 154 // Add alignment padding from the terminator. 155 return WorstCaseAlign(PO, LA, internalKnownBits()); 156 } 157 158 /// Compute the number of known low bits of postOffset. If this block 159 /// contains inline asm, the number of known bits drops to the 160 /// instruction alignment. An aligned terminator may increase the number 161 /// of know bits. 162 /// If LogAlign is given, also consider the alignment of the next block. 163 unsigned postKnownBits(unsigned LogAlign = 0) const { 164 return std::max(std::max(unsigned(PostAlign), LogAlign), 165 internalKnownBits()); 166 } 167 }; 168 169 std::vector<BasicBlockInfo> BBInfo; 170 171 /// WaterList - A sorted list of basic blocks where islands could be placed 172 /// (i.e. blocks that don't fall through to the following block, due 173 /// to a return, unreachable, or unconditional branch). 174 std::vector<MachineBasicBlock*> WaterList; 175 176 /// NewWaterList - The subset of WaterList that was created since the 177 /// previous iteration by inserting unconditional branches. 178 SmallSet<MachineBasicBlock*, 4> NewWaterList; 179 180 typedef std::vector<MachineBasicBlock*>::iterator water_iterator; 181 182 /// CPUser - One user of a constant pool, keeping the machine instruction 183 /// pointer, the constant pool being referenced, and the max displacement 184 /// allowed from the instruction to the CP. The HighWaterMark records the 185 /// highest basic block where a new CPEntry can be placed. To ensure this 186 /// pass terminates, the CP entries are initially placed at the end of the 187 /// function and then move monotonically to lower addresses. The 188 /// exception to this rule is when the current CP entry for a particular 189 /// CPUser is out of range, but there is another CP entry for the same 190 /// constant value in range. We want to use the existing in-range CP 191 /// entry, but if it later moves out of range, the search for new water 192 /// should resume where it left off. The HighWaterMark is used to record 193 /// that point. 194 struct CPUser { 195 MachineInstr *MI; 196 MachineInstr *CPEMI; 197 MachineBasicBlock *HighWaterMark; 198 private: 199 unsigned MaxDisp; 200 public: 201 bool NegOk; 202 bool IsSoImm; 203 bool KnownAlignment; 204 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, 205 bool neg, bool soimm) 206 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm), 207 KnownAlignment(false) { 208 HighWaterMark = CPEMI->getParent(); 209 } 210 /// getMaxDisp - Returns the maximum displacement supported by MI. 211 /// Correct for unknown alignment. 212 unsigned getMaxDisp() const { 213 return KnownAlignment ? MaxDisp : MaxDisp - 2; 214 } 215 }; 216 217 /// CPUsers - Keep track of all of the machine instructions that use various 218 /// constant pools and their max displacement. 219 std::vector<CPUser> CPUsers; 220 221 /// CPEntry - One per constant pool entry, keeping the machine instruction 222 /// pointer, the constpool index, and the number of CPUser's which 223 /// reference this entry. 224 struct CPEntry { 225 MachineInstr *CPEMI; 226 unsigned CPI; 227 unsigned RefCount; 228 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) 229 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} 230 }; 231 232 /// CPEntries - Keep track of all of the constant pool entry machine 233 /// instructions. For each original constpool index (i.e. those that 234 /// existed upon entry to this pass), it keeps a vector of entries. 235 /// Original elements are cloned as we go along; the clones are 236 /// put in the vector of the original element, but have distinct CPIs. 237 std::vector<std::vector<CPEntry> > CPEntries; 238 239 /// ImmBranch - One per immediate branch, keeping the machine instruction 240 /// pointer, conditional or unconditional, the max displacement, 241 /// and (if isCond is true) the corresponding unconditional branch 242 /// opcode. 243 struct ImmBranch { 244 MachineInstr *MI; 245 unsigned MaxDisp : 31; 246 bool isCond : 1; 247 int UncondBr; 248 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr) 249 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} 250 }; 251 252 /// ImmBranches - Keep track of all the immediate branch instructions. 253 /// 254 std::vector<ImmBranch> ImmBranches; 255 256 /// PushPopMIs - Keep track of all the Thumb push / pop instructions. 257 /// 258 SmallVector<MachineInstr*, 4> PushPopMIs; 259 260 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions. 261 SmallVector<MachineInstr*, 4> T2JumpTables; 262 263 /// HasFarJump - True if any far jump instruction has been emitted during 264 /// the branch fix up pass. 265 bool HasFarJump; 266 267 MachineFunction *MF; 268 MachineConstantPool *MCP; 269 const ARMBaseInstrInfo *TII; 270 const ARMSubtarget *STI; 271 ARMFunctionInfo *AFI; 272 bool isThumb; 273 bool isThumb1; 274 bool isThumb2; 275 public: 276 static char ID; 277 ARMConstantIslands() : MachineFunctionPass(ID) {} 278 279 virtual bool runOnMachineFunction(MachineFunction &MF); 280 281 virtual const char *getPassName() const { 282 return "ARM constant island placement and branch shortening pass"; 283 } 284 285 private: 286 void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs); 287 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 288 unsigned getCPELogAlign(const MachineInstr *CPEMI); 289 void scanFunctionJumpTables(); 290 void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs); 291 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI); 292 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB); 293 void adjustBBOffsetsAfter(MachineBasicBlock *BB); 294 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI); 295 int findInRangeCPEntry(CPUser& U, unsigned UserOffset); 296 bool findAvailableWater(CPUser&U, unsigned UserOffset, 297 water_iterator &WaterIter); 298 void createNewWater(unsigned CPUserIndex, unsigned UserOffset, 299 MachineBasicBlock *&NewMBB); 300 bool handleConstantPoolUser(unsigned CPUserIndex); 301 void removeDeadCPEMI(MachineInstr *CPEMI); 302 bool removeUnusedCPEntries(); 303 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 304 MachineInstr *CPEMI, unsigned Disp, bool NegOk, 305 bool DoDump = false); 306 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, 307 CPUser &U, unsigned &Growth); 308 bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); 309 bool fixupImmediateBr(ImmBranch &Br); 310 bool fixupConditionalBr(ImmBranch &Br); 311 bool fixupUnconditionalBr(ImmBranch &Br); 312 bool undoLRSpillRestore(); 313 bool mayOptimizeThumb2Instruction(const MachineInstr *MI) const; 314 bool optimizeThumb2Instructions(); 315 bool optimizeThumb2Branches(); 316 bool reorderThumb2JumpTables(); 317 bool optimizeThumb2JumpTables(); 318 MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB, 319 MachineBasicBlock *JTBB); 320 321 void computeBlockSize(MachineBasicBlock *MBB); 322 unsigned getOffsetOf(MachineInstr *MI) const; 323 unsigned getUserOffset(CPUser&) const; 324 void dumpBBs(); 325 void verify(); 326 327 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 328 unsigned Disp, bool NegativeOK, bool IsSoImm = false); 329 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 330 const CPUser &U) { 331 return isOffsetInRange(UserOffset, TrialOffset, 332 U.getMaxDisp(), U.NegOk, U.IsSoImm); 333 } 334 }; 335 char ARMConstantIslands::ID = 0; 336} 337 338/// verify - check BBOffsets, BBSizes, alignment of islands 339void ARMConstantIslands::verify() { 340#ifndef NDEBUG 341 for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); 342 MBBI != E; ++MBBI) { 343 MachineBasicBlock *MBB = MBBI; 344 unsigned Align = MBB->getAlignment(); 345 unsigned MBBId = MBB->getNumber(); 346 assert(BBInfo[MBBId].Offset % (1u << Align) == 0); 347 assert(!MBBId || BBInfo[MBBId - 1].postOffset() <= BBInfo[MBBId].Offset); 348 } 349 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 350 CPUser &U = CPUsers[i]; 351 unsigned UserOffset = getUserOffset(U); 352 assert(isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp(), 353 U.NegOk) && "Constant pool entry out of range!"); 354 } 355#endif 356} 357 358/// print block size and offset information - debugging 359void ARMConstantIslands::dumpBBs() { 360 DEBUG({ 361 for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) { 362 const BasicBlockInfo &BBI = BBInfo[J]; 363 dbgs() << format("%08x BB#%u\t", BBI.Offset, J) 364 << " kb=" << unsigned(BBI.KnownBits) 365 << " ua=" << unsigned(BBI.Unalign) 366 << " pa=" << unsigned(BBI.PostAlign) 367 << format(" size=%#x\n", BBInfo[J].Size); 368 } 369 }); 370} 371 372/// createARMConstantIslandPass - returns an instance of the constpool 373/// island pass. 374FunctionPass *llvm::createARMConstantIslandPass() { 375 return new ARMConstantIslands(); 376} 377 378bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) { 379 MF = &mf; 380 MCP = mf.getConstantPool(); 381 382 DEBUG(dbgs() << "***** ARMConstantIslands: " 383 << MCP->getConstants().size() << " CP entries, aligned to " 384 << MCP->getConstantPoolAlignment() << " bytes *****\n"); 385 386 TII = (const ARMBaseInstrInfo*)MF->getTarget().getInstrInfo(); 387 AFI = MF->getInfo<ARMFunctionInfo>(); 388 STI = &MF->getTarget().getSubtarget<ARMSubtarget>(); 389 390 isThumb = AFI->isThumbFunction(); 391 isThumb1 = AFI->isThumb1OnlyFunction(); 392 isThumb2 = AFI->isThumb2Function(); 393 394 HasFarJump = false; 395 396 // This pass invalidates liveness information when it splits basic blocks. 397 MF->getRegInfo().invalidateLiveness(); 398 399 // Renumber all of the machine basic blocks in the function, guaranteeing that 400 // the numbers agree with the position of the block in the function. 401 MF->RenumberBlocks(); 402 403 // Try to reorder and otherwise adjust the block layout to make good use 404 // of the TB[BH] instructions. 405 bool MadeChange = false; 406 if (isThumb2 && AdjustJumpTableBlocks) { 407 scanFunctionJumpTables(); 408 MadeChange |= reorderThumb2JumpTables(); 409 // Data is out of date, so clear it. It'll be re-computed later. 410 T2JumpTables.clear(); 411 // Blocks may have shifted around. Keep the numbering up to date. 412 MF->RenumberBlocks(); 413 } 414 415 // Thumb1 functions containing constant pools get 4-byte alignment. 416 // This is so we can keep exact track of where the alignment padding goes. 417 418 // ARM and Thumb2 functions need to be 4-byte aligned. 419 if (!isThumb1) 420 MF->EnsureAlignment(2); // 2 = log2(4) 421 422 // Perform the initial placement of the constant pool entries. To start with, 423 // we put them all at the end of the function. 424 std::vector<MachineInstr*> CPEMIs; 425 if (!MCP->isEmpty()) 426 doInitialPlacement(CPEMIs); 427 428 /// The next UID to take is the first unused one. 429 AFI->initPICLabelUId(CPEMIs.size()); 430 431 // Do the initial scan of the function, building up information about the 432 // sizes of each block, the location of all the water, and finding all of the 433 // constant pool users. 434 initializeFunctionInfo(CPEMIs); 435 CPEMIs.clear(); 436 DEBUG(dumpBBs()); 437 438 439 /// Remove dead constant pool entries. 440 MadeChange |= removeUnusedCPEntries(); 441 442 // Iteratively place constant pool entries and fix up branches until there 443 // is no change. 444 unsigned NoCPIters = 0, NoBRIters = 0; 445 while (true) { 446 DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n'); 447 bool CPChange = false; 448 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) 449 CPChange |= handleConstantPoolUser(i); 450 if (CPChange && ++NoCPIters > 30) 451 report_fatal_error("Constant Island pass failed to converge!"); 452 DEBUG(dumpBBs()); 453 454 // Clear NewWaterList now. If we split a block for branches, it should 455 // appear as "new water" for the next iteration of constant pool placement. 456 NewWaterList.clear(); 457 458 DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n'); 459 bool BRChange = false; 460 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) 461 BRChange |= fixupImmediateBr(ImmBranches[i]); 462 if (BRChange && ++NoBRIters > 30) 463 report_fatal_error("Branch Fix Up pass failed to converge!"); 464 DEBUG(dumpBBs()); 465 466 if (!CPChange && !BRChange) 467 break; 468 MadeChange = true; 469 } 470 471 // Shrink 32-bit Thumb2 branch, load, and store instructions. 472 if (isThumb2 && !STI->prefers32BitThumb()) 473 MadeChange |= optimizeThumb2Instructions(); 474 475 // After a while, this might be made debug-only, but it is not expensive. 476 verify(); 477 478 // If LR has been forced spilled and no far jump (i.e. BL) has been issued, 479 // undo the spill / restore of LR if possible. 480 if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump()) 481 MadeChange |= undoLRSpillRestore(); 482 483 // Save the mapping between original and cloned constpool entries. 484 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 485 for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) { 486 const CPEntry & CPE = CPEntries[i][j]; 487 AFI->recordCPEClone(i, CPE.CPI); 488 } 489 } 490 491 DEBUG(dbgs() << '\n'; dumpBBs()); 492 493 BBInfo.clear(); 494 WaterList.clear(); 495 CPUsers.clear(); 496 CPEntries.clear(); 497 ImmBranches.clear(); 498 PushPopMIs.clear(); 499 T2JumpTables.clear(); 500 501 return MadeChange; 502} 503 504/// doInitialPlacement - Perform the initial placement of the constant pool 505/// entries. To start with, we put them all at the end of the function. 506void 507ARMConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) { 508 // Create the basic block to hold the CPE's. 509 MachineBasicBlock *BB = MF->CreateMachineBasicBlock(); 510 MF->push_back(BB); 511 512 // MachineConstantPool measures alignment in bytes. We measure in log2(bytes). 513 unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment()); 514 515 // Mark the basic block as required by the const-pool. 516 // If AlignConstantIslands isn't set, use 4-byte alignment for everything. 517 BB->setAlignment(AlignConstantIslands ? MaxAlign : 2); 518 519 // The function needs to be as aligned as the basic blocks. The linker may 520 // move functions around based on their alignment. 521 MF->EnsureAlignment(BB->getAlignment()); 522 523 // Order the entries in BB by descending alignment. That ensures correct 524 // alignment of all entries as long as BB is sufficiently aligned. Keep 525 // track of the insertion point for each alignment. We are going to bucket 526 // sort the entries as they are created. 527 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end()); 528 529 // Add all of the constants from the constant pool to the end block, use an 530 // identity mapping of CPI's to CPE's. 531 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants(); 532 533 const TargetData &TD = *MF->getTarget().getTargetData(); 534 for (unsigned i = 0, e = CPs.size(); i != e; ++i) { 535 unsigned Size = TD.getTypeAllocSize(CPs[i].getType()); 536 assert(Size >= 4 && "Too small constant pool entry"); 537 unsigned Align = CPs[i].getAlignment(); 538 assert(isPowerOf2_32(Align) && "Invalid alignment"); 539 // Verify that all constant pool entries are a multiple of their alignment. 540 // If not, we would have to pad them out so that instructions stay aligned. 541 assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!"); 542 543 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment. 544 unsigned LogAlign = Log2_32(Align); 545 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign]; 546 MachineInstr *CPEMI = 547 BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 548 .addImm(i).addConstantPoolIndex(i).addImm(Size); 549 CPEMIs.push_back(CPEMI); 550 551 // Ensure that future entries with higher alignment get inserted before 552 // CPEMI. This is bucket sort with iterators. 553 for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a) 554 if (InsPoint[a] == InsAt) 555 InsPoint[a] = CPEMI; 556 557 // Add a new CPEntry, but no corresponding CPUser yet. 558 std::vector<CPEntry> CPEs; 559 CPEs.push_back(CPEntry(CPEMI, i)); 560 CPEntries.push_back(CPEs); 561 ++NumCPEs; 562 DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = " 563 << Size << ", align = " << Align <<'\n'); 564 } 565 DEBUG(BB->dump()); 566} 567 568/// BBHasFallthrough - Return true if the specified basic block can fallthrough 569/// into the block immediately after it. 570static bool BBHasFallthrough(MachineBasicBlock *MBB) { 571 // Get the next machine basic block in the function. 572 MachineFunction::iterator MBBI = MBB; 573 // Can't fall off end of function. 574 if (llvm::next(MBBI) == MBB->getParent()->end()) 575 return false; 576 577 MachineBasicBlock *NextBB = llvm::next(MBBI); 578 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), 579 E = MBB->succ_end(); I != E; ++I) 580 if (*I == NextBB) 581 return true; 582 583 return false; 584} 585 586/// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 587/// look up the corresponding CPEntry. 588ARMConstantIslands::CPEntry 589*ARMConstantIslands::findConstPoolEntry(unsigned CPI, 590 const MachineInstr *CPEMI) { 591 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 592 // Number of entries per constpool index should be small, just do a 593 // linear search. 594 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 595 if (CPEs[i].CPEMI == CPEMI) 596 return &CPEs[i]; 597 } 598 return NULL; 599} 600 601/// getCPELogAlign - Returns the required alignment of the constant pool entry 602/// represented by CPEMI. Alignment is measured in log2(bytes) units. 603unsigned ARMConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) { 604 assert(CPEMI && CPEMI->getOpcode() == ARM::CONSTPOOL_ENTRY); 605 606 // Everything is 4-byte aligned unless AlignConstantIslands is set. 607 if (!AlignConstantIslands) 608 return 2; 609 610 unsigned CPI = CPEMI->getOperand(1).getIndex(); 611 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index."); 612 unsigned Align = MCP->getConstants()[CPI].getAlignment(); 613 assert(isPowerOf2_32(Align) && "Invalid CPE alignment"); 614 return Log2_32(Align); 615} 616 617/// scanFunctionJumpTables - Do a scan of the function, building up 618/// information about the sizes of each block and the locations of all 619/// the jump tables. 620void ARMConstantIslands::scanFunctionJumpTables() { 621 for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); 622 MBBI != E; ++MBBI) { 623 MachineBasicBlock &MBB = *MBBI; 624 625 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 626 I != E; ++I) 627 if (I->isBranch() && I->getOpcode() == ARM::t2BR_JT) 628 T2JumpTables.push_back(I); 629 } 630} 631 632/// initializeFunctionInfo - Do the initial scan of the function, building up 633/// information about the sizes of each block, the location of all the water, 634/// and finding all of the constant pool users. 635void ARMConstantIslands:: 636initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) { 637 BBInfo.clear(); 638 BBInfo.resize(MF->getNumBlockIDs()); 639 640 // First thing, compute the size of all basic blocks, and see if the function 641 // has any inline assembly in it. If so, we have to be conservative about 642 // alignment assumptions, as we don't know for sure the size of any 643 // instructions in the inline assembly. 644 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) 645 computeBlockSize(I); 646 647 // The known bits of the entry block offset are determined by the function 648 // alignment. 649 BBInfo.front().KnownBits = MF->getAlignment(); 650 651 // Compute block offsets and known bits. 652 adjustBBOffsetsAfter(MF->begin()); 653 654 // Now go back through the instructions and build up our data structures. 655 for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); 656 MBBI != E; ++MBBI) { 657 MachineBasicBlock &MBB = *MBBI; 658 659 // If this block doesn't fall through into the next MBB, then this is 660 // 'water' that a constant pool island could be placed. 661 if (!BBHasFallthrough(&MBB)) 662 WaterList.push_back(&MBB); 663 664 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 665 I != E; ++I) { 666 if (I->isDebugValue()) 667 continue; 668 669 int Opc = I->getOpcode(); 670 if (I->isBranch()) { 671 bool isCond = false; 672 unsigned Bits = 0; 673 unsigned Scale = 1; 674 int UOpc = Opc; 675 switch (Opc) { 676 default: 677 continue; // Ignore other JT branches 678 case ARM::t2BR_JT: 679 T2JumpTables.push_back(I); 680 continue; // Does not get an entry in ImmBranches 681 case ARM::Bcc: 682 isCond = true; 683 UOpc = ARM::B; 684 // Fallthrough 685 case ARM::B: 686 Bits = 24; 687 Scale = 4; 688 break; 689 case ARM::tBcc: 690 isCond = true; 691 UOpc = ARM::tB; 692 Bits = 8; 693 Scale = 2; 694 break; 695 case ARM::tB: 696 Bits = 11; 697 Scale = 2; 698 break; 699 case ARM::t2Bcc: 700 isCond = true; 701 UOpc = ARM::t2B; 702 Bits = 20; 703 Scale = 2; 704 break; 705 case ARM::t2B: 706 Bits = 24; 707 Scale = 2; 708 break; 709 } 710 711 // Record this immediate branch. 712 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 713 ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc)); 714 } 715 716 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) 717 PushPopMIs.push_back(I); 718 719 if (Opc == ARM::CONSTPOOL_ENTRY) 720 continue; 721 722 // Scan the instructions for constant pool operands. 723 for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) 724 if (I->getOperand(op).isCPI()) { 725 // We found one. The addressing mode tells us the max displacement 726 // from the PC that this instruction permits. 727 728 // Basic size info comes from the TSFlags field. 729 unsigned Bits = 0; 730 unsigned Scale = 1; 731 bool NegOk = false; 732 bool IsSoImm = false; 733 734 switch (Opc) { 735 default: 736 llvm_unreachable("Unknown addressing mode for CP reference!"); 737 738 // Taking the address of a CP entry. 739 case ARM::LEApcrel: 740 // This takes a SoImm, which is 8 bit immediate rotated. We'll 741 // pretend the maximum offset is 255 * 4. Since each instruction 742 // 4 byte wide, this is always correct. We'll check for other 743 // displacements that fits in a SoImm as well. 744 Bits = 8; 745 Scale = 4; 746 NegOk = true; 747 IsSoImm = true; 748 break; 749 case ARM::t2LEApcrel: 750 Bits = 12; 751 NegOk = true; 752 break; 753 case ARM::tLEApcrel: 754 Bits = 8; 755 Scale = 4; 756 break; 757 758 case ARM::LDRi12: 759 case ARM::LDRcp: 760 case ARM::t2LDRpci: 761 Bits = 12; // +-offset_12 762 NegOk = true; 763 break; 764 765 case ARM::tLDRpci: 766 Bits = 8; 767 Scale = 4; // +(offset_8*4) 768 break; 769 770 case ARM::VLDRD: 771 case ARM::VLDRS: 772 Bits = 8; 773 Scale = 4; // +-(offset_8*4) 774 NegOk = true; 775 break; 776 } 777 778 // Remember that this is a user of a CP entry. 779 unsigned CPI = I->getOperand(op).getIndex(); 780 MachineInstr *CPEMI = CPEMIs[CPI]; 781 unsigned MaxOffs = ((1 << Bits)-1) * Scale; 782 CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm)); 783 784 // Increment corresponding CPEntry reference count. 785 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 786 assert(CPE && "Cannot find a corresponding CPEntry!"); 787 CPE->RefCount++; 788 789 // Instructions can only use one CP entry, don't bother scanning the 790 // rest of the operands. 791 break; 792 } 793 } 794 } 795} 796 797/// computeBlockSize - Compute the size and some alignment information for MBB. 798/// This function updates BBInfo directly. 799void ARMConstantIslands::computeBlockSize(MachineBasicBlock *MBB) { 800 BasicBlockInfo &BBI = BBInfo[MBB->getNumber()]; 801 BBI.Size = 0; 802 BBI.Unalign = 0; 803 BBI.PostAlign = 0; 804 805 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; 806 ++I) { 807 BBI.Size += TII->GetInstSizeInBytes(I); 808 // For inline asm, GetInstSizeInBytes returns a conservative estimate. 809 // The actual size may be smaller, but still a multiple of the instr size. 810 if (I->isInlineAsm()) 811 BBI.Unalign = isThumb ? 1 : 2; 812 // Also consider instructions that may be shrunk later. 813 else if (isThumb && mayOptimizeThumb2Instruction(I)) 814 BBI.Unalign = 1; 815 } 816 817 // tBR_JTr contains a .align 2 directive. 818 if (!MBB->empty() && MBB->back().getOpcode() == ARM::tBR_JTr) { 819 BBI.PostAlign = 2; 820 MBB->getParent()->EnsureAlignment(2); 821 } 822} 823 824/// getOffsetOf - Return the current offset of the specified machine instruction 825/// from the start of the function. This offset changes as stuff is moved 826/// around inside the function. 827unsigned ARMConstantIslands::getOffsetOf(MachineInstr *MI) const { 828 MachineBasicBlock *MBB = MI->getParent(); 829 830 // The offset is composed of two things: the sum of the sizes of all MBB's 831 // before this instruction's block, and the offset from the start of the block 832 // it is in. 833 unsigned Offset = BBInfo[MBB->getNumber()].Offset; 834 835 // Sum instructions before MI in MBB. 836 for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) { 837 assert(I != MBB->end() && "Didn't find MI in its own basic block?"); 838 Offset += TII->GetInstSizeInBytes(I); 839 } 840 return Offset; 841} 842 843/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 844/// ID. 845static bool CompareMBBNumbers(const MachineBasicBlock *LHS, 846 const MachineBasicBlock *RHS) { 847 return LHS->getNumber() < RHS->getNumber(); 848} 849 850/// updateForInsertedWaterBlock - When a block is newly inserted into the 851/// machine function, it upsets all of the block numbers. Renumber the blocks 852/// and update the arrays that parallel this numbering. 853void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) { 854 // Renumber the MBB's to keep them consecutive. 855 NewBB->getParent()->RenumberBlocks(NewBB); 856 857 // Insert an entry into BBInfo to align it properly with the (newly 858 // renumbered) block numbers. 859 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 860 861 // Next, update WaterList. Specifically, we need to add NewMBB as having 862 // available water after it. 863 water_iterator IP = 864 std::lower_bound(WaterList.begin(), WaterList.end(), NewBB, 865 CompareMBBNumbers); 866 WaterList.insert(IP, NewBB); 867} 868 869 870/// Split the basic block containing MI into two blocks, which are joined by 871/// an unconditional branch. Update data structures and renumber blocks to 872/// account for this change and returns the newly created block. 873MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) { 874 MachineBasicBlock *OrigBB = MI->getParent(); 875 876 // Create a new MBB for the code after the OrigBB. 877 MachineBasicBlock *NewBB = 878 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock()); 879 MachineFunction::iterator MBBI = OrigBB; ++MBBI; 880 MF->insert(MBBI, NewBB); 881 882 // Splice the instructions starting with MI over to NewBB. 883 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 884 885 // Add an unconditional branch from OrigBB to NewBB. 886 // Note the new unconditional branch is not being recorded. 887 // There doesn't seem to be meaningful DebugInfo available; this doesn't 888 // correspond to anything in the source. 889 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B; 890 if (!isThumb) 891 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB); 892 else 893 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB) 894 .addImm(ARMCC::AL).addReg(0); 895 ++NumSplit; 896 897 // Update the CFG. All succs of OrigBB are now succs of NewBB. 898 NewBB->transferSuccessors(OrigBB); 899 900 // OrigBB branches to NewBB. 901 OrigBB->addSuccessor(NewBB); 902 903 // Update internal data structures to account for the newly inserted MBB. 904 // This is almost the same as updateForInsertedWaterBlock, except that 905 // the Water goes after OrigBB, not NewBB. 906 MF->RenumberBlocks(NewBB); 907 908 // Insert an entry into BBInfo to align it properly with the (newly 909 // renumbered) block numbers. 910 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 911 912 // Next, update WaterList. Specifically, we need to add OrigMBB as having 913 // available water after it (but not if it's already there, which happens 914 // when splitting before a conditional branch that is followed by an 915 // unconditional branch - in that case we want to insert NewBB). 916 water_iterator IP = 917 std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB, 918 CompareMBBNumbers); 919 MachineBasicBlock* WaterBB = *IP; 920 if (WaterBB == OrigBB) 921 WaterList.insert(llvm::next(IP), NewBB); 922 else 923 WaterList.insert(IP, OrigBB); 924 NewWaterList.insert(OrigBB); 925 926 // Figure out how large the OrigBB is. As the first half of the original 927 // block, it cannot contain a tablejump. The size includes 928 // the new jump we added. (It should be possible to do this without 929 // recounting everything, but it's very confusing, and this is rarely 930 // executed.) 931 computeBlockSize(OrigBB); 932 933 // Figure out how large the NewMBB is. As the second half of the original 934 // block, it may contain a tablejump. 935 computeBlockSize(NewBB); 936 937 // All BBOffsets following these blocks must be modified. 938 adjustBBOffsetsAfter(OrigBB); 939 940 return NewBB; 941} 942 943/// getUserOffset - Compute the offset of U.MI as seen by the hardware 944/// displacement computation. Update U.KnownAlignment to match its current 945/// basic block location. 946unsigned ARMConstantIslands::getUserOffset(CPUser &U) const { 947 unsigned UserOffset = getOffsetOf(U.MI); 948 const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()]; 949 unsigned KnownBits = BBI.internalKnownBits(); 950 951 // The value read from PC is offset from the actual instruction address. 952 UserOffset += (isThumb ? 4 : 8); 953 954 // Because of inline assembly, we may not know the alignment (mod 4) of U.MI. 955 // Make sure U.getMaxDisp() returns a constrained range. 956 U.KnownAlignment = (KnownBits >= 2); 957 958 // On Thumb, offsets==2 mod 4 are rounded down by the hardware for 959 // purposes of the displacement computation; compensate for that here. 960 // For unknown alignments, getMaxDisp() constrains the range instead. 961 if (isThumb && U.KnownAlignment) 962 UserOffset &= ~3u; 963 964 return UserOffset; 965} 966 967/// isOffsetInRange - Checks whether UserOffset (the location of a constant pool 968/// reference) is within MaxDisp of TrialOffset (a proposed location of a 969/// constant pool entry). 970/// UserOffset is computed by getUserOffset above to include PC adjustments. If 971/// the mod 4 alignment of UserOffset is not known, the uncertainty must be 972/// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that. 973bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset, 974 unsigned TrialOffset, unsigned MaxDisp, 975 bool NegativeOK, bool IsSoImm) { 976 if (UserOffset <= TrialOffset) { 977 // User before the Trial. 978 if (TrialOffset - UserOffset <= MaxDisp) 979 return true; 980 // FIXME: Make use full range of soimm values. 981 } else if (NegativeOK) { 982 if (UserOffset - TrialOffset <= MaxDisp) 983 return true; 984 // FIXME: Make use full range of soimm values. 985 } 986 return false; 987} 988 989/// isWaterInRange - Returns true if a CPE placed after the specified 990/// Water (a basic block) will be in range for the specific MI. 991/// 992/// Compute how much the function will grow by inserting a CPE after Water. 993bool ARMConstantIslands::isWaterInRange(unsigned UserOffset, 994 MachineBasicBlock* Water, CPUser &U, 995 unsigned &Growth) { 996 unsigned CPELogAlign = getCPELogAlign(U.CPEMI); 997 unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign); 998 unsigned NextBlockOffset, NextBlockAlignment; 999 MachineFunction::const_iterator NextBlock = Water; 1000 if (++NextBlock == MF->end()) { 1001 NextBlockOffset = BBInfo[Water->getNumber()].postOffset(); 1002 NextBlockAlignment = 0; 1003 } else { 1004 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset; 1005 NextBlockAlignment = NextBlock->getAlignment(); 1006 } 1007 unsigned Size = U.CPEMI->getOperand(2).getImm(); 1008 unsigned CPEEnd = CPEOffset + Size; 1009 1010 // The CPE may be able to hide in the alignment padding before the next 1011 // block. It may also cause more padding to be required if it is more aligned 1012 // that the next block. 1013 if (CPEEnd > NextBlockOffset) { 1014 Growth = CPEEnd - NextBlockOffset; 1015 // Compute the padding that would go at the end of the CPE to align the next 1016 // block. 1017 Growth += OffsetToAlignment(CPEEnd, 1u << NextBlockAlignment); 1018 1019 // If the CPE is to be inserted before the instruction, that will raise 1020 // the offset of the instruction. Also account for unknown alignment padding 1021 // in blocks between CPE and the user. 1022 if (CPEOffset < UserOffset) 1023 UserOffset += Growth + UnknownPadding(MF->getAlignment(), CPELogAlign); 1024 } else 1025 // CPE fits in existing padding. 1026 Growth = 0; 1027 1028 return isOffsetInRange(UserOffset, CPEOffset, U); 1029} 1030 1031/// isCPEntryInRange - Returns true if the distance between specific MI and 1032/// specific ConstPool entry instruction can fit in MI's displacement field. 1033bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 1034 MachineInstr *CPEMI, unsigned MaxDisp, 1035 bool NegOk, bool DoDump) { 1036 unsigned CPEOffset = getOffsetOf(CPEMI); 1037 assert(CPEOffset % 4 == 0 && "Misaligned CPE"); 1038 1039 if (DoDump) { 1040 DEBUG({ 1041 unsigned Block = MI->getParent()->getNumber(); 1042 const BasicBlockInfo &BBI = BBInfo[Block]; 1043 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm() 1044 << " max delta=" << MaxDisp 1045 << format(" insn address=%#x", UserOffset) 1046 << " in BB#" << Block << ": " 1047 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI 1048 << format("CPE address=%#x offset=%+d: ", CPEOffset, 1049 int(CPEOffset-UserOffset)); 1050 }); 1051 } 1052 1053 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk); 1054} 1055 1056#ifndef NDEBUG 1057/// BBIsJumpedOver - Return true of the specified basic block's only predecessor 1058/// unconditionally branches to its only successor. 1059static bool BBIsJumpedOver(MachineBasicBlock *MBB) { 1060 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 1061 return false; 1062 1063 MachineBasicBlock *Succ = *MBB->succ_begin(); 1064 MachineBasicBlock *Pred = *MBB->pred_begin(); 1065 MachineInstr *PredMI = &Pred->back(); 1066 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB 1067 || PredMI->getOpcode() == ARM::t2B) 1068 return PredMI->getOperand(0).getMBB() == Succ; 1069 return false; 1070} 1071#endif // NDEBUG 1072 1073void ARMConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) { 1074 unsigned BBNum = BB->getNumber(); 1075 for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) { 1076 // Get the offset and known bits at the end of the layout predecessor. 1077 // Include the alignment of the current block. 1078 unsigned LogAlign = MF->getBlockNumbered(i)->getAlignment(); 1079 unsigned Offset = BBInfo[i - 1].postOffset(LogAlign); 1080 unsigned KnownBits = BBInfo[i - 1].postKnownBits(LogAlign); 1081 1082 // This is where block i begins. Stop if the offset is already correct, 1083 // and we have updated 2 blocks. This is the maximum number of blocks 1084 // changed before calling this function. 1085 if (i > BBNum + 2 && 1086 BBInfo[i].Offset == Offset && 1087 BBInfo[i].KnownBits == KnownBits) 1088 break; 1089 1090 BBInfo[i].Offset = Offset; 1091 BBInfo[i].KnownBits = KnownBits; 1092 } 1093} 1094 1095/// decrementCPEReferenceCount - find the constant pool entry with index CPI 1096/// and instruction CPEMI, and decrement its refcount. If the refcount 1097/// becomes 0 remove the entry and instruction. Returns true if we removed 1098/// the entry, false if we didn't. 1099 1100bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI, 1101 MachineInstr *CPEMI) { 1102 // Find the old entry. Eliminate it if it is no longer used. 1103 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 1104 assert(CPE && "Unexpected!"); 1105 if (--CPE->RefCount == 0) { 1106 removeDeadCPEMI(CPEMI); 1107 CPE->CPEMI = NULL; 1108 --NumCPEs; 1109 return true; 1110 } 1111 return false; 1112} 1113 1114/// LookForCPEntryInRange - see if the currently referenced CPE is in range; 1115/// if not, see if an in-range clone of the CPE is in range, and if so, 1116/// change the data structures so the user references the clone. Returns: 1117/// 0 = no existing entry found 1118/// 1 = entry found, and there were no code insertions or deletions 1119/// 2 = entry found, and there were code insertions or deletions 1120int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) 1121{ 1122 MachineInstr *UserMI = U.MI; 1123 MachineInstr *CPEMI = U.CPEMI; 1124 1125 // Check to see if the CPE is already in-range. 1126 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk, 1127 true)) { 1128 DEBUG(dbgs() << "In range\n"); 1129 return 1; 1130 } 1131 1132 // No. Look for previously created clones of the CPE that are in range. 1133 unsigned CPI = CPEMI->getOperand(1).getIndex(); 1134 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 1135 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 1136 // We already tried this one 1137 if (CPEs[i].CPEMI == CPEMI) 1138 continue; 1139 // Removing CPEs can leave empty entries, skip 1140 if (CPEs[i].CPEMI == NULL) 1141 continue; 1142 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(), 1143 U.NegOk)) { 1144 DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" 1145 << CPEs[i].CPI << "\n"); 1146 // Point the CPUser node to the replacement 1147 U.CPEMI = CPEs[i].CPEMI; 1148 // Change the CPI in the instruction operand to refer to the clone. 1149 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) 1150 if (UserMI->getOperand(j).isCPI()) { 1151 UserMI->getOperand(j).setIndex(CPEs[i].CPI); 1152 break; 1153 } 1154 // Adjust the refcount of the clone... 1155 CPEs[i].RefCount++; 1156 // ...and the original. If we didn't remove the old entry, none of the 1157 // addresses changed, so we don't need another pass. 1158 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; 1159 } 1160 } 1161 return 0; 1162} 1163 1164/// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 1165/// the specific unconditional branch instruction. 1166static inline unsigned getUnconditionalBrDisp(int Opc) { 1167 switch (Opc) { 1168 case ARM::tB: 1169 return ((1<<10)-1)*2; 1170 case ARM::t2B: 1171 return ((1<<23)-1)*2; 1172 default: 1173 break; 1174 } 1175 1176 return ((1<<23)-1)*4; 1177} 1178 1179/// findAvailableWater - Look for an existing entry in the WaterList in which 1180/// we can place the CPE referenced from U so it's within range of U's MI. 1181/// Returns true if found, false if not. If it returns true, WaterIter 1182/// is set to the WaterList entry. For Thumb, prefer water that will not 1183/// introduce padding to water that will. To ensure that this pass 1184/// terminates, the CPE location for a particular CPUser is only allowed to 1185/// move to a lower address, so search backward from the end of the list and 1186/// prefer the first water that is in range. 1187bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset, 1188 water_iterator &WaterIter) { 1189 if (WaterList.empty()) 1190 return false; 1191 1192 unsigned BestGrowth = ~0u; 1193 for (water_iterator IP = prior(WaterList.end()), B = WaterList.begin();; 1194 --IP) { 1195 MachineBasicBlock* WaterBB = *IP; 1196 // Check if water is in range and is either at a lower address than the 1197 // current "high water mark" or a new water block that was created since 1198 // the previous iteration by inserting an unconditional branch. In the 1199 // latter case, we want to allow resetting the high water mark back to 1200 // this new water since we haven't seen it before. Inserting branches 1201 // should be relatively uncommon and when it does happen, we want to be 1202 // sure to take advantage of it for all the CPEs near that block, so that 1203 // we don't insert more branches than necessary. 1204 unsigned Growth; 1205 if (isWaterInRange(UserOffset, WaterBB, U, Growth) && 1206 (WaterBB->getNumber() < U.HighWaterMark->getNumber() || 1207 NewWaterList.count(WaterBB)) && Growth < BestGrowth) { 1208 // This is the least amount of required padding seen so far. 1209 BestGrowth = Growth; 1210 WaterIter = IP; 1211 DEBUG(dbgs() << "Found water after BB#" << WaterBB->getNumber() 1212 << " Growth=" << Growth << '\n'); 1213 1214 // Keep looking unless it is perfect. 1215 if (BestGrowth == 0) 1216 return true; 1217 } 1218 if (IP == B) 1219 break; 1220 } 1221 return BestGrowth != ~0u; 1222} 1223 1224/// createNewWater - No existing WaterList entry will work for 1225/// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 1226/// block is used if in range, and the conditional branch munged so control 1227/// flow is correct. Otherwise the block is split to create a hole with an 1228/// unconditional branch around it. In either case NewMBB is set to a 1229/// block following which the new island can be inserted (the WaterList 1230/// is not adjusted). 1231void ARMConstantIslands::createNewWater(unsigned CPUserIndex, 1232 unsigned UserOffset, 1233 MachineBasicBlock *&NewMBB) { 1234 CPUser &U = CPUsers[CPUserIndex]; 1235 MachineInstr *UserMI = U.MI; 1236 MachineInstr *CPEMI = U.CPEMI; 1237 unsigned CPELogAlign = getCPELogAlign(CPEMI); 1238 MachineBasicBlock *UserMBB = UserMI->getParent(); 1239 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()]; 1240 1241 // If the block does not end in an unconditional branch already, and if the 1242 // end of the block is within range, make new water there. (The addition 1243 // below is for the unconditional branch we will be adding: 4 bytes on ARM + 1244 // Thumb2, 2 on Thumb1. 1245 if (BBHasFallthrough(UserMBB)) { 1246 // Size of branch to insert. 1247 unsigned Delta = isThumb1 ? 2 : 4; 1248 // End of UserBlock after adding a branch. 1249 unsigned UserBlockEnd = UserBBI.postOffset() + Delta; 1250 // Compute the offset where the CPE will begin. 1251 unsigned CPEOffset = WorstCaseAlign(UserBlockEnd, CPELogAlign, 1252 UserBBI.postKnownBits()); 1253 1254 if (isOffsetInRange(UserOffset, CPEOffset, U)) { 1255 DEBUG(dbgs() << "Split at end of BB#" << UserMBB->getNumber() 1256 << format(", expected CPE offset %#x\n", CPEOffset)); 1257 NewMBB = llvm::next(MachineFunction::iterator(UserMBB)); 1258 // Add an unconditional branch from UserMBB to fallthrough block. Record 1259 // it for branch lengthening; this new branch will not get out of range, 1260 // but if the preceding conditional branch is out of range, the targets 1261 // will be exchanged, and the altered branch may be out of range, so the 1262 // machinery has to know about it. 1263 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B; 1264 if (!isThumb) 1265 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB); 1266 else 1267 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB) 1268 .addImm(ARMCC::AL).addReg(0); 1269 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 1270 ImmBranches.push_back(ImmBranch(&UserMBB->back(), 1271 MaxDisp, false, UncondBr)); 1272 BBInfo[UserMBB->getNumber()].Size += Delta; 1273 adjustBBOffsetsAfter(UserMBB); 1274 return; 1275 } 1276 } 1277 1278 // What a big block. Find a place within the block to split it. This is a 1279 // little tricky on Thumb1 since instructions are 2 bytes and constant pool 1280 // entries are 4 bytes: if instruction I references island CPE, and 1281 // instruction I+1 references CPE', it will not work well to put CPE as far 1282 // forward as possible, since then CPE' cannot immediately follow it (that 1283 // location is 2 bytes farther away from I+1 than CPE was from I) and we'd 1284 // need to create a new island. So, we make a first guess, then walk through 1285 // the instructions between the one currently being looked at and the 1286 // possible insertion point, and make sure any other instructions that 1287 // reference CPEs will be able to use the same island area; if not, we back 1288 // up the insertion point. 1289 1290 // Try to split the block so it's fully aligned. Compute the latest split 1291 // point where we can add a 4-byte branch instruction, and then 1292 // WorstCaseAlign to LogAlign. 1293 unsigned LogAlign = MF->getAlignment(); 1294 assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry"); 1295 unsigned KnownBits = UserBBI.internalKnownBits(); 1296 unsigned UPad = UnknownPadding(LogAlign, KnownBits); 1297 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp(); 1298 DEBUG(dbgs() << format("Split in middle of big block before %#x", 1299 BaseInsertOffset)); 1300 1301 // Account for alignment and unknown padding. 1302 BaseInsertOffset &= ~((1u << LogAlign) - 1); 1303 BaseInsertOffset -= UPad; 1304 1305 // The 4 in the following is for the unconditional branch we'll be inserting 1306 // (allows for long branch on Thumb1). Alignment of the island is handled 1307 // inside isOffsetInRange. 1308 BaseInsertOffset -= 4; 1309 1310 DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset) 1311 << " la=" << LogAlign 1312 << " kb=" << KnownBits 1313 << " up=" << UPad << '\n'); 1314 1315 // This could point off the end of the block if we've already got constant 1316 // pool entries following this block; only the last one is in the water list. 1317 // Back past any possible branches (allow for a conditional and a maximally 1318 // long unconditional). 1319 if (BaseInsertOffset >= BBInfo[UserMBB->getNumber()+1].Offset) 1320 BaseInsertOffset = BBInfo[UserMBB->getNumber()+1].Offset - 1321 (isThumb1 ? 6 : 8); 1322 unsigned EndInsertOffset = 1323 WorstCaseAlign(BaseInsertOffset + 4, LogAlign, KnownBits) + 1324 CPEMI->getOperand(2).getImm(); 1325 MachineBasicBlock::iterator MI = UserMI; 1326 ++MI; 1327 unsigned CPUIndex = CPUserIndex+1; 1328 unsigned NumCPUsers = CPUsers.size(); 1329 MachineInstr *LastIT = 0; 1330 for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI); 1331 Offset < BaseInsertOffset; 1332 Offset += TII->GetInstSizeInBytes(MI), 1333 MI = llvm::next(MI)) { 1334 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) { 1335 CPUser &U = CPUsers[CPUIndex]; 1336 if (!isOffsetInRange(Offset, EndInsertOffset, U)) { 1337 // Shift intertion point by one unit of alignment so it is within reach. 1338 BaseInsertOffset -= 1u << LogAlign; 1339 EndInsertOffset -= 1u << LogAlign; 1340 } 1341 // This is overly conservative, as we don't account for CPEMIs being 1342 // reused within the block, but it doesn't matter much. Also assume CPEs 1343 // are added in order with alignment padding. We may eventually be able 1344 // to pack the aligned CPEs better. 1345 EndInsertOffset = RoundUpToAlignment(EndInsertOffset, 1346 1u << getCPELogAlign(U.CPEMI)) + 1347 U.CPEMI->getOperand(2).getImm(); 1348 CPUIndex++; 1349 } 1350 1351 // Remember the last IT instruction. 1352 if (MI->getOpcode() == ARM::t2IT) 1353 LastIT = MI; 1354 } 1355 1356 --MI; 1357 1358 // Avoid splitting an IT block. 1359 if (LastIT) { 1360 unsigned PredReg = 0; 1361 ARMCC::CondCodes CC = getITInstrPredicate(MI, PredReg); 1362 if (CC != ARMCC::AL) 1363 MI = LastIT; 1364 } 1365 NewMBB = splitBlockBeforeInstr(MI); 1366} 1367 1368/// handleConstantPoolUser - Analyze the specified user, checking to see if it 1369/// is out-of-range. If so, pick up the constant pool value and move it some 1370/// place in-range. Return true if we changed any addresses (thus must run 1371/// another pass of branch lengthening), false otherwise. 1372bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) { 1373 CPUser &U = CPUsers[CPUserIndex]; 1374 MachineInstr *UserMI = U.MI; 1375 MachineInstr *CPEMI = U.CPEMI; 1376 unsigned CPI = CPEMI->getOperand(1).getIndex(); 1377 unsigned Size = CPEMI->getOperand(2).getImm(); 1378 // Compute this only once, it's expensive. 1379 unsigned UserOffset = getUserOffset(U); 1380 1381 // See if the current entry is within range, or there is a clone of it 1382 // in range. 1383 int result = findInRangeCPEntry(U, UserOffset); 1384 if (result==1) return false; 1385 else if (result==2) return true; 1386 1387 // No existing clone of this CPE is within range. 1388 // We will be generating a new clone. Get a UID for it. 1389 unsigned ID = AFI->createPICLabelUId(); 1390 1391 // Look for water where we can place this CPE. 1392 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock(); 1393 MachineBasicBlock *NewMBB; 1394 water_iterator IP; 1395 if (findAvailableWater(U, UserOffset, IP)) { 1396 DEBUG(dbgs() << "Found water in range\n"); 1397 MachineBasicBlock *WaterBB = *IP; 1398 1399 // If the original WaterList entry was "new water" on this iteration, 1400 // propagate that to the new island. This is just keeping NewWaterList 1401 // updated to match the WaterList, which will be updated below. 1402 if (NewWaterList.count(WaterBB)) { 1403 NewWaterList.erase(WaterBB); 1404 NewWaterList.insert(NewIsland); 1405 } 1406 // The new CPE goes before the following block (NewMBB). 1407 NewMBB = llvm::next(MachineFunction::iterator(WaterBB)); 1408 1409 } else { 1410 // No water found. 1411 DEBUG(dbgs() << "No water found\n"); 1412 createNewWater(CPUserIndex, UserOffset, NewMBB); 1413 1414 // splitBlockBeforeInstr adds to WaterList, which is important when it is 1415 // called while handling branches so that the water will be seen on the 1416 // next iteration for constant pools, but in this context, we don't want 1417 // it. Check for this so it will be removed from the WaterList. 1418 // Also remove any entry from NewWaterList. 1419 MachineBasicBlock *WaterBB = prior(MachineFunction::iterator(NewMBB)); 1420 IP = std::find(WaterList.begin(), WaterList.end(), WaterBB); 1421 if (IP != WaterList.end()) 1422 NewWaterList.erase(WaterBB); 1423 1424 // We are adding new water. Update NewWaterList. 1425 NewWaterList.insert(NewIsland); 1426 } 1427 1428 // Remove the original WaterList entry; we want subsequent insertions in 1429 // this vicinity to go after the one we're about to insert. This 1430 // considerably reduces the number of times we have to move the same CPE 1431 // more than once and is also important to ensure the algorithm terminates. 1432 if (IP != WaterList.end()) 1433 WaterList.erase(IP); 1434 1435 // Okay, we know we can put an island before NewMBB now, do it! 1436 MF->insert(NewMBB, NewIsland); 1437 1438 // Update internal data structures to account for the newly inserted MBB. 1439 updateForInsertedWaterBlock(NewIsland); 1440 1441 // Decrement the old entry, and remove it if refcount becomes 0. 1442 decrementCPEReferenceCount(CPI, CPEMI); 1443 1444 // Now that we have an island to add the CPE to, clone the original CPE and 1445 // add it to the island. 1446 U.HighWaterMark = NewIsland; 1447 U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 1448 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size); 1449 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1450 ++NumCPEs; 1451 1452 // Mark the basic block as aligned as required by the const-pool entry. 1453 NewIsland->setAlignment(getCPELogAlign(U.CPEMI)); 1454 1455 // Increase the size of the island block to account for the new entry. 1456 BBInfo[NewIsland->getNumber()].Size += Size; 1457 adjustBBOffsetsAfter(llvm::prior(MachineFunction::iterator(NewIsland))); 1458 1459 // Finally, change the CPI in the instruction operand to be ID. 1460 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) 1461 if (UserMI->getOperand(i).isCPI()) { 1462 UserMI->getOperand(i).setIndex(ID); 1463 break; 1464 } 1465 1466 DEBUG(dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI 1467 << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset)); 1468 1469 return true; 1470} 1471 1472/// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update 1473/// sizes and offsets of impacted basic blocks. 1474void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) { 1475 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1476 unsigned Size = CPEMI->getOperand(2).getImm(); 1477 CPEMI->eraseFromParent(); 1478 BBInfo[CPEBB->getNumber()].Size -= Size; 1479 // All succeeding offsets have the current size value added in, fix this. 1480 if (CPEBB->empty()) { 1481 BBInfo[CPEBB->getNumber()].Size = 0; 1482 1483 // This block no longer needs to be aligned. <rdar://problem/10534709>. 1484 CPEBB->setAlignment(0); 1485 } else 1486 // Entries are sorted by descending alignment, so realign from the front. 1487 CPEBB->setAlignment(getCPELogAlign(CPEBB->begin())); 1488 1489 adjustBBOffsetsAfter(CPEBB); 1490 // An island has only one predecessor BB and one successor BB. Check if 1491 // this BB's predecessor jumps directly to this BB's successor. This 1492 // shouldn't happen currently. 1493 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); 1494 // FIXME: remove the empty blocks after all the work is done? 1495} 1496 1497/// removeUnusedCPEntries - Remove constant pool entries whose refcounts 1498/// are zero. 1499bool ARMConstantIslands::removeUnusedCPEntries() { 1500 unsigned MadeChange = false; 1501 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 1502 std::vector<CPEntry> &CPEs = CPEntries[i]; 1503 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { 1504 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { 1505 removeDeadCPEMI(CPEs[j].CPEMI); 1506 CPEs[j].CPEMI = NULL; 1507 MadeChange = true; 1508 } 1509 } 1510 } 1511 return MadeChange; 1512} 1513 1514/// isBBInRange - Returns true if the distance between specific MI and 1515/// specific BB can fit in MI's displacement field. 1516bool ARMConstantIslands::isBBInRange(MachineInstr *MI,MachineBasicBlock *DestBB, 1517 unsigned MaxDisp) { 1518 unsigned PCAdj = isThumb ? 4 : 8; 1519 unsigned BrOffset = getOffsetOf(MI) + PCAdj; 1520 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1521 1522 DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber() 1523 << " from BB#" << MI->getParent()->getNumber() 1524 << " max delta=" << MaxDisp 1525 << " from " << getOffsetOf(MI) << " to " << DestOffset 1526 << " offset " << int(DestOffset-BrOffset) << "\t" << *MI); 1527 1528 if (BrOffset <= DestOffset) { 1529 // Branch before the Dest. 1530 if (DestOffset-BrOffset <= MaxDisp) 1531 return true; 1532 } else { 1533 if (BrOffset-DestOffset <= MaxDisp) 1534 return true; 1535 } 1536 return false; 1537} 1538 1539/// fixupImmediateBr - Fix up an immediate branch whose destination is too far 1540/// away to fit in its displacement field. 1541bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) { 1542 MachineInstr *MI = Br.MI; 1543 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1544 1545 // Check to see if the DestBB is already in-range. 1546 if (isBBInRange(MI, DestBB, Br.MaxDisp)) 1547 return false; 1548 1549 if (!Br.isCond) 1550 return fixupUnconditionalBr(Br); 1551 return fixupConditionalBr(Br); 1552} 1553 1554/// fixupUnconditionalBr - Fix up an unconditional branch whose destination is 1555/// too far away to fit in its displacement field. If the LR register has been 1556/// spilled in the epilogue, then we can use BL to implement a far jump. 1557/// Otherwise, add an intermediate branch instruction to a branch. 1558bool 1559ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) { 1560 MachineInstr *MI = Br.MI; 1561 MachineBasicBlock *MBB = MI->getParent(); 1562 if (!isThumb1) 1563 llvm_unreachable("fixupUnconditionalBr is Thumb1 only!"); 1564 1565 // Use BL to implement far jump. 1566 Br.MaxDisp = (1 << 21) * 2; 1567 MI->setDesc(TII->get(ARM::tBfar)); 1568 BBInfo[MBB->getNumber()].Size += 2; 1569 adjustBBOffsetsAfter(MBB); 1570 HasFarJump = true; 1571 ++NumUBrFixed; 1572 1573 DEBUG(dbgs() << " Changed B to long jump " << *MI); 1574 1575 return true; 1576} 1577 1578/// fixupConditionalBr - Fix up a conditional branch whose destination is too 1579/// far away to fit in its displacement field. It is converted to an inverse 1580/// conditional branch + an unconditional branch to the destination. 1581bool 1582ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) { 1583 MachineInstr *MI = Br.MI; 1584 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1585 1586 // Add an unconditional branch to the destination and invert the branch 1587 // condition to jump over it: 1588 // blt L1 1589 // => 1590 // bge L2 1591 // b L1 1592 // L2: 1593 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm(); 1594 CC = ARMCC::getOppositeCondition(CC); 1595 unsigned CCReg = MI->getOperand(2).getReg(); 1596 1597 // If the branch is at the end of its MBB and that has a fall-through block, 1598 // direct the updated conditional branch to the fall-through block. Otherwise, 1599 // split the MBB before the next instruction. 1600 MachineBasicBlock *MBB = MI->getParent(); 1601 MachineInstr *BMI = &MBB->back(); 1602 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); 1603 1604 ++NumCBrFixed; 1605 if (BMI != MI) { 1606 if (llvm::next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) && 1607 BMI->getOpcode() == Br.UncondBr) { 1608 // Last MI in the BB is an unconditional branch. Can we simply invert the 1609 // condition and swap destinations: 1610 // beq L1 1611 // b L2 1612 // => 1613 // bne L2 1614 // b L1 1615 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); 1616 if (isBBInRange(MI, NewDest, Br.MaxDisp)) { 1617 DEBUG(dbgs() << " Invert Bcc condition and swap its destination with " 1618 << *BMI); 1619 BMI->getOperand(0).setMBB(DestBB); 1620 MI->getOperand(0).setMBB(NewDest); 1621 MI->getOperand(1).setImm(CC); 1622 return true; 1623 } 1624 } 1625 } 1626 1627 if (NeedSplit) { 1628 splitBlockBeforeInstr(MI); 1629 // No need for the branch to the next block. We're adding an unconditional 1630 // branch to the destination. 1631 int delta = TII->GetInstSizeInBytes(&MBB->back()); 1632 BBInfo[MBB->getNumber()].Size -= delta; 1633 MBB->back().eraseFromParent(); 1634 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below 1635 } 1636 MachineBasicBlock *NextBB = llvm::next(MachineFunction::iterator(MBB)); 1637 1638 DEBUG(dbgs() << " Insert B to BB#" << DestBB->getNumber() 1639 << " also invert condition and change dest. to BB#" 1640 << NextBB->getNumber() << "\n"); 1641 1642 // Insert a new conditional branch and a new unconditional branch. 1643 // Also update the ImmBranch as well as adding a new entry for the new branch. 1644 BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode())) 1645 .addMBB(NextBB).addImm(CC).addReg(CCReg); 1646 Br.MI = &MBB->back(); 1647 BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back()); 1648 if (isThumb) 1649 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB) 1650 .addImm(ARMCC::AL).addReg(0); 1651 else 1652 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); 1653 BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back()); 1654 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1655 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1656 1657 // Remove the old conditional branch. It may or may not still be in MBB. 1658 BBInfo[MI->getParent()->getNumber()].Size -= TII->GetInstSizeInBytes(MI); 1659 MI->eraseFromParent(); 1660 adjustBBOffsetsAfter(MBB); 1661 return true; 1662} 1663 1664/// undoLRSpillRestore - Remove Thumb push / pop instructions that only spills 1665/// LR / restores LR to pc. FIXME: This is done here because it's only possible 1666/// to do this if tBfar is not used. 1667bool ARMConstantIslands::undoLRSpillRestore() { 1668 bool MadeChange = false; 1669 for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) { 1670 MachineInstr *MI = PushPopMIs[i]; 1671 // First two operands are predicates. 1672 if (MI->getOpcode() == ARM::tPOP_RET && 1673 MI->getOperand(2).getReg() == ARM::PC && 1674 MI->getNumExplicitOperands() == 3) { 1675 // Create the new insn and copy the predicate from the old. 1676 BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET)) 1677 .addOperand(MI->getOperand(0)) 1678 .addOperand(MI->getOperand(1)); 1679 MI->eraseFromParent(); 1680 MadeChange = true; 1681 } 1682 } 1683 return MadeChange; 1684} 1685 1686// mayOptimizeThumb2Instruction - Returns true if optimizeThumb2Instructions 1687// below may shrink MI. 1688bool 1689ARMConstantIslands::mayOptimizeThumb2Instruction(const MachineInstr *MI) const { 1690 switch(MI->getOpcode()) { 1691 // optimizeThumb2Instructions. 1692 case ARM::t2LEApcrel: 1693 case ARM::t2LDRpci: 1694 // optimizeThumb2Branches. 1695 case ARM::t2B: 1696 case ARM::t2Bcc: 1697 case ARM::tBcc: 1698 // optimizeThumb2JumpTables. 1699 case ARM::t2BR_JT: 1700 return true; 1701 } 1702 return false; 1703} 1704 1705bool ARMConstantIslands::optimizeThumb2Instructions() { 1706 bool MadeChange = false; 1707 1708 // Shrink ADR and LDR from constantpool. 1709 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 1710 CPUser &U = CPUsers[i]; 1711 unsigned Opcode = U.MI->getOpcode(); 1712 unsigned NewOpc = 0; 1713 unsigned Scale = 1; 1714 unsigned Bits = 0; 1715 switch (Opcode) { 1716 default: break; 1717 case ARM::t2LEApcrel: 1718 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1719 NewOpc = ARM::tLEApcrel; 1720 Bits = 8; 1721 Scale = 4; 1722 } 1723 break; 1724 case ARM::t2LDRpci: 1725 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1726 NewOpc = ARM::tLDRpci; 1727 Bits = 8; 1728 Scale = 4; 1729 } 1730 break; 1731 } 1732 1733 if (!NewOpc) 1734 continue; 1735 1736 unsigned UserOffset = getUserOffset(U); 1737 unsigned MaxOffs = ((1 << Bits) - 1) * Scale; 1738 1739 // Be conservative with inline asm. 1740 if (!U.KnownAlignment) 1741 MaxOffs -= 2; 1742 1743 // FIXME: Check if offset is multiple of scale if scale is not 4. 1744 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) { 1745 U.MI->setDesc(TII->get(NewOpc)); 1746 MachineBasicBlock *MBB = U.MI->getParent(); 1747 BBInfo[MBB->getNumber()].Size -= 2; 1748 adjustBBOffsetsAfter(MBB); 1749 ++NumT2CPShrunk; 1750 MadeChange = true; 1751 } 1752 } 1753 1754 MadeChange |= optimizeThumb2Branches(); 1755 MadeChange |= optimizeThumb2JumpTables(); 1756 return MadeChange; 1757} 1758 1759bool ARMConstantIslands::optimizeThumb2Branches() { 1760 bool MadeChange = false; 1761 1762 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) { 1763 ImmBranch &Br = ImmBranches[i]; 1764 unsigned Opcode = Br.MI->getOpcode(); 1765 unsigned NewOpc = 0; 1766 unsigned Scale = 1; 1767 unsigned Bits = 0; 1768 switch (Opcode) { 1769 default: break; 1770 case ARM::t2B: 1771 NewOpc = ARM::tB; 1772 Bits = 11; 1773 Scale = 2; 1774 break; 1775 case ARM::t2Bcc: { 1776 NewOpc = ARM::tBcc; 1777 Bits = 8; 1778 Scale = 2; 1779 break; 1780 } 1781 } 1782 if (NewOpc) { 1783 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 1784 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1785 if (isBBInRange(Br.MI, DestBB, MaxOffs)) { 1786 Br.MI->setDesc(TII->get(NewOpc)); 1787 MachineBasicBlock *MBB = Br.MI->getParent(); 1788 BBInfo[MBB->getNumber()].Size -= 2; 1789 adjustBBOffsetsAfter(MBB); 1790 ++NumT2BrShrunk; 1791 MadeChange = true; 1792 } 1793 } 1794 1795 Opcode = Br.MI->getOpcode(); 1796 if (Opcode != ARM::tBcc) 1797 continue; 1798 1799 // If the conditional branch doesn't kill CPSR, then CPSR can be liveout 1800 // so this transformation is not safe. 1801 if (!Br.MI->killsRegister(ARM::CPSR)) 1802 continue; 1803 1804 NewOpc = 0; 1805 unsigned PredReg = 0; 1806 ARMCC::CondCodes Pred = getInstrPredicate(Br.MI, PredReg); 1807 if (Pred == ARMCC::EQ) 1808 NewOpc = ARM::tCBZ; 1809 else if (Pred == ARMCC::NE) 1810 NewOpc = ARM::tCBNZ; 1811 if (!NewOpc) 1812 continue; 1813 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1814 // Check if the distance is within 126. Subtract starting offset by 2 1815 // because the cmp will be eliminated. 1816 unsigned BrOffset = getOffsetOf(Br.MI) + 4 - 2; 1817 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1818 if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) { 1819 MachineBasicBlock::iterator CmpMI = Br.MI; 1820 if (CmpMI != Br.MI->getParent()->begin()) { 1821 --CmpMI; 1822 if (CmpMI->getOpcode() == ARM::tCMPi8) { 1823 unsigned Reg = CmpMI->getOperand(0).getReg(); 1824 Pred = getInstrPredicate(CmpMI, PredReg); 1825 if (Pred == ARMCC::AL && 1826 CmpMI->getOperand(1).getImm() == 0 && 1827 isARMLowRegister(Reg)) { 1828 MachineBasicBlock *MBB = Br.MI->getParent(); 1829 MachineInstr *NewBR = 1830 BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc)) 1831 .addReg(Reg).addMBB(DestBB,Br.MI->getOperand(0).getTargetFlags()); 1832 CmpMI->eraseFromParent(); 1833 Br.MI->eraseFromParent(); 1834 Br.MI = NewBR; 1835 BBInfo[MBB->getNumber()].Size -= 2; 1836 adjustBBOffsetsAfter(MBB); 1837 ++NumCBZ; 1838 MadeChange = true; 1839 } 1840 } 1841 } 1842 } 1843 } 1844 1845 return MadeChange; 1846} 1847 1848/// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller 1849/// jumptables when it's possible. 1850bool ARMConstantIslands::optimizeThumb2JumpTables() { 1851 bool MadeChange = false; 1852 1853 // FIXME: After the tables are shrunk, can we get rid some of the 1854 // constantpool tables? 1855 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1856 if (MJTI == 0) return false; 1857 1858 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1859 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 1860 MachineInstr *MI = T2JumpTables[i]; 1861 const MCInstrDesc &MCID = MI->getDesc(); 1862 unsigned NumOps = MCID.getNumOperands(); 1863 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 3 : 2); 1864 MachineOperand JTOP = MI->getOperand(JTOpIdx); 1865 unsigned JTI = JTOP.getIndex(); 1866 assert(JTI < JT.size()); 1867 1868 bool ByteOk = true; 1869 bool HalfWordOk = true; 1870 unsigned JTOffset = getOffsetOf(MI) + 4; 1871 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1872 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 1873 MachineBasicBlock *MBB = JTBBs[j]; 1874 unsigned DstOffset = BBInfo[MBB->getNumber()].Offset; 1875 // Negative offset is not ok. FIXME: We should change BB layout to make 1876 // sure all the branches are forward. 1877 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2) 1878 ByteOk = false; 1879 unsigned TBHLimit = ((1<<16)-1)*2; 1880 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit) 1881 HalfWordOk = false; 1882 if (!ByteOk && !HalfWordOk) 1883 break; 1884 } 1885 1886 if (ByteOk || HalfWordOk) { 1887 MachineBasicBlock *MBB = MI->getParent(); 1888 unsigned BaseReg = MI->getOperand(0).getReg(); 1889 bool BaseRegKill = MI->getOperand(0).isKill(); 1890 if (!BaseRegKill) 1891 continue; 1892 unsigned IdxReg = MI->getOperand(1).getReg(); 1893 bool IdxRegKill = MI->getOperand(1).isKill(); 1894 1895 // Scan backwards to find the instruction that defines the base 1896 // register. Due to post-RA scheduling, we can't count on it 1897 // immediately preceding the branch instruction. 1898 MachineBasicBlock::iterator PrevI = MI; 1899 MachineBasicBlock::iterator B = MBB->begin(); 1900 while (PrevI != B && !PrevI->definesRegister(BaseReg)) 1901 --PrevI; 1902 1903 // If for some reason we didn't find it, we can't do anything, so 1904 // just skip this one. 1905 if (!PrevI->definesRegister(BaseReg)) 1906 continue; 1907 1908 MachineInstr *AddrMI = PrevI; 1909 bool OptOk = true; 1910 // Examine the instruction that calculates the jumptable entry address. 1911 // Make sure it only defines the base register and kills any uses 1912 // other than the index register. 1913 for (unsigned k = 0, eee = AddrMI->getNumOperands(); k != eee; ++k) { 1914 const MachineOperand &MO = AddrMI->getOperand(k); 1915 if (!MO.isReg() || !MO.getReg()) 1916 continue; 1917 if (MO.isDef() && MO.getReg() != BaseReg) { 1918 OptOk = false; 1919 break; 1920 } 1921 if (MO.isUse() && !MO.isKill() && MO.getReg() != IdxReg) { 1922 OptOk = false; 1923 break; 1924 } 1925 } 1926 if (!OptOk) 1927 continue; 1928 1929 // Now scan back again to find the tLEApcrel or t2LEApcrelJT instruction 1930 // that gave us the initial base register definition. 1931 for (--PrevI; PrevI != B && !PrevI->definesRegister(BaseReg); --PrevI) 1932 ; 1933 1934 // The instruction should be a tLEApcrel or t2LEApcrelJT; we want 1935 // to delete it as well. 1936 MachineInstr *LeaMI = PrevI; 1937 if ((LeaMI->getOpcode() != ARM::tLEApcrelJT && 1938 LeaMI->getOpcode() != ARM::t2LEApcrelJT) || 1939 LeaMI->getOperand(0).getReg() != BaseReg) 1940 OptOk = false; 1941 1942 if (!OptOk) 1943 continue; 1944 1945 unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT; 1946 MachineInstr *NewJTMI = BuildMI(MBB, MI->getDebugLoc(), TII->get(Opc)) 1947 .addReg(IdxReg, getKillRegState(IdxRegKill)) 1948 .addJumpTableIndex(JTI, JTOP.getTargetFlags()) 1949 .addImm(MI->getOperand(JTOpIdx+1).getImm()); 1950 // FIXME: Insert an "ALIGN" instruction to ensure the next instruction 1951 // is 2-byte aligned. For now, asm printer will fix it up. 1952 unsigned NewSize = TII->GetInstSizeInBytes(NewJTMI); 1953 unsigned OrigSize = TII->GetInstSizeInBytes(AddrMI); 1954 OrigSize += TII->GetInstSizeInBytes(LeaMI); 1955 OrigSize += TII->GetInstSizeInBytes(MI); 1956 1957 AddrMI->eraseFromParent(); 1958 LeaMI->eraseFromParent(); 1959 MI->eraseFromParent(); 1960 1961 int delta = OrigSize - NewSize; 1962 BBInfo[MBB->getNumber()].Size -= delta; 1963 adjustBBOffsetsAfter(MBB); 1964 1965 ++NumTBs; 1966 MadeChange = true; 1967 } 1968 } 1969 1970 return MadeChange; 1971} 1972 1973/// reorderThumb2JumpTables - Adjust the function's block layout to ensure that 1974/// jump tables always branch forwards, since that's what tbb and tbh need. 1975bool ARMConstantIslands::reorderThumb2JumpTables() { 1976 bool MadeChange = false; 1977 1978 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1979 if (MJTI == 0) return false; 1980 1981 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1982 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 1983 MachineInstr *MI = T2JumpTables[i]; 1984 const MCInstrDesc &MCID = MI->getDesc(); 1985 unsigned NumOps = MCID.getNumOperands(); 1986 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 3 : 2); 1987 MachineOperand JTOP = MI->getOperand(JTOpIdx); 1988 unsigned JTI = JTOP.getIndex(); 1989 assert(JTI < JT.size()); 1990 1991 // We prefer if target blocks for the jump table come after the jump 1992 // instruction so we can use TB[BH]. Loop through the target blocks 1993 // and try to adjust them such that that's true. 1994 int JTNumber = MI->getParent()->getNumber(); 1995 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1996 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 1997 MachineBasicBlock *MBB = JTBBs[j]; 1998 int DTNumber = MBB->getNumber(); 1999 2000 if (DTNumber < JTNumber) { 2001 // The destination precedes the switch. Try to move the block forward 2002 // so we have a positive offset. 2003 MachineBasicBlock *NewBB = 2004 adjustJTTargetBlockForward(MBB, MI->getParent()); 2005 if (NewBB) 2006 MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB); 2007 MadeChange = true; 2008 } 2009 } 2010 } 2011 2012 return MadeChange; 2013} 2014 2015MachineBasicBlock *ARMConstantIslands:: 2016adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) { 2017 // If the destination block is terminated by an unconditional branch, 2018 // try to move it; otherwise, create a new block following the jump 2019 // table that branches back to the actual target. This is a very simple 2020 // heuristic. FIXME: We can definitely improve it. 2021 MachineBasicBlock *TBB = 0, *FBB = 0; 2022 SmallVector<MachineOperand, 4> Cond; 2023 SmallVector<MachineOperand, 4> CondPrior; 2024 MachineFunction::iterator BBi = BB; 2025 MachineFunction::iterator OldPrior = prior(BBi); 2026 2027 // If the block terminator isn't analyzable, don't try to move the block 2028 bool B = TII->AnalyzeBranch(*BB, TBB, FBB, Cond); 2029 2030 // If the block ends in an unconditional branch, move it. The prior block 2031 // has to have an analyzable terminator for us to move this one. Be paranoid 2032 // and make sure we're not trying to move the entry block of the function. 2033 if (!B && Cond.empty() && BB != MF->begin() && 2034 !TII->AnalyzeBranch(*OldPrior, TBB, FBB, CondPrior)) { 2035 BB->moveAfter(JTBB); 2036 OldPrior->updateTerminator(); 2037 BB->updateTerminator(); 2038 // Update numbering to account for the block being moved. 2039 MF->RenumberBlocks(); 2040 ++NumJTMoved; 2041 return NULL; 2042 } 2043 2044 // Create a new MBB for the code after the jump BB. 2045 MachineBasicBlock *NewBB = 2046 MF->CreateMachineBasicBlock(JTBB->getBasicBlock()); 2047 MachineFunction::iterator MBBI = JTBB; ++MBBI; 2048 MF->insert(MBBI, NewBB); 2049 2050 // Add an unconditional branch from NewBB to BB. 2051 // There doesn't seem to be meaningful DebugInfo available; this doesn't 2052 // correspond directly to anything in the source. 2053 assert (isThumb2 && "Adjusting for TB[BH] but not in Thumb2?"); 2054 BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)).addMBB(BB) 2055 .addImm(ARMCC::AL).addReg(0); 2056 2057 // Update internal data structures to account for the newly inserted MBB. 2058 MF->RenumberBlocks(NewBB); 2059 2060 // Update the CFG. 2061 NewBB->addSuccessor(BB); 2062 JTBB->removeSuccessor(BB); 2063 JTBB->addSuccessor(NewBB); 2064 2065 ++NumJTInserted; 2066 return NewBB; 2067} 2068