ARMConstantIslandPass.cpp revision 7d7dab02783fb4f1f5d0cf274c52a4fb059bfbea
1//===-- ARMConstantIslandPass.cpp - ARM constant islands --------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains a pass that splits the constant pool up into 'islands' 11// which are scattered through-out the function. This is required due to the 12// limited pc-relative displacements that ARM has. 13// 14//===----------------------------------------------------------------------===// 15 16#define DEBUG_TYPE "arm-cp-islands" 17#include "ARM.h" 18#include "ARMAddressingModes.h" 19#include "ARMMachineFunctionInfo.h" 20#include "ARMInstrInfo.h" 21#include "llvm/CodeGen/MachineConstantPool.h" 22#include "llvm/CodeGen/MachineFunctionPass.h" 23#include "llvm/CodeGen/MachineInstrBuilder.h" 24#include "llvm/CodeGen/MachineJumpTableInfo.h" 25#include "llvm/Target/TargetData.h" 26#include "llvm/Target/TargetMachine.h" 27#include "llvm/Support/Debug.h" 28#include "llvm/Support/ErrorHandling.h" 29#include "llvm/Support/raw_ostream.h" 30#include "llvm/ADT/SmallSet.h" 31#include "llvm/ADT/SmallVector.h" 32#include "llvm/ADT/STLExtras.h" 33#include "llvm/ADT/Statistic.h" 34#include "llvm/Support/CommandLine.h" 35#include <algorithm> 36using namespace llvm; 37 38STATISTIC(NumCPEs, "Number of constpool entries"); 39STATISTIC(NumSplit, "Number of uncond branches inserted"); 40STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 41STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 42STATISTIC(NumTBs, "Number of table branches generated"); 43STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk"); 44STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk"); 45STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed"); 46STATISTIC(NumJTMoved, "Number of jump table destination blocks moved"); 47STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted"); 48 49 50static cl::opt<bool> 51AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true), 52 cl::desc("Adjust basic block layout to better use TB[BH]")); 53 54namespace { 55 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM 56 /// requires constant pool entries to be scattered among the instructions 57 /// inside a function. To do this, it completely ignores the normal LLVM 58 /// constant pool; instead, it places constants wherever it feels like with 59 /// special instructions. 60 /// 61 /// The terminology used in this pass includes: 62 /// Islands - Clumps of constants placed in the function. 63 /// Water - Potential places where an island could be formed. 64 /// CPE - A constant pool entry that has been placed somewhere, which 65 /// tracks a list of users. 66 class ARMConstantIslands : public MachineFunctionPass { 67 /// BBSizes - The size of each MachineBasicBlock in bytes of code, indexed 68 /// by MBB Number. The two-byte pads required for Thumb alignment are 69 /// counted as part of the following block (i.e., the offset and size for 70 /// a padded block will both be ==2 mod 4). 71 std::vector<unsigned> BBSizes; 72 73 /// BBOffsets - the offset of each MBB in bytes, starting from 0. 74 /// The two-byte pads required for Thumb alignment are counted as part of 75 /// the following block. 76 std::vector<unsigned> BBOffsets; 77 78 /// WaterList - A sorted list of basic blocks where islands could be placed 79 /// (i.e. blocks that don't fall through to the following block, due 80 /// to a return, unreachable, or unconditional branch). 81 std::vector<MachineBasicBlock*> WaterList; 82 83 /// NewWaterList - The subset of WaterList that was created since the 84 /// previous iteration by inserting unconditional branches. 85 SmallSet<MachineBasicBlock*, 4> NewWaterList; 86 87 typedef std::vector<MachineBasicBlock*>::iterator water_iterator; 88 89 /// CPUser - One user of a constant pool, keeping the machine instruction 90 /// pointer, the constant pool being referenced, and the max displacement 91 /// allowed from the instruction to the CP. The HighWaterMark records the 92 /// highest basic block where a new CPEntry can be placed. To ensure this 93 /// pass terminates, the CP entries are initially placed at the end of the 94 /// function and then move monotonically to lower addresses. The 95 /// exception to this rule is when the current CP entry for a particular 96 /// CPUser is out of range, but there is another CP entry for the same 97 /// constant value in range. We want to use the existing in-range CP 98 /// entry, but if it later moves out of range, the search for new water 99 /// should resume where it left off. The HighWaterMark is used to record 100 /// that point. 101 struct CPUser { 102 MachineInstr *MI; 103 MachineInstr *CPEMI; 104 MachineBasicBlock *HighWaterMark; 105 unsigned MaxDisp; 106 bool NegOk; 107 bool IsSoImm; 108 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, 109 bool neg, bool soimm) 110 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) { 111 HighWaterMark = CPEMI->getParent(); 112 } 113 }; 114 115 /// CPUsers - Keep track of all of the machine instructions that use various 116 /// constant pools and their max displacement. 117 std::vector<CPUser> CPUsers; 118 119 /// CPEntry - One per constant pool entry, keeping the machine instruction 120 /// pointer, the constpool index, and the number of CPUser's which 121 /// reference this entry. 122 struct CPEntry { 123 MachineInstr *CPEMI; 124 unsigned CPI; 125 unsigned RefCount; 126 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) 127 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} 128 }; 129 130 /// CPEntries - Keep track of all of the constant pool entry machine 131 /// instructions. For each original constpool index (i.e. those that 132 /// existed upon entry to this pass), it keeps a vector of entries. 133 /// Original elements are cloned as we go along; the clones are 134 /// put in the vector of the original element, but have distinct CPIs. 135 std::vector<std::vector<CPEntry> > CPEntries; 136 137 /// ImmBranch - One per immediate branch, keeping the machine instruction 138 /// pointer, conditional or unconditional, the max displacement, 139 /// and (if isCond is true) the corresponding unconditional branch 140 /// opcode. 141 struct ImmBranch { 142 MachineInstr *MI; 143 unsigned MaxDisp : 31; 144 bool isCond : 1; 145 int UncondBr; 146 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr) 147 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} 148 }; 149 150 /// ImmBranches - Keep track of all the immediate branch instructions. 151 /// 152 std::vector<ImmBranch> ImmBranches; 153 154 /// PushPopMIs - Keep track of all the Thumb push / pop instructions. 155 /// 156 SmallVector<MachineInstr*, 4> PushPopMIs; 157 158 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions. 159 SmallVector<MachineInstr*, 4> T2JumpTables; 160 161 /// HasFarJump - True if any far jump instruction has been emitted during 162 /// the branch fix up pass. 163 bool HasFarJump; 164 165 /// HasInlineAsm - True if the function contains inline assembly. 166 bool HasInlineAsm; 167 168 const TargetInstrInfo *TII; 169 const ARMSubtarget *STI; 170 ARMFunctionInfo *AFI; 171 bool isThumb; 172 bool isThumb1; 173 bool isThumb2; 174 public: 175 static char ID; 176 ARMConstantIslands() : MachineFunctionPass(&ID) {} 177 178 virtual bool runOnMachineFunction(MachineFunction &MF); 179 180 virtual const char *getPassName() const { 181 return "ARM constant island placement and branch shortening pass"; 182 } 183 184 private: 185 void DoInitialPlacement(MachineFunction &MF, 186 std::vector<MachineInstr*> &CPEMIs); 187 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 188 void JumpTableFunctionScan(MachineFunction &MF); 189 void InitialFunctionScan(MachineFunction &MF, 190 const std::vector<MachineInstr*> &CPEMIs); 191 MachineBasicBlock *SplitBlockBeforeInstr(MachineInstr *MI); 192 void UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB); 193 void AdjustBBOffsetsAfter(MachineBasicBlock *BB, int delta); 194 bool DecrementOldEntry(unsigned CPI, MachineInstr* CPEMI); 195 int LookForExistingCPEntry(CPUser& U, unsigned UserOffset); 196 bool LookForWater(CPUser&U, unsigned UserOffset, water_iterator &WaterIter); 197 void CreateNewWater(unsigned CPUserIndex, unsigned UserOffset, 198 MachineBasicBlock *&NewMBB); 199 bool HandleConstantPoolUser(MachineFunction &MF, unsigned CPUserIndex); 200 void RemoveDeadCPEMI(MachineInstr *CPEMI); 201 bool RemoveUnusedCPEntries(); 202 bool CPEIsInRange(MachineInstr *MI, unsigned UserOffset, 203 MachineInstr *CPEMI, unsigned Disp, bool NegOk, 204 bool DoDump = false); 205 bool WaterIsInRange(unsigned UserOffset, MachineBasicBlock *Water, 206 CPUser &U); 207 bool OffsetIsInRange(unsigned UserOffset, unsigned TrialOffset, 208 unsigned Disp, bool NegativeOK, bool IsSoImm = false); 209 bool BBIsInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); 210 bool FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br); 211 bool FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br); 212 bool FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br); 213 bool UndoLRSpillRestore(); 214 bool OptimizeThumb2Instructions(MachineFunction &MF); 215 bool OptimizeThumb2Branches(MachineFunction &MF); 216 bool ReorderThumb2JumpTables(MachineFunction &MF); 217 bool OptimizeThumb2JumpTables(MachineFunction &MF); 218 MachineBasicBlock *AdjustJTTargetBlockForward(MachineBasicBlock *BB, 219 MachineBasicBlock *JTBB); 220 221 unsigned GetOffsetOf(MachineInstr *MI) const; 222 void dumpBBs(); 223 void verify(MachineFunction &MF); 224 }; 225 char ARMConstantIslands::ID = 0; 226} 227 228/// verify - check BBOffsets, BBSizes, alignment of islands 229void ARMConstantIslands::verify(MachineFunction &MF) { 230 assert(BBOffsets.size() == BBSizes.size()); 231 for (unsigned i = 1, e = BBOffsets.size(); i != e; ++i) 232 assert(BBOffsets[i-1]+BBSizes[i-1] == BBOffsets[i]); 233 if (!isThumb) 234 return; 235#ifndef NDEBUG 236 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); 237 MBBI != E; ++MBBI) { 238 MachineBasicBlock *MBB = MBBI; 239 if (!MBB->empty() && 240 MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) { 241 unsigned MBBId = MBB->getNumber(); 242 assert(HasInlineAsm || 243 (BBOffsets[MBBId]%4 == 0 && BBSizes[MBBId]%4 == 0) || 244 (BBOffsets[MBBId]%4 != 0 && BBSizes[MBBId]%4 != 0)); 245 } 246 } 247 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 248 CPUser &U = CPUsers[i]; 249 unsigned UserOffset = GetOffsetOf(U.MI) + (isThumb ? 4 : 8); 250 unsigned CPEOffset = GetOffsetOf(U.CPEMI); 251 unsigned Disp = UserOffset < CPEOffset ? CPEOffset - UserOffset : 252 UserOffset - CPEOffset; 253 assert(Disp <= U.MaxDisp || "Constant pool entry out of range!"); 254 } 255#endif 256} 257 258/// print block size and offset information - debugging 259void ARMConstantIslands::dumpBBs() { 260 for (unsigned J = 0, E = BBOffsets.size(); J !=E; ++J) { 261 DEBUG(errs() << "block " << J << " offset " << BBOffsets[J] 262 << " size " << BBSizes[J] << "\n"); 263 } 264} 265 266/// createARMConstantIslandPass - returns an instance of the constpool 267/// island pass. 268FunctionPass *llvm::createARMConstantIslandPass() { 269 return new ARMConstantIslands(); 270} 271 272bool ARMConstantIslands::runOnMachineFunction(MachineFunction &MF) { 273 MachineConstantPool &MCP = *MF.getConstantPool(); 274 275 TII = MF.getTarget().getInstrInfo(); 276 AFI = MF.getInfo<ARMFunctionInfo>(); 277 STI = &MF.getTarget().getSubtarget<ARMSubtarget>(); 278 279 isThumb = AFI->isThumbFunction(); 280 isThumb1 = AFI->isThumb1OnlyFunction(); 281 isThumb2 = AFI->isThumb2Function(); 282 283 HasFarJump = false; 284 HasInlineAsm = false; 285 286 // Renumber all of the machine basic blocks in the function, guaranteeing that 287 // the numbers agree with the position of the block in the function. 288 MF.RenumberBlocks(); 289 290 // Try to reorder and otherwise adjust the block layout to make good use 291 // of the TB[BH] instructions. 292 bool MadeChange = false; 293 if (isThumb2 && AdjustJumpTableBlocks) { 294 JumpTableFunctionScan(MF); 295 MadeChange |= ReorderThumb2JumpTables(MF); 296 // Data is out of date, so clear it. It'll be re-computed later. 297 T2JumpTables.clear(); 298 // Blocks may have shifted around. Keep the numbering up to date. 299 MF.RenumberBlocks(); 300 } 301 302 // Thumb1 functions containing constant pools get 4-byte alignment. 303 // This is so we can keep exact track of where the alignment padding goes. 304 305 // ARM and Thumb2 functions need to be 4-byte aligned. 306 if (!isThumb1) 307 MF.EnsureAlignment(2); // 2 = log2(4) 308 309 // Perform the initial placement of the constant pool entries. To start with, 310 // we put them all at the end of the function. 311 std::vector<MachineInstr*> CPEMIs; 312 if (!MCP.isEmpty()) { 313 DoInitialPlacement(MF, CPEMIs); 314 if (isThumb1) 315 MF.EnsureAlignment(2); // 2 = log2(4) 316 } 317 318 /// The next UID to take is the first unused one. 319 AFI->initConstPoolEntryUId(CPEMIs.size()); 320 321 // Do the initial scan of the function, building up information about the 322 // sizes of each block, the location of all the water, and finding all of the 323 // constant pool users. 324 InitialFunctionScan(MF, CPEMIs); 325 CPEMIs.clear(); 326 327 /// Remove dead constant pool entries. 328 RemoveUnusedCPEntries(); 329 330 // Iteratively place constant pool entries and fix up branches until there 331 // is no change. 332 unsigned NoCPIters = 0, NoBRIters = 0; 333 while (true) { 334 bool CPChange = false; 335 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) 336 CPChange |= HandleConstantPoolUser(MF, i); 337 if (CPChange && ++NoCPIters > 30) 338 llvm_unreachable("Constant Island pass failed to converge!"); 339 DEBUG(dumpBBs()); 340 341 // Clear NewWaterList now. If we split a block for branches, it should 342 // appear as "new water" for the next iteration of constant pool placement. 343 NewWaterList.clear(); 344 345 bool BRChange = false; 346 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) 347 BRChange |= FixUpImmediateBr(MF, ImmBranches[i]); 348 if (BRChange && ++NoBRIters > 30) 349 llvm_unreachable("Branch Fix Up pass failed to converge!"); 350 DEBUG(dumpBBs()); 351 352 if (!CPChange && !BRChange) 353 break; 354 MadeChange = true; 355 } 356 357 // Shrink 32-bit Thumb2 branch, load, and store instructions. 358 if (isThumb2) 359 MadeChange |= OptimizeThumb2Instructions(MF); 360 361 // After a while, this might be made debug-only, but it is not expensive. 362 verify(MF); 363 364 // If LR has been forced spilled and no far jumps (i.e. BL) has been issued. 365 // Undo the spill / restore of LR if possible. 366 if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump()) 367 MadeChange |= UndoLRSpillRestore(); 368 369 BBSizes.clear(); 370 BBOffsets.clear(); 371 WaterList.clear(); 372 CPUsers.clear(); 373 CPEntries.clear(); 374 ImmBranches.clear(); 375 PushPopMIs.clear(); 376 T2JumpTables.clear(); 377 378 return MadeChange; 379} 380 381/// DoInitialPlacement - Perform the initial placement of the constant pool 382/// entries. To start with, we put them all at the end of the function. 383void ARMConstantIslands::DoInitialPlacement(MachineFunction &MF, 384 std::vector<MachineInstr*> &CPEMIs) { 385 // Create the basic block to hold the CPE's. 386 MachineBasicBlock *BB = MF.CreateMachineBasicBlock(); 387 MF.push_back(BB); 388 389 // Add all of the constants from the constant pool to the end block, use an 390 // identity mapping of CPI's to CPE's. 391 const std::vector<MachineConstantPoolEntry> &CPs = 392 MF.getConstantPool()->getConstants(); 393 394 const TargetData &TD = *MF.getTarget().getTargetData(); 395 for (unsigned i = 0, e = CPs.size(); i != e; ++i) { 396 unsigned Size = TD.getTypeAllocSize(CPs[i].getType()); 397 // Verify that all constant pool entries are a multiple of 4 bytes. If not, 398 // we would have to pad them out or something so that instructions stay 399 // aligned. 400 assert((Size & 3) == 0 && "CP Entry not multiple of 4 bytes!"); 401 MachineInstr *CPEMI = 402 BuildMI(BB, DebugLoc::getUnknownLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 403 .addImm(i).addConstantPoolIndex(i).addImm(Size); 404 CPEMIs.push_back(CPEMI); 405 406 // Add a new CPEntry, but no corresponding CPUser yet. 407 std::vector<CPEntry> CPEs; 408 CPEs.push_back(CPEntry(CPEMI, i)); 409 CPEntries.push_back(CPEs); 410 NumCPEs++; 411 DEBUG(errs() << "Moved CPI#" << i << " to end of function as #" << i 412 << "\n"); 413 } 414} 415 416/// BBHasFallthrough - Return true if the specified basic block can fallthrough 417/// into the block immediately after it. 418static bool BBHasFallthrough(MachineBasicBlock *MBB) { 419 // Get the next machine basic block in the function. 420 MachineFunction::iterator MBBI = MBB; 421 if (llvm::next(MBBI) == MBB->getParent()->end()) // Can't fall off end of function. 422 return false; 423 424 MachineBasicBlock *NextBB = llvm::next(MBBI); 425 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), 426 E = MBB->succ_end(); I != E; ++I) 427 if (*I == NextBB) 428 return true; 429 430 return false; 431} 432 433/// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 434/// look up the corresponding CPEntry. 435ARMConstantIslands::CPEntry 436*ARMConstantIslands::findConstPoolEntry(unsigned CPI, 437 const MachineInstr *CPEMI) { 438 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 439 // Number of entries per constpool index should be small, just do a 440 // linear search. 441 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 442 if (CPEs[i].CPEMI == CPEMI) 443 return &CPEs[i]; 444 } 445 return NULL; 446} 447 448/// JumpTableFunctionScan - Do a scan of the function, building up 449/// information about the sizes of each block and the locations of all 450/// the jump tables. 451void ARMConstantIslands::JumpTableFunctionScan(MachineFunction &MF) { 452 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); 453 MBBI != E; ++MBBI) { 454 MachineBasicBlock &MBB = *MBBI; 455 456 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 457 I != E; ++I) 458 if (I->getDesc().isBranch() && I->getOpcode() == ARM::t2BR_JT) 459 T2JumpTables.push_back(I); 460 } 461} 462 463/// InitialFunctionScan - Do the initial scan of the function, building up 464/// information about the sizes of each block, the location of all the water, 465/// and finding all of the constant pool users. 466void ARMConstantIslands::InitialFunctionScan(MachineFunction &MF, 467 const std::vector<MachineInstr*> &CPEMIs) { 468 // First thing, see if the function has any inline assembly in it. If so, 469 // we have to be conservative about alignment assumptions, as we don't 470 // know for sure the size of any instructions in the inline assembly. 471 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); 472 MBBI != E; ++MBBI) { 473 MachineBasicBlock &MBB = *MBBI; 474 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 475 I != E; ++I) 476 if (I->getOpcode() == ARM::INLINEASM) 477 HasInlineAsm = true; 478 } 479 480 // Now go back through the instructions and build up our data structures 481 unsigned Offset = 0; 482 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); 483 MBBI != E; ++MBBI) { 484 MachineBasicBlock &MBB = *MBBI; 485 486 // If this block doesn't fall through into the next MBB, then this is 487 // 'water' that a constant pool island could be placed. 488 if (!BBHasFallthrough(&MBB)) 489 WaterList.push_back(&MBB); 490 491 unsigned MBBSize = 0; 492 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 493 I != E; ++I) { 494 // Add instruction size to MBBSize. 495 MBBSize += TII->GetInstSizeInBytes(I); 496 497 int Opc = I->getOpcode(); 498 if (I->getDesc().isBranch()) { 499 bool isCond = false; 500 unsigned Bits = 0; 501 unsigned Scale = 1; 502 int UOpc = Opc; 503 switch (Opc) { 504 default: 505 continue; // Ignore other JT branches 506 case ARM::tBR_JTr: 507 // A Thumb1 table jump may involve padding; for the offsets to 508 // be right, functions containing these must be 4-byte aligned. 509 MF.EnsureAlignment(2U); 510 if ((Offset+MBBSize)%4 != 0 || HasInlineAsm) 511 // FIXME: Add a pseudo ALIGN instruction instead. 512 MBBSize += 2; // padding 513 continue; // Does not get an entry in ImmBranches 514 case ARM::t2BR_JT: 515 T2JumpTables.push_back(I); 516 continue; // Does not get an entry in ImmBranches 517 case ARM::Bcc: 518 isCond = true; 519 UOpc = ARM::B; 520 // Fallthrough 521 case ARM::B: 522 Bits = 24; 523 Scale = 4; 524 break; 525 case ARM::tBcc: 526 isCond = true; 527 UOpc = ARM::tB; 528 Bits = 8; 529 Scale = 2; 530 break; 531 case ARM::tB: 532 Bits = 11; 533 Scale = 2; 534 break; 535 case ARM::t2Bcc: 536 isCond = true; 537 UOpc = ARM::t2B; 538 Bits = 20; 539 Scale = 2; 540 break; 541 case ARM::t2B: 542 Bits = 24; 543 Scale = 2; 544 break; 545 } 546 547 // Record this immediate branch. 548 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 549 ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc)); 550 } 551 552 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) 553 PushPopMIs.push_back(I); 554 555 if (Opc == ARM::CONSTPOOL_ENTRY) 556 continue; 557 558 // Scan the instructions for constant pool operands. 559 for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) 560 if (I->getOperand(op).isCPI()) { 561 // We found one. The addressing mode tells us the max displacement 562 // from the PC that this instruction permits. 563 564 // Basic size info comes from the TSFlags field. 565 unsigned Bits = 0; 566 unsigned Scale = 1; 567 bool NegOk = false; 568 bool IsSoImm = false; 569 570 switch (Opc) { 571 default: 572 llvm_unreachable("Unknown addressing mode for CP reference!"); 573 break; 574 575 // Taking the address of a CP entry. 576 case ARM::LEApcrel: 577 // This takes a SoImm, which is 8 bit immediate rotated. We'll 578 // pretend the maximum offset is 255 * 4. Since each instruction 579 // 4 byte wide, this is always correct. We'll check for other 580 // displacements that fits in a SoImm as well. 581 Bits = 8; 582 Scale = 4; 583 NegOk = true; 584 IsSoImm = true; 585 break; 586 case ARM::t2LEApcrel: 587 Bits = 12; 588 NegOk = true; 589 break; 590 case ARM::tLEApcrel: 591 Bits = 8; 592 Scale = 4; 593 break; 594 595 case ARM::LDR: 596 case ARM::LDRcp: 597 case ARM::t2LDRpci: 598 Bits = 12; // +-offset_12 599 NegOk = true; 600 break; 601 602 case ARM::tLDRpci: 603 case ARM::tLDRcp: 604 Bits = 8; 605 Scale = 4; // +(offset_8*4) 606 break; 607 608 case ARM::VLDRD: 609 case ARM::VLDRS: 610 Bits = 8; 611 Scale = 4; // +-(offset_8*4) 612 NegOk = true; 613 break; 614 } 615 616 // Remember that this is a user of a CP entry. 617 unsigned CPI = I->getOperand(op).getIndex(); 618 MachineInstr *CPEMI = CPEMIs[CPI]; 619 unsigned MaxOffs = ((1 << Bits)-1) * Scale; 620 CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm)); 621 622 // Increment corresponding CPEntry reference count. 623 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 624 assert(CPE && "Cannot find a corresponding CPEntry!"); 625 CPE->RefCount++; 626 627 // Instructions can only use one CP entry, don't bother scanning the 628 // rest of the operands. 629 break; 630 } 631 } 632 633 // In thumb mode, if this block is a constpool island, we may need padding 634 // so it's aligned on 4 byte boundary. 635 if (isThumb && 636 !MBB.empty() && 637 MBB.begin()->getOpcode() == ARM::CONSTPOOL_ENTRY && 638 ((Offset%4) != 0 || HasInlineAsm)) 639 MBBSize += 2; 640 641 BBSizes.push_back(MBBSize); 642 BBOffsets.push_back(Offset); 643 Offset += MBBSize; 644 } 645} 646 647/// GetOffsetOf - Return the current offset of the specified machine instruction 648/// from the start of the function. This offset changes as stuff is moved 649/// around inside the function. 650unsigned ARMConstantIslands::GetOffsetOf(MachineInstr *MI) const { 651 MachineBasicBlock *MBB = MI->getParent(); 652 653 // The offset is composed of two things: the sum of the sizes of all MBB's 654 // before this instruction's block, and the offset from the start of the block 655 // it is in. 656 unsigned Offset = BBOffsets[MBB->getNumber()]; 657 658 // If we're looking for a CONSTPOOL_ENTRY in Thumb, see if this block has 659 // alignment padding, and compensate if so. 660 if (isThumb && 661 MI->getOpcode() == ARM::CONSTPOOL_ENTRY && 662 (Offset%4 != 0 || HasInlineAsm)) 663 Offset += 2; 664 665 // Sum instructions before MI in MBB. 666 for (MachineBasicBlock::iterator I = MBB->begin(); ; ++I) { 667 assert(I != MBB->end() && "Didn't find MI in its own basic block?"); 668 if (&*I == MI) return Offset; 669 Offset += TII->GetInstSizeInBytes(I); 670 } 671} 672 673/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 674/// ID. 675static bool CompareMBBNumbers(const MachineBasicBlock *LHS, 676 const MachineBasicBlock *RHS) { 677 return LHS->getNumber() < RHS->getNumber(); 678} 679 680/// UpdateForInsertedWaterBlock - When a block is newly inserted into the 681/// machine function, it upsets all of the block numbers. Renumber the blocks 682/// and update the arrays that parallel this numbering. 683void ARMConstantIslands::UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB) { 684 // Renumber the MBB's to keep them consequtive. 685 NewBB->getParent()->RenumberBlocks(NewBB); 686 687 // Insert a size into BBSizes to align it properly with the (newly 688 // renumbered) block numbers. 689 BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0); 690 691 // Likewise for BBOffsets. 692 BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0); 693 694 // Next, update WaterList. Specifically, we need to add NewMBB as having 695 // available water after it. 696 water_iterator IP = 697 std::lower_bound(WaterList.begin(), WaterList.end(), NewBB, 698 CompareMBBNumbers); 699 WaterList.insert(IP, NewBB); 700} 701 702 703/// Split the basic block containing MI into two blocks, which are joined by 704/// an unconditional branch. Update data structures and renumber blocks to 705/// account for this change and returns the newly created block. 706MachineBasicBlock *ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr *MI) { 707 MachineBasicBlock *OrigBB = MI->getParent(); 708 MachineFunction &MF = *OrigBB->getParent(); 709 710 // Create a new MBB for the code after the OrigBB. 711 MachineBasicBlock *NewBB = 712 MF.CreateMachineBasicBlock(OrigBB->getBasicBlock()); 713 MachineFunction::iterator MBBI = OrigBB; ++MBBI; 714 MF.insert(MBBI, NewBB); 715 716 // Splice the instructions starting with MI over to NewBB. 717 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 718 719 // Add an unconditional branch from OrigBB to NewBB. 720 // Note the new unconditional branch is not being recorded. 721 // There doesn't seem to be meaningful DebugInfo available; this doesn't 722 // correspond to anything in the source. 723 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B; 724 BuildMI(OrigBB, DebugLoc::getUnknownLoc(), TII->get(Opc)).addMBB(NewBB); 725 NumSplit++; 726 727 // Update the CFG. All succs of OrigBB are now succs of NewBB. 728 while (!OrigBB->succ_empty()) { 729 MachineBasicBlock *Succ = *OrigBB->succ_begin(); 730 OrigBB->removeSuccessor(Succ); 731 NewBB->addSuccessor(Succ); 732 733 // This pass should be run after register allocation, so there should be no 734 // PHI nodes to update. 735 assert((Succ->empty() || Succ->begin()->getOpcode() != TargetInstrInfo::PHI) 736 && "PHI nodes should be eliminated by now!"); 737 } 738 739 // OrigBB branches to NewBB. 740 OrigBB->addSuccessor(NewBB); 741 742 // Update internal data structures to account for the newly inserted MBB. 743 // This is almost the same as UpdateForInsertedWaterBlock, except that 744 // the Water goes after OrigBB, not NewBB. 745 MF.RenumberBlocks(NewBB); 746 747 // Insert a size into BBSizes to align it properly with the (newly 748 // renumbered) block numbers. 749 BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0); 750 751 // Likewise for BBOffsets. 752 BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0); 753 754 // Next, update WaterList. Specifically, we need to add OrigMBB as having 755 // available water after it (but not if it's already there, which happens 756 // when splitting before a conditional branch that is followed by an 757 // unconditional branch - in that case we want to insert NewBB). 758 water_iterator IP = 759 std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB, 760 CompareMBBNumbers); 761 MachineBasicBlock* WaterBB = *IP; 762 if (WaterBB == OrigBB) 763 WaterList.insert(llvm::next(IP), NewBB); 764 else 765 WaterList.insert(IP, OrigBB); 766 NewWaterList.insert(OrigBB); 767 768 // Figure out how large the first NewMBB is. (It cannot 769 // contain a constpool_entry or tablejump.) 770 unsigned NewBBSize = 0; 771 for (MachineBasicBlock::iterator I = NewBB->begin(), E = NewBB->end(); 772 I != E; ++I) 773 NewBBSize += TII->GetInstSizeInBytes(I); 774 775 unsigned OrigBBI = OrigBB->getNumber(); 776 unsigned NewBBI = NewBB->getNumber(); 777 // Set the size of NewBB in BBSizes. 778 BBSizes[NewBBI] = NewBBSize; 779 780 // We removed instructions from UserMBB, subtract that off from its size. 781 // Add 2 or 4 to the block to count the unconditional branch we added to it. 782 int delta = isThumb1 ? 2 : 4; 783 BBSizes[OrigBBI] -= NewBBSize - delta; 784 785 // ...and adjust BBOffsets for NewBB accordingly. 786 BBOffsets[NewBBI] = BBOffsets[OrigBBI] + BBSizes[OrigBBI]; 787 788 // All BBOffsets following these blocks must be modified. 789 AdjustBBOffsetsAfter(NewBB, delta); 790 791 return NewBB; 792} 793 794/// OffsetIsInRange - Checks whether UserOffset (the location of a constant pool 795/// reference) is within MaxDisp of TrialOffset (a proposed location of a 796/// constant pool entry). 797bool ARMConstantIslands::OffsetIsInRange(unsigned UserOffset, 798 unsigned TrialOffset, unsigned MaxDisp, 799 bool NegativeOK, bool IsSoImm) { 800 // On Thumb offsets==2 mod 4 are rounded down by the hardware for 801 // purposes of the displacement computation; compensate for that here. 802 // Effectively, the valid range of displacements is 2 bytes smaller for such 803 // references. 804 unsigned TotalAdj = 0; 805 if (isThumb && UserOffset%4 !=0) { 806 UserOffset -= 2; 807 TotalAdj = 2; 808 } 809 // CPEs will be rounded up to a multiple of 4. 810 if (isThumb && TrialOffset%4 != 0) { 811 TrialOffset += 2; 812 TotalAdj += 2; 813 } 814 815 // In Thumb2 mode, later branch adjustments can shift instructions up and 816 // cause alignment change. In the worst case scenario this can cause the 817 // user's effective address to be subtracted by 2 and the CPE's address to 818 // be plus 2. 819 if (isThumb2 && TotalAdj != 4) 820 MaxDisp -= (4 - TotalAdj); 821 822 if (UserOffset <= TrialOffset) { 823 // User before the Trial. 824 if (TrialOffset - UserOffset <= MaxDisp) 825 return true; 826 // FIXME: Make use full range of soimm values. 827 } else if (NegativeOK) { 828 if (UserOffset - TrialOffset <= MaxDisp) 829 return true; 830 // FIXME: Make use full range of soimm values. 831 } 832 return false; 833} 834 835/// WaterIsInRange - Returns true if a CPE placed after the specified 836/// Water (a basic block) will be in range for the specific MI. 837 838bool ARMConstantIslands::WaterIsInRange(unsigned UserOffset, 839 MachineBasicBlock* Water, CPUser &U) { 840 unsigned MaxDisp = U.MaxDisp; 841 unsigned CPEOffset = BBOffsets[Water->getNumber()] + 842 BBSizes[Water->getNumber()]; 843 844 // If the CPE is to be inserted before the instruction, that will raise 845 // the offset of the instruction. 846 if (CPEOffset < UserOffset) 847 UserOffset += U.CPEMI->getOperand(2).getImm(); 848 849 return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, U.NegOk, U.IsSoImm); 850} 851 852/// CPEIsInRange - Returns true if the distance between specific MI and 853/// specific ConstPool entry instruction can fit in MI's displacement field. 854bool ARMConstantIslands::CPEIsInRange(MachineInstr *MI, unsigned UserOffset, 855 MachineInstr *CPEMI, unsigned MaxDisp, 856 bool NegOk, bool DoDump) { 857 unsigned CPEOffset = GetOffsetOf(CPEMI); 858 assert((CPEOffset%4 == 0 || HasInlineAsm) && "Misaligned CPE"); 859 860 if (DoDump) { 861 DEBUG(errs() << "User of CPE#" << CPEMI->getOperand(0).getImm() 862 << " max delta=" << MaxDisp 863 << " insn address=" << UserOffset 864 << " CPE address=" << CPEOffset 865 << " offset=" << int(CPEOffset-UserOffset) << "\t" << *MI); 866 } 867 868 return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, NegOk); 869} 870 871#ifndef NDEBUG 872/// BBIsJumpedOver - Return true of the specified basic block's only predecessor 873/// unconditionally branches to its only successor. 874static bool BBIsJumpedOver(MachineBasicBlock *MBB) { 875 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 876 return false; 877 878 MachineBasicBlock *Succ = *MBB->succ_begin(); 879 MachineBasicBlock *Pred = *MBB->pred_begin(); 880 MachineInstr *PredMI = &Pred->back(); 881 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB 882 || PredMI->getOpcode() == ARM::t2B) 883 return PredMI->getOperand(0).getMBB() == Succ; 884 return false; 885} 886#endif // NDEBUG 887 888void ARMConstantIslands::AdjustBBOffsetsAfter(MachineBasicBlock *BB, 889 int delta) { 890 MachineFunction::iterator MBBI = BB; MBBI = llvm::next(MBBI); 891 for(unsigned i = BB->getNumber()+1, e = BB->getParent()->getNumBlockIDs(); 892 i < e; ++i) { 893 BBOffsets[i] += delta; 894 // If some existing blocks have padding, adjust the padding as needed, a 895 // bit tricky. delta can be negative so don't use % on that. 896 if (!isThumb) 897 continue; 898 MachineBasicBlock *MBB = MBBI; 899 if (!MBB->empty() && !HasInlineAsm) { 900 // Constant pool entries require padding. 901 if (MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) { 902 unsigned OldOffset = BBOffsets[i] - delta; 903 if ((OldOffset%4) == 0 && (BBOffsets[i]%4) != 0) { 904 // add new padding 905 BBSizes[i] += 2; 906 delta += 2; 907 } else if ((OldOffset%4) != 0 && (BBOffsets[i]%4) == 0) { 908 // remove existing padding 909 BBSizes[i] -= 2; 910 delta -= 2; 911 } 912 } 913 // Thumb1 jump tables require padding. They should be at the end; 914 // following unconditional branches are removed by AnalyzeBranch. 915 MachineInstr *ThumbJTMI = prior(MBB->end()); 916 if (ThumbJTMI->getOpcode() == ARM::tBR_JTr) { 917 unsigned NewMIOffset = GetOffsetOf(ThumbJTMI); 918 unsigned OldMIOffset = NewMIOffset - delta; 919 if ((OldMIOffset%4) == 0 && (NewMIOffset%4) != 0) { 920 // remove existing padding 921 BBSizes[i] -= 2; 922 delta -= 2; 923 } else if ((OldMIOffset%4) != 0 && (NewMIOffset%4) == 0) { 924 // add new padding 925 BBSizes[i] += 2; 926 delta += 2; 927 } 928 } 929 if (delta==0) 930 return; 931 } 932 MBBI = llvm::next(MBBI); 933 } 934} 935 936/// DecrementOldEntry - find the constant pool entry with index CPI 937/// and instruction CPEMI, and decrement its refcount. If the refcount 938/// becomes 0 remove the entry and instruction. Returns true if we removed 939/// the entry, false if we didn't. 940 941bool ARMConstantIslands::DecrementOldEntry(unsigned CPI, MachineInstr *CPEMI) { 942 // Find the old entry. Eliminate it if it is no longer used. 943 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 944 assert(CPE && "Unexpected!"); 945 if (--CPE->RefCount == 0) { 946 RemoveDeadCPEMI(CPEMI); 947 CPE->CPEMI = NULL; 948 NumCPEs--; 949 return true; 950 } 951 return false; 952} 953 954/// LookForCPEntryInRange - see if the currently referenced CPE is in range; 955/// if not, see if an in-range clone of the CPE is in range, and if so, 956/// change the data structures so the user references the clone. Returns: 957/// 0 = no existing entry found 958/// 1 = entry found, and there were no code insertions or deletions 959/// 2 = entry found, and there were code insertions or deletions 960int ARMConstantIslands::LookForExistingCPEntry(CPUser& U, unsigned UserOffset) 961{ 962 MachineInstr *UserMI = U.MI; 963 MachineInstr *CPEMI = U.CPEMI; 964 965 // Check to see if the CPE is already in-range. 966 if (CPEIsInRange(UserMI, UserOffset, CPEMI, U.MaxDisp, U.NegOk, true)) { 967 DEBUG(errs() << "In range\n"); 968 return 1; 969 } 970 971 // No. Look for previously created clones of the CPE that are in range. 972 unsigned CPI = CPEMI->getOperand(1).getIndex(); 973 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 974 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 975 // We already tried this one 976 if (CPEs[i].CPEMI == CPEMI) 977 continue; 978 // Removing CPEs can leave empty entries, skip 979 if (CPEs[i].CPEMI == NULL) 980 continue; 981 if (CPEIsInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.MaxDisp, U.NegOk)) { 982 DEBUG(errs() << "Replacing CPE#" << CPI << " with CPE#" 983 << CPEs[i].CPI << "\n"); 984 // Point the CPUser node to the replacement 985 U.CPEMI = CPEs[i].CPEMI; 986 // Change the CPI in the instruction operand to refer to the clone. 987 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) 988 if (UserMI->getOperand(j).isCPI()) { 989 UserMI->getOperand(j).setIndex(CPEs[i].CPI); 990 break; 991 } 992 // Adjust the refcount of the clone... 993 CPEs[i].RefCount++; 994 // ...and the original. If we didn't remove the old entry, none of the 995 // addresses changed, so we don't need another pass. 996 return DecrementOldEntry(CPI, CPEMI) ? 2 : 1; 997 } 998 } 999 return 0; 1000} 1001 1002/// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 1003/// the specific unconditional branch instruction. 1004static inline unsigned getUnconditionalBrDisp(int Opc) { 1005 switch (Opc) { 1006 case ARM::tB: 1007 return ((1<<10)-1)*2; 1008 case ARM::t2B: 1009 return ((1<<23)-1)*2; 1010 default: 1011 break; 1012 } 1013 1014 return ((1<<23)-1)*4; 1015} 1016 1017/// LookForWater - Look for an existing entry in the WaterList in which 1018/// we can place the CPE referenced from U so it's within range of U's MI. 1019/// Returns true if found, false if not. If it returns true, WaterIter 1020/// is set to the WaterList entry. For Thumb, prefer water that will not 1021/// introduce padding to water that will. To ensure that this pass 1022/// terminates, the CPE location for a particular CPUser is only allowed to 1023/// move to a lower address, so search backward from the end of the list and 1024/// prefer the first water that is in range. 1025bool ARMConstantIslands::LookForWater(CPUser &U, unsigned UserOffset, 1026 water_iterator &WaterIter) { 1027 if (WaterList.empty()) 1028 return false; 1029 1030 bool FoundWaterThatWouldPad = false; 1031 water_iterator IPThatWouldPad; 1032 for (water_iterator IP = prior(WaterList.end()), 1033 B = WaterList.begin();; --IP) { 1034 MachineBasicBlock* WaterBB = *IP; 1035 // Check if water is in range and is either at a lower address than the 1036 // current "high water mark" or a new water block that was created since 1037 // the previous iteration by inserting an unconditional branch. In the 1038 // latter case, we want to allow resetting the high water mark back to 1039 // this new water since we haven't seen it before. Inserting branches 1040 // should be relatively uncommon and when it does happen, we want to be 1041 // sure to take advantage of it for all the CPEs near that block, so that 1042 // we don't insert more branches than necessary. 1043 if (WaterIsInRange(UserOffset, WaterBB, U) && 1044 (WaterBB->getNumber() < U.HighWaterMark->getNumber() || 1045 NewWaterList.count(WaterBB))) { 1046 unsigned WBBId = WaterBB->getNumber(); 1047 if (isThumb && 1048 (BBOffsets[WBBId] + BBSizes[WBBId])%4 != 0) { 1049 // This is valid Water, but would introduce padding. Remember 1050 // it in case we don't find any Water that doesn't do this. 1051 if (!FoundWaterThatWouldPad) { 1052 FoundWaterThatWouldPad = true; 1053 IPThatWouldPad = IP; 1054 } 1055 } else { 1056 WaterIter = IP; 1057 return true; 1058 } 1059 } 1060 if (IP == B) 1061 break; 1062 } 1063 if (FoundWaterThatWouldPad) { 1064 WaterIter = IPThatWouldPad; 1065 return true; 1066 } 1067 return false; 1068} 1069 1070/// CreateNewWater - No existing WaterList entry will work for 1071/// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 1072/// block is used if in range, and the conditional branch munged so control 1073/// flow is correct. Otherwise the block is split to create a hole with an 1074/// unconditional branch around it. In either case NewMBB is set to a 1075/// block following which the new island can be inserted (the WaterList 1076/// is not adjusted). 1077void ARMConstantIslands::CreateNewWater(unsigned CPUserIndex, 1078 unsigned UserOffset, 1079 MachineBasicBlock *&NewMBB) { 1080 CPUser &U = CPUsers[CPUserIndex]; 1081 MachineInstr *UserMI = U.MI; 1082 MachineInstr *CPEMI = U.CPEMI; 1083 MachineBasicBlock *UserMBB = UserMI->getParent(); 1084 unsigned OffsetOfNextBlock = BBOffsets[UserMBB->getNumber()] + 1085 BBSizes[UserMBB->getNumber()]; 1086 assert(OffsetOfNextBlock== BBOffsets[UserMBB->getNumber()+1]); 1087 1088 // If the block does not end in an unconditional branch already, and if the 1089 // end of the block is within range, make new water there. (The addition 1090 // below is for the unconditional branch we will be adding: 4 bytes on ARM + 1091 // Thumb2, 2 on Thumb1. Possible Thumb1 alignment padding is allowed for 1092 // inside OffsetIsInRange. 1093 if (BBHasFallthrough(UserMBB) && 1094 OffsetIsInRange(UserOffset, OffsetOfNextBlock + (isThumb1 ? 2: 4), 1095 U.MaxDisp, U.NegOk, U.IsSoImm)) { 1096 DEBUG(errs() << "Split at end of block\n"); 1097 if (&UserMBB->back() == UserMI) 1098 assert(BBHasFallthrough(UserMBB) && "Expected a fallthrough BB!"); 1099 NewMBB = llvm::next(MachineFunction::iterator(UserMBB)); 1100 // Add an unconditional branch from UserMBB to fallthrough block. 1101 // Record it for branch lengthening; this new branch will not get out of 1102 // range, but if the preceding conditional branch is out of range, the 1103 // targets will be exchanged, and the altered branch may be out of 1104 // range, so the machinery has to know about it. 1105 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B; 1106 BuildMI(UserMBB, DebugLoc::getUnknownLoc(), 1107 TII->get(UncondBr)).addMBB(NewMBB); 1108 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 1109 ImmBranches.push_back(ImmBranch(&UserMBB->back(), 1110 MaxDisp, false, UncondBr)); 1111 int delta = isThumb1 ? 2 : 4; 1112 BBSizes[UserMBB->getNumber()] += delta; 1113 AdjustBBOffsetsAfter(UserMBB, delta); 1114 } else { 1115 // What a big block. Find a place within the block to split it. 1116 // This is a little tricky on Thumb1 since instructions are 2 bytes 1117 // and constant pool entries are 4 bytes: if instruction I references 1118 // island CPE, and instruction I+1 references CPE', it will 1119 // not work well to put CPE as far forward as possible, since then 1120 // CPE' cannot immediately follow it (that location is 2 bytes 1121 // farther away from I+1 than CPE was from I) and we'd need to create 1122 // a new island. So, we make a first guess, then walk through the 1123 // instructions between the one currently being looked at and the 1124 // possible insertion point, and make sure any other instructions 1125 // that reference CPEs will be able to use the same island area; 1126 // if not, we back up the insertion point. 1127 1128 // The 4 in the following is for the unconditional branch we'll be 1129 // inserting (allows for long branch on Thumb1). Alignment of the 1130 // island is handled inside OffsetIsInRange. 1131 unsigned BaseInsertOffset = UserOffset + U.MaxDisp -4; 1132 // This could point off the end of the block if we've already got 1133 // constant pool entries following this block; only the last one is 1134 // in the water list. Back past any possible branches (allow for a 1135 // conditional and a maximally long unconditional). 1136 if (BaseInsertOffset >= BBOffsets[UserMBB->getNumber()+1]) 1137 BaseInsertOffset = BBOffsets[UserMBB->getNumber()+1] - 1138 (isThumb1 ? 6 : 8); 1139 unsigned EndInsertOffset = BaseInsertOffset + 1140 CPEMI->getOperand(2).getImm(); 1141 MachineBasicBlock::iterator MI = UserMI; 1142 ++MI; 1143 unsigned CPUIndex = CPUserIndex+1; 1144 for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI); 1145 Offset < BaseInsertOffset; 1146 Offset += TII->GetInstSizeInBytes(MI), 1147 MI = llvm::next(MI)) { 1148 if (CPUIndex < CPUsers.size() && CPUsers[CPUIndex].MI == MI) { 1149 CPUser &U = CPUsers[CPUIndex]; 1150 if (!OffsetIsInRange(Offset, EndInsertOffset, 1151 U.MaxDisp, U.NegOk, U.IsSoImm)) { 1152 BaseInsertOffset -= (isThumb1 ? 2 : 4); 1153 EndInsertOffset -= (isThumb1 ? 2 : 4); 1154 } 1155 // This is overly conservative, as we don't account for CPEMIs 1156 // being reused within the block, but it doesn't matter much. 1157 EndInsertOffset += CPUsers[CPUIndex].CPEMI->getOperand(2).getImm(); 1158 CPUIndex++; 1159 } 1160 } 1161 DEBUG(errs() << "Split in middle of big block\n"); 1162 NewMBB = SplitBlockBeforeInstr(prior(MI)); 1163 } 1164} 1165 1166/// HandleConstantPoolUser - Analyze the specified user, checking to see if it 1167/// is out-of-range. If so, pick up the constant pool value and move it some 1168/// place in-range. Return true if we changed any addresses (thus must run 1169/// another pass of branch lengthening), false otherwise. 1170bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction &MF, 1171 unsigned CPUserIndex) { 1172 CPUser &U = CPUsers[CPUserIndex]; 1173 MachineInstr *UserMI = U.MI; 1174 MachineInstr *CPEMI = U.CPEMI; 1175 unsigned CPI = CPEMI->getOperand(1).getIndex(); 1176 unsigned Size = CPEMI->getOperand(2).getImm(); 1177 // Compute this only once, it's expensive. The 4 or 8 is the value the 1178 // hardware keeps in the PC. 1179 unsigned UserOffset = GetOffsetOf(UserMI) + (isThumb ? 4 : 8); 1180 1181 // See if the current entry is within range, or there is a clone of it 1182 // in range. 1183 int result = LookForExistingCPEntry(U, UserOffset); 1184 if (result==1) return false; 1185 else if (result==2) return true; 1186 1187 // No existing clone of this CPE is within range. 1188 // We will be generating a new clone. Get a UID for it. 1189 unsigned ID = AFI->createConstPoolEntryUId(); 1190 1191 // Look for water where we can place this CPE. 1192 MachineBasicBlock *NewIsland = MF.CreateMachineBasicBlock(); 1193 MachineBasicBlock *NewMBB; 1194 water_iterator IP; 1195 if (LookForWater(U, UserOffset, IP)) { 1196 DEBUG(errs() << "found water in range\n"); 1197 MachineBasicBlock *WaterBB = *IP; 1198 1199 // If the original WaterList entry was "new water" on this iteration, 1200 // propagate that to the new island. This is just keeping NewWaterList 1201 // updated to match the WaterList, which will be updated below. 1202 if (NewWaterList.count(WaterBB)) { 1203 NewWaterList.erase(WaterBB); 1204 NewWaterList.insert(NewIsland); 1205 } 1206 // The new CPE goes before the following block (NewMBB). 1207 NewMBB = llvm::next(MachineFunction::iterator(WaterBB)); 1208 1209 } else { 1210 // No water found. 1211 DEBUG(errs() << "No water found\n"); 1212 CreateNewWater(CPUserIndex, UserOffset, NewMBB); 1213 1214 // SplitBlockBeforeInstr adds to WaterList, which is important when it is 1215 // called while handling branches so that the water will be seen on the 1216 // next iteration for constant pools, but in this context, we don't want 1217 // it. Check for this so it will be removed from the WaterList. 1218 // Also remove any entry from NewWaterList. 1219 MachineBasicBlock *WaterBB = prior(MachineFunction::iterator(NewMBB)); 1220 IP = std::find(WaterList.begin(), WaterList.end(), WaterBB); 1221 if (IP != WaterList.end()) 1222 NewWaterList.erase(WaterBB); 1223 1224 // We are adding new water. Update NewWaterList. 1225 NewWaterList.insert(NewIsland); 1226 } 1227 1228 // Remove the original WaterList entry; we want subsequent insertions in 1229 // this vicinity to go after the one we're about to insert. This 1230 // considerably reduces the number of times we have to move the same CPE 1231 // more than once and is also important to ensure the algorithm terminates. 1232 if (IP != WaterList.end()) 1233 WaterList.erase(IP); 1234 1235 // Okay, we know we can put an island before NewMBB now, do it! 1236 MF.insert(NewMBB, NewIsland); 1237 1238 // Update internal data structures to account for the newly inserted MBB. 1239 UpdateForInsertedWaterBlock(NewIsland); 1240 1241 // Decrement the old entry, and remove it if refcount becomes 0. 1242 DecrementOldEntry(CPI, CPEMI); 1243 1244 // Now that we have an island to add the CPE to, clone the original CPE and 1245 // add it to the island. 1246 U.HighWaterMark = NewIsland; 1247 U.CPEMI = BuildMI(NewIsland, DebugLoc::getUnknownLoc(), 1248 TII->get(ARM::CONSTPOOL_ENTRY)) 1249 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size); 1250 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1251 NumCPEs++; 1252 1253 BBOffsets[NewIsland->getNumber()] = BBOffsets[NewMBB->getNumber()]; 1254 // Compensate for .align 2 in thumb mode. 1255 if (isThumb && (BBOffsets[NewIsland->getNumber()]%4 != 0 || HasInlineAsm)) 1256 Size += 2; 1257 // Increase the size of the island block to account for the new entry. 1258 BBSizes[NewIsland->getNumber()] += Size; 1259 AdjustBBOffsetsAfter(NewIsland, Size); 1260 1261 // Finally, change the CPI in the instruction operand to be ID. 1262 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) 1263 if (UserMI->getOperand(i).isCPI()) { 1264 UserMI->getOperand(i).setIndex(ID); 1265 break; 1266 } 1267 1268 DEBUG(errs() << " Moved CPE to #" << ID << " CPI=" << CPI 1269 << '\t' << *UserMI); 1270 1271 return true; 1272} 1273 1274/// RemoveDeadCPEMI - Remove a dead constant pool entry instruction. Update 1275/// sizes and offsets of impacted basic blocks. 1276void ARMConstantIslands::RemoveDeadCPEMI(MachineInstr *CPEMI) { 1277 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1278 unsigned Size = CPEMI->getOperand(2).getImm(); 1279 CPEMI->eraseFromParent(); 1280 BBSizes[CPEBB->getNumber()] -= Size; 1281 // All succeeding offsets have the current size value added in, fix this. 1282 if (CPEBB->empty()) { 1283 // In thumb1 mode, the size of island may be padded by two to compensate for 1284 // the alignment requirement. Then it will now be 2 when the block is 1285 // empty, so fix this. 1286 // All succeeding offsets have the current size value added in, fix this. 1287 if (BBSizes[CPEBB->getNumber()] != 0) { 1288 Size += BBSizes[CPEBB->getNumber()]; 1289 BBSizes[CPEBB->getNumber()] = 0; 1290 } 1291 } 1292 AdjustBBOffsetsAfter(CPEBB, -Size); 1293 // An island has only one predecessor BB and one successor BB. Check if 1294 // this BB's predecessor jumps directly to this BB's successor. This 1295 // shouldn't happen currently. 1296 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); 1297 // FIXME: remove the empty blocks after all the work is done? 1298} 1299 1300/// RemoveUnusedCPEntries - Remove constant pool entries whose refcounts 1301/// are zero. 1302bool ARMConstantIslands::RemoveUnusedCPEntries() { 1303 unsigned MadeChange = false; 1304 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 1305 std::vector<CPEntry> &CPEs = CPEntries[i]; 1306 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { 1307 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { 1308 RemoveDeadCPEMI(CPEs[j].CPEMI); 1309 CPEs[j].CPEMI = NULL; 1310 MadeChange = true; 1311 } 1312 } 1313 } 1314 return MadeChange; 1315} 1316 1317/// BBIsInRange - Returns true if the distance between specific MI and 1318/// specific BB can fit in MI's displacement field. 1319bool ARMConstantIslands::BBIsInRange(MachineInstr *MI,MachineBasicBlock *DestBB, 1320 unsigned MaxDisp) { 1321 unsigned PCAdj = isThumb ? 4 : 8; 1322 unsigned BrOffset = GetOffsetOf(MI) + PCAdj; 1323 unsigned DestOffset = BBOffsets[DestBB->getNumber()]; 1324 1325 DEBUG(errs() << "Branch of destination BB#" << DestBB->getNumber() 1326 << " from BB#" << MI->getParent()->getNumber() 1327 << " max delta=" << MaxDisp 1328 << " from " << GetOffsetOf(MI) << " to " << DestOffset 1329 << " offset " << int(DestOffset-BrOffset) << "\t" << *MI); 1330 1331 if (BrOffset <= DestOffset) { 1332 // Branch before the Dest. 1333 if (DestOffset-BrOffset <= MaxDisp) 1334 return true; 1335 } else { 1336 if (BrOffset-DestOffset <= MaxDisp) 1337 return true; 1338 } 1339 return false; 1340} 1341 1342/// FixUpImmediateBr - Fix up an immediate branch whose destination is too far 1343/// away to fit in its displacement field. 1344bool ARMConstantIslands::FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br) { 1345 MachineInstr *MI = Br.MI; 1346 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1347 1348 // Check to see if the DestBB is already in-range. 1349 if (BBIsInRange(MI, DestBB, Br.MaxDisp)) 1350 return false; 1351 1352 if (!Br.isCond) 1353 return FixUpUnconditionalBr(MF, Br); 1354 return FixUpConditionalBr(MF, Br); 1355} 1356 1357/// FixUpUnconditionalBr - Fix up an unconditional branch whose destination is 1358/// too far away to fit in its displacement field. If the LR register has been 1359/// spilled in the epilogue, then we can use BL to implement a far jump. 1360/// Otherwise, add an intermediate branch instruction to a branch. 1361bool 1362ARMConstantIslands::FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br) { 1363 MachineInstr *MI = Br.MI; 1364 MachineBasicBlock *MBB = MI->getParent(); 1365 if (!isThumb1) 1366 llvm_unreachable("FixUpUnconditionalBr is Thumb1 only!"); 1367 1368 // Use BL to implement far jump. 1369 Br.MaxDisp = (1 << 21) * 2; 1370 MI->setDesc(TII->get(ARM::tBfar)); 1371 BBSizes[MBB->getNumber()] += 2; 1372 AdjustBBOffsetsAfter(MBB, 2); 1373 HasFarJump = true; 1374 NumUBrFixed++; 1375 1376 DEBUG(errs() << " Changed B to long jump " << *MI); 1377 1378 return true; 1379} 1380 1381/// FixUpConditionalBr - Fix up a conditional branch whose destination is too 1382/// far away to fit in its displacement field. It is converted to an inverse 1383/// conditional branch + an unconditional branch to the destination. 1384bool 1385ARMConstantIslands::FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br) { 1386 MachineInstr *MI = Br.MI; 1387 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1388 1389 // Add an unconditional branch to the destination and invert the branch 1390 // condition to jump over it: 1391 // blt L1 1392 // => 1393 // bge L2 1394 // b L1 1395 // L2: 1396 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm(); 1397 CC = ARMCC::getOppositeCondition(CC); 1398 unsigned CCReg = MI->getOperand(2).getReg(); 1399 1400 // If the branch is at the end of its MBB and that has a fall-through block, 1401 // direct the updated conditional branch to the fall-through block. Otherwise, 1402 // split the MBB before the next instruction. 1403 MachineBasicBlock *MBB = MI->getParent(); 1404 MachineInstr *BMI = &MBB->back(); 1405 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); 1406 1407 NumCBrFixed++; 1408 if (BMI != MI) { 1409 if (llvm::next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) && 1410 BMI->getOpcode() == Br.UncondBr) { 1411 // Last MI in the BB is an unconditional branch. Can we simply invert the 1412 // condition and swap destinations: 1413 // beq L1 1414 // b L2 1415 // => 1416 // bne L2 1417 // b L1 1418 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); 1419 if (BBIsInRange(MI, NewDest, Br.MaxDisp)) { 1420 DEBUG(errs() << " Invert Bcc condition and swap its destination with " 1421 << *BMI); 1422 BMI->getOperand(0).setMBB(DestBB); 1423 MI->getOperand(0).setMBB(NewDest); 1424 MI->getOperand(1).setImm(CC); 1425 return true; 1426 } 1427 } 1428 } 1429 1430 if (NeedSplit) { 1431 SplitBlockBeforeInstr(MI); 1432 // No need for the branch to the next block. We're adding an unconditional 1433 // branch to the destination. 1434 int delta = TII->GetInstSizeInBytes(&MBB->back()); 1435 BBSizes[MBB->getNumber()] -= delta; 1436 MachineBasicBlock* SplitBB = llvm::next(MachineFunction::iterator(MBB)); 1437 AdjustBBOffsetsAfter(SplitBB, -delta); 1438 MBB->back().eraseFromParent(); 1439 // BBOffsets[SplitBB] is wrong temporarily, fixed below 1440 } 1441 MachineBasicBlock *NextBB = llvm::next(MachineFunction::iterator(MBB)); 1442 1443 DEBUG(errs() << " Insert B to BB#" << DestBB->getNumber() 1444 << " also invert condition and change dest. to BB#" 1445 << NextBB->getNumber() << "\n"); 1446 1447 // Insert a new conditional branch and a new unconditional branch. 1448 // Also update the ImmBranch as well as adding a new entry for the new branch. 1449 BuildMI(MBB, DebugLoc::getUnknownLoc(), 1450 TII->get(MI->getOpcode())) 1451 .addMBB(NextBB).addImm(CC).addReg(CCReg); 1452 Br.MI = &MBB->back(); 1453 BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back()); 1454 BuildMI(MBB, DebugLoc::getUnknownLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); 1455 BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back()); 1456 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1457 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1458 1459 // Remove the old conditional branch. It may or may not still be in MBB. 1460 BBSizes[MI->getParent()->getNumber()] -= TII->GetInstSizeInBytes(MI); 1461 MI->eraseFromParent(); 1462 1463 // The net size change is an addition of one unconditional branch. 1464 int delta = TII->GetInstSizeInBytes(&MBB->back()); 1465 AdjustBBOffsetsAfter(MBB, delta); 1466 return true; 1467} 1468 1469/// UndoLRSpillRestore - Remove Thumb push / pop instructions that only spills 1470/// LR / restores LR to pc. FIXME: This is done here because it's only possible 1471/// to do this if tBfar is not used. 1472bool ARMConstantIslands::UndoLRSpillRestore() { 1473 bool MadeChange = false; 1474 for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) { 1475 MachineInstr *MI = PushPopMIs[i]; 1476 // First two operands are predicates, the third is a zero since there 1477 // is no writeback. 1478 if (MI->getOpcode() == ARM::tPOP_RET && 1479 MI->getOperand(3).getReg() == ARM::PC && 1480 MI->getNumExplicitOperands() == 4) { 1481 BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET)); 1482 MI->eraseFromParent(); 1483 MadeChange = true; 1484 } 1485 } 1486 return MadeChange; 1487} 1488 1489bool ARMConstantIslands::OptimizeThumb2Instructions(MachineFunction &MF) { 1490 bool MadeChange = false; 1491 1492 // Shrink ADR and LDR from constantpool. 1493 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 1494 CPUser &U = CPUsers[i]; 1495 unsigned Opcode = U.MI->getOpcode(); 1496 unsigned NewOpc = 0; 1497 unsigned Scale = 1; 1498 unsigned Bits = 0; 1499 switch (Opcode) { 1500 default: break; 1501 case ARM::t2LEApcrel: 1502 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1503 NewOpc = ARM::tLEApcrel; 1504 Bits = 8; 1505 Scale = 4; 1506 } 1507 break; 1508 case ARM::t2LDRpci: 1509 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1510 NewOpc = ARM::tLDRpci; 1511 Bits = 8; 1512 Scale = 4; 1513 } 1514 break; 1515 } 1516 1517 if (!NewOpc) 1518 continue; 1519 1520 unsigned UserOffset = GetOffsetOf(U.MI) + 4; 1521 unsigned MaxOffs = ((1 << Bits) - 1) * Scale; 1522 // FIXME: Check if offset is multiple of scale if scale is not 4. 1523 if (CPEIsInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) { 1524 U.MI->setDesc(TII->get(NewOpc)); 1525 MachineBasicBlock *MBB = U.MI->getParent(); 1526 BBSizes[MBB->getNumber()] -= 2; 1527 AdjustBBOffsetsAfter(MBB, -2); 1528 ++NumT2CPShrunk; 1529 MadeChange = true; 1530 } 1531 } 1532 1533 MadeChange |= OptimizeThumb2Branches(MF); 1534 MadeChange |= OptimizeThumb2JumpTables(MF); 1535 return MadeChange; 1536} 1537 1538bool ARMConstantIslands::OptimizeThumb2Branches(MachineFunction &MF) { 1539 bool MadeChange = false; 1540 1541 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) { 1542 ImmBranch &Br = ImmBranches[i]; 1543 unsigned Opcode = Br.MI->getOpcode(); 1544 unsigned NewOpc = 0; 1545 unsigned Scale = 1; 1546 unsigned Bits = 0; 1547 switch (Opcode) { 1548 default: break; 1549 case ARM::t2B: 1550 NewOpc = ARM::tB; 1551 Bits = 11; 1552 Scale = 2; 1553 break; 1554 case ARM::t2Bcc: { 1555 NewOpc = ARM::tBcc; 1556 Bits = 8; 1557 Scale = 2; 1558 break; 1559 } 1560 } 1561 if (NewOpc) { 1562 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 1563 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1564 if (BBIsInRange(Br.MI, DestBB, MaxOffs)) { 1565 Br.MI->setDesc(TII->get(NewOpc)); 1566 MachineBasicBlock *MBB = Br.MI->getParent(); 1567 BBSizes[MBB->getNumber()] -= 2; 1568 AdjustBBOffsetsAfter(MBB, -2); 1569 ++NumT2BrShrunk; 1570 MadeChange = true; 1571 } 1572 } 1573 1574 Opcode = Br.MI->getOpcode(); 1575 if (Opcode != ARM::tBcc) 1576 continue; 1577 1578 NewOpc = 0; 1579 unsigned PredReg = 0; 1580 ARMCC::CondCodes Pred = llvm::getInstrPredicate(Br.MI, PredReg); 1581 if (Pred == ARMCC::EQ) 1582 NewOpc = ARM::tCBZ; 1583 else if (Pred == ARMCC::NE) 1584 NewOpc = ARM::tCBNZ; 1585 if (!NewOpc) 1586 continue; 1587 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1588 // Check if the distance is within 126. Subtract starting offset by 2 1589 // because the cmp will be eliminated. 1590 unsigned BrOffset = GetOffsetOf(Br.MI) + 4 - 2; 1591 unsigned DestOffset = BBOffsets[DestBB->getNumber()]; 1592 if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) { 1593 MachineBasicBlock::iterator CmpMI = Br.MI; --CmpMI; 1594 if (CmpMI->getOpcode() == ARM::tCMPzi8) { 1595 unsigned Reg = CmpMI->getOperand(0).getReg(); 1596 Pred = llvm::getInstrPredicate(CmpMI, PredReg); 1597 if (Pred == ARMCC::AL && 1598 CmpMI->getOperand(1).getImm() == 0 && 1599 isARMLowRegister(Reg)) { 1600 MachineBasicBlock *MBB = Br.MI->getParent(); 1601 MachineInstr *NewBR = 1602 BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc)) 1603 .addReg(Reg).addMBB(DestBB, Br.MI->getOperand(0).getTargetFlags()); 1604 CmpMI->eraseFromParent(); 1605 Br.MI->eraseFromParent(); 1606 Br.MI = NewBR; 1607 BBSizes[MBB->getNumber()] -= 2; 1608 AdjustBBOffsetsAfter(MBB, -2); 1609 ++NumCBZ; 1610 MadeChange = true; 1611 } 1612 } 1613 } 1614 } 1615 1616 return MadeChange; 1617} 1618 1619/// OptimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller 1620/// jumptables when it's possible. 1621bool ARMConstantIslands::OptimizeThumb2JumpTables(MachineFunction &MF) { 1622 bool MadeChange = false; 1623 1624 // FIXME: After the tables are shrunk, can we get rid some of the 1625 // constantpool tables? 1626 MachineJumpTableInfo *MJTI = MF.getJumpTableInfo(); 1627 if (MJTI == 0) return false; 1628 1629 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1630 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 1631 MachineInstr *MI = T2JumpTables[i]; 1632 const TargetInstrDesc &TID = MI->getDesc(); 1633 unsigned NumOps = TID.getNumOperands(); 1634 unsigned JTOpIdx = NumOps - (TID.isPredicable() ? 3 : 2); 1635 MachineOperand JTOP = MI->getOperand(JTOpIdx); 1636 unsigned JTI = JTOP.getIndex(); 1637 assert(JTI < JT.size()); 1638 1639 bool ByteOk = true; 1640 bool HalfWordOk = true; 1641 unsigned JTOffset = GetOffsetOf(MI) + 4; 1642 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1643 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 1644 MachineBasicBlock *MBB = JTBBs[j]; 1645 unsigned DstOffset = BBOffsets[MBB->getNumber()]; 1646 // Negative offset is not ok. FIXME: We should change BB layout to make 1647 // sure all the branches are forward. 1648 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2) 1649 ByteOk = false; 1650 unsigned TBHLimit = ((1<<16)-1)*2; 1651 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit) 1652 HalfWordOk = false; 1653 if (!ByteOk && !HalfWordOk) 1654 break; 1655 } 1656 1657 if (ByteOk || HalfWordOk) { 1658 MachineBasicBlock *MBB = MI->getParent(); 1659 unsigned BaseReg = MI->getOperand(0).getReg(); 1660 bool BaseRegKill = MI->getOperand(0).isKill(); 1661 if (!BaseRegKill) 1662 continue; 1663 unsigned IdxReg = MI->getOperand(1).getReg(); 1664 bool IdxRegKill = MI->getOperand(1).isKill(); 1665 MachineBasicBlock::iterator PrevI = MI; 1666 if (PrevI == MBB->begin()) 1667 continue; 1668 1669 MachineInstr *AddrMI = --PrevI; 1670 bool OptOk = true; 1671 // Examine the instruction that calculate the jumptable entry address. 1672 // If it's not the one just before the t2BR_JT, we won't delete it, then 1673 // it's not worth doing the optimization. 1674 for (unsigned k = 0, eee = AddrMI->getNumOperands(); k != eee; ++k) { 1675 const MachineOperand &MO = AddrMI->getOperand(k); 1676 if (!MO.isReg() || !MO.getReg()) 1677 continue; 1678 if (MO.isDef() && MO.getReg() != BaseReg) { 1679 OptOk = false; 1680 break; 1681 } 1682 if (MO.isUse() && !MO.isKill() && MO.getReg() != IdxReg) { 1683 OptOk = false; 1684 break; 1685 } 1686 } 1687 if (!OptOk) 1688 continue; 1689 1690 // The previous instruction should be a tLEApcrel or t2LEApcrelJT, we want 1691 // to delete it as well. 1692 MachineInstr *LeaMI = --PrevI; 1693 if ((LeaMI->getOpcode() != ARM::tLEApcrelJT && 1694 LeaMI->getOpcode() != ARM::t2LEApcrelJT) || 1695 LeaMI->getOperand(0).getReg() != BaseReg) 1696 OptOk = false; 1697 1698 if (!OptOk) 1699 continue; 1700 1701 unsigned Opc = ByteOk ? ARM::t2TBB : ARM::t2TBH; 1702 MachineInstr *NewJTMI = BuildMI(MBB, MI->getDebugLoc(), TII->get(Opc)) 1703 .addReg(IdxReg, getKillRegState(IdxRegKill)) 1704 .addJumpTableIndex(JTI, JTOP.getTargetFlags()) 1705 .addImm(MI->getOperand(JTOpIdx+1).getImm()); 1706 // FIXME: Insert an "ALIGN" instruction to ensure the next instruction 1707 // is 2-byte aligned. For now, asm printer will fix it up. 1708 unsigned NewSize = TII->GetInstSizeInBytes(NewJTMI); 1709 unsigned OrigSize = TII->GetInstSizeInBytes(AddrMI); 1710 OrigSize += TII->GetInstSizeInBytes(LeaMI); 1711 OrigSize += TII->GetInstSizeInBytes(MI); 1712 1713 AddrMI->eraseFromParent(); 1714 LeaMI->eraseFromParent(); 1715 MI->eraseFromParent(); 1716 1717 int delta = OrigSize - NewSize; 1718 BBSizes[MBB->getNumber()] -= delta; 1719 AdjustBBOffsetsAfter(MBB, -delta); 1720 1721 ++NumTBs; 1722 MadeChange = true; 1723 } 1724 } 1725 1726 return MadeChange; 1727} 1728 1729/// ReorderThumb2JumpTables - Adjust the function's block layout to ensure that 1730/// jump tables always branch forwards, since that's what tbb and tbh need. 1731bool ARMConstantIslands::ReorderThumb2JumpTables(MachineFunction &MF) { 1732 bool MadeChange = false; 1733 1734 MachineJumpTableInfo *MJTI = MF.getJumpTableInfo(); 1735 if (MJTI == 0) return false; 1736 1737 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1738 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 1739 MachineInstr *MI = T2JumpTables[i]; 1740 const TargetInstrDesc &TID = MI->getDesc(); 1741 unsigned NumOps = TID.getNumOperands(); 1742 unsigned JTOpIdx = NumOps - (TID.isPredicable() ? 3 : 2); 1743 MachineOperand JTOP = MI->getOperand(JTOpIdx); 1744 unsigned JTI = JTOP.getIndex(); 1745 assert(JTI < JT.size()); 1746 1747 // We prefer if target blocks for the jump table come after the jump 1748 // instruction so we can use TB[BH]. Loop through the target blocks 1749 // and try to adjust them such that that's true. 1750 int JTNumber = MI->getParent()->getNumber(); 1751 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1752 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 1753 MachineBasicBlock *MBB = JTBBs[j]; 1754 int DTNumber = MBB->getNumber(); 1755 1756 if (DTNumber < JTNumber) { 1757 // The destination precedes the switch. Try to move the block forward 1758 // so we have a positive offset. 1759 MachineBasicBlock *NewBB = 1760 AdjustJTTargetBlockForward(MBB, MI->getParent()); 1761 if (NewBB) 1762 MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB); 1763 MadeChange = true; 1764 } 1765 } 1766 } 1767 1768 return MadeChange; 1769} 1770 1771MachineBasicBlock *ARMConstantIslands:: 1772AdjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) 1773{ 1774 MachineFunction &MF = *BB->getParent(); 1775 1776 // If it's the destination block is terminated by an unconditional branch, 1777 // try to move it; otherwise, create a new block following the jump 1778 // table that branches back to the actual target. This is a very simple 1779 // heuristic. FIXME: We can definitely improve it. 1780 MachineBasicBlock *TBB = 0, *FBB = 0; 1781 SmallVector<MachineOperand, 4> Cond; 1782 SmallVector<MachineOperand, 4> CondPrior; 1783 MachineFunction::iterator BBi = BB; 1784 MachineFunction::iterator OldPrior = prior(BBi); 1785 1786 // If the block terminator isn't analyzable, don't try to move the block 1787 bool B = TII->AnalyzeBranch(*BB, TBB, FBB, Cond); 1788 1789 // If the block ends in an unconditional branch, move it. The prior block 1790 // has to have an analyzable terminator for us to move this one. Be paranoid 1791 // and make sure we're not trying to move the entry block of the function. 1792 if (!B && Cond.empty() && BB != MF.begin() && 1793 !TII->AnalyzeBranch(*OldPrior, TBB, FBB, CondPrior)) { 1794 BB->moveAfter(JTBB); 1795 OldPrior->updateTerminator(); 1796 BB->updateTerminator(); 1797 // Update numbering to account for the block being moved. 1798 MF.RenumberBlocks(); 1799 ++NumJTMoved; 1800 return NULL; 1801 } 1802 1803 // Create a new MBB for the code after the jump BB. 1804 MachineBasicBlock *NewBB = 1805 MF.CreateMachineBasicBlock(JTBB->getBasicBlock()); 1806 MachineFunction::iterator MBBI = JTBB; ++MBBI; 1807 MF.insert(MBBI, NewBB); 1808 1809 // Add an unconditional branch from NewBB to BB. 1810 // There doesn't seem to be meaningful DebugInfo available; this doesn't 1811 // correspond directly to anything in the source. 1812 assert (isThumb2 && "Adjusting for TB[BH] but not in Thumb2?"); 1813 BuildMI(NewBB, DebugLoc::getUnknownLoc(), TII->get(ARM::t2B)).addMBB(BB); 1814 1815 // Update internal data structures to account for the newly inserted MBB. 1816 MF.RenumberBlocks(NewBB); 1817 1818 // Update the CFG. 1819 NewBB->addSuccessor(BB); 1820 JTBB->removeSuccessor(BB); 1821 JTBB->addSuccessor(NewBB); 1822 1823 ++NumJTInserted; 1824 return NewBB; 1825} 1826