ARMConstantIslandPass.cpp revision 7d7dab02783fb4f1f5d0cf274c52a4fb059bfbea
1//===-- ARMConstantIslandPass.cpp - ARM constant islands --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains a pass that splits the constant pool up into 'islands'
11// which are scattered through-out the function.  This is required due to the
12// limited pc-relative displacements that ARM has.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "arm-cp-islands"
17#include "ARM.h"
18#include "ARMAddressingModes.h"
19#include "ARMMachineFunctionInfo.h"
20#include "ARMInstrInfo.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/CodeGen/MachineFunctionPass.h"
23#include "llvm/CodeGen/MachineInstrBuilder.h"
24#include "llvm/CodeGen/MachineJumpTableInfo.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/raw_ostream.h"
30#include "llvm/ADT/SmallSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/Support/CommandLine.h"
35#include <algorithm>
36using namespace llvm;
37
38STATISTIC(NumCPEs,       "Number of constpool entries");
39STATISTIC(NumSplit,      "Number of uncond branches inserted");
40STATISTIC(NumCBrFixed,   "Number of cond branches fixed");
41STATISTIC(NumUBrFixed,   "Number of uncond branches fixed");
42STATISTIC(NumTBs,        "Number of table branches generated");
43STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk");
44STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk");
45STATISTIC(NumCBZ,        "Number of CBZ / CBNZ formed");
46STATISTIC(NumJTMoved,    "Number of jump table destination blocks moved");
47STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted");
48
49
50static cl::opt<bool>
51AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true),
52          cl::desc("Adjust basic block layout to better use TB[BH]"));
53
54namespace {
55  /// ARMConstantIslands - Due to limited PC-relative displacements, ARM
56  /// requires constant pool entries to be scattered among the instructions
57  /// inside a function.  To do this, it completely ignores the normal LLVM
58  /// constant pool; instead, it places constants wherever it feels like with
59  /// special instructions.
60  ///
61  /// The terminology used in this pass includes:
62  ///   Islands - Clumps of constants placed in the function.
63  ///   Water   - Potential places where an island could be formed.
64  ///   CPE     - A constant pool entry that has been placed somewhere, which
65  ///             tracks a list of users.
66  class ARMConstantIslands : public MachineFunctionPass {
67    /// BBSizes - The size of each MachineBasicBlock in bytes of code, indexed
68    /// by MBB Number.  The two-byte pads required for Thumb alignment are
69    /// counted as part of the following block (i.e., the offset and size for
70    /// a padded block will both be ==2 mod 4).
71    std::vector<unsigned> BBSizes;
72
73    /// BBOffsets - the offset of each MBB in bytes, starting from 0.
74    /// The two-byte pads required for Thumb alignment are counted as part of
75    /// the following block.
76    std::vector<unsigned> BBOffsets;
77
78    /// WaterList - A sorted list of basic blocks where islands could be placed
79    /// (i.e. blocks that don't fall through to the following block, due
80    /// to a return, unreachable, or unconditional branch).
81    std::vector<MachineBasicBlock*> WaterList;
82
83    /// NewWaterList - The subset of WaterList that was created since the
84    /// previous iteration by inserting unconditional branches.
85    SmallSet<MachineBasicBlock*, 4> NewWaterList;
86
87    typedef std::vector<MachineBasicBlock*>::iterator water_iterator;
88
89    /// CPUser - One user of a constant pool, keeping the machine instruction
90    /// pointer, the constant pool being referenced, and the max displacement
91    /// allowed from the instruction to the CP.  The HighWaterMark records the
92    /// highest basic block where a new CPEntry can be placed.  To ensure this
93    /// pass terminates, the CP entries are initially placed at the end of the
94    /// function and then move monotonically to lower addresses.  The
95    /// exception to this rule is when the current CP entry for a particular
96    /// CPUser is out of range, but there is another CP entry for the same
97    /// constant value in range.  We want to use the existing in-range CP
98    /// entry, but if it later moves out of range, the search for new water
99    /// should resume where it left off.  The HighWaterMark is used to record
100    /// that point.
101    struct CPUser {
102      MachineInstr *MI;
103      MachineInstr *CPEMI;
104      MachineBasicBlock *HighWaterMark;
105      unsigned MaxDisp;
106      bool NegOk;
107      bool IsSoImm;
108      CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
109             bool neg, bool soimm)
110        : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) {
111        HighWaterMark = CPEMI->getParent();
112      }
113    };
114
115    /// CPUsers - Keep track of all of the machine instructions that use various
116    /// constant pools and their max displacement.
117    std::vector<CPUser> CPUsers;
118
119    /// CPEntry - One per constant pool entry, keeping the machine instruction
120    /// pointer, the constpool index, and the number of CPUser's which
121    /// reference this entry.
122    struct CPEntry {
123      MachineInstr *CPEMI;
124      unsigned CPI;
125      unsigned RefCount;
126      CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
127        : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
128    };
129
130    /// CPEntries - Keep track of all of the constant pool entry machine
131    /// instructions. For each original constpool index (i.e. those that
132    /// existed upon entry to this pass), it keeps a vector of entries.
133    /// Original elements are cloned as we go along; the clones are
134    /// put in the vector of the original element, but have distinct CPIs.
135    std::vector<std::vector<CPEntry> > CPEntries;
136
137    /// ImmBranch - One per immediate branch, keeping the machine instruction
138    /// pointer, conditional or unconditional, the max displacement,
139    /// and (if isCond is true) the corresponding unconditional branch
140    /// opcode.
141    struct ImmBranch {
142      MachineInstr *MI;
143      unsigned MaxDisp : 31;
144      bool isCond : 1;
145      int UncondBr;
146      ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
147        : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
148    };
149
150    /// ImmBranches - Keep track of all the immediate branch instructions.
151    ///
152    std::vector<ImmBranch> ImmBranches;
153
154    /// PushPopMIs - Keep track of all the Thumb push / pop instructions.
155    ///
156    SmallVector<MachineInstr*, 4> PushPopMIs;
157
158    /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions.
159    SmallVector<MachineInstr*, 4> T2JumpTables;
160
161    /// HasFarJump - True if any far jump instruction has been emitted during
162    /// the branch fix up pass.
163    bool HasFarJump;
164
165    /// HasInlineAsm - True if the function contains inline assembly.
166    bool HasInlineAsm;
167
168    const TargetInstrInfo *TII;
169    const ARMSubtarget *STI;
170    ARMFunctionInfo *AFI;
171    bool isThumb;
172    bool isThumb1;
173    bool isThumb2;
174  public:
175    static char ID;
176    ARMConstantIslands() : MachineFunctionPass(&ID) {}
177
178    virtual bool runOnMachineFunction(MachineFunction &MF);
179
180    virtual const char *getPassName() const {
181      return "ARM constant island placement and branch shortening pass";
182    }
183
184  private:
185    void DoInitialPlacement(MachineFunction &MF,
186                            std::vector<MachineInstr*> &CPEMIs);
187    CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
188    void JumpTableFunctionScan(MachineFunction &MF);
189    void InitialFunctionScan(MachineFunction &MF,
190                             const std::vector<MachineInstr*> &CPEMIs);
191    MachineBasicBlock *SplitBlockBeforeInstr(MachineInstr *MI);
192    void UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB);
193    void AdjustBBOffsetsAfter(MachineBasicBlock *BB, int delta);
194    bool DecrementOldEntry(unsigned CPI, MachineInstr* CPEMI);
195    int LookForExistingCPEntry(CPUser& U, unsigned UserOffset);
196    bool LookForWater(CPUser&U, unsigned UserOffset, water_iterator &WaterIter);
197    void CreateNewWater(unsigned CPUserIndex, unsigned UserOffset,
198                        MachineBasicBlock *&NewMBB);
199    bool HandleConstantPoolUser(MachineFunction &MF, unsigned CPUserIndex);
200    void RemoveDeadCPEMI(MachineInstr *CPEMI);
201    bool RemoveUnusedCPEntries();
202    bool CPEIsInRange(MachineInstr *MI, unsigned UserOffset,
203                      MachineInstr *CPEMI, unsigned Disp, bool NegOk,
204                      bool DoDump = false);
205    bool WaterIsInRange(unsigned UserOffset, MachineBasicBlock *Water,
206                        CPUser &U);
207    bool OffsetIsInRange(unsigned UserOffset, unsigned TrialOffset,
208                         unsigned Disp, bool NegativeOK, bool IsSoImm = false);
209    bool BBIsInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
210    bool FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br);
211    bool FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br);
212    bool FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br);
213    bool UndoLRSpillRestore();
214    bool OptimizeThumb2Instructions(MachineFunction &MF);
215    bool OptimizeThumb2Branches(MachineFunction &MF);
216    bool ReorderThumb2JumpTables(MachineFunction &MF);
217    bool OptimizeThumb2JumpTables(MachineFunction &MF);
218    MachineBasicBlock *AdjustJTTargetBlockForward(MachineBasicBlock *BB,
219                                                  MachineBasicBlock *JTBB);
220
221    unsigned GetOffsetOf(MachineInstr *MI) const;
222    void dumpBBs();
223    void verify(MachineFunction &MF);
224  };
225  char ARMConstantIslands::ID = 0;
226}
227
228/// verify - check BBOffsets, BBSizes, alignment of islands
229void ARMConstantIslands::verify(MachineFunction &MF) {
230  assert(BBOffsets.size() == BBSizes.size());
231  for (unsigned i = 1, e = BBOffsets.size(); i != e; ++i)
232    assert(BBOffsets[i-1]+BBSizes[i-1] == BBOffsets[i]);
233  if (!isThumb)
234    return;
235#ifndef NDEBUG
236  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
237       MBBI != E; ++MBBI) {
238    MachineBasicBlock *MBB = MBBI;
239    if (!MBB->empty() &&
240        MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) {
241      unsigned MBBId = MBB->getNumber();
242      assert(HasInlineAsm ||
243             (BBOffsets[MBBId]%4 == 0 && BBSizes[MBBId]%4 == 0) ||
244             (BBOffsets[MBBId]%4 != 0 && BBSizes[MBBId]%4 != 0));
245    }
246  }
247  for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
248    CPUser &U = CPUsers[i];
249    unsigned UserOffset = GetOffsetOf(U.MI) + (isThumb ? 4 : 8);
250    unsigned CPEOffset  = GetOffsetOf(U.CPEMI);
251    unsigned Disp = UserOffset < CPEOffset ? CPEOffset - UserOffset :
252      UserOffset - CPEOffset;
253    assert(Disp <= U.MaxDisp || "Constant pool entry out of range!");
254  }
255#endif
256}
257
258/// print block size and offset information - debugging
259void ARMConstantIslands::dumpBBs() {
260  for (unsigned J = 0, E = BBOffsets.size(); J !=E; ++J) {
261    DEBUG(errs() << "block " << J << " offset " << BBOffsets[J]
262                 << " size " << BBSizes[J] << "\n");
263  }
264}
265
266/// createARMConstantIslandPass - returns an instance of the constpool
267/// island pass.
268FunctionPass *llvm::createARMConstantIslandPass() {
269  return new ARMConstantIslands();
270}
271
272bool ARMConstantIslands::runOnMachineFunction(MachineFunction &MF) {
273  MachineConstantPool &MCP = *MF.getConstantPool();
274
275  TII = MF.getTarget().getInstrInfo();
276  AFI = MF.getInfo<ARMFunctionInfo>();
277  STI = &MF.getTarget().getSubtarget<ARMSubtarget>();
278
279  isThumb = AFI->isThumbFunction();
280  isThumb1 = AFI->isThumb1OnlyFunction();
281  isThumb2 = AFI->isThumb2Function();
282
283  HasFarJump = false;
284  HasInlineAsm = false;
285
286  // Renumber all of the machine basic blocks in the function, guaranteeing that
287  // the numbers agree with the position of the block in the function.
288  MF.RenumberBlocks();
289
290  // Try to reorder and otherwise adjust the block layout to make good use
291  // of the TB[BH] instructions.
292  bool MadeChange = false;
293  if (isThumb2 && AdjustJumpTableBlocks) {
294    JumpTableFunctionScan(MF);
295    MadeChange |= ReorderThumb2JumpTables(MF);
296    // Data is out of date, so clear it. It'll be re-computed later.
297    T2JumpTables.clear();
298    // Blocks may have shifted around. Keep the numbering up to date.
299    MF.RenumberBlocks();
300  }
301
302  // Thumb1 functions containing constant pools get 4-byte alignment.
303  // This is so we can keep exact track of where the alignment padding goes.
304
305  // ARM and Thumb2 functions need to be 4-byte aligned.
306  if (!isThumb1)
307    MF.EnsureAlignment(2);  // 2 = log2(4)
308
309  // Perform the initial placement of the constant pool entries.  To start with,
310  // we put them all at the end of the function.
311  std::vector<MachineInstr*> CPEMIs;
312  if (!MCP.isEmpty()) {
313    DoInitialPlacement(MF, CPEMIs);
314    if (isThumb1)
315      MF.EnsureAlignment(2);  // 2 = log2(4)
316  }
317
318  /// The next UID to take is the first unused one.
319  AFI->initConstPoolEntryUId(CPEMIs.size());
320
321  // Do the initial scan of the function, building up information about the
322  // sizes of each block, the location of all the water, and finding all of the
323  // constant pool users.
324  InitialFunctionScan(MF, CPEMIs);
325  CPEMIs.clear();
326
327  /// Remove dead constant pool entries.
328  RemoveUnusedCPEntries();
329
330  // Iteratively place constant pool entries and fix up branches until there
331  // is no change.
332  unsigned NoCPIters = 0, NoBRIters = 0;
333  while (true) {
334    bool CPChange = false;
335    for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
336      CPChange |= HandleConstantPoolUser(MF, i);
337    if (CPChange && ++NoCPIters > 30)
338      llvm_unreachable("Constant Island pass failed to converge!");
339    DEBUG(dumpBBs());
340
341    // Clear NewWaterList now.  If we split a block for branches, it should
342    // appear as "new water" for the next iteration of constant pool placement.
343    NewWaterList.clear();
344
345    bool BRChange = false;
346    for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
347      BRChange |= FixUpImmediateBr(MF, ImmBranches[i]);
348    if (BRChange && ++NoBRIters > 30)
349      llvm_unreachable("Branch Fix Up pass failed to converge!");
350    DEBUG(dumpBBs());
351
352    if (!CPChange && !BRChange)
353      break;
354    MadeChange = true;
355  }
356
357  // Shrink 32-bit Thumb2 branch, load, and store instructions.
358  if (isThumb2)
359    MadeChange |= OptimizeThumb2Instructions(MF);
360
361  // After a while, this might be made debug-only, but it is not expensive.
362  verify(MF);
363
364  // If LR has been forced spilled and no far jumps (i.e. BL) has been issued.
365  // Undo the spill / restore of LR if possible.
366  if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump())
367    MadeChange |= UndoLRSpillRestore();
368
369  BBSizes.clear();
370  BBOffsets.clear();
371  WaterList.clear();
372  CPUsers.clear();
373  CPEntries.clear();
374  ImmBranches.clear();
375  PushPopMIs.clear();
376  T2JumpTables.clear();
377
378  return MadeChange;
379}
380
381/// DoInitialPlacement - Perform the initial placement of the constant pool
382/// entries.  To start with, we put them all at the end of the function.
383void ARMConstantIslands::DoInitialPlacement(MachineFunction &MF,
384                                        std::vector<MachineInstr*> &CPEMIs) {
385  // Create the basic block to hold the CPE's.
386  MachineBasicBlock *BB = MF.CreateMachineBasicBlock();
387  MF.push_back(BB);
388
389  // Add all of the constants from the constant pool to the end block, use an
390  // identity mapping of CPI's to CPE's.
391  const std::vector<MachineConstantPoolEntry> &CPs =
392    MF.getConstantPool()->getConstants();
393
394  const TargetData &TD = *MF.getTarget().getTargetData();
395  for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
396    unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
397    // Verify that all constant pool entries are a multiple of 4 bytes.  If not,
398    // we would have to pad them out or something so that instructions stay
399    // aligned.
400    assert((Size & 3) == 0 && "CP Entry not multiple of 4 bytes!");
401    MachineInstr *CPEMI =
402      BuildMI(BB, DebugLoc::getUnknownLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
403                           .addImm(i).addConstantPoolIndex(i).addImm(Size);
404    CPEMIs.push_back(CPEMI);
405
406    // Add a new CPEntry, but no corresponding CPUser yet.
407    std::vector<CPEntry> CPEs;
408    CPEs.push_back(CPEntry(CPEMI, i));
409    CPEntries.push_back(CPEs);
410    NumCPEs++;
411    DEBUG(errs() << "Moved CPI#" << i << " to end of function as #" << i
412                 << "\n");
413  }
414}
415
416/// BBHasFallthrough - Return true if the specified basic block can fallthrough
417/// into the block immediately after it.
418static bool BBHasFallthrough(MachineBasicBlock *MBB) {
419  // Get the next machine basic block in the function.
420  MachineFunction::iterator MBBI = MBB;
421  if (llvm::next(MBBI) == MBB->getParent()->end())  // Can't fall off end of function.
422    return false;
423
424  MachineBasicBlock *NextBB = llvm::next(MBBI);
425  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
426       E = MBB->succ_end(); I != E; ++I)
427    if (*I == NextBB)
428      return true;
429
430  return false;
431}
432
433/// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
434/// look up the corresponding CPEntry.
435ARMConstantIslands::CPEntry
436*ARMConstantIslands::findConstPoolEntry(unsigned CPI,
437                                        const MachineInstr *CPEMI) {
438  std::vector<CPEntry> &CPEs = CPEntries[CPI];
439  // Number of entries per constpool index should be small, just do a
440  // linear search.
441  for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
442    if (CPEs[i].CPEMI == CPEMI)
443      return &CPEs[i];
444  }
445  return NULL;
446}
447
448/// JumpTableFunctionScan - Do a scan of the function, building up
449/// information about the sizes of each block and the locations of all
450/// the jump tables.
451void ARMConstantIslands::JumpTableFunctionScan(MachineFunction &MF) {
452  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
453       MBBI != E; ++MBBI) {
454    MachineBasicBlock &MBB = *MBBI;
455
456    for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
457         I != E; ++I)
458      if (I->getDesc().isBranch() && I->getOpcode() == ARM::t2BR_JT)
459        T2JumpTables.push_back(I);
460  }
461}
462
463/// InitialFunctionScan - Do the initial scan of the function, building up
464/// information about the sizes of each block, the location of all the water,
465/// and finding all of the constant pool users.
466void ARMConstantIslands::InitialFunctionScan(MachineFunction &MF,
467                                 const std::vector<MachineInstr*> &CPEMIs) {
468  // First thing, see if the function has any inline assembly in it. If so,
469  // we have to be conservative about alignment assumptions, as we don't
470  // know for sure the size of any instructions in the inline assembly.
471  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
472       MBBI != E; ++MBBI) {
473    MachineBasicBlock &MBB = *MBBI;
474    for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
475         I != E; ++I)
476      if (I->getOpcode() == ARM::INLINEASM)
477        HasInlineAsm = true;
478  }
479
480  // Now go back through the instructions and build up our data structures
481  unsigned Offset = 0;
482  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
483       MBBI != E; ++MBBI) {
484    MachineBasicBlock &MBB = *MBBI;
485
486    // If this block doesn't fall through into the next MBB, then this is
487    // 'water' that a constant pool island could be placed.
488    if (!BBHasFallthrough(&MBB))
489      WaterList.push_back(&MBB);
490
491    unsigned MBBSize = 0;
492    for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
493         I != E; ++I) {
494      // Add instruction size to MBBSize.
495      MBBSize += TII->GetInstSizeInBytes(I);
496
497      int Opc = I->getOpcode();
498      if (I->getDesc().isBranch()) {
499        bool isCond = false;
500        unsigned Bits = 0;
501        unsigned Scale = 1;
502        int UOpc = Opc;
503        switch (Opc) {
504        default:
505          continue;  // Ignore other JT branches
506        case ARM::tBR_JTr:
507          // A Thumb1 table jump may involve padding; for the offsets to
508          // be right, functions containing these must be 4-byte aligned.
509          MF.EnsureAlignment(2U);
510          if ((Offset+MBBSize)%4 != 0 || HasInlineAsm)
511            // FIXME: Add a pseudo ALIGN instruction instead.
512            MBBSize += 2;           // padding
513          continue;   // Does not get an entry in ImmBranches
514        case ARM::t2BR_JT:
515          T2JumpTables.push_back(I);
516          continue;   // Does not get an entry in ImmBranches
517        case ARM::Bcc:
518          isCond = true;
519          UOpc = ARM::B;
520          // Fallthrough
521        case ARM::B:
522          Bits = 24;
523          Scale = 4;
524          break;
525        case ARM::tBcc:
526          isCond = true;
527          UOpc = ARM::tB;
528          Bits = 8;
529          Scale = 2;
530          break;
531        case ARM::tB:
532          Bits = 11;
533          Scale = 2;
534          break;
535        case ARM::t2Bcc:
536          isCond = true;
537          UOpc = ARM::t2B;
538          Bits = 20;
539          Scale = 2;
540          break;
541        case ARM::t2B:
542          Bits = 24;
543          Scale = 2;
544          break;
545        }
546
547        // Record this immediate branch.
548        unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
549        ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc));
550      }
551
552      if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET)
553        PushPopMIs.push_back(I);
554
555      if (Opc == ARM::CONSTPOOL_ENTRY)
556        continue;
557
558      // Scan the instructions for constant pool operands.
559      for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
560        if (I->getOperand(op).isCPI()) {
561          // We found one.  The addressing mode tells us the max displacement
562          // from the PC that this instruction permits.
563
564          // Basic size info comes from the TSFlags field.
565          unsigned Bits = 0;
566          unsigned Scale = 1;
567          bool NegOk = false;
568          bool IsSoImm = false;
569
570          switch (Opc) {
571          default:
572            llvm_unreachable("Unknown addressing mode for CP reference!");
573            break;
574
575          // Taking the address of a CP entry.
576          case ARM::LEApcrel:
577            // This takes a SoImm, which is 8 bit immediate rotated. We'll
578            // pretend the maximum offset is 255 * 4. Since each instruction
579            // 4 byte wide, this is always correct. We'll check for other
580            // displacements that fits in a SoImm as well.
581            Bits = 8;
582            Scale = 4;
583            NegOk = true;
584            IsSoImm = true;
585            break;
586          case ARM::t2LEApcrel:
587            Bits = 12;
588            NegOk = true;
589            break;
590          case ARM::tLEApcrel:
591            Bits = 8;
592            Scale = 4;
593            break;
594
595          case ARM::LDR:
596          case ARM::LDRcp:
597          case ARM::t2LDRpci:
598            Bits = 12;  // +-offset_12
599            NegOk = true;
600            break;
601
602          case ARM::tLDRpci:
603          case ARM::tLDRcp:
604            Bits = 8;
605            Scale = 4;  // +(offset_8*4)
606            break;
607
608          case ARM::VLDRD:
609          case ARM::VLDRS:
610            Bits = 8;
611            Scale = 4;  // +-(offset_8*4)
612            NegOk = true;
613            break;
614          }
615
616          // Remember that this is a user of a CP entry.
617          unsigned CPI = I->getOperand(op).getIndex();
618          MachineInstr *CPEMI = CPEMIs[CPI];
619          unsigned MaxOffs = ((1 << Bits)-1) * Scale;
620          CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm));
621
622          // Increment corresponding CPEntry reference count.
623          CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
624          assert(CPE && "Cannot find a corresponding CPEntry!");
625          CPE->RefCount++;
626
627          // Instructions can only use one CP entry, don't bother scanning the
628          // rest of the operands.
629          break;
630        }
631    }
632
633    // In thumb mode, if this block is a constpool island, we may need padding
634    // so it's aligned on 4 byte boundary.
635    if (isThumb &&
636        !MBB.empty() &&
637        MBB.begin()->getOpcode() == ARM::CONSTPOOL_ENTRY &&
638        ((Offset%4) != 0 || HasInlineAsm))
639      MBBSize += 2;
640
641    BBSizes.push_back(MBBSize);
642    BBOffsets.push_back(Offset);
643    Offset += MBBSize;
644  }
645}
646
647/// GetOffsetOf - Return the current offset of the specified machine instruction
648/// from the start of the function.  This offset changes as stuff is moved
649/// around inside the function.
650unsigned ARMConstantIslands::GetOffsetOf(MachineInstr *MI) const {
651  MachineBasicBlock *MBB = MI->getParent();
652
653  // The offset is composed of two things: the sum of the sizes of all MBB's
654  // before this instruction's block, and the offset from the start of the block
655  // it is in.
656  unsigned Offset = BBOffsets[MBB->getNumber()];
657
658  // If we're looking for a CONSTPOOL_ENTRY in Thumb, see if this block has
659  // alignment padding, and compensate if so.
660  if (isThumb &&
661      MI->getOpcode() == ARM::CONSTPOOL_ENTRY &&
662      (Offset%4 != 0 || HasInlineAsm))
663    Offset += 2;
664
665  // Sum instructions before MI in MBB.
666  for (MachineBasicBlock::iterator I = MBB->begin(); ; ++I) {
667    assert(I != MBB->end() && "Didn't find MI in its own basic block?");
668    if (&*I == MI) return Offset;
669    Offset += TII->GetInstSizeInBytes(I);
670  }
671}
672
673/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
674/// ID.
675static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
676                              const MachineBasicBlock *RHS) {
677  return LHS->getNumber() < RHS->getNumber();
678}
679
680/// UpdateForInsertedWaterBlock - When a block is newly inserted into the
681/// machine function, it upsets all of the block numbers.  Renumber the blocks
682/// and update the arrays that parallel this numbering.
683void ARMConstantIslands::UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
684  // Renumber the MBB's to keep them consequtive.
685  NewBB->getParent()->RenumberBlocks(NewBB);
686
687  // Insert a size into BBSizes to align it properly with the (newly
688  // renumbered) block numbers.
689  BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0);
690
691  // Likewise for BBOffsets.
692  BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0);
693
694  // Next, update WaterList.  Specifically, we need to add NewMBB as having
695  // available water after it.
696  water_iterator IP =
697    std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
698                     CompareMBBNumbers);
699  WaterList.insert(IP, NewBB);
700}
701
702
703/// Split the basic block containing MI into two blocks, which are joined by
704/// an unconditional branch.  Update data structures and renumber blocks to
705/// account for this change and returns the newly created block.
706MachineBasicBlock *ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr *MI) {
707  MachineBasicBlock *OrigBB = MI->getParent();
708  MachineFunction &MF = *OrigBB->getParent();
709
710  // Create a new MBB for the code after the OrigBB.
711  MachineBasicBlock *NewBB =
712    MF.CreateMachineBasicBlock(OrigBB->getBasicBlock());
713  MachineFunction::iterator MBBI = OrigBB; ++MBBI;
714  MF.insert(MBBI, NewBB);
715
716  // Splice the instructions starting with MI over to NewBB.
717  NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
718
719  // Add an unconditional branch from OrigBB to NewBB.
720  // Note the new unconditional branch is not being recorded.
721  // There doesn't seem to be meaningful DebugInfo available; this doesn't
722  // correspond to anything in the source.
723  unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B;
724  BuildMI(OrigBB, DebugLoc::getUnknownLoc(), TII->get(Opc)).addMBB(NewBB);
725  NumSplit++;
726
727  // Update the CFG.  All succs of OrigBB are now succs of NewBB.
728  while (!OrigBB->succ_empty()) {
729    MachineBasicBlock *Succ = *OrigBB->succ_begin();
730    OrigBB->removeSuccessor(Succ);
731    NewBB->addSuccessor(Succ);
732
733    // This pass should be run after register allocation, so there should be no
734    // PHI nodes to update.
735    assert((Succ->empty() || Succ->begin()->getOpcode() != TargetInstrInfo::PHI)
736           && "PHI nodes should be eliminated by now!");
737  }
738
739  // OrigBB branches to NewBB.
740  OrigBB->addSuccessor(NewBB);
741
742  // Update internal data structures to account for the newly inserted MBB.
743  // This is almost the same as UpdateForInsertedWaterBlock, except that
744  // the Water goes after OrigBB, not NewBB.
745  MF.RenumberBlocks(NewBB);
746
747  // Insert a size into BBSizes to align it properly with the (newly
748  // renumbered) block numbers.
749  BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0);
750
751  // Likewise for BBOffsets.
752  BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0);
753
754  // Next, update WaterList.  Specifically, we need to add OrigMBB as having
755  // available water after it (but not if it's already there, which happens
756  // when splitting before a conditional branch that is followed by an
757  // unconditional branch - in that case we want to insert NewBB).
758  water_iterator IP =
759    std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
760                     CompareMBBNumbers);
761  MachineBasicBlock* WaterBB = *IP;
762  if (WaterBB == OrigBB)
763    WaterList.insert(llvm::next(IP), NewBB);
764  else
765    WaterList.insert(IP, OrigBB);
766  NewWaterList.insert(OrigBB);
767
768  // Figure out how large the first NewMBB is.  (It cannot
769  // contain a constpool_entry or tablejump.)
770  unsigned NewBBSize = 0;
771  for (MachineBasicBlock::iterator I = NewBB->begin(), E = NewBB->end();
772       I != E; ++I)
773    NewBBSize += TII->GetInstSizeInBytes(I);
774
775  unsigned OrigBBI = OrigBB->getNumber();
776  unsigned NewBBI = NewBB->getNumber();
777  // Set the size of NewBB in BBSizes.
778  BBSizes[NewBBI] = NewBBSize;
779
780  // We removed instructions from UserMBB, subtract that off from its size.
781  // Add 2 or 4 to the block to count the unconditional branch we added to it.
782  int delta = isThumb1 ? 2 : 4;
783  BBSizes[OrigBBI] -= NewBBSize - delta;
784
785  // ...and adjust BBOffsets for NewBB accordingly.
786  BBOffsets[NewBBI] = BBOffsets[OrigBBI] + BBSizes[OrigBBI];
787
788  // All BBOffsets following these blocks must be modified.
789  AdjustBBOffsetsAfter(NewBB, delta);
790
791  return NewBB;
792}
793
794/// OffsetIsInRange - Checks whether UserOffset (the location of a constant pool
795/// reference) is within MaxDisp of TrialOffset (a proposed location of a
796/// constant pool entry).
797bool ARMConstantIslands::OffsetIsInRange(unsigned UserOffset,
798                                         unsigned TrialOffset, unsigned MaxDisp,
799                                         bool NegativeOK, bool IsSoImm) {
800  // On Thumb offsets==2 mod 4 are rounded down by the hardware for
801  // purposes of the displacement computation; compensate for that here.
802  // Effectively, the valid range of displacements is 2 bytes smaller for such
803  // references.
804  unsigned TotalAdj = 0;
805  if (isThumb && UserOffset%4 !=0) {
806    UserOffset -= 2;
807    TotalAdj = 2;
808  }
809  // CPEs will be rounded up to a multiple of 4.
810  if (isThumb && TrialOffset%4 != 0) {
811    TrialOffset += 2;
812    TotalAdj += 2;
813  }
814
815  // In Thumb2 mode, later branch adjustments can shift instructions up and
816  // cause alignment change. In the worst case scenario this can cause the
817  // user's effective address to be subtracted by 2 and the CPE's address to
818  // be plus 2.
819  if (isThumb2 && TotalAdj != 4)
820    MaxDisp -= (4 - TotalAdj);
821
822  if (UserOffset <= TrialOffset) {
823    // User before the Trial.
824    if (TrialOffset - UserOffset <= MaxDisp)
825      return true;
826    // FIXME: Make use full range of soimm values.
827  } else if (NegativeOK) {
828    if (UserOffset - TrialOffset <= MaxDisp)
829      return true;
830    // FIXME: Make use full range of soimm values.
831  }
832  return false;
833}
834
835/// WaterIsInRange - Returns true if a CPE placed after the specified
836/// Water (a basic block) will be in range for the specific MI.
837
838bool ARMConstantIslands::WaterIsInRange(unsigned UserOffset,
839                                        MachineBasicBlock* Water, CPUser &U) {
840  unsigned MaxDisp = U.MaxDisp;
841  unsigned CPEOffset = BBOffsets[Water->getNumber()] +
842                       BBSizes[Water->getNumber()];
843
844  // If the CPE is to be inserted before the instruction, that will raise
845  // the offset of the instruction.
846  if (CPEOffset < UserOffset)
847    UserOffset += U.CPEMI->getOperand(2).getImm();
848
849  return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, U.NegOk, U.IsSoImm);
850}
851
852/// CPEIsInRange - Returns true if the distance between specific MI and
853/// specific ConstPool entry instruction can fit in MI's displacement field.
854bool ARMConstantIslands::CPEIsInRange(MachineInstr *MI, unsigned UserOffset,
855                                      MachineInstr *CPEMI, unsigned MaxDisp,
856                                      bool NegOk, bool DoDump) {
857  unsigned CPEOffset  = GetOffsetOf(CPEMI);
858  assert((CPEOffset%4 == 0 || HasInlineAsm) && "Misaligned CPE");
859
860  if (DoDump) {
861    DEBUG(errs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
862                 << " max delta=" << MaxDisp
863                 << " insn address=" << UserOffset
864                 << " CPE address=" << CPEOffset
865                 << " offset=" << int(CPEOffset-UserOffset) << "\t" << *MI);
866  }
867
868  return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
869}
870
871#ifndef NDEBUG
872/// BBIsJumpedOver - Return true of the specified basic block's only predecessor
873/// unconditionally branches to its only successor.
874static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
875  if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
876    return false;
877
878  MachineBasicBlock *Succ = *MBB->succ_begin();
879  MachineBasicBlock *Pred = *MBB->pred_begin();
880  MachineInstr *PredMI = &Pred->back();
881  if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB
882      || PredMI->getOpcode() == ARM::t2B)
883    return PredMI->getOperand(0).getMBB() == Succ;
884  return false;
885}
886#endif // NDEBUG
887
888void ARMConstantIslands::AdjustBBOffsetsAfter(MachineBasicBlock *BB,
889                                              int delta) {
890  MachineFunction::iterator MBBI = BB; MBBI = llvm::next(MBBI);
891  for(unsigned i = BB->getNumber()+1, e = BB->getParent()->getNumBlockIDs();
892      i < e; ++i) {
893    BBOffsets[i] += delta;
894    // If some existing blocks have padding, adjust the padding as needed, a
895    // bit tricky.  delta can be negative so don't use % on that.
896    if (!isThumb)
897      continue;
898    MachineBasicBlock *MBB = MBBI;
899    if (!MBB->empty() && !HasInlineAsm) {
900      // Constant pool entries require padding.
901      if (MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) {
902        unsigned OldOffset = BBOffsets[i] - delta;
903        if ((OldOffset%4) == 0 && (BBOffsets[i]%4) != 0) {
904          // add new padding
905          BBSizes[i] += 2;
906          delta += 2;
907        } else if ((OldOffset%4) != 0 && (BBOffsets[i]%4) == 0) {
908          // remove existing padding
909          BBSizes[i] -= 2;
910          delta -= 2;
911        }
912      }
913      // Thumb1 jump tables require padding.  They should be at the end;
914      // following unconditional branches are removed by AnalyzeBranch.
915      MachineInstr *ThumbJTMI = prior(MBB->end());
916      if (ThumbJTMI->getOpcode() == ARM::tBR_JTr) {
917        unsigned NewMIOffset = GetOffsetOf(ThumbJTMI);
918        unsigned OldMIOffset = NewMIOffset - delta;
919        if ((OldMIOffset%4) == 0 && (NewMIOffset%4) != 0) {
920          // remove existing padding
921          BBSizes[i] -= 2;
922          delta -= 2;
923        } else if ((OldMIOffset%4) != 0 && (NewMIOffset%4) == 0) {
924          // add new padding
925          BBSizes[i] += 2;
926          delta += 2;
927        }
928      }
929      if (delta==0)
930        return;
931    }
932    MBBI = llvm::next(MBBI);
933  }
934}
935
936/// DecrementOldEntry - find the constant pool entry with index CPI
937/// and instruction CPEMI, and decrement its refcount.  If the refcount
938/// becomes 0 remove the entry and instruction.  Returns true if we removed
939/// the entry, false if we didn't.
940
941bool ARMConstantIslands::DecrementOldEntry(unsigned CPI, MachineInstr *CPEMI) {
942  // Find the old entry. Eliminate it if it is no longer used.
943  CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
944  assert(CPE && "Unexpected!");
945  if (--CPE->RefCount == 0) {
946    RemoveDeadCPEMI(CPEMI);
947    CPE->CPEMI = NULL;
948    NumCPEs--;
949    return true;
950  }
951  return false;
952}
953
954/// LookForCPEntryInRange - see if the currently referenced CPE is in range;
955/// if not, see if an in-range clone of the CPE is in range, and if so,
956/// change the data structures so the user references the clone.  Returns:
957/// 0 = no existing entry found
958/// 1 = entry found, and there were no code insertions or deletions
959/// 2 = entry found, and there were code insertions or deletions
960int ARMConstantIslands::LookForExistingCPEntry(CPUser& U, unsigned UserOffset)
961{
962  MachineInstr *UserMI = U.MI;
963  MachineInstr *CPEMI  = U.CPEMI;
964
965  // Check to see if the CPE is already in-range.
966  if (CPEIsInRange(UserMI, UserOffset, CPEMI, U.MaxDisp, U.NegOk, true)) {
967    DEBUG(errs() << "In range\n");
968    return 1;
969  }
970
971  // No.  Look for previously created clones of the CPE that are in range.
972  unsigned CPI = CPEMI->getOperand(1).getIndex();
973  std::vector<CPEntry> &CPEs = CPEntries[CPI];
974  for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
975    // We already tried this one
976    if (CPEs[i].CPEMI == CPEMI)
977      continue;
978    // Removing CPEs can leave empty entries, skip
979    if (CPEs[i].CPEMI == NULL)
980      continue;
981    if (CPEIsInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.MaxDisp, U.NegOk)) {
982      DEBUG(errs() << "Replacing CPE#" << CPI << " with CPE#"
983                   << CPEs[i].CPI << "\n");
984      // Point the CPUser node to the replacement
985      U.CPEMI = CPEs[i].CPEMI;
986      // Change the CPI in the instruction operand to refer to the clone.
987      for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
988        if (UserMI->getOperand(j).isCPI()) {
989          UserMI->getOperand(j).setIndex(CPEs[i].CPI);
990          break;
991        }
992      // Adjust the refcount of the clone...
993      CPEs[i].RefCount++;
994      // ...and the original.  If we didn't remove the old entry, none of the
995      // addresses changed, so we don't need another pass.
996      return DecrementOldEntry(CPI, CPEMI) ? 2 : 1;
997    }
998  }
999  return 0;
1000}
1001
1002/// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
1003/// the specific unconditional branch instruction.
1004static inline unsigned getUnconditionalBrDisp(int Opc) {
1005  switch (Opc) {
1006  case ARM::tB:
1007    return ((1<<10)-1)*2;
1008  case ARM::t2B:
1009    return ((1<<23)-1)*2;
1010  default:
1011    break;
1012  }
1013
1014  return ((1<<23)-1)*4;
1015}
1016
1017/// LookForWater - Look for an existing entry in the WaterList in which
1018/// we can place the CPE referenced from U so it's within range of U's MI.
1019/// Returns true if found, false if not.  If it returns true, WaterIter
1020/// is set to the WaterList entry.  For Thumb, prefer water that will not
1021/// introduce padding to water that will.  To ensure that this pass
1022/// terminates, the CPE location for a particular CPUser is only allowed to
1023/// move to a lower address, so search backward from the end of the list and
1024/// prefer the first water that is in range.
1025bool ARMConstantIslands::LookForWater(CPUser &U, unsigned UserOffset,
1026                                      water_iterator &WaterIter) {
1027  if (WaterList.empty())
1028    return false;
1029
1030  bool FoundWaterThatWouldPad = false;
1031  water_iterator IPThatWouldPad;
1032  for (water_iterator IP = prior(WaterList.end()),
1033         B = WaterList.begin();; --IP) {
1034    MachineBasicBlock* WaterBB = *IP;
1035    // Check if water is in range and is either at a lower address than the
1036    // current "high water mark" or a new water block that was created since
1037    // the previous iteration by inserting an unconditional branch.  In the
1038    // latter case, we want to allow resetting the high water mark back to
1039    // this new water since we haven't seen it before.  Inserting branches
1040    // should be relatively uncommon and when it does happen, we want to be
1041    // sure to take advantage of it for all the CPEs near that block, so that
1042    // we don't insert more branches than necessary.
1043    if (WaterIsInRange(UserOffset, WaterBB, U) &&
1044        (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
1045         NewWaterList.count(WaterBB))) {
1046      unsigned WBBId = WaterBB->getNumber();
1047      if (isThumb &&
1048          (BBOffsets[WBBId] + BBSizes[WBBId])%4 != 0) {
1049        // This is valid Water, but would introduce padding.  Remember
1050        // it in case we don't find any Water that doesn't do this.
1051        if (!FoundWaterThatWouldPad) {
1052          FoundWaterThatWouldPad = true;
1053          IPThatWouldPad = IP;
1054        }
1055      } else {
1056        WaterIter = IP;
1057        return true;
1058      }
1059    }
1060    if (IP == B)
1061      break;
1062  }
1063  if (FoundWaterThatWouldPad) {
1064    WaterIter = IPThatWouldPad;
1065    return true;
1066  }
1067  return false;
1068}
1069
1070/// CreateNewWater - No existing WaterList entry will work for
1071/// CPUsers[CPUserIndex], so create a place to put the CPE.  The end of the
1072/// block is used if in range, and the conditional branch munged so control
1073/// flow is correct.  Otherwise the block is split to create a hole with an
1074/// unconditional branch around it.  In either case NewMBB is set to a
1075/// block following which the new island can be inserted (the WaterList
1076/// is not adjusted).
1077void ARMConstantIslands::CreateNewWater(unsigned CPUserIndex,
1078                                        unsigned UserOffset,
1079                                        MachineBasicBlock *&NewMBB) {
1080  CPUser &U = CPUsers[CPUserIndex];
1081  MachineInstr *UserMI = U.MI;
1082  MachineInstr *CPEMI  = U.CPEMI;
1083  MachineBasicBlock *UserMBB = UserMI->getParent();
1084  unsigned OffsetOfNextBlock = BBOffsets[UserMBB->getNumber()] +
1085                               BBSizes[UserMBB->getNumber()];
1086  assert(OffsetOfNextBlock== BBOffsets[UserMBB->getNumber()+1]);
1087
1088  // If the block does not end in an unconditional branch already, and if the
1089  // end of the block is within range, make new water there.  (The addition
1090  // below is for the unconditional branch we will be adding: 4 bytes on ARM +
1091  // Thumb2, 2 on Thumb1.  Possible Thumb1 alignment padding is allowed for
1092  // inside OffsetIsInRange.
1093  if (BBHasFallthrough(UserMBB) &&
1094      OffsetIsInRange(UserOffset, OffsetOfNextBlock + (isThumb1 ? 2: 4),
1095                      U.MaxDisp, U.NegOk, U.IsSoImm)) {
1096    DEBUG(errs() << "Split at end of block\n");
1097    if (&UserMBB->back() == UserMI)
1098      assert(BBHasFallthrough(UserMBB) && "Expected a fallthrough BB!");
1099    NewMBB = llvm::next(MachineFunction::iterator(UserMBB));
1100    // Add an unconditional branch from UserMBB to fallthrough block.
1101    // Record it for branch lengthening; this new branch will not get out of
1102    // range, but if the preceding conditional branch is out of range, the
1103    // targets will be exchanged, and the altered branch may be out of
1104    // range, so the machinery has to know about it.
1105    int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B;
1106    BuildMI(UserMBB, DebugLoc::getUnknownLoc(),
1107            TII->get(UncondBr)).addMBB(NewMBB);
1108    unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
1109    ImmBranches.push_back(ImmBranch(&UserMBB->back(),
1110                          MaxDisp, false, UncondBr));
1111    int delta = isThumb1 ? 2 : 4;
1112    BBSizes[UserMBB->getNumber()] += delta;
1113    AdjustBBOffsetsAfter(UserMBB, delta);
1114  } else {
1115    // What a big block.  Find a place within the block to split it.
1116    // This is a little tricky on Thumb1 since instructions are 2 bytes
1117    // and constant pool entries are 4 bytes: if instruction I references
1118    // island CPE, and instruction I+1 references CPE', it will
1119    // not work well to put CPE as far forward as possible, since then
1120    // CPE' cannot immediately follow it (that location is 2 bytes
1121    // farther away from I+1 than CPE was from I) and we'd need to create
1122    // a new island.  So, we make a first guess, then walk through the
1123    // instructions between the one currently being looked at and the
1124    // possible insertion point, and make sure any other instructions
1125    // that reference CPEs will be able to use the same island area;
1126    // if not, we back up the insertion point.
1127
1128    // The 4 in the following is for the unconditional branch we'll be
1129    // inserting (allows for long branch on Thumb1).  Alignment of the
1130    // island is handled inside OffsetIsInRange.
1131    unsigned BaseInsertOffset = UserOffset + U.MaxDisp -4;
1132    // This could point off the end of the block if we've already got
1133    // constant pool entries following this block; only the last one is
1134    // in the water list.  Back past any possible branches (allow for a
1135    // conditional and a maximally long unconditional).
1136    if (BaseInsertOffset >= BBOffsets[UserMBB->getNumber()+1])
1137      BaseInsertOffset = BBOffsets[UserMBB->getNumber()+1] -
1138                              (isThumb1 ? 6 : 8);
1139    unsigned EndInsertOffset = BaseInsertOffset +
1140           CPEMI->getOperand(2).getImm();
1141    MachineBasicBlock::iterator MI = UserMI;
1142    ++MI;
1143    unsigned CPUIndex = CPUserIndex+1;
1144    for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI);
1145         Offset < BaseInsertOffset;
1146         Offset += TII->GetInstSizeInBytes(MI),
1147            MI = llvm::next(MI)) {
1148      if (CPUIndex < CPUsers.size() && CPUsers[CPUIndex].MI == MI) {
1149        CPUser &U = CPUsers[CPUIndex];
1150        if (!OffsetIsInRange(Offset, EndInsertOffset,
1151                             U.MaxDisp, U.NegOk, U.IsSoImm)) {
1152          BaseInsertOffset -= (isThumb1 ? 2 : 4);
1153          EndInsertOffset  -= (isThumb1 ? 2 : 4);
1154        }
1155        // This is overly conservative, as we don't account for CPEMIs
1156        // being reused within the block, but it doesn't matter much.
1157        EndInsertOffset += CPUsers[CPUIndex].CPEMI->getOperand(2).getImm();
1158        CPUIndex++;
1159      }
1160    }
1161    DEBUG(errs() << "Split in middle of big block\n");
1162    NewMBB = SplitBlockBeforeInstr(prior(MI));
1163  }
1164}
1165
1166/// HandleConstantPoolUser - Analyze the specified user, checking to see if it
1167/// is out-of-range.  If so, pick up the constant pool value and move it some
1168/// place in-range.  Return true if we changed any addresses (thus must run
1169/// another pass of branch lengthening), false otherwise.
1170bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction &MF,
1171                                                unsigned CPUserIndex) {
1172  CPUser &U = CPUsers[CPUserIndex];
1173  MachineInstr *UserMI = U.MI;
1174  MachineInstr *CPEMI  = U.CPEMI;
1175  unsigned CPI = CPEMI->getOperand(1).getIndex();
1176  unsigned Size = CPEMI->getOperand(2).getImm();
1177  // Compute this only once, it's expensive.  The 4 or 8 is the value the
1178  // hardware keeps in the PC.
1179  unsigned UserOffset = GetOffsetOf(UserMI) + (isThumb ? 4 : 8);
1180
1181  // See if the current entry is within range, or there is a clone of it
1182  // in range.
1183  int result = LookForExistingCPEntry(U, UserOffset);
1184  if (result==1) return false;
1185  else if (result==2) return true;
1186
1187  // No existing clone of this CPE is within range.
1188  // We will be generating a new clone.  Get a UID for it.
1189  unsigned ID = AFI->createConstPoolEntryUId();
1190
1191  // Look for water where we can place this CPE.
1192  MachineBasicBlock *NewIsland = MF.CreateMachineBasicBlock();
1193  MachineBasicBlock *NewMBB;
1194  water_iterator IP;
1195  if (LookForWater(U, UserOffset, IP)) {
1196    DEBUG(errs() << "found water in range\n");
1197    MachineBasicBlock *WaterBB = *IP;
1198
1199    // If the original WaterList entry was "new water" on this iteration,
1200    // propagate that to the new island.  This is just keeping NewWaterList
1201    // updated to match the WaterList, which will be updated below.
1202    if (NewWaterList.count(WaterBB)) {
1203      NewWaterList.erase(WaterBB);
1204      NewWaterList.insert(NewIsland);
1205    }
1206    // The new CPE goes before the following block (NewMBB).
1207    NewMBB = llvm::next(MachineFunction::iterator(WaterBB));
1208
1209  } else {
1210    // No water found.
1211    DEBUG(errs() << "No water found\n");
1212    CreateNewWater(CPUserIndex, UserOffset, NewMBB);
1213
1214    // SplitBlockBeforeInstr adds to WaterList, which is important when it is
1215    // called while handling branches so that the water will be seen on the
1216    // next iteration for constant pools, but in this context, we don't want
1217    // it.  Check for this so it will be removed from the WaterList.
1218    // Also remove any entry from NewWaterList.
1219    MachineBasicBlock *WaterBB = prior(MachineFunction::iterator(NewMBB));
1220    IP = std::find(WaterList.begin(), WaterList.end(), WaterBB);
1221    if (IP != WaterList.end())
1222      NewWaterList.erase(WaterBB);
1223
1224    // We are adding new water.  Update NewWaterList.
1225    NewWaterList.insert(NewIsland);
1226  }
1227
1228  // Remove the original WaterList entry; we want subsequent insertions in
1229  // this vicinity to go after the one we're about to insert.  This
1230  // considerably reduces the number of times we have to move the same CPE
1231  // more than once and is also important to ensure the algorithm terminates.
1232  if (IP != WaterList.end())
1233    WaterList.erase(IP);
1234
1235  // Okay, we know we can put an island before NewMBB now, do it!
1236  MF.insert(NewMBB, NewIsland);
1237
1238  // Update internal data structures to account for the newly inserted MBB.
1239  UpdateForInsertedWaterBlock(NewIsland);
1240
1241  // Decrement the old entry, and remove it if refcount becomes 0.
1242  DecrementOldEntry(CPI, CPEMI);
1243
1244  // Now that we have an island to add the CPE to, clone the original CPE and
1245  // add it to the island.
1246  U.HighWaterMark = NewIsland;
1247  U.CPEMI = BuildMI(NewIsland, DebugLoc::getUnknownLoc(),
1248                    TII->get(ARM::CONSTPOOL_ENTRY))
1249                .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
1250  CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1251  NumCPEs++;
1252
1253  BBOffsets[NewIsland->getNumber()] = BBOffsets[NewMBB->getNumber()];
1254  // Compensate for .align 2 in thumb mode.
1255  if (isThumb && (BBOffsets[NewIsland->getNumber()]%4 != 0 || HasInlineAsm))
1256    Size += 2;
1257  // Increase the size of the island block to account for the new entry.
1258  BBSizes[NewIsland->getNumber()] += Size;
1259  AdjustBBOffsetsAfter(NewIsland, Size);
1260
1261  // Finally, change the CPI in the instruction operand to be ID.
1262  for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
1263    if (UserMI->getOperand(i).isCPI()) {
1264      UserMI->getOperand(i).setIndex(ID);
1265      break;
1266    }
1267
1268  DEBUG(errs() << "  Moved CPE to #" << ID << " CPI=" << CPI
1269           << '\t' << *UserMI);
1270
1271  return true;
1272}
1273
1274/// RemoveDeadCPEMI - Remove a dead constant pool entry instruction. Update
1275/// sizes and offsets of impacted basic blocks.
1276void ARMConstantIslands::RemoveDeadCPEMI(MachineInstr *CPEMI) {
1277  MachineBasicBlock *CPEBB = CPEMI->getParent();
1278  unsigned Size = CPEMI->getOperand(2).getImm();
1279  CPEMI->eraseFromParent();
1280  BBSizes[CPEBB->getNumber()] -= Size;
1281  // All succeeding offsets have the current size value added in, fix this.
1282  if (CPEBB->empty()) {
1283    // In thumb1 mode, the size of island may be padded by two to compensate for
1284    // the alignment requirement.  Then it will now be 2 when the block is
1285    // empty, so fix this.
1286    // All succeeding offsets have the current size value added in, fix this.
1287    if (BBSizes[CPEBB->getNumber()] != 0) {
1288      Size += BBSizes[CPEBB->getNumber()];
1289      BBSizes[CPEBB->getNumber()] = 0;
1290    }
1291  }
1292  AdjustBBOffsetsAfter(CPEBB, -Size);
1293  // An island has only one predecessor BB and one successor BB. Check if
1294  // this BB's predecessor jumps directly to this BB's successor. This
1295  // shouldn't happen currently.
1296  assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
1297  // FIXME: remove the empty blocks after all the work is done?
1298}
1299
1300/// RemoveUnusedCPEntries - Remove constant pool entries whose refcounts
1301/// are zero.
1302bool ARMConstantIslands::RemoveUnusedCPEntries() {
1303  unsigned MadeChange = false;
1304  for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
1305      std::vector<CPEntry> &CPEs = CPEntries[i];
1306      for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
1307        if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
1308          RemoveDeadCPEMI(CPEs[j].CPEMI);
1309          CPEs[j].CPEMI = NULL;
1310          MadeChange = true;
1311        }
1312      }
1313  }
1314  return MadeChange;
1315}
1316
1317/// BBIsInRange - Returns true if the distance between specific MI and
1318/// specific BB can fit in MI's displacement field.
1319bool ARMConstantIslands::BBIsInRange(MachineInstr *MI,MachineBasicBlock *DestBB,
1320                                     unsigned MaxDisp) {
1321  unsigned PCAdj      = isThumb ? 4 : 8;
1322  unsigned BrOffset   = GetOffsetOf(MI) + PCAdj;
1323  unsigned DestOffset = BBOffsets[DestBB->getNumber()];
1324
1325  DEBUG(errs() << "Branch of destination BB#" << DestBB->getNumber()
1326               << " from BB#" << MI->getParent()->getNumber()
1327               << " max delta=" << MaxDisp
1328               << " from " << GetOffsetOf(MI) << " to " << DestOffset
1329               << " offset " << int(DestOffset-BrOffset) << "\t" << *MI);
1330
1331  if (BrOffset <= DestOffset) {
1332    // Branch before the Dest.
1333    if (DestOffset-BrOffset <= MaxDisp)
1334      return true;
1335  } else {
1336    if (BrOffset-DestOffset <= MaxDisp)
1337      return true;
1338  }
1339  return false;
1340}
1341
1342/// FixUpImmediateBr - Fix up an immediate branch whose destination is too far
1343/// away to fit in its displacement field.
1344bool ARMConstantIslands::FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br) {
1345  MachineInstr *MI = Br.MI;
1346  MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1347
1348  // Check to see if the DestBB is already in-range.
1349  if (BBIsInRange(MI, DestBB, Br.MaxDisp))
1350    return false;
1351
1352  if (!Br.isCond)
1353    return FixUpUnconditionalBr(MF, Br);
1354  return FixUpConditionalBr(MF, Br);
1355}
1356
1357/// FixUpUnconditionalBr - Fix up an unconditional branch whose destination is
1358/// too far away to fit in its displacement field. If the LR register has been
1359/// spilled in the epilogue, then we can use BL to implement a far jump.
1360/// Otherwise, add an intermediate branch instruction to a branch.
1361bool
1362ARMConstantIslands::FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br) {
1363  MachineInstr *MI = Br.MI;
1364  MachineBasicBlock *MBB = MI->getParent();
1365  if (!isThumb1)
1366    llvm_unreachable("FixUpUnconditionalBr is Thumb1 only!");
1367
1368  // Use BL to implement far jump.
1369  Br.MaxDisp = (1 << 21) * 2;
1370  MI->setDesc(TII->get(ARM::tBfar));
1371  BBSizes[MBB->getNumber()] += 2;
1372  AdjustBBOffsetsAfter(MBB, 2);
1373  HasFarJump = true;
1374  NumUBrFixed++;
1375
1376  DEBUG(errs() << "  Changed B to long jump " << *MI);
1377
1378  return true;
1379}
1380
1381/// FixUpConditionalBr - Fix up a conditional branch whose destination is too
1382/// far away to fit in its displacement field. It is converted to an inverse
1383/// conditional branch + an unconditional branch to the destination.
1384bool
1385ARMConstantIslands::FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br) {
1386  MachineInstr *MI = Br.MI;
1387  MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1388
1389  // Add an unconditional branch to the destination and invert the branch
1390  // condition to jump over it:
1391  // blt L1
1392  // =>
1393  // bge L2
1394  // b   L1
1395  // L2:
1396  ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm();
1397  CC = ARMCC::getOppositeCondition(CC);
1398  unsigned CCReg = MI->getOperand(2).getReg();
1399
1400  // If the branch is at the end of its MBB and that has a fall-through block,
1401  // direct the updated conditional branch to the fall-through block. Otherwise,
1402  // split the MBB before the next instruction.
1403  MachineBasicBlock *MBB = MI->getParent();
1404  MachineInstr *BMI = &MBB->back();
1405  bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1406
1407  NumCBrFixed++;
1408  if (BMI != MI) {
1409    if (llvm::next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) &&
1410        BMI->getOpcode() == Br.UncondBr) {
1411      // Last MI in the BB is an unconditional branch. Can we simply invert the
1412      // condition and swap destinations:
1413      // beq L1
1414      // b   L2
1415      // =>
1416      // bne L2
1417      // b   L1
1418      MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
1419      if (BBIsInRange(MI, NewDest, Br.MaxDisp)) {
1420        DEBUG(errs() << "  Invert Bcc condition and swap its destination with "
1421                     << *BMI);
1422        BMI->getOperand(0).setMBB(DestBB);
1423        MI->getOperand(0).setMBB(NewDest);
1424        MI->getOperand(1).setImm(CC);
1425        return true;
1426      }
1427    }
1428  }
1429
1430  if (NeedSplit) {
1431    SplitBlockBeforeInstr(MI);
1432    // No need for the branch to the next block. We're adding an unconditional
1433    // branch to the destination.
1434    int delta = TII->GetInstSizeInBytes(&MBB->back());
1435    BBSizes[MBB->getNumber()] -= delta;
1436    MachineBasicBlock* SplitBB = llvm::next(MachineFunction::iterator(MBB));
1437    AdjustBBOffsetsAfter(SplitBB, -delta);
1438    MBB->back().eraseFromParent();
1439    // BBOffsets[SplitBB] is wrong temporarily, fixed below
1440  }
1441  MachineBasicBlock *NextBB = llvm::next(MachineFunction::iterator(MBB));
1442
1443  DEBUG(errs() << "  Insert B to BB#" << DestBB->getNumber()
1444               << " also invert condition and change dest. to BB#"
1445               << NextBB->getNumber() << "\n");
1446
1447  // Insert a new conditional branch and a new unconditional branch.
1448  // Also update the ImmBranch as well as adding a new entry for the new branch.
1449  BuildMI(MBB, DebugLoc::getUnknownLoc(),
1450          TII->get(MI->getOpcode()))
1451    .addMBB(NextBB).addImm(CC).addReg(CCReg);
1452  Br.MI = &MBB->back();
1453  BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back());
1454  BuildMI(MBB, DebugLoc::getUnknownLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1455  BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back());
1456  unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1457  ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1458
1459  // Remove the old conditional branch.  It may or may not still be in MBB.
1460  BBSizes[MI->getParent()->getNumber()] -= TII->GetInstSizeInBytes(MI);
1461  MI->eraseFromParent();
1462
1463  // The net size change is an addition of one unconditional branch.
1464  int delta = TII->GetInstSizeInBytes(&MBB->back());
1465  AdjustBBOffsetsAfter(MBB, delta);
1466  return true;
1467}
1468
1469/// UndoLRSpillRestore - Remove Thumb push / pop instructions that only spills
1470/// LR / restores LR to pc. FIXME: This is done here because it's only possible
1471/// to do this if tBfar is not used.
1472bool ARMConstantIslands::UndoLRSpillRestore() {
1473  bool MadeChange = false;
1474  for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) {
1475    MachineInstr *MI = PushPopMIs[i];
1476    // First two operands are predicates, the third is a zero since there
1477    // is no writeback.
1478    if (MI->getOpcode() == ARM::tPOP_RET &&
1479        MI->getOperand(3).getReg() == ARM::PC &&
1480        MI->getNumExplicitOperands() == 4) {
1481      BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET));
1482      MI->eraseFromParent();
1483      MadeChange = true;
1484    }
1485  }
1486  return MadeChange;
1487}
1488
1489bool ARMConstantIslands::OptimizeThumb2Instructions(MachineFunction &MF) {
1490  bool MadeChange = false;
1491
1492  // Shrink ADR and LDR from constantpool.
1493  for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
1494    CPUser &U = CPUsers[i];
1495    unsigned Opcode = U.MI->getOpcode();
1496    unsigned NewOpc = 0;
1497    unsigned Scale = 1;
1498    unsigned Bits = 0;
1499    switch (Opcode) {
1500    default: break;
1501    case ARM::t2LEApcrel:
1502      if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1503        NewOpc = ARM::tLEApcrel;
1504        Bits = 8;
1505        Scale = 4;
1506      }
1507      break;
1508    case ARM::t2LDRpci:
1509      if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1510        NewOpc = ARM::tLDRpci;
1511        Bits = 8;
1512        Scale = 4;
1513      }
1514      break;
1515    }
1516
1517    if (!NewOpc)
1518      continue;
1519
1520    unsigned UserOffset = GetOffsetOf(U.MI) + 4;
1521    unsigned MaxOffs = ((1 << Bits) - 1) * Scale;
1522    // FIXME: Check if offset is multiple of scale if scale is not 4.
1523    if (CPEIsInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) {
1524      U.MI->setDesc(TII->get(NewOpc));
1525      MachineBasicBlock *MBB = U.MI->getParent();
1526      BBSizes[MBB->getNumber()] -= 2;
1527      AdjustBBOffsetsAfter(MBB, -2);
1528      ++NumT2CPShrunk;
1529      MadeChange = true;
1530    }
1531  }
1532
1533  MadeChange |= OptimizeThumb2Branches(MF);
1534  MadeChange |= OptimizeThumb2JumpTables(MF);
1535  return MadeChange;
1536}
1537
1538bool ARMConstantIslands::OptimizeThumb2Branches(MachineFunction &MF) {
1539  bool MadeChange = false;
1540
1541  for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) {
1542    ImmBranch &Br = ImmBranches[i];
1543    unsigned Opcode = Br.MI->getOpcode();
1544    unsigned NewOpc = 0;
1545    unsigned Scale = 1;
1546    unsigned Bits = 0;
1547    switch (Opcode) {
1548    default: break;
1549    case ARM::t2B:
1550      NewOpc = ARM::tB;
1551      Bits = 11;
1552      Scale = 2;
1553      break;
1554    case ARM::t2Bcc: {
1555      NewOpc = ARM::tBcc;
1556      Bits = 8;
1557      Scale = 2;
1558      break;
1559    }
1560    }
1561    if (NewOpc) {
1562      unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
1563      MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1564      if (BBIsInRange(Br.MI, DestBB, MaxOffs)) {
1565        Br.MI->setDesc(TII->get(NewOpc));
1566        MachineBasicBlock *MBB = Br.MI->getParent();
1567        BBSizes[MBB->getNumber()] -= 2;
1568        AdjustBBOffsetsAfter(MBB, -2);
1569        ++NumT2BrShrunk;
1570        MadeChange = true;
1571      }
1572    }
1573
1574    Opcode = Br.MI->getOpcode();
1575    if (Opcode != ARM::tBcc)
1576      continue;
1577
1578    NewOpc = 0;
1579    unsigned PredReg = 0;
1580    ARMCC::CondCodes Pred = llvm::getInstrPredicate(Br.MI, PredReg);
1581    if (Pred == ARMCC::EQ)
1582      NewOpc = ARM::tCBZ;
1583    else if (Pred == ARMCC::NE)
1584      NewOpc = ARM::tCBNZ;
1585    if (!NewOpc)
1586      continue;
1587    MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1588    // Check if the distance is within 126. Subtract starting offset by 2
1589    // because the cmp will be eliminated.
1590    unsigned BrOffset = GetOffsetOf(Br.MI) + 4 - 2;
1591    unsigned DestOffset = BBOffsets[DestBB->getNumber()];
1592    if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) {
1593      MachineBasicBlock::iterator CmpMI = Br.MI; --CmpMI;
1594      if (CmpMI->getOpcode() == ARM::tCMPzi8) {
1595        unsigned Reg = CmpMI->getOperand(0).getReg();
1596        Pred = llvm::getInstrPredicate(CmpMI, PredReg);
1597        if (Pred == ARMCC::AL &&
1598            CmpMI->getOperand(1).getImm() == 0 &&
1599            isARMLowRegister(Reg)) {
1600          MachineBasicBlock *MBB = Br.MI->getParent();
1601          MachineInstr *NewBR =
1602            BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc))
1603            .addReg(Reg).addMBB(DestBB, Br.MI->getOperand(0).getTargetFlags());
1604          CmpMI->eraseFromParent();
1605          Br.MI->eraseFromParent();
1606          Br.MI = NewBR;
1607          BBSizes[MBB->getNumber()] -= 2;
1608          AdjustBBOffsetsAfter(MBB, -2);
1609          ++NumCBZ;
1610          MadeChange = true;
1611        }
1612      }
1613    }
1614  }
1615
1616  return MadeChange;
1617}
1618
1619/// OptimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller
1620/// jumptables when it's possible.
1621bool ARMConstantIslands::OptimizeThumb2JumpTables(MachineFunction &MF) {
1622  bool MadeChange = false;
1623
1624  // FIXME: After the tables are shrunk, can we get rid some of the
1625  // constantpool tables?
1626  MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
1627  if (MJTI == 0) return false;
1628
1629  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1630  for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
1631    MachineInstr *MI = T2JumpTables[i];
1632    const TargetInstrDesc &TID = MI->getDesc();
1633    unsigned NumOps = TID.getNumOperands();
1634    unsigned JTOpIdx = NumOps - (TID.isPredicable() ? 3 : 2);
1635    MachineOperand JTOP = MI->getOperand(JTOpIdx);
1636    unsigned JTI = JTOP.getIndex();
1637    assert(JTI < JT.size());
1638
1639    bool ByteOk = true;
1640    bool HalfWordOk = true;
1641    unsigned JTOffset = GetOffsetOf(MI) + 4;
1642    const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1643    for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
1644      MachineBasicBlock *MBB = JTBBs[j];
1645      unsigned DstOffset = BBOffsets[MBB->getNumber()];
1646      // Negative offset is not ok. FIXME: We should change BB layout to make
1647      // sure all the branches are forward.
1648      if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2)
1649        ByteOk = false;
1650      unsigned TBHLimit = ((1<<16)-1)*2;
1651      if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit)
1652        HalfWordOk = false;
1653      if (!ByteOk && !HalfWordOk)
1654        break;
1655    }
1656
1657    if (ByteOk || HalfWordOk) {
1658      MachineBasicBlock *MBB = MI->getParent();
1659      unsigned BaseReg = MI->getOperand(0).getReg();
1660      bool BaseRegKill = MI->getOperand(0).isKill();
1661      if (!BaseRegKill)
1662        continue;
1663      unsigned IdxReg = MI->getOperand(1).getReg();
1664      bool IdxRegKill = MI->getOperand(1).isKill();
1665      MachineBasicBlock::iterator PrevI = MI;
1666      if (PrevI == MBB->begin())
1667        continue;
1668
1669      MachineInstr *AddrMI = --PrevI;
1670      bool OptOk = true;
1671      // Examine the instruction that calculate the jumptable entry address.
1672      // If it's not the one just before the t2BR_JT, we won't delete it, then
1673      // it's not worth doing the optimization.
1674      for (unsigned k = 0, eee = AddrMI->getNumOperands(); k != eee; ++k) {
1675        const MachineOperand &MO = AddrMI->getOperand(k);
1676        if (!MO.isReg() || !MO.getReg())
1677          continue;
1678        if (MO.isDef() && MO.getReg() != BaseReg) {
1679          OptOk = false;
1680          break;
1681        }
1682        if (MO.isUse() && !MO.isKill() && MO.getReg() != IdxReg) {
1683          OptOk = false;
1684          break;
1685        }
1686      }
1687      if (!OptOk)
1688        continue;
1689
1690      // The previous instruction should be a tLEApcrel or t2LEApcrelJT, we want
1691      // to delete it as well.
1692      MachineInstr *LeaMI = --PrevI;
1693      if ((LeaMI->getOpcode() != ARM::tLEApcrelJT &&
1694           LeaMI->getOpcode() != ARM::t2LEApcrelJT) ||
1695          LeaMI->getOperand(0).getReg() != BaseReg)
1696        OptOk = false;
1697
1698      if (!OptOk)
1699        continue;
1700
1701      unsigned Opc = ByteOk ? ARM::t2TBB : ARM::t2TBH;
1702      MachineInstr *NewJTMI = BuildMI(MBB, MI->getDebugLoc(), TII->get(Opc))
1703        .addReg(IdxReg, getKillRegState(IdxRegKill))
1704        .addJumpTableIndex(JTI, JTOP.getTargetFlags())
1705        .addImm(MI->getOperand(JTOpIdx+1).getImm());
1706      // FIXME: Insert an "ALIGN" instruction to ensure the next instruction
1707      // is 2-byte aligned. For now, asm printer will fix it up.
1708      unsigned NewSize = TII->GetInstSizeInBytes(NewJTMI);
1709      unsigned OrigSize = TII->GetInstSizeInBytes(AddrMI);
1710      OrigSize += TII->GetInstSizeInBytes(LeaMI);
1711      OrigSize += TII->GetInstSizeInBytes(MI);
1712
1713      AddrMI->eraseFromParent();
1714      LeaMI->eraseFromParent();
1715      MI->eraseFromParent();
1716
1717      int delta = OrigSize - NewSize;
1718      BBSizes[MBB->getNumber()] -= delta;
1719      AdjustBBOffsetsAfter(MBB, -delta);
1720
1721      ++NumTBs;
1722      MadeChange = true;
1723    }
1724  }
1725
1726  return MadeChange;
1727}
1728
1729/// ReorderThumb2JumpTables - Adjust the function's block layout to ensure that
1730/// jump tables always branch forwards, since that's what tbb and tbh need.
1731bool ARMConstantIslands::ReorderThumb2JumpTables(MachineFunction &MF) {
1732  bool MadeChange = false;
1733
1734  MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
1735  if (MJTI == 0) return false;
1736
1737  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1738  for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
1739    MachineInstr *MI = T2JumpTables[i];
1740    const TargetInstrDesc &TID = MI->getDesc();
1741    unsigned NumOps = TID.getNumOperands();
1742    unsigned JTOpIdx = NumOps - (TID.isPredicable() ? 3 : 2);
1743    MachineOperand JTOP = MI->getOperand(JTOpIdx);
1744    unsigned JTI = JTOP.getIndex();
1745    assert(JTI < JT.size());
1746
1747    // We prefer if target blocks for the jump table come after the jump
1748    // instruction so we can use TB[BH]. Loop through the target blocks
1749    // and try to adjust them such that that's true.
1750    int JTNumber = MI->getParent()->getNumber();
1751    const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1752    for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
1753      MachineBasicBlock *MBB = JTBBs[j];
1754      int DTNumber = MBB->getNumber();
1755
1756      if (DTNumber < JTNumber) {
1757        // The destination precedes the switch. Try to move the block forward
1758        // so we have a positive offset.
1759        MachineBasicBlock *NewBB =
1760          AdjustJTTargetBlockForward(MBB, MI->getParent());
1761        if (NewBB)
1762          MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB);
1763        MadeChange = true;
1764      }
1765    }
1766  }
1767
1768  return MadeChange;
1769}
1770
1771MachineBasicBlock *ARMConstantIslands::
1772AdjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB)
1773{
1774  MachineFunction &MF = *BB->getParent();
1775
1776  // If it's the destination block is terminated by an unconditional branch,
1777  // try to move it; otherwise, create a new block following the jump
1778  // table that branches back to the actual target. This is a very simple
1779  // heuristic. FIXME: We can definitely improve it.
1780  MachineBasicBlock *TBB = 0, *FBB = 0;
1781  SmallVector<MachineOperand, 4> Cond;
1782  SmallVector<MachineOperand, 4> CondPrior;
1783  MachineFunction::iterator BBi = BB;
1784  MachineFunction::iterator OldPrior = prior(BBi);
1785
1786  // If the block terminator isn't analyzable, don't try to move the block
1787  bool B = TII->AnalyzeBranch(*BB, TBB, FBB, Cond);
1788
1789  // If the block ends in an unconditional branch, move it. The prior block
1790  // has to have an analyzable terminator for us to move this one. Be paranoid
1791  // and make sure we're not trying to move the entry block of the function.
1792  if (!B && Cond.empty() && BB != MF.begin() &&
1793      !TII->AnalyzeBranch(*OldPrior, TBB, FBB, CondPrior)) {
1794    BB->moveAfter(JTBB);
1795    OldPrior->updateTerminator();
1796    BB->updateTerminator();
1797    // Update numbering to account for the block being moved.
1798    MF.RenumberBlocks();
1799    ++NumJTMoved;
1800    return NULL;
1801  }
1802
1803  // Create a new MBB for the code after the jump BB.
1804  MachineBasicBlock *NewBB =
1805    MF.CreateMachineBasicBlock(JTBB->getBasicBlock());
1806  MachineFunction::iterator MBBI = JTBB; ++MBBI;
1807  MF.insert(MBBI, NewBB);
1808
1809  // Add an unconditional branch from NewBB to BB.
1810  // There doesn't seem to be meaningful DebugInfo available; this doesn't
1811  // correspond directly to anything in the source.
1812  assert (isThumb2 && "Adjusting for TB[BH] but not in Thumb2?");
1813  BuildMI(NewBB, DebugLoc::getUnknownLoc(), TII->get(ARM::t2B)).addMBB(BB);
1814
1815  // Update internal data structures to account for the newly inserted MBB.
1816  MF.RenumberBlocks(NewBB);
1817
1818  // Update the CFG.
1819  NewBB->addSuccessor(BB);
1820  JTBB->removeSuccessor(BB);
1821  JTBB->addSuccessor(NewBB);
1822
1823  ++NumJTInserted;
1824  return NewBB;
1825}
1826