ARMConstantIslandPass.cpp revision 98b928ea71576c243bdb203879d966be9cde5f3c
1//===-- ARMConstantIslandPass.cpp - ARM constant islands ------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains a pass that splits the constant pool up into 'islands' 11// which are scattered through-out the function. This is required due to the 12// limited pc-relative displacements that ARM has. 13// 14//===----------------------------------------------------------------------===// 15 16#define DEBUG_TYPE "arm-cp-islands" 17#include "ARM.h" 18#include "ARMAddressingModes.h" 19#include "ARMMachineFunctionInfo.h" 20#include "ARMInstrInfo.h" 21#include "Thumb2InstrInfo.h" 22#include "llvm/CodeGen/MachineConstantPool.h" 23#include "llvm/CodeGen/MachineFunctionPass.h" 24#include "llvm/CodeGen/MachineJumpTableInfo.h" 25#include "llvm/Target/TargetData.h" 26#include "llvm/Target/TargetMachine.h" 27#include "llvm/Support/Debug.h" 28#include "llvm/Support/ErrorHandling.h" 29#include "llvm/Support/raw_ostream.h" 30#include "llvm/ADT/SmallSet.h" 31#include "llvm/ADT/SmallVector.h" 32#include "llvm/ADT/STLExtras.h" 33#include "llvm/ADT/Statistic.h" 34#include "llvm/Support/CommandLine.h" 35#include <algorithm> 36using namespace llvm; 37 38STATISTIC(NumCPEs, "Number of constpool entries"); 39STATISTIC(NumSplit, "Number of uncond branches inserted"); 40STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 41STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 42STATISTIC(NumTBs, "Number of table branches generated"); 43STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk"); 44STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk"); 45STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed"); 46STATISTIC(NumJTMoved, "Number of jump table destination blocks moved"); 47STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted"); 48 49 50static cl::opt<bool> 51AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true), 52 cl::desc("Adjust basic block layout to better use TB[BH]")); 53 54namespace { 55 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM 56 /// requires constant pool entries to be scattered among the instructions 57 /// inside a function. To do this, it completely ignores the normal LLVM 58 /// constant pool; instead, it places constants wherever it feels like with 59 /// special instructions. 60 /// 61 /// The terminology used in this pass includes: 62 /// Islands - Clumps of constants placed in the function. 63 /// Water - Potential places where an island could be formed. 64 /// CPE - A constant pool entry that has been placed somewhere, which 65 /// tracks a list of users. 66 class ARMConstantIslands : public MachineFunctionPass { 67 /// BBSizes - The size of each MachineBasicBlock in bytes of code, indexed 68 /// by MBB Number. The two-byte pads required for Thumb alignment are 69 /// counted as part of the following block (i.e., the offset and size for 70 /// a padded block will both be ==2 mod 4). 71 std::vector<unsigned> BBSizes; 72 73 /// BBOffsets - the offset of each MBB in bytes, starting from 0. 74 /// The two-byte pads required for Thumb alignment are counted as part of 75 /// the following block. 76 std::vector<unsigned> BBOffsets; 77 78 /// WaterList - A sorted list of basic blocks where islands could be placed 79 /// (i.e. blocks that don't fall through to the following block, due 80 /// to a return, unreachable, or unconditional branch). 81 std::vector<MachineBasicBlock*> WaterList; 82 83 /// NewWaterList - The subset of WaterList that was created since the 84 /// previous iteration by inserting unconditional branches. 85 SmallSet<MachineBasicBlock*, 4> NewWaterList; 86 87 typedef std::vector<MachineBasicBlock*>::iterator water_iterator; 88 89 /// CPUser - One user of a constant pool, keeping the machine instruction 90 /// pointer, the constant pool being referenced, and the max displacement 91 /// allowed from the instruction to the CP. The HighWaterMark records the 92 /// highest basic block where a new CPEntry can be placed. To ensure this 93 /// pass terminates, the CP entries are initially placed at the end of the 94 /// function and then move monotonically to lower addresses. The 95 /// exception to this rule is when the current CP entry for a particular 96 /// CPUser is out of range, but there is another CP entry for the same 97 /// constant value in range. We want to use the existing in-range CP 98 /// entry, but if it later moves out of range, the search for new water 99 /// should resume where it left off. The HighWaterMark is used to record 100 /// that point. 101 struct CPUser { 102 MachineInstr *MI; 103 MachineInstr *CPEMI; 104 MachineBasicBlock *HighWaterMark; 105 unsigned MaxDisp; 106 bool NegOk; 107 bool IsSoImm; 108 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, 109 bool neg, bool soimm) 110 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) { 111 HighWaterMark = CPEMI->getParent(); 112 } 113 }; 114 115 /// CPUsers - Keep track of all of the machine instructions that use various 116 /// constant pools and their max displacement. 117 std::vector<CPUser> CPUsers; 118 119 /// CPEntry - One per constant pool entry, keeping the machine instruction 120 /// pointer, the constpool index, and the number of CPUser's which 121 /// reference this entry. 122 struct CPEntry { 123 MachineInstr *CPEMI; 124 unsigned CPI; 125 unsigned RefCount; 126 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) 127 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} 128 }; 129 130 /// CPEntries - Keep track of all of the constant pool entry machine 131 /// instructions. For each original constpool index (i.e. those that 132 /// existed upon entry to this pass), it keeps a vector of entries. 133 /// Original elements are cloned as we go along; the clones are 134 /// put in the vector of the original element, but have distinct CPIs. 135 std::vector<std::vector<CPEntry> > CPEntries; 136 137 /// ImmBranch - One per immediate branch, keeping the machine instruction 138 /// pointer, conditional or unconditional, the max displacement, 139 /// and (if isCond is true) the corresponding unconditional branch 140 /// opcode. 141 struct ImmBranch { 142 MachineInstr *MI; 143 unsigned MaxDisp : 31; 144 bool isCond : 1; 145 int UncondBr; 146 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr) 147 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} 148 }; 149 150 /// ImmBranches - Keep track of all the immediate branch instructions. 151 /// 152 std::vector<ImmBranch> ImmBranches; 153 154 /// PushPopMIs - Keep track of all the Thumb push / pop instructions. 155 /// 156 SmallVector<MachineInstr*, 4> PushPopMIs; 157 158 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions. 159 SmallVector<MachineInstr*, 4> T2JumpTables; 160 161 /// HasFarJump - True if any far jump instruction has been emitted during 162 /// the branch fix up pass. 163 bool HasFarJump; 164 165 /// HasInlineAsm - True if the function contains inline assembly. 166 bool HasInlineAsm; 167 168 const ARMInstrInfo *TII; 169 const ARMSubtarget *STI; 170 ARMFunctionInfo *AFI; 171 bool isThumb; 172 bool isThumb1; 173 bool isThumb2; 174 public: 175 static char ID; 176 ARMConstantIslands() : MachineFunctionPass(ID) {} 177 178 virtual bool runOnMachineFunction(MachineFunction &MF); 179 180 virtual const char *getPassName() const { 181 return "ARM constant island placement and branch shortening pass"; 182 } 183 184 private: 185 void DoInitialPlacement(MachineFunction &MF, 186 std::vector<MachineInstr*> &CPEMIs); 187 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 188 void JumpTableFunctionScan(MachineFunction &MF); 189 void InitialFunctionScan(MachineFunction &MF, 190 const std::vector<MachineInstr*> &CPEMIs); 191 MachineBasicBlock *SplitBlockBeforeInstr(MachineInstr *MI); 192 void UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB); 193 void AdjustBBOffsetsAfter(MachineBasicBlock *BB, int delta); 194 bool DecrementOldEntry(unsigned CPI, MachineInstr* CPEMI); 195 int LookForExistingCPEntry(CPUser& U, unsigned UserOffset); 196 bool LookForWater(CPUser&U, unsigned UserOffset, water_iterator &WaterIter); 197 void CreateNewWater(unsigned CPUserIndex, unsigned UserOffset, 198 MachineBasicBlock *&NewMBB); 199 bool HandleConstantPoolUser(MachineFunction &MF, unsigned CPUserIndex); 200 void RemoveDeadCPEMI(MachineInstr *CPEMI); 201 bool RemoveUnusedCPEntries(); 202 bool CPEIsInRange(MachineInstr *MI, unsigned UserOffset, 203 MachineInstr *CPEMI, unsigned Disp, bool NegOk, 204 bool DoDump = false); 205 bool WaterIsInRange(unsigned UserOffset, MachineBasicBlock *Water, 206 CPUser &U); 207 bool OffsetIsInRange(unsigned UserOffset, unsigned TrialOffset, 208 unsigned Disp, bool NegativeOK, bool IsSoImm = false); 209 bool BBIsInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); 210 bool FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br); 211 bool FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br); 212 bool FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br); 213 bool UndoLRSpillRestore(); 214 bool OptimizeThumb2Instructions(MachineFunction &MF); 215 bool OptimizeThumb2Branches(MachineFunction &MF); 216 bool ReorderThumb2JumpTables(MachineFunction &MF); 217 bool OptimizeThumb2JumpTables(MachineFunction &MF); 218 MachineBasicBlock *AdjustJTTargetBlockForward(MachineBasicBlock *BB, 219 MachineBasicBlock *JTBB); 220 221 unsigned GetOffsetOf(MachineInstr *MI) const; 222 void dumpBBs(); 223 void verify(MachineFunction &MF); 224 }; 225 char ARMConstantIslands::ID = 0; 226} 227 228/// verify - check BBOffsets, BBSizes, alignment of islands 229void ARMConstantIslands::verify(MachineFunction &MF) { 230 assert(BBOffsets.size() == BBSizes.size()); 231 for (unsigned i = 1, e = BBOffsets.size(); i != e; ++i) 232 assert(BBOffsets[i-1]+BBSizes[i-1] == BBOffsets[i]); 233 if (!isThumb) 234 return; 235#ifndef NDEBUG 236 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); 237 MBBI != E; ++MBBI) { 238 MachineBasicBlock *MBB = MBBI; 239 if (!MBB->empty() && 240 MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) { 241 unsigned MBBId = MBB->getNumber(); 242 assert(HasInlineAsm || 243 (BBOffsets[MBBId]%4 == 0 && BBSizes[MBBId]%4 == 0) || 244 (BBOffsets[MBBId]%4 != 0 && BBSizes[MBBId]%4 != 0)); 245 } 246 } 247 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 248 CPUser &U = CPUsers[i]; 249 unsigned UserOffset = GetOffsetOf(U.MI) + (isThumb ? 4 : 8); 250 unsigned CPEOffset = GetOffsetOf(U.CPEMI); 251 unsigned Disp = UserOffset < CPEOffset ? CPEOffset - UserOffset : 252 UserOffset - CPEOffset; 253 assert(Disp <= U.MaxDisp || "Constant pool entry out of range!"); 254 } 255#endif 256} 257 258/// print block size and offset information - debugging 259void ARMConstantIslands::dumpBBs() { 260 for (unsigned J = 0, E = BBOffsets.size(); J !=E; ++J) { 261 DEBUG(errs() << "block " << J << " offset " << BBOffsets[J] 262 << " size " << BBSizes[J] << "\n"); 263 } 264} 265 266/// createARMConstantIslandPass - returns an instance of the constpool 267/// island pass. 268FunctionPass *llvm::createARMConstantIslandPass() { 269 return new ARMConstantIslands(); 270} 271 272bool ARMConstantIslands::runOnMachineFunction(MachineFunction &MF) { 273 MachineConstantPool &MCP = *MF.getConstantPool(); 274 275 TII = (const ARMInstrInfo*)MF.getTarget().getInstrInfo(); 276 AFI = MF.getInfo<ARMFunctionInfo>(); 277 STI = &MF.getTarget().getSubtarget<ARMSubtarget>(); 278 279 isThumb = AFI->isThumbFunction(); 280 isThumb1 = AFI->isThumb1OnlyFunction(); 281 isThumb2 = AFI->isThumb2Function(); 282 283 HasFarJump = false; 284 HasInlineAsm = false; 285 286 // Renumber all of the machine basic blocks in the function, guaranteeing that 287 // the numbers agree with the position of the block in the function. 288 MF.RenumberBlocks(); 289 290 // Try to reorder and otherwise adjust the block layout to make good use 291 // of the TB[BH] instructions. 292 bool MadeChange = false; 293 if (isThumb2 && AdjustJumpTableBlocks) { 294 JumpTableFunctionScan(MF); 295 MadeChange |= ReorderThumb2JumpTables(MF); 296 // Data is out of date, so clear it. It'll be re-computed later. 297 T2JumpTables.clear(); 298 // Blocks may have shifted around. Keep the numbering up to date. 299 MF.RenumberBlocks(); 300 } 301 302 // Thumb1 functions containing constant pools get 4-byte alignment. 303 // This is so we can keep exact track of where the alignment padding goes. 304 305 // ARM and Thumb2 functions need to be 4-byte aligned. 306 if (!isThumb1) 307 MF.EnsureAlignment(2); // 2 = log2(4) 308 309 // Perform the initial placement of the constant pool entries. To start with, 310 // we put them all at the end of the function. 311 std::vector<MachineInstr*> CPEMIs; 312 if (!MCP.isEmpty()) { 313 DoInitialPlacement(MF, CPEMIs); 314 if (isThumb1) 315 MF.EnsureAlignment(2); // 2 = log2(4) 316 } 317 318 /// The next UID to take is the first unused one. 319 AFI->initPICLabelUId(CPEMIs.size()); 320 321 // Do the initial scan of the function, building up information about the 322 // sizes of each block, the location of all the water, and finding all of the 323 // constant pool users. 324 InitialFunctionScan(MF, CPEMIs); 325 CPEMIs.clear(); 326 DEBUG(dumpBBs()); 327 328 329 /// Remove dead constant pool entries. 330 MadeChange |= RemoveUnusedCPEntries(); 331 332 // Iteratively place constant pool entries and fix up branches until there 333 // is no change. 334 unsigned NoCPIters = 0, NoBRIters = 0; 335 while (true) { 336 bool CPChange = false; 337 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) 338 CPChange |= HandleConstantPoolUser(MF, i); 339 if (CPChange && ++NoCPIters > 30) 340 llvm_unreachable("Constant Island pass failed to converge!"); 341 DEBUG(dumpBBs()); 342 343 // Clear NewWaterList now. If we split a block for branches, it should 344 // appear as "new water" for the next iteration of constant pool placement. 345 NewWaterList.clear(); 346 347 bool BRChange = false; 348 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) 349 BRChange |= FixUpImmediateBr(MF, ImmBranches[i]); 350 if (BRChange && ++NoBRIters > 30) 351 llvm_unreachable("Branch Fix Up pass failed to converge!"); 352 DEBUG(dumpBBs()); 353 354 if (!CPChange && !BRChange) 355 break; 356 MadeChange = true; 357 } 358 359 // Shrink 32-bit Thumb2 branch, load, and store instructions. 360 if (isThumb2 && !STI->prefers32BitThumb()) 361 MadeChange |= OptimizeThumb2Instructions(MF); 362 363 // After a while, this might be made debug-only, but it is not expensive. 364 verify(MF); 365 366 // If LR has been forced spilled and no far jump (i.e. BL) has been issued, 367 // undo the spill / restore of LR if possible. 368 if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump()) 369 MadeChange |= UndoLRSpillRestore(); 370 371 // Save the mapping between original and cloned constpool entries. 372 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 373 for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) { 374 const CPEntry & CPE = CPEntries[i][j]; 375 AFI->recordCPEClone(i, CPE.CPI); 376 } 377 } 378 379 DEBUG(errs() << '\n'; dumpBBs()); 380 381 BBSizes.clear(); 382 BBOffsets.clear(); 383 WaterList.clear(); 384 CPUsers.clear(); 385 CPEntries.clear(); 386 ImmBranches.clear(); 387 PushPopMIs.clear(); 388 T2JumpTables.clear(); 389 390 return MadeChange; 391} 392 393/// DoInitialPlacement - Perform the initial placement of the constant pool 394/// entries. To start with, we put them all at the end of the function. 395void ARMConstantIslands::DoInitialPlacement(MachineFunction &MF, 396 std::vector<MachineInstr*> &CPEMIs) { 397 // Create the basic block to hold the CPE's. 398 MachineBasicBlock *BB = MF.CreateMachineBasicBlock(); 399 MF.push_back(BB); 400 401 // Add all of the constants from the constant pool to the end block, use an 402 // identity mapping of CPI's to CPE's. 403 const std::vector<MachineConstantPoolEntry> &CPs = 404 MF.getConstantPool()->getConstants(); 405 406 const TargetData &TD = *MF.getTarget().getTargetData(); 407 for (unsigned i = 0, e = CPs.size(); i != e; ++i) { 408 unsigned Size = TD.getTypeAllocSize(CPs[i].getType()); 409 // Verify that all constant pool entries are a multiple of 4 bytes. If not, 410 // we would have to pad them out or something so that instructions stay 411 // aligned. 412 assert((Size & 3) == 0 && "CP Entry not multiple of 4 bytes!"); 413 MachineInstr *CPEMI = 414 BuildMI(BB, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 415 .addImm(i).addConstantPoolIndex(i).addImm(Size); 416 CPEMIs.push_back(CPEMI); 417 418 // Add a new CPEntry, but no corresponding CPUser yet. 419 std::vector<CPEntry> CPEs; 420 CPEs.push_back(CPEntry(CPEMI, i)); 421 CPEntries.push_back(CPEs); 422 ++NumCPEs; 423 DEBUG(errs() << "Moved CPI#" << i << " to end of function as #" << i 424 << "\n"); 425 } 426} 427 428/// BBHasFallthrough - Return true if the specified basic block can fallthrough 429/// into the block immediately after it. 430static bool BBHasFallthrough(MachineBasicBlock *MBB) { 431 // Get the next machine basic block in the function. 432 MachineFunction::iterator MBBI = MBB; 433 // Can't fall off end of function. 434 if (llvm::next(MBBI) == MBB->getParent()->end()) 435 return false; 436 437 MachineBasicBlock *NextBB = llvm::next(MBBI); 438 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), 439 E = MBB->succ_end(); I != E; ++I) 440 if (*I == NextBB) 441 return true; 442 443 return false; 444} 445 446/// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 447/// look up the corresponding CPEntry. 448ARMConstantIslands::CPEntry 449*ARMConstantIslands::findConstPoolEntry(unsigned CPI, 450 const MachineInstr *CPEMI) { 451 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 452 // Number of entries per constpool index should be small, just do a 453 // linear search. 454 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 455 if (CPEs[i].CPEMI == CPEMI) 456 return &CPEs[i]; 457 } 458 return NULL; 459} 460 461/// JumpTableFunctionScan - Do a scan of the function, building up 462/// information about the sizes of each block and the locations of all 463/// the jump tables. 464void ARMConstantIslands::JumpTableFunctionScan(MachineFunction &MF) { 465 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); 466 MBBI != E; ++MBBI) { 467 MachineBasicBlock &MBB = *MBBI; 468 469 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 470 I != E; ++I) 471 if (I->getDesc().isBranch() && I->getOpcode() == ARM::t2BR_JT) 472 T2JumpTables.push_back(I); 473 } 474} 475 476/// InitialFunctionScan - Do the initial scan of the function, building up 477/// information about the sizes of each block, the location of all the water, 478/// and finding all of the constant pool users. 479void ARMConstantIslands::InitialFunctionScan(MachineFunction &MF, 480 const std::vector<MachineInstr*> &CPEMIs) { 481 // First thing, see if the function has any inline assembly in it. If so, 482 // we have to be conservative about alignment assumptions, as we don't 483 // know for sure the size of any instructions in the inline assembly. 484 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); 485 MBBI != E; ++MBBI) { 486 MachineBasicBlock &MBB = *MBBI; 487 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 488 I != E; ++I) 489 if (I->getOpcode() == ARM::INLINEASM) 490 HasInlineAsm = true; 491 } 492 493 // Now go back through the instructions and build up our data structures. 494 unsigned Offset = 0; 495 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); 496 MBBI != E; ++MBBI) { 497 MachineBasicBlock &MBB = *MBBI; 498 499 // If this block doesn't fall through into the next MBB, then this is 500 // 'water' that a constant pool island could be placed. 501 if (!BBHasFallthrough(&MBB)) 502 WaterList.push_back(&MBB); 503 504 unsigned MBBSize = 0; 505 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 506 I != E; ++I) { 507 if (I->isDebugValue()) 508 continue; 509 // Add instruction size to MBBSize. 510 MBBSize += TII->GetInstSizeInBytes(I); 511 512 int Opc = I->getOpcode(); 513 if (I->getDesc().isBranch()) { 514 bool isCond = false; 515 unsigned Bits = 0; 516 unsigned Scale = 1; 517 int UOpc = Opc; 518 switch (Opc) { 519 default: 520 continue; // Ignore other JT branches 521 case ARM::tBR_JTr: 522 // A Thumb1 table jump may involve padding; for the offsets to 523 // be right, functions containing these must be 4-byte aligned. 524 // tBR_JTr expands to a mov pc followed by .align 2 and then the jump 525 // table entries. So this code checks whether offset of tBR_JTr + 2 526 // is aligned. That is held in Offset+MBBSize, which already has 527 // 2 added in for the size of the mov pc instruction. 528 MF.EnsureAlignment(2U); 529 if ((Offset+MBBSize)%4 != 0 || HasInlineAsm) 530 // FIXME: Add a pseudo ALIGN instruction instead. 531 MBBSize += 2; // padding 532 continue; // Does not get an entry in ImmBranches 533 case ARM::t2BR_JT: 534 T2JumpTables.push_back(I); 535 continue; // Does not get an entry in ImmBranches 536 case ARM::Bcc: 537 isCond = true; 538 UOpc = ARM::B; 539 // Fallthrough 540 case ARM::B: 541 Bits = 24; 542 Scale = 4; 543 break; 544 case ARM::tBcc: 545 isCond = true; 546 UOpc = ARM::tB; 547 Bits = 8; 548 Scale = 2; 549 break; 550 case ARM::tB: 551 Bits = 11; 552 Scale = 2; 553 break; 554 case ARM::t2Bcc: 555 isCond = true; 556 UOpc = ARM::t2B; 557 Bits = 20; 558 Scale = 2; 559 break; 560 case ARM::t2B: 561 Bits = 24; 562 Scale = 2; 563 break; 564 } 565 566 // Record this immediate branch. 567 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 568 ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc)); 569 } 570 571 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) 572 PushPopMIs.push_back(I); 573 574 if (Opc == ARM::CONSTPOOL_ENTRY) 575 continue; 576 577 // Scan the instructions for constant pool operands. 578 for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) 579 if (I->getOperand(op).isCPI()) { 580 // We found one. The addressing mode tells us the max displacement 581 // from the PC that this instruction permits. 582 583 // Basic size info comes from the TSFlags field. 584 unsigned Bits = 0; 585 unsigned Scale = 1; 586 bool NegOk = false; 587 bool IsSoImm = false; 588 589 switch (Opc) { 590 default: 591 llvm_unreachable("Unknown addressing mode for CP reference!"); 592 break; 593 594 // Taking the address of a CP entry. 595 case ARM::LEApcrel: 596 // This takes a SoImm, which is 8 bit immediate rotated. We'll 597 // pretend the maximum offset is 255 * 4. Since each instruction 598 // 4 byte wide, this is always correct. We'll check for other 599 // displacements that fits in a SoImm as well. 600 Bits = 8; 601 Scale = 4; 602 NegOk = true; 603 IsSoImm = true; 604 break; 605 case ARM::t2LEApcrel: 606 Bits = 12; 607 NegOk = true; 608 break; 609 case ARM::tLEApcrel: 610 Bits = 8; 611 Scale = 4; 612 break; 613 614 case ARM::LDRi12: 615 case ARM::LDRcp: 616 case ARM::t2LDRi12: 617 case ARM::t2LDRHi12: 618 case ARM::t2LDRBi12: 619 case ARM::t2LDRSHi12: 620 case ARM::t2LDRSBi12: 621 Bits = 12; // +-offset_12 622 NegOk = true; 623 break; 624 625 case ARM::tLDRpci: 626 Bits = 8; 627 Scale = 4; // +(offset_8*4) 628 break; 629 630 case ARM::VLDRD: 631 case ARM::VLDRS: 632 Bits = 8; 633 Scale = 4; // +-(offset_8*4) 634 NegOk = true; 635 break; 636 } 637 638 // Remember that this is a user of a CP entry. 639 unsigned CPI = I->getOperand(op).getIndex(); 640 MachineInstr *CPEMI = CPEMIs[CPI]; 641 unsigned MaxOffs = ((1 << Bits)-1) * Scale; 642 CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm)); 643 644 // Increment corresponding CPEntry reference count. 645 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 646 assert(CPE && "Cannot find a corresponding CPEntry!"); 647 CPE->RefCount++; 648 649 // Instructions can only use one CP entry, don't bother scanning the 650 // rest of the operands. 651 break; 652 } 653 } 654 655 // In thumb mode, if this block is a constpool island, we may need padding 656 // so it's aligned on 4 byte boundary. 657 if (isThumb && 658 !MBB.empty() && 659 MBB.begin()->getOpcode() == ARM::CONSTPOOL_ENTRY && 660 ((Offset%4) != 0 || HasInlineAsm)) 661 MBBSize += 2; 662 663 BBSizes.push_back(MBBSize); 664 BBOffsets.push_back(Offset); 665 Offset += MBBSize; 666 } 667} 668 669/// GetOffsetOf - Return the current offset of the specified machine instruction 670/// from the start of the function. This offset changes as stuff is moved 671/// around inside the function. 672unsigned ARMConstantIslands::GetOffsetOf(MachineInstr *MI) const { 673 MachineBasicBlock *MBB = MI->getParent(); 674 675 // The offset is composed of two things: the sum of the sizes of all MBB's 676 // before this instruction's block, and the offset from the start of the block 677 // it is in. 678 unsigned Offset = BBOffsets[MBB->getNumber()]; 679 680 // If we're looking for a CONSTPOOL_ENTRY in Thumb, see if this block has 681 // alignment padding, and compensate if so. 682 if (isThumb && 683 MI->getOpcode() == ARM::CONSTPOOL_ENTRY && 684 (Offset%4 != 0 || HasInlineAsm)) 685 Offset += 2; 686 687 // Sum instructions before MI in MBB. 688 for (MachineBasicBlock::iterator I = MBB->begin(); ; ++I) { 689 assert(I != MBB->end() && "Didn't find MI in its own basic block?"); 690 if (&*I == MI) return Offset; 691 Offset += TII->GetInstSizeInBytes(I); 692 } 693} 694 695/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 696/// ID. 697static bool CompareMBBNumbers(const MachineBasicBlock *LHS, 698 const MachineBasicBlock *RHS) { 699 return LHS->getNumber() < RHS->getNumber(); 700} 701 702/// UpdateForInsertedWaterBlock - When a block is newly inserted into the 703/// machine function, it upsets all of the block numbers. Renumber the blocks 704/// and update the arrays that parallel this numbering. 705void ARMConstantIslands::UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB) { 706 // Renumber the MBB's to keep them consequtive. 707 NewBB->getParent()->RenumberBlocks(NewBB); 708 709 // Insert a size into BBSizes to align it properly with the (newly 710 // renumbered) block numbers. 711 BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0); 712 713 // Likewise for BBOffsets. 714 BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0); 715 716 // Next, update WaterList. Specifically, we need to add NewMBB as having 717 // available water after it. 718 water_iterator IP = 719 std::lower_bound(WaterList.begin(), WaterList.end(), NewBB, 720 CompareMBBNumbers); 721 WaterList.insert(IP, NewBB); 722} 723 724 725/// Split the basic block containing MI into two blocks, which are joined by 726/// an unconditional branch. Update data structures and renumber blocks to 727/// account for this change and returns the newly created block. 728MachineBasicBlock *ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr *MI) { 729 MachineBasicBlock *OrigBB = MI->getParent(); 730 MachineFunction &MF = *OrigBB->getParent(); 731 732 // Create a new MBB for the code after the OrigBB. 733 MachineBasicBlock *NewBB = 734 MF.CreateMachineBasicBlock(OrigBB->getBasicBlock()); 735 MachineFunction::iterator MBBI = OrigBB; ++MBBI; 736 MF.insert(MBBI, NewBB); 737 738 // Splice the instructions starting with MI over to NewBB. 739 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 740 741 // Add an unconditional branch from OrigBB to NewBB. 742 // Note the new unconditional branch is not being recorded. 743 // There doesn't seem to be meaningful DebugInfo available; this doesn't 744 // correspond to anything in the source. 745 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B; 746 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB); 747 ++NumSplit; 748 749 // Update the CFG. All succs of OrigBB are now succs of NewBB. 750 while (!OrigBB->succ_empty()) { 751 MachineBasicBlock *Succ = *OrigBB->succ_begin(); 752 OrigBB->removeSuccessor(Succ); 753 NewBB->addSuccessor(Succ); 754 755 // This pass should be run after register allocation, so there should be no 756 // PHI nodes to update. 757 assert((Succ->empty() || !Succ->begin()->isPHI()) 758 && "PHI nodes should be eliminated by now!"); 759 } 760 761 // OrigBB branches to NewBB. 762 OrigBB->addSuccessor(NewBB); 763 764 // Update internal data structures to account for the newly inserted MBB. 765 // This is almost the same as UpdateForInsertedWaterBlock, except that 766 // the Water goes after OrigBB, not NewBB. 767 MF.RenumberBlocks(NewBB); 768 769 // Insert a size into BBSizes to align it properly with the (newly 770 // renumbered) block numbers. 771 BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0); 772 773 // Likewise for BBOffsets. 774 BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0); 775 776 // Next, update WaterList. Specifically, we need to add OrigMBB as having 777 // available water after it (but not if it's already there, which happens 778 // when splitting before a conditional branch that is followed by an 779 // unconditional branch - in that case we want to insert NewBB). 780 water_iterator IP = 781 std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB, 782 CompareMBBNumbers); 783 MachineBasicBlock* WaterBB = *IP; 784 if (WaterBB == OrigBB) 785 WaterList.insert(llvm::next(IP), NewBB); 786 else 787 WaterList.insert(IP, OrigBB); 788 NewWaterList.insert(OrigBB); 789 790 unsigned OrigBBI = OrigBB->getNumber(); 791 unsigned NewBBI = NewBB->getNumber(); 792 793 int delta = isThumb1 ? 2 : 4; 794 795 // Figure out how large the OrigBB is. As the first half of the original 796 // block, it cannot contain a tablejump. The size includes 797 // the new jump we added. (It should be possible to do this without 798 // recounting everything, but it's very confusing, and this is rarely 799 // executed.) 800 unsigned OrigBBSize = 0; 801 for (MachineBasicBlock::iterator I = OrigBB->begin(), E = OrigBB->end(); 802 I != E; ++I) 803 OrigBBSize += TII->GetInstSizeInBytes(I); 804 BBSizes[OrigBBI] = OrigBBSize; 805 806 // ...and adjust BBOffsets for NewBB accordingly. 807 BBOffsets[NewBBI] = BBOffsets[OrigBBI] + BBSizes[OrigBBI]; 808 809 // Figure out how large the NewMBB is. As the second half of the original 810 // block, it may contain a tablejump. 811 unsigned NewBBSize = 0; 812 for (MachineBasicBlock::iterator I = NewBB->begin(), E = NewBB->end(); 813 I != E; ++I) 814 NewBBSize += TII->GetInstSizeInBytes(I); 815 // Set the size of NewBB in BBSizes. It does not include any padding now. 816 BBSizes[NewBBI] = NewBBSize; 817 818 MachineInstr* ThumbJTMI = prior(NewBB->end()); 819 if (ThumbJTMI->getOpcode() == ARM::tBR_JTr) { 820 // We've added another 2-byte instruction before this tablejump, which 821 // means we will always need padding if we didn't before, and vice versa. 822 823 // The original offset of the jump instruction was: 824 unsigned OrigOffset = BBOffsets[OrigBBI] + BBSizes[OrigBBI] - delta; 825 if (OrigOffset%4 == 0) { 826 // We had padding before and now we don't. No net change in code size. 827 delta = 0; 828 } else { 829 // We didn't have padding before and now we do. 830 BBSizes[NewBBI] += 2; 831 delta = 4; 832 } 833 } 834 835 // All BBOffsets following these blocks must be modified. 836 if (delta) 837 AdjustBBOffsetsAfter(NewBB, delta); 838 839 return NewBB; 840} 841 842/// OffsetIsInRange - Checks whether UserOffset (the location of a constant pool 843/// reference) is within MaxDisp of TrialOffset (a proposed location of a 844/// constant pool entry). 845bool ARMConstantIslands::OffsetIsInRange(unsigned UserOffset, 846 unsigned TrialOffset, unsigned MaxDisp, 847 bool NegativeOK, bool IsSoImm) { 848 // On Thumb offsets==2 mod 4 are rounded down by the hardware for 849 // purposes of the displacement computation; compensate for that here. 850 // Effectively, the valid range of displacements is 2 bytes smaller for such 851 // references. 852 unsigned TotalAdj = 0; 853 if (isThumb && UserOffset%4 !=0) { 854 UserOffset -= 2; 855 TotalAdj = 2; 856 } 857 // CPEs will be rounded up to a multiple of 4. 858 if (isThumb && TrialOffset%4 != 0) { 859 TrialOffset += 2; 860 TotalAdj += 2; 861 } 862 863 // In Thumb2 mode, later branch adjustments can shift instructions up and 864 // cause alignment change. In the worst case scenario this can cause the 865 // user's effective address to be subtracted by 2 and the CPE's address to 866 // be plus 2. 867 if (isThumb2 && TotalAdj != 4) 868 MaxDisp -= (4 - TotalAdj); 869 870 if (UserOffset <= TrialOffset) { 871 // User before the Trial. 872 if (TrialOffset - UserOffset <= MaxDisp) 873 return true; 874 // FIXME: Make use full range of soimm values. 875 } else if (NegativeOK) { 876 if (UserOffset - TrialOffset <= MaxDisp) 877 return true; 878 // FIXME: Make use full range of soimm values. 879 } 880 return false; 881} 882 883/// WaterIsInRange - Returns true if a CPE placed after the specified 884/// Water (a basic block) will be in range for the specific MI. 885 886bool ARMConstantIslands::WaterIsInRange(unsigned UserOffset, 887 MachineBasicBlock* Water, CPUser &U) { 888 unsigned MaxDisp = U.MaxDisp; 889 unsigned CPEOffset = BBOffsets[Water->getNumber()] + 890 BBSizes[Water->getNumber()]; 891 892 // If the CPE is to be inserted before the instruction, that will raise 893 // the offset of the instruction. 894 if (CPEOffset < UserOffset) 895 UserOffset += U.CPEMI->getOperand(2).getImm(); 896 897 return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, U.NegOk, U.IsSoImm); 898} 899 900/// CPEIsInRange - Returns true if the distance between specific MI and 901/// specific ConstPool entry instruction can fit in MI's displacement field. 902bool ARMConstantIslands::CPEIsInRange(MachineInstr *MI, unsigned UserOffset, 903 MachineInstr *CPEMI, unsigned MaxDisp, 904 bool NegOk, bool DoDump) { 905 unsigned CPEOffset = GetOffsetOf(CPEMI); 906 assert((CPEOffset%4 == 0 || HasInlineAsm) && "Misaligned CPE"); 907 908 if (DoDump) { 909 DEBUG(errs() << "User of CPE#" << CPEMI->getOperand(0).getImm() 910 << " max delta=" << MaxDisp 911 << " insn address=" << UserOffset 912 << " CPE address=" << CPEOffset 913 << " offset=" << int(CPEOffset-UserOffset) << "\t" << *MI); 914 } 915 916 return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, NegOk); 917} 918 919#ifndef NDEBUG 920/// BBIsJumpedOver - Return true of the specified basic block's only predecessor 921/// unconditionally branches to its only successor. 922static bool BBIsJumpedOver(MachineBasicBlock *MBB) { 923 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 924 return false; 925 926 MachineBasicBlock *Succ = *MBB->succ_begin(); 927 MachineBasicBlock *Pred = *MBB->pred_begin(); 928 MachineInstr *PredMI = &Pred->back(); 929 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB 930 || PredMI->getOpcode() == ARM::t2B) 931 return PredMI->getOperand(0).getMBB() == Succ; 932 return false; 933} 934#endif // NDEBUG 935 936void ARMConstantIslands::AdjustBBOffsetsAfter(MachineBasicBlock *BB, 937 int delta) { 938 MachineFunction::iterator MBBI = BB; MBBI = llvm::next(MBBI); 939 for(unsigned i = BB->getNumber()+1, e = BB->getParent()->getNumBlockIDs(); 940 i < e; ++i) { 941 BBOffsets[i] += delta; 942 // If some existing blocks have padding, adjust the padding as needed, a 943 // bit tricky. delta can be negative so don't use % on that. 944 if (!isThumb) 945 continue; 946 MachineBasicBlock *MBB = MBBI; 947 if (!MBB->empty() && !HasInlineAsm) { 948 // Constant pool entries require padding. 949 if (MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) { 950 unsigned OldOffset = BBOffsets[i] - delta; 951 if ((OldOffset%4) == 0 && (BBOffsets[i]%4) != 0) { 952 // add new padding 953 BBSizes[i] += 2; 954 delta += 2; 955 } else if ((OldOffset%4) != 0 && (BBOffsets[i]%4) == 0) { 956 // remove existing padding 957 BBSizes[i] -= 2; 958 delta -= 2; 959 } 960 } 961 // Thumb1 jump tables require padding. They should be at the end; 962 // following unconditional branches are removed by AnalyzeBranch. 963 // tBR_JTr expands to a mov pc followed by .align 2 and then the jump 964 // table entries. So this code checks whether offset of tBR_JTr 965 // is aligned; if it is, the offset of the jump table following the 966 // instruction will not be aligned, and we need padding. 967 MachineInstr *ThumbJTMI = prior(MBB->end()); 968 if (ThumbJTMI->getOpcode() == ARM::tBR_JTr) { 969 unsigned NewMIOffset = GetOffsetOf(ThumbJTMI); 970 unsigned OldMIOffset = NewMIOffset - delta; 971 if ((OldMIOffset%4) == 0 && (NewMIOffset%4) != 0) { 972 // remove existing padding 973 BBSizes[i] -= 2; 974 delta -= 2; 975 } else if ((OldMIOffset%4) != 0 && (NewMIOffset%4) == 0) { 976 // add new padding 977 BBSizes[i] += 2; 978 delta += 2; 979 } 980 } 981 if (delta==0) 982 return; 983 } 984 MBBI = llvm::next(MBBI); 985 } 986} 987 988/// DecrementOldEntry - find the constant pool entry with index CPI 989/// and instruction CPEMI, and decrement its refcount. If the refcount 990/// becomes 0 remove the entry and instruction. Returns true if we removed 991/// the entry, false if we didn't. 992 993bool ARMConstantIslands::DecrementOldEntry(unsigned CPI, MachineInstr *CPEMI) { 994 // Find the old entry. Eliminate it if it is no longer used. 995 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 996 assert(CPE && "Unexpected!"); 997 if (--CPE->RefCount == 0) { 998 RemoveDeadCPEMI(CPEMI); 999 CPE->CPEMI = NULL; 1000 --NumCPEs; 1001 return true; 1002 } 1003 return false; 1004} 1005 1006/// LookForCPEntryInRange - see if the currently referenced CPE is in range; 1007/// if not, see if an in-range clone of the CPE is in range, and if so, 1008/// change the data structures so the user references the clone. Returns: 1009/// 0 = no existing entry found 1010/// 1 = entry found, and there were no code insertions or deletions 1011/// 2 = entry found, and there were code insertions or deletions 1012int ARMConstantIslands::LookForExistingCPEntry(CPUser& U, unsigned UserOffset) 1013{ 1014 MachineInstr *UserMI = U.MI; 1015 MachineInstr *CPEMI = U.CPEMI; 1016 1017 // Check to see if the CPE is already in-range. 1018 if (CPEIsInRange(UserMI, UserOffset, CPEMI, U.MaxDisp, U.NegOk, true)) { 1019 DEBUG(errs() << "In range\n"); 1020 return 1; 1021 } 1022 1023 // No. Look for previously created clones of the CPE that are in range. 1024 unsigned CPI = CPEMI->getOperand(1).getIndex(); 1025 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 1026 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 1027 // We already tried this one 1028 if (CPEs[i].CPEMI == CPEMI) 1029 continue; 1030 // Removing CPEs can leave empty entries, skip 1031 if (CPEs[i].CPEMI == NULL) 1032 continue; 1033 if (CPEIsInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.MaxDisp, U.NegOk)) { 1034 DEBUG(errs() << "Replacing CPE#" << CPI << " with CPE#" 1035 << CPEs[i].CPI << "\n"); 1036 // Point the CPUser node to the replacement 1037 U.CPEMI = CPEs[i].CPEMI; 1038 // Change the CPI in the instruction operand to refer to the clone. 1039 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) 1040 if (UserMI->getOperand(j).isCPI()) { 1041 UserMI->getOperand(j).setIndex(CPEs[i].CPI); 1042 break; 1043 } 1044 // Adjust the refcount of the clone... 1045 CPEs[i].RefCount++; 1046 // ...and the original. If we didn't remove the old entry, none of the 1047 // addresses changed, so we don't need another pass. 1048 return DecrementOldEntry(CPI, CPEMI) ? 2 : 1; 1049 } 1050 } 1051 return 0; 1052} 1053 1054/// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 1055/// the specific unconditional branch instruction. 1056static inline unsigned getUnconditionalBrDisp(int Opc) { 1057 switch (Opc) { 1058 case ARM::tB: 1059 return ((1<<10)-1)*2; 1060 case ARM::t2B: 1061 return ((1<<23)-1)*2; 1062 default: 1063 break; 1064 } 1065 1066 return ((1<<23)-1)*4; 1067} 1068 1069/// LookForWater - Look for an existing entry in the WaterList in which 1070/// we can place the CPE referenced from U so it's within range of U's MI. 1071/// Returns true if found, false if not. If it returns true, WaterIter 1072/// is set to the WaterList entry. For Thumb, prefer water that will not 1073/// introduce padding to water that will. To ensure that this pass 1074/// terminates, the CPE location for a particular CPUser is only allowed to 1075/// move to a lower address, so search backward from the end of the list and 1076/// prefer the first water that is in range. 1077bool ARMConstantIslands::LookForWater(CPUser &U, unsigned UserOffset, 1078 water_iterator &WaterIter) { 1079 if (WaterList.empty()) 1080 return false; 1081 1082 bool FoundWaterThatWouldPad = false; 1083 water_iterator IPThatWouldPad; 1084 for (water_iterator IP = prior(WaterList.end()), 1085 B = WaterList.begin();; --IP) { 1086 MachineBasicBlock* WaterBB = *IP; 1087 // Check if water is in range and is either at a lower address than the 1088 // current "high water mark" or a new water block that was created since 1089 // the previous iteration by inserting an unconditional branch. In the 1090 // latter case, we want to allow resetting the high water mark back to 1091 // this new water since we haven't seen it before. Inserting branches 1092 // should be relatively uncommon and when it does happen, we want to be 1093 // sure to take advantage of it for all the CPEs near that block, so that 1094 // we don't insert more branches than necessary. 1095 if (WaterIsInRange(UserOffset, WaterBB, U) && 1096 (WaterBB->getNumber() < U.HighWaterMark->getNumber() || 1097 NewWaterList.count(WaterBB))) { 1098 unsigned WBBId = WaterBB->getNumber(); 1099 if (isThumb && 1100 (BBOffsets[WBBId] + BBSizes[WBBId])%4 != 0) { 1101 // This is valid Water, but would introduce padding. Remember 1102 // it in case we don't find any Water that doesn't do this. 1103 if (!FoundWaterThatWouldPad) { 1104 FoundWaterThatWouldPad = true; 1105 IPThatWouldPad = IP; 1106 } 1107 } else { 1108 WaterIter = IP; 1109 return true; 1110 } 1111 } 1112 if (IP == B) 1113 break; 1114 } 1115 if (FoundWaterThatWouldPad) { 1116 WaterIter = IPThatWouldPad; 1117 return true; 1118 } 1119 return false; 1120} 1121 1122/// CreateNewWater - No existing WaterList entry will work for 1123/// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 1124/// block is used if in range, and the conditional branch munged so control 1125/// flow is correct. Otherwise the block is split to create a hole with an 1126/// unconditional branch around it. In either case NewMBB is set to a 1127/// block following which the new island can be inserted (the WaterList 1128/// is not adjusted). 1129void ARMConstantIslands::CreateNewWater(unsigned CPUserIndex, 1130 unsigned UserOffset, 1131 MachineBasicBlock *&NewMBB) { 1132 CPUser &U = CPUsers[CPUserIndex]; 1133 MachineInstr *UserMI = U.MI; 1134 MachineInstr *CPEMI = U.CPEMI; 1135 MachineBasicBlock *UserMBB = UserMI->getParent(); 1136 unsigned OffsetOfNextBlock = BBOffsets[UserMBB->getNumber()] + 1137 BBSizes[UserMBB->getNumber()]; 1138 assert(OffsetOfNextBlock== BBOffsets[UserMBB->getNumber()+1]); 1139 1140 // If the block does not end in an unconditional branch already, and if the 1141 // end of the block is within range, make new water there. (The addition 1142 // below is for the unconditional branch we will be adding: 4 bytes on ARM + 1143 // Thumb2, 2 on Thumb1. Possible Thumb1 alignment padding is allowed for 1144 // inside OffsetIsInRange. 1145 if (BBHasFallthrough(UserMBB) && 1146 OffsetIsInRange(UserOffset, OffsetOfNextBlock + (isThumb1 ? 2: 4), 1147 U.MaxDisp, U.NegOk, U.IsSoImm)) { 1148 DEBUG(errs() << "Split at end of block\n"); 1149 if (&UserMBB->back() == UserMI) 1150 assert(BBHasFallthrough(UserMBB) && "Expected a fallthrough BB!"); 1151 NewMBB = llvm::next(MachineFunction::iterator(UserMBB)); 1152 // Add an unconditional branch from UserMBB to fallthrough block. 1153 // Record it for branch lengthening; this new branch will not get out of 1154 // range, but if the preceding conditional branch is out of range, the 1155 // targets will be exchanged, and the altered branch may be out of 1156 // range, so the machinery has to know about it. 1157 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B; 1158 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB); 1159 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 1160 ImmBranches.push_back(ImmBranch(&UserMBB->back(), 1161 MaxDisp, false, UncondBr)); 1162 int delta = isThumb1 ? 2 : 4; 1163 BBSizes[UserMBB->getNumber()] += delta; 1164 AdjustBBOffsetsAfter(UserMBB, delta); 1165 } else { 1166 // What a big block. Find a place within the block to split it. 1167 // This is a little tricky on Thumb1 since instructions are 2 bytes 1168 // and constant pool entries are 4 bytes: if instruction I references 1169 // island CPE, and instruction I+1 references CPE', it will 1170 // not work well to put CPE as far forward as possible, since then 1171 // CPE' cannot immediately follow it (that location is 2 bytes 1172 // farther away from I+1 than CPE was from I) and we'd need to create 1173 // a new island. So, we make a first guess, then walk through the 1174 // instructions between the one currently being looked at and the 1175 // possible insertion point, and make sure any other instructions 1176 // that reference CPEs will be able to use the same island area; 1177 // if not, we back up the insertion point. 1178 1179 // The 4 in the following is for the unconditional branch we'll be 1180 // inserting (allows for long branch on Thumb1). Alignment of the 1181 // island is handled inside OffsetIsInRange. 1182 unsigned BaseInsertOffset = UserOffset + U.MaxDisp -4; 1183 // This could point off the end of the block if we've already got 1184 // constant pool entries following this block; only the last one is 1185 // in the water list. Back past any possible branches (allow for a 1186 // conditional and a maximally long unconditional). 1187 if (BaseInsertOffset >= BBOffsets[UserMBB->getNumber()+1]) 1188 BaseInsertOffset = BBOffsets[UserMBB->getNumber()+1] - 1189 (isThumb1 ? 6 : 8); 1190 unsigned EndInsertOffset = BaseInsertOffset + 1191 CPEMI->getOperand(2).getImm(); 1192 MachineBasicBlock::iterator MI = UserMI; 1193 ++MI; 1194 unsigned CPUIndex = CPUserIndex+1; 1195 unsigned NumCPUsers = CPUsers.size(); 1196 MachineInstr *LastIT = 0; 1197 for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI); 1198 Offset < BaseInsertOffset; 1199 Offset += TII->GetInstSizeInBytes(MI), 1200 MI = llvm::next(MI)) { 1201 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) { 1202 CPUser &U = CPUsers[CPUIndex]; 1203 if (!OffsetIsInRange(Offset, EndInsertOffset, 1204 U.MaxDisp, U.NegOk, U.IsSoImm)) { 1205 BaseInsertOffset -= (isThumb1 ? 2 : 4); 1206 EndInsertOffset -= (isThumb1 ? 2 : 4); 1207 } 1208 // This is overly conservative, as we don't account for CPEMIs 1209 // being reused within the block, but it doesn't matter much. 1210 EndInsertOffset += CPUsers[CPUIndex].CPEMI->getOperand(2).getImm(); 1211 CPUIndex++; 1212 } 1213 1214 // Remember the last IT instruction. 1215 if (MI->getOpcode() == ARM::t2IT) 1216 LastIT = MI; 1217 } 1218 1219 DEBUG(errs() << "Split in middle of big block\n"); 1220 --MI; 1221 1222 // Avoid splitting an IT block. 1223 if (LastIT) { 1224 unsigned PredReg = 0; 1225 ARMCC::CondCodes CC = llvm::getITInstrPredicate(MI, PredReg); 1226 if (CC != ARMCC::AL) 1227 MI = LastIT; 1228 } 1229 NewMBB = SplitBlockBeforeInstr(MI); 1230 } 1231} 1232 1233/// HandleConstantPoolUser - Analyze the specified user, checking to see if it 1234/// is out-of-range. If so, pick up the constant pool value and move it some 1235/// place in-range. Return true if we changed any addresses (thus must run 1236/// another pass of branch lengthening), false otherwise. 1237bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction &MF, 1238 unsigned CPUserIndex) { 1239 CPUser &U = CPUsers[CPUserIndex]; 1240 MachineInstr *UserMI = U.MI; 1241 MachineInstr *CPEMI = U.CPEMI; 1242 unsigned CPI = CPEMI->getOperand(1).getIndex(); 1243 unsigned Size = CPEMI->getOperand(2).getImm(); 1244 // Compute this only once, it's expensive. The 4 or 8 is the value the 1245 // hardware keeps in the PC. 1246 unsigned UserOffset = GetOffsetOf(UserMI) + (isThumb ? 4 : 8); 1247 1248 // See if the current entry is within range, or there is a clone of it 1249 // in range. 1250 int result = LookForExistingCPEntry(U, UserOffset); 1251 if (result==1) return false; 1252 else if (result==2) return true; 1253 1254 // No existing clone of this CPE is within range. 1255 // We will be generating a new clone. Get a UID for it. 1256 unsigned ID = AFI->createPICLabelUId(); 1257 1258 // Look for water where we can place this CPE. 1259 MachineBasicBlock *NewIsland = MF.CreateMachineBasicBlock(); 1260 MachineBasicBlock *NewMBB; 1261 water_iterator IP; 1262 if (LookForWater(U, UserOffset, IP)) { 1263 DEBUG(errs() << "found water in range\n"); 1264 MachineBasicBlock *WaterBB = *IP; 1265 1266 // If the original WaterList entry was "new water" on this iteration, 1267 // propagate that to the new island. This is just keeping NewWaterList 1268 // updated to match the WaterList, which will be updated below. 1269 if (NewWaterList.count(WaterBB)) { 1270 NewWaterList.erase(WaterBB); 1271 NewWaterList.insert(NewIsland); 1272 } 1273 // The new CPE goes before the following block (NewMBB). 1274 NewMBB = llvm::next(MachineFunction::iterator(WaterBB)); 1275 1276 } else { 1277 // No water found. 1278 DEBUG(errs() << "No water found\n"); 1279 CreateNewWater(CPUserIndex, UserOffset, NewMBB); 1280 1281 // SplitBlockBeforeInstr adds to WaterList, which is important when it is 1282 // called while handling branches so that the water will be seen on the 1283 // next iteration for constant pools, but in this context, we don't want 1284 // it. Check for this so it will be removed from the WaterList. 1285 // Also remove any entry from NewWaterList. 1286 MachineBasicBlock *WaterBB = prior(MachineFunction::iterator(NewMBB)); 1287 IP = std::find(WaterList.begin(), WaterList.end(), WaterBB); 1288 if (IP != WaterList.end()) 1289 NewWaterList.erase(WaterBB); 1290 1291 // We are adding new water. Update NewWaterList. 1292 NewWaterList.insert(NewIsland); 1293 } 1294 1295 // Remove the original WaterList entry; we want subsequent insertions in 1296 // this vicinity to go after the one we're about to insert. This 1297 // considerably reduces the number of times we have to move the same CPE 1298 // more than once and is also important to ensure the algorithm terminates. 1299 if (IP != WaterList.end()) 1300 WaterList.erase(IP); 1301 1302 // Okay, we know we can put an island before NewMBB now, do it! 1303 MF.insert(NewMBB, NewIsland); 1304 1305 // Update internal data structures to account for the newly inserted MBB. 1306 UpdateForInsertedWaterBlock(NewIsland); 1307 1308 // Decrement the old entry, and remove it if refcount becomes 0. 1309 DecrementOldEntry(CPI, CPEMI); 1310 1311 // Now that we have an island to add the CPE to, clone the original CPE and 1312 // add it to the island. 1313 U.HighWaterMark = NewIsland; 1314 U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 1315 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size); 1316 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1317 ++NumCPEs; 1318 1319 BBOffsets[NewIsland->getNumber()] = BBOffsets[NewMBB->getNumber()]; 1320 // Compensate for .align 2 in thumb mode. 1321 if (isThumb && (BBOffsets[NewIsland->getNumber()]%4 != 0 || HasInlineAsm)) 1322 Size += 2; 1323 // Increase the size of the island block to account for the new entry. 1324 BBSizes[NewIsland->getNumber()] += Size; 1325 AdjustBBOffsetsAfter(NewIsland, Size); 1326 1327 // Finally, change the CPI in the instruction operand to be ID. 1328 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) 1329 if (UserMI->getOperand(i).isCPI()) { 1330 UserMI->getOperand(i).setIndex(ID); 1331 break; 1332 } 1333 1334 DEBUG(errs() << " Moved CPE to #" << ID << " CPI=" << CPI 1335 << '\t' << *UserMI); 1336 1337 return true; 1338} 1339 1340/// RemoveDeadCPEMI - Remove a dead constant pool entry instruction. Update 1341/// sizes and offsets of impacted basic blocks. 1342void ARMConstantIslands::RemoveDeadCPEMI(MachineInstr *CPEMI) { 1343 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1344 unsigned Size = CPEMI->getOperand(2).getImm(); 1345 CPEMI->eraseFromParent(); 1346 BBSizes[CPEBB->getNumber()] -= Size; 1347 // All succeeding offsets have the current size value added in, fix this. 1348 if (CPEBB->empty()) { 1349 // In thumb1 mode, the size of island may be padded by two to compensate for 1350 // the alignment requirement. Then it will now be 2 when the block is 1351 // empty, so fix this. 1352 // All succeeding offsets have the current size value added in, fix this. 1353 if (BBSizes[CPEBB->getNumber()] != 0) { 1354 Size += BBSizes[CPEBB->getNumber()]; 1355 BBSizes[CPEBB->getNumber()] = 0; 1356 } 1357 } 1358 AdjustBBOffsetsAfter(CPEBB, -Size); 1359 // An island has only one predecessor BB and one successor BB. Check if 1360 // this BB's predecessor jumps directly to this BB's successor. This 1361 // shouldn't happen currently. 1362 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); 1363 // FIXME: remove the empty blocks after all the work is done? 1364} 1365 1366/// RemoveUnusedCPEntries - Remove constant pool entries whose refcounts 1367/// are zero. 1368bool ARMConstantIslands::RemoveUnusedCPEntries() { 1369 unsigned MadeChange = false; 1370 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 1371 std::vector<CPEntry> &CPEs = CPEntries[i]; 1372 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { 1373 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { 1374 RemoveDeadCPEMI(CPEs[j].CPEMI); 1375 CPEs[j].CPEMI = NULL; 1376 MadeChange = true; 1377 } 1378 } 1379 } 1380 return MadeChange; 1381} 1382 1383/// BBIsInRange - Returns true if the distance between specific MI and 1384/// specific BB can fit in MI's displacement field. 1385bool ARMConstantIslands::BBIsInRange(MachineInstr *MI,MachineBasicBlock *DestBB, 1386 unsigned MaxDisp) { 1387 unsigned PCAdj = isThumb ? 4 : 8; 1388 unsigned BrOffset = GetOffsetOf(MI) + PCAdj; 1389 unsigned DestOffset = BBOffsets[DestBB->getNumber()]; 1390 1391 DEBUG(errs() << "Branch of destination BB#" << DestBB->getNumber() 1392 << " from BB#" << MI->getParent()->getNumber() 1393 << " max delta=" << MaxDisp 1394 << " from " << GetOffsetOf(MI) << " to " << DestOffset 1395 << " offset " << int(DestOffset-BrOffset) << "\t" << *MI); 1396 1397 if (BrOffset <= DestOffset) { 1398 // Branch before the Dest. 1399 if (DestOffset-BrOffset <= MaxDisp) 1400 return true; 1401 } else { 1402 if (BrOffset-DestOffset <= MaxDisp) 1403 return true; 1404 } 1405 return false; 1406} 1407 1408/// FixUpImmediateBr - Fix up an immediate branch whose destination is too far 1409/// away to fit in its displacement field. 1410bool ARMConstantIslands::FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br) { 1411 MachineInstr *MI = Br.MI; 1412 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1413 1414 // Check to see if the DestBB is already in-range. 1415 if (BBIsInRange(MI, DestBB, Br.MaxDisp)) 1416 return false; 1417 1418 if (!Br.isCond) 1419 return FixUpUnconditionalBr(MF, Br); 1420 return FixUpConditionalBr(MF, Br); 1421} 1422 1423/// FixUpUnconditionalBr - Fix up an unconditional branch whose destination is 1424/// too far away to fit in its displacement field. If the LR register has been 1425/// spilled in the epilogue, then we can use BL to implement a far jump. 1426/// Otherwise, add an intermediate branch instruction to a branch. 1427bool 1428ARMConstantIslands::FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br) { 1429 MachineInstr *MI = Br.MI; 1430 MachineBasicBlock *MBB = MI->getParent(); 1431 if (!isThumb1) 1432 llvm_unreachable("FixUpUnconditionalBr is Thumb1 only!"); 1433 1434 // Use BL to implement far jump. 1435 Br.MaxDisp = (1 << 21) * 2; 1436 MI->setDesc(TII->get(ARM::tBfar)); 1437 BBSizes[MBB->getNumber()] += 2; 1438 AdjustBBOffsetsAfter(MBB, 2); 1439 HasFarJump = true; 1440 ++NumUBrFixed; 1441 1442 DEBUG(errs() << " Changed B to long jump " << *MI); 1443 1444 return true; 1445} 1446 1447/// FixUpConditionalBr - Fix up a conditional branch whose destination is too 1448/// far away to fit in its displacement field. It is converted to an inverse 1449/// conditional branch + an unconditional branch to the destination. 1450bool 1451ARMConstantIslands::FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br) { 1452 MachineInstr *MI = Br.MI; 1453 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1454 1455 // Add an unconditional branch to the destination and invert the branch 1456 // condition to jump over it: 1457 // blt L1 1458 // => 1459 // bge L2 1460 // b L1 1461 // L2: 1462 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm(); 1463 CC = ARMCC::getOppositeCondition(CC); 1464 unsigned CCReg = MI->getOperand(2).getReg(); 1465 1466 // If the branch is at the end of its MBB and that has a fall-through block, 1467 // direct the updated conditional branch to the fall-through block. Otherwise, 1468 // split the MBB before the next instruction. 1469 MachineBasicBlock *MBB = MI->getParent(); 1470 MachineInstr *BMI = &MBB->back(); 1471 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); 1472 1473 ++NumCBrFixed; 1474 if (BMI != MI) { 1475 if (llvm::next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) && 1476 BMI->getOpcode() == Br.UncondBr) { 1477 // Last MI in the BB is an unconditional branch. Can we simply invert the 1478 // condition and swap destinations: 1479 // beq L1 1480 // b L2 1481 // => 1482 // bne L2 1483 // b L1 1484 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); 1485 if (BBIsInRange(MI, NewDest, Br.MaxDisp)) { 1486 DEBUG(errs() << " Invert Bcc condition and swap its destination with " 1487 << *BMI); 1488 BMI->getOperand(0).setMBB(DestBB); 1489 MI->getOperand(0).setMBB(NewDest); 1490 MI->getOperand(1).setImm(CC); 1491 return true; 1492 } 1493 } 1494 } 1495 1496 if (NeedSplit) { 1497 SplitBlockBeforeInstr(MI); 1498 // No need for the branch to the next block. We're adding an unconditional 1499 // branch to the destination. 1500 int delta = TII->GetInstSizeInBytes(&MBB->back()); 1501 BBSizes[MBB->getNumber()] -= delta; 1502 MachineBasicBlock* SplitBB = llvm::next(MachineFunction::iterator(MBB)); 1503 AdjustBBOffsetsAfter(SplitBB, -delta); 1504 MBB->back().eraseFromParent(); 1505 // BBOffsets[SplitBB] is wrong temporarily, fixed below 1506 } 1507 MachineBasicBlock *NextBB = llvm::next(MachineFunction::iterator(MBB)); 1508 1509 DEBUG(errs() << " Insert B to BB#" << DestBB->getNumber() 1510 << " also invert condition and change dest. to BB#" 1511 << NextBB->getNumber() << "\n"); 1512 1513 // Insert a new conditional branch and a new unconditional branch. 1514 // Also update the ImmBranch as well as adding a new entry for the new branch. 1515 BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode())) 1516 .addMBB(NextBB).addImm(CC).addReg(CCReg); 1517 Br.MI = &MBB->back(); 1518 BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back()); 1519 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); 1520 BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back()); 1521 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1522 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1523 1524 // Remove the old conditional branch. It may or may not still be in MBB. 1525 BBSizes[MI->getParent()->getNumber()] -= TII->GetInstSizeInBytes(MI); 1526 MI->eraseFromParent(); 1527 1528 // The net size change is an addition of one unconditional branch. 1529 int delta = TII->GetInstSizeInBytes(&MBB->back()); 1530 AdjustBBOffsetsAfter(MBB, delta); 1531 return true; 1532} 1533 1534/// UndoLRSpillRestore - Remove Thumb push / pop instructions that only spills 1535/// LR / restores LR to pc. FIXME: This is done here because it's only possible 1536/// to do this if tBfar is not used. 1537bool ARMConstantIslands::UndoLRSpillRestore() { 1538 bool MadeChange = false; 1539 for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) { 1540 MachineInstr *MI = PushPopMIs[i]; 1541 // First two operands are predicates. 1542 if (MI->getOpcode() == ARM::tPOP_RET && 1543 MI->getOperand(2).getReg() == ARM::PC && 1544 MI->getNumExplicitOperands() == 3) { 1545 BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET)); 1546 MI->eraseFromParent(); 1547 MadeChange = true; 1548 } 1549 } 1550 return MadeChange; 1551} 1552 1553bool ARMConstantIslands::OptimizeThumb2Instructions(MachineFunction &MF) { 1554 bool MadeChange = false; 1555 1556 // Shrink ADR and LDR from constantpool. 1557 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 1558 CPUser &U = CPUsers[i]; 1559 unsigned Opcode = U.MI->getOpcode(); 1560 unsigned NewOpc = 0; 1561 unsigned Scale = 1; 1562 unsigned Bits = 0; 1563 switch (Opcode) { 1564 default: break; 1565 case ARM::t2LEApcrel: 1566 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1567 NewOpc = ARM::tLEApcrel; 1568 Bits = 8; 1569 Scale = 4; 1570 } 1571 break; 1572 case ARM::t2LDRpci: 1573 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1574 NewOpc = ARM::tLDRpci; 1575 Bits = 8; 1576 Scale = 4; 1577 } 1578 break; 1579 } 1580 1581 if (!NewOpc) 1582 continue; 1583 1584 unsigned UserOffset = GetOffsetOf(U.MI) + 4; 1585 unsigned MaxOffs = ((1 << Bits) - 1) * Scale; 1586 // FIXME: Check if offset is multiple of scale if scale is not 4. 1587 if (CPEIsInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) { 1588 U.MI->setDesc(TII->get(NewOpc)); 1589 MachineBasicBlock *MBB = U.MI->getParent(); 1590 BBSizes[MBB->getNumber()] -= 2; 1591 AdjustBBOffsetsAfter(MBB, -2); 1592 ++NumT2CPShrunk; 1593 MadeChange = true; 1594 } 1595 } 1596 1597 MadeChange |= OptimizeThumb2Branches(MF); 1598 MadeChange |= OptimizeThumb2JumpTables(MF); 1599 return MadeChange; 1600} 1601 1602bool ARMConstantIslands::OptimizeThumb2Branches(MachineFunction &MF) { 1603 bool MadeChange = false; 1604 1605 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) { 1606 ImmBranch &Br = ImmBranches[i]; 1607 unsigned Opcode = Br.MI->getOpcode(); 1608 unsigned NewOpc = 0; 1609 unsigned Scale = 1; 1610 unsigned Bits = 0; 1611 switch (Opcode) { 1612 default: break; 1613 case ARM::t2B: 1614 NewOpc = ARM::tB; 1615 Bits = 11; 1616 Scale = 2; 1617 break; 1618 case ARM::t2Bcc: { 1619 NewOpc = ARM::tBcc; 1620 Bits = 8; 1621 Scale = 2; 1622 break; 1623 } 1624 } 1625 if (NewOpc) { 1626 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 1627 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1628 if (BBIsInRange(Br.MI, DestBB, MaxOffs)) { 1629 Br.MI->setDesc(TII->get(NewOpc)); 1630 MachineBasicBlock *MBB = Br.MI->getParent(); 1631 BBSizes[MBB->getNumber()] -= 2; 1632 AdjustBBOffsetsAfter(MBB, -2); 1633 ++NumT2BrShrunk; 1634 MadeChange = true; 1635 } 1636 } 1637 1638 Opcode = Br.MI->getOpcode(); 1639 if (Opcode != ARM::tBcc) 1640 continue; 1641 1642 NewOpc = 0; 1643 unsigned PredReg = 0; 1644 ARMCC::CondCodes Pred = llvm::getInstrPredicate(Br.MI, PredReg); 1645 if (Pred == ARMCC::EQ) 1646 NewOpc = ARM::tCBZ; 1647 else if (Pred == ARMCC::NE) 1648 NewOpc = ARM::tCBNZ; 1649 if (!NewOpc) 1650 continue; 1651 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1652 // Check if the distance is within 126. Subtract starting offset by 2 1653 // because the cmp will be eliminated. 1654 unsigned BrOffset = GetOffsetOf(Br.MI) + 4 - 2; 1655 unsigned DestOffset = BBOffsets[DestBB->getNumber()]; 1656 if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) { 1657 MachineBasicBlock::iterator CmpMI = Br.MI; --CmpMI; 1658 if (CmpMI->getOpcode() == ARM::tCMPi8) { 1659 unsigned Reg = CmpMI->getOperand(0).getReg(); 1660 Pred = llvm::getInstrPredicate(CmpMI, PredReg); 1661 if (Pred == ARMCC::AL && 1662 CmpMI->getOperand(1).getImm() == 0 && 1663 isARMLowRegister(Reg)) { 1664 MachineBasicBlock *MBB = Br.MI->getParent(); 1665 MachineInstr *NewBR = 1666 BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc)) 1667 .addReg(Reg).addMBB(DestBB, Br.MI->getOperand(0).getTargetFlags()); 1668 CmpMI->eraseFromParent(); 1669 Br.MI->eraseFromParent(); 1670 Br.MI = NewBR; 1671 BBSizes[MBB->getNumber()] -= 2; 1672 AdjustBBOffsetsAfter(MBB, -2); 1673 ++NumCBZ; 1674 MadeChange = true; 1675 } 1676 } 1677 } 1678 } 1679 1680 return MadeChange; 1681} 1682 1683/// OptimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller 1684/// jumptables when it's possible. 1685bool ARMConstantIslands::OptimizeThumb2JumpTables(MachineFunction &MF) { 1686 bool MadeChange = false; 1687 1688 // FIXME: After the tables are shrunk, can we get rid some of the 1689 // constantpool tables? 1690 MachineJumpTableInfo *MJTI = MF.getJumpTableInfo(); 1691 if (MJTI == 0) return false; 1692 1693 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1694 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 1695 MachineInstr *MI = T2JumpTables[i]; 1696 const TargetInstrDesc &TID = MI->getDesc(); 1697 unsigned NumOps = TID.getNumOperands(); 1698 unsigned JTOpIdx = NumOps - (TID.isPredicable() ? 3 : 2); 1699 MachineOperand JTOP = MI->getOperand(JTOpIdx); 1700 unsigned JTI = JTOP.getIndex(); 1701 assert(JTI < JT.size()); 1702 1703 bool ByteOk = true; 1704 bool HalfWordOk = true; 1705 unsigned JTOffset = GetOffsetOf(MI) + 4; 1706 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1707 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 1708 MachineBasicBlock *MBB = JTBBs[j]; 1709 unsigned DstOffset = BBOffsets[MBB->getNumber()]; 1710 // Negative offset is not ok. FIXME: We should change BB layout to make 1711 // sure all the branches are forward. 1712 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2) 1713 ByteOk = false; 1714 unsigned TBHLimit = ((1<<16)-1)*2; 1715 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit) 1716 HalfWordOk = false; 1717 if (!ByteOk && !HalfWordOk) 1718 break; 1719 } 1720 1721 if (ByteOk || HalfWordOk) { 1722 MachineBasicBlock *MBB = MI->getParent(); 1723 unsigned BaseReg = MI->getOperand(0).getReg(); 1724 bool BaseRegKill = MI->getOperand(0).isKill(); 1725 if (!BaseRegKill) 1726 continue; 1727 unsigned IdxReg = MI->getOperand(1).getReg(); 1728 bool IdxRegKill = MI->getOperand(1).isKill(); 1729 1730 // Scan backwards to find the instruction that defines the base 1731 // register. Due to post-RA scheduling, we can't count on it 1732 // immediately preceding the branch instruction. 1733 MachineBasicBlock::iterator PrevI = MI; 1734 MachineBasicBlock::iterator B = MBB->begin(); 1735 while (PrevI != B && !PrevI->definesRegister(BaseReg)) 1736 --PrevI; 1737 1738 // If for some reason we didn't find it, we can't do anything, so 1739 // just skip this one. 1740 if (!PrevI->definesRegister(BaseReg)) 1741 continue; 1742 1743 MachineInstr *AddrMI = PrevI; 1744 bool OptOk = true; 1745 // Examine the instruction that calculates the jumptable entry address. 1746 // Make sure it only defines the base register and kills any uses 1747 // other than the index register. 1748 for (unsigned k = 0, eee = AddrMI->getNumOperands(); k != eee; ++k) { 1749 const MachineOperand &MO = AddrMI->getOperand(k); 1750 if (!MO.isReg() || !MO.getReg()) 1751 continue; 1752 if (MO.isDef() && MO.getReg() != BaseReg) { 1753 OptOk = false; 1754 break; 1755 } 1756 if (MO.isUse() && !MO.isKill() && MO.getReg() != IdxReg) { 1757 OptOk = false; 1758 break; 1759 } 1760 } 1761 if (!OptOk) 1762 continue; 1763 1764 // Now scan back again to find the tLEApcrel or t2LEApcrelJT instruction 1765 // that gave us the initial base register definition. 1766 for (--PrevI; PrevI != B && !PrevI->definesRegister(BaseReg); --PrevI) 1767 ; 1768 1769 // The instruction should be a tLEApcrel or t2LEApcrelJT; we want 1770 // to delete it as well. 1771 MachineInstr *LeaMI = PrevI; 1772 if ((LeaMI->getOpcode() != ARM::tLEApcrelJT && 1773 LeaMI->getOpcode() != ARM::t2LEApcrelJT) || 1774 LeaMI->getOperand(0).getReg() != BaseReg) 1775 OptOk = false; 1776 1777 if (!OptOk) 1778 continue; 1779 1780 unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT; 1781 MachineInstr *NewJTMI = BuildMI(MBB, MI->getDebugLoc(), TII->get(Opc)) 1782 .addReg(IdxReg, getKillRegState(IdxRegKill)) 1783 .addJumpTableIndex(JTI, JTOP.getTargetFlags()) 1784 .addImm(MI->getOperand(JTOpIdx+1).getImm()); 1785 // FIXME: Insert an "ALIGN" instruction to ensure the next instruction 1786 // is 2-byte aligned. For now, asm printer will fix it up. 1787 unsigned NewSize = TII->GetInstSizeInBytes(NewJTMI); 1788 unsigned OrigSize = TII->GetInstSizeInBytes(AddrMI); 1789 OrigSize += TII->GetInstSizeInBytes(LeaMI); 1790 OrigSize += TII->GetInstSizeInBytes(MI); 1791 1792 AddrMI->eraseFromParent(); 1793 LeaMI->eraseFromParent(); 1794 MI->eraseFromParent(); 1795 1796 int delta = OrigSize - NewSize; 1797 BBSizes[MBB->getNumber()] -= delta; 1798 AdjustBBOffsetsAfter(MBB, -delta); 1799 1800 ++NumTBs; 1801 MadeChange = true; 1802 } 1803 } 1804 1805 return MadeChange; 1806} 1807 1808/// ReorderThumb2JumpTables - Adjust the function's block layout to ensure that 1809/// jump tables always branch forwards, since that's what tbb and tbh need. 1810bool ARMConstantIslands::ReorderThumb2JumpTables(MachineFunction &MF) { 1811 bool MadeChange = false; 1812 1813 MachineJumpTableInfo *MJTI = MF.getJumpTableInfo(); 1814 if (MJTI == 0) return false; 1815 1816 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1817 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 1818 MachineInstr *MI = T2JumpTables[i]; 1819 const TargetInstrDesc &TID = MI->getDesc(); 1820 unsigned NumOps = TID.getNumOperands(); 1821 unsigned JTOpIdx = NumOps - (TID.isPredicable() ? 3 : 2); 1822 MachineOperand JTOP = MI->getOperand(JTOpIdx); 1823 unsigned JTI = JTOP.getIndex(); 1824 assert(JTI < JT.size()); 1825 1826 // We prefer if target blocks for the jump table come after the jump 1827 // instruction so we can use TB[BH]. Loop through the target blocks 1828 // and try to adjust them such that that's true. 1829 int JTNumber = MI->getParent()->getNumber(); 1830 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1831 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 1832 MachineBasicBlock *MBB = JTBBs[j]; 1833 int DTNumber = MBB->getNumber(); 1834 1835 if (DTNumber < JTNumber) { 1836 // The destination precedes the switch. Try to move the block forward 1837 // so we have a positive offset. 1838 MachineBasicBlock *NewBB = 1839 AdjustJTTargetBlockForward(MBB, MI->getParent()); 1840 if (NewBB) 1841 MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB); 1842 MadeChange = true; 1843 } 1844 } 1845 } 1846 1847 return MadeChange; 1848} 1849 1850MachineBasicBlock *ARMConstantIslands:: 1851AdjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) 1852{ 1853 MachineFunction &MF = *BB->getParent(); 1854 1855 // If the destination block is terminated by an unconditional branch, 1856 // try to move it; otherwise, create a new block following the jump 1857 // table that branches back to the actual target. This is a very simple 1858 // heuristic. FIXME: We can definitely improve it. 1859 MachineBasicBlock *TBB = 0, *FBB = 0; 1860 SmallVector<MachineOperand, 4> Cond; 1861 SmallVector<MachineOperand, 4> CondPrior; 1862 MachineFunction::iterator BBi = BB; 1863 MachineFunction::iterator OldPrior = prior(BBi); 1864 1865 // If the block terminator isn't analyzable, don't try to move the block 1866 bool B = TII->AnalyzeBranch(*BB, TBB, FBB, Cond); 1867 1868 // If the block ends in an unconditional branch, move it. The prior block 1869 // has to have an analyzable terminator for us to move this one. Be paranoid 1870 // and make sure we're not trying to move the entry block of the function. 1871 if (!B && Cond.empty() && BB != MF.begin() && 1872 !TII->AnalyzeBranch(*OldPrior, TBB, FBB, CondPrior)) { 1873 BB->moveAfter(JTBB); 1874 OldPrior->updateTerminator(); 1875 BB->updateTerminator(); 1876 // Update numbering to account for the block being moved. 1877 MF.RenumberBlocks(); 1878 ++NumJTMoved; 1879 return NULL; 1880 } 1881 1882 // Create a new MBB for the code after the jump BB. 1883 MachineBasicBlock *NewBB = 1884 MF.CreateMachineBasicBlock(JTBB->getBasicBlock()); 1885 MachineFunction::iterator MBBI = JTBB; ++MBBI; 1886 MF.insert(MBBI, NewBB); 1887 1888 // Add an unconditional branch from NewBB to BB. 1889 // There doesn't seem to be meaningful DebugInfo available; this doesn't 1890 // correspond directly to anything in the source. 1891 assert (isThumb2 && "Adjusting for TB[BH] but not in Thumb2?"); 1892 BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)).addMBB(BB); 1893 1894 // Update internal data structures to account for the newly inserted MBB. 1895 MF.RenumberBlocks(NewBB); 1896 1897 // Update the CFG. 1898 NewBB->addSuccessor(BB); 1899 JTBB->removeSuccessor(BB); 1900 JTBB->addSuccessor(NewBB); 1901 1902 ++NumJTInserted; 1903 return NewBB; 1904} 1905