ARMConstantIslandPass.cpp revision a26811ec83d00344a739d84f4b8584e5548b94ce
1//===-- ARMConstantIslandPass.cpp - ARM constant islands ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains a pass that splits the constant pool up into 'islands'
11// which are scattered through-out the function.  This is required due to the
12// limited pc-relative displacements that ARM has.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "arm-cp-islands"
17#include "ARM.h"
18#include "ARMMachineFunctionInfo.h"
19#include "ARMInstrInfo.h"
20#include "Thumb2InstrInfo.h"
21#include "MCTargetDesc/ARMAddressingModes.h"
22#include "llvm/CodeGen/MachineConstantPool.h"
23#include "llvm/CodeGen/MachineFunctionPass.h"
24#include "llvm/CodeGen/MachineJumpTableInfo.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/raw_ostream.h"
30#include "llvm/ADT/SmallSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/Support/CommandLine.h"
35#include <algorithm>
36using namespace llvm;
37
38STATISTIC(NumCPEs,       "Number of constpool entries");
39STATISTIC(NumSplit,      "Number of uncond branches inserted");
40STATISTIC(NumCBrFixed,   "Number of cond branches fixed");
41STATISTIC(NumUBrFixed,   "Number of uncond branches fixed");
42STATISTIC(NumTBs,        "Number of table branches generated");
43STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk");
44STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk");
45STATISTIC(NumCBZ,        "Number of CBZ / CBNZ formed");
46STATISTIC(NumJTMoved,    "Number of jump table destination blocks moved");
47STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted");
48
49
50static cl::opt<bool>
51AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true),
52          cl::desc("Adjust basic block layout to better use TB[BH]"));
53
54namespace {
55  /// ARMConstantIslands - Due to limited PC-relative displacements, ARM
56  /// requires constant pool entries to be scattered among the instructions
57  /// inside a function.  To do this, it completely ignores the normal LLVM
58  /// constant pool; instead, it places constants wherever it feels like with
59  /// special instructions.
60  ///
61  /// The terminology used in this pass includes:
62  ///   Islands - Clumps of constants placed in the function.
63  ///   Water   - Potential places where an island could be formed.
64  ///   CPE     - A constant pool entry that has been placed somewhere, which
65  ///             tracks a list of users.
66  class ARMConstantIslands : public MachineFunctionPass {
67    /// BasicBlockInfo - Information about the offset and size of a single
68    /// basic block.
69    struct BasicBlockInfo {
70      /// Offset - Distance from the beginning of the function to the beginning
71      /// of this basic block.
72      ///
73      /// The two-byte pads required for Thumb alignment are counted as part of
74      /// the following block.
75      unsigned Offset;
76
77      /// Size - Size of the basic block in bytes.  If the block contains
78      /// inline assembly, this is a worst case estimate.
79      ///
80      /// The two-byte pads required for Thumb alignment are counted as part of
81      /// the following block (i.e., the offset and size for a padded block
82      /// will both be ==2 mod 4).
83      unsigned Size;
84
85      /// Unalign - When non-zero, the block contains instructions (inline asm)
86      /// of unknown size.  The real size may be smaller than Size bytes by a
87      /// multiple of 1 << Unalign.
88      uint8_t Unalign;
89
90      /// PostAlign - When non-zero, the block terminator contains a .align
91      /// directive, so the end of the block is aligned to 1 << PostAlign
92      /// bytes.
93      uint8_t PostAlign;
94
95      BasicBlockInfo() : Offset(0), Size(0), Unalign(0), PostAlign(0) {}
96
97      /// Compute the offset immediately following this block.
98      unsigned postOffset() const { return Offset + Size; }
99    };
100
101    std::vector<BasicBlockInfo> BBInfo;
102
103    /// WaterList - A sorted list of basic blocks where islands could be placed
104    /// (i.e. blocks that don't fall through to the following block, due
105    /// to a return, unreachable, or unconditional branch).
106    std::vector<MachineBasicBlock*> WaterList;
107
108    /// NewWaterList - The subset of WaterList that was created since the
109    /// previous iteration by inserting unconditional branches.
110    SmallSet<MachineBasicBlock*, 4> NewWaterList;
111
112    typedef std::vector<MachineBasicBlock*>::iterator water_iterator;
113
114    /// CPUser - One user of a constant pool, keeping the machine instruction
115    /// pointer, the constant pool being referenced, and the max displacement
116    /// allowed from the instruction to the CP.  The HighWaterMark records the
117    /// highest basic block where a new CPEntry can be placed.  To ensure this
118    /// pass terminates, the CP entries are initially placed at the end of the
119    /// function and then move monotonically to lower addresses.  The
120    /// exception to this rule is when the current CP entry for a particular
121    /// CPUser is out of range, but there is another CP entry for the same
122    /// constant value in range.  We want to use the existing in-range CP
123    /// entry, but if it later moves out of range, the search for new water
124    /// should resume where it left off.  The HighWaterMark is used to record
125    /// that point.
126    struct CPUser {
127      MachineInstr *MI;
128      MachineInstr *CPEMI;
129      MachineBasicBlock *HighWaterMark;
130      unsigned MaxDisp;
131      bool NegOk;
132      bool IsSoImm;
133      CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
134             bool neg, bool soimm)
135        : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) {
136        HighWaterMark = CPEMI->getParent();
137      }
138    };
139
140    /// CPUsers - Keep track of all of the machine instructions that use various
141    /// constant pools and their max displacement.
142    std::vector<CPUser> CPUsers;
143
144    /// CPEntry - One per constant pool entry, keeping the machine instruction
145    /// pointer, the constpool index, and the number of CPUser's which
146    /// reference this entry.
147    struct CPEntry {
148      MachineInstr *CPEMI;
149      unsigned CPI;
150      unsigned RefCount;
151      CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
152        : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
153    };
154
155    /// CPEntries - Keep track of all of the constant pool entry machine
156    /// instructions. For each original constpool index (i.e. those that
157    /// existed upon entry to this pass), it keeps a vector of entries.
158    /// Original elements are cloned as we go along; the clones are
159    /// put in the vector of the original element, but have distinct CPIs.
160    std::vector<std::vector<CPEntry> > CPEntries;
161
162    /// ImmBranch - One per immediate branch, keeping the machine instruction
163    /// pointer, conditional or unconditional, the max displacement,
164    /// and (if isCond is true) the corresponding unconditional branch
165    /// opcode.
166    struct ImmBranch {
167      MachineInstr *MI;
168      unsigned MaxDisp : 31;
169      bool isCond : 1;
170      int UncondBr;
171      ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
172        : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
173    };
174
175    /// ImmBranches - Keep track of all the immediate branch instructions.
176    ///
177    std::vector<ImmBranch> ImmBranches;
178
179    /// PushPopMIs - Keep track of all the Thumb push / pop instructions.
180    ///
181    SmallVector<MachineInstr*, 4> PushPopMIs;
182
183    /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions.
184    SmallVector<MachineInstr*, 4> T2JumpTables;
185
186    /// HasFarJump - True if any far jump instruction has been emitted during
187    /// the branch fix up pass.
188    bool HasFarJump;
189
190    /// HasInlineAsm - True if the function contains inline assembly.
191    bool HasInlineAsm;
192
193    const ARMInstrInfo *TII;
194    const ARMSubtarget *STI;
195    ARMFunctionInfo *AFI;
196    bool isThumb;
197    bool isThumb1;
198    bool isThumb2;
199  public:
200    static char ID;
201    ARMConstantIslands() : MachineFunctionPass(ID) {}
202
203    virtual bool runOnMachineFunction(MachineFunction &MF);
204
205    virtual const char *getPassName() const {
206      return "ARM constant island placement and branch shortening pass";
207    }
208
209  private:
210    void DoInitialPlacement(MachineFunction &MF,
211                            std::vector<MachineInstr*> &CPEMIs);
212    CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
213    void JumpTableFunctionScan(MachineFunction &MF);
214    void InitialFunctionScan(MachineFunction &MF,
215                             const std::vector<MachineInstr*> &CPEMIs);
216    MachineBasicBlock *SplitBlockBeforeInstr(MachineInstr *MI);
217    void UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB);
218    void AdjustBBOffsetsAfter(MachineBasicBlock *BB, int delta);
219    bool DecrementOldEntry(unsigned CPI, MachineInstr* CPEMI);
220    int LookForExistingCPEntry(CPUser& U, unsigned UserOffset);
221    bool LookForWater(CPUser&U, unsigned UserOffset, water_iterator &WaterIter);
222    void CreateNewWater(unsigned CPUserIndex, unsigned UserOffset,
223                        MachineBasicBlock *&NewMBB);
224    bool HandleConstantPoolUser(MachineFunction &MF, unsigned CPUserIndex);
225    void RemoveDeadCPEMI(MachineInstr *CPEMI);
226    bool RemoveUnusedCPEntries();
227    bool CPEIsInRange(MachineInstr *MI, unsigned UserOffset,
228                      MachineInstr *CPEMI, unsigned Disp, bool NegOk,
229                      bool DoDump = false);
230    bool WaterIsInRange(unsigned UserOffset, MachineBasicBlock *Water,
231                        CPUser &U);
232    bool OffsetIsInRange(unsigned UserOffset, unsigned TrialOffset,
233                         unsigned Disp, bool NegativeOK, bool IsSoImm = false);
234    bool BBIsInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
235    bool FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br);
236    bool FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br);
237    bool FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br);
238    bool UndoLRSpillRestore();
239    bool OptimizeThumb2Instructions(MachineFunction &MF);
240    bool OptimizeThumb2Branches(MachineFunction &MF);
241    bool ReorderThumb2JumpTables(MachineFunction &MF);
242    bool OptimizeThumb2JumpTables(MachineFunction &MF);
243    MachineBasicBlock *AdjustJTTargetBlockForward(MachineBasicBlock *BB,
244                                                  MachineBasicBlock *JTBB);
245
246    void ComputeBlockSize(const MachineBasicBlock *MBB);
247    unsigned GetOffsetOf(MachineInstr *MI) const;
248    void dumpBBs();
249    void verify(MachineFunction &MF);
250  };
251  char ARMConstantIslands::ID = 0;
252}
253
254/// verify - check BBOffsets, BBSizes, alignment of islands
255void ARMConstantIslands::verify(MachineFunction &MF) {
256  for (unsigned i = 1, e = BBInfo.size(); i != e; ++i)
257    assert(BBInfo[i-1].postOffset() == BBInfo[i].Offset);
258  if (!isThumb)
259    return;
260#ifndef NDEBUG
261  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
262       MBBI != E; ++MBBI) {
263    MachineBasicBlock *MBB = MBBI;
264    if (!MBB->empty() &&
265        MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) {
266      unsigned MBBId = MBB->getNumber();
267      assert(HasInlineAsm ||
268             (BBInfo[MBBId].Offset%4 == 0 && BBInfo[MBBId].Size%4 == 0) ||
269             (BBInfo[MBBId].Offset%4 != 0 && BBInfo[MBBId].Size%4 != 0));
270    }
271  }
272  for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
273    CPUser &U = CPUsers[i];
274    unsigned UserOffset = GetOffsetOf(U.MI) + (isThumb ? 4 : 8);
275    unsigned CPEOffset  = GetOffsetOf(U.CPEMI);
276    unsigned Disp = UserOffset < CPEOffset ? CPEOffset - UserOffset :
277      UserOffset - CPEOffset;
278    assert(Disp <= U.MaxDisp || "Constant pool entry out of range!");
279  }
280#endif
281}
282
283/// print block size and offset information - debugging
284void ARMConstantIslands::dumpBBs() {
285  for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
286    DEBUG(errs() << "block " << J << " offset " << BBInfo[J].Offset
287                 << " size " << BBInfo[J].Size << "\n");
288  }
289}
290
291/// createARMConstantIslandPass - returns an instance of the constpool
292/// island pass.
293FunctionPass *llvm::createARMConstantIslandPass() {
294  return new ARMConstantIslands();
295}
296
297bool ARMConstantIslands::runOnMachineFunction(MachineFunction &MF) {
298  MachineConstantPool &MCP = *MF.getConstantPool();
299
300  TII = (const ARMInstrInfo*)MF.getTarget().getInstrInfo();
301  AFI = MF.getInfo<ARMFunctionInfo>();
302  STI = &MF.getTarget().getSubtarget<ARMSubtarget>();
303
304  isThumb = AFI->isThumbFunction();
305  isThumb1 = AFI->isThumb1OnlyFunction();
306  isThumb2 = AFI->isThumb2Function();
307
308  HasFarJump = false;
309  HasInlineAsm = false;
310
311  // Renumber all of the machine basic blocks in the function, guaranteeing that
312  // the numbers agree with the position of the block in the function.
313  MF.RenumberBlocks();
314
315  // Try to reorder and otherwise adjust the block layout to make good use
316  // of the TB[BH] instructions.
317  bool MadeChange = false;
318  if (isThumb2 && AdjustJumpTableBlocks) {
319    JumpTableFunctionScan(MF);
320    MadeChange |= ReorderThumb2JumpTables(MF);
321    // Data is out of date, so clear it. It'll be re-computed later.
322    T2JumpTables.clear();
323    // Blocks may have shifted around. Keep the numbering up to date.
324    MF.RenumberBlocks();
325  }
326
327  // Thumb1 functions containing constant pools get 4-byte alignment.
328  // This is so we can keep exact track of where the alignment padding goes.
329
330  // ARM and Thumb2 functions need to be 4-byte aligned.
331  if (!isThumb1)
332    MF.EnsureAlignment(2);  // 2 = log2(4)
333
334  // Perform the initial placement of the constant pool entries.  To start with,
335  // we put them all at the end of the function.
336  std::vector<MachineInstr*> CPEMIs;
337  if (!MCP.isEmpty()) {
338    DoInitialPlacement(MF, CPEMIs);
339    if (isThumb1)
340      MF.EnsureAlignment(2);  // 2 = log2(4)
341  }
342
343  /// The next UID to take is the first unused one.
344  AFI->initPICLabelUId(CPEMIs.size());
345
346  // Do the initial scan of the function, building up information about the
347  // sizes of each block, the location of all the water, and finding all of the
348  // constant pool users.
349  InitialFunctionScan(MF, CPEMIs);
350  CPEMIs.clear();
351  DEBUG(dumpBBs());
352
353
354  /// Remove dead constant pool entries.
355  MadeChange |= RemoveUnusedCPEntries();
356
357  // Iteratively place constant pool entries and fix up branches until there
358  // is no change.
359  unsigned NoCPIters = 0, NoBRIters = 0;
360  while (true) {
361    bool CPChange = false;
362    for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
363      CPChange |= HandleConstantPoolUser(MF, i);
364    if (CPChange && ++NoCPIters > 30)
365      llvm_unreachable("Constant Island pass failed to converge!");
366    DEBUG(dumpBBs());
367
368    // Clear NewWaterList now.  If we split a block for branches, it should
369    // appear as "new water" for the next iteration of constant pool placement.
370    NewWaterList.clear();
371
372    bool BRChange = false;
373    for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
374      BRChange |= FixUpImmediateBr(MF, ImmBranches[i]);
375    if (BRChange && ++NoBRIters > 30)
376      llvm_unreachable("Branch Fix Up pass failed to converge!");
377    DEBUG(dumpBBs());
378
379    if (!CPChange && !BRChange)
380      break;
381    MadeChange = true;
382  }
383
384  // Shrink 32-bit Thumb2 branch, load, and store instructions.
385  if (isThumb2 && !STI->prefers32BitThumb())
386    MadeChange |= OptimizeThumb2Instructions(MF);
387
388  // After a while, this might be made debug-only, but it is not expensive.
389  verify(MF);
390
391  // If LR has been forced spilled and no far jump (i.e. BL) has been issued,
392  // undo the spill / restore of LR if possible.
393  if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump())
394    MadeChange |= UndoLRSpillRestore();
395
396  // Save the mapping between original and cloned constpool entries.
397  for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
398    for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) {
399      const CPEntry & CPE = CPEntries[i][j];
400      AFI->recordCPEClone(i, CPE.CPI);
401    }
402  }
403
404  DEBUG(errs() << '\n'; dumpBBs());
405
406  BBInfo.clear();
407  WaterList.clear();
408  CPUsers.clear();
409  CPEntries.clear();
410  ImmBranches.clear();
411  PushPopMIs.clear();
412  T2JumpTables.clear();
413
414  return MadeChange;
415}
416
417/// DoInitialPlacement - Perform the initial placement of the constant pool
418/// entries.  To start with, we put them all at the end of the function.
419void ARMConstantIslands::DoInitialPlacement(MachineFunction &MF,
420                                        std::vector<MachineInstr*> &CPEMIs) {
421  // Create the basic block to hold the CPE's.
422  MachineBasicBlock *BB = MF.CreateMachineBasicBlock();
423  MF.push_back(BB);
424
425  // Mark the basic block as 4-byte aligned as required by the const-pool.
426  BB->setAlignment(2);
427
428  // Add all of the constants from the constant pool to the end block, use an
429  // identity mapping of CPI's to CPE's.
430  const std::vector<MachineConstantPoolEntry> &CPs =
431    MF.getConstantPool()->getConstants();
432
433  const TargetData &TD = *MF.getTarget().getTargetData();
434  for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
435    unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
436    // Verify that all constant pool entries are a multiple of 4 bytes.  If not,
437    // we would have to pad them out or something so that instructions stay
438    // aligned.
439    assert((Size & 3) == 0 && "CP Entry not multiple of 4 bytes!");
440    MachineInstr *CPEMI =
441      BuildMI(BB, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
442        .addImm(i).addConstantPoolIndex(i).addImm(Size);
443    CPEMIs.push_back(CPEMI);
444
445    // Add a new CPEntry, but no corresponding CPUser yet.
446    std::vector<CPEntry> CPEs;
447    CPEs.push_back(CPEntry(CPEMI, i));
448    CPEntries.push_back(CPEs);
449    ++NumCPEs;
450    DEBUG(errs() << "Moved CPI#" << i << " to end of function as #" << i
451                 << "\n");
452  }
453}
454
455/// BBHasFallthrough - Return true if the specified basic block can fallthrough
456/// into the block immediately after it.
457static bool BBHasFallthrough(MachineBasicBlock *MBB) {
458  // Get the next machine basic block in the function.
459  MachineFunction::iterator MBBI = MBB;
460  // Can't fall off end of function.
461  if (llvm::next(MBBI) == MBB->getParent()->end())
462    return false;
463
464  MachineBasicBlock *NextBB = llvm::next(MBBI);
465  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
466       E = MBB->succ_end(); I != E; ++I)
467    if (*I == NextBB)
468      return true;
469
470  return false;
471}
472
473/// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
474/// look up the corresponding CPEntry.
475ARMConstantIslands::CPEntry
476*ARMConstantIslands::findConstPoolEntry(unsigned CPI,
477                                        const MachineInstr *CPEMI) {
478  std::vector<CPEntry> &CPEs = CPEntries[CPI];
479  // Number of entries per constpool index should be small, just do a
480  // linear search.
481  for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
482    if (CPEs[i].CPEMI == CPEMI)
483      return &CPEs[i];
484  }
485  return NULL;
486}
487
488/// JumpTableFunctionScan - Do a scan of the function, building up
489/// information about the sizes of each block and the locations of all
490/// the jump tables.
491void ARMConstantIslands::JumpTableFunctionScan(MachineFunction &MF) {
492  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
493       MBBI != E; ++MBBI) {
494    MachineBasicBlock &MBB = *MBBI;
495
496    for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
497         I != E; ++I)
498      if (I->getDesc().isBranch() && I->getOpcode() == ARM::t2BR_JT)
499        T2JumpTables.push_back(I);
500  }
501}
502
503/// InitialFunctionScan - Do the initial scan of the function, building up
504/// information about the sizes of each block, the location of all the water,
505/// and finding all of the constant pool users.
506void ARMConstantIslands::InitialFunctionScan(MachineFunction &MF,
507                                 const std::vector<MachineInstr*> &CPEMIs) {
508  // First thing, see if the function has any inline assembly in it. If so,
509  // we have to be conservative about alignment assumptions, as we don't
510  // know for sure the size of any instructions in the inline assembly.
511  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
512       MBBI != E; ++MBBI) {
513    MachineBasicBlock &MBB = *MBBI;
514    for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
515         I != E; ++I)
516      if (I->getOpcode() == ARM::INLINEASM)
517        HasInlineAsm = true;
518  }
519
520  BBInfo.clear();
521  BBInfo.resize(MF.getNumBlockIDs());
522
523  // Now go back through the instructions and build up our data structures.
524  unsigned Offset = 0;
525  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
526       MBBI != E; ++MBBI) {
527    MachineBasicBlock &MBB = *MBBI;
528    BasicBlockInfo &BBI = BBInfo[MBB.getNumber()];
529    BBI.Offset = Offset;
530
531    // If this block doesn't fall through into the next MBB, then this is
532    // 'water' that a constant pool island could be placed.
533    if (!BBHasFallthrough(&MBB))
534      WaterList.push_back(&MBB);
535
536    unsigned MBBSize = 0;
537    for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
538         I != E; ++I) {
539      if (I->isDebugValue())
540        continue;
541      // Add instruction size to MBBSize.
542      MBBSize += TII->GetInstSizeInBytes(I);
543
544      // For inline asm, GetInstSizeInBytes returns a conservative estimate.
545      // The actual size may be smaller, but still a multiple of the instr size.
546      if (I->isInlineAsm())
547        BBI.Unalign = isThumb ? 1 : 2;
548
549      int Opc = I->getOpcode();
550      if (I->getDesc().isBranch()) {
551        bool isCond = false;
552        unsigned Bits = 0;
553        unsigned Scale = 1;
554        int UOpc = Opc;
555        switch (Opc) {
556        default:
557          continue;  // Ignore other JT branches
558        case ARM::tBR_JTr:
559          // A Thumb1 table jump may involve padding; for the offsets to
560          // be right, functions containing these must be 4-byte aligned.
561          // tBR_JTr expands to a mov pc followed by .align 2 and then the jump
562          // table entries. So this code checks whether offset of tBR_JTr + 2
563          // is aligned.  That is held in Offset+MBBSize, which already has
564          // 2 added in for the size of the mov pc instruction.
565          MF.EnsureAlignment(2U);
566          BBI.PostAlign = 2;
567          if ((Offset+MBBSize)%4 != 0 || HasInlineAsm)
568            // FIXME: Add a pseudo ALIGN instruction instead.
569            MBBSize += 2;           // padding
570          continue;   // Does not get an entry in ImmBranches
571        case ARM::t2BR_JT:
572          T2JumpTables.push_back(I);
573          continue;   // Does not get an entry in ImmBranches
574        case ARM::Bcc:
575          isCond = true;
576          UOpc = ARM::B;
577          // Fallthrough
578        case ARM::B:
579          Bits = 24;
580          Scale = 4;
581          break;
582        case ARM::tBcc:
583          isCond = true;
584          UOpc = ARM::tB;
585          Bits = 8;
586          Scale = 2;
587          break;
588        case ARM::tB:
589          Bits = 11;
590          Scale = 2;
591          break;
592        case ARM::t2Bcc:
593          isCond = true;
594          UOpc = ARM::t2B;
595          Bits = 20;
596          Scale = 2;
597          break;
598        case ARM::t2B:
599          Bits = 24;
600          Scale = 2;
601          break;
602        }
603
604        // Record this immediate branch.
605        unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
606        ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc));
607      }
608
609      if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET)
610        PushPopMIs.push_back(I);
611
612      if (Opc == ARM::CONSTPOOL_ENTRY)
613        continue;
614
615      // Scan the instructions for constant pool operands.
616      for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
617        if (I->getOperand(op).isCPI()) {
618          // We found one.  The addressing mode tells us the max displacement
619          // from the PC that this instruction permits.
620
621          // Basic size info comes from the TSFlags field.
622          unsigned Bits = 0;
623          unsigned Scale = 1;
624          bool NegOk = false;
625          bool IsSoImm = false;
626
627          switch (Opc) {
628          default:
629            llvm_unreachable("Unknown addressing mode for CP reference!");
630            break;
631
632          // Taking the address of a CP entry.
633          case ARM::LEApcrel:
634            // This takes a SoImm, which is 8 bit immediate rotated. We'll
635            // pretend the maximum offset is 255 * 4. Since each instruction
636            // 4 byte wide, this is always correct. We'll check for other
637            // displacements that fits in a SoImm as well.
638            Bits = 8;
639            Scale = 4;
640            NegOk = true;
641            IsSoImm = true;
642            break;
643          case ARM::t2LEApcrel:
644            Bits = 12;
645            NegOk = true;
646            break;
647          case ARM::tLEApcrel:
648            Bits = 8;
649            Scale = 4;
650            break;
651
652          case ARM::LDRi12:
653          case ARM::LDRcp:
654          case ARM::t2LDRpci:
655            Bits = 12;  // +-offset_12
656            NegOk = true;
657            break;
658
659          case ARM::tLDRpci:
660            Bits = 8;
661            Scale = 4;  // +(offset_8*4)
662            break;
663
664          case ARM::VLDRD:
665          case ARM::VLDRS:
666            Bits = 8;
667            Scale = 4;  // +-(offset_8*4)
668            NegOk = true;
669            break;
670          }
671
672          // Remember that this is a user of a CP entry.
673          unsigned CPI = I->getOperand(op).getIndex();
674          MachineInstr *CPEMI = CPEMIs[CPI];
675          unsigned MaxOffs = ((1 << Bits)-1) * Scale;
676          CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm));
677
678          // Increment corresponding CPEntry reference count.
679          CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
680          assert(CPE && "Cannot find a corresponding CPEntry!");
681          CPE->RefCount++;
682
683          // Instructions can only use one CP entry, don't bother scanning the
684          // rest of the operands.
685          break;
686        }
687    }
688
689    // In thumb mode, if this block is a constpool island, we may need padding
690    // so it's aligned on 4 byte boundary.
691    if (isThumb &&
692        !MBB.empty() &&
693        MBB.begin()->getOpcode() == ARM::CONSTPOOL_ENTRY &&
694        ((Offset%4) != 0 || HasInlineAsm))
695      MBBSize += 2;
696
697    BBI.Size = MBBSize;
698    Offset += MBBSize;
699  }
700}
701
702/// ComputeBlockSize - Compute the size and some alignment information for MBB.
703/// This function updates BBInfo directly.
704void ARMConstantIslands::ComputeBlockSize(const MachineBasicBlock *MBB) {
705  BasicBlockInfo &BBI = BBInfo[MBB->getNumber()];
706  BBI.Size = 0;
707  BBI.Unalign = 0;
708  BBI.PostAlign = 0;
709
710  for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
711       I != E; ++I) {
712    BBI.Size += TII->GetInstSizeInBytes(I);
713    // For inline asm, GetInstSizeInBytes returns a conservative estimate.
714    // The actual size may be smaller, but still a multiple of the instr size.
715    if (I->isInlineAsm())
716      BBI.Unalign = isThumb ? 1 : 2;
717  }
718
719  // tBR_JTr contains a .align 2 directive.
720  if (!MBB->empty() && MBB->back().getOpcode() == ARM::tBR_JTr)
721    BBI.PostAlign = 2;
722}
723
724/// GetOffsetOf - Return the current offset of the specified machine instruction
725/// from the start of the function.  This offset changes as stuff is moved
726/// around inside the function.
727unsigned ARMConstantIslands::GetOffsetOf(MachineInstr *MI) const {
728  MachineBasicBlock *MBB = MI->getParent();
729
730  // The offset is composed of two things: the sum of the sizes of all MBB's
731  // before this instruction's block, and the offset from the start of the block
732  // it is in.
733  unsigned Offset = BBInfo[MBB->getNumber()].Offset;
734
735  // If we're looking for a CONSTPOOL_ENTRY in Thumb, see if this block has
736  // alignment padding, and compensate if so.
737  if (isThumb &&
738      MI->getOpcode() == ARM::CONSTPOOL_ENTRY &&
739      (Offset%4 != 0 || HasInlineAsm))
740    Offset += 2;
741
742  // Sum instructions before MI in MBB.
743  for (MachineBasicBlock::iterator I = MBB->begin(); ; ++I) {
744    assert(I != MBB->end() && "Didn't find MI in its own basic block?");
745    if (&*I == MI) return Offset;
746    Offset += TII->GetInstSizeInBytes(I);
747  }
748}
749
750/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
751/// ID.
752static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
753                              const MachineBasicBlock *RHS) {
754  return LHS->getNumber() < RHS->getNumber();
755}
756
757/// UpdateForInsertedWaterBlock - When a block is newly inserted into the
758/// machine function, it upsets all of the block numbers.  Renumber the blocks
759/// and update the arrays that parallel this numbering.
760void ARMConstantIslands::UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
761  // Renumber the MBB's to keep them consecutive.
762  NewBB->getParent()->RenumberBlocks(NewBB);
763
764  // Insert an entry into BBInfo to align it properly with the (newly
765  // renumbered) block numbers.
766  BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
767
768  // Next, update WaterList.  Specifically, we need to add NewMBB as having
769  // available water after it.
770  water_iterator IP =
771    std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
772                     CompareMBBNumbers);
773  WaterList.insert(IP, NewBB);
774}
775
776
777/// Split the basic block containing MI into two blocks, which are joined by
778/// an unconditional branch.  Update data structures and renumber blocks to
779/// account for this change and returns the newly created block.
780MachineBasicBlock *ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr *MI) {
781  MachineBasicBlock *OrigBB = MI->getParent();
782  MachineFunction &MF = *OrigBB->getParent();
783
784  // Create a new MBB for the code after the OrigBB.
785  MachineBasicBlock *NewBB =
786    MF.CreateMachineBasicBlock(OrigBB->getBasicBlock());
787  MachineFunction::iterator MBBI = OrigBB; ++MBBI;
788  MF.insert(MBBI, NewBB);
789
790  // Splice the instructions starting with MI over to NewBB.
791  NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
792
793  // Add an unconditional branch from OrigBB to NewBB.
794  // Note the new unconditional branch is not being recorded.
795  // There doesn't seem to be meaningful DebugInfo available; this doesn't
796  // correspond to anything in the source.
797  unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B;
798  if (!isThumb)
799    BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB);
800  else
801    BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB)
802            .addImm(ARMCC::AL).addReg(0);
803  ++NumSplit;
804
805  // Update the CFG.  All succs of OrigBB are now succs of NewBB.
806  NewBB->transferSuccessors(OrigBB);
807
808  // OrigBB branches to NewBB.
809  OrigBB->addSuccessor(NewBB);
810
811  // Update internal data structures to account for the newly inserted MBB.
812  // This is almost the same as UpdateForInsertedWaterBlock, except that
813  // the Water goes after OrigBB, not NewBB.
814  MF.RenumberBlocks(NewBB);
815
816  // Insert an entry into BBInfo to align it properly with the (newly
817  // renumbered) block numbers.
818  BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
819
820  // Next, update WaterList.  Specifically, we need to add OrigMBB as having
821  // available water after it (but not if it's already there, which happens
822  // when splitting before a conditional branch that is followed by an
823  // unconditional branch - in that case we want to insert NewBB).
824  water_iterator IP =
825    std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
826                     CompareMBBNumbers);
827  MachineBasicBlock* WaterBB = *IP;
828  if (WaterBB == OrigBB)
829    WaterList.insert(llvm::next(IP), NewBB);
830  else
831    WaterList.insert(IP, OrigBB);
832  NewWaterList.insert(OrigBB);
833
834  unsigned OrigBBI = OrigBB->getNumber();
835  unsigned NewBBI = NewBB->getNumber();
836
837  int delta = isThumb1 ? 2 : 4;
838
839  // Figure out how large the OrigBB is.  As the first half of the original
840  // block, it cannot contain a tablejump.  The size includes
841  // the new jump we added.  (It should be possible to do this without
842  // recounting everything, but it's very confusing, and this is rarely
843  // executed.)
844  ComputeBlockSize(OrigBB);
845
846  // ...and adjust BBOffsets for NewBB accordingly.
847  BBInfo[NewBBI].Offset = BBInfo[OrigBBI].postOffset();
848
849  // Figure out how large the NewMBB is.  As the second half of the original
850  // block, it may contain a tablejump.
851  ComputeBlockSize(NewBB);
852
853  MachineInstr* ThumbJTMI = prior(NewBB->end());
854  if (ThumbJTMI->getOpcode() == ARM::tBR_JTr) {
855    // We've added another 2-byte instruction before this tablejump, which
856    // means we will always need padding if we didn't before, and vice versa.
857
858    // The original offset of the jump instruction was:
859    unsigned OrigOffset = BBInfo[OrigBBI].postOffset() - delta;
860    if (OrigOffset%4 == 0) {
861      // We had padding before and now we don't.  No net change in code size.
862      delta = 0;
863    } else {
864      // We didn't have padding before and now we do.
865      BBInfo[NewBBI].Size += 2;
866      delta = 4;
867    }
868  }
869
870  // All BBOffsets following these blocks must be modified.
871  if (delta)
872    AdjustBBOffsetsAfter(NewBB, delta);
873
874  return NewBB;
875}
876
877/// OffsetIsInRange - Checks whether UserOffset (the location of a constant pool
878/// reference) is within MaxDisp of TrialOffset (a proposed location of a
879/// constant pool entry).
880bool ARMConstantIslands::OffsetIsInRange(unsigned UserOffset,
881                                         unsigned TrialOffset, unsigned MaxDisp,
882                                         bool NegativeOK, bool IsSoImm) {
883  // On Thumb offsets==2 mod 4 are rounded down by the hardware for
884  // purposes of the displacement computation; compensate for that here.
885  // Effectively, the valid range of displacements is 2 bytes smaller for such
886  // references.
887  unsigned TotalAdj = 0;
888  if (isThumb && UserOffset%4 !=0) {
889    UserOffset -= 2;
890    TotalAdj = 2;
891  }
892  // CPEs will be rounded up to a multiple of 4.
893  if (isThumb && TrialOffset%4 != 0) {
894    TrialOffset += 2;
895    TotalAdj += 2;
896  }
897
898  // In Thumb2 mode, later branch adjustments can shift instructions up and
899  // cause alignment change. In the worst case scenario this can cause the
900  // user's effective address to be subtracted by 2 and the CPE's address to
901  // be plus 2.
902  if (isThumb2 && TotalAdj != 4)
903    MaxDisp -= (4 - TotalAdj);
904
905  if (UserOffset <= TrialOffset) {
906    // User before the Trial.
907    if (TrialOffset - UserOffset <= MaxDisp)
908      return true;
909    // FIXME: Make use full range of soimm values.
910  } else if (NegativeOK) {
911    if (UserOffset - TrialOffset <= MaxDisp)
912      return true;
913    // FIXME: Make use full range of soimm values.
914  }
915  return false;
916}
917
918/// WaterIsInRange - Returns true if a CPE placed after the specified
919/// Water (a basic block) will be in range for the specific MI.
920
921bool ARMConstantIslands::WaterIsInRange(unsigned UserOffset,
922                                        MachineBasicBlock* Water, CPUser &U) {
923  unsigned MaxDisp = U.MaxDisp;
924  unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset();
925
926  // If the CPE is to be inserted before the instruction, that will raise
927  // the offset of the instruction.
928  if (CPEOffset < UserOffset)
929    UserOffset += U.CPEMI->getOperand(2).getImm();
930
931  return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, U.NegOk, U.IsSoImm);
932}
933
934/// CPEIsInRange - Returns true if the distance between specific MI and
935/// specific ConstPool entry instruction can fit in MI's displacement field.
936bool ARMConstantIslands::CPEIsInRange(MachineInstr *MI, unsigned UserOffset,
937                                      MachineInstr *CPEMI, unsigned MaxDisp,
938                                      bool NegOk, bool DoDump) {
939  unsigned CPEOffset  = GetOffsetOf(CPEMI);
940  assert((CPEOffset%4 == 0 || HasInlineAsm) && "Misaligned CPE");
941
942  if (DoDump) {
943    DEBUG(errs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
944                 << " max delta=" << MaxDisp
945                 << " insn address=" << UserOffset
946                 << " CPE address=" << CPEOffset
947                 << " offset=" << int(CPEOffset-UserOffset) << "\t" << *MI);
948  }
949
950  return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
951}
952
953#ifndef NDEBUG
954/// BBIsJumpedOver - Return true of the specified basic block's only predecessor
955/// unconditionally branches to its only successor.
956static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
957  if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
958    return false;
959
960  MachineBasicBlock *Succ = *MBB->succ_begin();
961  MachineBasicBlock *Pred = *MBB->pred_begin();
962  MachineInstr *PredMI = &Pred->back();
963  if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB
964      || PredMI->getOpcode() == ARM::t2B)
965    return PredMI->getOperand(0).getMBB() == Succ;
966  return false;
967}
968#endif // NDEBUG
969
970void ARMConstantIslands::AdjustBBOffsetsAfter(MachineBasicBlock *BB,
971                                              int delta) {
972  MachineFunction::iterator MBBI = BB; MBBI = llvm::next(MBBI);
973  for(unsigned i = BB->getNumber()+1, e = BB->getParent()->getNumBlockIDs();
974      i < e; ++i) {
975    BBInfo[i].Offset += delta;
976    // If some existing blocks have padding, adjust the padding as needed, a
977    // bit tricky.  delta can be negative so don't use % on that.
978    if (!isThumb)
979      continue;
980    MachineBasicBlock *MBB = MBBI;
981    if (!MBB->empty() && !HasInlineAsm) {
982      // Constant pool entries require padding.
983      if (MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) {
984        unsigned OldOffset = BBInfo[i].Offset - delta;
985        if ((OldOffset%4) == 0 && (BBInfo[i].Offset%4) != 0) {
986          // add new padding
987          BBInfo[i].Size += 2;
988          delta += 2;
989        } else if ((OldOffset%4) != 0 && (BBInfo[i].Offset%4) == 0) {
990          // remove existing padding
991          BBInfo[i].Size -= 2;
992          delta -= 2;
993        }
994      }
995      // Thumb1 jump tables require padding.  They should be at the end;
996      // following unconditional branches are removed by AnalyzeBranch.
997      // tBR_JTr expands to a mov pc followed by .align 2 and then the jump
998      // table entries. So this code checks whether offset of tBR_JTr
999      // is aligned; if it is, the offset of the jump table following the
1000      // instruction will not be aligned, and we need padding.
1001      MachineInstr *ThumbJTMI = prior(MBB->end());
1002      if (ThumbJTMI->getOpcode() == ARM::tBR_JTr) {
1003        unsigned NewMIOffset = GetOffsetOf(ThumbJTMI);
1004        unsigned OldMIOffset = NewMIOffset - delta;
1005        if ((OldMIOffset%4) == 0 && (NewMIOffset%4) != 0) {
1006          // remove existing padding
1007          BBInfo[i].Size -= 2;
1008          delta -= 2;
1009        } else if ((OldMIOffset%4) != 0 && (NewMIOffset%4) == 0) {
1010          // add new padding
1011          BBInfo[i].Size += 2;
1012          delta += 2;
1013        }
1014      }
1015      if (delta==0)
1016        return;
1017    }
1018    MBBI = llvm::next(MBBI);
1019  }
1020}
1021
1022/// DecrementOldEntry - find the constant pool entry with index CPI
1023/// and instruction CPEMI, and decrement its refcount.  If the refcount
1024/// becomes 0 remove the entry and instruction.  Returns true if we removed
1025/// the entry, false if we didn't.
1026
1027bool ARMConstantIslands::DecrementOldEntry(unsigned CPI, MachineInstr *CPEMI) {
1028  // Find the old entry. Eliminate it if it is no longer used.
1029  CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
1030  assert(CPE && "Unexpected!");
1031  if (--CPE->RefCount == 0) {
1032    RemoveDeadCPEMI(CPEMI);
1033    CPE->CPEMI = NULL;
1034    --NumCPEs;
1035    return true;
1036  }
1037  return false;
1038}
1039
1040/// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1041/// if not, see if an in-range clone of the CPE is in range, and if so,
1042/// change the data structures so the user references the clone.  Returns:
1043/// 0 = no existing entry found
1044/// 1 = entry found, and there were no code insertions or deletions
1045/// 2 = entry found, and there were code insertions or deletions
1046int ARMConstantIslands::LookForExistingCPEntry(CPUser& U, unsigned UserOffset)
1047{
1048  MachineInstr *UserMI = U.MI;
1049  MachineInstr *CPEMI  = U.CPEMI;
1050
1051  // Check to see if the CPE is already in-range.
1052  if (CPEIsInRange(UserMI, UserOffset, CPEMI, U.MaxDisp, U.NegOk, true)) {
1053    DEBUG(errs() << "In range\n");
1054    return 1;
1055  }
1056
1057  // No.  Look for previously created clones of the CPE that are in range.
1058  unsigned CPI = CPEMI->getOperand(1).getIndex();
1059  std::vector<CPEntry> &CPEs = CPEntries[CPI];
1060  for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1061    // We already tried this one
1062    if (CPEs[i].CPEMI == CPEMI)
1063      continue;
1064    // Removing CPEs can leave empty entries, skip
1065    if (CPEs[i].CPEMI == NULL)
1066      continue;
1067    if (CPEIsInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.MaxDisp, U.NegOk)) {
1068      DEBUG(errs() << "Replacing CPE#" << CPI << " with CPE#"
1069                   << CPEs[i].CPI << "\n");
1070      // Point the CPUser node to the replacement
1071      U.CPEMI = CPEs[i].CPEMI;
1072      // Change the CPI in the instruction operand to refer to the clone.
1073      for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1074        if (UserMI->getOperand(j).isCPI()) {
1075          UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1076          break;
1077        }
1078      // Adjust the refcount of the clone...
1079      CPEs[i].RefCount++;
1080      // ...and the original.  If we didn't remove the old entry, none of the
1081      // addresses changed, so we don't need another pass.
1082      return DecrementOldEntry(CPI, CPEMI) ? 2 : 1;
1083    }
1084  }
1085  return 0;
1086}
1087
1088/// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
1089/// the specific unconditional branch instruction.
1090static inline unsigned getUnconditionalBrDisp(int Opc) {
1091  switch (Opc) {
1092  case ARM::tB:
1093    return ((1<<10)-1)*2;
1094  case ARM::t2B:
1095    return ((1<<23)-1)*2;
1096  default:
1097    break;
1098  }
1099
1100  return ((1<<23)-1)*4;
1101}
1102
1103/// LookForWater - Look for an existing entry in the WaterList in which
1104/// we can place the CPE referenced from U so it's within range of U's MI.
1105/// Returns true if found, false if not.  If it returns true, WaterIter
1106/// is set to the WaterList entry.  For Thumb, prefer water that will not
1107/// introduce padding to water that will.  To ensure that this pass
1108/// terminates, the CPE location for a particular CPUser is only allowed to
1109/// move to a lower address, so search backward from the end of the list and
1110/// prefer the first water that is in range.
1111bool ARMConstantIslands::LookForWater(CPUser &U, unsigned UserOffset,
1112                                      water_iterator &WaterIter) {
1113  if (WaterList.empty())
1114    return false;
1115
1116  bool FoundWaterThatWouldPad = false;
1117  water_iterator IPThatWouldPad;
1118  for (water_iterator IP = prior(WaterList.end()),
1119         B = WaterList.begin();; --IP) {
1120    MachineBasicBlock* WaterBB = *IP;
1121    // Check if water is in range and is either at a lower address than the
1122    // current "high water mark" or a new water block that was created since
1123    // the previous iteration by inserting an unconditional branch.  In the
1124    // latter case, we want to allow resetting the high water mark back to
1125    // this new water since we haven't seen it before.  Inserting branches
1126    // should be relatively uncommon and when it does happen, we want to be
1127    // sure to take advantage of it for all the CPEs near that block, so that
1128    // we don't insert more branches than necessary.
1129    if (WaterIsInRange(UserOffset, WaterBB, U) &&
1130        (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
1131         NewWaterList.count(WaterBB))) {
1132      unsigned WBBId = WaterBB->getNumber();
1133      if (isThumb && BBInfo[WBBId].postOffset()%4 != 0) {
1134        // This is valid Water, but would introduce padding.  Remember
1135        // it in case we don't find any Water that doesn't do this.
1136        if (!FoundWaterThatWouldPad) {
1137          FoundWaterThatWouldPad = true;
1138          IPThatWouldPad = IP;
1139        }
1140      } else {
1141        WaterIter = IP;
1142        return true;
1143      }
1144    }
1145    if (IP == B)
1146      break;
1147  }
1148  if (FoundWaterThatWouldPad) {
1149    WaterIter = IPThatWouldPad;
1150    return true;
1151  }
1152  return false;
1153}
1154
1155/// CreateNewWater - No existing WaterList entry will work for
1156/// CPUsers[CPUserIndex], so create a place to put the CPE.  The end of the
1157/// block is used if in range, and the conditional branch munged so control
1158/// flow is correct.  Otherwise the block is split to create a hole with an
1159/// unconditional branch around it.  In either case NewMBB is set to a
1160/// block following which the new island can be inserted (the WaterList
1161/// is not adjusted).
1162void ARMConstantIslands::CreateNewWater(unsigned CPUserIndex,
1163                                        unsigned UserOffset,
1164                                        MachineBasicBlock *&NewMBB) {
1165  CPUser &U = CPUsers[CPUserIndex];
1166  MachineInstr *UserMI = U.MI;
1167  MachineInstr *CPEMI  = U.CPEMI;
1168  MachineBasicBlock *UserMBB = UserMI->getParent();
1169  unsigned OffsetOfNextBlock = BBInfo[UserMBB->getNumber()].postOffset();
1170  assert(OffsetOfNextBlock == BBInfo[UserMBB->getNumber()+1].Offset);
1171
1172  // If the block does not end in an unconditional branch already, and if the
1173  // end of the block is within range, make new water there.  (The addition
1174  // below is for the unconditional branch we will be adding: 4 bytes on ARM +
1175  // Thumb2, 2 on Thumb1.  Possible Thumb1 alignment padding is allowed for
1176  // inside OffsetIsInRange.
1177  if (BBHasFallthrough(UserMBB) &&
1178      OffsetIsInRange(UserOffset, OffsetOfNextBlock + (isThumb1 ? 2: 4),
1179                      U.MaxDisp, U.NegOk, U.IsSoImm)) {
1180    DEBUG(errs() << "Split at end of block\n");
1181    if (&UserMBB->back() == UserMI)
1182      assert(BBHasFallthrough(UserMBB) && "Expected a fallthrough BB!");
1183    NewMBB = llvm::next(MachineFunction::iterator(UserMBB));
1184    // Add an unconditional branch from UserMBB to fallthrough block.
1185    // Record it for branch lengthening; this new branch will not get out of
1186    // range, but if the preceding conditional branch is out of range, the
1187    // targets will be exchanged, and the altered branch may be out of
1188    // range, so the machinery has to know about it.
1189    int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B;
1190    if (!isThumb)
1191      BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
1192    else
1193      BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB)
1194              .addImm(ARMCC::AL).addReg(0);
1195    unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
1196    ImmBranches.push_back(ImmBranch(&UserMBB->back(),
1197                          MaxDisp, false, UncondBr));
1198    int delta = isThumb1 ? 2 : 4;
1199    BBInfo[UserMBB->getNumber()].Size += delta;
1200    AdjustBBOffsetsAfter(UserMBB, delta);
1201  } else {
1202    // What a big block.  Find a place within the block to split it.
1203    // This is a little tricky on Thumb1 since instructions are 2 bytes
1204    // and constant pool entries are 4 bytes: if instruction I references
1205    // island CPE, and instruction I+1 references CPE', it will
1206    // not work well to put CPE as far forward as possible, since then
1207    // CPE' cannot immediately follow it (that location is 2 bytes
1208    // farther away from I+1 than CPE was from I) and we'd need to create
1209    // a new island.  So, we make a first guess, then walk through the
1210    // instructions between the one currently being looked at and the
1211    // possible insertion point, and make sure any other instructions
1212    // that reference CPEs will be able to use the same island area;
1213    // if not, we back up the insertion point.
1214
1215    // The 4 in the following is for the unconditional branch we'll be
1216    // inserting (allows for long branch on Thumb1).  Alignment of the
1217    // island is handled inside OffsetIsInRange.
1218    unsigned BaseInsertOffset = UserOffset + U.MaxDisp -4;
1219    // This could point off the end of the block if we've already got
1220    // constant pool entries following this block; only the last one is
1221    // in the water list.  Back past any possible branches (allow for a
1222    // conditional and a maximally long unconditional).
1223    if (BaseInsertOffset >= BBInfo[UserMBB->getNumber()+1].Offset)
1224      BaseInsertOffset = BBInfo[UserMBB->getNumber()+1].Offset -
1225                              (isThumb1 ? 6 : 8);
1226    unsigned EndInsertOffset = BaseInsertOffset +
1227           CPEMI->getOperand(2).getImm();
1228    MachineBasicBlock::iterator MI = UserMI;
1229    ++MI;
1230    unsigned CPUIndex = CPUserIndex+1;
1231    unsigned NumCPUsers = CPUsers.size();
1232    MachineInstr *LastIT = 0;
1233    for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI);
1234         Offset < BaseInsertOffset;
1235         Offset += TII->GetInstSizeInBytes(MI),
1236           MI = llvm::next(MI)) {
1237      if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) {
1238        CPUser &U = CPUsers[CPUIndex];
1239        if (!OffsetIsInRange(Offset, EndInsertOffset,
1240                             U.MaxDisp, U.NegOk, U.IsSoImm)) {
1241          BaseInsertOffset -= (isThumb1 ? 2 : 4);
1242          EndInsertOffset  -= (isThumb1 ? 2 : 4);
1243        }
1244        // This is overly conservative, as we don't account for CPEMIs
1245        // being reused within the block, but it doesn't matter much.
1246        EndInsertOffset += CPUsers[CPUIndex].CPEMI->getOperand(2).getImm();
1247        CPUIndex++;
1248      }
1249
1250      // Remember the last IT instruction.
1251      if (MI->getOpcode() == ARM::t2IT)
1252        LastIT = MI;
1253    }
1254
1255    DEBUG(errs() << "Split in middle of big block\n");
1256    --MI;
1257
1258    // Avoid splitting an IT block.
1259    if (LastIT) {
1260      unsigned PredReg = 0;
1261      ARMCC::CondCodes CC = llvm::getITInstrPredicate(MI, PredReg);
1262      if (CC != ARMCC::AL)
1263        MI = LastIT;
1264    }
1265    NewMBB = SplitBlockBeforeInstr(MI);
1266  }
1267}
1268
1269/// HandleConstantPoolUser - Analyze the specified user, checking to see if it
1270/// is out-of-range.  If so, pick up the constant pool value and move it some
1271/// place in-range.  Return true if we changed any addresses (thus must run
1272/// another pass of branch lengthening), false otherwise.
1273bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction &MF,
1274                                                unsigned CPUserIndex) {
1275  CPUser &U = CPUsers[CPUserIndex];
1276  MachineInstr *UserMI = U.MI;
1277  MachineInstr *CPEMI  = U.CPEMI;
1278  unsigned CPI = CPEMI->getOperand(1).getIndex();
1279  unsigned Size = CPEMI->getOperand(2).getImm();
1280  // Compute this only once, it's expensive.  The 4 or 8 is the value the
1281  // hardware keeps in the PC.
1282  unsigned UserOffset = GetOffsetOf(UserMI) + (isThumb ? 4 : 8);
1283
1284  // See if the current entry is within range, or there is a clone of it
1285  // in range.
1286  int result = LookForExistingCPEntry(U, UserOffset);
1287  if (result==1) return false;
1288  else if (result==2) return true;
1289
1290  // No existing clone of this CPE is within range.
1291  // We will be generating a new clone.  Get a UID for it.
1292  unsigned ID = AFI->createPICLabelUId();
1293
1294  // Look for water where we can place this CPE.
1295  MachineBasicBlock *NewIsland = MF.CreateMachineBasicBlock();
1296  MachineBasicBlock *NewMBB;
1297  water_iterator IP;
1298  if (LookForWater(U, UserOffset, IP)) {
1299    DEBUG(errs() << "found water in range\n");
1300    MachineBasicBlock *WaterBB = *IP;
1301
1302    // If the original WaterList entry was "new water" on this iteration,
1303    // propagate that to the new island.  This is just keeping NewWaterList
1304    // updated to match the WaterList, which will be updated below.
1305    if (NewWaterList.count(WaterBB)) {
1306      NewWaterList.erase(WaterBB);
1307      NewWaterList.insert(NewIsland);
1308    }
1309    // The new CPE goes before the following block (NewMBB).
1310    NewMBB = llvm::next(MachineFunction::iterator(WaterBB));
1311
1312  } else {
1313    // No water found.
1314    DEBUG(errs() << "No water found\n");
1315    CreateNewWater(CPUserIndex, UserOffset, NewMBB);
1316
1317    // SplitBlockBeforeInstr adds to WaterList, which is important when it is
1318    // called while handling branches so that the water will be seen on the
1319    // next iteration for constant pools, but in this context, we don't want
1320    // it.  Check for this so it will be removed from the WaterList.
1321    // Also remove any entry from NewWaterList.
1322    MachineBasicBlock *WaterBB = prior(MachineFunction::iterator(NewMBB));
1323    IP = std::find(WaterList.begin(), WaterList.end(), WaterBB);
1324    if (IP != WaterList.end())
1325      NewWaterList.erase(WaterBB);
1326
1327    // We are adding new water.  Update NewWaterList.
1328    NewWaterList.insert(NewIsland);
1329  }
1330
1331  // Remove the original WaterList entry; we want subsequent insertions in
1332  // this vicinity to go after the one we're about to insert.  This
1333  // considerably reduces the number of times we have to move the same CPE
1334  // more than once and is also important to ensure the algorithm terminates.
1335  if (IP != WaterList.end())
1336    WaterList.erase(IP);
1337
1338  // Okay, we know we can put an island before NewMBB now, do it!
1339  MF.insert(NewMBB, NewIsland);
1340
1341  // Update internal data structures to account for the newly inserted MBB.
1342  UpdateForInsertedWaterBlock(NewIsland);
1343
1344  // Decrement the old entry, and remove it if refcount becomes 0.
1345  DecrementOldEntry(CPI, CPEMI);
1346
1347  // Now that we have an island to add the CPE to, clone the original CPE and
1348  // add it to the island.
1349  U.HighWaterMark = NewIsland;
1350  U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
1351                .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
1352  CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1353  ++NumCPEs;
1354
1355  // Mark the basic block as 4-byte aligned as required by the const-pool entry.
1356  NewIsland->setAlignment(2);
1357
1358  BBInfo[NewIsland->getNumber()].Offset = BBInfo[NewMBB->getNumber()].Offset;
1359  // Compensate for .align 2 in thumb mode.
1360  if (isThumb && (BBInfo[NewIsland->getNumber()].Offset%4 != 0 || HasInlineAsm))
1361    Size += 2;
1362  // Increase the size of the island block to account for the new entry.
1363  BBInfo[NewIsland->getNumber()].Size += Size;
1364  AdjustBBOffsetsAfter(NewIsland, Size);
1365
1366  // Finally, change the CPI in the instruction operand to be ID.
1367  for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
1368    if (UserMI->getOperand(i).isCPI()) {
1369      UserMI->getOperand(i).setIndex(ID);
1370      break;
1371    }
1372
1373  DEBUG(errs() << "  Moved CPE to #" << ID << " CPI=" << CPI
1374           << '\t' << *UserMI);
1375
1376  return true;
1377}
1378
1379/// RemoveDeadCPEMI - Remove a dead constant pool entry instruction. Update
1380/// sizes and offsets of impacted basic blocks.
1381void ARMConstantIslands::RemoveDeadCPEMI(MachineInstr *CPEMI) {
1382  MachineBasicBlock *CPEBB = CPEMI->getParent();
1383  unsigned Size = CPEMI->getOperand(2).getImm();
1384  CPEMI->eraseFromParent();
1385  BBInfo[CPEBB->getNumber()].Size -= Size;
1386  // All succeeding offsets have the current size value added in, fix this.
1387  if (CPEBB->empty()) {
1388    // In thumb1 mode, the size of island may be padded by two to compensate for
1389    // the alignment requirement.  Then it will now be 2 when the block is
1390    // empty, so fix this.
1391    // All succeeding offsets have the current size value added in, fix this.
1392    if (BBInfo[CPEBB->getNumber()].Size != 0) {
1393      Size += BBInfo[CPEBB->getNumber()].Size;
1394      BBInfo[CPEBB->getNumber()].Size = 0;
1395    }
1396
1397    // This block no longer needs to be aligned. <rdar://problem/10534709>.
1398    CPEBB->setAlignment(0);
1399  }
1400  AdjustBBOffsetsAfter(CPEBB, -Size);
1401  // An island has only one predecessor BB and one successor BB. Check if
1402  // this BB's predecessor jumps directly to this BB's successor. This
1403  // shouldn't happen currently.
1404  assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
1405  // FIXME: remove the empty blocks after all the work is done?
1406}
1407
1408/// RemoveUnusedCPEntries - Remove constant pool entries whose refcounts
1409/// are zero.
1410bool ARMConstantIslands::RemoveUnusedCPEntries() {
1411  unsigned MadeChange = false;
1412  for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
1413      std::vector<CPEntry> &CPEs = CPEntries[i];
1414      for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
1415        if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
1416          RemoveDeadCPEMI(CPEs[j].CPEMI);
1417          CPEs[j].CPEMI = NULL;
1418          MadeChange = true;
1419        }
1420      }
1421  }
1422  return MadeChange;
1423}
1424
1425/// BBIsInRange - Returns true if the distance between specific MI and
1426/// specific BB can fit in MI's displacement field.
1427bool ARMConstantIslands::BBIsInRange(MachineInstr *MI,MachineBasicBlock *DestBB,
1428                                     unsigned MaxDisp) {
1429  unsigned PCAdj      = isThumb ? 4 : 8;
1430  unsigned BrOffset   = GetOffsetOf(MI) + PCAdj;
1431  unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1432
1433  DEBUG(errs() << "Branch of destination BB#" << DestBB->getNumber()
1434               << " from BB#" << MI->getParent()->getNumber()
1435               << " max delta=" << MaxDisp
1436               << " from " << GetOffsetOf(MI) << " to " << DestOffset
1437               << " offset " << int(DestOffset-BrOffset) << "\t" << *MI);
1438
1439  if (BrOffset <= DestOffset) {
1440    // Branch before the Dest.
1441    if (DestOffset-BrOffset <= MaxDisp)
1442      return true;
1443  } else {
1444    if (BrOffset-DestOffset <= MaxDisp)
1445      return true;
1446  }
1447  return false;
1448}
1449
1450/// FixUpImmediateBr - Fix up an immediate branch whose destination is too far
1451/// away to fit in its displacement field.
1452bool ARMConstantIslands::FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br) {
1453  MachineInstr *MI = Br.MI;
1454  MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1455
1456  // Check to see if the DestBB is already in-range.
1457  if (BBIsInRange(MI, DestBB, Br.MaxDisp))
1458    return false;
1459
1460  if (!Br.isCond)
1461    return FixUpUnconditionalBr(MF, Br);
1462  return FixUpConditionalBr(MF, Br);
1463}
1464
1465/// FixUpUnconditionalBr - Fix up an unconditional branch whose destination is
1466/// too far away to fit in its displacement field. If the LR register has been
1467/// spilled in the epilogue, then we can use BL to implement a far jump.
1468/// Otherwise, add an intermediate branch instruction to a branch.
1469bool
1470ARMConstantIslands::FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br) {
1471  MachineInstr *MI = Br.MI;
1472  MachineBasicBlock *MBB = MI->getParent();
1473  if (!isThumb1)
1474    llvm_unreachable("FixUpUnconditionalBr is Thumb1 only!");
1475
1476  // Use BL to implement far jump.
1477  Br.MaxDisp = (1 << 21) * 2;
1478  MI->setDesc(TII->get(ARM::tBfar));
1479  BBInfo[MBB->getNumber()].Size += 2;
1480  AdjustBBOffsetsAfter(MBB, 2);
1481  HasFarJump = true;
1482  ++NumUBrFixed;
1483
1484  DEBUG(errs() << "  Changed B to long jump " << *MI);
1485
1486  return true;
1487}
1488
1489/// FixUpConditionalBr - Fix up a conditional branch whose destination is too
1490/// far away to fit in its displacement field. It is converted to an inverse
1491/// conditional branch + an unconditional branch to the destination.
1492bool
1493ARMConstantIslands::FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br) {
1494  MachineInstr *MI = Br.MI;
1495  MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1496
1497  // Add an unconditional branch to the destination and invert the branch
1498  // condition to jump over it:
1499  // blt L1
1500  // =>
1501  // bge L2
1502  // b   L1
1503  // L2:
1504  ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm();
1505  CC = ARMCC::getOppositeCondition(CC);
1506  unsigned CCReg = MI->getOperand(2).getReg();
1507
1508  // If the branch is at the end of its MBB and that has a fall-through block,
1509  // direct the updated conditional branch to the fall-through block. Otherwise,
1510  // split the MBB before the next instruction.
1511  MachineBasicBlock *MBB = MI->getParent();
1512  MachineInstr *BMI = &MBB->back();
1513  bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1514
1515  ++NumCBrFixed;
1516  if (BMI != MI) {
1517    if (llvm::next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) &&
1518        BMI->getOpcode() == Br.UncondBr) {
1519      // Last MI in the BB is an unconditional branch. Can we simply invert the
1520      // condition and swap destinations:
1521      // beq L1
1522      // b   L2
1523      // =>
1524      // bne L2
1525      // b   L1
1526      MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
1527      if (BBIsInRange(MI, NewDest, Br.MaxDisp)) {
1528        DEBUG(errs() << "  Invert Bcc condition and swap its destination with "
1529                     << *BMI);
1530        BMI->getOperand(0).setMBB(DestBB);
1531        MI->getOperand(0).setMBB(NewDest);
1532        MI->getOperand(1).setImm(CC);
1533        return true;
1534      }
1535    }
1536  }
1537
1538  if (NeedSplit) {
1539    SplitBlockBeforeInstr(MI);
1540    // No need for the branch to the next block. We're adding an unconditional
1541    // branch to the destination.
1542    int delta = TII->GetInstSizeInBytes(&MBB->back());
1543    BBInfo[MBB->getNumber()].Size -= delta;
1544    MachineBasicBlock* SplitBB = llvm::next(MachineFunction::iterator(MBB));
1545    AdjustBBOffsetsAfter(SplitBB, -delta);
1546    MBB->back().eraseFromParent();
1547    // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
1548  }
1549  MachineBasicBlock *NextBB = llvm::next(MachineFunction::iterator(MBB));
1550
1551  DEBUG(errs() << "  Insert B to BB#" << DestBB->getNumber()
1552               << " also invert condition and change dest. to BB#"
1553               << NextBB->getNumber() << "\n");
1554
1555  // Insert a new conditional branch and a new unconditional branch.
1556  // Also update the ImmBranch as well as adding a new entry for the new branch.
1557  BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode()))
1558    .addMBB(NextBB).addImm(CC).addReg(CCReg);
1559  Br.MI = &MBB->back();
1560  BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back());
1561  if (isThumb)
1562    BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB)
1563            .addImm(ARMCC::AL).addReg(0);
1564  else
1565    BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1566  BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back());
1567  unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1568  ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1569
1570  // Remove the old conditional branch.  It may or may not still be in MBB.
1571  BBInfo[MI->getParent()->getNumber()].Size -= TII->GetInstSizeInBytes(MI);
1572  MI->eraseFromParent();
1573
1574  // The net size change is an addition of one unconditional branch.
1575  int delta = TII->GetInstSizeInBytes(&MBB->back());
1576  AdjustBBOffsetsAfter(MBB, delta);
1577  return true;
1578}
1579
1580/// UndoLRSpillRestore - Remove Thumb push / pop instructions that only spills
1581/// LR / restores LR to pc. FIXME: This is done here because it's only possible
1582/// to do this if tBfar is not used.
1583bool ARMConstantIslands::UndoLRSpillRestore() {
1584  bool MadeChange = false;
1585  for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) {
1586    MachineInstr *MI = PushPopMIs[i];
1587    // First two operands are predicates.
1588    if (MI->getOpcode() == ARM::tPOP_RET &&
1589        MI->getOperand(2).getReg() == ARM::PC &&
1590        MI->getNumExplicitOperands() == 3) {
1591      // Create the new insn and copy the predicate from the old.
1592      BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET))
1593        .addOperand(MI->getOperand(0))
1594        .addOperand(MI->getOperand(1));
1595      MI->eraseFromParent();
1596      MadeChange = true;
1597    }
1598  }
1599  return MadeChange;
1600}
1601
1602bool ARMConstantIslands::OptimizeThumb2Instructions(MachineFunction &MF) {
1603  bool MadeChange = false;
1604
1605  // Shrink ADR and LDR from constantpool.
1606  for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
1607    CPUser &U = CPUsers[i];
1608    unsigned Opcode = U.MI->getOpcode();
1609    unsigned NewOpc = 0;
1610    unsigned Scale = 1;
1611    unsigned Bits = 0;
1612    switch (Opcode) {
1613    default: break;
1614    case ARM::t2LEApcrel:
1615      if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1616        NewOpc = ARM::tLEApcrel;
1617        Bits = 8;
1618        Scale = 4;
1619      }
1620      break;
1621    case ARM::t2LDRpci:
1622      if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1623        NewOpc = ARM::tLDRpci;
1624        Bits = 8;
1625        Scale = 4;
1626      }
1627      break;
1628    }
1629
1630    if (!NewOpc)
1631      continue;
1632
1633    unsigned UserOffset = GetOffsetOf(U.MI) + 4;
1634    unsigned MaxOffs = ((1 << Bits) - 1) * Scale;
1635    // FIXME: Check if offset is multiple of scale if scale is not 4.
1636    if (CPEIsInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) {
1637      U.MI->setDesc(TII->get(NewOpc));
1638      MachineBasicBlock *MBB = U.MI->getParent();
1639      BBInfo[MBB->getNumber()].Size -= 2;
1640      AdjustBBOffsetsAfter(MBB, -2);
1641      ++NumT2CPShrunk;
1642      MadeChange = true;
1643    }
1644  }
1645
1646  MadeChange |= OptimizeThumb2Branches(MF);
1647  MadeChange |= OptimizeThumb2JumpTables(MF);
1648  return MadeChange;
1649}
1650
1651bool ARMConstantIslands::OptimizeThumb2Branches(MachineFunction &MF) {
1652  bool MadeChange = false;
1653
1654  for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) {
1655    ImmBranch &Br = ImmBranches[i];
1656    unsigned Opcode = Br.MI->getOpcode();
1657    unsigned NewOpc = 0;
1658    unsigned Scale = 1;
1659    unsigned Bits = 0;
1660    switch (Opcode) {
1661    default: break;
1662    case ARM::t2B:
1663      NewOpc = ARM::tB;
1664      Bits = 11;
1665      Scale = 2;
1666      break;
1667    case ARM::t2Bcc: {
1668      NewOpc = ARM::tBcc;
1669      Bits = 8;
1670      Scale = 2;
1671      break;
1672    }
1673    }
1674    if (NewOpc) {
1675      unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
1676      MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1677      if (BBIsInRange(Br.MI, DestBB, MaxOffs)) {
1678        Br.MI->setDesc(TII->get(NewOpc));
1679        MachineBasicBlock *MBB = Br.MI->getParent();
1680        BBInfo[MBB->getNumber()].Size -= 2;
1681        AdjustBBOffsetsAfter(MBB, -2);
1682        ++NumT2BrShrunk;
1683        MadeChange = true;
1684      }
1685    }
1686
1687    Opcode = Br.MI->getOpcode();
1688    if (Opcode != ARM::tBcc)
1689      continue;
1690
1691    NewOpc = 0;
1692    unsigned PredReg = 0;
1693    ARMCC::CondCodes Pred = llvm::getInstrPredicate(Br.MI, PredReg);
1694    if (Pred == ARMCC::EQ)
1695      NewOpc = ARM::tCBZ;
1696    else if (Pred == ARMCC::NE)
1697      NewOpc = ARM::tCBNZ;
1698    if (!NewOpc)
1699      continue;
1700    MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1701    // Check if the distance is within 126. Subtract starting offset by 2
1702    // because the cmp will be eliminated.
1703    unsigned BrOffset = GetOffsetOf(Br.MI) + 4 - 2;
1704    unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1705    if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) {
1706      MachineBasicBlock::iterator CmpMI = Br.MI;
1707      if (CmpMI != Br.MI->getParent()->begin()) {
1708        --CmpMI;
1709        if (CmpMI->getOpcode() == ARM::tCMPi8) {
1710          unsigned Reg = CmpMI->getOperand(0).getReg();
1711          Pred = llvm::getInstrPredicate(CmpMI, PredReg);
1712          if (Pred == ARMCC::AL &&
1713              CmpMI->getOperand(1).getImm() == 0 &&
1714              isARMLowRegister(Reg)) {
1715            MachineBasicBlock *MBB = Br.MI->getParent();
1716            MachineInstr *NewBR =
1717              BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc))
1718              .addReg(Reg).addMBB(DestBB,Br.MI->getOperand(0).getTargetFlags());
1719            CmpMI->eraseFromParent();
1720            Br.MI->eraseFromParent();
1721            Br.MI = NewBR;
1722            BBInfo[MBB->getNumber()].Size -= 2;
1723            AdjustBBOffsetsAfter(MBB, -2);
1724            ++NumCBZ;
1725            MadeChange = true;
1726          }
1727        }
1728      }
1729    }
1730  }
1731
1732  return MadeChange;
1733}
1734
1735/// OptimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller
1736/// jumptables when it's possible.
1737bool ARMConstantIslands::OptimizeThumb2JumpTables(MachineFunction &MF) {
1738  bool MadeChange = false;
1739
1740  // FIXME: After the tables are shrunk, can we get rid some of the
1741  // constantpool tables?
1742  MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
1743  if (MJTI == 0) return false;
1744
1745  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1746  for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
1747    MachineInstr *MI = T2JumpTables[i];
1748    const MCInstrDesc &MCID = MI->getDesc();
1749    unsigned NumOps = MCID.getNumOperands();
1750    unsigned JTOpIdx = NumOps - (MCID.isPredicable() ? 3 : 2);
1751    MachineOperand JTOP = MI->getOperand(JTOpIdx);
1752    unsigned JTI = JTOP.getIndex();
1753    assert(JTI < JT.size());
1754
1755    bool ByteOk = true;
1756    bool HalfWordOk = true;
1757    unsigned JTOffset = GetOffsetOf(MI) + 4;
1758    const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1759    for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
1760      MachineBasicBlock *MBB = JTBBs[j];
1761      unsigned DstOffset = BBInfo[MBB->getNumber()].Offset;
1762      // Negative offset is not ok. FIXME: We should change BB layout to make
1763      // sure all the branches are forward.
1764      if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2)
1765        ByteOk = false;
1766      unsigned TBHLimit = ((1<<16)-1)*2;
1767      if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit)
1768        HalfWordOk = false;
1769      if (!ByteOk && !HalfWordOk)
1770        break;
1771    }
1772
1773    if (ByteOk || HalfWordOk) {
1774      MachineBasicBlock *MBB = MI->getParent();
1775      unsigned BaseReg = MI->getOperand(0).getReg();
1776      bool BaseRegKill = MI->getOperand(0).isKill();
1777      if (!BaseRegKill)
1778        continue;
1779      unsigned IdxReg = MI->getOperand(1).getReg();
1780      bool IdxRegKill = MI->getOperand(1).isKill();
1781
1782      // Scan backwards to find the instruction that defines the base
1783      // register. Due to post-RA scheduling, we can't count on it
1784      // immediately preceding the branch instruction.
1785      MachineBasicBlock::iterator PrevI = MI;
1786      MachineBasicBlock::iterator B = MBB->begin();
1787      while (PrevI != B && !PrevI->definesRegister(BaseReg))
1788        --PrevI;
1789
1790      // If for some reason we didn't find it, we can't do anything, so
1791      // just skip this one.
1792      if (!PrevI->definesRegister(BaseReg))
1793        continue;
1794
1795      MachineInstr *AddrMI = PrevI;
1796      bool OptOk = true;
1797      // Examine the instruction that calculates the jumptable entry address.
1798      // Make sure it only defines the base register and kills any uses
1799      // other than the index register.
1800      for (unsigned k = 0, eee = AddrMI->getNumOperands(); k != eee; ++k) {
1801        const MachineOperand &MO = AddrMI->getOperand(k);
1802        if (!MO.isReg() || !MO.getReg())
1803          continue;
1804        if (MO.isDef() && MO.getReg() != BaseReg) {
1805          OptOk = false;
1806          break;
1807        }
1808        if (MO.isUse() && !MO.isKill() && MO.getReg() != IdxReg) {
1809          OptOk = false;
1810          break;
1811        }
1812      }
1813      if (!OptOk)
1814        continue;
1815
1816      // Now scan back again to find the tLEApcrel or t2LEApcrelJT instruction
1817      // that gave us the initial base register definition.
1818      for (--PrevI; PrevI != B && !PrevI->definesRegister(BaseReg); --PrevI)
1819        ;
1820
1821      // The instruction should be a tLEApcrel or t2LEApcrelJT; we want
1822      // to delete it as well.
1823      MachineInstr *LeaMI = PrevI;
1824      if ((LeaMI->getOpcode() != ARM::tLEApcrelJT &&
1825           LeaMI->getOpcode() != ARM::t2LEApcrelJT) ||
1826          LeaMI->getOperand(0).getReg() != BaseReg)
1827        OptOk = false;
1828
1829      if (!OptOk)
1830        continue;
1831
1832      unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT;
1833      MachineInstr *NewJTMI = BuildMI(MBB, MI->getDebugLoc(), TII->get(Opc))
1834        .addReg(IdxReg, getKillRegState(IdxRegKill))
1835        .addJumpTableIndex(JTI, JTOP.getTargetFlags())
1836        .addImm(MI->getOperand(JTOpIdx+1).getImm());
1837      // FIXME: Insert an "ALIGN" instruction to ensure the next instruction
1838      // is 2-byte aligned. For now, asm printer will fix it up.
1839      unsigned NewSize = TII->GetInstSizeInBytes(NewJTMI);
1840      unsigned OrigSize = TII->GetInstSizeInBytes(AddrMI);
1841      OrigSize += TII->GetInstSizeInBytes(LeaMI);
1842      OrigSize += TII->GetInstSizeInBytes(MI);
1843
1844      AddrMI->eraseFromParent();
1845      LeaMI->eraseFromParent();
1846      MI->eraseFromParent();
1847
1848      int delta = OrigSize - NewSize;
1849      BBInfo[MBB->getNumber()].Size -= delta;
1850      AdjustBBOffsetsAfter(MBB, -delta);
1851
1852      ++NumTBs;
1853      MadeChange = true;
1854    }
1855  }
1856
1857  return MadeChange;
1858}
1859
1860/// ReorderThumb2JumpTables - Adjust the function's block layout to ensure that
1861/// jump tables always branch forwards, since that's what tbb and tbh need.
1862bool ARMConstantIslands::ReorderThumb2JumpTables(MachineFunction &MF) {
1863  bool MadeChange = false;
1864
1865  MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
1866  if (MJTI == 0) return false;
1867
1868  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1869  for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
1870    MachineInstr *MI = T2JumpTables[i];
1871    const MCInstrDesc &MCID = MI->getDesc();
1872    unsigned NumOps = MCID.getNumOperands();
1873    unsigned JTOpIdx = NumOps - (MCID.isPredicable() ? 3 : 2);
1874    MachineOperand JTOP = MI->getOperand(JTOpIdx);
1875    unsigned JTI = JTOP.getIndex();
1876    assert(JTI < JT.size());
1877
1878    // We prefer if target blocks for the jump table come after the jump
1879    // instruction so we can use TB[BH]. Loop through the target blocks
1880    // and try to adjust them such that that's true.
1881    int JTNumber = MI->getParent()->getNumber();
1882    const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1883    for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
1884      MachineBasicBlock *MBB = JTBBs[j];
1885      int DTNumber = MBB->getNumber();
1886
1887      if (DTNumber < JTNumber) {
1888        // The destination precedes the switch. Try to move the block forward
1889        // so we have a positive offset.
1890        MachineBasicBlock *NewBB =
1891          AdjustJTTargetBlockForward(MBB, MI->getParent());
1892        if (NewBB)
1893          MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB);
1894        MadeChange = true;
1895      }
1896    }
1897  }
1898
1899  return MadeChange;
1900}
1901
1902MachineBasicBlock *ARMConstantIslands::
1903AdjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB)
1904{
1905  MachineFunction &MF = *BB->getParent();
1906
1907  // If the destination block is terminated by an unconditional branch,
1908  // try to move it; otherwise, create a new block following the jump
1909  // table that branches back to the actual target. This is a very simple
1910  // heuristic. FIXME: We can definitely improve it.
1911  MachineBasicBlock *TBB = 0, *FBB = 0;
1912  SmallVector<MachineOperand, 4> Cond;
1913  SmallVector<MachineOperand, 4> CondPrior;
1914  MachineFunction::iterator BBi = BB;
1915  MachineFunction::iterator OldPrior = prior(BBi);
1916
1917  // If the block terminator isn't analyzable, don't try to move the block
1918  bool B = TII->AnalyzeBranch(*BB, TBB, FBB, Cond);
1919
1920  // If the block ends in an unconditional branch, move it. The prior block
1921  // has to have an analyzable terminator for us to move this one. Be paranoid
1922  // and make sure we're not trying to move the entry block of the function.
1923  if (!B && Cond.empty() && BB != MF.begin() &&
1924      !TII->AnalyzeBranch(*OldPrior, TBB, FBB, CondPrior)) {
1925    BB->moveAfter(JTBB);
1926    OldPrior->updateTerminator();
1927    BB->updateTerminator();
1928    // Update numbering to account for the block being moved.
1929    MF.RenumberBlocks();
1930    ++NumJTMoved;
1931    return NULL;
1932  }
1933
1934  // Create a new MBB for the code after the jump BB.
1935  MachineBasicBlock *NewBB =
1936    MF.CreateMachineBasicBlock(JTBB->getBasicBlock());
1937  MachineFunction::iterator MBBI = JTBB; ++MBBI;
1938  MF.insert(MBBI, NewBB);
1939
1940  // Add an unconditional branch from NewBB to BB.
1941  // There doesn't seem to be meaningful DebugInfo available; this doesn't
1942  // correspond directly to anything in the source.
1943  assert (isThumb2 && "Adjusting for TB[BH] but not in Thumb2?");
1944  BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)).addMBB(BB)
1945          .addImm(ARMCC::AL).addReg(0);
1946
1947  // Update internal data structures to account for the newly inserted MBB.
1948  MF.RenumberBlocks(NewBB);
1949
1950  // Update the CFG.
1951  NewBB->addSuccessor(BB);
1952  JTBB->removeSuccessor(BB);
1953  JTBB->addSuccessor(NewBB);
1954
1955  ++NumJTInserted;
1956  return NewBB;
1957}
1958