ARMConstantIslandPass.cpp revision ae73dc1448d25b02cabc7c64c86c64371453dda8
1//===-- ARMConstantIslandPass.cpp - ARM constant islands --------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains a pass that splits the constant pool up into 'islands' 11// which are scattered through-out the function. This is required due to the 12// limited pc-relative displacements that ARM has. 13// 14//===----------------------------------------------------------------------===// 15 16#define DEBUG_TYPE "arm-cp-islands" 17#include "ARM.h" 18#include "ARMMachineFunctionInfo.h" 19#include "ARMInstrInfo.h" 20#include "llvm/CodeGen/MachineConstantPool.h" 21#include "llvm/CodeGen/MachineFunctionPass.h" 22#include "llvm/CodeGen/MachineInstrBuilder.h" 23#include "llvm/Target/TargetData.h" 24#include "llvm/Target/TargetMachine.h" 25#include "llvm/Support/Compiler.h" 26#include "llvm/Support/Debug.h" 27#include "llvm/ADT/SmallVector.h" 28#include "llvm/ADT/STLExtras.h" 29#include "llvm/ADT/Statistic.h" 30using namespace llvm; 31 32STATISTIC(NumCPEs, "Number of constpool entries"); 33STATISTIC(NumSplit, "Number of uncond branches inserted"); 34STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 35STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 36 37namespace { 38 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM 39 /// requires constant pool entries to be scattered among the instructions 40 /// inside a function. To do this, it completely ignores the normal LLVM 41 /// constant pool; instead, it places constants wherever it feels like with 42 /// special instructions. 43 /// 44 /// The terminology used in this pass includes: 45 /// Islands - Clumps of constants placed in the function. 46 /// Water - Potential places where an island could be formed. 47 /// CPE - A constant pool entry that has been placed somewhere, which 48 /// tracks a list of users. 49 class VISIBILITY_HIDDEN ARMConstantIslands : public MachineFunctionPass { 50 /// NextUID - Assign unique ID's to CPE's. 51 unsigned NextUID; 52 53 /// BBSizes - The size of each MachineBasicBlock in bytes of code, indexed 54 /// by MBB Number. The two-byte pads required for Thumb alignment are 55 /// counted as part of the following block (i.e., the offset and size for 56 /// a padded block will both be ==2 mod 4). 57 std::vector<unsigned> BBSizes; 58 59 /// BBOffsets - the offset of each MBB in bytes, starting from 0. 60 /// The two-byte pads required for Thumb alignment are counted as part of 61 /// the following block. 62 std::vector<unsigned> BBOffsets; 63 64 /// WaterList - A sorted list of basic blocks where islands could be placed 65 /// (i.e. blocks that don't fall through to the following block, due 66 /// to a return, unreachable, or unconditional branch). 67 std::vector<MachineBasicBlock*> WaterList; 68 69 /// CPUser - One user of a constant pool, keeping the machine instruction 70 /// pointer, the constant pool being referenced, and the max displacement 71 /// allowed from the instruction to the CP. 72 struct CPUser { 73 MachineInstr *MI; 74 MachineInstr *CPEMI; 75 unsigned MaxDisp; 76 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp) 77 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp) {} 78 }; 79 80 /// CPUsers - Keep track of all of the machine instructions that use various 81 /// constant pools and their max displacement. 82 std::vector<CPUser> CPUsers; 83 84 /// CPEntry - One per constant pool entry, keeping the machine instruction 85 /// pointer, the constpool index, and the number of CPUser's which 86 /// reference this entry. 87 struct CPEntry { 88 MachineInstr *CPEMI; 89 unsigned CPI; 90 unsigned RefCount; 91 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) 92 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} 93 }; 94 95 /// CPEntries - Keep track of all of the constant pool entry machine 96 /// instructions. For each original constpool index (i.e. those that 97 /// existed upon entry to this pass), it keeps a vector of entries. 98 /// Original elements are cloned as we go along; the clones are 99 /// put in the vector of the original element, but have distinct CPIs. 100 std::vector<std::vector<CPEntry> > CPEntries; 101 102 /// ImmBranch - One per immediate branch, keeping the machine instruction 103 /// pointer, conditional or unconditional, the max displacement, 104 /// and (if isCond is true) the corresponding unconditional branch 105 /// opcode. 106 struct ImmBranch { 107 MachineInstr *MI; 108 unsigned MaxDisp : 31; 109 bool isCond : 1; 110 int UncondBr; 111 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr) 112 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} 113 }; 114 115 /// ImmBranches - Keep track of all the immediate branch instructions. 116 /// 117 std::vector<ImmBranch> ImmBranches; 118 119 /// PushPopMIs - Keep track of all the Thumb push / pop instructions. 120 /// 121 SmallVector<MachineInstr*, 4> PushPopMIs; 122 123 /// HasFarJump - True if any far jump instruction has been emitted during 124 /// the branch fix up pass. 125 bool HasFarJump; 126 127 const TargetInstrInfo *TII; 128 ARMFunctionInfo *AFI; 129 bool isThumb; 130 public: 131 static char ID; 132 ARMConstantIslands() : MachineFunctionPass(&ID) {} 133 134 virtual bool runOnMachineFunction(MachineFunction &Fn); 135 136 virtual const char *getPassName() const { 137 return "ARM constant island placement and branch shortening pass"; 138 } 139 140 private: 141 void DoInitialPlacement(MachineFunction &Fn, 142 std::vector<MachineInstr*> &CPEMIs); 143 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 144 void InitialFunctionScan(MachineFunction &Fn, 145 const std::vector<MachineInstr*> &CPEMIs); 146 MachineBasicBlock *SplitBlockBeforeInstr(MachineInstr *MI); 147 void UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB); 148 void AdjustBBOffsetsAfter(MachineBasicBlock *BB, int delta); 149 bool DecrementOldEntry(unsigned CPI, MachineInstr* CPEMI); 150 int LookForExistingCPEntry(CPUser& U, unsigned UserOffset); 151 bool LookForWater(CPUser&U, unsigned UserOffset, 152 MachineBasicBlock** NewMBB); 153 MachineBasicBlock* AcceptWater(MachineBasicBlock *WaterBB, 154 std::vector<MachineBasicBlock*>::iterator IP); 155 void CreateNewWater(unsigned CPUserIndex, unsigned UserOffset, 156 MachineBasicBlock** NewMBB); 157 bool HandleConstantPoolUser(MachineFunction &Fn, unsigned CPUserIndex); 158 void RemoveDeadCPEMI(MachineInstr *CPEMI); 159 bool RemoveUnusedCPEntries(); 160 bool CPEIsInRange(MachineInstr *MI, unsigned UserOffset, 161 MachineInstr *CPEMI, unsigned Disp, 162 bool DoDump); 163 bool WaterIsInRange(unsigned UserOffset, MachineBasicBlock *Water, 164 CPUser &U); 165 bool OffsetIsInRange(unsigned UserOffset, unsigned TrialOffset, 166 unsigned Disp, bool NegativeOK); 167 bool BBIsInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); 168 bool FixUpImmediateBr(MachineFunction &Fn, ImmBranch &Br); 169 bool FixUpConditionalBr(MachineFunction &Fn, ImmBranch &Br); 170 bool FixUpUnconditionalBr(MachineFunction &Fn, ImmBranch &Br); 171 bool UndoLRSpillRestore(); 172 173 unsigned GetOffsetOf(MachineInstr *MI) const; 174 void dumpBBs(); 175 void verify(MachineFunction &Fn); 176 }; 177 char ARMConstantIslands::ID = 0; 178} 179 180/// verify - check BBOffsets, BBSizes, alignment of islands 181void ARMConstantIslands::verify(MachineFunction &Fn) { 182 assert(BBOffsets.size() == BBSizes.size()); 183 for (unsigned i = 1, e = BBOffsets.size(); i != e; ++i) 184 assert(BBOffsets[i-1]+BBSizes[i-1] == BBOffsets[i]); 185 if (isThumb) { 186 for (MachineFunction::iterator MBBI = Fn.begin(), E = Fn.end(); 187 MBBI != E; ++MBBI) { 188 MachineBasicBlock *MBB = MBBI; 189 if (!MBB->empty() && 190 MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) 191 assert((BBOffsets[MBB->getNumber()]%4 == 0 && 192 BBSizes[MBB->getNumber()]%4 == 0) || 193 (BBOffsets[MBB->getNumber()]%4 != 0 && 194 BBSizes[MBB->getNumber()]%4 != 0)); 195 } 196 } 197} 198 199/// print block size and offset information - debugging 200void ARMConstantIslands::dumpBBs() { 201 for (unsigned J = 0, E = BBOffsets.size(); J !=E; ++J) { 202 DOUT << "block " << J << " offset " << BBOffsets[J] << 203 " size " << BBSizes[J] << "\n"; 204 } 205} 206 207/// createARMConstantIslandPass - returns an instance of the constpool 208/// island pass. 209FunctionPass *llvm::createARMConstantIslandPass() { 210 return new ARMConstantIslands(); 211} 212 213bool ARMConstantIslands::runOnMachineFunction(MachineFunction &Fn) { 214 MachineConstantPool &MCP = *Fn.getConstantPool(); 215 216 TII = Fn.getTarget().getInstrInfo(); 217 AFI = Fn.getInfo<ARMFunctionInfo>(); 218 isThumb = AFI->isThumbFunction(); 219 220 HasFarJump = false; 221 222 // Renumber all of the machine basic blocks in the function, guaranteeing that 223 // the numbers agree with the position of the block in the function. 224 Fn.RenumberBlocks(); 225 226 /// Thumb functions containing constant pools get 2-byte alignment. This is so 227 /// we can keep exact track of where the alignment padding goes. Set default. 228 AFI->setAlign(isThumb ? 1U : 2U); 229 230 // Perform the initial placement of the constant pool entries. To start with, 231 // we put them all at the end of the function. 232 std::vector<MachineInstr*> CPEMIs; 233 if (!MCP.isEmpty()) { 234 DoInitialPlacement(Fn, CPEMIs); 235 if (isThumb) 236 AFI->setAlign(2U); 237 } 238 239 /// The next UID to take is the first unused one. 240 NextUID = CPEMIs.size(); 241 242 // Do the initial scan of the function, building up information about the 243 // sizes of each block, the location of all the water, and finding all of the 244 // constant pool users. 245 InitialFunctionScan(Fn, CPEMIs); 246 CPEMIs.clear(); 247 248 /// Remove dead constant pool entries. 249 RemoveUnusedCPEntries(); 250 251 // Iteratively place constant pool entries and fix up branches until there 252 // is no change. 253 bool MadeChange = false; 254 while (true) { 255 bool Change = false; 256 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) 257 Change |= HandleConstantPoolUser(Fn, i); 258 DEBUG(dumpBBs()); 259 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) 260 Change |= FixUpImmediateBr(Fn, ImmBranches[i]); 261 DEBUG(dumpBBs()); 262 if (!Change) 263 break; 264 MadeChange = true; 265 } 266 267 // After a while, this might be made debug-only, but it is not expensive. 268 verify(Fn); 269 270 // If LR has been forced spilled and no far jumps (i.e. BL) has been issued. 271 // Undo the spill / restore of LR if possible. 272 if (!HasFarJump && AFI->isLRSpilledForFarJump() && isThumb) 273 MadeChange |= UndoLRSpillRestore(); 274 275 BBSizes.clear(); 276 BBOffsets.clear(); 277 WaterList.clear(); 278 CPUsers.clear(); 279 CPEntries.clear(); 280 ImmBranches.clear(); 281 PushPopMIs.clear(); 282 283 return MadeChange; 284} 285 286/// DoInitialPlacement - Perform the initial placement of the constant pool 287/// entries. To start with, we put them all at the end of the function. 288void ARMConstantIslands::DoInitialPlacement(MachineFunction &Fn, 289 std::vector<MachineInstr*> &CPEMIs){ 290 // Create the basic block to hold the CPE's. 291 MachineBasicBlock *BB = Fn.CreateMachineBasicBlock(); 292 Fn.push_back(BB); 293 294 // Add all of the constants from the constant pool to the end block, use an 295 // identity mapping of CPI's to CPE's. 296 const std::vector<MachineConstantPoolEntry> &CPs = 297 Fn.getConstantPool()->getConstants(); 298 299 const TargetData &TD = *Fn.getTarget().getTargetData(); 300 for (unsigned i = 0, e = CPs.size(); i != e; ++i) { 301 unsigned Size = TD.getABITypeSize(CPs[i].getType()); 302 // Verify that all constant pool entries are a multiple of 4 bytes. If not, 303 // we would have to pad them out or something so that instructions stay 304 // aligned. 305 assert((Size & 3) == 0 && "CP Entry not multiple of 4 bytes!"); 306 MachineInstr *CPEMI = 307 BuildMI(BB, TII->get(ARM::CONSTPOOL_ENTRY)) 308 .addImm(i).addConstantPoolIndex(i).addImm(Size); 309 CPEMIs.push_back(CPEMI); 310 311 // Add a new CPEntry, but no corresponding CPUser yet. 312 std::vector<CPEntry> CPEs; 313 CPEs.push_back(CPEntry(CPEMI, i)); 314 CPEntries.push_back(CPEs); 315 NumCPEs++; 316 DOUT << "Moved CPI#" << i << " to end of function as #" << i << "\n"; 317 } 318} 319 320/// BBHasFallthrough - Return true if the specified basic block can fallthrough 321/// into the block immediately after it. 322static bool BBHasFallthrough(MachineBasicBlock *MBB) { 323 // Get the next machine basic block in the function. 324 MachineFunction::iterator MBBI = MBB; 325 if (next(MBBI) == MBB->getParent()->end()) // Can't fall off end of function. 326 return false; 327 328 MachineBasicBlock *NextBB = next(MBBI); 329 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), 330 E = MBB->succ_end(); I != E; ++I) 331 if (*I == NextBB) 332 return true; 333 334 return false; 335} 336 337/// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 338/// look up the corresponding CPEntry. 339ARMConstantIslands::CPEntry 340*ARMConstantIslands::findConstPoolEntry(unsigned CPI, 341 const MachineInstr *CPEMI) { 342 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 343 // Number of entries per constpool index should be small, just do a 344 // linear search. 345 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 346 if (CPEs[i].CPEMI == CPEMI) 347 return &CPEs[i]; 348 } 349 return NULL; 350} 351 352/// InitialFunctionScan - Do the initial scan of the function, building up 353/// information about the sizes of each block, the location of all the water, 354/// and finding all of the constant pool users. 355void ARMConstantIslands::InitialFunctionScan(MachineFunction &Fn, 356 const std::vector<MachineInstr*> &CPEMIs) { 357 unsigned Offset = 0; 358 for (MachineFunction::iterator MBBI = Fn.begin(), E = Fn.end(); 359 MBBI != E; ++MBBI) { 360 MachineBasicBlock &MBB = *MBBI; 361 362 // If this block doesn't fall through into the next MBB, then this is 363 // 'water' that a constant pool island could be placed. 364 if (!BBHasFallthrough(&MBB)) 365 WaterList.push_back(&MBB); 366 367 unsigned MBBSize = 0; 368 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 369 I != E; ++I) { 370 // Add instruction size to MBBSize. 371 MBBSize += TII->GetInstSizeInBytes(I); 372 373 int Opc = I->getOpcode(); 374 if (I->getDesc().isBranch()) { 375 bool isCond = false; 376 unsigned Bits = 0; 377 unsigned Scale = 1; 378 int UOpc = Opc; 379 switch (Opc) { 380 case ARM::tBR_JTr: 381 // A Thumb table jump may involve padding; for the offsets to 382 // be right, functions containing these must be 4-byte aligned. 383 AFI->setAlign(2U); 384 if ((Offset+MBBSize)%4 != 0) 385 MBBSize += 2; // padding 386 continue; // Does not get an entry in ImmBranches 387 default: 388 continue; // Ignore other JT branches 389 case ARM::Bcc: 390 isCond = true; 391 UOpc = ARM::B; 392 // Fallthrough 393 case ARM::B: 394 Bits = 24; 395 Scale = 4; 396 break; 397 case ARM::tBcc: 398 isCond = true; 399 UOpc = ARM::tB; 400 Bits = 8; 401 Scale = 2; 402 break; 403 case ARM::tB: 404 Bits = 11; 405 Scale = 2; 406 break; 407 } 408 409 // Record this immediate branch. 410 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 411 ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc)); 412 } 413 414 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) 415 PushPopMIs.push_back(I); 416 417 // Scan the instructions for constant pool operands. 418 for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) 419 if (I->getOperand(op).isConstantPoolIndex()) { 420 // We found one. The addressing mode tells us the max displacement 421 // from the PC that this instruction permits. 422 423 // Basic size info comes from the TSFlags field. 424 unsigned Bits = 0; 425 unsigned Scale = 1; 426 unsigned TSFlags = I->getDesc().TSFlags; 427 switch (TSFlags & ARMII::AddrModeMask) { 428 default: 429 // Constant pool entries can reach anything. 430 if (I->getOpcode() == ARM::CONSTPOOL_ENTRY) 431 continue; 432 if (I->getOpcode() == ARM::tLEApcrel) { 433 Bits = 8; // Taking the address of a CP entry. 434 break; 435 } 436 assert(0 && "Unknown addressing mode for CP reference!"); 437 case ARMII::AddrMode1: // AM1: 8 bits << 2 438 Bits = 8; 439 Scale = 4; // Taking the address of a CP entry. 440 break; 441 case ARMII::AddrMode2: 442 Bits = 12; // +-offset_12 443 break; 444 case ARMII::AddrMode3: 445 Bits = 8; // +-offset_8 446 break; 447 // addrmode4 has no immediate offset. 448 case ARMII::AddrMode5: 449 Bits = 8; 450 Scale = 4; // +-(offset_8*4) 451 break; 452 case ARMII::AddrModeT1: 453 Bits = 5; // +offset_5 454 break; 455 case ARMII::AddrModeT2: 456 Bits = 5; 457 Scale = 2; // +(offset_5*2) 458 break; 459 case ARMII::AddrModeT4: 460 Bits = 5; 461 Scale = 4; // +(offset_5*4) 462 break; 463 case ARMII::AddrModeTs: 464 Bits = 8; 465 Scale = 4; // +(offset_8*4) 466 break; 467 } 468 469 // Remember that this is a user of a CP entry. 470 unsigned CPI = I->getOperand(op).getIndex(); 471 MachineInstr *CPEMI = CPEMIs[CPI]; 472 unsigned MaxOffs = ((1 << Bits)-1) * Scale; 473 CPUsers.push_back(CPUser(I, CPEMI, MaxOffs)); 474 475 // Increment corresponding CPEntry reference count. 476 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 477 assert(CPE && "Cannot find a corresponding CPEntry!"); 478 CPE->RefCount++; 479 480 // Instructions can only use one CP entry, don't bother scanning the 481 // rest of the operands. 482 break; 483 } 484 } 485 486 // In thumb mode, if this block is a constpool island, we may need padding 487 // so it's aligned on 4 byte boundary. 488 if (isThumb && 489 !MBB.empty() && 490 MBB.begin()->getOpcode() == ARM::CONSTPOOL_ENTRY && 491 (Offset%4) != 0) 492 MBBSize += 2; 493 494 BBSizes.push_back(MBBSize); 495 BBOffsets.push_back(Offset); 496 Offset += MBBSize; 497 } 498} 499 500/// GetOffsetOf - Return the current offset of the specified machine instruction 501/// from the start of the function. This offset changes as stuff is moved 502/// around inside the function. 503unsigned ARMConstantIslands::GetOffsetOf(MachineInstr *MI) const { 504 MachineBasicBlock *MBB = MI->getParent(); 505 506 // The offset is composed of two things: the sum of the sizes of all MBB's 507 // before this instruction's block, and the offset from the start of the block 508 // it is in. 509 unsigned Offset = BBOffsets[MBB->getNumber()]; 510 511 // If we're looking for a CONSTPOOL_ENTRY in Thumb, see if this block has 512 // alignment padding, and compensate if so. 513 if (isThumb && 514 MI->getOpcode() == ARM::CONSTPOOL_ENTRY && 515 Offset%4 != 0) 516 Offset += 2; 517 518 // Sum instructions before MI in MBB. 519 for (MachineBasicBlock::iterator I = MBB->begin(); ; ++I) { 520 assert(I != MBB->end() && "Didn't find MI in its own basic block?"); 521 if (&*I == MI) return Offset; 522 Offset += TII->GetInstSizeInBytes(I); 523 } 524} 525 526/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 527/// ID. 528static bool CompareMBBNumbers(const MachineBasicBlock *LHS, 529 const MachineBasicBlock *RHS) { 530 return LHS->getNumber() < RHS->getNumber(); 531} 532 533/// UpdateForInsertedWaterBlock - When a block is newly inserted into the 534/// machine function, it upsets all of the block numbers. Renumber the blocks 535/// and update the arrays that parallel this numbering. 536void ARMConstantIslands::UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB) { 537 // Renumber the MBB's to keep them consequtive. 538 NewBB->getParent()->RenumberBlocks(NewBB); 539 540 // Insert a size into BBSizes to align it properly with the (newly 541 // renumbered) block numbers. 542 BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0); 543 544 // Likewise for BBOffsets. 545 BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0); 546 547 // Next, update WaterList. Specifically, we need to add NewMBB as having 548 // available water after it. 549 std::vector<MachineBasicBlock*>::iterator IP = 550 std::lower_bound(WaterList.begin(), WaterList.end(), NewBB, 551 CompareMBBNumbers); 552 WaterList.insert(IP, NewBB); 553} 554 555 556/// Split the basic block containing MI into two blocks, which are joined by 557/// an unconditional branch. Update datastructures and renumber blocks to 558/// account for this change and returns the newly created block. 559MachineBasicBlock *ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr *MI) { 560 MachineBasicBlock *OrigBB = MI->getParent(); 561 MachineFunction &MF = *OrigBB->getParent(); 562 563 // Create a new MBB for the code after the OrigBB. 564 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(OrigBB->getBasicBlock()); 565 MachineFunction::iterator MBBI = OrigBB; ++MBBI; 566 MF.insert(MBBI, NewBB); 567 568 // Splice the instructions starting with MI over to NewBB. 569 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 570 571 // Add an unconditional branch from OrigBB to NewBB. 572 // Note the new unconditional branch is not being recorded. 573 BuildMI(OrigBB, TII->get(isThumb ? ARM::tB : ARM::B)).addMBB(NewBB); 574 NumSplit++; 575 576 // Update the CFG. All succs of OrigBB are now succs of NewBB. 577 while (!OrigBB->succ_empty()) { 578 MachineBasicBlock *Succ = *OrigBB->succ_begin(); 579 OrigBB->removeSuccessor(Succ); 580 NewBB->addSuccessor(Succ); 581 582 // This pass should be run after register allocation, so there should be no 583 // PHI nodes to update. 584 assert((Succ->empty() || Succ->begin()->getOpcode() != TargetInstrInfo::PHI) 585 && "PHI nodes should be eliminated by now!"); 586 } 587 588 // OrigBB branches to NewBB. 589 OrigBB->addSuccessor(NewBB); 590 591 // Update internal data structures to account for the newly inserted MBB. 592 // This is almost the same as UpdateForInsertedWaterBlock, except that 593 // the Water goes after OrigBB, not NewBB. 594 MF.RenumberBlocks(NewBB); 595 596 // Insert a size into BBSizes to align it properly with the (newly 597 // renumbered) block numbers. 598 BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0); 599 600 // Likewise for BBOffsets. 601 BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0); 602 603 // Next, update WaterList. Specifically, we need to add OrigMBB as having 604 // available water after it (but not if it's already there, which happens 605 // when splitting before a conditional branch that is followed by an 606 // unconditional branch - in that case we want to insert NewBB). 607 std::vector<MachineBasicBlock*>::iterator IP = 608 std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB, 609 CompareMBBNumbers); 610 MachineBasicBlock* WaterBB = *IP; 611 if (WaterBB == OrigBB) 612 WaterList.insert(next(IP), NewBB); 613 else 614 WaterList.insert(IP, OrigBB); 615 616 // Figure out how large the first NewMBB is. (It cannot 617 // contain a constpool_entry or tablejump.) 618 unsigned NewBBSize = 0; 619 for (MachineBasicBlock::iterator I = NewBB->begin(), E = NewBB->end(); 620 I != E; ++I) 621 NewBBSize += TII->GetInstSizeInBytes(I); 622 623 unsigned OrigBBI = OrigBB->getNumber(); 624 unsigned NewBBI = NewBB->getNumber(); 625 // Set the size of NewBB in BBSizes. 626 BBSizes[NewBBI] = NewBBSize; 627 628 // We removed instructions from UserMBB, subtract that off from its size. 629 // Add 2 or 4 to the block to count the unconditional branch we added to it. 630 unsigned delta = isThumb ? 2 : 4; 631 BBSizes[OrigBBI] -= NewBBSize - delta; 632 633 // ...and adjust BBOffsets for NewBB accordingly. 634 BBOffsets[NewBBI] = BBOffsets[OrigBBI] + BBSizes[OrigBBI]; 635 636 // All BBOffsets following these blocks must be modified. 637 AdjustBBOffsetsAfter(NewBB, delta); 638 639 return NewBB; 640} 641 642/// OffsetIsInRange - Checks whether UserOffset (the location of a constant pool 643/// reference) is within MaxDisp of TrialOffset (a proposed location of a 644/// constant pool entry). 645bool ARMConstantIslands::OffsetIsInRange(unsigned UserOffset, 646 unsigned TrialOffset, unsigned MaxDisp, bool NegativeOK) { 647 // On Thumb offsets==2 mod 4 are rounded down by the hardware for 648 // purposes of the displacement computation; compensate for that here. 649 // Effectively, the valid range of displacements is 2 bytes smaller for such 650 // references. 651 if (isThumb && UserOffset%4 !=0) 652 UserOffset -= 2; 653 // CPEs will be rounded up to a multiple of 4. 654 if (isThumb && TrialOffset%4 != 0) 655 TrialOffset += 2; 656 657 if (UserOffset <= TrialOffset) { 658 // User before the Trial. 659 if (TrialOffset-UserOffset <= MaxDisp) 660 return true; 661 } else if (NegativeOK) { 662 if (UserOffset-TrialOffset <= MaxDisp) 663 return true; 664 } 665 return false; 666} 667 668/// WaterIsInRange - Returns true if a CPE placed after the specified 669/// Water (a basic block) will be in range for the specific MI. 670 671bool ARMConstantIslands::WaterIsInRange(unsigned UserOffset, 672 MachineBasicBlock* Water, CPUser &U) 673{ 674 unsigned MaxDisp = U.MaxDisp; 675 MachineFunction::iterator I = next(MachineFunction::iterator(Water)); 676 unsigned CPEOffset = BBOffsets[Water->getNumber()] + 677 BBSizes[Water->getNumber()]; 678 679 // If the CPE is to be inserted before the instruction, that will raise 680 // the offset of the instruction. (Currently applies only to ARM, so 681 // no alignment compensation attempted here.) 682 if (CPEOffset < UserOffset) 683 UserOffset += U.CPEMI->getOperand(2).getImm(); 684 685 return OffsetIsInRange (UserOffset, CPEOffset, MaxDisp, !isThumb); 686} 687 688/// CPEIsInRange - Returns true if the distance between specific MI and 689/// specific ConstPool entry instruction can fit in MI's displacement field. 690bool ARMConstantIslands::CPEIsInRange(MachineInstr *MI, unsigned UserOffset, 691 MachineInstr *CPEMI, 692 unsigned MaxDisp, bool DoDump) { 693 unsigned CPEOffset = GetOffsetOf(CPEMI); 694 assert(CPEOffset%4 == 0 && "Misaligned CPE"); 695 696 if (DoDump) { 697 DOUT << "User of CPE#" << CPEMI->getOperand(0).getImm() 698 << " max delta=" << MaxDisp 699 << " insn address=" << UserOffset 700 << " CPE address=" << CPEOffset 701 << " offset=" << int(CPEOffset-UserOffset) << "\t" << *MI; 702 } 703 704 return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, !isThumb); 705} 706 707/// BBIsJumpedOver - Return true of the specified basic block's only predecessor 708/// unconditionally branches to its only successor. 709static bool BBIsJumpedOver(MachineBasicBlock *MBB) { 710 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 711 return false; 712 713 MachineBasicBlock *Succ = *MBB->succ_begin(); 714 MachineBasicBlock *Pred = *MBB->pred_begin(); 715 MachineInstr *PredMI = &Pred->back(); 716 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB) 717 return PredMI->getOperand(0).getMBB() == Succ; 718 return false; 719} 720 721void ARMConstantIslands::AdjustBBOffsetsAfter(MachineBasicBlock *BB, 722 int delta) { 723 MachineFunction::iterator MBBI = BB; MBBI = next(MBBI); 724 for(unsigned i=BB->getNumber()+1; i<BB->getParent()->getNumBlockIDs(); i++) { 725 BBOffsets[i] += delta; 726 // If some existing blocks have padding, adjust the padding as needed, a 727 // bit tricky. delta can be negative so don't use % on that. 728 if (isThumb) { 729 MachineBasicBlock *MBB = MBBI; 730 if (!MBB->empty()) { 731 // Constant pool entries require padding. 732 if (MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) { 733 unsigned oldOffset = BBOffsets[i] - delta; 734 if (oldOffset%4==0 && BBOffsets[i]%4!=0) { 735 // add new padding 736 BBSizes[i] += 2; 737 delta += 2; 738 } else if (oldOffset%4!=0 && BBOffsets[i]%4==0) { 739 // remove existing padding 740 BBSizes[i] -=2; 741 delta -= 2; 742 } 743 } 744 // Thumb jump tables require padding. They should be at the end; 745 // following unconditional branches are removed by AnalyzeBranch. 746 MachineInstr *ThumbJTMI = NULL; 747 if (prior(MBB->end())->getOpcode() == ARM::tBR_JTr) 748 ThumbJTMI = prior(MBB->end()); 749 if (ThumbJTMI) { 750 unsigned newMIOffset = GetOffsetOf(ThumbJTMI); 751 unsigned oldMIOffset = newMIOffset - delta; 752 if (oldMIOffset%4 == 0 && newMIOffset%4 != 0) { 753 // remove existing padding 754 BBSizes[i] -= 2; 755 delta -= 2; 756 } else if (oldMIOffset%4 != 0 && newMIOffset%4 == 0) { 757 // add new padding 758 BBSizes[i] += 2; 759 delta += 2; 760 } 761 } 762 if (delta==0) 763 return; 764 } 765 MBBI = next(MBBI); 766 } 767 } 768} 769 770/// DecrementOldEntry - find the constant pool entry with index CPI 771/// and instruction CPEMI, and decrement its refcount. If the refcount 772/// becomes 0 remove the entry and instruction. Returns true if we removed 773/// the entry, false if we didn't. 774 775bool ARMConstantIslands::DecrementOldEntry(unsigned CPI, MachineInstr *CPEMI) { 776 // Find the old entry. Eliminate it if it is no longer used. 777 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 778 assert(CPE && "Unexpected!"); 779 if (--CPE->RefCount == 0) { 780 RemoveDeadCPEMI(CPEMI); 781 CPE->CPEMI = NULL; 782 NumCPEs--; 783 return true; 784 } 785 return false; 786} 787 788/// LookForCPEntryInRange - see if the currently referenced CPE is in range; 789/// if not, see if an in-range clone of the CPE is in range, and if so, 790/// change the data structures so the user references the clone. Returns: 791/// 0 = no existing entry found 792/// 1 = entry found, and there were no code insertions or deletions 793/// 2 = entry found, and there were code insertions or deletions 794int ARMConstantIslands::LookForExistingCPEntry(CPUser& U, unsigned UserOffset) 795{ 796 MachineInstr *UserMI = U.MI; 797 MachineInstr *CPEMI = U.CPEMI; 798 799 // Check to see if the CPE is already in-range. 800 if (CPEIsInRange(UserMI, UserOffset, CPEMI, U.MaxDisp, true)) { 801 DOUT << "In range\n"; 802 return 1; 803 } 804 805 // No. Look for previously created clones of the CPE that are in range. 806 unsigned CPI = CPEMI->getOperand(1).getIndex(); 807 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 808 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 809 // We already tried this one 810 if (CPEs[i].CPEMI == CPEMI) 811 continue; 812 // Removing CPEs can leave empty entries, skip 813 if (CPEs[i].CPEMI == NULL) 814 continue; 815 if (CPEIsInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.MaxDisp, false)) { 816 DOUT << "Replacing CPE#" << CPI << " with CPE#" << CPEs[i].CPI << "\n"; 817 // Point the CPUser node to the replacement 818 U.CPEMI = CPEs[i].CPEMI; 819 // Change the CPI in the instruction operand to refer to the clone. 820 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) 821 if (UserMI->getOperand(j).isConstantPoolIndex()) { 822 UserMI->getOperand(j).setIndex(CPEs[i].CPI); 823 break; 824 } 825 // Adjust the refcount of the clone... 826 CPEs[i].RefCount++; 827 // ...and the original. If we didn't remove the old entry, none of the 828 // addresses changed, so we don't need another pass. 829 return DecrementOldEntry(CPI, CPEMI) ? 2 : 1; 830 } 831 } 832 return 0; 833} 834 835/// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 836/// the specific unconditional branch instruction. 837static inline unsigned getUnconditionalBrDisp(int Opc) { 838 return (Opc == ARM::tB) ? ((1<<10)-1)*2 : ((1<<23)-1)*4; 839} 840 841/// AcceptWater - Small amount of common code factored out of the following. 842 843MachineBasicBlock* ARMConstantIslands::AcceptWater(MachineBasicBlock *WaterBB, 844 std::vector<MachineBasicBlock*>::iterator IP) { 845 DOUT << "found water in range\n"; 846 // Remove the original WaterList entry; we want subsequent 847 // insertions in this vicinity to go after the one we're 848 // about to insert. This considerably reduces the number 849 // of times we have to move the same CPE more than once. 850 WaterList.erase(IP); 851 // CPE goes before following block (NewMBB). 852 return next(MachineFunction::iterator(WaterBB)); 853} 854 855/// LookForWater - look for an existing entry in the WaterList in which 856/// we can place the CPE referenced from U so it's within range of U's MI. 857/// Returns true if found, false if not. If it returns true, *NewMBB 858/// is set to the WaterList entry. 859/// For ARM, we prefer the water that's farthest away. For Thumb, prefer 860/// water that will not introduce padding to water that will; within each 861/// group, prefer the water that's farthest away. 862 863bool ARMConstantIslands::LookForWater(CPUser &U, unsigned UserOffset, 864 MachineBasicBlock** NewMBB) { 865 std::vector<MachineBasicBlock*>::iterator IPThatWouldPad; 866 MachineBasicBlock* WaterBBThatWouldPad = NULL; 867 if (!WaterList.empty()) { 868 for (std::vector<MachineBasicBlock*>::iterator IP = prior(WaterList.end()), 869 B = WaterList.begin();; --IP) { 870 MachineBasicBlock* WaterBB = *IP; 871 if (WaterIsInRange(UserOffset, WaterBB, U)) { 872 if (isThumb && 873 (BBOffsets[WaterBB->getNumber()] + 874 BBSizes[WaterBB->getNumber()])%4 != 0) { 875 // This is valid Water, but would introduce padding. Remember 876 // it in case we don't find any Water that doesn't do this. 877 if (!WaterBBThatWouldPad) { 878 WaterBBThatWouldPad = WaterBB; 879 IPThatWouldPad = IP; 880 } 881 } else { 882 *NewMBB = AcceptWater(WaterBB, IP); 883 return true; 884 } 885 } 886 if (IP == B) 887 break; 888 } 889 } 890 if (isThumb && WaterBBThatWouldPad) { 891 *NewMBB = AcceptWater(WaterBBThatWouldPad, IPThatWouldPad); 892 return true; 893 } 894 return false; 895} 896 897/// CreateNewWater - No existing WaterList entry will work for 898/// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 899/// block is used if in range, and the conditional branch munged so control 900/// flow is correct. Otherwise the block is split to create a hole with an 901/// unconditional branch around it. In either case *NewMBB is set to a 902/// block following which the new island can be inserted (the WaterList 903/// is not adjusted). 904 905void ARMConstantIslands::CreateNewWater(unsigned CPUserIndex, 906 unsigned UserOffset, MachineBasicBlock** NewMBB) { 907 CPUser &U = CPUsers[CPUserIndex]; 908 MachineInstr *UserMI = U.MI; 909 MachineInstr *CPEMI = U.CPEMI; 910 MachineBasicBlock *UserMBB = UserMI->getParent(); 911 unsigned OffsetOfNextBlock = BBOffsets[UserMBB->getNumber()] + 912 BBSizes[UserMBB->getNumber()]; 913 assert(OffsetOfNextBlock== BBOffsets[UserMBB->getNumber()+1]); 914 915 // If the use is at the end of the block, or the end of the block 916 // is within range, make new water there. (The addition below is 917 // for the unconditional branch we will be adding: 4 bytes on ARM, 918 // 2 on Thumb. Possible Thumb alignment padding is allowed for 919 // inside OffsetIsInRange. 920 // If the block ends in an unconditional branch already, it is water, 921 // and is known to be out of range, so we'll always be adding a branch.) 922 if (&UserMBB->back() == UserMI || 923 OffsetIsInRange(UserOffset, OffsetOfNextBlock + (isThumb ? 2: 4), 924 U.MaxDisp, !isThumb)) { 925 DOUT << "Split at end of block\n"; 926 if (&UserMBB->back() == UserMI) 927 assert(BBHasFallthrough(UserMBB) && "Expected a fallthrough BB!"); 928 *NewMBB = next(MachineFunction::iterator(UserMBB)); 929 // Add an unconditional branch from UserMBB to fallthrough block. 930 // Record it for branch lengthening; this new branch will not get out of 931 // range, but if the preceding conditional branch is out of range, the 932 // targets will be exchanged, and the altered branch may be out of 933 // range, so the machinery has to know about it. 934 int UncondBr = isThumb ? ARM::tB : ARM::B; 935 BuildMI(UserMBB, TII->get(UncondBr)).addMBB(*NewMBB); 936 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 937 ImmBranches.push_back(ImmBranch(&UserMBB->back(), 938 MaxDisp, false, UncondBr)); 939 int delta = isThumb ? 2 : 4; 940 BBSizes[UserMBB->getNumber()] += delta; 941 AdjustBBOffsetsAfter(UserMBB, delta); 942 } else { 943 // What a big block. Find a place within the block to split it. 944 // This is a little tricky on Thumb since instructions are 2 bytes 945 // and constant pool entries are 4 bytes: if instruction I references 946 // island CPE, and instruction I+1 references CPE', it will 947 // not work well to put CPE as far forward as possible, since then 948 // CPE' cannot immediately follow it (that location is 2 bytes 949 // farther away from I+1 than CPE was from I) and we'd need to create 950 // a new island. So, we make a first guess, then walk through the 951 // instructions between the one currently being looked at and the 952 // possible insertion point, and make sure any other instructions 953 // that reference CPEs will be able to use the same island area; 954 // if not, we back up the insertion point. 955 956 // The 4 in the following is for the unconditional branch we'll be 957 // inserting (allows for long branch on Thumb). Alignment of the 958 // island is handled inside OffsetIsInRange. 959 unsigned BaseInsertOffset = UserOffset + U.MaxDisp -4; 960 // This could point off the end of the block if we've already got 961 // constant pool entries following this block; only the last one is 962 // in the water list. Back past any possible branches (allow for a 963 // conditional and a maximally long unconditional). 964 if (BaseInsertOffset >= BBOffsets[UserMBB->getNumber()+1]) 965 BaseInsertOffset = BBOffsets[UserMBB->getNumber()+1] - 966 (isThumb ? 6 : 8); 967 unsigned EndInsertOffset = BaseInsertOffset + 968 CPEMI->getOperand(2).getImm(); 969 MachineBasicBlock::iterator MI = UserMI; 970 ++MI; 971 unsigned CPUIndex = CPUserIndex+1; 972 for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI); 973 Offset < BaseInsertOffset; 974 Offset += TII->GetInstSizeInBytes(MI), 975 MI = next(MI)) { 976 if (CPUIndex < CPUsers.size() && CPUsers[CPUIndex].MI == MI) { 977 if (!OffsetIsInRange(Offset, EndInsertOffset, 978 CPUsers[CPUIndex].MaxDisp, !isThumb)) { 979 BaseInsertOffset -= (isThumb ? 2 : 4); 980 EndInsertOffset -= (isThumb ? 2 : 4); 981 } 982 // This is overly conservative, as we don't account for CPEMIs 983 // being reused within the block, but it doesn't matter much. 984 EndInsertOffset += CPUsers[CPUIndex].CPEMI->getOperand(2).getImm(); 985 CPUIndex++; 986 } 987 } 988 DOUT << "Split in middle of big block\n"; 989 *NewMBB = SplitBlockBeforeInstr(prior(MI)); 990 } 991} 992 993/// HandleConstantPoolUser - Analyze the specified user, checking to see if it 994/// is out-of-range. If so, pick it up the constant pool value and move it some 995/// place in-range. Return true if we changed any addresses (thus must run 996/// another pass of branch lengthening), false otherwise. 997bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction &Fn, 998 unsigned CPUserIndex){ 999 CPUser &U = CPUsers[CPUserIndex]; 1000 MachineInstr *UserMI = U.MI; 1001 MachineInstr *CPEMI = U.CPEMI; 1002 unsigned CPI = CPEMI->getOperand(1).getIndex(); 1003 unsigned Size = CPEMI->getOperand(2).getImm(); 1004 MachineBasicBlock *NewMBB; 1005 // Compute this only once, it's expensive. The 4 or 8 is the value the 1006 // hardware keeps in the PC (2 insns ahead of the reference). 1007 unsigned UserOffset = GetOffsetOf(UserMI) + (isThumb ? 4 : 8); 1008 1009 // Special case: tLEApcrel are two instructions MI's. The actual user is the 1010 // second instruction. 1011 if (UserMI->getOpcode() == ARM::tLEApcrel) 1012 UserOffset += 2; 1013 1014 // See if the current entry is within range, or there is a clone of it 1015 // in range. 1016 int result = LookForExistingCPEntry(U, UserOffset); 1017 if (result==1) return false; 1018 else if (result==2) return true; 1019 1020 // No existing clone of this CPE is within range. 1021 // We will be generating a new clone. Get a UID for it. 1022 unsigned ID = NextUID++; 1023 1024 // Look for water where we can place this CPE. We look for the farthest one 1025 // away that will work. Forward references only for now (although later 1026 // we might find some that are backwards). 1027 1028 if (!LookForWater(U, UserOffset, &NewMBB)) { 1029 // No water found. 1030 DOUT << "No water found\n"; 1031 CreateNewWater(CPUserIndex, UserOffset, &NewMBB); 1032 } 1033 1034 // Okay, we know we can put an island before NewMBB now, do it! 1035 MachineBasicBlock *NewIsland = Fn.CreateMachineBasicBlock(); 1036 Fn.insert(NewMBB, NewIsland); 1037 1038 // Update internal data structures to account for the newly inserted MBB. 1039 UpdateForInsertedWaterBlock(NewIsland); 1040 1041 // Decrement the old entry, and remove it if refcount becomes 0. 1042 DecrementOldEntry(CPI, CPEMI); 1043 1044 // Now that we have an island to add the CPE to, clone the original CPE and 1045 // add it to the island. 1046 U.CPEMI = BuildMI(NewIsland, TII->get(ARM::CONSTPOOL_ENTRY)) 1047 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size); 1048 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1049 NumCPEs++; 1050 1051 BBOffsets[NewIsland->getNumber()] = BBOffsets[NewMBB->getNumber()]; 1052 // Compensate for .align 2 in thumb mode. 1053 if (isThumb && BBOffsets[NewIsland->getNumber()]%4 != 0) 1054 Size += 2; 1055 // Increase the size of the island block to account for the new entry. 1056 BBSizes[NewIsland->getNumber()] += Size; 1057 AdjustBBOffsetsAfter(NewIsland, Size); 1058 1059 // Finally, change the CPI in the instruction operand to be ID. 1060 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) 1061 if (UserMI->getOperand(i).isCPI()) { 1062 UserMI->getOperand(i).setIndex(ID); 1063 break; 1064 } 1065 1066 DOUT << " Moved CPE to #" << ID << " CPI=" << CPI << "\t" << *UserMI; 1067 1068 return true; 1069} 1070 1071/// RemoveDeadCPEMI - Remove a dead constant pool entry instruction. Update 1072/// sizes and offsets of impacted basic blocks. 1073void ARMConstantIslands::RemoveDeadCPEMI(MachineInstr *CPEMI) { 1074 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1075 unsigned Size = CPEMI->getOperand(2).getImm(); 1076 CPEMI->eraseFromParent(); 1077 BBSizes[CPEBB->getNumber()] -= Size; 1078 // All succeeding offsets have the current size value added in, fix this. 1079 if (CPEBB->empty()) { 1080 // In thumb mode, the size of island may be padded by two to compensate for 1081 // the alignment requirement. Then it will now be 2 when the block is 1082 // empty, so fix this. 1083 // All succeeding offsets have the current size value added in, fix this. 1084 if (BBSizes[CPEBB->getNumber()] != 0) { 1085 Size += BBSizes[CPEBB->getNumber()]; 1086 BBSizes[CPEBB->getNumber()] = 0; 1087 } 1088 } 1089 AdjustBBOffsetsAfter(CPEBB, -Size); 1090 // An island has only one predecessor BB and one successor BB. Check if 1091 // this BB's predecessor jumps directly to this BB's successor. This 1092 // shouldn't happen currently. 1093 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); 1094 // FIXME: remove the empty blocks after all the work is done? 1095} 1096 1097/// RemoveUnusedCPEntries - Remove constant pool entries whose refcounts 1098/// are zero. 1099bool ARMConstantIslands::RemoveUnusedCPEntries() { 1100 unsigned MadeChange = false; 1101 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 1102 std::vector<CPEntry> &CPEs = CPEntries[i]; 1103 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { 1104 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { 1105 RemoveDeadCPEMI(CPEs[j].CPEMI); 1106 CPEs[j].CPEMI = NULL; 1107 MadeChange = true; 1108 } 1109 } 1110 } 1111 return MadeChange; 1112} 1113 1114/// BBIsInRange - Returns true if the distance between specific MI and 1115/// specific BB can fit in MI's displacement field. 1116bool ARMConstantIslands::BBIsInRange(MachineInstr *MI,MachineBasicBlock *DestBB, 1117 unsigned MaxDisp) { 1118 unsigned PCAdj = isThumb ? 4 : 8; 1119 unsigned BrOffset = GetOffsetOf(MI) + PCAdj; 1120 unsigned DestOffset = BBOffsets[DestBB->getNumber()]; 1121 1122 DOUT << "Branch of destination BB#" << DestBB->getNumber() 1123 << " from BB#" << MI->getParent()->getNumber() 1124 << " max delta=" << MaxDisp 1125 << " from " << GetOffsetOf(MI) << " to " << DestOffset 1126 << " offset " << int(DestOffset-BrOffset) << "\t" << *MI; 1127 1128 if (BrOffset <= DestOffset) { 1129 // Branch before the Dest. 1130 if (DestOffset-BrOffset <= MaxDisp) 1131 return true; 1132 } else { 1133 if (BrOffset-DestOffset <= MaxDisp) 1134 return true; 1135 } 1136 return false; 1137} 1138 1139/// FixUpImmediateBr - Fix up an immediate branch whose destination is too far 1140/// away to fit in its displacement field. 1141bool ARMConstantIslands::FixUpImmediateBr(MachineFunction &Fn, ImmBranch &Br) { 1142 MachineInstr *MI = Br.MI; 1143 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1144 1145 // Check to see if the DestBB is already in-range. 1146 if (BBIsInRange(MI, DestBB, Br.MaxDisp)) 1147 return false; 1148 1149 if (!Br.isCond) 1150 return FixUpUnconditionalBr(Fn, Br); 1151 return FixUpConditionalBr(Fn, Br); 1152} 1153 1154/// FixUpUnconditionalBr - Fix up an unconditional branch whose destination is 1155/// too far away to fit in its displacement field. If the LR register has been 1156/// spilled in the epilogue, then we can use BL to implement a far jump. 1157/// Otherwise, add an intermediate branch instruction to to a branch. 1158bool 1159ARMConstantIslands::FixUpUnconditionalBr(MachineFunction &Fn, ImmBranch &Br) { 1160 MachineInstr *MI = Br.MI; 1161 MachineBasicBlock *MBB = MI->getParent(); 1162 assert(isThumb && "Expected a Thumb function!"); 1163 1164 // Use BL to implement far jump. 1165 Br.MaxDisp = (1 << 21) * 2; 1166 MI->setDesc(TII->get(ARM::tBfar)); 1167 BBSizes[MBB->getNumber()] += 2; 1168 AdjustBBOffsetsAfter(MBB, 2); 1169 HasFarJump = true; 1170 NumUBrFixed++; 1171 1172 DOUT << " Changed B to long jump " << *MI; 1173 1174 return true; 1175} 1176 1177/// FixUpConditionalBr - Fix up a conditional branch whose destination is too 1178/// far away to fit in its displacement field. It is converted to an inverse 1179/// conditional branch + an unconditional branch to the destination. 1180bool 1181ARMConstantIslands::FixUpConditionalBr(MachineFunction &Fn, ImmBranch &Br) { 1182 MachineInstr *MI = Br.MI; 1183 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1184 1185 // Add a unconditional branch to the destination and invert the branch 1186 // condition to jump over it: 1187 // blt L1 1188 // => 1189 // bge L2 1190 // b L1 1191 // L2: 1192 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm(); 1193 CC = ARMCC::getOppositeCondition(CC); 1194 unsigned CCReg = MI->getOperand(2).getReg(); 1195 1196 // If the branch is at the end of its MBB and that has a fall-through block, 1197 // direct the updated conditional branch to the fall-through block. Otherwise, 1198 // split the MBB before the next instruction. 1199 MachineBasicBlock *MBB = MI->getParent(); 1200 MachineInstr *BMI = &MBB->back(); 1201 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); 1202 1203 NumCBrFixed++; 1204 if (BMI != MI) { 1205 if (next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) && 1206 BMI->getOpcode() == Br.UncondBr) { 1207 // Last MI in the BB is a unconditional branch. Can we simply invert the 1208 // condition and swap destinations: 1209 // beq L1 1210 // b L2 1211 // => 1212 // bne L2 1213 // b L1 1214 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); 1215 if (BBIsInRange(MI, NewDest, Br.MaxDisp)) { 1216 DOUT << " Invert Bcc condition and swap its destination with " << *BMI; 1217 BMI->getOperand(0).setMBB(DestBB); 1218 MI->getOperand(0).setMBB(NewDest); 1219 MI->getOperand(1).setImm(CC); 1220 return true; 1221 } 1222 } 1223 } 1224 1225 if (NeedSplit) { 1226 SplitBlockBeforeInstr(MI); 1227 // No need for the branch to the next block. We're adding a unconditional 1228 // branch to the destination. 1229 int delta = TII->GetInstSizeInBytes(&MBB->back()); 1230 BBSizes[MBB->getNumber()] -= delta; 1231 MachineBasicBlock* SplitBB = next(MachineFunction::iterator(MBB)); 1232 AdjustBBOffsetsAfter(SplitBB, -delta); 1233 MBB->back().eraseFromParent(); 1234 // BBOffsets[SplitBB] is wrong temporarily, fixed below 1235 } 1236 MachineBasicBlock *NextBB = next(MachineFunction::iterator(MBB)); 1237 1238 DOUT << " Insert B to BB#" << DestBB->getNumber() 1239 << " also invert condition and change dest. to BB#" 1240 << NextBB->getNumber() << "\n"; 1241 1242 // Insert a new conditional branch and a new unconditional branch. 1243 // Also update the ImmBranch as well as adding a new entry for the new branch. 1244 BuildMI(MBB, TII->get(MI->getOpcode())).addMBB(NextBB) 1245 .addImm(CC).addReg(CCReg); 1246 Br.MI = &MBB->back(); 1247 BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back()); 1248 BuildMI(MBB, TII->get(Br.UncondBr)).addMBB(DestBB); 1249 BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back()); 1250 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1251 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1252 1253 // Remove the old conditional branch. It may or may not still be in MBB. 1254 BBSizes[MI->getParent()->getNumber()] -= TII->GetInstSizeInBytes(MI); 1255 MI->eraseFromParent(); 1256 1257 // The net size change is an addition of one unconditional branch. 1258 int delta = TII->GetInstSizeInBytes(&MBB->back()); 1259 AdjustBBOffsetsAfter(MBB, delta); 1260 return true; 1261} 1262 1263/// UndoLRSpillRestore - Remove Thumb push / pop instructions that only spills 1264/// LR / restores LR to pc. 1265bool ARMConstantIslands::UndoLRSpillRestore() { 1266 bool MadeChange = false; 1267 for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) { 1268 MachineInstr *MI = PushPopMIs[i]; 1269 if (MI->getOpcode() == ARM::tPOP_RET && 1270 MI->getOperand(0).getReg() == ARM::PC && 1271 MI->getNumExplicitOperands() == 1) { 1272 BuildMI(MI->getParent(), TII->get(ARM::tBX_RET)); 1273 MI->eraseFromParent(); 1274 MadeChange = true; 1275 } 1276 } 1277 return MadeChange; 1278} 1279