ARMConstantIslandPass.cpp revision b300455b5817f099d64aad8f9356e0e23fa9a87e
1//===-- ARMConstantIslandPass.cpp - ARM constant islands ------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains a pass that splits the constant pool up into 'islands' 11// which are scattered through-out the function. This is required due to the 12// limited pc-relative displacements that ARM has. 13// 14//===----------------------------------------------------------------------===// 15 16#define DEBUG_TYPE "arm-cp-islands" 17#include "ARM.h" 18#include "ARMMachineFunctionInfo.h" 19#include "MCTargetDesc/ARMAddressingModes.h" 20#include "Thumb2InstrInfo.h" 21#include "llvm/ADT/STLExtras.h" 22#include "llvm/ADT/SmallSet.h" 23#include "llvm/ADT/SmallVector.h" 24#include "llvm/ADT/Statistic.h" 25#include "llvm/CodeGen/MachineConstantPool.h" 26#include "llvm/CodeGen/MachineFunctionPass.h" 27#include "llvm/CodeGen/MachineJumpTableInfo.h" 28#include "llvm/CodeGen/MachineRegisterInfo.h" 29#include "llvm/IR/DataLayout.h" 30#include "llvm/Support/CommandLine.h" 31#include "llvm/Support/Debug.h" 32#include "llvm/Support/ErrorHandling.h" 33#include "llvm/Support/Format.h" 34#include "llvm/Support/raw_ostream.h" 35#include "llvm/Target/TargetMachine.h" 36#include <algorithm> 37using namespace llvm; 38 39STATISTIC(NumCPEs, "Number of constpool entries"); 40STATISTIC(NumSplit, "Number of uncond branches inserted"); 41STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 42STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 43STATISTIC(NumTBs, "Number of table branches generated"); 44STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk"); 45STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk"); 46STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed"); 47STATISTIC(NumJTMoved, "Number of jump table destination blocks moved"); 48STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted"); 49 50 51static cl::opt<bool> 52AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true), 53 cl::desc("Adjust basic block layout to better use TB[BH]")); 54 55// FIXME: This option should be removed once it has received sufficient testing. 56static cl::opt<bool> 57AlignConstantIslands("arm-align-constant-islands", cl::Hidden, cl::init(true), 58 cl::desc("Align constant islands in code")); 59 60/// UnknownPadding - Return the worst case padding that could result from 61/// unknown offset bits. This does not include alignment padding caused by 62/// known offset bits. 63/// 64/// @param LogAlign log2(alignment) 65/// @param KnownBits Number of known low offset bits. 66static inline unsigned UnknownPadding(unsigned LogAlign, unsigned KnownBits) { 67 if (KnownBits < LogAlign) 68 return (1u << LogAlign) - (1u << KnownBits); 69 return 0; 70} 71 72namespace { 73 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM 74 /// requires constant pool entries to be scattered among the instructions 75 /// inside a function. To do this, it completely ignores the normal LLVM 76 /// constant pool; instead, it places constants wherever it feels like with 77 /// special instructions. 78 /// 79 /// The terminology used in this pass includes: 80 /// Islands - Clumps of constants placed in the function. 81 /// Water - Potential places where an island could be formed. 82 /// CPE - A constant pool entry that has been placed somewhere, which 83 /// tracks a list of users. 84 class ARMConstantIslands : public MachineFunctionPass { 85 /// BasicBlockInfo - Information about the offset and size of a single 86 /// basic block. 87 struct BasicBlockInfo { 88 /// Offset - Distance from the beginning of the function to the beginning 89 /// of this basic block. 90 /// 91 /// Offsets are computed assuming worst case padding before an aligned 92 /// block. This means that subtracting basic block offsets always gives a 93 /// conservative estimate of the real distance which may be smaller. 94 /// 95 /// Because worst case padding is used, the computed offset of an aligned 96 /// block may not actually be aligned. 97 unsigned Offset; 98 99 /// Size - Size of the basic block in bytes. If the block contains 100 /// inline assembly, this is a worst case estimate. 101 /// 102 /// The size does not include any alignment padding whether from the 103 /// beginning of the block, or from an aligned jump table at the end. 104 unsigned Size; 105 106 /// KnownBits - The number of low bits in Offset that are known to be 107 /// exact. The remaining bits of Offset are an upper bound. 108 uint8_t KnownBits; 109 110 /// Unalign - When non-zero, the block contains instructions (inline asm) 111 /// of unknown size. The real size may be smaller than Size bytes by a 112 /// multiple of 1 << Unalign. 113 uint8_t Unalign; 114 115 /// PostAlign - When non-zero, the block terminator contains a .align 116 /// directive, so the end of the block is aligned to 1 << PostAlign 117 /// bytes. 118 uint8_t PostAlign; 119 120 BasicBlockInfo() : Offset(0), Size(0), KnownBits(0), Unalign(0), 121 PostAlign(0) {} 122 123 /// Compute the number of known offset bits internally to this block. 124 /// This number should be used to predict worst case padding when 125 /// splitting the block. 126 unsigned internalKnownBits() const { 127 unsigned Bits = Unalign ? Unalign : KnownBits; 128 // If the block size isn't a multiple of the known bits, assume the 129 // worst case padding. 130 if (Size & ((1u << Bits) - 1)) 131 Bits = CountTrailingZeros_32(Size); 132 return Bits; 133 } 134 135 /// Compute the offset immediately following this block. If LogAlign is 136 /// specified, return the offset the successor block will get if it has 137 /// this alignment. 138 unsigned postOffset(unsigned LogAlign = 0) const { 139 unsigned PO = Offset + Size; 140 unsigned LA = std::max(unsigned(PostAlign), LogAlign); 141 if (!LA) 142 return PO; 143 // Add alignment padding from the terminator. 144 return PO + UnknownPadding(LA, internalKnownBits()); 145 } 146 147 /// Compute the number of known low bits of postOffset. If this block 148 /// contains inline asm, the number of known bits drops to the 149 /// instruction alignment. An aligned terminator may increase the number 150 /// of know bits. 151 /// If LogAlign is given, also consider the alignment of the next block. 152 unsigned postKnownBits(unsigned LogAlign = 0) const { 153 return std::max(std::max(unsigned(PostAlign), LogAlign), 154 internalKnownBits()); 155 } 156 }; 157 158 std::vector<BasicBlockInfo> BBInfo; 159 160 /// WaterList - A sorted list of basic blocks where islands could be placed 161 /// (i.e. blocks that don't fall through to the following block, due 162 /// to a return, unreachable, or unconditional branch). 163 std::vector<MachineBasicBlock*> WaterList; 164 165 /// NewWaterList - The subset of WaterList that was created since the 166 /// previous iteration by inserting unconditional branches. 167 SmallSet<MachineBasicBlock*, 4> NewWaterList; 168 169 typedef std::vector<MachineBasicBlock*>::iterator water_iterator; 170 171 /// CPUser - One user of a constant pool, keeping the machine instruction 172 /// pointer, the constant pool being referenced, and the max displacement 173 /// allowed from the instruction to the CP. The HighWaterMark records the 174 /// highest basic block where a new CPEntry can be placed. To ensure this 175 /// pass terminates, the CP entries are initially placed at the end of the 176 /// function and then move monotonically to lower addresses. The 177 /// exception to this rule is when the current CP entry for a particular 178 /// CPUser is out of range, but there is another CP entry for the same 179 /// constant value in range. We want to use the existing in-range CP 180 /// entry, but if it later moves out of range, the search for new water 181 /// should resume where it left off. The HighWaterMark is used to record 182 /// that point. 183 struct CPUser { 184 MachineInstr *MI; 185 MachineInstr *CPEMI; 186 MachineBasicBlock *HighWaterMark; 187 private: 188 unsigned MaxDisp; 189 public: 190 bool NegOk; 191 bool IsSoImm; 192 bool KnownAlignment; 193 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, 194 bool neg, bool soimm) 195 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm), 196 KnownAlignment(false) { 197 HighWaterMark = CPEMI->getParent(); 198 } 199 /// getMaxDisp - Returns the maximum displacement supported by MI. 200 /// Correct for unknown alignment. 201 /// Conservatively subtract 2 bytes to handle weird alignment effects. 202 unsigned getMaxDisp() const { 203 return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2; 204 } 205 }; 206 207 /// CPUsers - Keep track of all of the machine instructions that use various 208 /// constant pools and their max displacement. 209 std::vector<CPUser> CPUsers; 210 211 /// CPEntry - One per constant pool entry, keeping the machine instruction 212 /// pointer, the constpool index, and the number of CPUser's which 213 /// reference this entry. 214 struct CPEntry { 215 MachineInstr *CPEMI; 216 unsigned CPI; 217 unsigned RefCount; 218 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) 219 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} 220 }; 221 222 /// CPEntries - Keep track of all of the constant pool entry machine 223 /// instructions. For each original constpool index (i.e. those that 224 /// existed upon entry to this pass), it keeps a vector of entries. 225 /// Original elements are cloned as we go along; the clones are 226 /// put in the vector of the original element, but have distinct CPIs. 227 std::vector<std::vector<CPEntry> > CPEntries; 228 229 /// ImmBranch - One per immediate branch, keeping the machine instruction 230 /// pointer, conditional or unconditional, the max displacement, 231 /// and (if isCond is true) the corresponding unconditional branch 232 /// opcode. 233 struct ImmBranch { 234 MachineInstr *MI; 235 unsigned MaxDisp : 31; 236 bool isCond : 1; 237 int UncondBr; 238 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr) 239 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} 240 }; 241 242 /// ImmBranches - Keep track of all the immediate branch instructions. 243 /// 244 std::vector<ImmBranch> ImmBranches; 245 246 /// PushPopMIs - Keep track of all the Thumb push / pop instructions. 247 /// 248 SmallVector<MachineInstr*, 4> PushPopMIs; 249 250 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions. 251 SmallVector<MachineInstr*, 4> T2JumpTables; 252 253 /// HasFarJump - True if any far jump instruction has been emitted during 254 /// the branch fix up pass. 255 bool HasFarJump; 256 257 MachineFunction *MF; 258 MachineConstantPool *MCP; 259 const ARMBaseInstrInfo *TII; 260 const ARMSubtarget *STI; 261 ARMFunctionInfo *AFI; 262 bool isThumb; 263 bool isThumb1; 264 bool isThumb2; 265 public: 266 static char ID; 267 ARMConstantIslands() : MachineFunctionPass(ID) {} 268 269 virtual bool runOnMachineFunction(MachineFunction &MF); 270 271 virtual const char *getPassName() const { 272 return "ARM constant island placement and branch shortening pass"; 273 } 274 275 private: 276 void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs); 277 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 278 unsigned getCPELogAlign(const MachineInstr *CPEMI); 279 void scanFunctionJumpTables(); 280 void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs); 281 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI); 282 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB); 283 void adjustBBOffsetsAfter(MachineBasicBlock *BB); 284 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI); 285 int findInRangeCPEntry(CPUser& U, unsigned UserOffset); 286 bool findAvailableWater(CPUser&U, unsigned UserOffset, 287 water_iterator &WaterIter); 288 void createNewWater(unsigned CPUserIndex, unsigned UserOffset, 289 MachineBasicBlock *&NewMBB); 290 bool handleConstantPoolUser(unsigned CPUserIndex); 291 void removeDeadCPEMI(MachineInstr *CPEMI); 292 bool removeUnusedCPEntries(); 293 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 294 MachineInstr *CPEMI, unsigned Disp, bool NegOk, 295 bool DoDump = false); 296 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, 297 CPUser &U, unsigned &Growth); 298 bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); 299 bool fixupImmediateBr(ImmBranch &Br); 300 bool fixupConditionalBr(ImmBranch &Br); 301 bool fixupUnconditionalBr(ImmBranch &Br); 302 bool undoLRSpillRestore(); 303 bool mayOptimizeThumb2Instruction(const MachineInstr *MI) const; 304 bool optimizeThumb2Instructions(); 305 bool optimizeThumb2Branches(); 306 bool reorderThumb2JumpTables(); 307 bool optimizeThumb2JumpTables(); 308 MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB, 309 MachineBasicBlock *JTBB); 310 311 void computeBlockSize(MachineBasicBlock *MBB); 312 unsigned getOffsetOf(MachineInstr *MI) const; 313 unsigned getUserOffset(CPUser&) const; 314 void dumpBBs(); 315 void verify(); 316 317 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 318 unsigned Disp, bool NegativeOK, bool IsSoImm = false); 319 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 320 const CPUser &U) { 321 return isOffsetInRange(UserOffset, TrialOffset, 322 U.getMaxDisp(), U.NegOk, U.IsSoImm); 323 } 324 }; 325 char ARMConstantIslands::ID = 0; 326} 327 328/// verify - check BBOffsets, BBSizes, alignment of islands 329void ARMConstantIslands::verify() { 330#ifndef NDEBUG 331 for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); 332 MBBI != E; ++MBBI) { 333 MachineBasicBlock *MBB = MBBI; 334 unsigned MBBId = MBB->getNumber(); 335 assert(!MBBId || BBInfo[MBBId - 1].postOffset() <= BBInfo[MBBId].Offset); 336 } 337 DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n"); 338 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 339 CPUser &U = CPUsers[i]; 340 unsigned UserOffset = getUserOffset(U); 341 // Verify offset using the real max displacement without the safety 342 // adjustment. 343 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk, 344 /* DoDump = */ true)) { 345 DEBUG(dbgs() << "OK\n"); 346 continue; 347 } 348 DEBUG(dbgs() << "Out of range.\n"); 349 dumpBBs(); 350 DEBUG(MF->dump()); 351 llvm_unreachable("Constant pool entry out of range!"); 352 } 353#endif 354} 355 356/// print block size and offset information - debugging 357void ARMConstantIslands::dumpBBs() { 358 DEBUG({ 359 for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) { 360 const BasicBlockInfo &BBI = BBInfo[J]; 361 dbgs() << format("%08x BB#%u\t", BBI.Offset, J) 362 << " kb=" << unsigned(BBI.KnownBits) 363 << " ua=" << unsigned(BBI.Unalign) 364 << " pa=" << unsigned(BBI.PostAlign) 365 << format(" size=%#x\n", BBInfo[J].Size); 366 } 367 }); 368} 369 370/// createARMConstantIslandPass - returns an instance of the constpool 371/// island pass. 372FunctionPass *llvm::createARMConstantIslandPass() { 373 return new ARMConstantIslands(); 374} 375 376bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) { 377 MF = &mf; 378 MCP = mf.getConstantPool(); 379 380 DEBUG(dbgs() << "***** ARMConstantIslands: " 381 << MCP->getConstants().size() << " CP entries, aligned to " 382 << MCP->getConstantPoolAlignment() << " bytes *****\n"); 383 384 TII = (const ARMBaseInstrInfo*)MF->getTarget().getInstrInfo(); 385 AFI = MF->getInfo<ARMFunctionInfo>(); 386 STI = &MF->getTarget().getSubtarget<ARMSubtarget>(); 387 388 isThumb = AFI->isThumbFunction(); 389 isThumb1 = AFI->isThumb1OnlyFunction(); 390 isThumb2 = AFI->isThumb2Function(); 391 392 HasFarJump = false; 393 394 // This pass invalidates liveness information when it splits basic blocks. 395 MF->getRegInfo().invalidateLiveness(); 396 397 // Renumber all of the machine basic blocks in the function, guaranteeing that 398 // the numbers agree with the position of the block in the function. 399 MF->RenumberBlocks(); 400 401 // Try to reorder and otherwise adjust the block layout to make good use 402 // of the TB[BH] instructions. 403 bool MadeChange = false; 404 if (isThumb2 && AdjustJumpTableBlocks) { 405 scanFunctionJumpTables(); 406 MadeChange |= reorderThumb2JumpTables(); 407 // Data is out of date, so clear it. It'll be re-computed later. 408 T2JumpTables.clear(); 409 // Blocks may have shifted around. Keep the numbering up to date. 410 MF->RenumberBlocks(); 411 } 412 413 // Thumb1 functions containing constant pools get 4-byte alignment. 414 // This is so we can keep exact track of where the alignment padding goes. 415 416 // ARM and Thumb2 functions need to be 4-byte aligned. 417 if (!isThumb1) 418 MF->ensureAlignment(2); // 2 = log2(4) 419 420 // Perform the initial placement of the constant pool entries. To start with, 421 // we put them all at the end of the function. 422 std::vector<MachineInstr*> CPEMIs; 423 if (!MCP->isEmpty()) 424 doInitialPlacement(CPEMIs); 425 426 /// The next UID to take is the first unused one. 427 AFI->initPICLabelUId(CPEMIs.size()); 428 429 // Do the initial scan of the function, building up information about the 430 // sizes of each block, the location of all the water, and finding all of the 431 // constant pool users. 432 initializeFunctionInfo(CPEMIs); 433 CPEMIs.clear(); 434 DEBUG(dumpBBs()); 435 436 437 /// Remove dead constant pool entries. 438 MadeChange |= removeUnusedCPEntries(); 439 440 // Iteratively place constant pool entries and fix up branches until there 441 // is no change. 442 unsigned NoCPIters = 0, NoBRIters = 0; 443 while (true) { 444 DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n'); 445 bool CPChange = false; 446 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) 447 CPChange |= handleConstantPoolUser(i); 448 if (CPChange && ++NoCPIters > 30) 449 report_fatal_error("Constant Island pass failed to converge!"); 450 DEBUG(dumpBBs()); 451 452 // Clear NewWaterList now. If we split a block for branches, it should 453 // appear as "new water" for the next iteration of constant pool placement. 454 NewWaterList.clear(); 455 456 DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n'); 457 bool BRChange = false; 458 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) 459 BRChange |= fixupImmediateBr(ImmBranches[i]); 460 if (BRChange && ++NoBRIters > 30) 461 report_fatal_error("Branch Fix Up pass failed to converge!"); 462 DEBUG(dumpBBs()); 463 464 if (!CPChange && !BRChange) 465 break; 466 MadeChange = true; 467 } 468 469 // Shrink 32-bit Thumb2 branch, load, and store instructions. 470 if (isThumb2 && !STI->prefers32BitThumb()) 471 MadeChange |= optimizeThumb2Instructions(); 472 473 // After a while, this might be made debug-only, but it is not expensive. 474 verify(); 475 476 // If LR has been forced spilled and no far jump (i.e. BL) has been issued, 477 // undo the spill / restore of LR if possible. 478 if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump()) 479 MadeChange |= undoLRSpillRestore(); 480 481 // Save the mapping between original and cloned constpool entries. 482 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 483 for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) { 484 const CPEntry & CPE = CPEntries[i][j]; 485 AFI->recordCPEClone(i, CPE.CPI); 486 } 487 } 488 489 DEBUG(dbgs() << '\n'; dumpBBs()); 490 491 BBInfo.clear(); 492 WaterList.clear(); 493 CPUsers.clear(); 494 CPEntries.clear(); 495 ImmBranches.clear(); 496 PushPopMIs.clear(); 497 T2JumpTables.clear(); 498 499 return MadeChange; 500} 501 502/// doInitialPlacement - Perform the initial placement of the constant pool 503/// entries. To start with, we put them all at the end of the function. 504void 505ARMConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) { 506 // Create the basic block to hold the CPE's. 507 MachineBasicBlock *BB = MF->CreateMachineBasicBlock(); 508 MF->push_back(BB); 509 510 // MachineConstantPool measures alignment in bytes. We measure in log2(bytes). 511 unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment()); 512 513 // Mark the basic block as required by the const-pool. 514 // If AlignConstantIslands isn't set, use 4-byte alignment for everything. 515 BB->setAlignment(AlignConstantIslands ? MaxAlign : 2); 516 517 // The function needs to be as aligned as the basic blocks. The linker may 518 // move functions around based on their alignment. 519 MF->ensureAlignment(BB->getAlignment()); 520 521 // Order the entries in BB by descending alignment. That ensures correct 522 // alignment of all entries as long as BB is sufficiently aligned. Keep 523 // track of the insertion point for each alignment. We are going to bucket 524 // sort the entries as they are created. 525 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end()); 526 527 // Add all of the constants from the constant pool to the end block, use an 528 // identity mapping of CPI's to CPE's. 529 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants(); 530 531 const DataLayout &TD = *MF->getTarget().getDataLayout(); 532 for (unsigned i = 0, e = CPs.size(); i != e; ++i) { 533 unsigned Size = TD.getTypeAllocSize(CPs[i].getType()); 534 assert(Size >= 4 && "Too small constant pool entry"); 535 unsigned Align = CPs[i].getAlignment(); 536 assert(isPowerOf2_32(Align) && "Invalid alignment"); 537 // Verify that all constant pool entries are a multiple of their alignment. 538 // If not, we would have to pad them out so that instructions stay aligned. 539 assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!"); 540 541 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment. 542 unsigned LogAlign = Log2_32(Align); 543 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign]; 544 MachineInstr *CPEMI = 545 BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 546 .addImm(i).addConstantPoolIndex(i).addImm(Size); 547 CPEMIs.push_back(CPEMI); 548 549 // Ensure that future entries with higher alignment get inserted before 550 // CPEMI. This is bucket sort with iterators. 551 for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a) 552 if (InsPoint[a] == InsAt) 553 InsPoint[a] = CPEMI; 554 555 // Add a new CPEntry, but no corresponding CPUser yet. 556 std::vector<CPEntry> CPEs; 557 CPEs.push_back(CPEntry(CPEMI, i)); 558 CPEntries.push_back(CPEs); 559 ++NumCPEs; 560 DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = " 561 << Size << ", align = " << Align <<'\n'); 562 } 563 DEBUG(BB->dump()); 564} 565 566/// BBHasFallthrough - Return true if the specified basic block can fallthrough 567/// into the block immediately after it. 568static bool BBHasFallthrough(MachineBasicBlock *MBB) { 569 // Get the next machine basic block in the function. 570 MachineFunction::iterator MBBI = MBB; 571 // Can't fall off end of function. 572 if (llvm::next(MBBI) == MBB->getParent()->end()) 573 return false; 574 575 MachineBasicBlock *NextBB = llvm::next(MBBI); 576 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), 577 E = MBB->succ_end(); I != E; ++I) 578 if (*I == NextBB) 579 return true; 580 581 return false; 582} 583 584/// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 585/// look up the corresponding CPEntry. 586ARMConstantIslands::CPEntry 587*ARMConstantIslands::findConstPoolEntry(unsigned CPI, 588 const MachineInstr *CPEMI) { 589 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 590 // Number of entries per constpool index should be small, just do a 591 // linear search. 592 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 593 if (CPEs[i].CPEMI == CPEMI) 594 return &CPEs[i]; 595 } 596 return NULL; 597} 598 599/// getCPELogAlign - Returns the required alignment of the constant pool entry 600/// represented by CPEMI. Alignment is measured in log2(bytes) units. 601unsigned ARMConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) { 602 assert(CPEMI && CPEMI->getOpcode() == ARM::CONSTPOOL_ENTRY); 603 604 // Everything is 4-byte aligned unless AlignConstantIslands is set. 605 if (!AlignConstantIslands) 606 return 2; 607 608 unsigned CPI = CPEMI->getOperand(1).getIndex(); 609 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index."); 610 unsigned Align = MCP->getConstants()[CPI].getAlignment(); 611 assert(isPowerOf2_32(Align) && "Invalid CPE alignment"); 612 return Log2_32(Align); 613} 614 615/// scanFunctionJumpTables - Do a scan of the function, building up 616/// information about the sizes of each block and the locations of all 617/// the jump tables. 618void ARMConstantIslands::scanFunctionJumpTables() { 619 for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); 620 MBBI != E; ++MBBI) { 621 MachineBasicBlock &MBB = *MBBI; 622 623 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 624 I != E; ++I) 625 if (I->isBranch() && I->getOpcode() == ARM::t2BR_JT) 626 T2JumpTables.push_back(I); 627 } 628} 629 630/// initializeFunctionInfo - Do the initial scan of the function, building up 631/// information about the sizes of each block, the location of all the water, 632/// and finding all of the constant pool users. 633void ARMConstantIslands:: 634initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) { 635 BBInfo.clear(); 636 BBInfo.resize(MF->getNumBlockIDs()); 637 638 // First thing, compute the size of all basic blocks, and see if the function 639 // has any inline assembly in it. If so, we have to be conservative about 640 // alignment assumptions, as we don't know for sure the size of any 641 // instructions in the inline assembly. 642 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) 643 computeBlockSize(I); 644 645 // The known bits of the entry block offset are determined by the function 646 // alignment. 647 BBInfo.front().KnownBits = MF->getAlignment(); 648 649 // Compute block offsets and known bits. 650 adjustBBOffsetsAfter(MF->begin()); 651 652 // Now go back through the instructions and build up our data structures. 653 for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); 654 MBBI != E; ++MBBI) { 655 MachineBasicBlock &MBB = *MBBI; 656 657 // If this block doesn't fall through into the next MBB, then this is 658 // 'water' that a constant pool island could be placed. 659 if (!BBHasFallthrough(&MBB)) 660 WaterList.push_back(&MBB); 661 662 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 663 I != E; ++I) { 664 if (I->isDebugValue()) 665 continue; 666 667 int Opc = I->getOpcode(); 668 if (I->isBranch()) { 669 bool isCond = false; 670 unsigned Bits = 0; 671 unsigned Scale = 1; 672 int UOpc = Opc; 673 switch (Opc) { 674 default: 675 continue; // Ignore other JT branches 676 case ARM::t2BR_JT: 677 T2JumpTables.push_back(I); 678 continue; // Does not get an entry in ImmBranches 679 case ARM::Bcc: 680 isCond = true; 681 UOpc = ARM::B; 682 // Fallthrough 683 case ARM::B: 684 Bits = 24; 685 Scale = 4; 686 break; 687 case ARM::tBcc: 688 isCond = true; 689 UOpc = ARM::tB; 690 Bits = 8; 691 Scale = 2; 692 break; 693 case ARM::tB: 694 Bits = 11; 695 Scale = 2; 696 break; 697 case ARM::t2Bcc: 698 isCond = true; 699 UOpc = ARM::t2B; 700 Bits = 20; 701 Scale = 2; 702 break; 703 case ARM::t2B: 704 Bits = 24; 705 Scale = 2; 706 break; 707 } 708 709 // Record this immediate branch. 710 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 711 ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc)); 712 } 713 714 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) 715 PushPopMIs.push_back(I); 716 717 if (Opc == ARM::CONSTPOOL_ENTRY) 718 continue; 719 720 // Scan the instructions for constant pool operands. 721 for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) 722 if (I->getOperand(op).isCPI()) { 723 // We found one. The addressing mode tells us the max displacement 724 // from the PC that this instruction permits. 725 726 // Basic size info comes from the TSFlags field. 727 unsigned Bits = 0; 728 unsigned Scale = 1; 729 bool NegOk = false; 730 bool IsSoImm = false; 731 732 switch (Opc) { 733 default: 734 llvm_unreachable("Unknown addressing mode for CP reference!"); 735 736 // Taking the address of a CP entry. 737 case ARM::LEApcrel: 738 // This takes a SoImm, which is 8 bit immediate rotated. We'll 739 // pretend the maximum offset is 255 * 4. Since each instruction 740 // 4 byte wide, this is always correct. We'll check for other 741 // displacements that fits in a SoImm as well. 742 Bits = 8; 743 Scale = 4; 744 NegOk = true; 745 IsSoImm = true; 746 break; 747 case ARM::t2LEApcrel: 748 Bits = 12; 749 NegOk = true; 750 break; 751 case ARM::tLEApcrel: 752 Bits = 8; 753 Scale = 4; 754 break; 755 756 case ARM::LDRi12: 757 case ARM::LDRcp: 758 case ARM::t2LDRpci: 759 Bits = 12; // +-offset_12 760 NegOk = true; 761 break; 762 763 case ARM::tLDRpci: 764 Bits = 8; 765 Scale = 4; // +(offset_8*4) 766 break; 767 768 case ARM::VLDRD: 769 case ARM::VLDRS: 770 Bits = 8; 771 Scale = 4; // +-(offset_8*4) 772 NegOk = true; 773 break; 774 } 775 776 // Remember that this is a user of a CP entry. 777 unsigned CPI = I->getOperand(op).getIndex(); 778 MachineInstr *CPEMI = CPEMIs[CPI]; 779 unsigned MaxOffs = ((1 << Bits)-1) * Scale; 780 CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm)); 781 782 // Increment corresponding CPEntry reference count. 783 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 784 assert(CPE && "Cannot find a corresponding CPEntry!"); 785 CPE->RefCount++; 786 787 // Instructions can only use one CP entry, don't bother scanning the 788 // rest of the operands. 789 break; 790 } 791 } 792 } 793} 794 795/// computeBlockSize - Compute the size and some alignment information for MBB. 796/// This function updates BBInfo directly. 797void ARMConstantIslands::computeBlockSize(MachineBasicBlock *MBB) { 798 BasicBlockInfo &BBI = BBInfo[MBB->getNumber()]; 799 BBI.Size = 0; 800 BBI.Unalign = 0; 801 BBI.PostAlign = 0; 802 803 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; 804 ++I) { 805 BBI.Size += TII->GetInstSizeInBytes(I); 806 // For inline asm, GetInstSizeInBytes returns a conservative estimate. 807 // The actual size may be smaller, but still a multiple of the instr size. 808 if (I->isInlineAsm()) 809 BBI.Unalign = isThumb ? 1 : 2; 810 // Also consider instructions that may be shrunk later. 811 else if (isThumb && mayOptimizeThumb2Instruction(I)) 812 BBI.Unalign = 1; 813 } 814 815 // tBR_JTr contains a .align 2 directive. 816 if (!MBB->empty() && MBB->back().getOpcode() == ARM::tBR_JTr) { 817 BBI.PostAlign = 2; 818 MBB->getParent()->ensureAlignment(2); 819 } 820} 821 822/// getOffsetOf - Return the current offset of the specified machine instruction 823/// from the start of the function. This offset changes as stuff is moved 824/// around inside the function. 825unsigned ARMConstantIslands::getOffsetOf(MachineInstr *MI) const { 826 MachineBasicBlock *MBB = MI->getParent(); 827 828 // The offset is composed of two things: the sum of the sizes of all MBB's 829 // before this instruction's block, and the offset from the start of the block 830 // it is in. 831 unsigned Offset = BBInfo[MBB->getNumber()].Offset; 832 833 // Sum instructions before MI in MBB. 834 for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) { 835 assert(I != MBB->end() && "Didn't find MI in its own basic block?"); 836 Offset += TII->GetInstSizeInBytes(I); 837 } 838 return Offset; 839} 840 841/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 842/// ID. 843static bool CompareMBBNumbers(const MachineBasicBlock *LHS, 844 const MachineBasicBlock *RHS) { 845 return LHS->getNumber() < RHS->getNumber(); 846} 847 848/// updateForInsertedWaterBlock - When a block is newly inserted into the 849/// machine function, it upsets all of the block numbers. Renumber the blocks 850/// and update the arrays that parallel this numbering. 851void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) { 852 // Renumber the MBB's to keep them consecutive. 853 NewBB->getParent()->RenumberBlocks(NewBB); 854 855 // Insert an entry into BBInfo to align it properly with the (newly 856 // renumbered) block numbers. 857 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 858 859 // Next, update WaterList. Specifically, we need to add NewMBB as having 860 // available water after it. 861 water_iterator IP = 862 std::lower_bound(WaterList.begin(), WaterList.end(), NewBB, 863 CompareMBBNumbers); 864 WaterList.insert(IP, NewBB); 865} 866 867 868/// Split the basic block containing MI into two blocks, which are joined by 869/// an unconditional branch. Update data structures and renumber blocks to 870/// account for this change and returns the newly created block. 871MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) { 872 MachineBasicBlock *OrigBB = MI->getParent(); 873 874 // Create a new MBB for the code after the OrigBB. 875 MachineBasicBlock *NewBB = 876 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock()); 877 MachineFunction::iterator MBBI = OrigBB; ++MBBI; 878 MF->insert(MBBI, NewBB); 879 880 // Splice the instructions starting with MI over to NewBB. 881 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 882 883 // Add an unconditional branch from OrigBB to NewBB. 884 // Note the new unconditional branch is not being recorded. 885 // There doesn't seem to be meaningful DebugInfo available; this doesn't 886 // correspond to anything in the source. 887 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B; 888 if (!isThumb) 889 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB); 890 else 891 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB) 892 .addImm(ARMCC::AL).addReg(0); 893 ++NumSplit; 894 895 // Update the CFG. All succs of OrigBB are now succs of NewBB. 896 NewBB->transferSuccessors(OrigBB); 897 898 // OrigBB branches to NewBB. 899 OrigBB->addSuccessor(NewBB); 900 901 // Update internal data structures to account for the newly inserted MBB. 902 // This is almost the same as updateForInsertedWaterBlock, except that 903 // the Water goes after OrigBB, not NewBB. 904 MF->RenumberBlocks(NewBB); 905 906 // Insert an entry into BBInfo to align it properly with the (newly 907 // renumbered) block numbers. 908 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 909 910 // Next, update WaterList. Specifically, we need to add OrigMBB as having 911 // available water after it (but not if it's already there, which happens 912 // when splitting before a conditional branch that is followed by an 913 // unconditional branch - in that case we want to insert NewBB). 914 water_iterator IP = 915 std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB, 916 CompareMBBNumbers); 917 MachineBasicBlock* WaterBB = *IP; 918 if (WaterBB == OrigBB) 919 WaterList.insert(llvm::next(IP), NewBB); 920 else 921 WaterList.insert(IP, OrigBB); 922 NewWaterList.insert(OrigBB); 923 924 // Figure out how large the OrigBB is. As the first half of the original 925 // block, it cannot contain a tablejump. The size includes 926 // the new jump we added. (It should be possible to do this without 927 // recounting everything, but it's very confusing, and this is rarely 928 // executed.) 929 computeBlockSize(OrigBB); 930 931 // Figure out how large the NewMBB is. As the second half of the original 932 // block, it may contain a tablejump. 933 computeBlockSize(NewBB); 934 935 // All BBOffsets following these blocks must be modified. 936 adjustBBOffsetsAfter(OrigBB); 937 938 return NewBB; 939} 940 941/// getUserOffset - Compute the offset of U.MI as seen by the hardware 942/// displacement computation. Update U.KnownAlignment to match its current 943/// basic block location. 944unsigned ARMConstantIslands::getUserOffset(CPUser &U) const { 945 unsigned UserOffset = getOffsetOf(U.MI); 946 const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()]; 947 unsigned KnownBits = BBI.internalKnownBits(); 948 949 // The value read from PC is offset from the actual instruction address. 950 UserOffset += (isThumb ? 4 : 8); 951 952 // Because of inline assembly, we may not know the alignment (mod 4) of U.MI. 953 // Make sure U.getMaxDisp() returns a constrained range. 954 U.KnownAlignment = (KnownBits >= 2); 955 956 // On Thumb, offsets==2 mod 4 are rounded down by the hardware for 957 // purposes of the displacement computation; compensate for that here. 958 // For unknown alignments, getMaxDisp() constrains the range instead. 959 if (isThumb && U.KnownAlignment) 960 UserOffset &= ~3u; 961 962 return UserOffset; 963} 964 965/// isOffsetInRange - Checks whether UserOffset (the location of a constant pool 966/// reference) is within MaxDisp of TrialOffset (a proposed location of a 967/// constant pool entry). 968/// UserOffset is computed by getUserOffset above to include PC adjustments. If 969/// the mod 4 alignment of UserOffset is not known, the uncertainty must be 970/// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that. 971bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset, 972 unsigned TrialOffset, unsigned MaxDisp, 973 bool NegativeOK, bool IsSoImm) { 974 if (UserOffset <= TrialOffset) { 975 // User before the Trial. 976 if (TrialOffset - UserOffset <= MaxDisp) 977 return true; 978 // FIXME: Make use full range of soimm values. 979 } else if (NegativeOK) { 980 if (UserOffset - TrialOffset <= MaxDisp) 981 return true; 982 // FIXME: Make use full range of soimm values. 983 } 984 return false; 985} 986 987/// isWaterInRange - Returns true if a CPE placed after the specified 988/// Water (a basic block) will be in range for the specific MI. 989/// 990/// Compute how much the function will grow by inserting a CPE after Water. 991bool ARMConstantIslands::isWaterInRange(unsigned UserOffset, 992 MachineBasicBlock* Water, CPUser &U, 993 unsigned &Growth) { 994 unsigned CPELogAlign = getCPELogAlign(U.CPEMI); 995 unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign); 996 unsigned NextBlockOffset, NextBlockAlignment; 997 MachineFunction::const_iterator NextBlock = Water; 998 if (++NextBlock == MF->end()) { 999 NextBlockOffset = BBInfo[Water->getNumber()].postOffset(); 1000 NextBlockAlignment = 0; 1001 } else { 1002 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset; 1003 NextBlockAlignment = NextBlock->getAlignment(); 1004 } 1005 unsigned Size = U.CPEMI->getOperand(2).getImm(); 1006 unsigned CPEEnd = CPEOffset + Size; 1007 1008 // The CPE may be able to hide in the alignment padding before the next 1009 // block. It may also cause more padding to be required if it is more aligned 1010 // that the next block. 1011 if (CPEEnd > NextBlockOffset) { 1012 Growth = CPEEnd - NextBlockOffset; 1013 // Compute the padding that would go at the end of the CPE to align the next 1014 // block. 1015 Growth += OffsetToAlignment(CPEEnd, 1u << NextBlockAlignment); 1016 1017 // If the CPE is to be inserted before the instruction, that will raise 1018 // the offset of the instruction. Also account for unknown alignment padding 1019 // in blocks between CPE and the user. 1020 if (CPEOffset < UserOffset) 1021 UserOffset += Growth + UnknownPadding(MF->getAlignment(), CPELogAlign); 1022 } else 1023 // CPE fits in existing padding. 1024 Growth = 0; 1025 1026 return isOffsetInRange(UserOffset, CPEOffset, U); 1027} 1028 1029/// isCPEntryInRange - Returns true if the distance between specific MI and 1030/// specific ConstPool entry instruction can fit in MI's displacement field. 1031bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 1032 MachineInstr *CPEMI, unsigned MaxDisp, 1033 bool NegOk, bool DoDump) { 1034 unsigned CPEOffset = getOffsetOf(CPEMI); 1035 1036 if (DoDump) { 1037 DEBUG({ 1038 unsigned Block = MI->getParent()->getNumber(); 1039 const BasicBlockInfo &BBI = BBInfo[Block]; 1040 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm() 1041 << " max delta=" << MaxDisp 1042 << format(" insn address=%#x", UserOffset) 1043 << " in BB#" << Block << ": " 1044 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI 1045 << format("CPE address=%#x offset=%+d: ", CPEOffset, 1046 int(CPEOffset-UserOffset)); 1047 }); 1048 } 1049 1050 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk); 1051} 1052 1053#ifndef NDEBUG 1054/// BBIsJumpedOver - Return true of the specified basic block's only predecessor 1055/// unconditionally branches to its only successor. 1056static bool BBIsJumpedOver(MachineBasicBlock *MBB) { 1057 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 1058 return false; 1059 1060 MachineBasicBlock *Succ = *MBB->succ_begin(); 1061 MachineBasicBlock *Pred = *MBB->pred_begin(); 1062 MachineInstr *PredMI = &Pred->back(); 1063 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB 1064 || PredMI->getOpcode() == ARM::t2B) 1065 return PredMI->getOperand(0).getMBB() == Succ; 1066 return false; 1067} 1068#endif // NDEBUG 1069 1070void ARMConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) { 1071 unsigned BBNum = BB->getNumber(); 1072 for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) { 1073 // Get the offset and known bits at the end of the layout predecessor. 1074 // Include the alignment of the current block. 1075 unsigned LogAlign = MF->getBlockNumbered(i)->getAlignment(); 1076 unsigned Offset = BBInfo[i - 1].postOffset(LogAlign); 1077 unsigned KnownBits = BBInfo[i - 1].postKnownBits(LogAlign); 1078 1079 // This is where block i begins. Stop if the offset is already correct, 1080 // and we have updated 2 blocks. This is the maximum number of blocks 1081 // changed before calling this function. 1082 if (i > BBNum + 2 && 1083 BBInfo[i].Offset == Offset && 1084 BBInfo[i].KnownBits == KnownBits) 1085 break; 1086 1087 BBInfo[i].Offset = Offset; 1088 BBInfo[i].KnownBits = KnownBits; 1089 } 1090} 1091 1092/// decrementCPEReferenceCount - find the constant pool entry with index CPI 1093/// and instruction CPEMI, and decrement its refcount. If the refcount 1094/// becomes 0 remove the entry and instruction. Returns true if we removed 1095/// the entry, false if we didn't. 1096 1097bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI, 1098 MachineInstr *CPEMI) { 1099 // Find the old entry. Eliminate it if it is no longer used. 1100 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 1101 assert(CPE && "Unexpected!"); 1102 if (--CPE->RefCount == 0) { 1103 removeDeadCPEMI(CPEMI); 1104 CPE->CPEMI = NULL; 1105 --NumCPEs; 1106 return true; 1107 } 1108 return false; 1109} 1110 1111/// LookForCPEntryInRange - see if the currently referenced CPE is in range; 1112/// if not, see if an in-range clone of the CPE is in range, and if so, 1113/// change the data structures so the user references the clone. Returns: 1114/// 0 = no existing entry found 1115/// 1 = entry found, and there were no code insertions or deletions 1116/// 2 = entry found, and there were code insertions or deletions 1117int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) 1118{ 1119 MachineInstr *UserMI = U.MI; 1120 MachineInstr *CPEMI = U.CPEMI; 1121 1122 // Check to see if the CPE is already in-range. 1123 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk, 1124 true)) { 1125 DEBUG(dbgs() << "In range\n"); 1126 return 1; 1127 } 1128 1129 // No. Look for previously created clones of the CPE that are in range. 1130 unsigned CPI = CPEMI->getOperand(1).getIndex(); 1131 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 1132 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 1133 // We already tried this one 1134 if (CPEs[i].CPEMI == CPEMI) 1135 continue; 1136 // Removing CPEs can leave empty entries, skip 1137 if (CPEs[i].CPEMI == NULL) 1138 continue; 1139 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(), 1140 U.NegOk)) { 1141 DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" 1142 << CPEs[i].CPI << "\n"); 1143 // Point the CPUser node to the replacement 1144 U.CPEMI = CPEs[i].CPEMI; 1145 // Change the CPI in the instruction operand to refer to the clone. 1146 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) 1147 if (UserMI->getOperand(j).isCPI()) { 1148 UserMI->getOperand(j).setIndex(CPEs[i].CPI); 1149 break; 1150 } 1151 // Adjust the refcount of the clone... 1152 CPEs[i].RefCount++; 1153 // ...and the original. If we didn't remove the old entry, none of the 1154 // addresses changed, so we don't need another pass. 1155 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; 1156 } 1157 } 1158 return 0; 1159} 1160 1161/// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 1162/// the specific unconditional branch instruction. 1163static inline unsigned getUnconditionalBrDisp(int Opc) { 1164 switch (Opc) { 1165 case ARM::tB: 1166 return ((1<<10)-1)*2; 1167 case ARM::t2B: 1168 return ((1<<23)-1)*2; 1169 default: 1170 break; 1171 } 1172 1173 return ((1<<23)-1)*4; 1174} 1175 1176/// findAvailableWater - Look for an existing entry in the WaterList in which 1177/// we can place the CPE referenced from U so it's within range of U's MI. 1178/// Returns true if found, false if not. If it returns true, WaterIter 1179/// is set to the WaterList entry. For Thumb, prefer water that will not 1180/// introduce padding to water that will. To ensure that this pass 1181/// terminates, the CPE location for a particular CPUser is only allowed to 1182/// move to a lower address, so search backward from the end of the list and 1183/// prefer the first water that is in range. 1184bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset, 1185 water_iterator &WaterIter) { 1186 if (WaterList.empty()) 1187 return false; 1188 1189 unsigned BestGrowth = ~0u; 1190 for (water_iterator IP = prior(WaterList.end()), B = WaterList.begin();; 1191 --IP) { 1192 MachineBasicBlock* WaterBB = *IP; 1193 // Check if water is in range and is either at a lower address than the 1194 // current "high water mark" or a new water block that was created since 1195 // the previous iteration by inserting an unconditional branch. In the 1196 // latter case, we want to allow resetting the high water mark back to 1197 // this new water since we haven't seen it before. Inserting branches 1198 // should be relatively uncommon and when it does happen, we want to be 1199 // sure to take advantage of it for all the CPEs near that block, so that 1200 // we don't insert more branches than necessary. 1201 unsigned Growth; 1202 if (isWaterInRange(UserOffset, WaterBB, U, Growth) && 1203 (WaterBB->getNumber() < U.HighWaterMark->getNumber() || 1204 NewWaterList.count(WaterBB)) && Growth < BestGrowth) { 1205 // This is the least amount of required padding seen so far. 1206 BestGrowth = Growth; 1207 WaterIter = IP; 1208 DEBUG(dbgs() << "Found water after BB#" << WaterBB->getNumber() 1209 << " Growth=" << Growth << '\n'); 1210 1211 // Keep looking unless it is perfect. 1212 if (BestGrowth == 0) 1213 return true; 1214 } 1215 if (IP == B) 1216 break; 1217 } 1218 return BestGrowth != ~0u; 1219} 1220 1221/// createNewWater - No existing WaterList entry will work for 1222/// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 1223/// block is used if in range, and the conditional branch munged so control 1224/// flow is correct. Otherwise the block is split to create a hole with an 1225/// unconditional branch around it. In either case NewMBB is set to a 1226/// block following which the new island can be inserted (the WaterList 1227/// is not adjusted). 1228void ARMConstantIslands::createNewWater(unsigned CPUserIndex, 1229 unsigned UserOffset, 1230 MachineBasicBlock *&NewMBB) { 1231 CPUser &U = CPUsers[CPUserIndex]; 1232 MachineInstr *UserMI = U.MI; 1233 MachineInstr *CPEMI = U.CPEMI; 1234 unsigned CPELogAlign = getCPELogAlign(CPEMI); 1235 MachineBasicBlock *UserMBB = UserMI->getParent(); 1236 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()]; 1237 1238 // If the block does not end in an unconditional branch already, and if the 1239 // end of the block is within range, make new water there. (The addition 1240 // below is for the unconditional branch we will be adding: 4 bytes on ARM + 1241 // Thumb2, 2 on Thumb1. 1242 if (BBHasFallthrough(UserMBB)) { 1243 // Size of branch to insert. 1244 unsigned Delta = isThumb1 ? 2 : 4; 1245 // Compute the offset where the CPE will begin. 1246 unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta; 1247 1248 if (isOffsetInRange(UserOffset, CPEOffset, U)) { 1249 DEBUG(dbgs() << "Split at end of BB#" << UserMBB->getNumber() 1250 << format(", expected CPE offset %#x\n", CPEOffset)); 1251 NewMBB = llvm::next(MachineFunction::iterator(UserMBB)); 1252 // Add an unconditional branch from UserMBB to fallthrough block. Record 1253 // it for branch lengthening; this new branch will not get out of range, 1254 // but if the preceding conditional branch is out of range, the targets 1255 // will be exchanged, and the altered branch may be out of range, so the 1256 // machinery has to know about it. 1257 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B; 1258 if (!isThumb) 1259 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB); 1260 else 1261 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB) 1262 .addImm(ARMCC::AL).addReg(0); 1263 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 1264 ImmBranches.push_back(ImmBranch(&UserMBB->back(), 1265 MaxDisp, false, UncondBr)); 1266 BBInfo[UserMBB->getNumber()].Size += Delta; 1267 adjustBBOffsetsAfter(UserMBB); 1268 return; 1269 } 1270 } 1271 1272 // What a big block. Find a place within the block to split it. This is a 1273 // little tricky on Thumb1 since instructions are 2 bytes and constant pool 1274 // entries are 4 bytes: if instruction I references island CPE, and 1275 // instruction I+1 references CPE', it will not work well to put CPE as far 1276 // forward as possible, since then CPE' cannot immediately follow it (that 1277 // location is 2 bytes farther away from I+1 than CPE was from I) and we'd 1278 // need to create a new island. So, we make a first guess, then walk through 1279 // the instructions between the one currently being looked at and the 1280 // possible insertion point, and make sure any other instructions that 1281 // reference CPEs will be able to use the same island area; if not, we back 1282 // up the insertion point. 1283 1284 // Try to split the block so it's fully aligned. Compute the latest split 1285 // point where we can add a 4-byte branch instruction, and then align to 1286 // LogAlign which is the largest possible alignment in the function. 1287 unsigned LogAlign = MF->getAlignment(); 1288 assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry"); 1289 unsigned KnownBits = UserBBI.internalKnownBits(); 1290 unsigned UPad = UnknownPadding(LogAlign, KnownBits); 1291 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad; 1292 DEBUG(dbgs() << format("Split in middle of big block before %#x", 1293 BaseInsertOffset)); 1294 1295 // The 4 in the following is for the unconditional branch we'll be inserting 1296 // (allows for long branch on Thumb1). Alignment of the island is handled 1297 // inside isOffsetInRange. 1298 BaseInsertOffset -= 4; 1299 1300 DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset) 1301 << " la=" << LogAlign 1302 << " kb=" << KnownBits 1303 << " up=" << UPad << '\n'); 1304 1305 // This could point off the end of the block if we've already got constant 1306 // pool entries following this block; only the last one is in the water list. 1307 // Back past any possible branches (allow for a conditional and a maximally 1308 // long unconditional). 1309 if (BaseInsertOffset + 8 >= UserBBI.postOffset()) { 1310 BaseInsertOffset = UserBBI.postOffset() - UPad - 8; 1311 DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset)); 1312 } 1313 unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad + 1314 CPEMI->getOperand(2).getImm(); 1315 MachineBasicBlock::iterator MI = UserMI; 1316 ++MI; 1317 unsigned CPUIndex = CPUserIndex+1; 1318 unsigned NumCPUsers = CPUsers.size(); 1319 MachineInstr *LastIT = 0; 1320 for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI); 1321 Offset < BaseInsertOffset; 1322 Offset += TII->GetInstSizeInBytes(MI), 1323 MI = llvm::next(MI)) { 1324 assert(MI != UserMBB->end() && "Fell off end of block"); 1325 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) { 1326 CPUser &U = CPUsers[CPUIndex]; 1327 if (!isOffsetInRange(Offset, EndInsertOffset, U)) { 1328 // Shift intertion point by one unit of alignment so it is within reach. 1329 BaseInsertOffset -= 1u << LogAlign; 1330 EndInsertOffset -= 1u << LogAlign; 1331 } 1332 // This is overly conservative, as we don't account for CPEMIs being 1333 // reused within the block, but it doesn't matter much. Also assume CPEs 1334 // are added in order with alignment padding. We may eventually be able 1335 // to pack the aligned CPEs better. 1336 EndInsertOffset += U.CPEMI->getOperand(2).getImm(); 1337 CPUIndex++; 1338 } 1339 1340 // Remember the last IT instruction. 1341 if (MI->getOpcode() == ARM::t2IT) 1342 LastIT = MI; 1343 } 1344 1345 --MI; 1346 1347 // Avoid splitting an IT block. 1348 if (LastIT) { 1349 unsigned PredReg = 0; 1350 ARMCC::CondCodes CC = getITInstrPredicate(MI, PredReg); 1351 if (CC != ARMCC::AL) 1352 MI = LastIT; 1353 } 1354 NewMBB = splitBlockBeforeInstr(MI); 1355} 1356 1357/// handleConstantPoolUser - Analyze the specified user, checking to see if it 1358/// is out-of-range. If so, pick up the constant pool value and move it some 1359/// place in-range. Return true if we changed any addresses (thus must run 1360/// another pass of branch lengthening), false otherwise. 1361bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) { 1362 CPUser &U = CPUsers[CPUserIndex]; 1363 MachineInstr *UserMI = U.MI; 1364 MachineInstr *CPEMI = U.CPEMI; 1365 unsigned CPI = CPEMI->getOperand(1).getIndex(); 1366 unsigned Size = CPEMI->getOperand(2).getImm(); 1367 // Compute this only once, it's expensive. 1368 unsigned UserOffset = getUserOffset(U); 1369 1370 // See if the current entry is within range, or there is a clone of it 1371 // in range. 1372 int result = findInRangeCPEntry(U, UserOffset); 1373 if (result==1) return false; 1374 else if (result==2) return true; 1375 1376 // No existing clone of this CPE is within range. 1377 // We will be generating a new clone. Get a UID for it. 1378 unsigned ID = AFI->createPICLabelUId(); 1379 1380 // Look for water where we can place this CPE. 1381 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock(); 1382 MachineBasicBlock *NewMBB; 1383 water_iterator IP; 1384 if (findAvailableWater(U, UserOffset, IP)) { 1385 DEBUG(dbgs() << "Found water in range\n"); 1386 MachineBasicBlock *WaterBB = *IP; 1387 1388 // If the original WaterList entry was "new water" on this iteration, 1389 // propagate that to the new island. This is just keeping NewWaterList 1390 // updated to match the WaterList, which will be updated below. 1391 if (NewWaterList.erase(WaterBB)) 1392 NewWaterList.insert(NewIsland); 1393 1394 // The new CPE goes before the following block (NewMBB). 1395 NewMBB = llvm::next(MachineFunction::iterator(WaterBB)); 1396 1397 } else { 1398 // No water found. 1399 DEBUG(dbgs() << "No water found\n"); 1400 createNewWater(CPUserIndex, UserOffset, NewMBB); 1401 1402 // splitBlockBeforeInstr adds to WaterList, which is important when it is 1403 // called while handling branches so that the water will be seen on the 1404 // next iteration for constant pools, but in this context, we don't want 1405 // it. Check for this so it will be removed from the WaterList. 1406 // Also remove any entry from NewWaterList. 1407 MachineBasicBlock *WaterBB = prior(MachineFunction::iterator(NewMBB)); 1408 IP = std::find(WaterList.begin(), WaterList.end(), WaterBB); 1409 if (IP != WaterList.end()) 1410 NewWaterList.erase(WaterBB); 1411 1412 // We are adding new water. Update NewWaterList. 1413 NewWaterList.insert(NewIsland); 1414 } 1415 1416 // Remove the original WaterList entry; we want subsequent insertions in 1417 // this vicinity to go after the one we're about to insert. This 1418 // considerably reduces the number of times we have to move the same CPE 1419 // more than once and is also important to ensure the algorithm terminates. 1420 if (IP != WaterList.end()) 1421 WaterList.erase(IP); 1422 1423 // Okay, we know we can put an island before NewMBB now, do it! 1424 MF->insert(NewMBB, NewIsland); 1425 1426 // Update internal data structures to account for the newly inserted MBB. 1427 updateForInsertedWaterBlock(NewIsland); 1428 1429 // Decrement the old entry, and remove it if refcount becomes 0. 1430 decrementCPEReferenceCount(CPI, CPEMI); 1431 1432 // Now that we have an island to add the CPE to, clone the original CPE and 1433 // add it to the island. 1434 U.HighWaterMark = NewIsland; 1435 U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 1436 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size); 1437 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1438 ++NumCPEs; 1439 1440 // Mark the basic block as aligned as required by the const-pool entry. 1441 NewIsland->setAlignment(getCPELogAlign(U.CPEMI)); 1442 1443 // Increase the size of the island block to account for the new entry. 1444 BBInfo[NewIsland->getNumber()].Size += Size; 1445 adjustBBOffsetsAfter(llvm::prior(MachineFunction::iterator(NewIsland))); 1446 1447 // Finally, change the CPI in the instruction operand to be ID. 1448 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) 1449 if (UserMI->getOperand(i).isCPI()) { 1450 UserMI->getOperand(i).setIndex(ID); 1451 break; 1452 } 1453 1454 DEBUG(dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI 1455 << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset)); 1456 1457 return true; 1458} 1459 1460/// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update 1461/// sizes and offsets of impacted basic blocks. 1462void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) { 1463 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1464 unsigned Size = CPEMI->getOperand(2).getImm(); 1465 CPEMI->eraseFromParent(); 1466 BBInfo[CPEBB->getNumber()].Size -= Size; 1467 // All succeeding offsets have the current size value added in, fix this. 1468 if (CPEBB->empty()) { 1469 BBInfo[CPEBB->getNumber()].Size = 0; 1470 1471 // This block no longer needs to be aligned. 1472 CPEBB->setAlignment(0); 1473 } else 1474 // Entries are sorted by descending alignment, so realign from the front. 1475 CPEBB->setAlignment(getCPELogAlign(CPEBB->begin())); 1476 1477 adjustBBOffsetsAfter(CPEBB); 1478 // An island has only one predecessor BB and one successor BB. Check if 1479 // this BB's predecessor jumps directly to this BB's successor. This 1480 // shouldn't happen currently. 1481 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); 1482 // FIXME: remove the empty blocks after all the work is done? 1483} 1484 1485/// removeUnusedCPEntries - Remove constant pool entries whose refcounts 1486/// are zero. 1487bool ARMConstantIslands::removeUnusedCPEntries() { 1488 unsigned MadeChange = false; 1489 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 1490 std::vector<CPEntry> &CPEs = CPEntries[i]; 1491 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { 1492 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { 1493 removeDeadCPEMI(CPEs[j].CPEMI); 1494 CPEs[j].CPEMI = NULL; 1495 MadeChange = true; 1496 } 1497 } 1498 } 1499 return MadeChange; 1500} 1501 1502/// isBBInRange - Returns true if the distance between specific MI and 1503/// specific BB can fit in MI's displacement field. 1504bool ARMConstantIslands::isBBInRange(MachineInstr *MI,MachineBasicBlock *DestBB, 1505 unsigned MaxDisp) { 1506 unsigned PCAdj = isThumb ? 4 : 8; 1507 unsigned BrOffset = getOffsetOf(MI) + PCAdj; 1508 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1509 1510 DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber() 1511 << " from BB#" << MI->getParent()->getNumber() 1512 << " max delta=" << MaxDisp 1513 << " from " << getOffsetOf(MI) << " to " << DestOffset 1514 << " offset " << int(DestOffset-BrOffset) << "\t" << *MI); 1515 1516 if (BrOffset <= DestOffset) { 1517 // Branch before the Dest. 1518 if (DestOffset-BrOffset <= MaxDisp) 1519 return true; 1520 } else { 1521 if (BrOffset-DestOffset <= MaxDisp) 1522 return true; 1523 } 1524 return false; 1525} 1526 1527/// fixupImmediateBr - Fix up an immediate branch whose destination is too far 1528/// away to fit in its displacement field. 1529bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) { 1530 MachineInstr *MI = Br.MI; 1531 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1532 1533 // Check to see if the DestBB is already in-range. 1534 if (isBBInRange(MI, DestBB, Br.MaxDisp)) 1535 return false; 1536 1537 if (!Br.isCond) 1538 return fixupUnconditionalBr(Br); 1539 return fixupConditionalBr(Br); 1540} 1541 1542/// fixupUnconditionalBr - Fix up an unconditional branch whose destination is 1543/// too far away to fit in its displacement field. If the LR register has been 1544/// spilled in the epilogue, then we can use BL to implement a far jump. 1545/// Otherwise, add an intermediate branch instruction to a branch. 1546bool 1547ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) { 1548 MachineInstr *MI = Br.MI; 1549 MachineBasicBlock *MBB = MI->getParent(); 1550 if (!isThumb1) 1551 llvm_unreachable("fixupUnconditionalBr is Thumb1 only!"); 1552 1553 // Use BL to implement far jump. 1554 Br.MaxDisp = (1 << 21) * 2; 1555 MI->setDesc(TII->get(ARM::tBfar)); 1556 BBInfo[MBB->getNumber()].Size += 2; 1557 adjustBBOffsetsAfter(MBB); 1558 HasFarJump = true; 1559 ++NumUBrFixed; 1560 1561 DEBUG(dbgs() << " Changed B to long jump " << *MI); 1562 1563 return true; 1564} 1565 1566/// fixupConditionalBr - Fix up a conditional branch whose destination is too 1567/// far away to fit in its displacement field. It is converted to an inverse 1568/// conditional branch + an unconditional branch to the destination. 1569bool 1570ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) { 1571 MachineInstr *MI = Br.MI; 1572 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1573 1574 // Add an unconditional branch to the destination and invert the branch 1575 // condition to jump over it: 1576 // blt L1 1577 // => 1578 // bge L2 1579 // b L1 1580 // L2: 1581 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm(); 1582 CC = ARMCC::getOppositeCondition(CC); 1583 unsigned CCReg = MI->getOperand(2).getReg(); 1584 1585 // If the branch is at the end of its MBB and that has a fall-through block, 1586 // direct the updated conditional branch to the fall-through block. Otherwise, 1587 // split the MBB before the next instruction. 1588 MachineBasicBlock *MBB = MI->getParent(); 1589 MachineInstr *BMI = &MBB->back(); 1590 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); 1591 1592 ++NumCBrFixed; 1593 if (BMI != MI) { 1594 if (llvm::next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) && 1595 BMI->getOpcode() == Br.UncondBr) { 1596 // Last MI in the BB is an unconditional branch. Can we simply invert the 1597 // condition and swap destinations: 1598 // beq L1 1599 // b L2 1600 // => 1601 // bne L2 1602 // b L1 1603 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); 1604 if (isBBInRange(MI, NewDest, Br.MaxDisp)) { 1605 DEBUG(dbgs() << " Invert Bcc condition and swap its destination with " 1606 << *BMI); 1607 BMI->getOperand(0).setMBB(DestBB); 1608 MI->getOperand(0).setMBB(NewDest); 1609 MI->getOperand(1).setImm(CC); 1610 return true; 1611 } 1612 } 1613 } 1614 1615 if (NeedSplit) { 1616 splitBlockBeforeInstr(MI); 1617 // No need for the branch to the next block. We're adding an unconditional 1618 // branch to the destination. 1619 int delta = TII->GetInstSizeInBytes(&MBB->back()); 1620 BBInfo[MBB->getNumber()].Size -= delta; 1621 MBB->back().eraseFromParent(); 1622 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below 1623 } 1624 MachineBasicBlock *NextBB = llvm::next(MachineFunction::iterator(MBB)); 1625 1626 DEBUG(dbgs() << " Insert B to BB#" << DestBB->getNumber() 1627 << " also invert condition and change dest. to BB#" 1628 << NextBB->getNumber() << "\n"); 1629 1630 // Insert a new conditional branch and a new unconditional branch. 1631 // Also update the ImmBranch as well as adding a new entry for the new branch. 1632 BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode())) 1633 .addMBB(NextBB).addImm(CC).addReg(CCReg); 1634 Br.MI = &MBB->back(); 1635 BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back()); 1636 if (isThumb) 1637 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB) 1638 .addImm(ARMCC::AL).addReg(0); 1639 else 1640 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); 1641 BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back()); 1642 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1643 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1644 1645 // Remove the old conditional branch. It may or may not still be in MBB. 1646 BBInfo[MI->getParent()->getNumber()].Size -= TII->GetInstSizeInBytes(MI); 1647 MI->eraseFromParent(); 1648 adjustBBOffsetsAfter(MBB); 1649 return true; 1650} 1651 1652/// undoLRSpillRestore - Remove Thumb push / pop instructions that only spills 1653/// LR / restores LR to pc. FIXME: This is done here because it's only possible 1654/// to do this if tBfar is not used. 1655bool ARMConstantIslands::undoLRSpillRestore() { 1656 bool MadeChange = false; 1657 for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) { 1658 MachineInstr *MI = PushPopMIs[i]; 1659 // First two operands are predicates. 1660 if (MI->getOpcode() == ARM::tPOP_RET && 1661 MI->getOperand(2).getReg() == ARM::PC && 1662 MI->getNumExplicitOperands() == 3) { 1663 // Create the new insn and copy the predicate from the old. 1664 BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET)) 1665 .addOperand(MI->getOperand(0)) 1666 .addOperand(MI->getOperand(1)); 1667 MI->eraseFromParent(); 1668 MadeChange = true; 1669 } 1670 } 1671 return MadeChange; 1672} 1673 1674// mayOptimizeThumb2Instruction - Returns true if optimizeThumb2Instructions 1675// below may shrink MI. 1676bool 1677ARMConstantIslands::mayOptimizeThumb2Instruction(const MachineInstr *MI) const { 1678 switch(MI->getOpcode()) { 1679 // optimizeThumb2Instructions. 1680 case ARM::t2LEApcrel: 1681 case ARM::t2LDRpci: 1682 // optimizeThumb2Branches. 1683 case ARM::t2B: 1684 case ARM::t2Bcc: 1685 case ARM::tBcc: 1686 // optimizeThumb2JumpTables. 1687 case ARM::t2BR_JT: 1688 return true; 1689 } 1690 return false; 1691} 1692 1693bool ARMConstantIslands::optimizeThumb2Instructions() { 1694 bool MadeChange = false; 1695 1696 // Shrink ADR and LDR from constantpool. 1697 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 1698 CPUser &U = CPUsers[i]; 1699 unsigned Opcode = U.MI->getOpcode(); 1700 unsigned NewOpc = 0; 1701 unsigned Scale = 1; 1702 unsigned Bits = 0; 1703 switch (Opcode) { 1704 default: break; 1705 case ARM::t2LEApcrel: 1706 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1707 NewOpc = ARM::tLEApcrel; 1708 Bits = 8; 1709 Scale = 4; 1710 } 1711 break; 1712 case ARM::t2LDRpci: 1713 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1714 NewOpc = ARM::tLDRpci; 1715 Bits = 8; 1716 Scale = 4; 1717 } 1718 break; 1719 } 1720 1721 if (!NewOpc) 1722 continue; 1723 1724 unsigned UserOffset = getUserOffset(U); 1725 unsigned MaxOffs = ((1 << Bits) - 1) * Scale; 1726 1727 // Be conservative with inline asm. 1728 if (!U.KnownAlignment) 1729 MaxOffs -= 2; 1730 1731 // FIXME: Check if offset is multiple of scale if scale is not 4. 1732 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) { 1733 DEBUG(dbgs() << "Shrink: " << *U.MI); 1734 U.MI->setDesc(TII->get(NewOpc)); 1735 MachineBasicBlock *MBB = U.MI->getParent(); 1736 BBInfo[MBB->getNumber()].Size -= 2; 1737 adjustBBOffsetsAfter(MBB); 1738 ++NumT2CPShrunk; 1739 MadeChange = true; 1740 } 1741 } 1742 1743 MadeChange |= optimizeThumb2Branches(); 1744 MadeChange |= optimizeThumb2JumpTables(); 1745 return MadeChange; 1746} 1747 1748bool ARMConstantIslands::optimizeThumb2Branches() { 1749 bool MadeChange = false; 1750 1751 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) { 1752 ImmBranch &Br = ImmBranches[i]; 1753 unsigned Opcode = Br.MI->getOpcode(); 1754 unsigned NewOpc = 0; 1755 unsigned Scale = 1; 1756 unsigned Bits = 0; 1757 switch (Opcode) { 1758 default: break; 1759 case ARM::t2B: 1760 NewOpc = ARM::tB; 1761 Bits = 11; 1762 Scale = 2; 1763 break; 1764 case ARM::t2Bcc: { 1765 NewOpc = ARM::tBcc; 1766 Bits = 8; 1767 Scale = 2; 1768 break; 1769 } 1770 } 1771 if (NewOpc) { 1772 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 1773 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1774 if (isBBInRange(Br.MI, DestBB, MaxOffs)) { 1775 DEBUG(dbgs() << "Shrink branch: " << *Br.MI); 1776 Br.MI->setDesc(TII->get(NewOpc)); 1777 MachineBasicBlock *MBB = Br.MI->getParent(); 1778 BBInfo[MBB->getNumber()].Size -= 2; 1779 adjustBBOffsetsAfter(MBB); 1780 ++NumT2BrShrunk; 1781 MadeChange = true; 1782 } 1783 } 1784 1785 Opcode = Br.MI->getOpcode(); 1786 if (Opcode != ARM::tBcc) 1787 continue; 1788 1789 // If the conditional branch doesn't kill CPSR, then CPSR can be liveout 1790 // so this transformation is not safe. 1791 if (!Br.MI->killsRegister(ARM::CPSR)) 1792 continue; 1793 1794 NewOpc = 0; 1795 unsigned PredReg = 0; 1796 ARMCC::CondCodes Pred = getInstrPredicate(Br.MI, PredReg); 1797 if (Pred == ARMCC::EQ) 1798 NewOpc = ARM::tCBZ; 1799 else if (Pred == ARMCC::NE) 1800 NewOpc = ARM::tCBNZ; 1801 if (!NewOpc) 1802 continue; 1803 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1804 // Check if the distance is within 126. Subtract starting offset by 2 1805 // because the cmp will be eliminated. 1806 unsigned BrOffset = getOffsetOf(Br.MI) + 4 - 2; 1807 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1808 if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) { 1809 MachineBasicBlock::iterator CmpMI = Br.MI; 1810 if (CmpMI != Br.MI->getParent()->begin()) { 1811 --CmpMI; 1812 if (CmpMI->getOpcode() == ARM::tCMPi8) { 1813 unsigned Reg = CmpMI->getOperand(0).getReg(); 1814 Pred = getInstrPredicate(CmpMI, PredReg); 1815 if (Pred == ARMCC::AL && 1816 CmpMI->getOperand(1).getImm() == 0 && 1817 isARMLowRegister(Reg)) { 1818 MachineBasicBlock *MBB = Br.MI->getParent(); 1819 DEBUG(dbgs() << "Fold: " << *CmpMI << " and: " << *Br.MI); 1820 MachineInstr *NewBR = 1821 BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc)) 1822 .addReg(Reg).addMBB(DestBB,Br.MI->getOperand(0).getTargetFlags()); 1823 CmpMI->eraseFromParent(); 1824 Br.MI->eraseFromParent(); 1825 Br.MI = NewBR; 1826 BBInfo[MBB->getNumber()].Size -= 2; 1827 adjustBBOffsetsAfter(MBB); 1828 ++NumCBZ; 1829 MadeChange = true; 1830 } 1831 } 1832 } 1833 } 1834 } 1835 1836 return MadeChange; 1837} 1838 1839/// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller 1840/// jumptables when it's possible. 1841bool ARMConstantIslands::optimizeThumb2JumpTables() { 1842 bool MadeChange = false; 1843 1844 // FIXME: After the tables are shrunk, can we get rid some of the 1845 // constantpool tables? 1846 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1847 if (MJTI == 0) return false; 1848 1849 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1850 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 1851 MachineInstr *MI = T2JumpTables[i]; 1852 const MCInstrDesc &MCID = MI->getDesc(); 1853 unsigned NumOps = MCID.getNumOperands(); 1854 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 3 : 2); 1855 MachineOperand JTOP = MI->getOperand(JTOpIdx); 1856 unsigned JTI = JTOP.getIndex(); 1857 assert(JTI < JT.size()); 1858 1859 bool ByteOk = true; 1860 bool HalfWordOk = true; 1861 unsigned JTOffset = getOffsetOf(MI) + 4; 1862 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1863 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 1864 MachineBasicBlock *MBB = JTBBs[j]; 1865 unsigned DstOffset = BBInfo[MBB->getNumber()].Offset; 1866 // Negative offset is not ok. FIXME: We should change BB layout to make 1867 // sure all the branches are forward. 1868 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2) 1869 ByteOk = false; 1870 unsigned TBHLimit = ((1<<16)-1)*2; 1871 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit) 1872 HalfWordOk = false; 1873 if (!ByteOk && !HalfWordOk) 1874 break; 1875 } 1876 1877 if (ByteOk || HalfWordOk) { 1878 MachineBasicBlock *MBB = MI->getParent(); 1879 unsigned BaseReg = MI->getOperand(0).getReg(); 1880 bool BaseRegKill = MI->getOperand(0).isKill(); 1881 if (!BaseRegKill) 1882 continue; 1883 unsigned IdxReg = MI->getOperand(1).getReg(); 1884 bool IdxRegKill = MI->getOperand(1).isKill(); 1885 1886 // Scan backwards to find the instruction that defines the base 1887 // register. Due to post-RA scheduling, we can't count on it 1888 // immediately preceding the branch instruction. 1889 MachineBasicBlock::iterator PrevI = MI; 1890 MachineBasicBlock::iterator B = MBB->begin(); 1891 while (PrevI != B && !PrevI->definesRegister(BaseReg)) 1892 --PrevI; 1893 1894 // If for some reason we didn't find it, we can't do anything, so 1895 // just skip this one. 1896 if (!PrevI->definesRegister(BaseReg)) 1897 continue; 1898 1899 MachineInstr *AddrMI = PrevI; 1900 bool OptOk = true; 1901 // Examine the instruction that calculates the jumptable entry address. 1902 // Make sure it only defines the base register and kills any uses 1903 // other than the index register. 1904 for (unsigned k = 0, eee = AddrMI->getNumOperands(); k != eee; ++k) { 1905 const MachineOperand &MO = AddrMI->getOperand(k); 1906 if (!MO.isReg() || !MO.getReg()) 1907 continue; 1908 if (MO.isDef() && MO.getReg() != BaseReg) { 1909 OptOk = false; 1910 break; 1911 } 1912 if (MO.isUse() && !MO.isKill() && MO.getReg() != IdxReg) { 1913 OptOk = false; 1914 break; 1915 } 1916 } 1917 if (!OptOk) 1918 continue; 1919 1920 // Now scan back again to find the tLEApcrel or t2LEApcrelJT instruction 1921 // that gave us the initial base register definition. 1922 for (--PrevI; PrevI != B && !PrevI->definesRegister(BaseReg); --PrevI) 1923 ; 1924 1925 // The instruction should be a tLEApcrel or t2LEApcrelJT; we want 1926 // to delete it as well. 1927 MachineInstr *LeaMI = PrevI; 1928 if ((LeaMI->getOpcode() != ARM::tLEApcrelJT && 1929 LeaMI->getOpcode() != ARM::t2LEApcrelJT) || 1930 LeaMI->getOperand(0).getReg() != BaseReg) 1931 OptOk = false; 1932 1933 if (!OptOk) 1934 continue; 1935 1936 DEBUG(dbgs() << "Shrink JT: " << *MI << " addr: " << *AddrMI 1937 << " lea: " << *LeaMI); 1938 unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT; 1939 MachineInstr *NewJTMI = BuildMI(MBB, MI->getDebugLoc(), TII->get(Opc)) 1940 .addReg(IdxReg, getKillRegState(IdxRegKill)) 1941 .addJumpTableIndex(JTI, JTOP.getTargetFlags()) 1942 .addImm(MI->getOperand(JTOpIdx+1).getImm()); 1943 DEBUG(dbgs() << "BB#" << MBB->getNumber() << ": " << *NewJTMI); 1944 // FIXME: Insert an "ALIGN" instruction to ensure the next instruction 1945 // is 2-byte aligned. For now, asm printer will fix it up. 1946 unsigned NewSize = TII->GetInstSizeInBytes(NewJTMI); 1947 unsigned OrigSize = TII->GetInstSizeInBytes(AddrMI); 1948 OrigSize += TII->GetInstSizeInBytes(LeaMI); 1949 OrigSize += TII->GetInstSizeInBytes(MI); 1950 1951 AddrMI->eraseFromParent(); 1952 LeaMI->eraseFromParent(); 1953 MI->eraseFromParent(); 1954 1955 int delta = OrigSize - NewSize; 1956 BBInfo[MBB->getNumber()].Size -= delta; 1957 adjustBBOffsetsAfter(MBB); 1958 1959 ++NumTBs; 1960 MadeChange = true; 1961 } 1962 } 1963 1964 return MadeChange; 1965} 1966 1967/// reorderThumb2JumpTables - Adjust the function's block layout to ensure that 1968/// jump tables always branch forwards, since that's what tbb and tbh need. 1969bool ARMConstantIslands::reorderThumb2JumpTables() { 1970 bool MadeChange = false; 1971 1972 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1973 if (MJTI == 0) return false; 1974 1975 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1976 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 1977 MachineInstr *MI = T2JumpTables[i]; 1978 const MCInstrDesc &MCID = MI->getDesc(); 1979 unsigned NumOps = MCID.getNumOperands(); 1980 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 3 : 2); 1981 MachineOperand JTOP = MI->getOperand(JTOpIdx); 1982 unsigned JTI = JTOP.getIndex(); 1983 assert(JTI < JT.size()); 1984 1985 // We prefer if target blocks for the jump table come after the jump 1986 // instruction so we can use TB[BH]. Loop through the target blocks 1987 // and try to adjust them such that that's true. 1988 int JTNumber = MI->getParent()->getNumber(); 1989 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1990 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 1991 MachineBasicBlock *MBB = JTBBs[j]; 1992 int DTNumber = MBB->getNumber(); 1993 1994 if (DTNumber < JTNumber) { 1995 // The destination precedes the switch. Try to move the block forward 1996 // so we have a positive offset. 1997 MachineBasicBlock *NewBB = 1998 adjustJTTargetBlockForward(MBB, MI->getParent()); 1999 if (NewBB) 2000 MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB); 2001 MadeChange = true; 2002 } 2003 } 2004 } 2005 2006 return MadeChange; 2007} 2008 2009MachineBasicBlock *ARMConstantIslands:: 2010adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) { 2011 // If the destination block is terminated by an unconditional branch, 2012 // try to move it; otherwise, create a new block following the jump 2013 // table that branches back to the actual target. This is a very simple 2014 // heuristic. FIXME: We can definitely improve it. 2015 MachineBasicBlock *TBB = 0, *FBB = 0; 2016 SmallVector<MachineOperand, 4> Cond; 2017 SmallVector<MachineOperand, 4> CondPrior; 2018 MachineFunction::iterator BBi = BB; 2019 MachineFunction::iterator OldPrior = prior(BBi); 2020 2021 // If the block terminator isn't analyzable, don't try to move the block 2022 bool B = TII->AnalyzeBranch(*BB, TBB, FBB, Cond); 2023 2024 // If the block ends in an unconditional branch, move it. The prior block 2025 // has to have an analyzable terminator for us to move this one. Be paranoid 2026 // and make sure we're not trying to move the entry block of the function. 2027 if (!B && Cond.empty() && BB != MF->begin() && 2028 !TII->AnalyzeBranch(*OldPrior, TBB, FBB, CondPrior)) { 2029 BB->moveAfter(JTBB); 2030 OldPrior->updateTerminator(); 2031 BB->updateTerminator(); 2032 // Update numbering to account for the block being moved. 2033 MF->RenumberBlocks(); 2034 ++NumJTMoved; 2035 return NULL; 2036 } 2037 2038 // Create a new MBB for the code after the jump BB. 2039 MachineBasicBlock *NewBB = 2040 MF->CreateMachineBasicBlock(JTBB->getBasicBlock()); 2041 MachineFunction::iterator MBBI = JTBB; ++MBBI; 2042 MF->insert(MBBI, NewBB); 2043 2044 // Add an unconditional branch from NewBB to BB. 2045 // There doesn't seem to be meaningful DebugInfo available; this doesn't 2046 // correspond directly to anything in the source. 2047 assert (isThumb2 && "Adjusting for TB[BH] but not in Thumb2?"); 2048 BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)).addMBB(BB) 2049 .addImm(ARMCC::AL).addReg(0); 2050 2051 // Update internal data structures to account for the newly inserted MBB. 2052 MF->RenumberBlocks(NewBB); 2053 2054 // Update the CFG. 2055 NewBB->addSuccessor(BB); 2056 JTBB->removeSuccessor(BB); 2057 JTBB->addSuccessor(NewBB); 2058 2059 ++NumJTInserted; 2060 return NewBB; 2061} 2062