ARMConstantIslandPass.cpp revision e44be6381609d31b2d8879dbd5107e01404fa475
1//===-- ARMConstantIslandPass.cpp - ARM constant islands --------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains a pass that splits the constant pool up into 'islands' 11// which are scattered through-out the function. This is required due to the 12// limited pc-relative displacements that ARM has. 13// 14//===----------------------------------------------------------------------===// 15 16#define DEBUG_TYPE "arm-cp-islands" 17#include "ARM.h" 18#include "ARMAddressingModes.h" 19#include "ARMMachineFunctionInfo.h" 20#include "ARMInstrInfo.h" 21#include "llvm/CodeGen/MachineConstantPool.h" 22#include "llvm/CodeGen/MachineFunctionPass.h" 23#include "llvm/CodeGen/MachineInstrBuilder.h" 24#include "llvm/CodeGen/MachineJumpTableInfo.h" 25#include "llvm/Target/TargetData.h" 26#include "llvm/Target/TargetMachine.h" 27#include "llvm/Support/Debug.h" 28#include "llvm/Support/ErrorHandling.h" 29#include "llvm/Support/raw_ostream.h" 30#include "llvm/ADT/SmallSet.h" 31#include "llvm/ADT/SmallVector.h" 32#include "llvm/ADT/STLExtras.h" 33#include "llvm/ADT/Statistic.h" 34#include "llvm/Support/CommandLine.h" 35#include <algorithm> 36using namespace llvm; 37 38STATISTIC(NumCPEs, "Number of constpool entries"); 39STATISTIC(NumSplit, "Number of uncond branches inserted"); 40STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 41STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 42STATISTIC(NumTBs, "Number of table branches generated"); 43STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk"); 44STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk"); 45STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed"); 46STATISTIC(NumJTMoved, "Number of jump table destination blocks moved"); 47STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted"); 48 49 50static cl::opt<bool> 51AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true), 52 cl::desc("Adjust basic block layout to better use TB[BH]")); 53 54namespace { 55 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM 56 /// requires constant pool entries to be scattered among the instructions 57 /// inside a function. To do this, it completely ignores the normal LLVM 58 /// constant pool; instead, it places constants wherever it feels like with 59 /// special instructions. 60 /// 61 /// The terminology used in this pass includes: 62 /// Islands - Clumps of constants placed in the function. 63 /// Water - Potential places where an island could be formed. 64 /// CPE - A constant pool entry that has been placed somewhere, which 65 /// tracks a list of users. 66 class ARMConstantIslands : public MachineFunctionPass { 67 /// BBSizes - The size of each MachineBasicBlock in bytes of code, indexed 68 /// by MBB Number. The two-byte pads required for Thumb alignment are 69 /// counted as part of the following block (i.e., the offset and size for 70 /// a padded block will both be ==2 mod 4). 71 std::vector<unsigned> BBSizes; 72 73 /// BBOffsets - the offset of each MBB in bytes, starting from 0. 74 /// The two-byte pads required for Thumb alignment are counted as part of 75 /// the following block. 76 std::vector<unsigned> BBOffsets; 77 78 /// WaterList - A sorted list of basic blocks where islands could be placed 79 /// (i.e. blocks that don't fall through to the following block, due 80 /// to a return, unreachable, or unconditional branch). 81 std::vector<MachineBasicBlock*> WaterList; 82 83 /// NewWaterList - The subset of WaterList that was created since the 84 /// previous iteration by inserting unconditional branches. 85 SmallSet<MachineBasicBlock*, 4> NewWaterList; 86 87 typedef std::vector<MachineBasicBlock*>::iterator water_iterator; 88 89 /// CPUser - One user of a constant pool, keeping the machine instruction 90 /// pointer, the constant pool being referenced, and the max displacement 91 /// allowed from the instruction to the CP. The HighWaterMark records the 92 /// highest basic block where a new CPEntry can be placed. To ensure this 93 /// pass terminates, the CP entries are initially placed at the end of the 94 /// function and then move monotonically to lower addresses. The 95 /// exception to this rule is when the current CP entry for a particular 96 /// CPUser is out of range, but there is another CP entry for the same 97 /// constant value in range. We want to use the existing in-range CP 98 /// entry, but if it later moves out of range, the search for new water 99 /// should resume where it left off. The HighWaterMark is used to record 100 /// that point. 101 struct CPUser { 102 MachineInstr *MI; 103 MachineInstr *CPEMI; 104 MachineBasicBlock *HighWaterMark; 105 unsigned MaxDisp; 106 bool NegOk; 107 bool IsSoImm; 108 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, 109 bool neg, bool soimm) 110 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) { 111 HighWaterMark = CPEMI->getParent(); 112 } 113 }; 114 115 /// CPUsers - Keep track of all of the machine instructions that use various 116 /// constant pools and their max displacement. 117 std::vector<CPUser> CPUsers; 118 119 /// CPEntry - One per constant pool entry, keeping the machine instruction 120 /// pointer, the constpool index, and the number of CPUser's which 121 /// reference this entry. 122 struct CPEntry { 123 MachineInstr *CPEMI; 124 unsigned CPI; 125 unsigned RefCount; 126 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) 127 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} 128 }; 129 130 /// CPEntries - Keep track of all of the constant pool entry machine 131 /// instructions. For each original constpool index (i.e. those that 132 /// existed upon entry to this pass), it keeps a vector of entries. 133 /// Original elements are cloned as we go along; the clones are 134 /// put in the vector of the original element, but have distinct CPIs. 135 std::vector<std::vector<CPEntry> > CPEntries; 136 137 /// ImmBranch - One per immediate branch, keeping the machine instruction 138 /// pointer, conditional or unconditional, the max displacement, 139 /// and (if isCond is true) the corresponding unconditional branch 140 /// opcode. 141 struct ImmBranch { 142 MachineInstr *MI; 143 unsigned MaxDisp : 31; 144 bool isCond : 1; 145 int UncondBr; 146 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr) 147 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} 148 }; 149 150 /// ImmBranches - Keep track of all the immediate branch instructions. 151 /// 152 std::vector<ImmBranch> ImmBranches; 153 154 /// PushPopMIs - Keep track of all the Thumb push / pop instructions. 155 /// 156 SmallVector<MachineInstr*, 4> PushPopMIs; 157 158 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions. 159 SmallVector<MachineInstr*, 4> T2JumpTables; 160 161 /// HasFarJump - True if any far jump instruction has been emitted during 162 /// the branch fix up pass. 163 bool HasFarJump; 164 165 /// HasInlineAsm - True if the function contains inline assembly. 166 bool HasInlineAsm; 167 168 const ARMInstrInfo *TII; 169 const ARMSubtarget *STI; 170 ARMFunctionInfo *AFI; 171 bool isThumb; 172 bool isThumb1; 173 bool isThumb2; 174 public: 175 static char ID; 176 ARMConstantIslands() : MachineFunctionPass(ID) {} 177 178 virtual bool runOnMachineFunction(MachineFunction &MF); 179 180 virtual const char *getPassName() const { 181 return "ARM constant island placement and branch shortening pass"; 182 } 183 184 private: 185 void DoInitialPlacement(MachineFunction &MF, 186 std::vector<MachineInstr*> &CPEMIs); 187 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 188 void JumpTableFunctionScan(MachineFunction &MF); 189 void InitialFunctionScan(MachineFunction &MF, 190 const std::vector<MachineInstr*> &CPEMIs); 191 MachineBasicBlock *SplitBlockBeforeInstr(MachineInstr *MI); 192 void UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB); 193 void AdjustBBOffsetsAfter(MachineBasicBlock *BB, int delta); 194 bool DecrementOldEntry(unsigned CPI, MachineInstr* CPEMI); 195 int LookForExistingCPEntry(CPUser& U, unsigned UserOffset); 196 bool LookForWater(CPUser&U, unsigned UserOffset, water_iterator &WaterIter); 197 void CreateNewWater(unsigned CPUserIndex, unsigned UserOffset, 198 MachineBasicBlock *&NewMBB); 199 bool HandleConstantPoolUser(MachineFunction &MF, unsigned CPUserIndex); 200 void RemoveDeadCPEMI(MachineInstr *CPEMI); 201 bool RemoveUnusedCPEntries(); 202 bool CPEIsInRange(MachineInstr *MI, unsigned UserOffset, 203 MachineInstr *CPEMI, unsigned Disp, bool NegOk, 204 bool DoDump = false); 205 bool WaterIsInRange(unsigned UserOffset, MachineBasicBlock *Water, 206 CPUser &U); 207 bool OffsetIsInRange(unsigned UserOffset, unsigned TrialOffset, 208 unsigned Disp, bool NegativeOK, bool IsSoImm = false); 209 bool BBIsInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); 210 bool FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br); 211 bool FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br); 212 bool FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br); 213 bool UndoLRSpillRestore(); 214 bool OptimizeThumb2Instructions(MachineFunction &MF); 215 bool OptimizeThumb2Branches(MachineFunction &MF); 216 bool ReorderThumb2JumpTables(MachineFunction &MF); 217 bool OptimizeThumb2JumpTables(MachineFunction &MF); 218 MachineBasicBlock *AdjustJTTargetBlockForward(MachineBasicBlock *BB, 219 MachineBasicBlock *JTBB); 220 221 unsigned GetOffsetOf(MachineInstr *MI) const; 222 void dumpBBs(); 223 void verify(MachineFunction &MF); 224 }; 225 char ARMConstantIslands::ID = 0; 226} 227 228/// verify - check BBOffsets, BBSizes, alignment of islands 229void ARMConstantIslands::verify(MachineFunction &MF) { 230 assert(BBOffsets.size() == BBSizes.size()); 231 for (unsigned i = 1, e = BBOffsets.size(); i != e; ++i) 232 assert(BBOffsets[i-1]+BBSizes[i-1] == BBOffsets[i]); 233 if (!isThumb) 234 return; 235#ifndef NDEBUG 236 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); 237 MBBI != E; ++MBBI) { 238 MachineBasicBlock *MBB = MBBI; 239 if (!MBB->empty() && 240 MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) { 241 unsigned MBBId = MBB->getNumber(); 242 assert(HasInlineAsm || 243 (BBOffsets[MBBId]%4 == 0 && BBSizes[MBBId]%4 == 0) || 244 (BBOffsets[MBBId]%4 != 0 && BBSizes[MBBId]%4 != 0)); 245 } 246 } 247 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 248 CPUser &U = CPUsers[i]; 249 unsigned UserOffset = GetOffsetOf(U.MI) + (isThumb ? 4 : 8); 250 unsigned CPEOffset = GetOffsetOf(U.CPEMI); 251 unsigned Disp = UserOffset < CPEOffset ? CPEOffset - UserOffset : 252 UserOffset - CPEOffset; 253 assert(Disp <= U.MaxDisp || "Constant pool entry out of range!"); 254 } 255#endif 256} 257 258/// print block size and offset information - debugging 259void ARMConstantIslands::dumpBBs() { 260 for (unsigned J = 0, E = BBOffsets.size(); J !=E; ++J) { 261 DEBUG(errs() << "block " << J << " offset " << BBOffsets[J] 262 << " size " << BBSizes[J] << "\n"); 263 } 264} 265 266/// createARMConstantIslandPass - returns an instance of the constpool 267/// island pass. 268FunctionPass *llvm::createARMConstantIslandPass() { 269 return new ARMConstantIslands(); 270} 271 272bool ARMConstantIslands::runOnMachineFunction(MachineFunction &MF) { 273 MachineConstantPool &MCP = *MF.getConstantPool(); 274 275 TII = (const ARMInstrInfo*)MF.getTarget().getInstrInfo(); 276 AFI = MF.getInfo<ARMFunctionInfo>(); 277 STI = &MF.getTarget().getSubtarget<ARMSubtarget>(); 278 279 isThumb = AFI->isThumbFunction(); 280 isThumb1 = AFI->isThumb1OnlyFunction(); 281 isThumb2 = AFI->isThumb2Function(); 282 283 HasFarJump = false; 284 HasInlineAsm = false; 285 286 // Renumber all of the machine basic blocks in the function, guaranteeing that 287 // the numbers agree with the position of the block in the function. 288 MF.RenumberBlocks(); 289 290 // Try to reorder and otherwise adjust the block layout to make good use 291 // of the TB[BH] instructions. 292 bool MadeChange = false; 293 if (isThumb2 && AdjustJumpTableBlocks) { 294 JumpTableFunctionScan(MF); 295 MadeChange |= ReorderThumb2JumpTables(MF); 296 // Data is out of date, so clear it. It'll be re-computed later. 297 T2JumpTables.clear(); 298 // Blocks may have shifted around. Keep the numbering up to date. 299 MF.RenumberBlocks(); 300 } 301 302 // Thumb1 functions containing constant pools get 4-byte alignment. 303 // This is so we can keep exact track of where the alignment padding goes. 304 305 // ARM and Thumb2 functions need to be 4-byte aligned. 306 if (!isThumb1) 307 MF.EnsureAlignment(2); // 2 = log2(4) 308 309 // Perform the initial placement of the constant pool entries. To start with, 310 // we put them all at the end of the function. 311 std::vector<MachineInstr*> CPEMIs; 312 if (!MCP.isEmpty()) { 313 DoInitialPlacement(MF, CPEMIs); 314 if (isThumb1) 315 MF.EnsureAlignment(2); // 2 = log2(4) 316 } 317 318 /// The next UID to take is the first unused one. 319 AFI->initConstPoolEntryUId(CPEMIs.size()); 320 321 // Do the initial scan of the function, building up information about the 322 // sizes of each block, the location of all the water, and finding all of the 323 // constant pool users. 324 InitialFunctionScan(MF, CPEMIs); 325 CPEMIs.clear(); 326 DEBUG(dumpBBs()); 327 328 329 /// Remove dead constant pool entries. 330 RemoveUnusedCPEntries(); 331 332 // Iteratively place constant pool entries and fix up branches until there 333 // is no change. 334 unsigned NoCPIters = 0, NoBRIters = 0; 335 while (true) { 336 bool CPChange = false; 337 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) 338 CPChange |= HandleConstantPoolUser(MF, i); 339 if (CPChange && ++NoCPIters > 30) 340 llvm_unreachable("Constant Island pass failed to converge!"); 341 DEBUG(dumpBBs()); 342 343 // Clear NewWaterList now. If we split a block for branches, it should 344 // appear as "new water" for the next iteration of constant pool placement. 345 NewWaterList.clear(); 346 347 bool BRChange = false; 348 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) 349 BRChange |= FixUpImmediateBr(MF, ImmBranches[i]); 350 if (BRChange && ++NoBRIters > 30) 351 llvm_unreachable("Branch Fix Up pass failed to converge!"); 352 DEBUG(dumpBBs()); 353 354 if (!CPChange && !BRChange) 355 break; 356 MadeChange = true; 357 } 358 359 // Shrink 32-bit Thumb2 branch, load, and store instructions. 360 if (isThumb2 && !STI->prefers32BitThumb()) 361 MadeChange |= OptimizeThumb2Instructions(MF); 362 363 // After a while, this might be made debug-only, but it is not expensive. 364 verify(MF); 365 366 // If LR has been forced spilled and no far jump (i.e. BL) has been issued, 367 // undo the spill / restore of LR if possible. 368 if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump()) 369 MadeChange |= UndoLRSpillRestore(); 370 371 DEBUG(errs() << '\n'; dumpBBs()); 372 373 BBSizes.clear(); 374 BBOffsets.clear(); 375 WaterList.clear(); 376 CPUsers.clear(); 377 CPEntries.clear(); 378 ImmBranches.clear(); 379 PushPopMIs.clear(); 380 T2JumpTables.clear(); 381 382 return MadeChange; 383} 384 385/// DoInitialPlacement - Perform the initial placement of the constant pool 386/// entries. To start with, we put them all at the end of the function. 387void ARMConstantIslands::DoInitialPlacement(MachineFunction &MF, 388 std::vector<MachineInstr*> &CPEMIs) { 389 // Create the basic block to hold the CPE's. 390 MachineBasicBlock *BB = MF.CreateMachineBasicBlock(); 391 MF.push_back(BB); 392 393 // Add all of the constants from the constant pool to the end block, use an 394 // identity mapping of CPI's to CPE's. 395 const std::vector<MachineConstantPoolEntry> &CPs = 396 MF.getConstantPool()->getConstants(); 397 398 const TargetData &TD = *MF.getTarget().getTargetData(); 399 for (unsigned i = 0, e = CPs.size(); i != e; ++i) { 400 unsigned Size = TD.getTypeAllocSize(CPs[i].getType()); 401 // Verify that all constant pool entries are a multiple of 4 bytes. If not, 402 // we would have to pad them out or something so that instructions stay 403 // aligned. 404 assert((Size & 3) == 0 && "CP Entry not multiple of 4 bytes!"); 405 MachineInstr *CPEMI = 406 BuildMI(BB, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 407 .addImm(i).addConstantPoolIndex(i).addImm(Size); 408 CPEMIs.push_back(CPEMI); 409 410 // Add a new CPEntry, but no corresponding CPUser yet. 411 std::vector<CPEntry> CPEs; 412 CPEs.push_back(CPEntry(CPEMI, i)); 413 CPEntries.push_back(CPEs); 414 ++NumCPEs; 415 DEBUG(errs() << "Moved CPI#" << i << " to end of function as #" << i 416 << "\n"); 417 } 418} 419 420/// BBHasFallthrough - Return true if the specified basic block can fallthrough 421/// into the block immediately after it. 422static bool BBHasFallthrough(MachineBasicBlock *MBB) { 423 // Get the next machine basic block in the function. 424 MachineFunction::iterator MBBI = MBB; 425 // Can't fall off end of function. 426 if (llvm::next(MBBI) == MBB->getParent()->end()) 427 return false; 428 429 MachineBasicBlock *NextBB = llvm::next(MBBI); 430 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), 431 E = MBB->succ_end(); I != E; ++I) 432 if (*I == NextBB) 433 return true; 434 435 return false; 436} 437 438/// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 439/// look up the corresponding CPEntry. 440ARMConstantIslands::CPEntry 441*ARMConstantIslands::findConstPoolEntry(unsigned CPI, 442 const MachineInstr *CPEMI) { 443 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 444 // Number of entries per constpool index should be small, just do a 445 // linear search. 446 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 447 if (CPEs[i].CPEMI == CPEMI) 448 return &CPEs[i]; 449 } 450 return NULL; 451} 452 453/// JumpTableFunctionScan - Do a scan of the function, building up 454/// information about the sizes of each block and the locations of all 455/// the jump tables. 456void ARMConstantIslands::JumpTableFunctionScan(MachineFunction &MF) { 457 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); 458 MBBI != E; ++MBBI) { 459 MachineBasicBlock &MBB = *MBBI; 460 461 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 462 I != E; ++I) 463 if (I->getDesc().isBranch() && I->getOpcode() == ARM::t2BR_JT) 464 T2JumpTables.push_back(I); 465 } 466} 467 468/// InitialFunctionScan - Do the initial scan of the function, building up 469/// information about the sizes of each block, the location of all the water, 470/// and finding all of the constant pool users. 471void ARMConstantIslands::InitialFunctionScan(MachineFunction &MF, 472 const std::vector<MachineInstr*> &CPEMIs) { 473 // First thing, see if the function has any inline assembly in it. If so, 474 // we have to be conservative about alignment assumptions, as we don't 475 // know for sure the size of any instructions in the inline assembly. 476 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); 477 MBBI != E; ++MBBI) { 478 MachineBasicBlock &MBB = *MBBI; 479 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 480 I != E; ++I) 481 if (I->getOpcode() == ARM::INLINEASM) 482 HasInlineAsm = true; 483 } 484 485 // Now go back through the instructions and build up our data structures 486 unsigned Offset = 0; 487 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); 488 MBBI != E; ++MBBI) { 489 MachineBasicBlock &MBB = *MBBI; 490 491 // If this block doesn't fall through into the next MBB, then this is 492 // 'water' that a constant pool island could be placed. 493 if (!BBHasFallthrough(&MBB)) 494 WaterList.push_back(&MBB); 495 496 unsigned MBBSize = 0; 497 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 498 I != E; ++I) { 499 if (I->isDebugValue()) 500 continue; 501 // Add instruction size to MBBSize. 502 MBBSize += TII->GetInstSizeInBytes(I); 503 504 int Opc = I->getOpcode(); 505 if (I->getDesc().isBranch()) { 506 bool isCond = false; 507 unsigned Bits = 0; 508 unsigned Scale = 1; 509 int UOpc = Opc; 510 switch (Opc) { 511 default: 512 continue; // Ignore other JT branches 513 case ARM::tBR_JTr: 514 // A Thumb1 table jump may involve padding; for the offsets to 515 // be right, functions containing these must be 4-byte aligned. 516 // tBR_JTr expands to a mov pc followed by .align 2 and then the jump 517 // table entries. So this code checks whether offset of tBR_JTr + 2 518 // is aligned. That is held in Offset+MBBSize, which already has 519 // 2 added in for the size of the mov pc instruction. 520 MF.EnsureAlignment(2U); 521 if ((Offset+MBBSize)%4 != 0 || HasInlineAsm) 522 // FIXME: Add a pseudo ALIGN instruction instead. 523 MBBSize += 2; // padding 524 continue; // Does not get an entry in ImmBranches 525 case ARM::t2BR_JT: 526 T2JumpTables.push_back(I); 527 continue; // Does not get an entry in ImmBranches 528 case ARM::Bcc: 529 isCond = true; 530 UOpc = ARM::B; 531 // Fallthrough 532 case ARM::B: 533 Bits = 24; 534 Scale = 4; 535 break; 536 case ARM::tBcc: 537 isCond = true; 538 UOpc = ARM::tB; 539 Bits = 8; 540 Scale = 2; 541 break; 542 case ARM::tB: 543 Bits = 11; 544 Scale = 2; 545 break; 546 case ARM::t2Bcc: 547 isCond = true; 548 UOpc = ARM::t2B; 549 Bits = 20; 550 Scale = 2; 551 break; 552 case ARM::t2B: 553 Bits = 24; 554 Scale = 2; 555 break; 556 } 557 558 // Record this immediate branch. 559 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 560 ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc)); 561 } 562 563 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) 564 PushPopMIs.push_back(I); 565 566 if (Opc == ARM::CONSTPOOL_ENTRY) 567 continue; 568 569 // Scan the instructions for constant pool operands. 570 for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) 571 if (I->getOperand(op).isCPI()) { 572 // We found one. The addressing mode tells us the max displacement 573 // from the PC that this instruction permits. 574 575 // Basic size info comes from the TSFlags field. 576 unsigned Bits = 0; 577 unsigned Scale = 1; 578 bool NegOk = false; 579 bool IsSoImm = false; 580 581 switch (Opc) { 582 default: 583 llvm_unreachable("Unknown addressing mode for CP reference!"); 584 break; 585 586 // Taking the address of a CP entry. 587 case ARM::LEApcrel: 588 // This takes a SoImm, which is 8 bit immediate rotated. We'll 589 // pretend the maximum offset is 255 * 4. Since each instruction 590 // 4 byte wide, this is always correct. We'll check for other 591 // displacements that fits in a SoImm as well. 592 Bits = 8; 593 Scale = 4; 594 NegOk = true; 595 IsSoImm = true; 596 break; 597 case ARM::t2LEApcrel: 598 Bits = 12; 599 NegOk = true; 600 break; 601 case ARM::tLEApcrel: 602 Bits = 8; 603 Scale = 4; 604 break; 605 606 case ARM::LDR: 607 case ARM::LDRcp: 608 case ARM::t2LDRpci: 609 Bits = 12; // +-offset_12 610 NegOk = true; 611 break; 612 613 case ARM::tLDRpci: 614 case ARM::tLDRcp: 615 Bits = 8; 616 Scale = 4; // +(offset_8*4) 617 break; 618 619 case ARM::VLDRD: 620 case ARM::VLDRS: 621 Bits = 8; 622 Scale = 4; // +-(offset_8*4) 623 NegOk = true; 624 break; 625 } 626 627 // Remember that this is a user of a CP entry. 628 unsigned CPI = I->getOperand(op).getIndex(); 629 MachineInstr *CPEMI = CPEMIs[CPI]; 630 unsigned MaxOffs = ((1 << Bits)-1) * Scale; 631 CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm)); 632 633 // Increment corresponding CPEntry reference count. 634 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 635 assert(CPE && "Cannot find a corresponding CPEntry!"); 636 CPE->RefCount++; 637 638 // Instructions can only use one CP entry, don't bother scanning the 639 // rest of the operands. 640 break; 641 } 642 } 643 644 // In thumb mode, if this block is a constpool island, we may need padding 645 // so it's aligned on 4 byte boundary. 646 if (isThumb && 647 !MBB.empty() && 648 MBB.begin()->getOpcode() == ARM::CONSTPOOL_ENTRY && 649 ((Offset%4) != 0 || HasInlineAsm)) 650 MBBSize += 2; 651 652 BBSizes.push_back(MBBSize); 653 BBOffsets.push_back(Offset); 654 Offset += MBBSize; 655 } 656} 657 658/// GetOffsetOf - Return the current offset of the specified machine instruction 659/// from the start of the function. This offset changes as stuff is moved 660/// around inside the function. 661unsigned ARMConstantIslands::GetOffsetOf(MachineInstr *MI) const { 662 MachineBasicBlock *MBB = MI->getParent(); 663 664 // The offset is composed of two things: the sum of the sizes of all MBB's 665 // before this instruction's block, and the offset from the start of the block 666 // it is in. 667 unsigned Offset = BBOffsets[MBB->getNumber()]; 668 669 // If we're looking for a CONSTPOOL_ENTRY in Thumb, see if this block has 670 // alignment padding, and compensate if so. 671 if (isThumb && 672 MI->getOpcode() == ARM::CONSTPOOL_ENTRY && 673 (Offset%4 != 0 || HasInlineAsm)) 674 Offset += 2; 675 676 // Sum instructions before MI in MBB. 677 for (MachineBasicBlock::iterator I = MBB->begin(); ; ++I) { 678 assert(I != MBB->end() && "Didn't find MI in its own basic block?"); 679 if (&*I == MI) return Offset; 680 Offset += TII->GetInstSizeInBytes(I); 681 } 682} 683 684/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 685/// ID. 686static bool CompareMBBNumbers(const MachineBasicBlock *LHS, 687 const MachineBasicBlock *RHS) { 688 return LHS->getNumber() < RHS->getNumber(); 689} 690 691/// UpdateForInsertedWaterBlock - When a block is newly inserted into the 692/// machine function, it upsets all of the block numbers. Renumber the blocks 693/// and update the arrays that parallel this numbering. 694void ARMConstantIslands::UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB) { 695 // Renumber the MBB's to keep them consequtive. 696 NewBB->getParent()->RenumberBlocks(NewBB); 697 698 // Insert a size into BBSizes to align it properly with the (newly 699 // renumbered) block numbers. 700 BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0); 701 702 // Likewise for BBOffsets. 703 BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0); 704 705 // Next, update WaterList. Specifically, we need to add NewMBB as having 706 // available water after it. 707 water_iterator IP = 708 std::lower_bound(WaterList.begin(), WaterList.end(), NewBB, 709 CompareMBBNumbers); 710 WaterList.insert(IP, NewBB); 711} 712 713 714/// Split the basic block containing MI into two blocks, which are joined by 715/// an unconditional branch. Update data structures and renumber blocks to 716/// account for this change and returns the newly created block. 717MachineBasicBlock *ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr *MI) { 718 MachineBasicBlock *OrigBB = MI->getParent(); 719 MachineFunction &MF = *OrigBB->getParent(); 720 721 // Create a new MBB for the code after the OrigBB. 722 MachineBasicBlock *NewBB = 723 MF.CreateMachineBasicBlock(OrigBB->getBasicBlock()); 724 MachineFunction::iterator MBBI = OrigBB; ++MBBI; 725 MF.insert(MBBI, NewBB); 726 727 // Splice the instructions starting with MI over to NewBB. 728 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 729 730 // Add an unconditional branch from OrigBB to NewBB. 731 // Note the new unconditional branch is not being recorded. 732 // There doesn't seem to be meaningful DebugInfo available; this doesn't 733 // correspond to anything in the source. 734 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B; 735 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB); 736 ++NumSplit; 737 738 // Update the CFG. All succs of OrigBB are now succs of NewBB. 739 while (!OrigBB->succ_empty()) { 740 MachineBasicBlock *Succ = *OrigBB->succ_begin(); 741 OrigBB->removeSuccessor(Succ); 742 NewBB->addSuccessor(Succ); 743 744 // This pass should be run after register allocation, so there should be no 745 // PHI nodes to update. 746 assert((Succ->empty() || !Succ->begin()->isPHI()) 747 && "PHI nodes should be eliminated by now!"); 748 } 749 750 // OrigBB branches to NewBB. 751 OrigBB->addSuccessor(NewBB); 752 753 // Update internal data structures to account for the newly inserted MBB. 754 // This is almost the same as UpdateForInsertedWaterBlock, except that 755 // the Water goes after OrigBB, not NewBB. 756 MF.RenumberBlocks(NewBB); 757 758 // Insert a size into BBSizes to align it properly with the (newly 759 // renumbered) block numbers. 760 BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0); 761 762 // Likewise for BBOffsets. 763 BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0); 764 765 // Next, update WaterList. Specifically, we need to add OrigMBB as having 766 // available water after it (but not if it's already there, which happens 767 // when splitting before a conditional branch that is followed by an 768 // unconditional branch - in that case we want to insert NewBB). 769 water_iterator IP = 770 std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB, 771 CompareMBBNumbers); 772 MachineBasicBlock* WaterBB = *IP; 773 if (WaterBB == OrigBB) 774 WaterList.insert(llvm::next(IP), NewBB); 775 else 776 WaterList.insert(IP, OrigBB); 777 NewWaterList.insert(OrigBB); 778 779 unsigned OrigBBI = OrigBB->getNumber(); 780 unsigned NewBBI = NewBB->getNumber(); 781 782 int delta = isThumb1 ? 2 : 4; 783 784 // Figure out how large the OrigBB is. As the first half of the original 785 // block, it cannot contain a tablejump. The size includes 786 // the new jump we added. (It should be possible to do this without 787 // recounting everything, but it's very confusing, and this is rarely 788 // executed.) 789 unsigned OrigBBSize = 0; 790 for (MachineBasicBlock::iterator I = OrigBB->begin(), E = OrigBB->end(); 791 I != E; ++I) 792 OrigBBSize += TII->GetInstSizeInBytes(I); 793 BBSizes[OrigBBI] = OrigBBSize; 794 795 // ...and adjust BBOffsets for NewBB accordingly. 796 BBOffsets[NewBBI] = BBOffsets[OrigBBI] + BBSizes[OrigBBI]; 797 798 // Figure out how large the NewMBB is. As the second half of the original 799 // block, it may contain a tablejump. 800 unsigned NewBBSize = 0; 801 for (MachineBasicBlock::iterator I = NewBB->begin(), E = NewBB->end(); 802 I != E; ++I) 803 NewBBSize += TII->GetInstSizeInBytes(I); 804 // Set the size of NewBB in BBSizes. It does not include any padding now. 805 BBSizes[NewBBI] = NewBBSize; 806 807 MachineInstr* ThumbJTMI = prior(NewBB->end()); 808 if (ThumbJTMI->getOpcode() == ARM::tBR_JTr) { 809 // We've added another 2-byte instruction before this tablejump, which 810 // means we will always need padding if we didn't before, and vice versa. 811 812 // The original offset of the jump instruction was: 813 unsigned OrigOffset = BBOffsets[OrigBBI] + BBSizes[OrigBBI] - delta; 814 if (OrigOffset%4 == 0) { 815 // We had padding before and now we don't. No net change in code size. 816 delta = 0; 817 } else { 818 // We didn't have padding before and now we do. 819 BBSizes[NewBBI] += 2; 820 delta = 4; 821 } 822 } 823 824 // All BBOffsets following these blocks must be modified. 825 if (delta) 826 AdjustBBOffsetsAfter(NewBB, delta); 827 828 return NewBB; 829} 830 831/// OffsetIsInRange - Checks whether UserOffset (the location of a constant pool 832/// reference) is within MaxDisp of TrialOffset (a proposed location of a 833/// constant pool entry). 834bool ARMConstantIslands::OffsetIsInRange(unsigned UserOffset, 835 unsigned TrialOffset, unsigned MaxDisp, 836 bool NegativeOK, bool IsSoImm) { 837 // On Thumb offsets==2 mod 4 are rounded down by the hardware for 838 // purposes of the displacement computation; compensate for that here. 839 // Effectively, the valid range of displacements is 2 bytes smaller for such 840 // references. 841 unsigned TotalAdj = 0; 842 if (isThumb && UserOffset%4 !=0) { 843 UserOffset -= 2; 844 TotalAdj = 2; 845 } 846 // CPEs will be rounded up to a multiple of 4. 847 if (isThumb && TrialOffset%4 != 0) { 848 TrialOffset += 2; 849 TotalAdj += 2; 850 } 851 852 // In Thumb2 mode, later branch adjustments can shift instructions up and 853 // cause alignment change. In the worst case scenario this can cause the 854 // user's effective address to be subtracted by 2 and the CPE's address to 855 // be plus 2. 856 if (isThumb2 && TotalAdj != 4) 857 MaxDisp -= (4 - TotalAdj); 858 859 if (UserOffset <= TrialOffset) { 860 // User before the Trial. 861 if (TrialOffset - UserOffset <= MaxDisp) 862 return true; 863 // FIXME: Make use full range of soimm values. 864 } else if (NegativeOK) { 865 if (UserOffset - TrialOffset <= MaxDisp) 866 return true; 867 // FIXME: Make use full range of soimm values. 868 } 869 return false; 870} 871 872/// WaterIsInRange - Returns true if a CPE placed after the specified 873/// Water (a basic block) will be in range for the specific MI. 874 875bool ARMConstantIslands::WaterIsInRange(unsigned UserOffset, 876 MachineBasicBlock* Water, CPUser &U) { 877 unsigned MaxDisp = U.MaxDisp; 878 unsigned CPEOffset = BBOffsets[Water->getNumber()] + 879 BBSizes[Water->getNumber()]; 880 881 // If the CPE is to be inserted before the instruction, that will raise 882 // the offset of the instruction. 883 if (CPEOffset < UserOffset) 884 UserOffset += U.CPEMI->getOperand(2).getImm(); 885 886 return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, U.NegOk, U.IsSoImm); 887} 888 889/// CPEIsInRange - Returns true if the distance between specific MI and 890/// specific ConstPool entry instruction can fit in MI's displacement field. 891bool ARMConstantIslands::CPEIsInRange(MachineInstr *MI, unsigned UserOffset, 892 MachineInstr *CPEMI, unsigned MaxDisp, 893 bool NegOk, bool DoDump) { 894 unsigned CPEOffset = GetOffsetOf(CPEMI); 895 assert((CPEOffset%4 == 0 || HasInlineAsm) && "Misaligned CPE"); 896 897 if (DoDump) { 898 DEBUG(errs() << "User of CPE#" << CPEMI->getOperand(0).getImm() 899 << " max delta=" << MaxDisp 900 << " insn address=" << UserOffset 901 << " CPE address=" << CPEOffset 902 << " offset=" << int(CPEOffset-UserOffset) << "\t" << *MI); 903 } 904 905 return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, NegOk); 906} 907 908#ifndef NDEBUG 909/// BBIsJumpedOver - Return true of the specified basic block's only predecessor 910/// unconditionally branches to its only successor. 911static bool BBIsJumpedOver(MachineBasicBlock *MBB) { 912 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 913 return false; 914 915 MachineBasicBlock *Succ = *MBB->succ_begin(); 916 MachineBasicBlock *Pred = *MBB->pred_begin(); 917 MachineInstr *PredMI = &Pred->back(); 918 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB 919 || PredMI->getOpcode() == ARM::t2B) 920 return PredMI->getOperand(0).getMBB() == Succ; 921 return false; 922} 923#endif // NDEBUG 924 925void ARMConstantIslands::AdjustBBOffsetsAfter(MachineBasicBlock *BB, 926 int delta) { 927 MachineFunction::iterator MBBI = BB; MBBI = llvm::next(MBBI); 928 for(unsigned i = BB->getNumber()+1, e = BB->getParent()->getNumBlockIDs(); 929 i < e; ++i) { 930 BBOffsets[i] += delta; 931 // If some existing blocks have padding, adjust the padding as needed, a 932 // bit tricky. delta can be negative so don't use % on that. 933 if (!isThumb) 934 continue; 935 MachineBasicBlock *MBB = MBBI; 936 if (!MBB->empty() && !HasInlineAsm) { 937 // Constant pool entries require padding. 938 if (MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) { 939 unsigned OldOffset = BBOffsets[i] - delta; 940 if ((OldOffset%4) == 0 && (BBOffsets[i]%4) != 0) { 941 // add new padding 942 BBSizes[i] += 2; 943 delta += 2; 944 } else if ((OldOffset%4) != 0 && (BBOffsets[i]%4) == 0) { 945 // remove existing padding 946 BBSizes[i] -= 2; 947 delta -= 2; 948 } 949 } 950 // Thumb1 jump tables require padding. They should be at the end; 951 // following unconditional branches are removed by AnalyzeBranch. 952 // tBR_JTr expands to a mov pc followed by .align 2 and then the jump 953 // table entries. So this code checks whether offset of tBR_JTr 954 // is aligned; if it is, the offset of the jump table following the 955 // instruction will not be aligned, and we need padding. 956 MachineInstr *ThumbJTMI = prior(MBB->end()); 957 if (ThumbJTMI->getOpcode() == ARM::tBR_JTr) { 958 unsigned NewMIOffset = GetOffsetOf(ThumbJTMI); 959 unsigned OldMIOffset = NewMIOffset - delta; 960 if ((OldMIOffset%4) == 0 && (NewMIOffset%4) != 0) { 961 // remove existing padding 962 BBSizes[i] -= 2; 963 delta -= 2; 964 } else if ((OldMIOffset%4) != 0 && (NewMIOffset%4) == 0) { 965 // add new padding 966 BBSizes[i] += 2; 967 delta += 2; 968 } 969 } 970 if (delta==0) 971 return; 972 } 973 MBBI = llvm::next(MBBI); 974 } 975} 976 977/// DecrementOldEntry - find the constant pool entry with index CPI 978/// and instruction CPEMI, and decrement its refcount. If the refcount 979/// becomes 0 remove the entry and instruction. Returns true if we removed 980/// the entry, false if we didn't. 981 982bool ARMConstantIslands::DecrementOldEntry(unsigned CPI, MachineInstr *CPEMI) { 983 // Find the old entry. Eliminate it if it is no longer used. 984 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 985 assert(CPE && "Unexpected!"); 986 if (--CPE->RefCount == 0) { 987 RemoveDeadCPEMI(CPEMI); 988 CPE->CPEMI = NULL; 989 --NumCPEs; 990 return true; 991 } 992 return false; 993} 994 995/// LookForCPEntryInRange - see if the currently referenced CPE is in range; 996/// if not, see if an in-range clone of the CPE is in range, and if so, 997/// change the data structures so the user references the clone. Returns: 998/// 0 = no existing entry found 999/// 1 = entry found, and there were no code insertions or deletions 1000/// 2 = entry found, and there were code insertions or deletions 1001int ARMConstantIslands::LookForExistingCPEntry(CPUser& U, unsigned UserOffset) 1002{ 1003 MachineInstr *UserMI = U.MI; 1004 MachineInstr *CPEMI = U.CPEMI; 1005 1006 // Check to see if the CPE is already in-range. 1007 if (CPEIsInRange(UserMI, UserOffset, CPEMI, U.MaxDisp, U.NegOk, true)) { 1008 DEBUG(errs() << "In range\n"); 1009 return 1; 1010 } 1011 1012 // No. Look for previously created clones of the CPE that are in range. 1013 unsigned CPI = CPEMI->getOperand(1).getIndex(); 1014 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 1015 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 1016 // We already tried this one 1017 if (CPEs[i].CPEMI == CPEMI) 1018 continue; 1019 // Removing CPEs can leave empty entries, skip 1020 if (CPEs[i].CPEMI == NULL) 1021 continue; 1022 if (CPEIsInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.MaxDisp, U.NegOk)) { 1023 DEBUG(errs() << "Replacing CPE#" << CPI << " with CPE#" 1024 << CPEs[i].CPI << "\n"); 1025 // Point the CPUser node to the replacement 1026 U.CPEMI = CPEs[i].CPEMI; 1027 // Change the CPI in the instruction operand to refer to the clone. 1028 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) 1029 if (UserMI->getOperand(j).isCPI()) { 1030 UserMI->getOperand(j).setIndex(CPEs[i].CPI); 1031 break; 1032 } 1033 // Adjust the refcount of the clone... 1034 CPEs[i].RefCount++; 1035 // ...and the original. If we didn't remove the old entry, none of the 1036 // addresses changed, so we don't need another pass. 1037 return DecrementOldEntry(CPI, CPEMI) ? 2 : 1; 1038 } 1039 } 1040 return 0; 1041} 1042 1043/// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 1044/// the specific unconditional branch instruction. 1045static inline unsigned getUnconditionalBrDisp(int Opc) { 1046 switch (Opc) { 1047 case ARM::tB: 1048 return ((1<<10)-1)*2; 1049 case ARM::t2B: 1050 return ((1<<23)-1)*2; 1051 default: 1052 break; 1053 } 1054 1055 return ((1<<23)-1)*4; 1056} 1057 1058/// LookForWater - Look for an existing entry in the WaterList in which 1059/// we can place the CPE referenced from U so it's within range of U's MI. 1060/// Returns true if found, false if not. If it returns true, WaterIter 1061/// is set to the WaterList entry. For Thumb, prefer water that will not 1062/// introduce padding to water that will. To ensure that this pass 1063/// terminates, the CPE location for a particular CPUser is only allowed to 1064/// move to a lower address, so search backward from the end of the list and 1065/// prefer the first water that is in range. 1066bool ARMConstantIslands::LookForWater(CPUser &U, unsigned UserOffset, 1067 water_iterator &WaterIter) { 1068 if (WaterList.empty()) 1069 return false; 1070 1071 bool FoundWaterThatWouldPad = false; 1072 water_iterator IPThatWouldPad; 1073 for (water_iterator IP = prior(WaterList.end()), 1074 B = WaterList.begin();; --IP) { 1075 MachineBasicBlock* WaterBB = *IP; 1076 // Check if water is in range and is either at a lower address than the 1077 // current "high water mark" or a new water block that was created since 1078 // the previous iteration by inserting an unconditional branch. In the 1079 // latter case, we want to allow resetting the high water mark back to 1080 // this new water since we haven't seen it before. Inserting branches 1081 // should be relatively uncommon and when it does happen, we want to be 1082 // sure to take advantage of it for all the CPEs near that block, so that 1083 // we don't insert more branches than necessary. 1084 if (WaterIsInRange(UserOffset, WaterBB, U) && 1085 (WaterBB->getNumber() < U.HighWaterMark->getNumber() || 1086 NewWaterList.count(WaterBB))) { 1087 unsigned WBBId = WaterBB->getNumber(); 1088 if (isThumb && 1089 (BBOffsets[WBBId] + BBSizes[WBBId])%4 != 0) { 1090 // This is valid Water, but would introduce padding. Remember 1091 // it in case we don't find any Water that doesn't do this. 1092 if (!FoundWaterThatWouldPad) { 1093 FoundWaterThatWouldPad = true; 1094 IPThatWouldPad = IP; 1095 } 1096 } else { 1097 WaterIter = IP; 1098 return true; 1099 } 1100 } 1101 if (IP == B) 1102 break; 1103 } 1104 if (FoundWaterThatWouldPad) { 1105 WaterIter = IPThatWouldPad; 1106 return true; 1107 } 1108 return false; 1109} 1110 1111/// CreateNewWater - No existing WaterList entry will work for 1112/// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 1113/// block is used if in range, and the conditional branch munged so control 1114/// flow is correct. Otherwise the block is split to create a hole with an 1115/// unconditional branch around it. In either case NewMBB is set to a 1116/// block following which the new island can be inserted (the WaterList 1117/// is not adjusted). 1118void ARMConstantIslands::CreateNewWater(unsigned CPUserIndex, 1119 unsigned UserOffset, 1120 MachineBasicBlock *&NewMBB) { 1121 CPUser &U = CPUsers[CPUserIndex]; 1122 MachineInstr *UserMI = U.MI; 1123 MachineInstr *CPEMI = U.CPEMI; 1124 MachineBasicBlock *UserMBB = UserMI->getParent(); 1125 unsigned OffsetOfNextBlock = BBOffsets[UserMBB->getNumber()] + 1126 BBSizes[UserMBB->getNumber()]; 1127 assert(OffsetOfNextBlock== BBOffsets[UserMBB->getNumber()+1]); 1128 1129 // If the block does not end in an unconditional branch already, and if the 1130 // end of the block is within range, make new water there. (The addition 1131 // below is for the unconditional branch we will be adding: 4 bytes on ARM + 1132 // Thumb2, 2 on Thumb1. Possible Thumb1 alignment padding is allowed for 1133 // inside OffsetIsInRange. 1134 if (BBHasFallthrough(UserMBB) && 1135 OffsetIsInRange(UserOffset, OffsetOfNextBlock + (isThumb1 ? 2: 4), 1136 U.MaxDisp, U.NegOk, U.IsSoImm)) { 1137 DEBUG(errs() << "Split at end of block\n"); 1138 if (&UserMBB->back() == UserMI) 1139 assert(BBHasFallthrough(UserMBB) && "Expected a fallthrough BB!"); 1140 NewMBB = llvm::next(MachineFunction::iterator(UserMBB)); 1141 // Add an unconditional branch from UserMBB to fallthrough block. 1142 // Record it for branch lengthening; this new branch will not get out of 1143 // range, but if the preceding conditional branch is out of range, the 1144 // targets will be exchanged, and the altered branch may be out of 1145 // range, so the machinery has to know about it. 1146 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B; 1147 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB); 1148 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 1149 ImmBranches.push_back(ImmBranch(&UserMBB->back(), 1150 MaxDisp, false, UncondBr)); 1151 int delta = isThumb1 ? 2 : 4; 1152 BBSizes[UserMBB->getNumber()] += delta; 1153 AdjustBBOffsetsAfter(UserMBB, delta); 1154 } else { 1155 // What a big block. Find a place within the block to split it. 1156 // This is a little tricky on Thumb1 since instructions are 2 bytes 1157 // and constant pool entries are 4 bytes: if instruction I references 1158 // island CPE, and instruction I+1 references CPE', it will 1159 // not work well to put CPE as far forward as possible, since then 1160 // CPE' cannot immediately follow it (that location is 2 bytes 1161 // farther away from I+1 than CPE was from I) and we'd need to create 1162 // a new island. So, we make a first guess, then walk through the 1163 // instructions between the one currently being looked at and the 1164 // possible insertion point, and make sure any other instructions 1165 // that reference CPEs will be able to use the same island area; 1166 // if not, we back up the insertion point. 1167 1168 // The 4 in the following is for the unconditional branch we'll be 1169 // inserting (allows for long branch on Thumb1). Alignment of the 1170 // island is handled inside OffsetIsInRange. 1171 unsigned BaseInsertOffset = UserOffset + U.MaxDisp -4; 1172 // This could point off the end of the block if we've already got 1173 // constant pool entries following this block; only the last one is 1174 // in the water list. Back past any possible branches (allow for a 1175 // conditional and a maximally long unconditional). 1176 if (BaseInsertOffset >= BBOffsets[UserMBB->getNumber()+1]) 1177 BaseInsertOffset = BBOffsets[UserMBB->getNumber()+1] - 1178 (isThumb1 ? 6 : 8); 1179 unsigned EndInsertOffset = BaseInsertOffset + 1180 CPEMI->getOperand(2).getImm(); 1181 MachineBasicBlock::iterator MI = UserMI; 1182 ++MI; 1183 unsigned CPUIndex = CPUserIndex+1; 1184 for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI); 1185 Offset < BaseInsertOffset; 1186 Offset += TII->GetInstSizeInBytes(MI), 1187 MI = llvm::next(MI)) { 1188 if (CPUIndex < CPUsers.size() && CPUsers[CPUIndex].MI == MI) { 1189 CPUser &U = CPUsers[CPUIndex]; 1190 if (!OffsetIsInRange(Offset, EndInsertOffset, 1191 U.MaxDisp, U.NegOk, U.IsSoImm)) { 1192 BaseInsertOffset -= (isThumb1 ? 2 : 4); 1193 EndInsertOffset -= (isThumb1 ? 2 : 4); 1194 } 1195 // This is overly conservative, as we don't account for CPEMIs 1196 // being reused within the block, but it doesn't matter much. 1197 EndInsertOffset += CPUsers[CPUIndex].CPEMI->getOperand(2).getImm(); 1198 CPUIndex++; 1199 } 1200 } 1201 DEBUG(errs() << "Split in middle of big block\n"); 1202 NewMBB = SplitBlockBeforeInstr(prior(MI)); 1203 } 1204} 1205 1206/// HandleConstantPoolUser - Analyze the specified user, checking to see if it 1207/// is out-of-range. If so, pick up the constant pool value and move it some 1208/// place in-range. Return true if we changed any addresses (thus must run 1209/// another pass of branch lengthening), false otherwise. 1210bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction &MF, 1211 unsigned CPUserIndex) { 1212 CPUser &U = CPUsers[CPUserIndex]; 1213 MachineInstr *UserMI = U.MI; 1214 MachineInstr *CPEMI = U.CPEMI; 1215 unsigned CPI = CPEMI->getOperand(1).getIndex(); 1216 unsigned Size = CPEMI->getOperand(2).getImm(); 1217 // Compute this only once, it's expensive. The 4 or 8 is the value the 1218 // hardware keeps in the PC. 1219 unsigned UserOffset = GetOffsetOf(UserMI) + (isThumb ? 4 : 8); 1220 1221 // See if the current entry is within range, or there is a clone of it 1222 // in range. 1223 int result = LookForExistingCPEntry(U, UserOffset); 1224 if (result==1) return false; 1225 else if (result==2) return true; 1226 1227 // No existing clone of this CPE is within range. 1228 // We will be generating a new clone. Get a UID for it. 1229 unsigned ID = AFI->createConstPoolEntryUId(); 1230 1231 // Look for water where we can place this CPE. 1232 MachineBasicBlock *NewIsland = MF.CreateMachineBasicBlock(); 1233 MachineBasicBlock *NewMBB; 1234 water_iterator IP; 1235 if (LookForWater(U, UserOffset, IP)) { 1236 DEBUG(errs() << "found water in range\n"); 1237 MachineBasicBlock *WaterBB = *IP; 1238 1239 // If the original WaterList entry was "new water" on this iteration, 1240 // propagate that to the new island. This is just keeping NewWaterList 1241 // updated to match the WaterList, which will be updated below. 1242 if (NewWaterList.count(WaterBB)) { 1243 NewWaterList.erase(WaterBB); 1244 NewWaterList.insert(NewIsland); 1245 } 1246 // The new CPE goes before the following block (NewMBB). 1247 NewMBB = llvm::next(MachineFunction::iterator(WaterBB)); 1248 1249 } else { 1250 // No water found. 1251 DEBUG(errs() << "No water found\n"); 1252 CreateNewWater(CPUserIndex, UserOffset, NewMBB); 1253 1254 // SplitBlockBeforeInstr adds to WaterList, which is important when it is 1255 // called while handling branches so that the water will be seen on the 1256 // next iteration for constant pools, but in this context, we don't want 1257 // it. Check for this so it will be removed from the WaterList. 1258 // Also remove any entry from NewWaterList. 1259 MachineBasicBlock *WaterBB = prior(MachineFunction::iterator(NewMBB)); 1260 IP = std::find(WaterList.begin(), WaterList.end(), WaterBB); 1261 if (IP != WaterList.end()) 1262 NewWaterList.erase(WaterBB); 1263 1264 // We are adding new water. Update NewWaterList. 1265 NewWaterList.insert(NewIsland); 1266 } 1267 1268 // Remove the original WaterList entry; we want subsequent insertions in 1269 // this vicinity to go after the one we're about to insert. This 1270 // considerably reduces the number of times we have to move the same CPE 1271 // more than once and is also important to ensure the algorithm terminates. 1272 if (IP != WaterList.end()) 1273 WaterList.erase(IP); 1274 1275 // Okay, we know we can put an island before NewMBB now, do it! 1276 MF.insert(NewMBB, NewIsland); 1277 1278 // Update internal data structures to account for the newly inserted MBB. 1279 UpdateForInsertedWaterBlock(NewIsland); 1280 1281 // Decrement the old entry, and remove it if refcount becomes 0. 1282 DecrementOldEntry(CPI, CPEMI); 1283 1284 // Now that we have an island to add the CPE to, clone the original CPE and 1285 // add it to the island. 1286 U.HighWaterMark = NewIsland; 1287 U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 1288 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size); 1289 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1290 ++NumCPEs; 1291 1292 BBOffsets[NewIsland->getNumber()] = BBOffsets[NewMBB->getNumber()]; 1293 // Compensate for .align 2 in thumb mode. 1294 if (isThumb && (BBOffsets[NewIsland->getNumber()]%4 != 0 || HasInlineAsm)) 1295 Size += 2; 1296 // Increase the size of the island block to account for the new entry. 1297 BBSizes[NewIsland->getNumber()] += Size; 1298 AdjustBBOffsetsAfter(NewIsland, Size); 1299 1300 // Finally, change the CPI in the instruction operand to be ID. 1301 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) 1302 if (UserMI->getOperand(i).isCPI()) { 1303 UserMI->getOperand(i).setIndex(ID); 1304 break; 1305 } 1306 1307 DEBUG(errs() << " Moved CPE to #" << ID << " CPI=" << CPI 1308 << '\t' << *UserMI); 1309 1310 return true; 1311} 1312 1313/// RemoveDeadCPEMI - Remove a dead constant pool entry instruction. Update 1314/// sizes and offsets of impacted basic blocks. 1315void ARMConstantIslands::RemoveDeadCPEMI(MachineInstr *CPEMI) { 1316 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1317 unsigned Size = CPEMI->getOperand(2).getImm(); 1318 CPEMI->eraseFromParent(); 1319 BBSizes[CPEBB->getNumber()] -= Size; 1320 // All succeeding offsets have the current size value added in, fix this. 1321 if (CPEBB->empty()) { 1322 // In thumb1 mode, the size of island may be padded by two to compensate for 1323 // the alignment requirement. Then it will now be 2 when the block is 1324 // empty, so fix this. 1325 // All succeeding offsets have the current size value added in, fix this. 1326 if (BBSizes[CPEBB->getNumber()] != 0) { 1327 Size += BBSizes[CPEBB->getNumber()]; 1328 BBSizes[CPEBB->getNumber()] = 0; 1329 } 1330 } 1331 AdjustBBOffsetsAfter(CPEBB, -Size); 1332 // An island has only one predecessor BB and one successor BB. Check if 1333 // this BB's predecessor jumps directly to this BB's successor. This 1334 // shouldn't happen currently. 1335 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); 1336 // FIXME: remove the empty blocks after all the work is done? 1337} 1338 1339/// RemoveUnusedCPEntries - Remove constant pool entries whose refcounts 1340/// are zero. 1341bool ARMConstantIslands::RemoveUnusedCPEntries() { 1342 unsigned MadeChange = false; 1343 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 1344 std::vector<CPEntry> &CPEs = CPEntries[i]; 1345 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { 1346 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { 1347 RemoveDeadCPEMI(CPEs[j].CPEMI); 1348 CPEs[j].CPEMI = NULL; 1349 MadeChange = true; 1350 } 1351 } 1352 } 1353 return MadeChange; 1354} 1355 1356/// BBIsInRange - Returns true if the distance between specific MI and 1357/// specific BB can fit in MI's displacement field. 1358bool ARMConstantIslands::BBIsInRange(MachineInstr *MI,MachineBasicBlock *DestBB, 1359 unsigned MaxDisp) { 1360 unsigned PCAdj = isThumb ? 4 : 8; 1361 unsigned BrOffset = GetOffsetOf(MI) + PCAdj; 1362 unsigned DestOffset = BBOffsets[DestBB->getNumber()]; 1363 1364 DEBUG(errs() << "Branch of destination BB#" << DestBB->getNumber() 1365 << " from BB#" << MI->getParent()->getNumber() 1366 << " max delta=" << MaxDisp 1367 << " from " << GetOffsetOf(MI) << " to " << DestOffset 1368 << " offset " << int(DestOffset-BrOffset) << "\t" << *MI); 1369 1370 if (BrOffset <= DestOffset) { 1371 // Branch before the Dest. 1372 if (DestOffset-BrOffset <= MaxDisp) 1373 return true; 1374 } else { 1375 if (BrOffset-DestOffset <= MaxDisp) 1376 return true; 1377 } 1378 return false; 1379} 1380 1381/// FixUpImmediateBr - Fix up an immediate branch whose destination is too far 1382/// away to fit in its displacement field. 1383bool ARMConstantIslands::FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br) { 1384 MachineInstr *MI = Br.MI; 1385 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1386 1387 // Check to see if the DestBB is already in-range. 1388 if (BBIsInRange(MI, DestBB, Br.MaxDisp)) 1389 return false; 1390 1391 if (!Br.isCond) 1392 return FixUpUnconditionalBr(MF, Br); 1393 return FixUpConditionalBr(MF, Br); 1394} 1395 1396/// FixUpUnconditionalBr - Fix up an unconditional branch whose destination is 1397/// too far away to fit in its displacement field. If the LR register has been 1398/// spilled in the epilogue, then we can use BL to implement a far jump. 1399/// Otherwise, add an intermediate branch instruction to a branch. 1400bool 1401ARMConstantIslands::FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br) { 1402 MachineInstr *MI = Br.MI; 1403 MachineBasicBlock *MBB = MI->getParent(); 1404 if (!isThumb1) 1405 llvm_unreachable("FixUpUnconditionalBr is Thumb1 only!"); 1406 1407 // Use BL to implement far jump. 1408 Br.MaxDisp = (1 << 21) * 2; 1409 MI->setDesc(TII->get(ARM::tBfar)); 1410 BBSizes[MBB->getNumber()] += 2; 1411 AdjustBBOffsetsAfter(MBB, 2); 1412 HasFarJump = true; 1413 ++NumUBrFixed; 1414 1415 DEBUG(errs() << " Changed B to long jump " << *MI); 1416 1417 return true; 1418} 1419 1420/// FixUpConditionalBr - Fix up a conditional branch whose destination is too 1421/// far away to fit in its displacement field. It is converted to an inverse 1422/// conditional branch + an unconditional branch to the destination. 1423bool 1424ARMConstantIslands::FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br) { 1425 MachineInstr *MI = Br.MI; 1426 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1427 1428 // Add an unconditional branch to the destination and invert the branch 1429 // condition to jump over it: 1430 // blt L1 1431 // => 1432 // bge L2 1433 // b L1 1434 // L2: 1435 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm(); 1436 CC = ARMCC::getOppositeCondition(CC); 1437 unsigned CCReg = MI->getOperand(2).getReg(); 1438 1439 // If the branch is at the end of its MBB and that has a fall-through block, 1440 // direct the updated conditional branch to the fall-through block. Otherwise, 1441 // split the MBB before the next instruction. 1442 MachineBasicBlock *MBB = MI->getParent(); 1443 MachineInstr *BMI = &MBB->back(); 1444 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); 1445 1446 ++NumCBrFixed; 1447 if (BMI != MI) { 1448 if (llvm::next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) && 1449 BMI->getOpcode() == Br.UncondBr) { 1450 // Last MI in the BB is an unconditional branch. Can we simply invert the 1451 // condition and swap destinations: 1452 // beq L1 1453 // b L2 1454 // => 1455 // bne L2 1456 // b L1 1457 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); 1458 if (BBIsInRange(MI, NewDest, Br.MaxDisp)) { 1459 DEBUG(errs() << " Invert Bcc condition and swap its destination with " 1460 << *BMI); 1461 BMI->getOperand(0).setMBB(DestBB); 1462 MI->getOperand(0).setMBB(NewDest); 1463 MI->getOperand(1).setImm(CC); 1464 return true; 1465 } 1466 } 1467 } 1468 1469 if (NeedSplit) { 1470 SplitBlockBeforeInstr(MI); 1471 // No need for the branch to the next block. We're adding an unconditional 1472 // branch to the destination. 1473 int delta = TII->GetInstSizeInBytes(&MBB->back()); 1474 BBSizes[MBB->getNumber()] -= delta; 1475 MachineBasicBlock* SplitBB = llvm::next(MachineFunction::iterator(MBB)); 1476 AdjustBBOffsetsAfter(SplitBB, -delta); 1477 MBB->back().eraseFromParent(); 1478 // BBOffsets[SplitBB] is wrong temporarily, fixed below 1479 } 1480 MachineBasicBlock *NextBB = llvm::next(MachineFunction::iterator(MBB)); 1481 1482 DEBUG(errs() << " Insert B to BB#" << DestBB->getNumber() 1483 << " also invert condition and change dest. to BB#" 1484 << NextBB->getNumber() << "\n"); 1485 1486 // Insert a new conditional branch and a new unconditional branch. 1487 // Also update the ImmBranch as well as adding a new entry for the new branch. 1488 BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode())) 1489 .addMBB(NextBB).addImm(CC).addReg(CCReg); 1490 Br.MI = &MBB->back(); 1491 BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back()); 1492 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); 1493 BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back()); 1494 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1495 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1496 1497 // Remove the old conditional branch. It may or may not still be in MBB. 1498 BBSizes[MI->getParent()->getNumber()] -= TII->GetInstSizeInBytes(MI); 1499 MI->eraseFromParent(); 1500 1501 // The net size change is an addition of one unconditional branch. 1502 int delta = TII->GetInstSizeInBytes(&MBB->back()); 1503 AdjustBBOffsetsAfter(MBB, delta); 1504 return true; 1505} 1506 1507/// UndoLRSpillRestore - Remove Thumb push / pop instructions that only spills 1508/// LR / restores LR to pc. FIXME: This is done here because it's only possible 1509/// to do this if tBfar is not used. 1510bool ARMConstantIslands::UndoLRSpillRestore() { 1511 bool MadeChange = false; 1512 for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) { 1513 MachineInstr *MI = PushPopMIs[i]; 1514 // First two operands are predicates. 1515 if (MI->getOpcode() == ARM::tPOP_RET && 1516 MI->getOperand(2).getReg() == ARM::PC && 1517 MI->getNumExplicitOperands() == 3) { 1518 BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET)); 1519 MI->eraseFromParent(); 1520 MadeChange = true; 1521 } 1522 } 1523 return MadeChange; 1524} 1525 1526bool ARMConstantIslands::OptimizeThumb2Instructions(MachineFunction &MF) { 1527 bool MadeChange = false; 1528 1529 // Shrink ADR and LDR from constantpool. 1530 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 1531 CPUser &U = CPUsers[i]; 1532 unsigned Opcode = U.MI->getOpcode(); 1533 unsigned NewOpc = 0; 1534 unsigned Scale = 1; 1535 unsigned Bits = 0; 1536 switch (Opcode) { 1537 default: break; 1538 case ARM::t2LEApcrel: 1539 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1540 NewOpc = ARM::tLEApcrel; 1541 Bits = 8; 1542 Scale = 4; 1543 } 1544 break; 1545 case ARM::t2LDRpci: 1546 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1547 NewOpc = ARM::tLDRpci; 1548 Bits = 8; 1549 Scale = 4; 1550 } 1551 break; 1552 } 1553 1554 if (!NewOpc) 1555 continue; 1556 1557 unsigned UserOffset = GetOffsetOf(U.MI) + 4; 1558 unsigned MaxOffs = ((1 << Bits) - 1) * Scale; 1559 // FIXME: Check if offset is multiple of scale if scale is not 4. 1560 if (CPEIsInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) { 1561 U.MI->setDesc(TII->get(NewOpc)); 1562 MachineBasicBlock *MBB = U.MI->getParent(); 1563 BBSizes[MBB->getNumber()] -= 2; 1564 AdjustBBOffsetsAfter(MBB, -2); 1565 ++NumT2CPShrunk; 1566 MadeChange = true; 1567 } 1568 } 1569 1570 MadeChange |= OptimizeThumb2Branches(MF); 1571 MadeChange |= OptimizeThumb2JumpTables(MF); 1572 return MadeChange; 1573} 1574 1575bool ARMConstantIslands::OptimizeThumb2Branches(MachineFunction &MF) { 1576 bool MadeChange = false; 1577 1578 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) { 1579 ImmBranch &Br = ImmBranches[i]; 1580 unsigned Opcode = Br.MI->getOpcode(); 1581 unsigned NewOpc = 0; 1582 unsigned Scale = 1; 1583 unsigned Bits = 0; 1584 switch (Opcode) { 1585 default: break; 1586 case ARM::t2B: 1587 NewOpc = ARM::tB; 1588 Bits = 11; 1589 Scale = 2; 1590 break; 1591 case ARM::t2Bcc: { 1592 NewOpc = ARM::tBcc; 1593 Bits = 8; 1594 Scale = 2; 1595 break; 1596 } 1597 } 1598 if (NewOpc) { 1599 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 1600 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1601 if (BBIsInRange(Br.MI, DestBB, MaxOffs)) { 1602 Br.MI->setDesc(TII->get(NewOpc)); 1603 MachineBasicBlock *MBB = Br.MI->getParent(); 1604 BBSizes[MBB->getNumber()] -= 2; 1605 AdjustBBOffsetsAfter(MBB, -2); 1606 ++NumT2BrShrunk; 1607 MadeChange = true; 1608 } 1609 } 1610 1611 Opcode = Br.MI->getOpcode(); 1612 if (Opcode != ARM::tBcc) 1613 continue; 1614 1615 NewOpc = 0; 1616 unsigned PredReg = 0; 1617 ARMCC::CondCodes Pred = llvm::getInstrPredicate(Br.MI, PredReg); 1618 if (Pred == ARMCC::EQ) 1619 NewOpc = ARM::tCBZ; 1620 else if (Pred == ARMCC::NE) 1621 NewOpc = ARM::tCBNZ; 1622 if (!NewOpc) 1623 continue; 1624 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1625 // Check if the distance is within 126. Subtract starting offset by 2 1626 // because the cmp will be eliminated. 1627 unsigned BrOffset = GetOffsetOf(Br.MI) + 4 - 2; 1628 unsigned DestOffset = BBOffsets[DestBB->getNumber()]; 1629 if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) { 1630 MachineBasicBlock::iterator CmpMI = Br.MI; --CmpMI; 1631 if (CmpMI->getOpcode() == ARM::tCMPzi8) { 1632 unsigned Reg = CmpMI->getOperand(0).getReg(); 1633 Pred = llvm::getInstrPredicate(CmpMI, PredReg); 1634 if (Pred == ARMCC::AL && 1635 CmpMI->getOperand(1).getImm() == 0 && 1636 isARMLowRegister(Reg)) { 1637 MachineBasicBlock *MBB = Br.MI->getParent(); 1638 MachineInstr *NewBR = 1639 BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc)) 1640 .addReg(Reg).addMBB(DestBB, Br.MI->getOperand(0).getTargetFlags()); 1641 CmpMI->eraseFromParent(); 1642 Br.MI->eraseFromParent(); 1643 Br.MI = NewBR; 1644 BBSizes[MBB->getNumber()] -= 2; 1645 AdjustBBOffsetsAfter(MBB, -2); 1646 ++NumCBZ; 1647 MadeChange = true; 1648 } 1649 } 1650 } 1651 } 1652 1653 return MadeChange; 1654} 1655 1656/// OptimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller 1657/// jumptables when it's possible. 1658bool ARMConstantIslands::OptimizeThumb2JumpTables(MachineFunction &MF) { 1659 bool MadeChange = false; 1660 1661 // FIXME: After the tables are shrunk, can we get rid some of the 1662 // constantpool tables? 1663 MachineJumpTableInfo *MJTI = MF.getJumpTableInfo(); 1664 if (MJTI == 0) return false; 1665 1666 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1667 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 1668 MachineInstr *MI = T2JumpTables[i]; 1669 const TargetInstrDesc &TID = MI->getDesc(); 1670 unsigned NumOps = TID.getNumOperands(); 1671 unsigned JTOpIdx = NumOps - (TID.isPredicable() ? 3 : 2); 1672 MachineOperand JTOP = MI->getOperand(JTOpIdx); 1673 unsigned JTI = JTOP.getIndex(); 1674 assert(JTI < JT.size()); 1675 1676 bool ByteOk = true; 1677 bool HalfWordOk = true; 1678 unsigned JTOffset = GetOffsetOf(MI) + 4; 1679 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1680 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 1681 MachineBasicBlock *MBB = JTBBs[j]; 1682 unsigned DstOffset = BBOffsets[MBB->getNumber()]; 1683 // Negative offset is not ok. FIXME: We should change BB layout to make 1684 // sure all the branches are forward. 1685 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2) 1686 ByteOk = false; 1687 unsigned TBHLimit = ((1<<16)-1)*2; 1688 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit) 1689 HalfWordOk = false; 1690 if (!ByteOk && !HalfWordOk) 1691 break; 1692 } 1693 1694 if (ByteOk || HalfWordOk) { 1695 MachineBasicBlock *MBB = MI->getParent(); 1696 unsigned BaseReg = MI->getOperand(0).getReg(); 1697 bool BaseRegKill = MI->getOperand(0).isKill(); 1698 if (!BaseRegKill) 1699 continue; 1700 unsigned IdxReg = MI->getOperand(1).getReg(); 1701 bool IdxRegKill = MI->getOperand(1).isKill(); 1702 1703 // Scan backwards to find the instruction that defines the base 1704 // register. Due to post-RA scheduling, we can't count on it 1705 // immediately preceding the branch instruction. 1706 MachineBasicBlock::iterator PrevI = MI; 1707 MachineBasicBlock::iterator B = MBB->begin(); 1708 while (PrevI != B && !PrevI->definesRegister(BaseReg)) 1709 --PrevI; 1710 1711 // If for some reason we didn't find it, we can't do anything, so 1712 // just skip this one. 1713 if (!PrevI->definesRegister(BaseReg)) 1714 continue; 1715 1716 MachineInstr *AddrMI = PrevI; 1717 bool OptOk = true; 1718 // Examine the instruction that calculates the jumptable entry address. 1719 // Make sure it only defines the base register and kills any uses 1720 // other than the index register. 1721 for (unsigned k = 0, eee = AddrMI->getNumOperands(); k != eee; ++k) { 1722 const MachineOperand &MO = AddrMI->getOperand(k); 1723 if (!MO.isReg() || !MO.getReg()) 1724 continue; 1725 if (MO.isDef() && MO.getReg() != BaseReg) { 1726 OptOk = false; 1727 break; 1728 } 1729 if (MO.isUse() && !MO.isKill() && MO.getReg() != IdxReg) { 1730 OptOk = false; 1731 break; 1732 } 1733 } 1734 if (!OptOk) 1735 continue; 1736 1737 // Now scan back again to find the tLEApcrel or t2LEApcrelJT instruction 1738 // that gave us the initial base register definition. 1739 for (--PrevI; PrevI != B && !PrevI->definesRegister(BaseReg); --PrevI) 1740 ; 1741 1742 // The instruction should be a tLEApcrel or t2LEApcrelJT; we want 1743 // to delete it as well. 1744 MachineInstr *LeaMI = PrevI; 1745 if ((LeaMI->getOpcode() != ARM::tLEApcrelJT && 1746 LeaMI->getOpcode() != ARM::t2LEApcrelJT) || 1747 LeaMI->getOperand(0).getReg() != BaseReg) 1748 OptOk = false; 1749 1750 if (!OptOk) 1751 continue; 1752 1753 unsigned Opc = ByteOk ? ARM::t2TBB : ARM::t2TBH; 1754 MachineInstr *NewJTMI = BuildMI(MBB, MI->getDebugLoc(), TII->get(Opc)) 1755 .addReg(IdxReg, getKillRegState(IdxRegKill)) 1756 .addJumpTableIndex(JTI, JTOP.getTargetFlags()) 1757 .addImm(MI->getOperand(JTOpIdx+1).getImm()); 1758 // FIXME: Insert an "ALIGN" instruction to ensure the next instruction 1759 // is 2-byte aligned. For now, asm printer will fix it up. 1760 unsigned NewSize = TII->GetInstSizeInBytes(NewJTMI); 1761 unsigned OrigSize = TII->GetInstSizeInBytes(AddrMI); 1762 OrigSize += TII->GetInstSizeInBytes(LeaMI); 1763 OrigSize += TII->GetInstSizeInBytes(MI); 1764 1765 AddrMI->eraseFromParent(); 1766 LeaMI->eraseFromParent(); 1767 MI->eraseFromParent(); 1768 1769 int delta = OrigSize - NewSize; 1770 BBSizes[MBB->getNumber()] -= delta; 1771 AdjustBBOffsetsAfter(MBB, -delta); 1772 1773 ++NumTBs; 1774 MadeChange = true; 1775 } 1776 } 1777 1778 return MadeChange; 1779} 1780 1781/// ReorderThumb2JumpTables - Adjust the function's block layout to ensure that 1782/// jump tables always branch forwards, since that's what tbb and tbh need. 1783bool ARMConstantIslands::ReorderThumb2JumpTables(MachineFunction &MF) { 1784 bool MadeChange = false; 1785 1786 MachineJumpTableInfo *MJTI = MF.getJumpTableInfo(); 1787 if (MJTI == 0) return false; 1788 1789 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1790 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 1791 MachineInstr *MI = T2JumpTables[i]; 1792 const TargetInstrDesc &TID = MI->getDesc(); 1793 unsigned NumOps = TID.getNumOperands(); 1794 unsigned JTOpIdx = NumOps - (TID.isPredicable() ? 3 : 2); 1795 MachineOperand JTOP = MI->getOperand(JTOpIdx); 1796 unsigned JTI = JTOP.getIndex(); 1797 assert(JTI < JT.size()); 1798 1799 // We prefer if target blocks for the jump table come after the jump 1800 // instruction so we can use TB[BH]. Loop through the target blocks 1801 // and try to adjust them such that that's true. 1802 int JTNumber = MI->getParent()->getNumber(); 1803 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1804 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 1805 MachineBasicBlock *MBB = JTBBs[j]; 1806 int DTNumber = MBB->getNumber(); 1807 1808 if (DTNumber < JTNumber) { 1809 // The destination precedes the switch. Try to move the block forward 1810 // so we have a positive offset. 1811 MachineBasicBlock *NewBB = 1812 AdjustJTTargetBlockForward(MBB, MI->getParent()); 1813 if (NewBB) 1814 MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB); 1815 MadeChange = true; 1816 } 1817 } 1818 } 1819 1820 return MadeChange; 1821} 1822 1823MachineBasicBlock *ARMConstantIslands:: 1824AdjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) 1825{ 1826 MachineFunction &MF = *BB->getParent(); 1827 1828 // If the destination block is terminated by an unconditional branch, 1829 // try to move it; otherwise, create a new block following the jump 1830 // table that branches back to the actual target. This is a very simple 1831 // heuristic. FIXME: We can definitely improve it. 1832 MachineBasicBlock *TBB = 0, *FBB = 0; 1833 SmallVector<MachineOperand, 4> Cond; 1834 SmallVector<MachineOperand, 4> CondPrior; 1835 MachineFunction::iterator BBi = BB; 1836 MachineFunction::iterator OldPrior = prior(BBi); 1837 1838 // If the block terminator isn't analyzable, don't try to move the block 1839 bool B = TII->AnalyzeBranch(*BB, TBB, FBB, Cond); 1840 1841 // If the block ends in an unconditional branch, move it. The prior block 1842 // has to have an analyzable terminator for us to move this one. Be paranoid 1843 // and make sure we're not trying to move the entry block of the function. 1844 if (!B && Cond.empty() && BB != MF.begin() && 1845 !TII->AnalyzeBranch(*OldPrior, TBB, FBB, CondPrior)) { 1846 BB->moveAfter(JTBB); 1847 OldPrior->updateTerminator(); 1848 BB->updateTerminator(); 1849 // Update numbering to account for the block being moved. 1850 MF.RenumberBlocks(); 1851 ++NumJTMoved; 1852 return NULL; 1853 } 1854 1855 // Create a new MBB for the code after the jump BB. 1856 MachineBasicBlock *NewBB = 1857 MF.CreateMachineBasicBlock(JTBB->getBasicBlock()); 1858 MachineFunction::iterator MBBI = JTBB; ++MBBI; 1859 MF.insert(MBBI, NewBB); 1860 1861 // Add an unconditional branch from NewBB to BB. 1862 // There doesn't seem to be meaningful DebugInfo available; this doesn't 1863 // correspond directly to anything in the source. 1864 assert (isThumb2 && "Adjusting for TB[BH] but not in Thumb2?"); 1865 BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)).addMBB(BB); 1866 1867 // Update internal data structures to account for the newly inserted MBB. 1868 MF.RenumberBlocks(NewBB); 1869 1870 // Update the CFG. 1871 NewBB->addSuccessor(BB); 1872 JTBB->removeSuccessor(BB); 1873 JTBB->addSuccessor(NewBB); 1874 1875 ++NumJTInserted; 1876 return NewBB; 1877} 1878