ARMConstantIslandPass.cpp revision eb6779c5b98383e33542207f062102e79263df16
1//===-- ARMConstantIslandPass.cpp - ARM constant islands --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains a pass that splits the constant pool up into 'islands'
11// which are scattered through-out the function.  This is required due to the
12// limited pc-relative displacements that ARM has.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "arm-cp-islands"
17#include "ARM.h"
18#include "ARMAddressingModes.h"
19#include "ARMMachineFunctionInfo.h"
20#include "ARMInstrInfo.h"
21#include "Thumb2InstrInfo.h"
22#include "llvm/CodeGen/MachineConstantPool.h"
23#include "llvm/CodeGen/MachineFunctionPass.h"
24#include "llvm/CodeGen/MachineJumpTableInfo.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/raw_ostream.h"
30#include "llvm/ADT/SmallSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/Support/CommandLine.h"
35#include <algorithm>
36using namespace llvm;
37
38STATISTIC(NumCPEs,       "Number of constpool entries");
39STATISTIC(NumSplit,      "Number of uncond branches inserted");
40STATISTIC(NumCBrFixed,   "Number of cond branches fixed");
41STATISTIC(NumUBrFixed,   "Number of uncond branches fixed");
42STATISTIC(NumTBs,        "Number of table branches generated");
43STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk");
44STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk");
45STATISTIC(NumCBZ,        "Number of CBZ / CBNZ formed");
46STATISTIC(NumJTMoved,    "Number of jump table destination blocks moved");
47STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted");
48
49
50static cl::opt<bool>
51AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true),
52          cl::desc("Adjust basic block layout to better use TB[BH]"));
53
54namespace {
55  /// ARMConstantIslands - Due to limited PC-relative displacements, ARM
56  /// requires constant pool entries to be scattered among the instructions
57  /// inside a function.  To do this, it completely ignores the normal LLVM
58  /// constant pool; instead, it places constants wherever it feels like with
59  /// special instructions.
60  ///
61  /// The terminology used in this pass includes:
62  ///   Islands - Clumps of constants placed in the function.
63  ///   Water   - Potential places where an island could be formed.
64  ///   CPE     - A constant pool entry that has been placed somewhere, which
65  ///             tracks a list of users.
66  class ARMConstantIslands : public MachineFunctionPass {
67    /// BBSizes - The size of each MachineBasicBlock in bytes of code, indexed
68    /// by MBB Number.  The two-byte pads required for Thumb alignment are
69    /// counted as part of the following block (i.e., the offset and size for
70    /// a padded block will both be ==2 mod 4).
71    std::vector<unsigned> BBSizes;
72
73    /// BBOffsets - the offset of each MBB in bytes, starting from 0.
74    /// The two-byte pads required for Thumb alignment are counted as part of
75    /// the following block.
76    std::vector<unsigned> BBOffsets;
77
78    /// WaterList - A sorted list of basic blocks where islands could be placed
79    /// (i.e. blocks that don't fall through to the following block, due
80    /// to a return, unreachable, or unconditional branch).
81    std::vector<MachineBasicBlock*> WaterList;
82
83    /// NewWaterList - The subset of WaterList that was created since the
84    /// previous iteration by inserting unconditional branches.
85    SmallSet<MachineBasicBlock*, 4> NewWaterList;
86
87    typedef std::vector<MachineBasicBlock*>::iterator water_iterator;
88
89    /// CPUser - One user of a constant pool, keeping the machine instruction
90    /// pointer, the constant pool being referenced, and the max displacement
91    /// allowed from the instruction to the CP.  The HighWaterMark records the
92    /// highest basic block where a new CPEntry can be placed.  To ensure this
93    /// pass terminates, the CP entries are initially placed at the end of the
94    /// function and then move monotonically to lower addresses.  The
95    /// exception to this rule is when the current CP entry for a particular
96    /// CPUser is out of range, but there is another CP entry for the same
97    /// constant value in range.  We want to use the existing in-range CP
98    /// entry, but if it later moves out of range, the search for new water
99    /// should resume where it left off.  The HighWaterMark is used to record
100    /// that point.
101    struct CPUser {
102      MachineInstr *MI;
103      MachineInstr *CPEMI;
104      MachineBasicBlock *HighWaterMark;
105      unsigned MaxDisp;
106      bool NegOk;
107      bool IsSoImm;
108      CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
109             bool neg, bool soimm)
110        : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) {
111        HighWaterMark = CPEMI->getParent();
112      }
113    };
114
115    /// CPUsers - Keep track of all of the machine instructions that use various
116    /// constant pools and their max displacement.
117    std::vector<CPUser> CPUsers;
118
119    /// CPEntry - One per constant pool entry, keeping the machine instruction
120    /// pointer, the constpool index, and the number of CPUser's which
121    /// reference this entry.
122    struct CPEntry {
123      MachineInstr *CPEMI;
124      unsigned CPI;
125      unsigned RefCount;
126      CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
127        : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
128    };
129
130    /// CPEntries - Keep track of all of the constant pool entry machine
131    /// instructions. For each original constpool index (i.e. those that
132    /// existed upon entry to this pass), it keeps a vector of entries.
133    /// Original elements are cloned as we go along; the clones are
134    /// put in the vector of the original element, but have distinct CPIs.
135    std::vector<std::vector<CPEntry> > CPEntries;
136
137    /// ImmBranch - One per immediate branch, keeping the machine instruction
138    /// pointer, conditional or unconditional, the max displacement,
139    /// and (if isCond is true) the corresponding unconditional branch
140    /// opcode.
141    struct ImmBranch {
142      MachineInstr *MI;
143      unsigned MaxDisp : 31;
144      bool isCond : 1;
145      int UncondBr;
146      ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
147        : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
148    };
149
150    /// ImmBranches - Keep track of all the immediate branch instructions.
151    ///
152    std::vector<ImmBranch> ImmBranches;
153
154    /// PushPopMIs - Keep track of all the Thumb push / pop instructions.
155    ///
156    SmallVector<MachineInstr*, 4> PushPopMIs;
157
158    /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions.
159    SmallVector<MachineInstr*, 4> T2JumpTables;
160
161    /// HasFarJump - True if any far jump instruction has been emitted during
162    /// the branch fix up pass.
163    bool HasFarJump;
164
165    /// HasInlineAsm - True if the function contains inline assembly.
166    bool HasInlineAsm;
167
168    const ARMInstrInfo *TII;
169    const ARMSubtarget *STI;
170    ARMFunctionInfo *AFI;
171    bool isThumb;
172    bool isThumb1;
173    bool isThumb2;
174  public:
175    static char ID;
176    ARMConstantIslands() : MachineFunctionPass(ID) {}
177
178    virtual bool runOnMachineFunction(MachineFunction &MF);
179
180    virtual const char *getPassName() const {
181      return "ARM constant island placement and branch shortening pass";
182    }
183
184  private:
185    void DoInitialPlacement(MachineFunction &MF,
186                            std::vector<MachineInstr*> &CPEMIs);
187    CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
188    void JumpTableFunctionScan(MachineFunction &MF);
189    void InitialFunctionScan(MachineFunction &MF,
190                             const std::vector<MachineInstr*> &CPEMIs);
191    MachineBasicBlock *SplitBlockBeforeInstr(MachineInstr *MI);
192    void UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB);
193    void AdjustBBOffsetsAfter(MachineBasicBlock *BB, int delta);
194    bool DecrementOldEntry(unsigned CPI, MachineInstr* CPEMI);
195    int LookForExistingCPEntry(CPUser& U, unsigned UserOffset);
196    bool LookForWater(CPUser&U, unsigned UserOffset, water_iterator &WaterIter);
197    void CreateNewWater(unsigned CPUserIndex, unsigned UserOffset,
198                        MachineBasicBlock *&NewMBB);
199    bool HandleConstantPoolUser(MachineFunction &MF, unsigned CPUserIndex);
200    void RemoveDeadCPEMI(MachineInstr *CPEMI);
201    bool RemoveUnusedCPEntries();
202    bool CPEIsInRange(MachineInstr *MI, unsigned UserOffset,
203                      MachineInstr *CPEMI, unsigned Disp, bool NegOk,
204                      bool DoDump = false);
205    bool WaterIsInRange(unsigned UserOffset, MachineBasicBlock *Water,
206                        CPUser &U);
207    bool OffsetIsInRange(unsigned UserOffset, unsigned TrialOffset,
208                         unsigned Disp, bool NegativeOK, bool IsSoImm = false);
209    bool BBIsInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
210    bool FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br);
211    bool FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br);
212    bool FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br);
213    bool UndoLRSpillRestore();
214    bool OptimizeThumb2Instructions(MachineFunction &MF);
215    bool OptimizeThumb2Branches(MachineFunction &MF);
216    bool ReorderThumb2JumpTables(MachineFunction &MF);
217    bool OptimizeThumb2JumpTables(MachineFunction &MF);
218    MachineBasicBlock *AdjustJTTargetBlockForward(MachineBasicBlock *BB,
219                                                  MachineBasicBlock *JTBB);
220
221    unsigned GetOffsetOf(MachineInstr *MI) const;
222    void dumpBBs();
223    void verify(MachineFunction &MF);
224  };
225  char ARMConstantIslands::ID = 0;
226}
227
228/// verify - check BBOffsets, BBSizes, alignment of islands
229void ARMConstantIslands::verify(MachineFunction &MF) {
230  assert(BBOffsets.size() == BBSizes.size());
231  for (unsigned i = 1, e = BBOffsets.size(); i != e; ++i)
232    assert(BBOffsets[i-1]+BBSizes[i-1] == BBOffsets[i]);
233  if (!isThumb)
234    return;
235#ifndef NDEBUG
236  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
237       MBBI != E; ++MBBI) {
238    MachineBasicBlock *MBB = MBBI;
239    if (!MBB->empty() &&
240        MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) {
241      unsigned MBBId = MBB->getNumber();
242      assert(HasInlineAsm ||
243             (BBOffsets[MBBId]%4 == 0 && BBSizes[MBBId]%4 == 0) ||
244             (BBOffsets[MBBId]%4 != 0 && BBSizes[MBBId]%4 != 0));
245    }
246  }
247  for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
248    CPUser &U = CPUsers[i];
249    unsigned UserOffset = GetOffsetOf(U.MI) + (isThumb ? 4 : 8);
250    unsigned CPEOffset  = GetOffsetOf(U.CPEMI);
251    unsigned Disp = UserOffset < CPEOffset ? CPEOffset - UserOffset :
252      UserOffset - CPEOffset;
253    assert(Disp <= U.MaxDisp || "Constant pool entry out of range!");
254  }
255#endif
256}
257
258/// print block size and offset information - debugging
259void ARMConstantIslands::dumpBBs() {
260  for (unsigned J = 0, E = BBOffsets.size(); J !=E; ++J) {
261    DEBUG(errs() << "block " << J << " offset " << BBOffsets[J]
262                 << " size " << BBSizes[J] << "\n");
263  }
264}
265
266/// createARMConstantIslandPass - returns an instance of the constpool
267/// island pass.
268FunctionPass *llvm::createARMConstantIslandPass() {
269  return new ARMConstantIslands();
270}
271
272bool ARMConstantIslands::runOnMachineFunction(MachineFunction &MF) {
273  MachineConstantPool &MCP = *MF.getConstantPool();
274
275  TII = (const ARMInstrInfo*)MF.getTarget().getInstrInfo();
276  AFI = MF.getInfo<ARMFunctionInfo>();
277  STI = &MF.getTarget().getSubtarget<ARMSubtarget>();
278
279  isThumb = AFI->isThumbFunction();
280  isThumb1 = AFI->isThumb1OnlyFunction();
281  isThumb2 = AFI->isThumb2Function();
282
283  HasFarJump = false;
284  HasInlineAsm = false;
285
286  // Renumber all of the machine basic blocks in the function, guaranteeing that
287  // the numbers agree with the position of the block in the function.
288  MF.RenumberBlocks();
289
290  // Try to reorder and otherwise adjust the block layout to make good use
291  // of the TB[BH] instructions.
292  bool MadeChange = false;
293  if (isThumb2 && AdjustJumpTableBlocks) {
294    JumpTableFunctionScan(MF);
295    MadeChange |= ReorderThumb2JumpTables(MF);
296    // Data is out of date, so clear it. It'll be re-computed later.
297    T2JumpTables.clear();
298    // Blocks may have shifted around. Keep the numbering up to date.
299    MF.RenumberBlocks();
300  }
301
302  // Thumb1 functions containing constant pools get 4-byte alignment.
303  // This is so we can keep exact track of where the alignment padding goes.
304
305  // ARM and Thumb2 functions need to be 4-byte aligned.
306  if (!isThumb1)
307    MF.EnsureAlignment(2);  // 2 = log2(4)
308
309  // Perform the initial placement of the constant pool entries.  To start with,
310  // we put them all at the end of the function.
311  std::vector<MachineInstr*> CPEMIs;
312  if (!MCP.isEmpty()) {
313    DoInitialPlacement(MF, CPEMIs);
314    if (isThumb1)
315      MF.EnsureAlignment(2);  // 2 = log2(4)
316  }
317
318  /// The next UID to take is the first unused one.
319  AFI->initConstPoolEntryUId(CPEMIs.size());
320
321  // Do the initial scan of the function, building up information about the
322  // sizes of each block, the location of all the water, and finding all of the
323  // constant pool users.
324  InitialFunctionScan(MF, CPEMIs);
325  CPEMIs.clear();
326  DEBUG(dumpBBs());
327
328
329  /// Remove dead constant pool entries.
330  RemoveUnusedCPEntries();
331
332  // Iteratively place constant pool entries and fix up branches until there
333  // is no change.
334  unsigned NoCPIters = 0, NoBRIters = 0;
335  while (true) {
336    bool CPChange = false;
337    for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
338      CPChange |= HandleConstantPoolUser(MF, i);
339    if (CPChange && ++NoCPIters > 30)
340      llvm_unreachable("Constant Island pass failed to converge!");
341    DEBUG(dumpBBs());
342
343    // Clear NewWaterList now.  If we split a block for branches, it should
344    // appear as "new water" for the next iteration of constant pool placement.
345    NewWaterList.clear();
346
347    bool BRChange = false;
348    for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
349      BRChange |= FixUpImmediateBr(MF, ImmBranches[i]);
350    if (BRChange && ++NoBRIters > 30)
351      llvm_unreachable("Branch Fix Up pass failed to converge!");
352    DEBUG(dumpBBs());
353
354    if (!CPChange && !BRChange)
355      break;
356    MadeChange = true;
357  }
358
359  // Shrink 32-bit Thumb2 branch, load, and store instructions.
360  if (isThumb2 && !STI->prefers32BitThumb())
361    MadeChange |= OptimizeThumb2Instructions(MF);
362
363  // After a while, this might be made debug-only, but it is not expensive.
364  verify(MF);
365
366  // If LR has been forced spilled and no far jump (i.e. BL) has been issued,
367  // undo the spill / restore of LR if possible.
368  if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump())
369    MadeChange |= UndoLRSpillRestore();
370
371  DEBUG(errs() << '\n'; dumpBBs());
372
373  BBSizes.clear();
374  BBOffsets.clear();
375  WaterList.clear();
376  CPUsers.clear();
377  CPEntries.clear();
378  ImmBranches.clear();
379  PushPopMIs.clear();
380  T2JumpTables.clear();
381
382  return MadeChange;
383}
384
385/// DoInitialPlacement - Perform the initial placement of the constant pool
386/// entries.  To start with, we put them all at the end of the function.
387void ARMConstantIslands::DoInitialPlacement(MachineFunction &MF,
388                                        std::vector<MachineInstr*> &CPEMIs) {
389  // Create the basic block to hold the CPE's.
390  MachineBasicBlock *BB = MF.CreateMachineBasicBlock();
391  MF.push_back(BB);
392
393  // Add all of the constants from the constant pool to the end block, use an
394  // identity mapping of CPI's to CPE's.
395  const std::vector<MachineConstantPoolEntry> &CPs =
396    MF.getConstantPool()->getConstants();
397
398  const TargetData &TD = *MF.getTarget().getTargetData();
399  for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
400    unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
401    // Verify that all constant pool entries are a multiple of 4 bytes.  If not,
402    // we would have to pad them out or something so that instructions stay
403    // aligned.
404    assert((Size & 3) == 0 && "CP Entry not multiple of 4 bytes!");
405    MachineInstr *CPEMI =
406      BuildMI(BB, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
407        .addImm(i).addConstantPoolIndex(i).addImm(Size);
408    CPEMIs.push_back(CPEMI);
409
410    // Add a new CPEntry, but no corresponding CPUser yet.
411    std::vector<CPEntry> CPEs;
412    CPEs.push_back(CPEntry(CPEMI, i));
413    CPEntries.push_back(CPEs);
414    ++NumCPEs;
415    DEBUG(errs() << "Moved CPI#" << i << " to end of function as #" << i
416                 << "\n");
417  }
418}
419
420/// BBHasFallthrough - Return true if the specified basic block can fallthrough
421/// into the block immediately after it.
422static bool BBHasFallthrough(MachineBasicBlock *MBB) {
423  // Get the next machine basic block in the function.
424  MachineFunction::iterator MBBI = MBB;
425  // Can't fall off end of function.
426  if (llvm::next(MBBI) == MBB->getParent()->end())
427    return false;
428
429  MachineBasicBlock *NextBB = llvm::next(MBBI);
430  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
431       E = MBB->succ_end(); I != E; ++I)
432    if (*I == NextBB)
433      return true;
434
435  return false;
436}
437
438/// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
439/// look up the corresponding CPEntry.
440ARMConstantIslands::CPEntry
441*ARMConstantIslands::findConstPoolEntry(unsigned CPI,
442                                        const MachineInstr *CPEMI) {
443  std::vector<CPEntry> &CPEs = CPEntries[CPI];
444  // Number of entries per constpool index should be small, just do a
445  // linear search.
446  for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
447    if (CPEs[i].CPEMI == CPEMI)
448      return &CPEs[i];
449  }
450  return NULL;
451}
452
453/// JumpTableFunctionScan - Do a scan of the function, building up
454/// information about the sizes of each block and the locations of all
455/// the jump tables.
456void ARMConstantIslands::JumpTableFunctionScan(MachineFunction &MF) {
457  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
458       MBBI != E; ++MBBI) {
459    MachineBasicBlock &MBB = *MBBI;
460
461    for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
462         I != E; ++I)
463      if (I->getDesc().isBranch() && I->getOpcode() == ARM::t2BR_JT)
464        T2JumpTables.push_back(I);
465  }
466}
467
468/// InitialFunctionScan - Do the initial scan of the function, building up
469/// information about the sizes of each block, the location of all the water,
470/// and finding all of the constant pool users.
471void ARMConstantIslands::InitialFunctionScan(MachineFunction &MF,
472                                 const std::vector<MachineInstr*> &CPEMIs) {
473  // First thing, see if the function has any inline assembly in it. If so,
474  // we have to be conservative about alignment assumptions, as we don't
475  // know for sure the size of any instructions in the inline assembly.
476  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
477       MBBI != E; ++MBBI) {
478    MachineBasicBlock &MBB = *MBBI;
479    for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
480         I != E; ++I)
481      if (I->getOpcode() == ARM::INLINEASM)
482        HasInlineAsm = true;
483  }
484
485  // Now go back through the instructions and build up our data structures
486  unsigned Offset = 0;
487  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
488       MBBI != E; ++MBBI) {
489    MachineBasicBlock &MBB = *MBBI;
490
491    // If this block doesn't fall through into the next MBB, then this is
492    // 'water' that a constant pool island could be placed.
493    if (!BBHasFallthrough(&MBB))
494      WaterList.push_back(&MBB);
495
496    unsigned MBBSize = 0;
497    for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
498         I != E; ++I) {
499      if (I->isDebugValue())
500        continue;
501      // Add instruction size to MBBSize.
502      MBBSize += TII->GetInstSizeInBytes(I);
503
504      int Opc = I->getOpcode();
505      if (I->getDesc().isBranch()) {
506        bool isCond = false;
507        unsigned Bits = 0;
508        unsigned Scale = 1;
509        int UOpc = Opc;
510        switch (Opc) {
511        default:
512          continue;  // Ignore other JT branches
513        case ARM::tBR_JTr:
514          // A Thumb1 table jump may involve padding; for the offsets to
515          // be right, functions containing these must be 4-byte aligned.
516          // tBR_JTr expands to a mov pc followed by .align 2 and then the jump
517          // table entries. So this code checks whether offset of tBR_JTr + 2
518          // is aligned.  That is held in Offset+MBBSize, which already has
519          // 2 added in for the size of the mov pc instruction.
520          MF.EnsureAlignment(2U);
521          if ((Offset+MBBSize)%4 != 0 || HasInlineAsm)
522            // FIXME: Add a pseudo ALIGN instruction instead.
523            MBBSize += 2;           // padding
524          continue;   // Does not get an entry in ImmBranches
525        case ARM::t2BR_JT:
526          T2JumpTables.push_back(I);
527          continue;   // Does not get an entry in ImmBranches
528        case ARM::Bcc:
529          isCond = true;
530          UOpc = ARM::B;
531          // Fallthrough
532        case ARM::B:
533          Bits = 24;
534          Scale = 4;
535          break;
536        case ARM::tBcc:
537          isCond = true;
538          UOpc = ARM::tB;
539          Bits = 8;
540          Scale = 2;
541          break;
542        case ARM::tB:
543          Bits = 11;
544          Scale = 2;
545          break;
546        case ARM::t2Bcc:
547          isCond = true;
548          UOpc = ARM::t2B;
549          Bits = 20;
550          Scale = 2;
551          break;
552        case ARM::t2B:
553          Bits = 24;
554          Scale = 2;
555          break;
556        }
557
558        // Record this immediate branch.
559        unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
560        ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc));
561      }
562
563      if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET)
564        PushPopMIs.push_back(I);
565
566      if (Opc == ARM::CONSTPOOL_ENTRY)
567        continue;
568
569      // Scan the instructions for constant pool operands.
570      for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
571        if (I->getOperand(op).isCPI()) {
572          // We found one.  The addressing mode tells us the max displacement
573          // from the PC that this instruction permits.
574
575          // Basic size info comes from the TSFlags field.
576          unsigned Bits = 0;
577          unsigned Scale = 1;
578          bool NegOk = false;
579          bool IsSoImm = false;
580
581          switch (Opc) {
582          default:
583            llvm_unreachable("Unknown addressing mode for CP reference!");
584            break;
585
586          // Taking the address of a CP entry.
587          case ARM::LEApcrel:
588            // This takes a SoImm, which is 8 bit immediate rotated. We'll
589            // pretend the maximum offset is 255 * 4. Since each instruction
590            // 4 byte wide, this is always correct. We'll check for other
591            // displacements that fits in a SoImm as well.
592            Bits = 8;
593            Scale = 4;
594            NegOk = true;
595            IsSoImm = true;
596            break;
597          case ARM::t2LEApcrel:
598            Bits = 12;
599            NegOk = true;
600            break;
601          case ARM::tLEApcrel:
602            Bits = 8;
603            Scale = 4;
604            break;
605
606          case ARM::LDRi12:
607          case ARM::LDRcp:
608          case ARM::t2LDRi12:
609          case ARM::t2LDRHi12:
610          case ARM::t2LDRBi12:
611          case ARM::t2LDRSHi12:
612          case ARM::t2LDRSBi12:
613            Bits = 12;  // +-offset_12
614            NegOk = true;
615            break;
616
617          case ARM::tLDRpci:
618          case ARM::tLDRcp:
619            Bits = 8;
620            Scale = 4;  // +(offset_8*4)
621            break;
622
623          case ARM::VLDRD:
624          case ARM::VLDRS:
625            Bits = 8;
626            Scale = 4;  // +-(offset_8*4)
627            NegOk = true;
628            break;
629          }
630
631          // Remember that this is a user of a CP entry.
632          unsigned CPI = I->getOperand(op).getIndex();
633          MachineInstr *CPEMI = CPEMIs[CPI];
634          unsigned MaxOffs = ((1 << Bits)-1) * Scale;
635          CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm));
636
637          // Increment corresponding CPEntry reference count.
638          CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
639          assert(CPE && "Cannot find a corresponding CPEntry!");
640          CPE->RefCount++;
641
642          // Instructions can only use one CP entry, don't bother scanning the
643          // rest of the operands.
644          break;
645        }
646    }
647
648    // In thumb mode, if this block is a constpool island, we may need padding
649    // so it's aligned on 4 byte boundary.
650    if (isThumb &&
651        !MBB.empty() &&
652        MBB.begin()->getOpcode() == ARM::CONSTPOOL_ENTRY &&
653        ((Offset%4) != 0 || HasInlineAsm))
654      MBBSize += 2;
655
656    BBSizes.push_back(MBBSize);
657    BBOffsets.push_back(Offset);
658    Offset += MBBSize;
659  }
660}
661
662/// GetOffsetOf - Return the current offset of the specified machine instruction
663/// from the start of the function.  This offset changes as stuff is moved
664/// around inside the function.
665unsigned ARMConstantIslands::GetOffsetOf(MachineInstr *MI) const {
666  MachineBasicBlock *MBB = MI->getParent();
667
668  // The offset is composed of two things: the sum of the sizes of all MBB's
669  // before this instruction's block, and the offset from the start of the block
670  // it is in.
671  unsigned Offset = BBOffsets[MBB->getNumber()];
672
673  // If we're looking for a CONSTPOOL_ENTRY in Thumb, see if this block has
674  // alignment padding, and compensate if so.
675  if (isThumb &&
676      MI->getOpcode() == ARM::CONSTPOOL_ENTRY &&
677      (Offset%4 != 0 || HasInlineAsm))
678    Offset += 2;
679
680  // Sum instructions before MI in MBB.
681  for (MachineBasicBlock::iterator I = MBB->begin(); ; ++I) {
682    assert(I != MBB->end() && "Didn't find MI in its own basic block?");
683    if (&*I == MI) return Offset;
684    Offset += TII->GetInstSizeInBytes(I);
685  }
686}
687
688/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
689/// ID.
690static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
691                              const MachineBasicBlock *RHS) {
692  return LHS->getNumber() < RHS->getNumber();
693}
694
695/// UpdateForInsertedWaterBlock - When a block is newly inserted into the
696/// machine function, it upsets all of the block numbers.  Renumber the blocks
697/// and update the arrays that parallel this numbering.
698void ARMConstantIslands::UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
699  // Renumber the MBB's to keep them consequtive.
700  NewBB->getParent()->RenumberBlocks(NewBB);
701
702  // Insert a size into BBSizes to align it properly with the (newly
703  // renumbered) block numbers.
704  BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0);
705
706  // Likewise for BBOffsets.
707  BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0);
708
709  // Next, update WaterList.  Specifically, we need to add NewMBB as having
710  // available water after it.
711  water_iterator IP =
712    std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
713                     CompareMBBNumbers);
714  WaterList.insert(IP, NewBB);
715}
716
717
718/// Split the basic block containing MI into two blocks, which are joined by
719/// an unconditional branch.  Update data structures and renumber blocks to
720/// account for this change and returns the newly created block.
721MachineBasicBlock *ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr *MI) {
722  MachineBasicBlock *OrigBB = MI->getParent();
723  MachineFunction &MF = *OrigBB->getParent();
724
725  // Create a new MBB for the code after the OrigBB.
726  MachineBasicBlock *NewBB =
727    MF.CreateMachineBasicBlock(OrigBB->getBasicBlock());
728  MachineFunction::iterator MBBI = OrigBB; ++MBBI;
729  MF.insert(MBBI, NewBB);
730
731  // Splice the instructions starting with MI over to NewBB.
732  NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
733
734  // Add an unconditional branch from OrigBB to NewBB.
735  // Note the new unconditional branch is not being recorded.
736  // There doesn't seem to be meaningful DebugInfo available; this doesn't
737  // correspond to anything in the source.
738  unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B;
739  BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB);
740  ++NumSplit;
741
742  // Update the CFG.  All succs of OrigBB are now succs of NewBB.
743  while (!OrigBB->succ_empty()) {
744    MachineBasicBlock *Succ = *OrigBB->succ_begin();
745    OrigBB->removeSuccessor(Succ);
746    NewBB->addSuccessor(Succ);
747
748    // This pass should be run after register allocation, so there should be no
749    // PHI nodes to update.
750    assert((Succ->empty() || !Succ->begin()->isPHI())
751           && "PHI nodes should be eliminated by now!");
752  }
753
754  // OrigBB branches to NewBB.
755  OrigBB->addSuccessor(NewBB);
756
757  // Update internal data structures to account for the newly inserted MBB.
758  // This is almost the same as UpdateForInsertedWaterBlock, except that
759  // the Water goes after OrigBB, not NewBB.
760  MF.RenumberBlocks(NewBB);
761
762  // Insert a size into BBSizes to align it properly with the (newly
763  // renumbered) block numbers.
764  BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0);
765
766  // Likewise for BBOffsets.
767  BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0);
768
769  // Next, update WaterList.  Specifically, we need to add OrigMBB as having
770  // available water after it (but not if it's already there, which happens
771  // when splitting before a conditional branch that is followed by an
772  // unconditional branch - in that case we want to insert NewBB).
773  water_iterator IP =
774    std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
775                     CompareMBBNumbers);
776  MachineBasicBlock* WaterBB = *IP;
777  if (WaterBB == OrigBB)
778    WaterList.insert(llvm::next(IP), NewBB);
779  else
780    WaterList.insert(IP, OrigBB);
781  NewWaterList.insert(OrigBB);
782
783  unsigned OrigBBI = OrigBB->getNumber();
784  unsigned NewBBI = NewBB->getNumber();
785
786  int delta = isThumb1 ? 2 : 4;
787
788  // Figure out how large the OrigBB is.  As the first half of the original
789  // block, it cannot contain a tablejump.  The size includes
790  // the new jump we added.  (It should be possible to do this without
791  // recounting everything, but it's very confusing, and this is rarely
792  // executed.)
793  unsigned OrigBBSize = 0;
794  for (MachineBasicBlock::iterator I = OrigBB->begin(), E = OrigBB->end();
795       I != E; ++I)
796    OrigBBSize += TII->GetInstSizeInBytes(I);
797  BBSizes[OrigBBI] = OrigBBSize;
798
799  // ...and adjust BBOffsets for NewBB accordingly.
800  BBOffsets[NewBBI] = BBOffsets[OrigBBI] + BBSizes[OrigBBI];
801
802  // Figure out how large the NewMBB is.  As the second half of the original
803  // block, it may contain a tablejump.
804  unsigned NewBBSize = 0;
805  for (MachineBasicBlock::iterator I = NewBB->begin(), E = NewBB->end();
806       I != E; ++I)
807    NewBBSize += TII->GetInstSizeInBytes(I);
808  // Set the size of NewBB in BBSizes.  It does not include any padding now.
809  BBSizes[NewBBI] = NewBBSize;
810
811  MachineInstr* ThumbJTMI = prior(NewBB->end());
812  if (ThumbJTMI->getOpcode() == ARM::tBR_JTr) {
813    // We've added another 2-byte instruction before this tablejump, which
814    // means we will always need padding if we didn't before, and vice versa.
815
816    // The original offset of the jump instruction was:
817    unsigned OrigOffset = BBOffsets[OrigBBI] + BBSizes[OrigBBI] - delta;
818    if (OrigOffset%4 == 0) {
819      // We had padding before and now we don't.  No net change in code size.
820      delta = 0;
821    } else {
822      // We didn't have padding before and now we do.
823      BBSizes[NewBBI] += 2;
824      delta = 4;
825    }
826  }
827
828  // All BBOffsets following these blocks must be modified.
829  if (delta)
830    AdjustBBOffsetsAfter(NewBB, delta);
831
832  return NewBB;
833}
834
835/// OffsetIsInRange - Checks whether UserOffset (the location of a constant pool
836/// reference) is within MaxDisp of TrialOffset (a proposed location of a
837/// constant pool entry).
838bool ARMConstantIslands::OffsetIsInRange(unsigned UserOffset,
839                                         unsigned TrialOffset, unsigned MaxDisp,
840                                         bool NegativeOK, bool IsSoImm) {
841  // On Thumb offsets==2 mod 4 are rounded down by the hardware for
842  // purposes of the displacement computation; compensate for that here.
843  // Effectively, the valid range of displacements is 2 bytes smaller for such
844  // references.
845  unsigned TotalAdj = 0;
846  if (isThumb && UserOffset%4 !=0) {
847    UserOffset -= 2;
848    TotalAdj = 2;
849  }
850  // CPEs will be rounded up to a multiple of 4.
851  if (isThumb && TrialOffset%4 != 0) {
852    TrialOffset += 2;
853    TotalAdj += 2;
854  }
855
856  // In Thumb2 mode, later branch adjustments can shift instructions up and
857  // cause alignment change. In the worst case scenario this can cause the
858  // user's effective address to be subtracted by 2 and the CPE's address to
859  // be plus 2.
860  if (isThumb2 && TotalAdj != 4)
861    MaxDisp -= (4 - TotalAdj);
862
863  if (UserOffset <= TrialOffset) {
864    // User before the Trial.
865    if (TrialOffset - UserOffset <= MaxDisp)
866      return true;
867    // FIXME: Make use full range of soimm values.
868  } else if (NegativeOK) {
869    if (UserOffset - TrialOffset <= MaxDisp)
870      return true;
871    // FIXME: Make use full range of soimm values.
872  }
873  return false;
874}
875
876/// WaterIsInRange - Returns true if a CPE placed after the specified
877/// Water (a basic block) will be in range for the specific MI.
878
879bool ARMConstantIslands::WaterIsInRange(unsigned UserOffset,
880                                        MachineBasicBlock* Water, CPUser &U) {
881  unsigned MaxDisp = U.MaxDisp;
882  unsigned CPEOffset = BBOffsets[Water->getNumber()] +
883                       BBSizes[Water->getNumber()];
884
885  // If the CPE is to be inserted before the instruction, that will raise
886  // the offset of the instruction.
887  if (CPEOffset < UserOffset)
888    UserOffset += U.CPEMI->getOperand(2).getImm();
889
890  return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, U.NegOk, U.IsSoImm);
891}
892
893/// CPEIsInRange - Returns true if the distance between specific MI and
894/// specific ConstPool entry instruction can fit in MI's displacement field.
895bool ARMConstantIslands::CPEIsInRange(MachineInstr *MI, unsigned UserOffset,
896                                      MachineInstr *CPEMI, unsigned MaxDisp,
897                                      bool NegOk, bool DoDump) {
898  unsigned CPEOffset  = GetOffsetOf(CPEMI);
899  assert((CPEOffset%4 == 0 || HasInlineAsm) && "Misaligned CPE");
900
901  if (DoDump) {
902    DEBUG(errs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
903                 << " max delta=" << MaxDisp
904                 << " insn address=" << UserOffset
905                 << " CPE address=" << CPEOffset
906                 << " offset=" << int(CPEOffset-UserOffset) << "\t" << *MI);
907  }
908
909  return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
910}
911
912#ifndef NDEBUG
913/// BBIsJumpedOver - Return true of the specified basic block's only predecessor
914/// unconditionally branches to its only successor.
915static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
916  if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
917    return false;
918
919  MachineBasicBlock *Succ = *MBB->succ_begin();
920  MachineBasicBlock *Pred = *MBB->pred_begin();
921  MachineInstr *PredMI = &Pred->back();
922  if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB
923      || PredMI->getOpcode() == ARM::t2B)
924    return PredMI->getOperand(0).getMBB() == Succ;
925  return false;
926}
927#endif // NDEBUG
928
929void ARMConstantIslands::AdjustBBOffsetsAfter(MachineBasicBlock *BB,
930                                              int delta) {
931  MachineFunction::iterator MBBI = BB; MBBI = llvm::next(MBBI);
932  for(unsigned i = BB->getNumber()+1, e = BB->getParent()->getNumBlockIDs();
933      i < e; ++i) {
934    BBOffsets[i] += delta;
935    // If some existing blocks have padding, adjust the padding as needed, a
936    // bit tricky.  delta can be negative so don't use % on that.
937    if (!isThumb)
938      continue;
939    MachineBasicBlock *MBB = MBBI;
940    if (!MBB->empty() && !HasInlineAsm) {
941      // Constant pool entries require padding.
942      if (MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) {
943        unsigned OldOffset = BBOffsets[i] - delta;
944        if ((OldOffset%4) == 0 && (BBOffsets[i]%4) != 0) {
945          // add new padding
946          BBSizes[i] += 2;
947          delta += 2;
948        } else if ((OldOffset%4) != 0 && (BBOffsets[i]%4) == 0) {
949          // remove existing padding
950          BBSizes[i] -= 2;
951          delta -= 2;
952        }
953      }
954      // Thumb1 jump tables require padding.  They should be at the end;
955      // following unconditional branches are removed by AnalyzeBranch.
956      // tBR_JTr expands to a mov pc followed by .align 2 and then the jump
957      // table entries. So this code checks whether offset of tBR_JTr
958      // is aligned; if it is, the offset of the jump table following the
959      // instruction will not be aligned, and we need padding.
960      MachineInstr *ThumbJTMI = prior(MBB->end());
961      if (ThumbJTMI->getOpcode() == ARM::tBR_JTr) {
962        unsigned NewMIOffset = GetOffsetOf(ThumbJTMI);
963        unsigned OldMIOffset = NewMIOffset - delta;
964        if ((OldMIOffset%4) == 0 && (NewMIOffset%4) != 0) {
965          // remove existing padding
966          BBSizes[i] -= 2;
967          delta -= 2;
968        } else if ((OldMIOffset%4) != 0 && (NewMIOffset%4) == 0) {
969          // add new padding
970          BBSizes[i] += 2;
971          delta += 2;
972        }
973      }
974      if (delta==0)
975        return;
976    }
977    MBBI = llvm::next(MBBI);
978  }
979}
980
981/// DecrementOldEntry - find the constant pool entry with index CPI
982/// and instruction CPEMI, and decrement its refcount.  If the refcount
983/// becomes 0 remove the entry and instruction.  Returns true if we removed
984/// the entry, false if we didn't.
985
986bool ARMConstantIslands::DecrementOldEntry(unsigned CPI, MachineInstr *CPEMI) {
987  // Find the old entry. Eliminate it if it is no longer used.
988  CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
989  assert(CPE && "Unexpected!");
990  if (--CPE->RefCount == 0) {
991    RemoveDeadCPEMI(CPEMI);
992    CPE->CPEMI = NULL;
993    --NumCPEs;
994    return true;
995  }
996  return false;
997}
998
999/// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1000/// if not, see if an in-range clone of the CPE is in range, and if so,
1001/// change the data structures so the user references the clone.  Returns:
1002/// 0 = no existing entry found
1003/// 1 = entry found, and there were no code insertions or deletions
1004/// 2 = entry found, and there were code insertions or deletions
1005int ARMConstantIslands::LookForExistingCPEntry(CPUser& U, unsigned UserOffset)
1006{
1007  MachineInstr *UserMI = U.MI;
1008  MachineInstr *CPEMI  = U.CPEMI;
1009
1010  // Check to see if the CPE is already in-range.
1011  if (CPEIsInRange(UserMI, UserOffset, CPEMI, U.MaxDisp, U.NegOk, true)) {
1012    DEBUG(errs() << "In range\n");
1013    return 1;
1014  }
1015
1016  // No.  Look for previously created clones of the CPE that are in range.
1017  unsigned CPI = CPEMI->getOperand(1).getIndex();
1018  std::vector<CPEntry> &CPEs = CPEntries[CPI];
1019  for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1020    // We already tried this one
1021    if (CPEs[i].CPEMI == CPEMI)
1022      continue;
1023    // Removing CPEs can leave empty entries, skip
1024    if (CPEs[i].CPEMI == NULL)
1025      continue;
1026    if (CPEIsInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.MaxDisp, U.NegOk)) {
1027      DEBUG(errs() << "Replacing CPE#" << CPI << " with CPE#"
1028                   << CPEs[i].CPI << "\n");
1029      // Point the CPUser node to the replacement
1030      U.CPEMI = CPEs[i].CPEMI;
1031      // Change the CPI in the instruction operand to refer to the clone.
1032      for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1033        if (UserMI->getOperand(j).isCPI()) {
1034          UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1035          break;
1036        }
1037      // Adjust the refcount of the clone...
1038      CPEs[i].RefCount++;
1039      // ...and the original.  If we didn't remove the old entry, none of the
1040      // addresses changed, so we don't need another pass.
1041      return DecrementOldEntry(CPI, CPEMI) ? 2 : 1;
1042    }
1043  }
1044  return 0;
1045}
1046
1047/// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
1048/// the specific unconditional branch instruction.
1049static inline unsigned getUnconditionalBrDisp(int Opc) {
1050  switch (Opc) {
1051  case ARM::tB:
1052    return ((1<<10)-1)*2;
1053  case ARM::t2B:
1054    return ((1<<23)-1)*2;
1055  default:
1056    break;
1057  }
1058
1059  return ((1<<23)-1)*4;
1060}
1061
1062/// LookForWater - Look for an existing entry in the WaterList in which
1063/// we can place the CPE referenced from U so it's within range of U's MI.
1064/// Returns true if found, false if not.  If it returns true, WaterIter
1065/// is set to the WaterList entry.  For Thumb, prefer water that will not
1066/// introduce padding to water that will.  To ensure that this pass
1067/// terminates, the CPE location for a particular CPUser is only allowed to
1068/// move to a lower address, so search backward from the end of the list and
1069/// prefer the first water that is in range.
1070bool ARMConstantIslands::LookForWater(CPUser &U, unsigned UserOffset,
1071                                      water_iterator &WaterIter) {
1072  if (WaterList.empty())
1073    return false;
1074
1075  bool FoundWaterThatWouldPad = false;
1076  water_iterator IPThatWouldPad;
1077  for (water_iterator IP = prior(WaterList.end()),
1078         B = WaterList.begin();; --IP) {
1079    MachineBasicBlock* WaterBB = *IP;
1080    // Check if water is in range and is either at a lower address than the
1081    // current "high water mark" or a new water block that was created since
1082    // the previous iteration by inserting an unconditional branch.  In the
1083    // latter case, we want to allow resetting the high water mark back to
1084    // this new water since we haven't seen it before.  Inserting branches
1085    // should be relatively uncommon and when it does happen, we want to be
1086    // sure to take advantage of it for all the CPEs near that block, so that
1087    // we don't insert more branches than necessary.
1088    if (WaterIsInRange(UserOffset, WaterBB, U) &&
1089        (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
1090         NewWaterList.count(WaterBB))) {
1091      unsigned WBBId = WaterBB->getNumber();
1092      if (isThumb &&
1093          (BBOffsets[WBBId] + BBSizes[WBBId])%4 != 0) {
1094        // This is valid Water, but would introduce padding.  Remember
1095        // it in case we don't find any Water that doesn't do this.
1096        if (!FoundWaterThatWouldPad) {
1097          FoundWaterThatWouldPad = true;
1098          IPThatWouldPad = IP;
1099        }
1100      } else {
1101        WaterIter = IP;
1102        return true;
1103      }
1104    }
1105    if (IP == B)
1106      break;
1107  }
1108  if (FoundWaterThatWouldPad) {
1109    WaterIter = IPThatWouldPad;
1110    return true;
1111  }
1112  return false;
1113}
1114
1115/// CreateNewWater - No existing WaterList entry will work for
1116/// CPUsers[CPUserIndex], so create a place to put the CPE.  The end of the
1117/// block is used if in range, and the conditional branch munged so control
1118/// flow is correct.  Otherwise the block is split to create a hole with an
1119/// unconditional branch around it.  In either case NewMBB is set to a
1120/// block following which the new island can be inserted (the WaterList
1121/// is not adjusted).
1122void ARMConstantIslands::CreateNewWater(unsigned CPUserIndex,
1123                                        unsigned UserOffset,
1124                                        MachineBasicBlock *&NewMBB) {
1125  CPUser &U = CPUsers[CPUserIndex];
1126  MachineInstr *UserMI = U.MI;
1127  MachineInstr *CPEMI  = U.CPEMI;
1128  MachineBasicBlock *UserMBB = UserMI->getParent();
1129  unsigned OffsetOfNextBlock = BBOffsets[UserMBB->getNumber()] +
1130                               BBSizes[UserMBB->getNumber()];
1131  assert(OffsetOfNextBlock== BBOffsets[UserMBB->getNumber()+1]);
1132
1133  // If the block does not end in an unconditional branch already, and if the
1134  // end of the block is within range, make new water there.  (The addition
1135  // below is for the unconditional branch we will be adding: 4 bytes on ARM +
1136  // Thumb2, 2 on Thumb1.  Possible Thumb1 alignment padding is allowed for
1137  // inside OffsetIsInRange.
1138  if (BBHasFallthrough(UserMBB) &&
1139      OffsetIsInRange(UserOffset, OffsetOfNextBlock + (isThumb1 ? 2: 4),
1140                      U.MaxDisp, U.NegOk, U.IsSoImm)) {
1141    DEBUG(errs() << "Split at end of block\n");
1142    if (&UserMBB->back() == UserMI)
1143      assert(BBHasFallthrough(UserMBB) && "Expected a fallthrough BB!");
1144    NewMBB = llvm::next(MachineFunction::iterator(UserMBB));
1145    // Add an unconditional branch from UserMBB to fallthrough block.
1146    // Record it for branch lengthening; this new branch will not get out of
1147    // range, but if the preceding conditional branch is out of range, the
1148    // targets will be exchanged, and the altered branch may be out of
1149    // range, so the machinery has to know about it.
1150    int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B;
1151    BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
1152    unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
1153    ImmBranches.push_back(ImmBranch(&UserMBB->back(),
1154                          MaxDisp, false, UncondBr));
1155    int delta = isThumb1 ? 2 : 4;
1156    BBSizes[UserMBB->getNumber()] += delta;
1157    AdjustBBOffsetsAfter(UserMBB, delta);
1158  } else {
1159    // What a big block.  Find a place within the block to split it.
1160    // This is a little tricky on Thumb1 since instructions are 2 bytes
1161    // and constant pool entries are 4 bytes: if instruction I references
1162    // island CPE, and instruction I+1 references CPE', it will
1163    // not work well to put CPE as far forward as possible, since then
1164    // CPE' cannot immediately follow it (that location is 2 bytes
1165    // farther away from I+1 than CPE was from I) and we'd need to create
1166    // a new island.  So, we make a first guess, then walk through the
1167    // instructions between the one currently being looked at and the
1168    // possible insertion point, and make sure any other instructions
1169    // that reference CPEs will be able to use the same island area;
1170    // if not, we back up the insertion point.
1171
1172    // The 4 in the following is for the unconditional branch we'll be
1173    // inserting (allows for long branch on Thumb1).  Alignment of the
1174    // island is handled inside OffsetIsInRange.
1175    unsigned BaseInsertOffset = UserOffset + U.MaxDisp -4;
1176    // This could point off the end of the block if we've already got
1177    // constant pool entries following this block; only the last one is
1178    // in the water list.  Back past any possible branches (allow for a
1179    // conditional and a maximally long unconditional).
1180    if (BaseInsertOffset >= BBOffsets[UserMBB->getNumber()+1])
1181      BaseInsertOffset = BBOffsets[UserMBB->getNumber()+1] -
1182                              (isThumb1 ? 6 : 8);
1183    unsigned EndInsertOffset = BaseInsertOffset +
1184           CPEMI->getOperand(2).getImm();
1185    MachineBasicBlock::iterator MI = UserMI;
1186    ++MI;
1187    unsigned CPUIndex = CPUserIndex+1;
1188    unsigned NumCPUsers = CPUsers.size();
1189    MachineInstr *LastIT = 0;
1190    for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI);
1191         Offset < BaseInsertOffset;
1192         Offset += TII->GetInstSizeInBytes(MI),
1193           MI = llvm::next(MI)) {
1194      if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) {
1195        CPUser &U = CPUsers[CPUIndex];
1196        if (!OffsetIsInRange(Offset, EndInsertOffset,
1197                             U.MaxDisp, U.NegOk, U.IsSoImm)) {
1198          BaseInsertOffset -= (isThumb1 ? 2 : 4);
1199          EndInsertOffset  -= (isThumb1 ? 2 : 4);
1200        }
1201        // This is overly conservative, as we don't account for CPEMIs
1202        // being reused within the block, but it doesn't matter much.
1203        EndInsertOffset += CPUsers[CPUIndex].CPEMI->getOperand(2).getImm();
1204        CPUIndex++;
1205      }
1206
1207      // Remember the last IT instruction.
1208      if (MI->getOpcode() == ARM::t2IT)
1209        LastIT = MI;
1210    }
1211
1212    DEBUG(errs() << "Split in middle of big block\n");
1213    --MI;
1214
1215    // Avoid splitting an IT block.
1216    if (LastIT) {
1217      unsigned PredReg = 0;
1218      ARMCC::CondCodes CC = llvm::getITInstrPredicate(MI, PredReg);
1219      if (CC != ARMCC::AL)
1220        MI = LastIT;
1221    }
1222    NewMBB = SplitBlockBeforeInstr(MI);
1223  }
1224}
1225
1226/// HandleConstantPoolUser - Analyze the specified user, checking to see if it
1227/// is out-of-range.  If so, pick up the constant pool value and move it some
1228/// place in-range.  Return true if we changed any addresses (thus must run
1229/// another pass of branch lengthening), false otherwise.
1230bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction &MF,
1231                                                unsigned CPUserIndex) {
1232  CPUser &U = CPUsers[CPUserIndex];
1233  MachineInstr *UserMI = U.MI;
1234  MachineInstr *CPEMI  = U.CPEMI;
1235  unsigned CPI = CPEMI->getOperand(1).getIndex();
1236  unsigned Size = CPEMI->getOperand(2).getImm();
1237  // Compute this only once, it's expensive.  The 4 or 8 is the value the
1238  // hardware keeps in the PC.
1239  unsigned UserOffset = GetOffsetOf(UserMI) + (isThumb ? 4 : 8);
1240
1241  // See if the current entry is within range, or there is a clone of it
1242  // in range.
1243  int result = LookForExistingCPEntry(U, UserOffset);
1244  if (result==1) return false;
1245  else if (result==2) return true;
1246
1247  // No existing clone of this CPE is within range.
1248  // We will be generating a new clone.  Get a UID for it.
1249  unsigned ID = AFI->createConstPoolEntryUId();
1250
1251  // Look for water where we can place this CPE.
1252  MachineBasicBlock *NewIsland = MF.CreateMachineBasicBlock();
1253  MachineBasicBlock *NewMBB;
1254  water_iterator IP;
1255  if (LookForWater(U, UserOffset, IP)) {
1256    DEBUG(errs() << "found water in range\n");
1257    MachineBasicBlock *WaterBB = *IP;
1258
1259    // If the original WaterList entry was "new water" on this iteration,
1260    // propagate that to the new island.  This is just keeping NewWaterList
1261    // updated to match the WaterList, which will be updated below.
1262    if (NewWaterList.count(WaterBB)) {
1263      NewWaterList.erase(WaterBB);
1264      NewWaterList.insert(NewIsland);
1265    }
1266    // The new CPE goes before the following block (NewMBB).
1267    NewMBB = llvm::next(MachineFunction::iterator(WaterBB));
1268
1269  } else {
1270    // No water found.
1271    DEBUG(errs() << "No water found\n");
1272    CreateNewWater(CPUserIndex, UserOffset, NewMBB);
1273
1274    // SplitBlockBeforeInstr adds to WaterList, which is important when it is
1275    // called while handling branches so that the water will be seen on the
1276    // next iteration for constant pools, but in this context, we don't want
1277    // it.  Check for this so it will be removed from the WaterList.
1278    // Also remove any entry from NewWaterList.
1279    MachineBasicBlock *WaterBB = prior(MachineFunction::iterator(NewMBB));
1280    IP = std::find(WaterList.begin(), WaterList.end(), WaterBB);
1281    if (IP != WaterList.end())
1282      NewWaterList.erase(WaterBB);
1283
1284    // We are adding new water.  Update NewWaterList.
1285    NewWaterList.insert(NewIsland);
1286  }
1287
1288  // Remove the original WaterList entry; we want subsequent insertions in
1289  // this vicinity to go after the one we're about to insert.  This
1290  // considerably reduces the number of times we have to move the same CPE
1291  // more than once and is also important to ensure the algorithm terminates.
1292  if (IP != WaterList.end())
1293    WaterList.erase(IP);
1294
1295  // Okay, we know we can put an island before NewMBB now, do it!
1296  MF.insert(NewMBB, NewIsland);
1297
1298  // Update internal data structures to account for the newly inserted MBB.
1299  UpdateForInsertedWaterBlock(NewIsland);
1300
1301  // Decrement the old entry, and remove it if refcount becomes 0.
1302  DecrementOldEntry(CPI, CPEMI);
1303
1304  // Now that we have an island to add the CPE to, clone the original CPE and
1305  // add it to the island.
1306  U.HighWaterMark = NewIsland;
1307  U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
1308                .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
1309  CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1310  ++NumCPEs;
1311
1312  BBOffsets[NewIsland->getNumber()] = BBOffsets[NewMBB->getNumber()];
1313  // Compensate for .align 2 in thumb mode.
1314  if (isThumb && (BBOffsets[NewIsland->getNumber()]%4 != 0 || HasInlineAsm))
1315    Size += 2;
1316  // Increase the size of the island block to account for the new entry.
1317  BBSizes[NewIsland->getNumber()] += Size;
1318  AdjustBBOffsetsAfter(NewIsland, Size);
1319
1320  // Finally, change the CPI in the instruction operand to be ID.
1321  for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
1322    if (UserMI->getOperand(i).isCPI()) {
1323      UserMI->getOperand(i).setIndex(ID);
1324      break;
1325    }
1326
1327  DEBUG(errs() << "  Moved CPE to #" << ID << " CPI=" << CPI
1328           << '\t' << *UserMI);
1329
1330  return true;
1331}
1332
1333/// RemoveDeadCPEMI - Remove a dead constant pool entry instruction. Update
1334/// sizes and offsets of impacted basic blocks.
1335void ARMConstantIslands::RemoveDeadCPEMI(MachineInstr *CPEMI) {
1336  MachineBasicBlock *CPEBB = CPEMI->getParent();
1337  unsigned Size = CPEMI->getOperand(2).getImm();
1338  CPEMI->eraseFromParent();
1339  BBSizes[CPEBB->getNumber()] -= Size;
1340  // All succeeding offsets have the current size value added in, fix this.
1341  if (CPEBB->empty()) {
1342    // In thumb1 mode, the size of island may be padded by two to compensate for
1343    // the alignment requirement.  Then it will now be 2 when the block is
1344    // empty, so fix this.
1345    // All succeeding offsets have the current size value added in, fix this.
1346    if (BBSizes[CPEBB->getNumber()] != 0) {
1347      Size += BBSizes[CPEBB->getNumber()];
1348      BBSizes[CPEBB->getNumber()] = 0;
1349    }
1350  }
1351  AdjustBBOffsetsAfter(CPEBB, -Size);
1352  // An island has only one predecessor BB and one successor BB. Check if
1353  // this BB's predecessor jumps directly to this BB's successor. This
1354  // shouldn't happen currently.
1355  assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
1356  // FIXME: remove the empty blocks after all the work is done?
1357}
1358
1359/// RemoveUnusedCPEntries - Remove constant pool entries whose refcounts
1360/// are zero.
1361bool ARMConstantIslands::RemoveUnusedCPEntries() {
1362  unsigned MadeChange = false;
1363  for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
1364      std::vector<CPEntry> &CPEs = CPEntries[i];
1365      for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
1366        if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
1367          RemoveDeadCPEMI(CPEs[j].CPEMI);
1368          CPEs[j].CPEMI = NULL;
1369          MadeChange = true;
1370        }
1371      }
1372  }
1373  return MadeChange;
1374}
1375
1376/// BBIsInRange - Returns true if the distance between specific MI and
1377/// specific BB can fit in MI's displacement field.
1378bool ARMConstantIslands::BBIsInRange(MachineInstr *MI,MachineBasicBlock *DestBB,
1379                                     unsigned MaxDisp) {
1380  unsigned PCAdj      = isThumb ? 4 : 8;
1381  unsigned BrOffset   = GetOffsetOf(MI) + PCAdj;
1382  unsigned DestOffset = BBOffsets[DestBB->getNumber()];
1383
1384  DEBUG(errs() << "Branch of destination BB#" << DestBB->getNumber()
1385               << " from BB#" << MI->getParent()->getNumber()
1386               << " max delta=" << MaxDisp
1387               << " from " << GetOffsetOf(MI) << " to " << DestOffset
1388               << " offset " << int(DestOffset-BrOffset) << "\t" << *MI);
1389
1390  if (BrOffset <= DestOffset) {
1391    // Branch before the Dest.
1392    if (DestOffset-BrOffset <= MaxDisp)
1393      return true;
1394  } else {
1395    if (BrOffset-DestOffset <= MaxDisp)
1396      return true;
1397  }
1398  return false;
1399}
1400
1401/// FixUpImmediateBr - Fix up an immediate branch whose destination is too far
1402/// away to fit in its displacement field.
1403bool ARMConstantIslands::FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br) {
1404  MachineInstr *MI = Br.MI;
1405  MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1406
1407  // Check to see if the DestBB is already in-range.
1408  if (BBIsInRange(MI, DestBB, Br.MaxDisp))
1409    return false;
1410
1411  if (!Br.isCond)
1412    return FixUpUnconditionalBr(MF, Br);
1413  return FixUpConditionalBr(MF, Br);
1414}
1415
1416/// FixUpUnconditionalBr - Fix up an unconditional branch whose destination is
1417/// too far away to fit in its displacement field. If the LR register has been
1418/// spilled in the epilogue, then we can use BL to implement a far jump.
1419/// Otherwise, add an intermediate branch instruction to a branch.
1420bool
1421ARMConstantIslands::FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br) {
1422  MachineInstr *MI = Br.MI;
1423  MachineBasicBlock *MBB = MI->getParent();
1424  if (!isThumb1)
1425    llvm_unreachable("FixUpUnconditionalBr is Thumb1 only!");
1426
1427  // Use BL to implement far jump.
1428  Br.MaxDisp = (1 << 21) * 2;
1429  MI->setDesc(TII->get(ARM::tBfar));
1430  BBSizes[MBB->getNumber()] += 2;
1431  AdjustBBOffsetsAfter(MBB, 2);
1432  HasFarJump = true;
1433  ++NumUBrFixed;
1434
1435  DEBUG(errs() << "  Changed B to long jump " << *MI);
1436
1437  return true;
1438}
1439
1440/// FixUpConditionalBr - Fix up a conditional branch whose destination is too
1441/// far away to fit in its displacement field. It is converted to an inverse
1442/// conditional branch + an unconditional branch to the destination.
1443bool
1444ARMConstantIslands::FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br) {
1445  MachineInstr *MI = Br.MI;
1446  MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1447
1448  // Add an unconditional branch to the destination and invert the branch
1449  // condition to jump over it:
1450  // blt L1
1451  // =>
1452  // bge L2
1453  // b   L1
1454  // L2:
1455  ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm();
1456  CC = ARMCC::getOppositeCondition(CC);
1457  unsigned CCReg = MI->getOperand(2).getReg();
1458
1459  // If the branch is at the end of its MBB and that has a fall-through block,
1460  // direct the updated conditional branch to the fall-through block. Otherwise,
1461  // split the MBB before the next instruction.
1462  MachineBasicBlock *MBB = MI->getParent();
1463  MachineInstr *BMI = &MBB->back();
1464  bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1465
1466  ++NumCBrFixed;
1467  if (BMI != MI) {
1468    if (llvm::next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) &&
1469        BMI->getOpcode() == Br.UncondBr) {
1470      // Last MI in the BB is an unconditional branch. Can we simply invert the
1471      // condition and swap destinations:
1472      // beq L1
1473      // b   L2
1474      // =>
1475      // bne L2
1476      // b   L1
1477      MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
1478      if (BBIsInRange(MI, NewDest, Br.MaxDisp)) {
1479        DEBUG(errs() << "  Invert Bcc condition and swap its destination with "
1480                     << *BMI);
1481        BMI->getOperand(0).setMBB(DestBB);
1482        MI->getOperand(0).setMBB(NewDest);
1483        MI->getOperand(1).setImm(CC);
1484        return true;
1485      }
1486    }
1487  }
1488
1489  if (NeedSplit) {
1490    SplitBlockBeforeInstr(MI);
1491    // No need for the branch to the next block. We're adding an unconditional
1492    // branch to the destination.
1493    int delta = TII->GetInstSizeInBytes(&MBB->back());
1494    BBSizes[MBB->getNumber()] -= delta;
1495    MachineBasicBlock* SplitBB = llvm::next(MachineFunction::iterator(MBB));
1496    AdjustBBOffsetsAfter(SplitBB, -delta);
1497    MBB->back().eraseFromParent();
1498    // BBOffsets[SplitBB] is wrong temporarily, fixed below
1499  }
1500  MachineBasicBlock *NextBB = llvm::next(MachineFunction::iterator(MBB));
1501
1502  DEBUG(errs() << "  Insert B to BB#" << DestBB->getNumber()
1503               << " also invert condition and change dest. to BB#"
1504               << NextBB->getNumber() << "\n");
1505
1506  // Insert a new conditional branch and a new unconditional branch.
1507  // Also update the ImmBranch as well as adding a new entry for the new branch.
1508  BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode()))
1509    .addMBB(NextBB).addImm(CC).addReg(CCReg);
1510  Br.MI = &MBB->back();
1511  BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back());
1512  BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1513  BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back());
1514  unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1515  ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1516
1517  // Remove the old conditional branch.  It may or may not still be in MBB.
1518  BBSizes[MI->getParent()->getNumber()] -= TII->GetInstSizeInBytes(MI);
1519  MI->eraseFromParent();
1520
1521  // The net size change is an addition of one unconditional branch.
1522  int delta = TII->GetInstSizeInBytes(&MBB->back());
1523  AdjustBBOffsetsAfter(MBB, delta);
1524  return true;
1525}
1526
1527/// UndoLRSpillRestore - Remove Thumb push / pop instructions that only spills
1528/// LR / restores LR to pc. FIXME: This is done here because it's only possible
1529/// to do this if tBfar is not used.
1530bool ARMConstantIslands::UndoLRSpillRestore() {
1531  bool MadeChange = false;
1532  for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) {
1533    MachineInstr *MI = PushPopMIs[i];
1534    // First two operands are predicates.
1535    if (MI->getOpcode() == ARM::tPOP_RET &&
1536        MI->getOperand(2).getReg() == ARM::PC &&
1537        MI->getNumExplicitOperands() == 3) {
1538      BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET));
1539      MI->eraseFromParent();
1540      MadeChange = true;
1541    }
1542  }
1543  return MadeChange;
1544}
1545
1546bool ARMConstantIslands::OptimizeThumb2Instructions(MachineFunction &MF) {
1547  bool MadeChange = false;
1548
1549  // Shrink ADR and LDR from constantpool.
1550  for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
1551    CPUser &U = CPUsers[i];
1552    unsigned Opcode = U.MI->getOpcode();
1553    unsigned NewOpc = 0;
1554    unsigned Scale = 1;
1555    unsigned Bits = 0;
1556    switch (Opcode) {
1557    default: break;
1558    case ARM::t2LEApcrel:
1559      if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1560        NewOpc = ARM::tLEApcrel;
1561        Bits = 8;
1562        Scale = 4;
1563      }
1564      break;
1565    case ARM::t2LDRpci:
1566      if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1567        NewOpc = ARM::tLDRpci;
1568        Bits = 8;
1569        Scale = 4;
1570      }
1571      break;
1572    }
1573
1574    if (!NewOpc)
1575      continue;
1576
1577    unsigned UserOffset = GetOffsetOf(U.MI) + 4;
1578    unsigned MaxOffs = ((1 << Bits) - 1) * Scale;
1579    // FIXME: Check if offset is multiple of scale if scale is not 4.
1580    if (CPEIsInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) {
1581      U.MI->setDesc(TII->get(NewOpc));
1582      MachineBasicBlock *MBB = U.MI->getParent();
1583      BBSizes[MBB->getNumber()] -= 2;
1584      AdjustBBOffsetsAfter(MBB, -2);
1585      ++NumT2CPShrunk;
1586      MadeChange = true;
1587    }
1588  }
1589
1590  MadeChange |= OptimizeThumb2Branches(MF);
1591  MadeChange |= OptimizeThumb2JumpTables(MF);
1592  return MadeChange;
1593}
1594
1595bool ARMConstantIslands::OptimizeThumb2Branches(MachineFunction &MF) {
1596  bool MadeChange = false;
1597
1598  for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) {
1599    ImmBranch &Br = ImmBranches[i];
1600    unsigned Opcode = Br.MI->getOpcode();
1601    unsigned NewOpc = 0;
1602    unsigned Scale = 1;
1603    unsigned Bits = 0;
1604    switch (Opcode) {
1605    default: break;
1606    case ARM::t2B:
1607      NewOpc = ARM::tB;
1608      Bits = 11;
1609      Scale = 2;
1610      break;
1611    case ARM::t2Bcc: {
1612      NewOpc = ARM::tBcc;
1613      Bits = 8;
1614      Scale = 2;
1615      break;
1616    }
1617    }
1618    if (NewOpc) {
1619      unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
1620      MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1621      if (BBIsInRange(Br.MI, DestBB, MaxOffs)) {
1622        Br.MI->setDesc(TII->get(NewOpc));
1623        MachineBasicBlock *MBB = Br.MI->getParent();
1624        BBSizes[MBB->getNumber()] -= 2;
1625        AdjustBBOffsetsAfter(MBB, -2);
1626        ++NumT2BrShrunk;
1627        MadeChange = true;
1628      }
1629    }
1630
1631    Opcode = Br.MI->getOpcode();
1632    if (Opcode != ARM::tBcc)
1633      continue;
1634
1635    NewOpc = 0;
1636    unsigned PredReg = 0;
1637    ARMCC::CondCodes Pred = llvm::getInstrPredicate(Br.MI, PredReg);
1638    if (Pred == ARMCC::EQ)
1639      NewOpc = ARM::tCBZ;
1640    else if (Pred == ARMCC::NE)
1641      NewOpc = ARM::tCBNZ;
1642    if (!NewOpc)
1643      continue;
1644    MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1645    // Check if the distance is within 126. Subtract starting offset by 2
1646    // because the cmp will be eliminated.
1647    unsigned BrOffset = GetOffsetOf(Br.MI) + 4 - 2;
1648    unsigned DestOffset = BBOffsets[DestBB->getNumber()];
1649    if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) {
1650      MachineBasicBlock::iterator CmpMI = Br.MI; --CmpMI;
1651      if (CmpMI->getOpcode() == ARM::tCMPzi8) {
1652        unsigned Reg = CmpMI->getOperand(0).getReg();
1653        Pred = llvm::getInstrPredicate(CmpMI, PredReg);
1654        if (Pred == ARMCC::AL &&
1655            CmpMI->getOperand(1).getImm() == 0 &&
1656            isARMLowRegister(Reg)) {
1657          MachineBasicBlock *MBB = Br.MI->getParent();
1658          MachineInstr *NewBR =
1659            BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc))
1660            .addReg(Reg).addMBB(DestBB, Br.MI->getOperand(0).getTargetFlags());
1661          CmpMI->eraseFromParent();
1662          Br.MI->eraseFromParent();
1663          Br.MI = NewBR;
1664          BBSizes[MBB->getNumber()] -= 2;
1665          AdjustBBOffsetsAfter(MBB, -2);
1666          ++NumCBZ;
1667          MadeChange = true;
1668        }
1669      }
1670    }
1671  }
1672
1673  return MadeChange;
1674}
1675
1676/// OptimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller
1677/// jumptables when it's possible.
1678bool ARMConstantIslands::OptimizeThumb2JumpTables(MachineFunction &MF) {
1679  bool MadeChange = false;
1680
1681  // FIXME: After the tables are shrunk, can we get rid some of the
1682  // constantpool tables?
1683  MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
1684  if (MJTI == 0) return false;
1685
1686  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1687  for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
1688    MachineInstr *MI = T2JumpTables[i];
1689    const TargetInstrDesc &TID = MI->getDesc();
1690    unsigned NumOps = TID.getNumOperands();
1691    unsigned JTOpIdx = NumOps - (TID.isPredicable() ? 3 : 2);
1692    MachineOperand JTOP = MI->getOperand(JTOpIdx);
1693    unsigned JTI = JTOP.getIndex();
1694    assert(JTI < JT.size());
1695
1696    bool ByteOk = true;
1697    bool HalfWordOk = true;
1698    unsigned JTOffset = GetOffsetOf(MI) + 4;
1699    const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1700    for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
1701      MachineBasicBlock *MBB = JTBBs[j];
1702      unsigned DstOffset = BBOffsets[MBB->getNumber()];
1703      // Negative offset is not ok. FIXME: We should change BB layout to make
1704      // sure all the branches are forward.
1705      if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2)
1706        ByteOk = false;
1707      unsigned TBHLimit = ((1<<16)-1)*2;
1708      if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit)
1709        HalfWordOk = false;
1710      if (!ByteOk && !HalfWordOk)
1711        break;
1712    }
1713
1714    if (ByteOk || HalfWordOk) {
1715      MachineBasicBlock *MBB = MI->getParent();
1716      unsigned BaseReg = MI->getOperand(0).getReg();
1717      bool BaseRegKill = MI->getOperand(0).isKill();
1718      if (!BaseRegKill)
1719        continue;
1720      unsigned IdxReg = MI->getOperand(1).getReg();
1721      bool IdxRegKill = MI->getOperand(1).isKill();
1722
1723      // Scan backwards to find the instruction that defines the base
1724      // register. Due to post-RA scheduling, we can't count on it
1725      // immediately preceding the branch instruction.
1726      MachineBasicBlock::iterator PrevI = MI;
1727      MachineBasicBlock::iterator B = MBB->begin();
1728      while (PrevI != B && !PrevI->definesRegister(BaseReg))
1729        --PrevI;
1730
1731      // If for some reason we didn't find it, we can't do anything, so
1732      // just skip this one.
1733      if (!PrevI->definesRegister(BaseReg))
1734        continue;
1735
1736      MachineInstr *AddrMI = PrevI;
1737      bool OptOk = true;
1738      // Examine the instruction that calculates the jumptable entry address.
1739      // Make sure it only defines the base register and kills any uses
1740      // other than the index register.
1741      for (unsigned k = 0, eee = AddrMI->getNumOperands(); k != eee; ++k) {
1742        const MachineOperand &MO = AddrMI->getOperand(k);
1743        if (!MO.isReg() || !MO.getReg())
1744          continue;
1745        if (MO.isDef() && MO.getReg() != BaseReg) {
1746          OptOk = false;
1747          break;
1748        }
1749        if (MO.isUse() && !MO.isKill() && MO.getReg() != IdxReg) {
1750          OptOk = false;
1751          break;
1752        }
1753      }
1754      if (!OptOk)
1755        continue;
1756
1757      // Now scan back again to find the tLEApcrel or t2LEApcrelJT instruction
1758      // that gave us the initial base register definition.
1759      for (--PrevI; PrevI != B && !PrevI->definesRegister(BaseReg); --PrevI)
1760        ;
1761
1762      // The instruction should be a tLEApcrel or t2LEApcrelJT; we want
1763      // to delete it as well.
1764      MachineInstr *LeaMI = PrevI;
1765      if ((LeaMI->getOpcode() != ARM::tLEApcrelJT &&
1766           LeaMI->getOpcode() != ARM::t2LEApcrelJT) ||
1767          LeaMI->getOperand(0).getReg() != BaseReg)
1768        OptOk = false;
1769
1770      if (!OptOk)
1771        continue;
1772
1773      unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT;
1774      MachineInstr *NewJTMI = BuildMI(MBB, MI->getDebugLoc(), TII->get(Opc))
1775        .addReg(IdxReg, getKillRegState(IdxRegKill))
1776        .addJumpTableIndex(JTI, JTOP.getTargetFlags())
1777        .addImm(MI->getOperand(JTOpIdx+1).getImm());
1778      // FIXME: Insert an "ALIGN" instruction to ensure the next instruction
1779      // is 2-byte aligned. For now, asm printer will fix it up.
1780      unsigned NewSize = TII->GetInstSizeInBytes(NewJTMI);
1781      unsigned OrigSize = TII->GetInstSizeInBytes(AddrMI);
1782      OrigSize += TII->GetInstSizeInBytes(LeaMI);
1783      OrigSize += TII->GetInstSizeInBytes(MI);
1784
1785      AddrMI->eraseFromParent();
1786      LeaMI->eraseFromParent();
1787      MI->eraseFromParent();
1788
1789      int delta = OrigSize - NewSize;
1790      BBSizes[MBB->getNumber()] -= delta;
1791      AdjustBBOffsetsAfter(MBB, -delta);
1792
1793      ++NumTBs;
1794      MadeChange = true;
1795    }
1796  }
1797
1798  return MadeChange;
1799}
1800
1801/// ReorderThumb2JumpTables - Adjust the function's block layout to ensure that
1802/// jump tables always branch forwards, since that's what tbb and tbh need.
1803bool ARMConstantIslands::ReorderThumb2JumpTables(MachineFunction &MF) {
1804  bool MadeChange = false;
1805
1806  MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
1807  if (MJTI == 0) return false;
1808
1809  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1810  for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
1811    MachineInstr *MI = T2JumpTables[i];
1812    const TargetInstrDesc &TID = MI->getDesc();
1813    unsigned NumOps = TID.getNumOperands();
1814    unsigned JTOpIdx = NumOps - (TID.isPredicable() ? 3 : 2);
1815    MachineOperand JTOP = MI->getOperand(JTOpIdx);
1816    unsigned JTI = JTOP.getIndex();
1817    assert(JTI < JT.size());
1818
1819    // We prefer if target blocks for the jump table come after the jump
1820    // instruction so we can use TB[BH]. Loop through the target blocks
1821    // and try to adjust them such that that's true.
1822    int JTNumber = MI->getParent()->getNumber();
1823    const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1824    for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
1825      MachineBasicBlock *MBB = JTBBs[j];
1826      int DTNumber = MBB->getNumber();
1827
1828      if (DTNumber < JTNumber) {
1829        // The destination precedes the switch. Try to move the block forward
1830        // so we have a positive offset.
1831        MachineBasicBlock *NewBB =
1832          AdjustJTTargetBlockForward(MBB, MI->getParent());
1833        if (NewBB)
1834          MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB);
1835        MadeChange = true;
1836      }
1837    }
1838  }
1839
1840  return MadeChange;
1841}
1842
1843MachineBasicBlock *ARMConstantIslands::
1844AdjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB)
1845{
1846  MachineFunction &MF = *BB->getParent();
1847
1848  // If the destination block is terminated by an unconditional branch,
1849  // try to move it; otherwise, create a new block following the jump
1850  // table that branches back to the actual target. This is a very simple
1851  // heuristic. FIXME: We can definitely improve it.
1852  MachineBasicBlock *TBB = 0, *FBB = 0;
1853  SmallVector<MachineOperand, 4> Cond;
1854  SmallVector<MachineOperand, 4> CondPrior;
1855  MachineFunction::iterator BBi = BB;
1856  MachineFunction::iterator OldPrior = prior(BBi);
1857
1858  // If the block terminator isn't analyzable, don't try to move the block
1859  bool B = TII->AnalyzeBranch(*BB, TBB, FBB, Cond);
1860
1861  // If the block ends in an unconditional branch, move it. The prior block
1862  // has to have an analyzable terminator for us to move this one. Be paranoid
1863  // and make sure we're not trying to move the entry block of the function.
1864  if (!B && Cond.empty() && BB != MF.begin() &&
1865      !TII->AnalyzeBranch(*OldPrior, TBB, FBB, CondPrior)) {
1866    BB->moveAfter(JTBB);
1867    OldPrior->updateTerminator();
1868    BB->updateTerminator();
1869    // Update numbering to account for the block being moved.
1870    MF.RenumberBlocks();
1871    ++NumJTMoved;
1872    return NULL;
1873  }
1874
1875  // Create a new MBB for the code after the jump BB.
1876  MachineBasicBlock *NewBB =
1877    MF.CreateMachineBasicBlock(JTBB->getBasicBlock());
1878  MachineFunction::iterator MBBI = JTBB; ++MBBI;
1879  MF.insert(MBBI, NewBB);
1880
1881  // Add an unconditional branch from NewBB to BB.
1882  // There doesn't seem to be meaningful DebugInfo available; this doesn't
1883  // correspond directly to anything in the source.
1884  assert (isThumb2 && "Adjusting for TB[BH] but not in Thumb2?");
1885  BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)).addMBB(BB);
1886
1887  // Update internal data structures to account for the newly inserted MBB.
1888  MF.RenumberBlocks(NewBB);
1889
1890  // Update the CFG.
1891  NewBB->addSuccessor(BB);
1892  JTBB->removeSuccessor(BB);
1893  JTBB->addSuccessor(NewBB);
1894
1895  ++NumJTInserted;
1896  return NewBB;
1897}
1898