ARMConstantIslandPass.cpp revision eb6779c5b98383e33542207f062102e79263df16
1//===-- ARMConstantIslandPass.cpp - ARM constant islands --------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains a pass that splits the constant pool up into 'islands' 11// which are scattered through-out the function. This is required due to the 12// limited pc-relative displacements that ARM has. 13// 14//===----------------------------------------------------------------------===// 15 16#define DEBUG_TYPE "arm-cp-islands" 17#include "ARM.h" 18#include "ARMAddressingModes.h" 19#include "ARMMachineFunctionInfo.h" 20#include "ARMInstrInfo.h" 21#include "Thumb2InstrInfo.h" 22#include "llvm/CodeGen/MachineConstantPool.h" 23#include "llvm/CodeGen/MachineFunctionPass.h" 24#include "llvm/CodeGen/MachineJumpTableInfo.h" 25#include "llvm/Target/TargetData.h" 26#include "llvm/Target/TargetMachine.h" 27#include "llvm/Support/Debug.h" 28#include "llvm/Support/ErrorHandling.h" 29#include "llvm/Support/raw_ostream.h" 30#include "llvm/ADT/SmallSet.h" 31#include "llvm/ADT/SmallVector.h" 32#include "llvm/ADT/STLExtras.h" 33#include "llvm/ADT/Statistic.h" 34#include "llvm/Support/CommandLine.h" 35#include <algorithm> 36using namespace llvm; 37 38STATISTIC(NumCPEs, "Number of constpool entries"); 39STATISTIC(NumSplit, "Number of uncond branches inserted"); 40STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 41STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 42STATISTIC(NumTBs, "Number of table branches generated"); 43STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk"); 44STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk"); 45STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed"); 46STATISTIC(NumJTMoved, "Number of jump table destination blocks moved"); 47STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted"); 48 49 50static cl::opt<bool> 51AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true), 52 cl::desc("Adjust basic block layout to better use TB[BH]")); 53 54namespace { 55 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM 56 /// requires constant pool entries to be scattered among the instructions 57 /// inside a function. To do this, it completely ignores the normal LLVM 58 /// constant pool; instead, it places constants wherever it feels like with 59 /// special instructions. 60 /// 61 /// The terminology used in this pass includes: 62 /// Islands - Clumps of constants placed in the function. 63 /// Water - Potential places where an island could be formed. 64 /// CPE - A constant pool entry that has been placed somewhere, which 65 /// tracks a list of users. 66 class ARMConstantIslands : public MachineFunctionPass { 67 /// BBSizes - The size of each MachineBasicBlock in bytes of code, indexed 68 /// by MBB Number. The two-byte pads required for Thumb alignment are 69 /// counted as part of the following block (i.e., the offset and size for 70 /// a padded block will both be ==2 mod 4). 71 std::vector<unsigned> BBSizes; 72 73 /// BBOffsets - the offset of each MBB in bytes, starting from 0. 74 /// The two-byte pads required for Thumb alignment are counted as part of 75 /// the following block. 76 std::vector<unsigned> BBOffsets; 77 78 /// WaterList - A sorted list of basic blocks where islands could be placed 79 /// (i.e. blocks that don't fall through to the following block, due 80 /// to a return, unreachable, or unconditional branch). 81 std::vector<MachineBasicBlock*> WaterList; 82 83 /// NewWaterList - The subset of WaterList that was created since the 84 /// previous iteration by inserting unconditional branches. 85 SmallSet<MachineBasicBlock*, 4> NewWaterList; 86 87 typedef std::vector<MachineBasicBlock*>::iterator water_iterator; 88 89 /// CPUser - One user of a constant pool, keeping the machine instruction 90 /// pointer, the constant pool being referenced, and the max displacement 91 /// allowed from the instruction to the CP. The HighWaterMark records the 92 /// highest basic block where a new CPEntry can be placed. To ensure this 93 /// pass terminates, the CP entries are initially placed at the end of the 94 /// function and then move monotonically to lower addresses. The 95 /// exception to this rule is when the current CP entry for a particular 96 /// CPUser is out of range, but there is another CP entry for the same 97 /// constant value in range. We want to use the existing in-range CP 98 /// entry, but if it later moves out of range, the search for new water 99 /// should resume where it left off. The HighWaterMark is used to record 100 /// that point. 101 struct CPUser { 102 MachineInstr *MI; 103 MachineInstr *CPEMI; 104 MachineBasicBlock *HighWaterMark; 105 unsigned MaxDisp; 106 bool NegOk; 107 bool IsSoImm; 108 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, 109 bool neg, bool soimm) 110 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) { 111 HighWaterMark = CPEMI->getParent(); 112 } 113 }; 114 115 /// CPUsers - Keep track of all of the machine instructions that use various 116 /// constant pools and their max displacement. 117 std::vector<CPUser> CPUsers; 118 119 /// CPEntry - One per constant pool entry, keeping the machine instruction 120 /// pointer, the constpool index, and the number of CPUser's which 121 /// reference this entry. 122 struct CPEntry { 123 MachineInstr *CPEMI; 124 unsigned CPI; 125 unsigned RefCount; 126 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) 127 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} 128 }; 129 130 /// CPEntries - Keep track of all of the constant pool entry machine 131 /// instructions. For each original constpool index (i.e. those that 132 /// existed upon entry to this pass), it keeps a vector of entries. 133 /// Original elements are cloned as we go along; the clones are 134 /// put in the vector of the original element, but have distinct CPIs. 135 std::vector<std::vector<CPEntry> > CPEntries; 136 137 /// ImmBranch - One per immediate branch, keeping the machine instruction 138 /// pointer, conditional or unconditional, the max displacement, 139 /// and (if isCond is true) the corresponding unconditional branch 140 /// opcode. 141 struct ImmBranch { 142 MachineInstr *MI; 143 unsigned MaxDisp : 31; 144 bool isCond : 1; 145 int UncondBr; 146 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr) 147 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} 148 }; 149 150 /// ImmBranches - Keep track of all the immediate branch instructions. 151 /// 152 std::vector<ImmBranch> ImmBranches; 153 154 /// PushPopMIs - Keep track of all the Thumb push / pop instructions. 155 /// 156 SmallVector<MachineInstr*, 4> PushPopMIs; 157 158 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions. 159 SmallVector<MachineInstr*, 4> T2JumpTables; 160 161 /// HasFarJump - True if any far jump instruction has been emitted during 162 /// the branch fix up pass. 163 bool HasFarJump; 164 165 /// HasInlineAsm - True if the function contains inline assembly. 166 bool HasInlineAsm; 167 168 const ARMInstrInfo *TII; 169 const ARMSubtarget *STI; 170 ARMFunctionInfo *AFI; 171 bool isThumb; 172 bool isThumb1; 173 bool isThumb2; 174 public: 175 static char ID; 176 ARMConstantIslands() : MachineFunctionPass(ID) {} 177 178 virtual bool runOnMachineFunction(MachineFunction &MF); 179 180 virtual const char *getPassName() const { 181 return "ARM constant island placement and branch shortening pass"; 182 } 183 184 private: 185 void DoInitialPlacement(MachineFunction &MF, 186 std::vector<MachineInstr*> &CPEMIs); 187 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 188 void JumpTableFunctionScan(MachineFunction &MF); 189 void InitialFunctionScan(MachineFunction &MF, 190 const std::vector<MachineInstr*> &CPEMIs); 191 MachineBasicBlock *SplitBlockBeforeInstr(MachineInstr *MI); 192 void UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB); 193 void AdjustBBOffsetsAfter(MachineBasicBlock *BB, int delta); 194 bool DecrementOldEntry(unsigned CPI, MachineInstr* CPEMI); 195 int LookForExistingCPEntry(CPUser& U, unsigned UserOffset); 196 bool LookForWater(CPUser&U, unsigned UserOffset, water_iterator &WaterIter); 197 void CreateNewWater(unsigned CPUserIndex, unsigned UserOffset, 198 MachineBasicBlock *&NewMBB); 199 bool HandleConstantPoolUser(MachineFunction &MF, unsigned CPUserIndex); 200 void RemoveDeadCPEMI(MachineInstr *CPEMI); 201 bool RemoveUnusedCPEntries(); 202 bool CPEIsInRange(MachineInstr *MI, unsigned UserOffset, 203 MachineInstr *CPEMI, unsigned Disp, bool NegOk, 204 bool DoDump = false); 205 bool WaterIsInRange(unsigned UserOffset, MachineBasicBlock *Water, 206 CPUser &U); 207 bool OffsetIsInRange(unsigned UserOffset, unsigned TrialOffset, 208 unsigned Disp, bool NegativeOK, bool IsSoImm = false); 209 bool BBIsInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); 210 bool FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br); 211 bool FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br); 212 bool FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br); 213 bool UndoLRSpillRestore(); 214 bool OptimizeThumb2Instructions(MachineFunction &MF); 215 bool OptimizeThumb2Branches(MachineFunction &MF); 216 bool ReorderThumb2JumpTables(MachineFunction &MF); 217 bool OptimizeThumb2JumpTables(MachineFunction &MF); 218 MachineBasicBlock *AdjustJTTargetBlockForward(MachineBasicBlock *BB, 219 MachineBasicBlock *JTBB); 220 221 unsigned GetOffsetOf(MachineInstr *MI) const; 222 void dumpBBs(); 223 void verify(MachineFunction &MF); 224 }; 225 char ARMConstantIslands::ID = 0; 226} 227 228/// verify - check BBOffsets, BBSizes, alignment of islands 229void ARMConstantIslands::verify(MachineFunction &MF) { 230 assert(BBOffsets.size() == BBSizes.size()); 231 for (unsigned i = 1, e = BBOffsets.size(); i != e; ++i) 232 assert(BBOffsets[i-1]+BBSizes[i-1] == BBOffsets[i]); 233 if (!isThumb) 234 return; 235#ifndef NDEBUG 236 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); 237 MBBI != E; ++MBBI) { 238 MachineBasicBlock *MBB = MBBI; 239 if (!MBB->empty() && 240 MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) { 241 unsigned MBBId = MBB->getNumber(); 242 assert(HasInlineAsm || 243 (BBOffsets[MBBId]%4 == 0 && BBSizes[MBBId]%4 == 0) || 244 (BBOffsets[MBBId]%4 != 0 && BBSizes[MBBId]%4 != 0)); 245 } 246 } 247 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 248 CPUser &U = CPUsers[i]; 249 unsigned UserOffset = GetOffsetOf(U.MI) + (isThumb ? 4 : 8); 250 unsigned CPEOffset = GetOffsetOf(U.CPEMI); 251 unsigned Disp = UserOffset < CPEOffset ? CPEOffset - UserOffset : 252 UserOffset - CPEOffset; 253 assert(Disp <= U.MaxDisp || "Constant pool entry out of range!"); 254 } 255#endif 256} 257 258/// print block size and offset information - debugging 259void ARMConstantIslands::dumpBBs() { 260 for (unsigned J = 0, E = BBOffsets.size(); J !=E; ++J) { 261 DEBUG(errs() << "block " << J << " offset " << BBOffsets[J] 262 << " size " << BBSizes[J] << "\n"); 263 } 264} 265 266/// createARMConstantIslandPass - returns an instance of the constpool 267/// island pass. 268FunctionPass *llvm::createARMConstantIslandPass() { 269 return new ARMConstantIslands(); 270} 271 272bool ARMConstantIslands::runOnMachineFunction(MachineFunction &MF) { 273 MachineConstantPool &MCP = *MF.getConstantPool(); 274 275 TII = (const ARMInstrInfo*)MF.getTarget().getInstrInfo(); 276 AFI = MF.getInfo<ARMFunctionInfo>(); 277 STI = &MF.getTarget().getSubtarget<ARMSubtarget>(); 278 279 isThumb = AFI->isThumbFunction(); 280 isThumb1 = AFI->isThumb1OnlyFunction(); 281 isThumb2 = AFI->isThumb2Function(); 282 283 HasFarJump = false; 284 HasInlineAsm = false; 285 286 // Renumber all of the machine basic blocks in the function, guaranteeing that 287 // the numbers agree with the position of the block in the function. 288 MF.RenumberBlocks(); 289 290 // Try to reorder and otherwise adjust the block layout to make good use 291 // of the TB[BH] instructions. 292 bool MadeChange = false; 293 if (isThumb2 && AdjustJumpTableBlocks) { 294 JumpTableFunctionScan(MF); 295 MadeChange |= ReorderThumb2JumpTables(MF); 296 // Data is out of date, so clear it. It'll be re-computed later. 297 T2JumpTables.clear(); 298 // Blocks may have shifted around. Keep the numbering up to date. 299 MF.RenumberBlocks(); 300 } 301 302 // Thumb1 functions containing constant pools get 4-byte alignment. 303 // This is so we can keep exact track of where the alignment padding goes. 304 305 // ARM and Thumb2 functions need to be 4-byte aligned. 306 if (!isThumb1) 307 MF.EnsureAlignment(2); // 2 = log2(4) 308 309 // Perform the initial placement of the constant pool entries. To start with, 310 // we put them all at the end of the function. 311 std::vector<MachineInstr*> CPEMIs; 312 if (!MCP.isEmpty()) { 313 DoInitialPlacement(MF, CPEMIs); 314 if (isThumb1) 315 MF.EnsureAlignment(2); // 2 = log2(4) 316 } 317 318 /// The next UID to take is the first unused one. 319 AFI->initConstPoolEntryUId(CPEMIs.size()); 320 321 // Do the initial scan of the function, building up information about the 322 // sizes of each block, the location of all the water, and finding all of the 323 // constant pool users. 324 InitialFunctionScan(MF, CPEMIs); 325 CPEMIs.clear(); 326 DEBUG(dumpBBs()); 327 328 329 /// Remove dead constant pool entries. 330 RemoveUnusedCPEntries(); 331 332 // Iteratively place constant pool entries and fix up branches until there 333 // is no change. 334 unsigned NoCPIters = 0, NoBRIters = 0; 335 while (true) { 336 bool CPChange = false; 337 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) 338 CPChange |= HandleConstantPoolUser(MF, i); 339 if (CPChange && ++NoCPIters > 30) 340 llvm_unreachable("Constant Island pass failed to converge!"); 341 DEBUG(dumpBBs()); 342 343 // Clear NewWaterList now. If we split a block for branches, it should 344 // appear as "new water" for the next iteration of constant pool placement. 345 NewWaterList.clear(); 346 347 bool BRChange = false; 348 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) 349 BRChange |= FixUpImmediateBr(MF, ImmBranches[i]); 350 if (BRChange && ++NoBRIters > 30) 351 llvm_unreachable("Branch Fix Up pass failed to converge!"); 352 DEBUG(dumpBBs()); 353 354 if (!CPChange && !BRChange) 355 break; 356 MadeChange = true; 357 } 358 359 // Shrink 32-bit Thumb2 branch, load, and store instructions. 360 if (isThumb2 && !STI->prefers32BitThumb()) 361 MadeChange |= OptimizeThumb2Instructions(MF); 362 363 // After a while, this might be made debug-only, but it is not expensive. 364 verify(MF); 365 366 // If LR has been forced spilled and no far jump (i.e. BL) has been issued, 367 // undo the spill / restore of LR if possible. 368 if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump()) 369 MadeChange |= UndoLRSpillRestore(); 370 371 DEBUG(errs() << '\n'; dumpBBs()); 372 373 BBSizes.clear(); 374 BBOffsets.clear(); 375 WaterList.clear(); 376 CPUsers.clear(); 377 CPEntries.clear(); 378 ImmBranches.clear(); 379 PushPopMIs.clear(); 380 T2JumpTables.clear(); 381 382 return MadeChange; 383} 384 385/// DoInitialPlacement - Perform the initial placement of the constant pool 386/// entries. To start with, we put them all at the end of the function. 387void ARMConstantIslands::DoInitialPlacement(MachineFunction &MF, 388 std::vector<MachineInstr*> &CPEMIs) { 389 // Create the basic block to hold the CPE's. 390 MachineBasicBlock *BB = MF.CreateMachineBasicBlock(); 391 MF.push_back(BB); 392 393 // Add all of the constants from the constant pool to the end block, use an 394 // identity mapping of CPI's to CPE's. 395 const std::vector<MachineConstantPoolEntry> &CPs = 396 MF.getConstantPool()->getConstants(); 397 398 const TargetData &TD = *MF.getTarget().getTargetData(); 399 for (unsigned i = 0, e = CPs.size(); i != e; ++i) { 400 unsigned Size = TD.getTypeAllocSize(CPs[i].getType()); 401 // Verify that all constant pool entries are a multiple of 4 bytes. If not, 402 // we would have to pad them out or something so that instructions stay 403 // aligned. 404 assert((Size & 3) == 0 && "CP Entry not multiple of 4 bytes!"); 405 MachineInstr *CPEMI = 406 BuildMI(BB, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 407 .addImm(i).addConstantPoolIndex(i).addImm(Size); 408 CPEMIs.push_back(CPEMI); 409 410 // Add a new CPEntry, but no corresponding CPUser yet. 411 std::vector<CPEntry> CPEs; 412 CPEs.push_back(CPEntry(CPEMI, i)); 413 CPEntries.push_back(CPEs); 414 ++NumCPEs; 415 DEBUG(errs() << "Moved CPI#" << i << " to end of function as #" << i 416 << "\n"); 417 } 418} 419 420/// BBHasFallthrough - Return true if the specified basic block can fallthrough 421/// into the block immediately after it. 422static bool BBHasFallthrough(MachineBasicBlock *MBB) { 423 // Get the next machine basic block in the function. 424 MachineFunction::iterator MBBI = MBB; 425 // Can't fall off end of function. 426 if (llvm::next(MBBI) == MBB->getParent()->end()) 427 return false; 428 429 MachineBasicBlock *NextBB = llvm::next(MBBI); 430 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), 431 E = MBB->succ_end(); I != E; ++I) 432 if (*I == NextBB) 433 return true; 434 435 return false; 436} 437 438/// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 439/// look up the corresponding CPEntry. 440ARMConstantIslands::CPEntry 441*ARMConstantIslands::findConstPoolEntry(unsigned CPI, 442 const MachineInstr *CPEMI) { 443 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 444 // Number of entries per constpool index should be small, just do a 445 // linear search. 446 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 447 if (CPEs[i].CPEMI == CPEMI) 448 return &CPEs[i]; 449 } 450 return NULL; 451} 452 453/// JumpTableFunctionScan - Do a scan of the function, building up 454/// information about the sizes of each block and the locations of all 455/// the jump tables. 456void ARMConstantIslands::JumpTableFunctionScan(MachineFunction &MF) { 457 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); 458 MBBI != E; ++MBBI) { 459 MachineBasicBlock &MBB = *MBBI; 460 461 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 462 I != E; ++I) 463 if (I->getDesc().isBranch() && I->getOpcode() == ARM::t2BR_JT) 464 T2JumpTables.push_back(I); 465 } 466} 467 468/// InitialFunctionScan - Do the initial scan of the function, building up 469/// information about the sizes of each block, the location of all the water, 470/// and finding all of the constant pool users. 471void ARMConstantIslands::InitialFunctionScan(MachineFunction &MF, 472 const std::vector<MachineInstr*> &CPEMIs) { 473 // First thing, see if the function has any inline assembly in it. If so, 474 // we have to be conservative about alignment assumptions, as we don't 475 // know for sure the size of any instructions in the inline assembly. 476 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); 477 MBBI != E; ++MBBI) { 478 MachineBasicBlock &MBB = *MBBI; 479 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 480 I != E; ++I) 481 if (I->getOpcode() == ARM::INLINEASM) 482 HasInlineAsm = true; 483 } 484 485 // Now go back through the instructions and build up our data structures 486 unsigned Offset = 0; 487 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); 488 MBBI != E; ++MBBI) { 489 MachineBasicBlock &MBB = *MBBI; 490 491 // If this block doesn't fall through into the next MBB, then this is 492 // 'water' that a constant pool island could be placed. 493 if (!BBHasFallthrough(&MBB)) 494 WaterList.push_back(&MBB); 495 496 unsigned MBBSize = 0; 497 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 498 I != E; ++I) { 499 if (I->isDebugValue()) 500 continue; 501 // Add instruction size to MBBSize. 502 MBBSize += TII->GetInstSizeInBytes(I); 503 504 int Opc = I->getOpcode(); 505 if (I->getDesc().isBranch()) { 506 bool isCond = false; 507 unsigned Bits = 0; 508 unsigned Scale = 1; 509 int UOpc = Opc; 510 switch (Opc) { 511 default: 512 continue; // Ignore other JT branches 513 case ARM::tBR_JTr: 514 // A Thumb1 table jump may involve padding; for the offsets to 515 // be right, functions containing these must be 4-byte aligned. 516 // tBR_JTr expands to a mov pc followed by .align 2 and then the jump 517 // table entries. So this code checks whether offset of tBR_JTr + 2 518 // is aligned. That is held in Offset+MBBSize, which already has 519 // 2 added in for the size of the mov pc instruction. 520 MF.EnsureAlignment(2U); 521 if ((Offset+MBBSize)%4 != 0 || HasInlineAsm) 522 // FIXME: Add a pseudo ALIGN instruction instead. 523 MBBSize += 2; // padding 524 continue; // Does not get an entry in ImmBranches 525 case ARM::t2BR_JT: 526 T2JumpTables.push_back(I); 527 continue; // Does not get an entry in ImmBranches 528 case ARM::Bcc: 529 isCond = true; 530 UOpc = ARM::B; 531 // Fallthrough 532 case ARM::B: 533 Bits = 24; 534 Scale = 4; 535 break; 536 case ARM::tBcc: 537 isCond = true; 538 UOpc = ARM::tB; 539 Bits = 8; 540 Scale = 2; 541 break; 542 case ARM::tB: 543 Bits = 11; 544 Scale = 2; 545 break; 546 case ARM::t2Bcc: 547 isCond = true; 548 UOpc = ARM::t2B; 549 Bits = 20; 550 Scale = 2; 551 break; 552 case ARM::t2B: 553 Bits = 24; 554 Scale = 2; 555 break; 556 } 557 558 // Record this immediate branch. 559 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 560 ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc)); 561 } 562 563 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) 564 PushPopMIs.push_back(I); 565 566 if (Opc == ARM::CONSTPOOL_ENTRY) 567 continue; 568 569 // Scan the instructions for constant pool operands. 570 for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) 571 if (I->getOperand(op).isCPI()) { 572 // We found one. The addressing mode tells us the max displacement 573 // from the PC that this instruction permits. 574 575 // Basic size info comes from the TSFlags field. 576 unsigned Bits = 0; 577 unsigned Scale = 1; 578 bool NegOk = false; 579 bool IsSoImm = false; 580 581 switch (Opc) { 582 default: 583 llvm_unreachable("Unknown addressing mode for CP reference!"); 584 break; 585 586 // Taking the address of a CP entry. 587 case ARM::LEApcrel: 588 // This takes a SoImm, which is 8 bit immediate rotated. We'll 589 // pretend the maximum offset is 255 * 4. Since each instruction 590 // 4 byte wide, this is always correct. We'll check for other 591 // displacements that fits in a SoImm as well. 592 Bits = 8; 593 Scale = 4; 594 NegOk = true; 595 IsSoImm = true; 596 break; 597 case ARM::t2LEApcrel: 598 Bits = 12; 599 NegOk = true; 600 break; 601 case ARM::tLEApcrel: 602 Bits = 8; 603 Scale = 4; 604 break; 605 606 case ARM::LDRi12: 607 case ARM::LDRcp: 608 case ARM::t2LDRi12: 609 case ARM::t2LDRHi12: 610 case ARM::t2LDRBi12: 611 case ARM::t2LDRSHi12: 612 case ARM::t2LDRSBi12: 613 Bits = 12; // +-offset_12 614 NegOk = true; 615 break; 616 617 case ARM::tLDRpci: 618 case ARM::tLDRcp: 619 Bits = 8; 620 Scale = 4; // +(offset_8*4) 621 break; 622 623 case ARM::VLDRD: 624 case ARM::VLDRS: 625 Bits = 8; 626 Scale = 4; // +-(offset_8*4) 627 NegOk = true; 628 break; 629 } 630 631 // Remember that this is a user of a CP entry. 632 unsigned CPI = I->getOperand(op).getIndex(); 633 MachineInstr *CPEMI = CPEMIs[CPI]; 634 unsigned MaxOffs = ((1 << Bits)-1) * Scale; 635 CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm)); 636 637 // Increment corresponding CPEntry reference count. 638 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 639 assert(CPE && "Cannot find a corresponding CPEntry!"); 640 CPE->RefCount++; 641 642 // Instructions can only use one CP entry, don't bother scanning the 643 // rest of the operands. 644 break; 645 } 646 } 647 648 // In thumb mode, if this block is a constpool island, we may need padding 649 // so it's aligned on 4 byte boundary. 650 if (isThumb && 651 !MBB.empty() && 652 MBB.begin()->getOpcode() == ARM::CONSTPOOL_ENTRY && 653 ((Offset%4) != 0 || HasInlineAsm)) 654 MBBSize += 2; 655 656 BBSizes.push_back(MBBSize); 657 BBOffsets.push_back(Offset); 658 Offset += MBBSize; 659 } 660} 661 662/// GetOffsetOf - Return the current offset of the specified machine instruction 663/// from the start of the function. This offset changes as stuff is moved 664/// around inside the function. 665unsigned ARMConstantIslands::GetOffsetOf(MachineInstr *MI) const { 666 MachineBasicBlock *MBB = MI->getParent(); 667 668 // The offset is composed of two things: the sum of the sizes of all MBB's 669 // before this instruction's block, and the offset from the start of the block 670 // it is in. 671 unsigned Offset = BBOffsets[MBB->getNumber()]; 672 673 // If we're looking for a CONSTPOOL_ENTRY in Thumb, see if this block has 674 // alignment padding, and compensate if so. 675 if (isThumb && 676 MI->getOpcode() == ARM::CONSTPOOL_ENTRY && 677 (Offset%4 != 0 || HasInlineAsm)) 678 Offset += 2; 679 680 // Sum instructions before MI in MBB. 681 for (MachineBasicBlock::iterator I = MBB->begin(); ; ++I) { 682 assert(I != MBB->end() && "Didn't find MI in its own basic block?"); 683 if (&*I == MI) return Offset; 684 Offset += TII->GetInstSizeInBytes(I); 685 } 686} 687 688/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 689/// ID. 690static bool CompareMBBNumbers(const MachineBasicBlock *LHS, 691 const MachineBasicBlock *RHS) { 692 return LHS->getNumber() < RHS->getNumber(); 693} 694 695/// UpdateForInsertedWaterBlock - When a block is newly inserted into the 696/// machine function, it upsets all of the block numbers. Renumber the blocks 697/// and update the arrays that parallel this numbering. 698void ARMConstantIslands::UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB) { 699 // Renumber the MBB's to keep them consequtive. 700 NewBB->getParent()->RenumberBlocks(NewBB); 701 702 // Insert a size into BBSizes to align it properly with the (newly 703 // renumbered) block numbers. 704 BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0); 705 706 // Likewise for BBOffsets. 707 BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0); 708 709 // Next, update WaterList. Specifically, we need to add NewMBB as having 710 // available water after it. 711 water_iterator IP = 712 std::lower_bound(WaterList.begin(), WaterList.end(), NewBB, 713 CompareMBBNumbers); 714 WaterList.insert(IP, NewBB); 715} 716 717 718/// Split the basic block containing MI into two blocks, which are joined by 719/// an unconditional branch. Update data structures and renumber blocks to 720/// account for this change and returns the newly created block. 721MachineBasicBlock *ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr *MI) { 722 MachineBasicBlock *OrigBB = MI->getParent(); 723 MachineFunction &MF = *OrigBB->getParent(); 724 725 // Create a new MBB for the code after the OrigBB. 726 MachineBasicBlock *NewBB = 727 MF.CreateMachineBasicBlock(OrigBB->getBasicBlock()); 728 MachineFunction::iterator MBBI = OrigBB; ++MBBI; 729 MF.insert(MBBI, NewBB); 730 731 // Splice the instructions starting with MI over to NewBB. 732 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 733 734 // Add an unconditional branch from OrigBB to NewBB. 735 // Note the new unconditional branch is not being recorded. 736 // There doesn't seem to be meaningful DebugInfo available; this doesn't 737 // correspond to anything in the source. 738 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B; 739 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB); 740 ++NumSplit; 741 742 // Update the CFG. All succs of OrigBB are now succs of NewBB. 743 while (!OrigBB->succ_empty()) { 744 MachineBasicBlock *Succ = *OrigBB->succ_begin(); 745 OrigBB->removeSuccessor(Succ); 746 NewBB->addSuccessor(Succ); 747 748 // This pass should be run after register allocation, so there should be no 749 // PHI nodes to update. 750 assert((Succ->empty() || !Succ->begin()->isPHI()) 751 && "PHI nodes should be eliminated by now!"); 752 } 753 754 // OrigBB branches to NewBB. 755 OrigBB->addSuccessor(NewBB); 756 757 // Update internal data structures to account for the newly inserted MBB. 758 // This is almost the same as UpdateForInsertedWaterBlock, except that 759 // the Water goes after OrigBB, not NewBB. 760 MF.RenumberBlocks(NewBB); 761 762 // Insert a size into BBSizes to align it properly with the (newly 763 // renumbered) block numbers. 764 BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0); 765 766 // Likewise for BBOffsets. 767 BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0); 768 769 // Next, update WaterList. Specifically, we need to add OrigMBB as having 770 // available water after it (but not if it's already there, which happens 771 // when splitting before a conditional branch that is followed by an 772 // unconditional branch - in that case we want to insert NewBB). 773 water_iterator IP = 774 std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB, 775 CompareMBBNumbers); 776 MachineBasicBlock* WaterBB = *IP; 777 if (WaterBB == OrigBB) 778 WaterList.insert(llvm::next(IP), NewBB); 779 else 780 WaterList.insert(IP, OrigBB); 781 NewWaterList.insert(OrigBB); 782 783 unsigned OrigBBI = OrigBB->getNumber(); 784 unsigned NewBBI = NewBB->getNumber(); 785 786 int delta = isThumb1 ? 2 : 4; 787 788 // Figure out how large the OrigBB is. As the first half of the original 789 // block, it cannot contain a tablejump. The size includes 790 // the new jump we added. (It should be possible to do this without 791 // recounting everything, but it's very confusing, and this is rarely 792 // executed.) 793 unsigned OrigBBSize = 0; 794 for (MachineBasicBlock::iterator I = OrigBB->begin(), E = OrigBB->end(); 795 I != E; ++I) 796 OrigBBSize += TII->GetInstSizeInBytes(I); 797 BBSizes[OrigBBI] = OrigBBSize; 798 799 // ...and adjust BBOffsets for NewBB accordingly. 800 BBOffsets[NewBBI] = BBOffsets[OrigBBI] + BBSizes[OrigBBI]; 801 802 // Figure out how large the NewMBB is. As the second half of the original 803 // block, it may contain a tablejump. 804 unsigned NewBBSize = 0; 805 for (MachineBasicBlock::iterator I = NewBB->begin(), E = NewBB->end(); 806 I != E; ++I) 807 NewBBSize += TII->GetInstSizeInBytes(I); 808 // Set the size of NewBB in BBSizes. It does not include any padding now. 809 BBSizes[NewBBI] = NewBBSize; 810 811 MachineInstr* ThumbJTMI = prior(NewBB->end()); 812 if (ThumbJTMI->getOpcode() == ARM::tBR_JTr) { 813 // We've added another 2-byte instruction before this tablejump, which 814 // means we will always need padding if we didn't before, and vice versa. 815 816 // The original offset of the jump instruction was: 817 unsigned OrigOffset = BBOffsets[OrigBBI] + BBSizes[OrigBBI] - delta; 818 if (OrigOffset%4 == 0) { 819 // We had padding before and now we don't. No net change in code size. 820 delta = 0; 821 } else { 822 // We didn't have padding before and now we do. 823 BBSizes[NewBBI] += 2; 824 delta = 4; 825 } 826 } 827 828 // All BBOffsets following these blocks must be modified. 829 if (delta) 830 AdjustBBOffsetsAfter(NewBB, delta); 831 832 return NewBB; 833} 834 835/// OffsetIsInRange - Checks whether UserOffset (the location of a constant pool 836/// reference) is within MaxDisp of TrialOffset (a proposed location of a 837/// constant pool entry). 838bool ARMConstantIslands::OffsetIsInRange(unsigned UserOffset, 839 unsigned TrialOffset, unsigned MaxDisp, 840 bool NegativeOK, bool IsSoImm) { 841 // On Thumb offsets==2 mod 4 are rounded down by the hardware for 842 // purposes of the displacement computation; compensate for that here. 843 // Effectively, the valid range of displacements is 2 bytes smaller for such 844 // references. 845 unsigned TotalAdj = 0; 846 if (isThumb && UserOffset%4 !=0) { 847 UserOffset -= 2; 848 TotalAdj = 2; 849 } 850 // CPEs will be rounded up to a multiple of 4. 851 if (isThumb && TrialOffset%4 != 0) { 852 TrialOffset += 2; 853 TotalAdj += 2; 854 } 855 856 // In Thumb2 mode, later branch adjustments can shift instructions up and 857 // cause alignment change. In the worst case scenario this can cause the 858 // user's effective address to be subtracted by 2 and the CPE's address to 859 // be plus 2. 860 if (isThumb2 && TotalAdj != 4) 861 MaxDisp -= (4 - TotalAdj); 862 863 if (UserOffset <= TrialOffset) { 864 // User before the Trial. 865 if (TrialOffset - UserOffset <= MaxDisp) 866 return true; 867 // FIXME: Make use full range of soimm values. 868 } else if (NegativeOK) { 869 if (UserOffset - TrialOffset <= MaxDisp) 870 return true; 871 // FIXME: Make use full range of soimm values. 872 } 873 return false; 874} 875 876/// WaterIsInRange - Returns true if a CPE placed after the specified 877/// Water (a basic block) will be in range for the specific MI. 878 879bool ARMConstantIslands::WaterIsInRange(unsigned UserOffset, 880 MachineBasicBlock* Water, CPUser &U) { 881 unsigned MaxDisp = U.MaxDisp; 882 unsigned CPEOffset = BBOffsets[Water->getNumber()] + 883 BBSizes[Water->getNumber()]; 884 885 // If the CPE is to be inserted before the instruction, that will raise 886 // the offset of the instruction. 887 if (CPEOffset < UserOffset) 888 UserOffset += U.CPEMI->getOperand(2).getImm(); 889 890 return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, U.NegOk, U.IsSoImm); 891} 892 893/// CPEIsInRange - Returns true if the distance between specific MI and 894/// specific ConstPool entry instruction can fit in MI's displacement field. 895bool ARMConstantIslands::CPEIsInRange(MachineInstr *MI, unsigned UserOffset, 896 MachineInstr *CPEMI, unsigned MaxDisp, 897 bool NegOk, bool DoDump) { 898 unsigned CPEOffset = GetOffsetOf(CPEMI); 899 assert((CPEOffset%4 == 0 || HasInlineAsm) && "Misaligned CPE"); 900 901 if (DoDump) { 902 DEBUG(errs() << "User of CPE#" << CPEMI->getOperand(0).getImm() 903 << " max delta=" << MaxDisp 904 << " insn address=" << UserOffset 905 << " CPE address=" << CPEOffset 906 << " offset=" << int(CPEOffset-UserOffset) << "\t" << *MI); 907 } 908 909 return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, NegOk); 910} 911 912#ifndef NDEBUG 913/// BBIsJumpedOver - Return true of the specified basic block's only predecessor 914/// unconditionally branches to its only successor. 915static bool BBIsJumpedOver(MachineBasicBlock *MBB) { 916 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 917 return false; 918 919 MachineBasicBlock *Succ = *MBB->succ_begin(); 920 MachineBasicBlock *Pred = *MBB->pred_begin(); 921 MachineInstr *PredMI = &Pred->back(); 922 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB 923 || PredMI->getOpcode() == ARM::t2B) 924 return PredMI->getOperand(0).getMBB() == Succ; 925 return false; 926} 927#endif // NDEBUG 928 929void ARMConstantIslands::AdjustBBOffsetsAfter(MachineBasicBlock *BB, 930 int delta) { 931 MachineFunction::iterator MBBI = BB; MBBI = llvm::next(MBBI); 932 for(unsigned i = BB->getNumber()+1, e = BB->getParent()->getNumBlockIDs(); 933 i < e; ++i) { 934 BBOffsets[i] += delta; 935 // If some existing blocks have padding, adjust the padding as needed, a 936 // bit tricky. delta can be negative so don't use % on that. 937 if (!isThumb) 938 continue; 939 MachineBasicBlock *MBB = MBBI; 940 if (!MBB->empty() && !HasInlineAsm) { 941 // Constant pool entries require padding. 942 if (MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) { 943 unsigned OldOffset = BBOffsets[i] - delta; 944 if ((OldOffset%4) == 0 && (BBOffsets[i]%4) != 0) { 945 // add new padding 946 BBSizes[i] += 2; 947 delta += 2; 948 } else if ((OldOffset%4) != 0 && (BBOffsets[i]%4) == 0) { 949 // remove existing padding 950 BBSizes[i] -= 2; 951 delta -= 2; 952 } 953 } 954 // Thumb1 jump tables require padding. They should be at the end; 955 // following unconditional branches are removed by AnalyzeBranch. 956 // tBR_JTr expands to a mov pc followed by .align 2 and then the jump 957 // table entries. So this code checks whether offset of tBR_JTr 958 // is aligned; if it is, the offset of the jump table following the 959 // instruction will not be aligned, and we need padding. 960 MachineInstr *ThumbJTMI = prior(MBB->end()); 961 if (ThumbJTMI->getOpcode() == ARM::tBR_JTr) { 962 unsigned NewMIOffset = GetOffsetOf(ThumbJTMI); 963 unsigned OldMIOffset = NewMIOffset - delta; 964 if ((OldMIOffset%4) == 0 && (NewMIOffset%4) != 0) { 965 // remove existing padding 966 BBSizes[i] -= 2; 967 delta -= 2; 968 } else if ((OldMIOffset%4) != 0 && (NewMIOffset%4) == 0) { 969 // add new padding 970 BBSizes[i] += 2; 971 delta += 2; 972 } 973 } 974 if (delta==0) 975 return; 976 } 977 MBBI = llvm::next(MBBI); 978 } 979} 980 981/// DecrementOldEntry - find the constant pool entry with index CPI 982/// and instruction CPEMI, and decrement its refcount. If the refcount 983/// becomes 0 remove the entry and instruction. Returns true if we removed 984/// the entry, false if we didn't. 985 986bool ARMConstantIslands::DecrementOldEntry(unsigned CPI, MachineInstr *CPEMI) { 987 // Find the old entry. Eliminate it if it is no longer used. 988 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 989 assert(CPE && "Unexpected!"); 990 if (--CPE->RefCount == 0) { 991 RemoveDeadCPEMI(CPEMI); 992 CPE->CPEMI = NULL; 993 --NumCPEs; 994 return true; 995 } 996 return false; 997} 998 999/// LookForCPEntryInRange - see if the currently referenced CPE is in range; 1000/// if not, see if an in-range clone of the CPE is in range, and if so, 1001/// change the data structures so the user references the clone. Returns: 1002/// 0 = no existing entry found 1003/// 1 = entry found, and there were no code insertions or deletions 1004/// 2 = entry found, and there were code insertions or deletions 1005int ARMConstantIslands::LookForExistingCPEntry(CPUser& U, unsigned UserOffset) 1006{ 1007 MachineInstr *UserMI = U.MI; 1008 MachineInstr *CPEMI = U.CPEMI; 1009 1010 // Check to see if the CPE is already in-range. 1011 if (CPEIsInRange(UserMI, UserOffset, CPEMI, U.MaxDisp, U.NegOk, true)) { 1012 DEBUG(errs() << "In range\n"); 1013 return 1; 1014 } 1015 1016 // No. Look for previously created clones of the CPE that are in range. 1017 unsigned CPI = CPEMI->getOperand(1).getIndex(); 1018 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 1019 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 1020 // We already tried this one 1021 if (CPEs[i].CPEMI == CPEMI) 1022 continue; 1023 // Removing CPEs can leave empty entries, skip 1024 if (CPEs[i].CPEMI == NULL) 1025 continue; 1026 if (CPEIsInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.MaxDisp, U.NegOk)) { 1027 DEBUG(errs() << "Replacing CPE#" << CPI << " with CPE#" 1028 << CPEs[i].CPI << "\n"); 1029 // Point the CPUser node to the replacement 1030 U.CPEMI = CPEs[i].CPEMI; 1031 // Change the CPI in the instruction operand to refer to the clone. 1032 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) 1033 if (UserMI->getOperand(j).isCPI()) { 1034 UserMI->getOperand(j).setIndex(CPEs[i].CPI); 1035 break; 1036 } 1037 // Adjust the refcount of the clone... 1038 CPEs[i].RefCount++; 1039 // ...and the original. If we didn't remove the old entry, none of the 1040 // addresses changed, so we don't need another pass. 1041 return DecrementOldEntry(CPI, CPEMI) ? 2 : 1; 1042 } 1043 } 1044 return 0; 1045} 1046 1047/// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 1048/// the specific unconditional branch instruction. 1049static inline unsigned getUnconditionalBrDisp(int Opc) { 1050 switch (Opc) { 1051 case ARM::tB: 1052 return ((1<<10)-1)*2; 1053 case ARM::t2B: 1054 return ((1<<23)-1)*2; 1055 default: 1056 break; 1057 } 1058 1059 return ((1<<23)-1)*4; 1060} 1061 1062/// LookForWater - Look for an existing entry in the WaterList in which 1063/// we can place the CPE referenced from U so it's within range of U's MI. 1064/// Returns true if found, false if not. If it returns true, WaterIter 1065/// is set to the WaterList entry. For Thumb, prefer water that will not 1066/// introduce padding to water that will. To ensure that this pass 1067/// terminates, the CPE location for a particular CPUser is only allowed to 1068/// move to a lower address, so search backward from the end of the list and 1069/// prefer the first water that is in range. 1070bool ARMConstantIslands::LookForWater(CPUser &U, unsigned UserOffset, 1071 water_iterator &WaterIter) { 1072 if (WaterList.empty()) 1073 return false; 1074 1075 bool FoundWaterThatWouldPad = false; 1076 water_iterator IPThatWouldPad; 1077 for (water_iterator IP = prior(WaterList.end()), 1078 B = WaterList.begin();; --IP) { 1079 MachineBasicBlock* WaterBB = *IP; 1080 // Check if water is in range and is either at a lower address than the 1081 // current "high water mark" or a new water block that was created since 1082 // the previous iteration by inserting an unconditional branch. In the 1083 // latter case, we want to allow resetting the high water mark back to 1084 // this new water since we haven't seen it before. Inserting branches 1085 // should be relatively uncommon and when it does happen, we want to be 1086 // sure to take advantage of it for all the CPEs near that block, so that 1087 // we don't insert more branches than necessary. 1088 if (WaterIsInRange(UserOffset, WaterBB, U) && 1089 (WaterBB->getNumber() < U.HighWaterMark->getNumber() || 1090 NewWaterList.count(WaterBB))) { 1091 unsigned WBBId = WaterBB->getNumber(); 1092 if (isThumb && 1093 (BBOffsets[WBBId] + BBSizes[WBBId])%4 != 0) { 1094 // This is valid Water, but would introduce padding. Remember 1095 // it in case we don't find any Water that doesn't do this. 1096 if (!FoundWaterThatWouldPad) { 1097 FoundWaterThatWouldPad = true; 1098 IPThatWouldPad = IP; 1099 } 1100 } else { 1101 WaterIter = IP; 1102 return true; 1103 } 1104 } 1105 if (IP == B) 1106 break; 1107 } 1108 if (FoundWaterThatWouldPad) { 1109 WaterIter = IPThatWouldPad; 1110 return true; 1111 } 1112 return false; 1113} 1114 1115/// CreateNewWater - No existing WaterList entry will work for 1116/// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 1117/// block is used if in range, and the conditional branch munged so control 1118/// flow is correct. Otherwise the block is split to create a hole with an 1119/// unconditional branch around it. In either case NewMBB is set to a 1120/// block following which the new island can be inserted (the WaterList 1121/// is not adjusted). 1122void ARMConstantIslands::CreateNewWater(unsigned CPUserIndex, 1123 unsigned UserOffset, 1124 MachineBasicBlock *&NewMBB) { 1125 CPUser &U = CPUsers[CPUserIndex]; 1126 MachineInstr *UserMI = U.MI; 1127 MachineInstr *CPEMI = U.CPEMI; 1128 MachineBasicBlock *UserMBB = UserMI->getParent(); 1129 unsigned OffsetOfNextBlock = BBOffsets[UserMBB->getNumber()] + 1130 BBSizes[UserMBB->getNumber()]; 1131 assert(OffsetOfNextBlock== BBOffsets[UserMBB->getNumber()+1]); 1132 1133 // If the block does not end in an unconditional branch already, and if the 1134 // end of the block is within range, make new water there. (The addition 1135 // below is for the unconditional branch we will be adding: 4 bytes on ARM + 1136 // Thumb2, 2 on Thumb1. Possible Thumb1 alignment padding is allowed for 1137 // inside OffsetIsInRange. 1138 if (BBHasFallthrough(UserMBB) && 1139 OffsetIsInRange(UserOffset, OffsetOfNextBlock + (isThumb1 ? 2: 4), 1140 U.MaxDisp, U.NegOk, U.IsSoImm)) { 1141 DEBUG(errs() << "Split at end of block\n"); 1142 if (&UserMBB->back() == UserMI) 1143 assert(BBHasFallthrough(UserMBB) && "Expected a fallthrough BB!"); 1144 NewMBB = llvm::next(MachineFunction::iterator(UserMBB)); 1145 // Add an unconditional branch from UserMBB to fallthrough block. 1146 // Record it for branch lengthening; this new branch will not get out of 1147 // range, but if the preceding conditional branch is out of range, the 1148 // targets will be exchanged, and the altered branch may be out of 1149 // range, so the machinery has to know about it. 1150 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B; 1151 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB); 1152 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 1153 ImmBranches.push_back(ImmBranch(&UserMBB->back(), 1154 MaxDisp, false, UncondBr)); 1155 int delta = isThumb1 ? 2 : 4; 1156 BBSizes[UserMBB->getNumber()] += delta; 1157 AdjustBBOffsetsAfter(UserMBB, delta); 1158 } else { 1159 // What a big block. Find a place within the block to split it. 1160 // This is a little tricky on Thumb1 since instructions are 2 bytes 1161 // and constant pool entries are 4 bytes: if instruction I references 1162 // island CPE, and instruction I+1 references CPE', it will 1163 // not work well to put CPE as far forward as possible, since then 1164 // CPE' cannot immediately follow it (that location is 2 bytes 1165 // farther away from I+1 than CPE was from I) and we'd need to create 1166 // a new island. So, we make a first guess, then walk through the 1167 // instructions between the one currently being looked at and the 1168 // possible insertion point, and make sure any other instructions 1169 // that reference CPEs will be able to use the same island area; 1170 // if not, we back up the insertion point. 1171 1172 // The 4 in the following is for the unconditional branch we'll be 1173 // inserting (allows for long branch on Thumb1). Alignment of the 1174 // island is handled inside OffsetIsInRange. 1175 unsigned BaseInsertOffset = UserOffset + U.MaxDisp -4; 1176 // This could point off the end of the block if we've already got 1177 // constant pool entries following this block; only the last one is 1178 // in the water list. Back past any possible branches (allow for a 1179 // conditional and a maximally long unconditional). 1180 if (BaseInsertOffset >= BBOffsets[UserMBB->getNumber()+1]) 1181 BaseInsertOffset = BBOffsets[UserMBB->getNumber()+1] - 1182 (isThumb1 ? 6 : 8); 1183 unsigned EndInsertOffset = BaseInsertOffset + 1184 CPEMI->getOperand(2).getImm(); 1185 MachineBasicBlock::iterator MI = UserMI; 1186 ++MI; 1187 unsigned CPUIndex = CPUserIndex+1; 1188 unsigned NumCPUsers = CPUsers.size(); 1189 MachineInstr *LastIT = 0; 1190 for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI); 1191 Offset < BaseInsertOffset; 1192 Offset += TII->GetInstSizeInBytes(MI), 1193 MI = llvm::next(MI)) { 1194 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) { 1195 CPUser &U = CPUsers[CPUIndex]; 1196 if (!OffsetIsInRange(Offset, EndInsertOffset, 1197 U.MaxDisp, U.NegOk, U.IsSoImm)) { 1198 BaseInsertOffset -= (isThumb1 ? 2 : 4); 1199 EndInsertOffset -= (isThumb1 ? 2 : 4); 1200 } 1201 // This is overly conservative, as we don't account for CPEMIs 1202 // being reused within the block, but it doesn't matter much. 1203 EndInsertOffset += CPUsers[CPUIndex].CPEMI->getOperand(2).getImm(); 1204 CPUIndex++; 1205 } 1206 1207 // Remember the last IT instruction. 1208 if (MI->getOpcode() == ARM::t2IT) 1209 LastIT = MI; 1210 } 1211 1212 DEBUG(errs() << "Split in middle of big block\n"); 1213 --MI; 1214 1215 // Avoid splitting an IT block. 1216 if (LastIT) { 1217 unsigned PredReg = 0; 1218 ARMCC::CondCodes CC = llvm::getITInstrPredicate(MI, PredReg); 1219 if (CC != ARMCC::AL) 1220 MI = LastIT; 1221 } 1222 NewMBB = SplitBlockBeforeInstr(MI); 1223 } 1224} 1225 1226/// HandleConstantPoolUser - Analyze the specified user, checking to see if it 1227/// is out-of-range. If so, pick up the constant pool value and move it some 1228/// place in-range. Return true if we changed any addresses (thus must run 1229/// another pass of branch lengthening), false otherwise. 1230bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction &MF, 1231 unsigned CPUserIndex) { 1232 CPUser &U = CPUsers[CPUserIndex]; 1233 MachineInstr *UserMI = U.MI; 1234 MachineInstr *CPEMI = U.CPEMI; 1235 unsigned CPI = CPEMI->getOperand(1).getIndex(); 1236 unsigned Size = CPEMI->getOperand(2).getImm(); 1237 // Compute this only once, it's expensive. The 4 or 8 is the value the 1238 // hardware keeps in the PC. 1239 unsigned UserOffset = GetOffsetOf(UserMI) + (isThumb ? 4 : 8); 1240 1241 // See if the current entry is within range, or there is a clone of it 1242 // in range. 1243 int result = LookForExistingCPEntry(U, UserOffset); 1244 if (result==1) return false; 1245 else if (result==2) return true; 1246 1247 // No existing clone of this CPE is within range. 1248 // We will be generating a new clone. Get a UID for it. 1249 unsigned ID = AFI->createConstPoolEntryUId(); 1250 1251 // Look for water where we can place this CPE. 1252 MachineBasicBlock *NewIsland = MF.CreateMachineBasicBlock(); 1253 MachineBasicBlock *NewMBB; 1254 water_iterator IP; 1255 if (LookForWater(U, UserOffset, IP)) { 1256 DEBUG(errs() << "found water in range\n"); 1257 MachineBasicBlock *WaterBB = *IP; 1258 1259 // If the original WaterList entry was "new water" on this iteration, 1260 // propagate that to the new island. This is just keeping NewWaterList 1261 // updated to match the WaterList, which will be updated below. 1262 if (NewWaterList.count(WaterBB)) { 1263 NewWaterList.erase(WaterBB); 1264 NewWaterList.insert(NewIsland); 1265 } 1266 // The new CPE goes before the following block (NewMBB). 1267 NewMBB = llvm::next(MachineFunction::iterator(WaterBB)); 1268 1269 } else { 1270 // No water found. 1271 DEBUG(errs() << "No water found\n"); 1272 CreateNewWater(CPUserIndex, UserOffset, NewMBB); 1273 1274 // SplitBlockBeforeInstr adds to WaterList, which is important when it is 1275 // called while handling branches so that the water will be seen on the 1276 // next iteration for constant pools, but in this context, we don't want 1277 // it. Check for this so it will be removed from the WaterList. 1278 // Also remove any entry from NewWaterList. 1279 MachineBasicBlock *WaterBB = prior(MachineFunction::iterator(NewMBB)); 1280 IP = std::find(WaterList.begin(), WaterList.end(), WaterBB); 1281 if (IP != WaterList.end()) 1282 NewWaterList.erase(WaterBB); 1283 1284 // We are adding new water. Update NewWaterList. 1285 NewWaterList.insert(NewIsland); 1286 } 1287 1288 // Remove the original WaterList entry; we want subsequent insertions in 1289 // this vicinity to go after the one we're about to insert. This 1290 // considerably reduces the number of times we have to move the same CPE 1291 // more than once and is also important to ensure the algorithm terminates. 1292 if (IP != WaterList.end()) 1293 WaterList.erase(IP); 1294 1295 // Okay, we know we can put an island before NewMBB now, do it! 1296 MF.insert(NewMBB, NewIsland); 1297 1298 // Update internal data structures to account for the newly inserted MBB. 1299 UpdateForInsertedWaterBlock(NewIsland); 1300 1301 // Decrement the old entry, and remove it if refcount becomes 0. 1302 DecrementOldEntry(CPI, CPEMI); 1303 1304 // Now that we have an island to add the CPE to, clone the original CPE and 1305 // add it to the island. 1306 U.HighWaterMark = NewIsland; 1307 U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 1308 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size); 1309 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1310 ++NumCPEs; 1311 1312 BBOffsets[NewIsland->getNumber()] = BBOffsets[NewMBB->getNumber()]; 1313 // Compensate for .align 2 in thumb mode. 1314 if (isThumb && (BBOffsets[NewIsland->getNumber()]%4 != 0 || HasInlineAsm)) 1315 Size += 2; 1316 // Increase the size of the island block to account for the new entry. 1317 BBSizes[NewIsland->getNumber()] += Size; 1318 AdjustBBOffsetsAfter(NewIsland, Size); 1319 1320 // Finally, change the CPI in the instruction operand to be ID. 1321 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) 1322 if (UserMI->getOperand(i).isCPI()) { 1323 UserMI->getOperand(i).setIndex(ID); 1324 break; 1325 } 1326 1327 DEBUG(errs() << " Moved CPE to #" << ID << " CPI=" << CPI 1328 << '\t' << *UserMI); 1329 1330 return true; 1331} 1332 1333/// RemoveDeadCPEMI - Remove a dead constant pool entry instruction. Update 1334/// sizes and offsets of impacted basic blocks. 1335void ARMConstantIslands::RemoveDeadCPEMI(MachineInstr *CPEMI) { 1336 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1337 unsigned Size = CPEMI->getOperand(2).getImm(); 1338 CPEMI->eraseFromParent(); 1339 BBSizes[CPEBB->getNumber()] -= Size; 1340 // All succeeding offsets have the current size value added in, fix this. 1341 if (CPEBB->empty()) { 1342 // In thumb1 mode, the size of island may be padded by two to compensate for 1343 // the alignment requirement. Then it will now be 2 when the block is 1344 // empty, so fix this. 1345 // All succeeding offsets have the current size value added in, fix this. 1346 if (BBSizes[CPEBB->getNumber()] != 0) { 1347 Size += BBSizes[CPEBB->getNumber()]; 1348 BBSizes[CPEBB->getNumber()] = 0; 1349 } 1350 } 1351 AdjustBBOffsetsAfter(CPEBB, -Size); 1352 // An island has only one predecessor BB and one successor BB. Check if 1353 // this BB's predecessor jumps directly to this BB's successor. This 1354 // shouldn't happen currently. 1355 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); 1356 // FIXME: remove the empty blocks after all the work is done? 1357} 1358 1359/// RemoveUnusedCPEntries - Remove constant pool entries whose refcounts 1360/// are zero. 1361bool ARMConstantIslands::RemoveUnusedCPEntries() { 1362 unsigned MadeChange = false; 1363 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 1364 std::vector<CPEntry> &CPEs = CPEntries[i]; 1365 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { 1366 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { 1367 RemoveDeadCPEMI(CPEs[j].CPEMI); 1368 CPEs[j].CPEMI = NULL; 1369 MadeChange = true; 1370 } 1371 } 1372 } 1373 return MadeChange; 1374} 1375 1376/// BBIsInRange - Returns true if the distance between specific MI and 1377/// specific BB can fit in MI's displacement field. 1378bool ARMConstantIslands::BBIsInRange(MachineInstr *MI,MachineBasicBlock *DestBB, 1379 unsigned MaxDisp) { 1380 unsigned PCAdj = isThumb ? 4 : 8; 1381 unsigned BrOffset = GetOffsetOf(MI) + PCAdj; 1382 unsigned DestOffset = BBOffsets[DestBB->getNumber()]; 1383 1384 DEBUG(errs() << "Branch of destination BB#" << DestBB->getNumber() 1385 << " from BB#" << MI->getParent()->getNumber() 1386 << " max delta=" << MaxDisp 1387 << " from " << GetOffsetOf(MI) << " to " << DestOffset 1388 << " offset " << int(DestOffset-BrOffset) << "\t" << *MI); 1389 1390 if (BrOffset <= DestOffset) { 1391 // Branch before the Dest. 1392 if (DestOffset-BrOffset <= MaxDisp) 1393 return true; 1394 } else { 1395 if (BrOffset-DestOffset <= MaxDisp) 1396 return true; 1397 } 1398 return false; 1399} 1400 1401/// FixUpImmediateBr - Fix up an immediate branch whose destination is too far 1402/// away to fit in its displacement field. 1403bool ARMConstantIslands::FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br) { 1404 MachineInstr *MI = Br.MI; 1405 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1406 1407 // Check to see if the DestBB is already in-range. 1408 if (BBIsInRange(MI, DestBB, Br.MaxDisp)) 1409 return false; 1410 1411 if (!Br.isCond) 1412 return FixUpUnconditionalBr(MF, Br); 1413 return FixUpConditionalBr(MF, Br); 1414} 1415 1416/// FixUpUnconditionalBr - Fix up an unconditional branch whose destination is 1417/// too far away to fit in its displacement field. If the LR register has been 1418/// spilled in the epilogue, then we can use BL to implement a far jump. 1419/// Otherwise, add an intermediate branch instruction to a branch. 1420bool 1421ARMConstantIslands::FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br) { 1422 MachineInstr *MI = Br.MI; 1423 MachineBasicBlock *MBB = MI->getParent(); 1424 if (!isThumb1) 1425 llvm_unreachable("FixUpUnconditionalBr is Thumb1 only!"); 1426 1427 // Use BL to implement far jump. 1428 Br.MaxDisp = (1 << 21) * 2; 1429 MI->setDesc(TII->get(ARM::tBfar)); 1430 BBSizes[MBB->getNumber()] += 2; 1431 AdjustBBOffsetsAfter(MBB, 2); 1432 HasFarJump = true; 1433 ++NumUBrFixed; 1434 1435 DEBUG(errs() << " Changed B to long jump " << *MI); 1436 1437 return true; 1438} 1439 1440/// FixUpConditionalBr - Fix up a conditional branch whose destination is too 1441/// far away to fit in its displacement field. It is converted to an inverse 1442/// conditional branch + an unconditional branch to the destination. 1443bool 1444ARMConstantIslands::FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br) { 1445 MachineInstr *MI = Br.MI; 1446 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1447 1448 // Add an unconditional branch to the destination and invert the branch 1449 // condition to jump over it: 1450 // blt L1 1451 // => 1452 // bge L2 1453 // b L1 1454 // L2: 1455 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm(); 1456 CC = ARMCC::getOppositeCondition(CC); 1457 unsigned CCReg = MI->getOperand(2).getReg(); 1458 1459 // If the branch is at the end of its MBB and that has a fall-through block, 1460 // direct the updated conditional branch to the fall-through block. Otherwise, 1461 // split the MBB before the next instruction. 1462 MachineBasicBlock *MBB = MI->getParent(); 1463 MachineInstr *BMI = &MBB->back(); 1464 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); 1465 1466 ++NumCBrFixed; 1467 if (BMI != MI) { 1468 if (llvm::next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) && 1469 BMI->getOpcode() == Br.UncondBr) { 1470 // Last MI in the BB is an unconditional branch. Can we simply invert the 1471 // condition and swap destinations: 1472 // beq L1 1473 // b L2 1474 // => 1475 // bne L2 1476 // b L1 1477 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); 1478 if (BBIsInRange(MI, NewDest, Br.MaxDisp)) { 1479 DEBUG(errs() << " Invert Bcc condition and swap its destination with " 1480 << *BMI); 1481 BMI->getOperand(0).setMBB(DestBB); 1482 MI->getOperand(0).setMBB(NewDest); 1483 MI->getOperand(1).setImm(CC); 1484 return true; 1485 } 1486 } 1487 } 1488 1489 if (NeedSplit) { 1490 SplitBlockBeforeInstr(MI); 1491 // No need for the branch to the next block. We're adding an unconditional 1492 // branch to the destination. 1493 int delta = TII->GetInstSizeInBytes(&MBB->back()); 1494 BBSizes[MBB->getNumber()] -= delta; 1495 MachineBasicBlock* SplitBB = llvm::next(MachineFunction::iterator(MBB)); 1496 AdjustBBOffsetsAfter(SplitBB, -delta); 1497 MBB->back().eraseFromParent(); 1498 // BBOffsets[SplitBB] is wrong temporarily, fixed below 1499 } 1500 MachineBasicBlock *NextBB = llvm::next(MachineFunction::iterator(MBB)); 1501 1502 DEBUG(errs() << " Insert B to BB#" << DestBB->getNumber() 1503 << " also invert condition and change dest. to BB#" 1504 << NextBB->getNumber() << "\n"); 1505 1506 // Insert a new conditional branch and a new unconditional branch. 1507 // Also update the ImmBranch as well as adding a new entry for the new branch. 1508 BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode())) 1509 .addMBB(NextBB).addImm(CC).addReg(CCReg); 1510 Br.MI = &MBB->back(); 1511 BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back()); 1512 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); 1513 BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back()); 1514 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1515 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1516 1517 // Remove the old conditional branch. It may or may not still be in MBB. 1518 BBSizes[MI->getParent()->getNumber()] -= TII->GetInstSizeInBytes(MI); 1519 MI->eraseFromParent(); 1520 1521 // The net size change is an addition of one unconditional branch. 1522 int delta = TII->GetInstSizeInBytes(&MBB->back()); 1523 AdjustBBOffsetsAfter(MBB, delta); 1524 return true; 1525} 1526 1527/// UndoLRSpillRestore - Remove Thumb push / pop instructions that only spills 1528/// LR / restores LR to pc. FIXME: This is done here because it's only possible 1529/// to do this if tBfar is not used. 1530bool ARMConstantIslands::UndoLRSpillRestore() { 1531 bool MadeChange = false; 1532 for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) { 1533 MachineInstr *MI = PushPopMIs[i]; 1534 // First two operands are predicates. 1535 if (MI->getOpcode() == ARM::tPOP_RET && 1536 MI->getOperand(2).getReg() == ARM::PC && 1537 MI->getNumExplicitOperands() == 3) { 1538 BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET)); 1539 MI->eraseFromParent(); 1540 MadeChange = true; 1541 } 1542 } 1543 return MadeChange; 1544} 1545 1546bool ARMConstantIslands::OptimizeThumb2Instructions(MachineFunction &MF) { 1547 bool MadeChange = false; 1548 1549 // Shrink ADR and LDR from constantpool. 1550 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 1551 CPUser &U = CPUsers[i]; 1552 unsigned Opcode = U.MI->getOpcode(); 1553 unsigned NewOpc = 0; 1554 unsigned Scale = 1; 1555 unsigned Bits = 0; 1556 switch (Opcode) { 1557 default: break; 1558 case ARM::t2LEApcrel: 1559 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1560 NewOpc = ARM::tLEApcrel; 1561 Bits = 8; 1562 Scale = 4; 1563 } 1564 break; 1565 case ARM::t2LDRpci: 1566 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1567 NewOpc = ARM::tLDRpci; 1568 Bits = 8; 1569 Scale = 4; 1570 } 1571 break; 1572 } 1573 1574 if (!NewOpc) 1575 continue; 1576 1577 unsigned UserOffset = GetOffsetOf(U.MI) + 4; 1578 unsigned MaxOffs = ((1 << Bits) - 1) * Scale; 1579 // FIXME: Check if offset is multiple of scale if scale is not 4. 1580 if (CPEIsInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) { 1581 U.MI->setDesc(TII->get(NewOpc)); 1582 MachineBasicBlock *MBB = U.MI->getParent(); 1583 BBSizes[MBB->getNumber()] -= 2; 1584 AdjustBBOffsetsAfter(MBB, -2); 1585 ++NumT2CPShrunk; 1586 MadeChange = true; 1587 } 1588 } 1589 1590 MadeChange |= OptimizeThumb2Branches(MF); 1591 MadeChange |= OptimizeThumb2JumpTables(MF); 1592 return MadeChange; 1593} 1594 1595bool ARMConstantIslands::OptimizeThumb2Branches(MachineFunction &MF) { 1596 bool MadeChange = false; 1597 1598 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) { 1599 ImmBranch &Br = ImmBranches[i]; 1600 unsigned Opcode = Br.MI->getOpcode(); 1601 unsigned NewOpc = 0; 1602 unsigned Scale = 1; 1603 unsigned Bits = 0; 1604 switch (Opcode) { 1605 default: break; 1606 case ARM::t2B: 1607 NewOpc = ARM::tB; 1608 Bits = 11; 1609 Scale = 2; 1610 break; 1611 case ARM::t2Bcc: { 1612 NewOpc = ARM::tBcc; 1613 Bits = 8; 1614 Scale = 2; 1615 break; 1616 } 1617 } 1618 if (NewOpc) { 1619 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 1620 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1621 if (BBIsInRange(Br.MI, DestBB, MaxOffs)) { 1622 Br.MI->setDesc(TII->get(NewOpc)); 1623 MachineBasicBlock *MBB = Br.MI->getParent(); 1624 BBSizes[MBB->getNumber()] -= 2; 1625 AdjustBBOffsetsAfter(MBB, -2); 1626 ++NumT2BrShrunk; 1627 MadeChange = true; 1628 } 1629 } 1630 1631 Opcode = Br.MI->getOpcode(); 1632 if (Opcode != ARM::tBcc) 1633 continue; 1634 1635 NewOpc = 0; 1636 unsigned PredReg = 0; 1637 ARMCC::CondCodes Pred = llvm::getInstrPredicate(Br.MI, PredReg); 1638 if (Pred == ARMCC::EQ) 1639 NewOpc = ARM::tCBZ; 1640 else if (Pred == ARMCC::NE) 1641 NewOpc = ARM::tCBNZ; 1642 if (!NewOpc) 1643 continue; 1644 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1645 // Check if the distance is within 126. Subtract starting offset by 2 1646 // because the cmp will be eliminated. 1647 unsigned BrOffset = GetOffsetOf(Br.MI) + 4 - 2; 1648 unsigned DestOffset = BBOffsets[DestBB->getNumber()]; 1649 if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) { 1650 MachineBasicBlock::iterator CmpMI = Br.MI; --CmpMI; 1651 if (CmpMI->getOpcode() == ARM::tCMPzi8) { 1652 unsigned Reg = CmpMI->getOperand(0).getReg(); 1653 Pred = llvm::getInstrPredicate(CmpMI, PredReg); 1654 if (Pred == ARMCC::AL && 1655 CmpMI->getOperand(1).getImm() == 0 && 1656 isARMLowRegister(Reg)) { 1657 MachineBasicBlock *MBB = Br.MI->getParent(); 1658 MachineInstr *NewBR = 1659 BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc)) 1660 .addReg(Reg).addMBB(DestBB, Br.MI->getOperand(0).getTargetFlags()); 1661 CmpMI->eraseFromParent(); 1662 Br.MI->eraseFromParent(); 1663 Br.MI = NewBR; 1664 BBSizes[MBB->getNumber()] -= 2; 1665 AdjustBBOffsetsAfter(MBB, -2); 1666 ++NumCBZ; 1667 MadeChange = true; 1668 } 1669 } 1670 } 1671 } 1672 1673 return MadeChange; 1674} 1675 1676/// OptimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller 1677/// jumptables when it's possible. 1678bool ARMConstantIslands::OptimizeThumb2JumpTables(MachineFunction &MF) { 1679 bool MadeChange = false; 1680 1681 // FIXME: After the tables are shrunk, can we get rid some of the 1682 // constantpool tables? 1683 MachineJumpTableInfo *MJTI = MF.getJumpTableInfo(); 1684 if (MJTI == 0) return false; 1685 1686 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1687 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 1688 MachineInstr *MI = T2JumpTables[i]; 1689 const TargetInstrDesc &TID = MI->getDesc(); 1690 unsigned NumOps = TID.getNumOperands(); 1691 unsigned JTOpIdx = NumOps - (TID.isPredicable() ? 3 : 2); 1692 MachineOperand JTOP = MI->getOperand(JTOpIdx); 1693 unsigned JTI = JTOP.getIndex(); 1694 assert(JTI < JT.size()); 1695 1696 bool ByteOk = true; 1697 bool HalfWordOk = true; 1698 unsigned JTOffset = GetOffsetOf(MI) + 4; 1699 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1700 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 1701 MachineBasicBlock *MBB = JTBBs[j]; 1702 unsigned DstOffset = BBOffsets[MBB->getNumber()]; 1703 // Negative offset is not ok. FIXME: We should change BB layout to make 1704 // sure all the branches are forward. 1705 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2) 1706 ByteOk = false; 1707 unsigned TBHLimit = ((1<<16)-1)*2; 1708 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit) 1709 HalfWordOk = false; 1710 if (!ByteOk && !HalfWordOk) 1711 break; 1712 } 1713 1714 if (ByteOk || HalfWordOk) { 1715 MachineBasicBlock *MBB = MI->getParent(); 1716 unsigned BaseReg = MI->getOperand(0).getReg(); 1717 bool BaseRegKill = MI->getOperand(0).isKill(); 1718 if (!BaseRegKill) 1719 continue; 1720 unsigned IdxReg = MI->getOperand(1).getReg(); 1721 bool IdxRegKill = MI->getOperand(1).isKill(); 1722 1723 // Scan backwards to find the instruction that defines the base 1724 // register. Due to post-RA scheduling, we can't count on it 1725 // immediately preceding the branch instruction. 1726 MachineBasicBlock::iterator PrevI = MI; 1727 MachineBasicBlock::iterator B = MBB->begin(); 1728 while (PrevI != B && !PrevI->definesRegister(BaseReg)) 1729 --PrevI; 1730 1731 // If for some reason we didn't find it, we can't do anything, so 1732 // just skip this one. 1733 if (!PrevI->definesRegister(BaseReg)) 1734 continue; 1735 1736 MachineInstr *AddrMI = PrevI; 1737 bool OptOk = true; 1738 // Examine the instruction that calculates the jumptable entry address. 1739 // Make sure it only defines the base register and kills any uses 1740 // other than the index register. 1741 for (unsigned k = 0, eee = AddrMI->getNumOperands(); k != eee; ++k) { 1742 const MachineOperand &MO = AddrMI->getOperand(k); 1743 if (!MO.isReg() || !MO.getReg()) 1744 continue; 1745 if (MO.isDef() && MO.getReg() != BaseReg) { 1746 OptOk = false; 1747 break; 1748 } 1749 if (MO.isUse() && !MO.isKill() && MO.getReg() != IdxReg) { 1750 OptOk = false; 1751 break; 1752 } 1753 } 1754 if (!OptOk) 1755 continue; 1756 1757 // Now scan back again to find the tLEApcrel or t2LEApcrelJT instruction 1758 // that gave us the initial base register definition. 1759 for (--PrevI; PrevI != B && !PrevI->definesRegister(BaseReg); --PrevI) 1760 ; 1761 1762 // The instruction should be a tLEApcrel or t2LEApcrelJT; we want 1763 // to delete it as well. 1764 MachineInstr *LeaMI = PrevI; 1765 if ((LeaMI->getOpcode() != ARM::tLEApcrelJT && 1766 LeaMI->getOpcode() != ARM::t2LEApcrelJT) || 1767 LeaMI->getOperand(0).getReg() != BaseReg) 1768 OptOk = false; 1769 1770 if (!OptOk) 1771 continue; 1772 1773 unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT; 1774 MachineInstr *NewJTMI = BuildMI(MBB, MI->getDebugLoc(), TII->get(Opc)) 1775 .addReg(IdxReg, getKillRegState(IdxRegKill)) 1776 .addJumpTableIndex(JTI, JTOP.getTargetFlags()) 1777 .addImm(MI->getOperand(JTOpIdx+1).getImm()); 1778 // FIXME: Insert an "ALIGN" instruction to ensure the next instruction 1779 // is 2-byte aligned. For now, asm printer will fix it up. 1780 unsigned NewSize = TII->GetInstSizeInBytes(NewJTMI); 1781 unsigned OrigSize = TII->GetInstSizeInBytes(AddrMI); 1782 OrigSize += TII->GetInstSizeInBytes(LeaMI); 1783 OrigSize += TII->GetInstSizeInBytes(MI); 1784 1785 AddrMI->eraseFromParent(); 1786 LeaMI->eraseFromParent(); 1787 MI->eraseFromParent(); 1788 1789 int delta = OrigSize - NewSize; 1790 BBSizes[MBB->getNumber()] -= delta; 1791 AdjustBBOffsetsAfter(MBB, -delta); 1792 1793 ++NumTBs; 1794 MadeChange = true; 1795 } 1796 } 1797 1798 return MadeChange; 1799} 1800 1801/// ReorderThumb2JumpTables - Adjust the function's block layout to ensure that 1802/// jump tables always branch forwards, since that's what tbb and tbh need. 1803bool ARMConstantIslands::ReorderThumb2JumpTables(MachineFunction &MF) { 1804 bool MadeChange = false; 1805 1806 MachineJumpTableInfo *MJTI = MF.getJumpTableInfo(); 1807 if (MJTI == 0) return false; 1808 1809 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1810 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 1811 MachineInstr *MI = T2JumpTables[i]; 1812 const TargetInstrDesc &TID = MI->getDesc(); 1813 unsigned NumOps = TID.getNumOperands(); 1814 unsigned JTOpIdx = NumOps - (TID.isPredicable() ? 3 : 2); 1815 MachineOperand JTOP = MI->getOperand(JTOpIdx); 1816 unsigned JTI = JTOP.getIndex(); 1817 assert(JTI < JT.size()); 1818 1819 // We prefer if target blocks for the jump table come after the jump 1820 // instruction so we can use TB[BH]. Loop through the target blocks 1821 // and try to adjust them such that that's true. 1822 int JTNumber = MI->getParent()->getNumber(); 1823 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1824 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 1825 MachineBasicBlock *MBB = JTBBs[j]; 1826 int DTNumber = MBB->getNumber(); 1827 1828 if (DTNumber < JTNumber) { 1829 // The destination precedes the switch. Try to move the block forward 1830 // so we have a positive offset. 1831 MachineBasicBlock *NewBB = 1832 AdjustJTTargetBlockForward(MBB, MI->getParent()); 1833 if (NewBB) 1834 MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB); 1835 MadeChange = true; 1836 } 1837 } 1838 } 1839 1840 return MadeChange; 1841} 1842 1843MachineBasicBlock *ARMConstantIslands:: 1844AdjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) 1845{ 1846 MachineFunction &MF = *BB->getParent(); 1847 1848 // If the destination block is terminated by an unconditional branch, 1849 // try to move it; otherwise, create a new block following the jump 1850 // table that branches back to the actual target. This is a very simple 1851 // heuristic. FIXME: We can definitely improve it. 1852 MachineBasicBlock *TBB = 0, *FBB = 0; 1853 SmallVector<MachineOperand, 4> Cond; 1854 SmallVector<MachineOperand, 4> CondPrior; 1855 MachineFunction::iterator BBi = BB; 1856 MachineFunction::iterator OldPrior = prior(BBi); 1857 1858 // If the block terminator isn't analyzable, don't try to move the block 1859 bool B = TII->AnalyzeBranch(*BB, TBB, FBB, Cond); 1860 1861 // If the block ends in an unconditional branch, move it. The prior block 1862 // has to have an analyzable terminator for us to move this one. Be paranoid 1863 // and make sure we're not trying to move the entry block of the function. 1864 if (!B && Cond.empty() && BB != MF.begin() && 1865 !TII->AnalyzeBranch(*OldPrior, TBB, FBB, CondPrior)) { 1866 BB->moveAfter(JTBB); 1867 OldPrior->updateTerminator(); 1868 BB->updateTerminator(); 1869 // Update numbering to account for the block being moved. 1870 MF.RenumberBlocks(); 1871 ++NumJTMoved; 1872 return NULL; 1873 } 1874 1875 // Create a new MBB for the code after the jump BB. 1876 MachineBasicBlock *NewBB = 1877 MF.CreateMachineBasicBlock(JTBB->getBasicBlock()); 1878 MachineFunction::iterator MBBI = JTBB; ++MBBI; 1879 MF.insert(MBBI, NewBB); 1880 1881 // Add an unconditional branch from NewBB to BB. 1882 // There doesn't seem to be meaningful DebugInfo available; this doesn't 1883 // correspond directly to anything in the source. 1884 assert (isThumb2 && "Adjusting for TB[BH] but not in Thumb2?"); 1885 BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)).addMBB(BB); 1886 1887 // Update internal data structures to account for the newly inserted MBB. 1888 MF.RenumberBlocks(NewBB); 1889 1890 // Update the CFG. 1891 NewBB->addSuccessor(BB); 1892 JTBB->removeSuccessor(BB); 1893 JTBB->addSuccessor(NewBB); 1894 1895 ++NumJTInserted; 1896 return NewBB; 1897} 1898