ARMConstantIslandPass.cpp revision f1bbb9577a42cf7dc3079412f1dd7683e3a03665
1//===-- ARMConstantIslandPass.cpp - ARM constant islands --------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains a pass that splits the constant pool up into 'islands' 11// which are scattered through-out the function. This is required due to the 12// limited pc-relative displacements that ARM has. 13// 14//===----------------------------------------------------------------------===// 15 16#define DEBUG_TYPE "arm-cp-islands" 17#include "ARM.h" 18#include "ARMMachineFunctionInfo.h" 19#include "ARMInstrInfo.h" 20#include "llvm/CodeGen/MachineConstantPool.h" 21#include "llvm/CodeGen/MachineFunctionPass.h" 22#include "llvm/CodeGen/MachineInstrBuilder.h" 23#include "llvm/Target/TargetData.h" 24#include "llvm/Target/TargetMachine.h" 25#include "llvm/Support/Compiler.h" 26#include "llvm/Support/Debug.h" 27#include "llvm/ADT/SmallVector.h" 28#include "llvm/ADT/STLExtras.h" 29#include "llvm/ADT/Statistic.h" 30using namespace llvm; 31 32STATISTIC(NumCPEs, "Number of constpool entries"); 33STATISTIC(NumSplit, "Number of uncond branches inserted"); 34STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 35STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 36 37namespace { 38 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM 39 /// requires constant pool entries to be scattered among the instructions 40 /// inside a function. To do this, it completely ignores the normal LLVM 41 /// constant pool; instead, it places constants wherever it feels like with 42 /// special instructions. 43 /// 44 /// The terminology used in this pass includes: 45 /// Islands - Clumps of constants placed in the function. 46 /// Water - Potential places where an island could be formed. 47 /// CPE - A constant pool entry that has been placed somewhere, which 48 /// tracks a list of users. 49 class VISIBILITY_HIDDEN ARMConstantIslands : public MachineFunctionPass { 50 /// BBSizes - The size of each MachineBasicBlock in bytes of code, indexed 51 /// by MBB Number. The two-byte pads required for Thumb alignment are 52 /// counted as part of the following block (i.e., the offset and size for 53 /// a padded block will both be ==2 mod 4). 54 std::vector<unsigned> BBSizes; 55 56 /// BBOffsets - the offset of each MBB in bytes, starting from 0. 57 /// The two-byte pads required for Thumb alignment are counted as part of 58 /// the following block. 59 std::vector<unsigned> BBOffsets; 60 61 /// WaterList - A sorted list of basic blocks where islands could be placed 62 /// (i.e. blocks that don't fall through to the following block, due 63 /// to a return, unreachable, or unconditional branch). 64 std::vector<MachineBasicBlock*> WaterList; 65 66 /// CPUser - One user of a constant pool, keeping the machine instruction 67 /// pointer, the constant pool being referenced, and the max displacement 68 /// allowed from the instruction to the CP. 69 struct CPUser { 70 MachineInstr *MI; 71 MachineInstr *CPEMI; 72 unsigned MaxDisp; 73 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp) 74 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp) {} 75 }; 76 77 /// CPUsers - Keep track of all of the machine instructions that use various 78 /// constant pools and their max displacement. 79 std::vector<CPUser> CPUsers; 80 81 /// CPEntry - One per constant pool entry, keeping the machine instruction 82 /// pointer, the constpool index, and the number of CPUser's which 83 /// reference this entry. 84 struct CPEntry { 85 MachineInstr *CPEMI; 86 unsigned CPI; 87 unsigned RefCount; 88 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) 89 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} 90 }; 91 92 /// CPEntries - Keep track of all of the constant pool entry machine 93 /// instructions. For each original constpool index (i.e. those that 94 /// existed upon entry to this pass), it keeps a vector of entries. 95 /// Original elements are cloned as we go along; the clones are 96 /// put in the vector of the original element, but have distinct CPIs. 97 std::vector<std::vector<CPEntry> > CPEntries; 98 99 /// ImmBranch - One per immediate branch, keeping the machine instruction 100 /// pointer, conditional or unconditional, the max displacement, 101 /// and (if isCond is true) the corresponding unconditional branch 102 /// opcode. 103 struct ImmBranch { 104 MachineInstr *MI; 105 unsigned MaxDisp : 31; 106 bool isCond : 1; 107 int UncondBr; 108 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr) 109 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} 110 }; 111 112 /// ImmBranches - Keep track of all the immediate branch instructions. 113 /// 114 std::vector<ImmBranch> ImmBranches; 115 116 /// PushPopMIs - Keep track of all the Thumb push / pop instructions. 117 /// 118 SmallVector<MachineInstr*, 4> PushPopMIs; 119 120 /// HasFarJump - True if any far jump instruction has been emitted during 121 /// the branch fix up pass. 122 bool HasFarJump; 123 124 const TargetInstrInfo *TII; 125 ARMFunctionInfo *AFI; 126 bool isThumb; 127 public: 128 static char ID; 129 ARMConstantIslands() : MachineFunctionPass(&ID) {} 130 131 virtual bool runOnMachineFunction(MachineFunction &Fn); 132 133 virtual const char *getPassName() const { 134 return "ARM constant island placement and branch shortening pass"; 135 } 136 137 private: 138 void DoInitialPlacement(MachineFunction &Fn, 139 std::vector<MachineInstr*> &CPEMIs); 140 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 141 void InitialFunctionScan(MachineFunction &Fn, 142 const std::vector<MachineInstr*> &CPEMIs); 143 MachineBasicBlock *SplitBlockBeforeInstr(MachineInstr *MI); 144 void UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB); 145 void AdjustBBOffsetsAfter(MachineBasicBlock *BB, int delta); 146 bool DecrementOldEntry(unsigned CPI, MachineInstr* CPEMI); 147 int LookForExistingCPEntry(CPUser& U, unsigned UserOffset); 148 bool LookForWater(CPUser&U, unsigned UserOffset, 149 MachineBasicBlock** NewMBB); 150 MachineBasicBlock* AcceptWater(MachineBasicBlock *WaterBB, 151 std::vector<MachineBasicBlock*>::iterator IP); 152 void CreateNewWater(unsigned CPUserIndex, unsigned UserOffset, 153 MachineBasicBlock** NewMBB); 154 bool HandleConstantPoolUser(MachineFunction &Fn, unsigned CPUserIndex); 155 void RemoveDeadCPEMI(MachineInstr *CPEMI); 156 bool RemoveUnusedCPEntries(); 157 bool CPEIsInRange(MachineInstr *MI, unsigned UserOffset, 158 MachineInstr *CPEMI, unsigned Disp, 159 bool DoDump); 160 bool WaterIsInRange(unsigned UserOffset, MachineBasicBlock *Water, 161 CPUser &U); 162 bool OffsetIsInRange(unsigned UserOffset, unsigned TrialOffset, 163 unsigned Disp, bool NegativeOK); 164 bool BBIsInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); 165 bool FixUpImmediateBr(MachineFunction &Fn, ImmBranch &Br); 166 bool FixUpConditionalBr(MachineFunction &Fn, ImmBranch &Br); 167 bool FixUpUnconditionalBr(MachineFunction &Fn, ImmBranch &Br); 168 bool UndoLRSpillRestore(); 169 170 unsigned GetOffsetOf(MachineInstr *MI) const; 171 void dumpBBs(); 172 void verify(MachineFunction &Fn); 173 }; 174 char ARMConstantIslands::ID = 0; 175} 176 177/// verify - check BBOffsets, BBSizes, alignment of islands 178void ARMConstantIslands::verify(MachineFunction &Fn) { 179 assert(BBOffsets.size() == BBSizes.size()); 180 for (unsigned i = 1, e = BBOffsets.size(); i != e; ++i) 181 assert(BBOffsets[i-1]+BBSizes[i-1] == BBOffsets[i]); 182 if (isThumb) { 183 for (MachineFunction::iterator MBBI = Fn.begin(), E = Fn.end(); 184 MBBI != E; ++MBBI) { 185 MachineBasicBlock *MBB = MBBI; 186 if (!MBB->empty() && 187 MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) 188 assert((BBOffsets[MBB->getNumber()]%4 == 0 && 189 BBSizes[MBB->getNumber()]%4 == 0) || 190 (BBOffsets[MBB->getNumber()]%4 != 0 && 191 BBSizes[MBB->getNumber()]%4 != 0)); 192 } 193 } 194} 195 196/// print block size and offset information - debugging 197void ARMConstantIslands::dumpBBs() { 198 for (unsigned J = 0, E = BBOffsets.size(); J !=E; ++J) { 199 DOUT << "block " << J << " offset " << BBOffsets[J] << 200 " size " << BBSizes[J] << "\n"; 201 } 202} 203 204/// createARMConstantIslandPass - returns an instance of the constpool 205/// island pass. 206FunctionPass *llvm::createARMConstantIslandPass() { 207 return new ARMConstantIslands(); 208} 209 210bool ARMConstantIslands::runOnMachineFunction(MachineFunction &Fn) { 211 MachineConstantPool &MCP = *Fn.getConstantPool(); 212 213 TII = Fn.getTarget().getInstrInfo(); 214 AFI = Fn.getInfo<ARMFunctionInfo>(); 215 isThumb = AFI->isThumbFunction(); 216 217 HasFarJump = false; 218 219 // Renumber all of the machine basic blocks in the function, guaranteeing that 220 // the numbers agree with the position of the block in the function. 221 Fn.RenumberBlocks(); 222 223 /// Thumb functions containing constant pools get 2-byte alignment. This is so 224 /// we can keep exact track of where the alignment padding goes. Set default. 225 AFI->setAlign(isThumb ? 1U : 2U); 226 227 // Perform the initial placement of the constant pool entries. To start with, 228 // we put them all at the end of the function. 229 std::vector<MachineInstr*> CPEMIs; 230 if (!MCP.isEmpty()) { 231 DoInitialPlacement(Fn, CPEMIs); 232 if (isThumb) 233 AFI->setAlign(2U); 234 } 235 236 /// The next UID to take is the first unused one. 237 AFI->initConstPoolEntryUId(CPEMIs.size()); 238 239 // Do the initial scan of the function, building up information about the 240 // sizes of each block, the location of all the water, and finding all of the 241 // constant pool users. 242 InitialFunctionScan(Fn, CPEMIs); 243 CPEMIs.clear(); 244 245 /// Remove dead constant pool entries. 246 RemoveUnusedCPEntries(); 247 248 // Iteratively place constant pool entries and fix up branches until there 249 // is no change. 250 bool MadeChange = false; 251 while (true) { 252 bool Change = false; 253 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) 254 Change |= HandleConstantPoolUser(Fn, i); 255 DEBUG(dumpBBs()); 256 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) 257 Change |= FixUpImmediateBr(Fn, ImmBranches[i]); 258 DEBUG(dumpBBs()); 259 if (!Change) 260 break; 261 MadeChange = true; 262 } 263 264 // After a while, this might be made debug-only, but it is not expensive. 265 verify(Fn); 266 267 // If LR has been forced spilled and no far jumps (i.e. BL) has been issued. 268 // Undo the spill / restore of LR if possible. 269 if (!HasFarJump && AFI->isLRSpilledForFarJump() && isThumb) 270 MadeChange |= UndoLRSpillRestore(); 271 272 BBSizes.clear(); 273 BBOffsets.clear(); 274 WaterList.clear(); 275 CPUsers.clear(); 276 CPEntries.clear(); 277 ImmBranches.clear(); 278 PushPopMIs.clear(); 279 280 return MadeChange; 281} 282 283/// DoInitialPlacement - Perform the initial placement of the constant pool 284/// entries. To start with, we put them all at the end of the function. 285void ARMConstantIslands::DoInitialPlacement(MachineFunction &Fn, 286 std::vector<MachineInstr*> &CPEMIs){ 287 // Create the basic block to hold the CPE's. 288 MachineBasicBlock *BB = Fn.CreateMachineBasicBlock(); 289 Fn.push_back(BB); 290 291 // Add all of the constants from the constant pool to the end block, use an 292 // identity mapping of CPI's to CPE's. 293 const std::vector<MachineConstantPoolEntry> &CPs = 294 Fn.getConstantPool()->getConstants(); 295 296 const TargetData &TD = *Fn.getTarget().getTargetData(); 297 for (unsigned i = 0, e = CPs.size(); i != e; ++i) { 298 unsigned Size = TD.getABITypeSize(CPs[i].getType()); 299 // Verify that all constant pool entries are a multiple of 4 bytes. If not, 300 // we would have to pad them out or something so that instructions stay 301 // aligned. 302 assert((Size & 3) == 0 && "CP Entry not multiple of 4 bytes!"); 303 MachineInstr *CPEMI = 304 BuildMI(BB, TII->get(ARM::CONSTPOOL_ENTRY)) 305 .addImm(i).addConstantPoolIndex(i).addImm(Size); 306 CPEMIs.push_back(CPEMI); 307 308 // Add a new CPEntry, but no corresponding CPUser yet. 309 std::vector<CPEntry> CPEs; 310 CPEs.push_back(CPEntry(CPEMI, i)); 311 CPEntries.push_back(CPEs); 312 NumCPEs++; 313 DOUT << "Moved CPI#" << i << " to end of function as #" << i << "\n"; 314 } 315} 316 317/// BBHasFallthrough - Return true if the specified basic block can fallthrough 318/// into the block immediately after it. 319static bool BBHasFallthrough(MachineBasicBlock *MBB) { 320 // Get the next machine basic block in the function. 321 MachineFunction::iterator MBBI = MBB; 322 if (next(MBBI) == MBB->getParent()->end()) // Can't fall off end of function. 323 return false; 324 325 MachineBasicBlock *NextBB = next(MBBI); 326 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), 327 E = MBB->succ_end(); I != E; ++I) 328 if (*I == NextBB) 329 return true; 330 331 return false; 332} 333 334/// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 335/// look up the corresponding CPEntry. 336ARMConstantIslands::CPEntry 337*ARMConstantIslands::findConstPoolEntry(unsigned CPI, 338 const MachineInstr *CPEMI) { 339 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 340 // Number of entries per constpool index should be small, just do a 341 // linear search. 342 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 343 if (CPEs[i].CPEMI == CPEMI) 344 return &CPEs[i]; 345 } 346 return NULL; 347} 348 349/// InitialFunctionScan - Do the initial scan of the function, building up 350/// information about the sizes of each block, the location of all the water, 351/// and finding all of the constant pool users. 352void ARMConstantIslands::InitialFunctionScan(MachineFunction &Fn, 353 const std::vector<MachineInstr*> &CPEMIs) { 354 unsigned Offset = 0; 355 for (MachineFunction::iterator MBBI = Fn.begin(), E = Fn.end(); 356 MBBI != E; ++MBBI) { 357 MachineBasicBlock &MBB = *MBBI; 358 359 // If this block doesn't fall through into the next MBB, then this is 360 // 'water' that a constant pool island could be placed. 361 if (!BBHasFallthrough(&MBB)) 362 WaterList.push_back(&MBB); 363 364 unsigned MBBSize = 0; 365 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 366 I != E; ++I) { 367 // Add instruction size to MBBSize. 368 MBBSize += TII->GetInstSizeInBytes(I); 369 370 int Opc = I->getOpcode(); 371 if (I->getDesc().isBranch()) { 372 bool isCond = false; 373 unsigned Bits = 0; 374 unsigned Scale = 1; 375 int UOpc = Opc; 376 switch (Opc) { 377 case ARM::tBR_JTr: 378 // A Thumb table jump may involve padding; for the offsets to 379 // be right, functions containing these must be 4-byte aligned. 380 AFI->setAlign(2U); 381 if ((Offset+MBBSize)%4 != 0) 382 MBBSize += 2; // padding 383 continue; // Does not get an entry in ImmBranches 384 default: 385 continue; // Ignore other JT branches 386 case ARM::Bcc: 387 isCond = true; 388 UOpc = ARM::B; 389 // Fallthrough 390 case ARM::B: 391 Bits = 24; 392 Scale = 4; 393 break; 394 case ARM::tBcc: 395 isCond = true; 396 UOpc = ARM::tB; 397 Bits = 8; 398 Scale = 2; 399 break; 400 case ARM::tB: 401 Bits = 11; 402 Scale = 2; 403 break; 404 } 405 406 // Record this immediate branch. 407 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 408 ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc)); 409 } 410 411 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) 412 PushPopMIs.push_back(I); 413 414 // Scan the instructions for constant pool operands. 415 for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) 416 if (I->getOperand(op).isCPI()) { 417 // We found one. The addressing mode tells us the max displacement 418 // from the PC that this instruction permits. 419 420 // Basic size info comes from the TSFlags field. 421 unsigned Bits = 0; 422 unsigned Scale = 1; 423 unsigned TSFlags = I->getDesc().TSFlags; 424 switch (TSFlags & ARMII::AddrModeMask) { 425 default: 426 // Constant pool entries can reach anything. 427 if (I->getOpcode() == ARM::CONSTPOOL_ENTRY) 428 continue; 429 if (I->getOpcode() == ARM::tLEApcrel) { 430 Bits = 8; // Taking the address of a CP entry. 431 break; 432 } 433 assert(0 && "Unknown addressing mode for CP reference!"); 434 case ARMII::AddrMode1: // AM1: 8 bits << 2 435 Bits = 8; 436 Scale = 4; // Taking the address of a CP entry. 437 break; 438 case ARMII::AddrMode2: 439 Bits = 12; // +-offset_12 440 break; 441 case ARMII::AddrMode3: 442 Bits = 8; // +-offset_8 443 break; 444 // addrmode4 has no immediate offset. 445 case ARMII::AddrMode5: 446 Bits = 8; 447 Scale = 4; // +-(offset_8*4) 448 break; 449 case ARMII::AddrModeT1: 450 Bits = 5; // +offset_5 451 break; 452 case ARMII::AddrModeT2: 453 Bits = 5; 454 Scale = 2; // +(offset_5*2) 455 break; 456 case ARMII::AddrModeT4: 457 Bits = 5; 458 Scale = 4; // +(offset_5*4) 459 break; 460 case ARMII::AddrModeTs: 461 Bits = 8; 462 Scale = 4; // +(offset_8*4) 463 break; 464 } 465 466 // Remember that this is a user of a CP entry. 467 unsigned CPI = I->getOperand(op).getIndex(); 468 MachineInstr *CPEMI = CPEMIs[CPI]; 469 unsigned MaxOffs = ((1 << Bits)-1) * Scale; 470 CPUsers.push_back(CPUser(I, CPEMI, MaxOffs)); 471 472 // Increment corresponding CPEntry reference count. 473 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 474 assert(CPE && "Cannot find a corresponding CPEntry!"); 475 CPE->RefCount++; 476 477 // Instructions can only use one CP entry, don't bother scanning the 478 // rest of the operands. 479 break; 480 } 481 } 482 483 // In thumb mode, if this block is a constpool island, we may need padding 484 // so it's aligned on 4 byte boundary. 485 if (isThumb && 486 !MBB.empty() && 487 MBB.begin()->getOpcode() == ARM::CONSTPOOL_ENTRY && 488 (Offset%4) != 0) 489 MBBSize += 2; 490 491 BBSizes.push_back(MBBSize); 492 BBOffsets.push_back(Offset); 493 Offset += MBBSize; 494 } 495} 496 497/// GetOffsetOf - Return the current offset of the specified machine instruction 498/// from the start of the function. This offset changes as stuff is moved 499/// around inside the function. 500unsigned ARMConstantIslands::GetOffsetOf(MachineInstr *MI) const { 501 MachineBasicBlock *MBB = MI->getParent(); 502 503 // The offset is composed of two things: the sum of the sizes of all MBB's 504 // before this instruction's block, and the offset from the start of the block 505 // it is in. 506 unsigned Offset = BBOffsets[MBB->getNumber()]; 507 508 // If we're looking for a CONSTPOOL_ENTRY in Thumb, see if this block has 509 // alignment padding, and compensate if so. 510 if (isThumb && 511 MI->getOpcode() == ARM::CONSTPOOL_ENTRY && 512 Offset%4 != 0) 513 Offset += 2; 514 515 // Sum instructions before MI in MBB. 516 for (MachineBasicBlock::iterator I = MBB->begin(); ; ++I) { 517 assert(I != MBB->end() && "Didn't find MI in its own basic block?"); 518 if (&*I == MI) return Offset; 519 Offset += TII->GetInstSizeInBytes(I); 520 } 521} 522 523/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 524/// ID. 525static bool CompareMBBNumbers(const MachineBasicBlock *LHS, 526 const MachineBasicBlock *RHS) { 527 return LHS->getNumber() < RHS->getNumber(); 528} 529 530/// UpdateForInsertedWaterBlock - When a block is newly inserted into the 531/// machine function, it upsets all of the block numbers. Renumber the blocks 532/// and update the arrays that parallel this numbering. 533void ARMConstantIslands::UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB) { 534 // Renumber the MBB's to keep them consequtive. 535 NewBB->getParent()->RenumberBlocks(NewBB); 536 537 // Insert a size into BBSizes to align it properly with the (newly 538 // renumbered) block numbers. 539 BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0); 540 541 // Likewise for BBOffsets. 542 BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0); 543 544 // Next, update WaterList. Specifically, we need to add NewMBB as having 545 // available water after it. 546 std::vector<MachineBasicBlock*>::iterator IP = 547 std::lower_bound(WaterList.begin(), WaterList.end(), NewBB, 548 CompareMBBNumbers); 549 WaterList.insert(IP, NewBB); 550} 551 552 553/// Split the basic block containing MI into two blocks, which are joined by 554/// an unconditional branch. Update datastructures and renumber blocks to 555/// account for this change and returns the newly created block. 556MachineBasicBlock *ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr *MI) { 557 MachineBasicBlock *OrigBB = MI->getParent(); 558 MachineFunction &MF = *OrigBB->getParent(); 559 560 // Create a new MBB for the code after the OrigBB. 561 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(OrigBB->getBasicBlock()); 562 MachineFunction::iterator MBBI = OrigBB; ++MBBI; 563 MF.insert(MBBI, NewBB); 564 565 // Splice the instructions starting with MI over to NewBB. 566 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 567 568 // Add an unconditional branch from OrigBB to NewBB. 569 // Note the new unconditional branch is not being recorded. 570 BuildMI(OrigBB, TII->get(isThumb ? ARM::tB : ARM::B)).addMBB(NewBB); 571 NumSplit++; 572 573 // Update the CFG. All succs of OrigBB are now succs of NewBB. 574 while (!OrigBB->succ_empty()) { 575 MachineBasicBlock *Succ = *OrigBB->succ_begin(); 576 OrigBB->removeSuccessor(Succ); 577 NewBB->addSuccessor(Succ); 578 579 // This pass should be run after register allocation, so there should be no 580 // PHI nodes to update. 581 assert((Succ->empty() || Succ->begin()->getOpcode() != TargetInstrInfo::PHI) 582 && "PHI nodes should be eliminated by now!"); 583 } 584 585 // OrigBB branches to NewBB. 586 OrigBB->addSuccessor(NewBB); 587 588 // Update internal data structures to account for the newly inserted MBB. 589 // This is almost the same as UpdateForInsertedWaterBlock, except that 590 // the Water goes after OrigBB, not NewBB. 591 MF.RenumberBlocks(NewBB); 592 593 // Insert a size into BBSizes to align it properly with the (newly 594 // renumbered) block numbers. 595 BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0); 596 597 // Likewise for BBOffsets. 598 BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0); 599 600 // Next, update WaterList. Specifically, we need to add OrigMBB as having 601 // available water after it (but not if it's already there, which happens 602 // when splitting before a conditional branch that is followed by an 603 // unconditional branch - in that case we want to insert NewBB). 604 std::vector<MachineBasicBlock*>::iterator IP = 605 std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB, 606 CompareMBBNumbers); 607 MachineBasicBlock* WaterBB = *IP; 608 if (WaterBB == OrigBB) 609 WaterList.insert(next(IP), NewBB); 610 else 611 WaterList.insert(IP, OrigBB); 612 613 // Figure out how large the first NewMBB is. (It cannot 614 // contain a constpool_entry or tablejump.) 615 unsigned NewBBSize = 0; 616 for (MachineBasicBlock::iterator I = NewBB->begin(), E = NewBB->end(); 617 I != E; ++I) 618 NewBBSize += TII->GetInstSizeInBytes(I); 619 620 unsigned OrigBBI = OrigBB->getNumber(); 621 unsigned NewBBI = NewBB->getNumber(); 622 // Set the size of NewBB in BBSizes. 623 BBSizes[NewBBI] = NewBBSize; 624 625 // We removed instructions from UserMBB, subtract that off from its size. 626 // Add 2 or 4 to the block to count the unconditional branch we added to it. 627 unsigned delta = isThumb ? 2 : 4; 628 BBSizes[OrigBBI] -= NewBBSize - delta; 629 630 // ...and adjust BBOffsets for NewBB accordingly. 631 BBOffsets[NewBBI] = BBOffsets[OrigBBI] + BBSizes[OrigBBI]; 632 633 // All BBOffsets following these blocks must be modified. 634 AdjustBBOffsetsAfter(NewBB, delta); 635 636 return NewBB; 637} 638 639/// OffsetIsInRange - Checks whether UserOffset (the location of a constant pool 640/// reference) is within MaxDisp of TrialOffset (a proposed location of a 641/// constant pool entry). 642bool ARMConstantIslands::OffsetIsInRange(unsigned UserOffset, 643 unsigned TrialOffset, unsigned MaxDisp, bool NegativeOK) { 644 // On Thumb offsets==2 mod 4 are rounded down by the hardware for 645 // purposes of the displacement computation; compensate for that here. 646 // Effectively, the valid range of displacements is 2 bytes smaller for such 647 // references. 648 if (isThumb && UserOffset%4 !=0) 649 UserOffset -= 2; 650 // CPEs will be rounded up to a multiple of 4. 651 if (isThumb && TrialOffset%4 != 0) 652 TrialOffset += 2; 653 654 if (UserOffset <= TrialOffset) { 655 // User before the Trial. 656 if (TrialOffset-UserOffset <= MaxDisp) 657 return true; 658 } else if (NegativeOK) { 659 if (UserOffset-TrialOffset <= MaxDisp) 660 return true; 661 } 662 return false; 663} 664 665/// WaterIsInRange - Returns true if a CPE placed after the specified 666/// Water (a basic block) will be in range for the specific MI. 667 668bool ARMConstantIslands::WaterIsInRange(unsigned UserOffset, 669 MachineBasicBlock* Water, CPUser &U) 670{ 671 unsigned MaxDisp = U.MaxDisp; 672 MachineFunction::iterator I = next(MachineFunction::iterator(Water)); 673 unsigned CPEOffset = BBOffsets[Water->getNumber()] + 674 BBSizes[Water->getNumber()]; 675 676 // If the CPE is to be inserted before the instruction, that will raise 677 // the offset of the instruction. (Currently applies only to ARM, so 678 // no alignment compensation attempted here.) 679 if (CPEOffset < UserOffset) 680 UserOffset += U.CPEMI->getOperand(2).getImm(); 681 682 return OffsetIsInRange (UserOffset, CPEOffset, MaxDisp, !isThumb); 683} 684 685/// CPEIsInRange - Returns true if the distance between specific MI and 686/// specific ConstPool entry instruction can fit in MI's displacement field. 687bool ARMConstantIslands::CPEIsInRange(MachineInstr *MI, unsigned UserOffset, 688 MachineInstr *CPEMI, 689 unsigned MaxDisp, bool DoDump) { 690 unsigned CPEOffset = GetOffsetOf(CPEMI); 691 assert(CPEOffset%4 == 0 && "Misaligned CPE"); 692 693 if (DoDump) { 694 DOUT << "User of CPE#" << CPEMI->getOperand(0).getImm() 695 << " max delta=" << MaxDisp 696 << " insn address=" << UserOffset 697 << " CPE address=" << CPEOffset 698 << " offset=" << int(CPEOffset-UserOffset) << "\t" << *MI; 699 } 700 701 return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, !isThumb); 702} 703 704/// BBIsJumpedOver - Return true of the specified basic block's only predecessor 705/// unconditionally branches to its only successor. 706static bool BBIsJumpedOver(MachineBasicBlock *MBB) { 707 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 708 return false; 709 710 MachineBasicBlock *Succ = *MBB->succ_begin(); 711 MachineBasicBlock *Pred = *MBB->pred_begin(); 712 MachineInstr *PredMI = &Pred->back(); 713 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB) 714 return PredMI->getOperand(0).getMBB() == Succ; 715 return false; 716} 717 718void ARMConstantIslands::AdjustBBOffsetsAfter(MachineBasicBlock *BB, 719 int delta) { 720 MachineFunction::iterator MBBI = BB; MBBI = next(MBBI); 721 for(unsigned i=BB->getNumber()+1; i<BB->getParent()->getNumBlockIDs(); i++) { 722 BBOffsets[i] += delta; 723 // If some existing blocks have padding, adjust the padding as needed, a 724 // bit tricky. delta can be negative so don't use % on that. 725 if (isThumb) { 726 MachineBasicBlock *MBB = MBBI; 727 if (!MBB->empty()) { 728 // Constant pool entries require padding. 729 if (MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) { 730 unsigned oldOffset = BBOffsets[i] - delta; 731 if (oldOffset%4==0 && BBOffsets[i]%4!=0) { 732 // add new padding 733 BBSizes[i] += 2; 734 delta += 2; 735 } else if (oldOffset%4!=0 && BBOffsets[i]%4==0) { 736 // remove existing padding 737 BBSizes[i] -=2; 738 delta -= 2; 739 } 740 } 741 // Thumb jump tables require padding. They should be at the end; 742 // following unconditional branches are removed by AnalyzeBranch. 743 MachineInstr *ThumbJTMI = NULL; 744 if (prior(MBB->end())->getOpcode() == ARM::tBR_JTr) 745 ThumbJTMI = prior(MBB->end()); 746 if (ThumbJTMI) { 747 unsigned newMIOffset = GetOffsetOf(ThumbJTMI); 748 unsigned oldMIOffset = newMIOffset - delta; 749 if (oldMIOffset%4 == 0 && newMIOffset%4 != 0) { 750 // remove existing padding 751 BBSizes[i] -= 2; 752 delta -= 2; 753 } else if (oldMIOffset%4 != 0 && newMIOffset%4 == 0) { 754 // add new padding 755 BBSizes[i] += 2; 756 delta += 2; 757 } 758 } 759 if (delta==0) 760 return; 761 } 762 MBBI = next(MBBI); 763 } 764 } 765} 766 767/// DecrementOldEntry - find the constant pool entry with index CPI 768/// and instruction CPEMI, and decrement its refcount. If the refcount 769/// becomes 0 remove the entry and instruction. Returns true if we removed 770/// the entry, false if we didn't. 771 772bool ARMConstantIslands::DecrementOldEntry(unsigned CPI, MachineInstr *CPEMI) { 773 // Find the old entry. Eliminate it if it is no longer used. 774 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 775 assert(CPE && "Unexpected!"); 776 if (--CPE->RefCount == 0) { 777 RemoveDeadCPEMI(CPEMI); 778 CPE->CPEMI = NULL; 779 NumCPEs--; 780 return true; 781 } 782 return false; 783} 784 785/// LookForCPEntryInRange - see if the currently referenced CPE is in range; 786/// if not, see if an in-range clone of the CPE is in range, and if so, 787/// change the data structures so the user references the clone. Returns: 788/// 0 = no existing entry found 789/// 1 = entry found, and there were no code insertions or deletions 790/// 2 = entry found, and there were code insertions or deletions 791int ARMConstantIslands::LookForExistingCPEntry(CPUser& U, unsigned UserOffset) 792{ 793 MachineInstr *UserMI = U.MI; 794 MachineInstr *CPEMI = U.CPEMI; 795 796 // Check to see if the CPE is already in-range. 797 if (CPEIsInRange(UserMI, UserOffset, CPEMI, U.MaxDisp, true)) { 798 DOUT << "In range\n"; 799 return 1; 800 } 801 802 // No. Look for previously created clones of the CPE that are in range. 803 unsigned CPI = CPEMI->getOperand(1).getIndex(); 804 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 805 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 806 // We already tried this one 807 if (CPEs[i].CPEMI == CPEMI) 808 continue; 809 // Removing CPEs can leave empty entries, skip 810 if (CPEs[i].CPEMI == NULL) 811 continue; 812 if (CPEIsInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.MaxDisp, false)) { 813 DOUT << "Replacing CPE#" << CPI << " with CPE#" << CPEs[i].CPI << "\n"; 814 // Point the CPUser node to the replacement 815 U.CPEMI = CPEs[i].CPEMI; 816 // Change the CPI in the instruction operand to refer to the clone. 817 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) 818 if (UserMI->getOperand(j).isCPI()) { 819 UserMI->getOperand(j).setIndex(CPEs[i].CPI); 820 break; 821 } 822 // Adjust the refcount of the clone... 823 CPEs[i].RefCount++; 824 // ...and the original. If we didn't remove the old entry, none of the 825 // addresses changed, so we don't need another pass. 826 return DecrementOldEntry(CPI, CPEMI) ? 2 : 1; 827 } 828 } 829 return 0; 830} 831 832/// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 833/// the specific unconditional branch instruction. 834static inline unsigned getUnconditionalBrDisp(int Opc) { 835 return (Opc == ARM::tB) ? ((1<<10)-1)*2 : ((1<<23)-1)*4; 836} 837 838/// AcceptWater - Small amount of common code factored out of the following. 839 840MachineBasicBlock* ARMConstantIslands::AcceptWater(MachineBasicBlock *WaterBB, 841 std::vector<MachineBasicBlock*>::iterator IP) { 842 DOUT << "found water in range\n"; 843 // Remove the original WaterList entry; we want subsequent 844 // insertions in this vicinity to go after the one we're 845 // about to insert. This considerably reduces the number 846 // of times we have to move the same CPE more than once. 847 WaterList.erase(IP); 848 // CPE goes before following block (NewMBB). 849 return next(MachineFunction::iterator(WaterBB)); 850} 851 852/// LookForWater - look for an existing entry in the WaterList in which 853/// we can place the CPE referenced from U so it's within range of U's MI. 854/// Returns true if found, false if not. If it returns true, *NewMBB 855/// is set to the WaterList entry. 856/// For ARM, we prefer the water that's farthest away. For Thumb, prefer 857/// water that will not introduce padding to water that will; within each 858/// group, prefer the water that's farthest away. 859 860bool ARMConstantIslands::LookForWater(CPUser &U, unsigned UserOffset, 861 MachineBasicBlock** NewMBB) { 862 std::vector<MachineBasicBlock*>::iterator IPThatWouldPad; 863 MachineBasicBlock* WaterBBThatWouldPad = NULL; 864 if (!WaterList.empty()) { 865 for (std::vector<MachineBasicBlock*>::iterator IP = prior(WaterList.end()), 866 B = WaterList.begin();; --IP) { 867 MachineBasicBlock* WaterBB = *IP; 868 if (WaterIsInRange(UserOffset, WaterBB, U)) { 869 if (isThumb && 870 (BBOffsets[WaterBB->getNumber()] + 871 BBSizes[WaterBB->getNumber()])%4 != 0) { 872 // This is valid Water, but would introduce padding. Remember 873 // it in case we don't find any Water that doesn't do this. 874 if (!WaterBBThatWouldPad) { 875 WaterBBThatWouldPad = WaterBB; 876 IPThatWouldPad = IP; 877 } 878 } else { 879 *NewMBB = AcceptWater(WaterBB, IP); 880 return true; 881 } 882 } 883 if (IP == B) 884 break; 885 } 886 } 887 if (isThumb && WaterBBThatWouldPad) { 888 *NewMBB = AcceptWater(WaterBBThatWouldPad, IPThatWouldPad); 889 return true; 890 } 891 return false; 892} 893 894/// CreateNewWater - No existing WaterList entry will work for 895/// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 896/// block is used if in range, and the conditional branch munged so control 897/// flow is correct. Otherwise the block is split to create a hole with an 898/// unconditional branch around it. In either case *NewMBB is set to a 899/// block following which the new island can be inserted (the WaterList 900/// is not adjusted). 901 902void ARMConstantIslands::CreateNewWater(unsigned CPUserIndex, 903 unsigned UserOffset, MachineBasicBlock** NewMBB) { 904 CPUser &U = CPUsers[CPUserIndex]; 905 MachineInstr *UserMI = U.MI; 906 MachineInstr *CPEMI = U.CPEMI; 907 MachineBasicBlock *UserMBB = UserMI->getParent(); 908 unsigned OffsetOfNextBlock = BBOffsets[UserMBB->getNumber()] + 909 BBSizes[UserMBB->getNumber()]; 910 assert(OffsetOfNextBlock== BBOffsets[UserMBB->getNumber()+1]); 911 912 // If the use is at the end of the block, or the end of the block 913 // is within range, make new water there. (The addition below is 914 // for the unconditional branch we will be adding: 4 bytes on ARM, 915 // 2 on Thumb. Possible Thumb alignment padding is allowed for 916 // inside OffsetIsInRange. 917 // If the block ends in an unconditional branch already, it is water, 918 // and is known to be out of range, so we'll always be adding a branch.) 919 if (&UserMBB->back() == UserMI || 920 OffsetIsInRange(UserOffset, OffsetOfNextBlock + (isThumb ? 2: 4), 921 U.MaxDisp, !isThumb)) { 922 DOUT << "Split at end of block\n"; 923 if (&UserMBB->back() == UserMI) 924 assert(BBHasFallthrough(UserMBB) && "Expected a fallthrough BB!"); 925 *NewMBB = next(MachineFunction::iterator(UserMBB)); 926 // Add an unconditional branch from UserMBB to fallthrough block. 927 // Record it for branch lengthening; this new branch will not get out of 928 // range, but if the preceding conditional branch is out of range, the 929 // targets will be exchanged, and the altered branch may be out of 930 // range, so the machinery has to know about it. 931 int UncondBr = isThumb ? ARM::tB : ARM::B; 932 BuildMI(UserMBB, TII->get(UncondBr)).addMBB(*NewMBB); 933 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 934 ImmBranches.push_back(ImmBranch(&UserMBB->back(), 935 MaxDisp, false, UncondBr)); 936 int delta = isThumb ? 2 : 4; 937 BBSizes[UserMBB->getNumber()] += delta; 938 AdjustBBOffsetsAfter(UserMBB, delta); 939 } else { 940 // What a big block. Find a place within the block to split it. 941 // This is a little tricky on Thumb since instructions are 2 bytes 942 // and constant pool entries are 4 bytes: if instruction I references 943 // island CPE, and instruction I+1 references CPE', it will 944 // not work well to put CPE as far forward as possible, since then 945 // CPE' cannot immediately follow it (that location is 2 bytes 946 // farther away from I+1 than CPE was from I) and we'd need to create 947 // a new island. So, we make a first guess, then walk through the 948 // instructions between the one currently being looked at and the 949 // possible insertion point, and make sure any other instructions 950 // that reference CPEs will be able to use the same island area; 951 // if not, we back up the insertion point. 952 953 // The 4 in the following is for the unconditional branch we'll be 954 // inserting (allows for long branch on Thumb). Alignment of the 955 // island is handled inside OffsetIsInRange. 956 unsigned BaseInsertOffset = UserOffset + U.MaxDisp -4; 957 // This could point off the end of the block if we've already got 958 // constant pool entries following this block; only the last one is 959 // in the water list. Back past any possible branches (allow for a 960 // conditional and a maximally long unconditional). 961 if (BaseInsertOffset >= BBOffsets[UserMBB->getNumber()+1]) 962 BaseInsertOffset = BBOffsets[UserMBB->getNumber()+1] - 963 (isThumb ? 6 : 8); 964 unsigned EndInsertOffset = BaseInsertOffset + 965 CPEMI->getOperand(2).getImm(); 966 MachineBasicBlock::iterator MI = UserMI; 967 ++MI; 968 unsigned CPUIndex = CPUserIndex+1; 969 for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI); 970 Offset < BaseInsertOffset; 971 Offset += TII->GetInstSizeInBytes(MI), 972 MI = next(MI)) { 973 if (CPUIndex < CPUsers.size() && CPUsers[CPUIndex].MI == MI) { 974 if (!OffsetIsInRange(Offset, EndInsertOffset, 975 CPUsers[CPUIndex].MaxDisp, !isThumb)) { 976 BaseInsertOffset -= (isThumb ? 2 : 4); 977 EndInsertOffset -= (isThumb ? 2 : 4); 978 } 979 // This is overly conservative, as we don't account for CPEMIs 980 // being reused within the block, but it doesn't matter much. 981 EndInsertOffset += CPUsers[CPUIndex].CPEMI->getOperand(2).getImm(); 982 CPUIndex++; 983 } 984 } 985 DOUT << "Split in middle of big block\n"; 986 *NewMBB = SplitBlockBeforeInstr(prior(MI)); 987 } 988} 989 990/// HandleConstantPoolUser - Analyze the specified user, checking to see if it 991/// is out-of-range. If so, pick it up the constant pool value and move it some 992/// place in-range. Return true if we changed any addresses (thus must run 993/// another pass of branch lengthening), false otherwise. 994bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction &Fn, 995 unsigned CPUserIndex){ 996 CPUser &U = CPUsers[CPUserIndex]; 997 MachineInstr *UserMI = U.MI; 998 MachineInstr *CPEMI = U.CPEMI; 999 unsigned CPI = CPEMI->getOperand(1).getIndex(); 1000 unsigned Size = CPEMI->getOperand(2).getImm(); 1001 MachineBasicBlock *NewMBB; 1002 // Compute this only once, it's expensive. The 4 or 8 is the value the 1003 // hardware keeps in the PC (2 insns ahead of the reference). 1004 unsigned UserOffset = GetOffsetOf(UserMI) + (isThumb ? 4 : 8); 1005 1006 // Special case: tLEApcrel are two instructions MI's. The actual user is the 1007 // second instruction. 1008 if (UserMI->getOpcode() == ARM::tLEApcrel) 1009 UserOffset += 2; 1010 1011 // See if the current entry is within range, or there is a clone of it 1012 // in range. 1013 int result = LookForExistingCPEntry(U, UserOffset); 1014 if (result==1) return false; 1015 else if (result==2) return true; 1016 1017 // No existing clone of this CPE is within range. 1018 // We will be generating a new clone. Get a UID for it. 1019 unsigned ID = AFI->createConstPoolEntryUId(); 1020 1021 // Look for water where we can place this CPE. We look for the farthest one 1022 // away that will work. Forward references only for now (although later 1023 // we might find some that are backwards). 1024 1025 if (!LookForWater(U, UserOffset, &NewMBB)) { 1026 // No water found. 1027 DOUT << "No water found\n"; 1028 CreateNewWater(CPUserIndex, UserOffset, &NewMBB); 1029 } 1030 1031 // Okay, we know we can put an island before NewMBB now, do it! 1032 MachineBasicBlock *NewIsland = Fn.CreateMachineBasicBlock(); 1033 Fn.insert(NewMBB, NewIsland); 1034 1035 // Update internal data structures to account for the newly inserted MBB. 1036 UpdateForInsertedWaterBlock(NewIsland); 1037 1038 // Decrement the old entry, and remove it if refcount becomes 0. 1039 DecrementOldEntry(CPI, CPEMI); 1040 1041 // Now that we have an island to add the CPE to, clone the original CPE and 1042 // add it to the island. 1043 U.CPEMI = BuildMI(NewIsland, TII->get(ARM::CONSTPOOL_ENTRY)) 1044 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size); 1045 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1046 NumCPEs++; 1047 1048 BBOffsets[NewIsland->getNumber()] = BBOffsets[NewMBB->getNumber()]; 1049 // Compensate for .align 2 in thumb mode. 1050 if (isThumb && BBOffsets[NewIsland->getNumber()]%4 != 0) 1051 Size += 2; 1052 // Increase the size of the island block to account for the new entry. 1053 BBSizes[NewIsland->getNumber()] += Size; 1054 AdjustBBOffsetsAfter(NewIsland, Size); 1055 1056 // Finally, change the CPI in the instruction operand to be ID. 1057 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) 1058 if (UserMI->getOperand(i).isCPI()) { 1059 UserMI->getOperand(i).setIndex(ID); 1060 break; 1061 } 1062 1063 DOUT << " Moved CPE to #" << ID << " CPI=" << CPI << "\t" << *UserMI; 1064 1065 return true; 1066} 1067 1068/// RemoveDeadCPEMI - Remove a dead constant pool entry instruction. Update 1069/// sizes and offsets of impacted basic blocks. 1070void ARMConstantIslands::RemoveDeadCPEMI(MachineInstr *CPEMI) { 1071 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1072 unsigned Size = CPEMI->getOperand(2).getImm(); 1073 CPEMI->eraseFromParent(); 1074 BBSizes[CPEBB->getNumber()] -= Size; 1075 // All succeeding offsets have the current size value added in, fix this. 1076 if (CPEBB->empty()) { 1077 // In thumb mode, the size of island may be padded by two to compensate for 1078 // the alignment requirement. Then it will now be 2 when the block is 1079 // empty, so fix this. 1080 // All succeeding offsets have the current size value added in, fix this. 1081 if (BBSizes[CPEBB->getNumber()] != 0) { 1082 Size += BBSizes[CPEBB->getNumber()]; 1083 BBSizes[CPEBB->getNumber()] = 0; 1084 } 1085 } 1086 AdjustBBOffsetsAfter(CPEBB, -Size); 1087 // An island has only one predecessor BB and one successor BB. Check if 1088 // this BB's predecessor jumps directly to this BB's successor. This 1089 // shouldn't happen currently. 1090 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); 1091 // FIXME: remove the empty blocks after all the work is done? 1092} 1093 1094/// RemoveUnusedCPEntries - Remove constant pool entries whose refcounts 1095/// are zero. 1096bool ARMConstantIslands::RemoveUnusedCPEntries() { 1097 unsigned MadeChange = false; 1098 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 1099 std::vector<CPEntry> &CPEs = CPEntries[i]; 1100 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { 1101 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { 1102 RemoveDeadCPEMI(CPEs[j].CPEMI); 1103 CPEs[j].CPEMI = NULL; 1104 MadeChange = true; 1105 } 1106 } 1107 } 1108 return MadeChange; 1109} 1110 1111/// BBIsInRange - Returns true if the distance between specific MI and 1112/// specific BB can fit in MI's displacement field. 1113bool ARMConstantIslands::BBIsInRange(MachineInstr *MI,MachineBasicBlock *DestBB, 1114 unsigned MaxDisp) { 1115 unsigned PCAdj = isThumb ? 4 : 8; 1116 unsigned BrOffset = GetOffsetOf(MI) + PCAdj; 1117 unsigned DestOffset = BBOffsets[DestBB->getNumber()]; 1118 1119 DOUT << "Branch of destination BB#" << DestBB->getNumber() 1120 << " from BB#" << MI->getParent()->getNumber() 1121 << " max delta=" << MaxDisp 1122 << " from " << GetOffsetOf(MI) << " to " << DestOffset 1123 << " offset " << int(DestOffset-BrOffset) << "\t" << *MI; 1124 1125 if (BrOffset <= DestOffset) { 1126 // Branch before the Dest. 1127 if (DestOffset-BrOffset <= MaxDisp) 1128 return true; 1129 } else { 1130 if (BrOffset-DestOffset <= MaxDisp) 1131 return true; 1132 } 1133 return false; 1134} 1135 1136/// FixUpImmediateBr - Fix up an immediate branch whose destination is too far 1137/// away to fit in its displacement field. 1138bool ARMConstantIslands::FixUpImmediateBr(MachineFunction &Fn, ImmBranch &Br) { 1139 MachineInstr *MI = Br.MI; 1140 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1141 1142 // Check to see if the DestBB is already in-range. 1143 if (BBIsInRange(MI, DestBB, Br.MaxDisp)) 1144 return false; 1145 1146 if (!Br.isCond) 1147 return FixUpUnconditionalBr(Fn, Br); 1148 return FixUpConditionalBr(Fn, Br); 1149} 1150 1151/// FixUpUnconditionalBr - Fix up an unconditional branch whose destination is 1152/// too far away to fit in its displacement field. If the LR register has been 1153/// spilled in the epilogue, then we can use BL to implement a far jump. 1154/// Otherwise, add an intermediate branch instruction to to a branch. 1155bool 1156ARMConstantIslands::FixUpUnconditionalBr(MachineFunction &Fn, ImmBranch &Br) { 1157 MachineInstr *MI = Br.MI; 1158 MachineBasicBlock *MBB = MI->getParent(); 1159 assert(isThumb && "Expected a Thumb function!"); 1160 1161 // Use BL to implement far jump. 1162 Br.MaxDisp = (1 << 21) * 2; 1163 MI->setDesc(TII->get(ARM::tBfar)); 1164 BBSizes[MBB->getNumber()] += 2; 1165 AdjustBBOffsetsAfter(MBB, 2); 1166 HasFarJump = true; 1167 NumUBrFixed++; 1168 1169 DOUT << " Changed B to long jump " << *MI; 1170 1171 return true; 1172} 1173 1174/// FixUpConditionalBr - Fix up a conditional branch whose destination is too 1175/// far away to fit in its displacement field. It is converted to an inverse 1176/// conditional branch + an unconditional branch to the destination. 1177bool 1178ARMConstantIslands::FixUpConditionalBr(MachineFunction &Fn, ImmBranch &Br) { 1179 MachineInstr *MI = Br.MI; 1180 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1181 1182 // Add a unconditional branch to the destination and invert the branch 1183 // condition to jump over it: 1184 // blt L1 1185 // => 1186 // bge L2 1187 // b L1 1188 // L2: 1189 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm(); 1190 CC = ARMCC::getOppositeCondition(CC); 1191 unsigned CCReg = MI->getOperand(2).getReg(); 1192 1193 // If the branch is at the end of its MBB and that has a fall-through block, 1194 // direct the updated conditional branch to the fall-through block. Otherwise, 1195 // split the MBB before the next instruction. 1196 MachineBasicBlock *MBB = MI->getParent(); 1197 MachineInstr *BMI = &MBB->back(); 1198 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); 1199 1200 NumCBrFixed++; 1201 if (BMI != MI) { 1202 if (next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) && 1203 BMI->getOpcode() == Br.UncondBr) { 1204 // Last MI in the BB is a unconditional branch. Can we simply invert the 1205 // condition and swap destinations: 1206 // beq L1 1207 // b L2 1208 // => 1209 // bne L2 1210 // b L1 1211 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); 1212 if (BBIsInRange(MI, NewDest, Br.MaxDisp)) { 1213 DOUT << " Invert Bcc condition and swap its destination with " << *BMI; 1214 BMI->getOperand(0).setMBB(DestBB); 1215 MI->getOperand(0).setMBB(NewDest); 1216 MI->getOperand(1).setImm(CC); 1217 return true; 1218 } 1219 } 1220 } 1221 1222 if (NeedSplit) { 1223 SplitBlockBeforeInstr(MI); 1224 // No need for the branch to the next block. We're adding a unconditional 1225 // branch to the destination. 1226 int delta = TII->GetInstSizeInBytes(&MBB->back()); 1227 BBSizes[MBB->getNumber()] -= delta; 1228 MachineBasicBlock* SplitBB = next(MachineFunction::iterator(MBB)); 1229 AdjustBBOffsetsAfter(SplitBB, -delta); 1230 MBB->back().eraseFromParent(); 1231 // BBOffsets[SplitBB] is wrong temporarily, fixed below 1232 } 1233 MachineBasicBlock *NextBB = next(MachineFunction::iterator(MBB)); 1234 1235 DOUT << " Insert B to BB#" << DestBB->getNumber() 1236 << " also invert condition and change dest. to BB#" 1237 << NextBB->getNumber() << "\n"; 1238 1239 // Insert a new conditional branch and a new unconditional branch. 1240 // Also update the ImmBranch as well as adding a new entry for the new branch. 1241 BuildMI(MBB, TII->get(MI->getOpcode())).addMBB(NextBB) 1242 .addImm(CC).addReg(CCReg); 1243 Br.MI = &MBB->back(); 1244 BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back()); 1245 BuildMI(MBB, TII->get(Br.UncondBr)).addMBB(DestBB); 1246 BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back()); 1247 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1248 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1249 1250 // Remove the old conditional branch. It may or may not still be in MBB. 1251 BBSizes[MI->getParent()->getNumber()] -= TII->GetInstSizeInBytes(MI); 1252 MI->eraseFromParent(); 1253 1254 // The net size change is an addition of one unconditional branch. 1255 int delta = TII->GetInstSizeInBytes(&MBB->back()); 1256 AdjustBBOffsetsAfter(MBB, delta); 1257 return true; 1258} 1259 1260/// UndoLRSpillRestore - Remove Thumb push / pop instructions that only spills 1261/// LR / restores LR to pc. 1262bool ARMConstantIslands::UndoLRSpillRestore() { 1263 bool MadeChange = false; 1264 for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) { 1265 MachineInstr *MI = PushPopMIs[i]; 1266 if (MI->getOpcode() == ARM::tPOP_RET && 1267 MI->getOperand(0).getReg() == ARM::PC && 1268 MI->getNumExplicitOperands() == 1) { 1269 BuildMI(MI->getParent(), TII->get(ARM::tBX_RET)); 1270 MI->eraseFromParent(); 1271 MadeChange = true; 1272 } 1273 } 1274 return MadeChange; 1275} 1276