ARMConstantIslandPass.cpp revision fe60104ac97f3a8736dcfbfdf9547c7b7cc7b951
1//===-- ARMConstantIslandPass.cpp - ARM constant islands --------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains a pass that splits the constant pool up into 'islands' 11// which are scattered through-out the function. This is required due to the 12// limited pc-relative displacements that ARM has. 13// 14//===----------------------------------------------------------------------===// 15 16#define DEBUG_TYPE "arm-cp-islands" 17#include "ARM.h" 18#include "ARMAddressingModes.h" 19#include "ARMMachineFunctionInfo.h" 20#include "ARMInstrInfo.h" 21#include "llvm/CodeGen/MachineConstantPool.h" 22#include "llvm/CodeGen/MachineFunctionPass.h" 23#include "llvm/CodeGen/MachineInstrBuilder.h" 24#include "llvm/CodeGen/MachineJumpTableInfo.h" 25#include "llvm/Target/TargetData.h" 26#include "llvm/Target/TargetMachine.h" 27#include "llvm/Support/Debug.h" 28#include "llvm/Support/ErrorHandling.h" 29#include "llvm/Support/raw_ostream.h" 30#include "llvm/ADT/SmallSet.h" 31#include "llvm/ADT/SmallVector.h" 32#include "llvm/ADT/STLExtras.h" 33#include "llvm/ADT/Statistic.h" 34#include "llvm/Support/CommandLine.h" 35#include <algorithm> 36using namespace llvm; 37 38STATISTIC(NumCPEs, "Number of constpool entries"); 39STATISTIC(NumSplit, "Number of uncond branches inserted"); 40STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 41STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 42STATISTIC(NumTBs, "Number of table branches generated"); 43STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk"); 44STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk"); 45STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed"); 46STATISTIC(NumJTMoved, "Number of jump table destination blocks moved"); 47STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted"); 48 49 50static cl::opt<bool> 51AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true), 52 cl::desc("Adjust basic block layout to better use TB[BH]")); 53 54namespace { 55 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM 56 /// requires constant pool entries to be scattered among the instructions 57 /// inside a function. To do this, it completely ignores the normal LLVM 58 /// constant pool; instead, it places constants wherever it feels like with 59 /// special instructions. 60 /// 61 /// The terminology used in this pass includes: 62 /// Islands - Clumps of constants placed in the function. 63 /// Water - Potential places where an island could be formed. 64 /// CPE - A constant pool entry that has been placed somewhere, which 65 /// tracks a list of users. 66 class ARMConstantIslands : public MachineFunctionPass { 67 /// BBSizes - The size of each MachineBasicBlock in bytes of code, indexed 68 /// by MBB Number. The two-byte pads required for Thumb alignment are 69 /// counted as part of the following block (i.e., the offset and size for 70 /// a padded block will both be ==2 mod 4). 71 std::vector<unsigned> BBSizes; 72 73 /// BBOffsets - the offset of each MBB in bytes, starting from 0. 74 /// The two-byte pads required for Thumb alignment are counted as part of 75 /// the following block. 76 std::vector<unsigned> BBOffsets; 77 78 /// WaterList - A sorted list of basic blocks where islands could be placed 79 /// (i.e. blocks that don't fall through to the following block, due 80 /// to a return, unreachable, or unconditional branch). 81 std::vector<MachineBasicBlock*> WaterList; 82 83 /// NewWaterList - The subset of WaterList that was created since the 84 /// previous iteration by inserting unconditional branches. 85 SmallSet<MachineBasicBlock*, 4> NewWaterList; 86 87 typedef std::vector<MachineBasicBlock*>::iterator water_iterator; 88 89 /// CPUser - One user of a constant pool, keeping the machine instruction 90 /// pointer, the constant pool being referenced, and the max displacement 91 /// allowed from the instruction to the CP. The HighWaterMark records the 92 /// highest basic block where a new CPEntry can be placed. To ensure this 93 /// pass terminates, the CP entries are initially placed at the end of the 94 /// function and then move monotonically to lower addresses. The 95 /// exception to this rule is when the current CP entry for a particular 96 /// CPUser is out of range, but there is another CP entry for the same 97 /// constant value in range. We want to use the existing in-range CP 98 /// entry, but if it later moves out of range, the search for new water 99 /// should resume where it left off. The HighWaterMark is used to record 100 /// that point. 101 struct CPUser { 102 MachineInstr *MI; 103 MachineInstr *CPEMI; 104 MachineBasicBlock *HighWaterMark; 105 unsigned MaxDisp; 106 bool NegOk; 107 bool IsSoImm; 108 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, 109 bool neg, bool soimm) 110 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) { 111 HighWaterMark = CPEMI->getParent(); 112 } 113 }; 114 115 /// CPUsers - Keep track of all of the machine instructions that use various 116 /// constant pools and their max displacement. 117 std::vector<CPUser> CPUsers; 118 119 /// CPEntry - One per constant pool entry, keeping the machine instruction 120 /// pointer, the constpool index, and the number of CPUser's which 121 /// reference this entry. 122 struct CPEntry { 123 MachineInstr *CPEMI; 124 unsigned CPI; 125 unsigned RefCount; 126 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) 127 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} 128 }; 129 130 /// CPEntries - Keep track of all of the constant pool entry machine 131 /// instructions. For each original constpool index (i.e. those that 132 /// existed upon entry to this pass), it keeps a vector of entries. 133 /// Original elements are cloned as we go along; the clones are 134 /// put in the vector of the original element, but have distinct CPIs. 135 std::vector<std::vector<CPEntry> > CPEntries; 136 137 /// ImmBranch - One per immediate branch, keeping the machine instruction 138 /// pointer, conditional or unconditional, the max displacement, 139 /// and (if isCond is true) the corresponding unconditional branch 140 /// opcode. 141 struct ImmBranch { 142 MachineInstr *MI; 143 unsigned MaxDisp : 31; 144 bool isCond : 1; 145 int UncondBr; 146 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr) 147 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} 148 }; 149 150 /// ImmBranches - Keep track of all the immediate branch instructions. 151 /// 152 std::vector<ImmBranch> ImmBranches; 153 154 /// PushPopMIs - Keep track of all the Thumb push / pop instructions. 155 /// 156 SmallVector<MachineInstr*, 4> PushPopMIs; 157 158 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions. 159 SmallVector<MachineInstr*, 4> T2JumpTables; 160 161 /// HasFarJump - True if any far jump instruction has been emitted during 162 /// the branch fix up pass. 163 bool HasFarJump; 164 165 /// HasInlineAsm - True if the function contains inline assembly. 166 bool HasInlineAsm; 167 168 const TargetInstrInfo *TII; 169 const ARMSubtarget *STI; 170 ARMFunctionInfo *AFI; 171 bool isThumb; 172 bool isThumb1; 173 bool isThumb2; 174 public: 175 static char ID; 176 ARMConstantIslands() : MachineFunctionPass(&ID) {} 177 178 virtual bool runOnMachineFunction(MachineFunction &MF); 179 180 virtual const char *getPassName() const { 181 return "ARM constant island placement and branch shortening pass"; 182 } 183 184 private: 185 void DoInitialPlacement(MachineFunction &MF, 186 std::vector<MachineInstr*> &CPEMIs); 187 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 188 void JumpTableFunctionScan(MachineFunction &MF); 189 void InitialFunctionScan(MachineFunction &MF, 190 const std::vector<MachineInstr*> &CPEMIs); 191 MachineBasicBlock *SplitBlockBeforeInstr(MachineInstr *MI); 192 void UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB); 193 void AdjustBBOffsetsAfter(MachineBasicBlock *BB, int delta); 194 bool DecrementOldEntry(unsigned CPI, MachineInstr* CPEMI); 195 int LookForExistingCPEntry(CPUser& U, unsigned UserOffset); 196 bool LookForWater(CPUser&U, unsigned UserOffset, water_iterator &WaterIter); 197 void CreateNewWater(unsigned CPUserIndex, unsigned UserOffset, 198 MachineBasicBlock *&NewMBB); 199 bool HandleConstantPoolUser(MachineFunction &MF, unsigned CPUserIndex); 200 void RemoveDeadCPEMI(MachineInstr *CPEMI); 201 bool RemoveUnusedCPEntries(); 202 bool CPEIsInRange(MachineInstr *MI, unsigned UserOffset, 203 MachineInstr *CPEMI, unsigned Disp, bool NegOk, 204 bool DoDump = false); 205 bool WaterIsInRange(unsigned UserOffset, MachineBasicBlock *Water, 206 CPUser &U); 207 bool OffsetIsInRange(unsigned UserOffset, unsigned TrialOffset, 208 unsigned Disp, bool NegativeOK, bool IsSoImm = false); 209 bool BBIsInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); 210 bool FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br); 211 bool FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br); 212 bool FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br); 213 bool UndoLRSpillRestore(); 214 bool OptimizeThumb2Instructions(MachineFunction &MF); 215 bool OptimizeThumb2Branches(MachineFunction &MF); 216 bool ReorderThumb2JumpTables(MachineFunction &MF); 217 bool OptimizeThumb2JumpTables(MachineFunction &MF); 218 MachineBasicBlock *AdjustJTTargetBlockForward(MachineBasicBlock *BB, 219 MachineBasicBlock *JTBB); 220 221 unsigned GetOffsetOf(MachineInstr *MI) const; 222 void dumpBBs(); 223 void verify(MachineFunction &MF); 224 }; 225 char ARMConstantIslands::ID = 0; 226} 227 228/// verify - check BBOffsets, BBSizes, alignment of islands 229void ARMConstantIslands::verify(MachineFunction &MF) { 230 assert(BBOffsets.size() == BBSizes.size()); 231 for (unsigned i = 1, e = BBOffsets.size(); i != e; ++i) 232 assert(BBOffsets[i-1]+BBSizes[i-1] == BBOffsets[i]); 233 if (!isThumb) 234 return; 235#ifndef NDEBUG 236 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); 237 MBBI != E; ++MBBI) { 238 MachineBasicBlock *MBB = MBBI; 239 if (!MBB->empty() && 240 MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) { 241 unsigned MBBId = MBB->getNumber(); 242 assert(HasInlineAsm || 243 (BBOffsets[MBBId]%4 == 0 && BBSizes[MBBId]%4 == 0) || 244 (BBOffsets[MBBId]%4 != 0 && BBSizes[MBBId]%4 != 0)); 245 } 246 } 247 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 248 CPUser &U = CPUsers[i]; 249 unsigned UserOffset = GetOffsetOf(U.MI) + (isThumb ? 4 : 8); 250 unsigned CPEOffset = GetOffsetOf(U.CPEMI); 251 unsigned Disp = UserOffset < CPEOffset ? CPEOffset - UserOffset : 252 UserOffset - CPEOffset; 253 assert(Disp <= U.MaxDisp || "Constant pool entry out of range!"); 254 } 255#endif 256} 257 258/// print block size and offset information - debugging 259void ARMConstantIslands::dumpBBs() { 260 for (unsigned J = 0, E = BBOffsets.size(); J !=E; ++J) { 261 DEBUG(errs() << "block " << J << " offset " << BBOffsets[J] 262 << " size " << BBSizes[J] << "\n"); 263 } 264} 265 266/// createARMConstantIslandPass - returns an instance of the constpool 267/// island pass. 268FunctionPass *llvm::createARMConstantIslandPass() { 269 return new ARMConstantIslands(); 270} 271 272bool ARMConstantIslands::runOnMachineFunction(MachineFunction &MF) { 273 MachineConstantPool &MCP = *MF.getConstantPool(); 274 275 TII = MF.getTarget().getInstrInfo(); 276 AFI = MF.getInfo<ARMFunctionInfo>(); 277 STI = &MF.getTarget().getSubtarget<ARMSubtarget>(); 278 279 isThumb = AFI->isThumbFunction(); 280 isThumb1 = AFI->isThumb1OnlyFunction(); 281 isThumb2 = AFI->isThumb2Function(); 282 283 HasFarJump = false; 284 HasInlineAsm = false; 285 286 // Renumber all of the machine basic blocks in the function, guaranteeing that 287 // the numbers agree with the position of the block in the function. 288 MF.RenumberBlocks(); 289 290 // Try to reorder and otherwise adjust the block layout to make good use 291 // of the TB[BH] instructions. 292 bool MadeChange = false; 293 if (isThumb2 && AdjustJumpTableBlocks) { 294 JumpTableFunctionScan(MF); 295 MadeChange |= ReorderThumb2JumpTables(MF); 296 // Data is out of date, so clear it. It'll be re-computed later. 297 T2JumpTables.clear(); 298 // Blocks may have shifted around. Keep the numbering up to date. 299 MF.RenumberBlocks(); 300 } 301 302 // Thumb1 functions containing constant pools get 4-byte alignment. 303 // This is so we can keep exact track of where the alignment padding goes. 304 305 // ARM and Thumb2 functions need to be 4-byte aligned. 306 if (!isThumb1) 307 MF.EnsureAlignment(2); // 2 = log2(4) 308 309 // Perform the initial placement of the constant pool entries. To start with, 310 // we put them all at the end of the function. 311 std::vector<MachineInstr*> CPEMIs; 312 if (!MCP.isEmpty()) { 313 DoInitialPlacement(MF, CPEMIs); 314 if (isThumb1) 315 MF.EnsureAlignment(2); // 2 = log2(4) 316 } 317 318 /// The next UID to take is the first unused one. 319 AFI->initConstPoolEntryUId(CPEMIs.size()); 320 321 // Do the initial scan of the function, building up information about the 322 // sizes of each block, the location of all the water, and finding all of the 323 // constant pool users. 324 InitialFunctionScan(MF, CPEMIs); 325 CPEMIs.clear(); 326 327 /// Remove dead constant pool entries. 328 RemoveUnusedCPEntries(); 329 330 // Iteratively place constant pool entries and fix up branches until there 331 // is no change. 332 unsigned NoCPIters = 0, NoBRIters = 0; 333 while (true) { 334 bool CPChange = false; 335 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) 336 CPChange |= HandleConstantPoolUser(MF, i); 337 if (CPChange && ++NoCPIters > 30) 338 llvm_unreachable("Constant Island pass failed to converge!"); 339 DEBUG(dumpBBs()); 340 341 // Clear NewWaterList now. If we split a block for branches, it should 342 // appear as "new water" for the next iteration of constant pool placement. 343 NewWaterList.clear(); 344 345 bool BRChange = false; 346 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) 347 BRChange |= FixUpImmediateBr(MF, ImmBranches[i]); 348 if (BRChange && ++NoBRIters > 30) 349 llvm_unreachable("Branch Fix Up pass failed to converge!"); 350 DEBUG(dumpBBs()); 351 352 if (!CPChange && !BRChange) 353 break; 354 MadeChange = true; 355 } 356 357 // Shrink 32-bit Thumb2 branch, load, and store instructions. 358 if (isThumb2) 359 MadeChange |= OptimizeThumb2Instructions(MF); 360 361 // After a while, this might be made debug-only, but it is not expensive. 362 verify(MF); 363 364 // If LR has been forced spilled and no far jumps (i.e. BL) has been issued. 365 // Undo the spill / restore of LR if possible. 366 if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump()) 367 MadeChange |= UndoLRSpillRestore(); 368 369 BBSizes.clear(); 370 BBOffsets.clear(); 371 WaterList.clear(); 372 CPUsers.clear(); 373 CPEntries.clear(); 374 ImmBranches.clear(); 375 PushPopMIs.clear(); 376 T2JumpTables.clear(); 377 378 return MadeChange; 379} 380 381/// DoInitialPlacement - Perform the initial placement of the constant pool 382/// entries. To start with, we put them all at the end of the function. 383void ARMConstantIslands::DoInitialPlacement(MachineFunction &MF, 384 std::vector<MachineInstr*> &CPEMIs) { 385 // Create the basic block to hold the CPE's. 386 MachineBasicBlock *BB = MF.CreateMachineBasicBlock(); 387 MF.push_back(BB); 388 389 // Add all of the constants from the constant pool to the end block, use an 390 // identity mapping of CPI's to CPE's. 391 const std::vector<MachineConstantPoolEntry> &CPs = 392 MF.getConstantPool()->getConstants(); 393 394 const TargetData &TD = *MF.getTarget().getTargetData(); 395 for (unsigned i = 0, e = CPs.size(); i != e; ++i) { 396 unsigned Size = TD.getTypeAllocSize(CPs[i].getType()); 397 // Verify that all constant pool entries are a multiple of 4 bytes. If not, 398 // we would have to pad them out or something so that instructions stay 399 // aligned. 400 assert((Size & 3) == 0 && "CP Entry not multiple of 4 bytes!"); 401 MachineInstr *CPEMI = 402 BuildMI(BB, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 403 .addImm(i).addConstantPoolIndex(i).addImm(Size); 404 CPEMIs.push_back(CPEMI); 405 406 // Add a new CPEntry, but no corresponding CPUser yet. 407 std::vector<CPEntry> CPEs; 408 CPEs.push_back(CPEntry(CPEMI, i)); 409 CPEntries.push_back(CPEs); 410 ++NumCPEs; 411 DEBUG(errs() << "Moved CPI#" << i << " to end of function as #" << i 412 << "\n"); 413 } 414} 415 416/// BBHasFallthrough - Return true if the specified basic block can fallthrough 417/// into the block immediately after it. 418static bool BBHasFallthrough(MachineBasicBlock *MBB) { 419 // Get the next machine basic block in the function. 420 MachineFunction::iterator MBBI = MBB; 421 // Can't fall off end of function. 422 if (llvm::next(MBBI) == MBB->getParent()->end()) 423 return false; 424 425 MachineBasicBlock *NextBB = llvm::next(MBBI); 426 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), 427 E = MBB->succ_end(); I != E; ++I) 428 if (*I == NextBB) 429 return true; 430 431 return false; 432} 433 434/// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 435/// look up the corresponding CPEntry. 436ARMConstantIslands::CPEntry 437*ARMConstantIslands::findConstPoolEntry(unsigned CPI, 438 const MachineInstr *CPEMI) { 439 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 440 // Number of entries per constpool index should be small, just do a 441 // linear search. 442 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 443 if (CPEs[i].CPEMI == CPEMI) 444 return &CPEs[i]; 445 } 446 return NULL; 447} 448 449/// JumpTableFunctionScan - Do a scan of the function, building up 450/// information about the sizes of each block and the locations of all 451/// the jump tables. 452void ARMConstantIslands::JumpTableFunctionScan(MachineFunction &MF) { 453 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); 454 MBBI != E; ++MBBI) { 455 MachineBasicBlock &MBB = *MBBI; 456 457 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 458 I != E; ++I) 459 if (I->getDesc().isBranch() && I->getOpcode() == ARM::t2BR_JT) 460 T2JumpTables.push_back(I); 461 } 462} 463 464/// InitialFunctionScan - Do the initial scan of the function, building up 465/// information about the sizes of each block, the location of all the water, 466/// and finding all of the constant pool users. 467void ARMConstantIslands::InitialFunctionScan(MachineFunction &MF, 468 const std::vector<MachineInstr*> &CPEMIs) { 469 // First thing, see if the function has any inline assembly in it. If so, 470 // we have to be conservative about alignment assumptions, as we don't 471 // know for sure the size of any instructions in the inline assembly. 472 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); 473 MBBI != E; ++MBBI) { 474 MachineBasicBlock &MBB = *MBBI; 475 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 476 I != E; ++I) 477 if (I->getOpcode() == ARM::INLINEASM) 478 HasInlineAsm = true; 479 } 480 481 // Now go back through the instructions and build up our data structures 482 unsigned Offset = 0; 483 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); 484 MBBI != E; ++MBBI) { 485 MachineBasicBlock &MBB = *MBBI; 486 487 // If this block doesn't fall through into the next MBB, then this is 488 // 'water' that a constant pool island could be placed. 489 if (!BBHasFallthrough(&MBB)) 490 WaterList.push_back(&MBB); 491 492 unsigned MBBSize = 0; 493 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 494 I != E; ++I) { 495 if (I->isDebugValue()) 496 continue; 497 // Add instruction size to MBBSize. 498 MBBSize += TII->GetInstSizeInBytes(I); 499 500 int Opc = I->getOpcode(); 501 if (I->getDesc().isBranch()) { 502 bool isCond = false; 503 unsigned Bits = 0; 504 unsigned Scale = 1; 505 int UOpc = Opc; 506 switch (Opc) { 507 default: 508 continue; // Ignore other JT branches 509 case ARM::tBR_JTr: 510 // A Thumb1 table jump may involve padding; for the offsets to 511 // be right, functions containing these must be 4-byte aligned. 512 MF.EnsureAlignment(2U); 513 if ((Offset+MBBSize)%4 != 0 || HasInlineAsm) 514 // FIXME: Add a pseudo ALIGN instruction instead. 515 MBBSize += 2; // padding 516 continue; // Does not get an entry in ImmBranches 517 case ARM::t2BR_JT: 518 T2JumpTables.push_back(I); 519 continue; // Does not get an entry in ImmBranches 520 case ARM::Bcc: 521 isCond = true; 522 UOpc = ARM::B; 523 // Fallthrough 524 case ARM::B: 525 Bits = 24; 526 Scale = 4; 527 break; 528 case ARM::tBcc: 529 isCond = true; 530 UOpc = ARM::tB; 531 Bits = 8; 532 Scale = 2; 533 break; 534 case ARM::tB: 535 Bits = 11; 536 Scale = 2; 537 break; 538 case ARM::t2Bcc: 539 isCond = true; 540 UOpc = ARM::t2B; 541 Bits = 20; 542 Scale = 2; 543 break; 544 case ARM::t2B: 545 Bits = 24; 546 Scale = 2; 547 break; 548 } 549 550 // Record this immediate branch. 551 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 552 ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc)); 553 } 554 555 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) 556 PushPopMIs.push_back(I); 557 558 if (Opc == ARM::CONSTPOOL_ENTRY) 559 continue; 560 561 // Scan the instructions for constant pool operands. 562 for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) 563 if (I->getOperand(op).isCPI()) { 564 // We found one. The addressing mode tells us the max displacement 565 // from the PC that this instruction permits. 566 567 // Basic size info comes from the TSFlags field. 568 unsigned Bits = 0; 569 unsigned Scale = 1; 570 bool NegOk = false; 571 bool IsSoImm = false; 572 573 switch (Opc) { 574 default: 575 llvm_unreachable("Unknown addressing mode for CP reference!"); 576 break; 577 578 // Taking the address of a CP entry. 579 case ARM::LEApcrel: 580 // This takes a SoImm, which is 8 bit immediate rotated. We'll 581 // pretend the maximum offset is 255 * 4. Since each instruction 582 // 4 byte wide, this is always correct. We'll check for other 583 // displacements that fits in a SoImm as well. 584 Bits = 8; 585 Scale = 4; 586 NegOk = true; 587 IsSoImm = true; 588 break; 589 case ARM::t2LEApcrel: 590 Bits = 12; 591 NegOk = true; 592 break; 593 case ARM::tLEApcrel: 594 Bits = 8; 595 Scale = 4; 596 break; 597 598 case ARM::LDR: 599 case ARM::LDRcp: 600 case ARM::t2LDRpci: 601 Bits = 12; // +-offset_12 602 NegOk = true; 603 break; 604 605 case ARM::tLDRpci: 606 case ARM::tLDRcp: 607 Bits = 8; 608 Scale = 4; // +(offset_8*4) 609 break; 610 611 case ARM::VLDRD: 612 case ARM::VLDRS: 613 Bits = 8; 614 Scale = 4; // +-(offset_8*4) 615 NegOk = true; 616 break; 617 } 618 619 // Remember that this is a user of a CP entry. 620 unsigned CPI = I->getOperand(op).getIndex(); 621 MachineInstr *CPEMI = CPEMIs[CPI]; 622 unsigned MaxOffs = ((1 << Bits)-1) * Scale; 623 CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm)); 624 625 // Increment corresponding CPEntry reference count. 626 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 627 assert(CPE && "Cannot find a corresponding CPEntry!"); 628 CPE->RefCount++; 629 630 // Instructions can only use one CP entry, don't bother scanning the 631 // rest of the operands. 632 break; 633 } 634 } 635 636 // In thumb mode, if this block is a constpool island, we may need padding 637 // so it's aligned on 4 byte boundary. 638 if (isThumb && 639 !MBB.empty() && 640 MBB.begin()->getOpcode() == ARM::CONSTPOOL_ENTRY && 641 ((Offset%4) != 0 || HasInlineAsm)) 642 MBBSize += 2; 643 644 BBSizes.push_back(MBBSize); 645 BBOffsets.push_back(Offset); 646 Offset += MBBSize; 647 } 648} 649 650/// GetOffsetOf - Return the current offset of the specified machine instruction 651/// from the start of the function. This offset changes as stuff is moved 652/// around inside the function. 653unsigned ARMConstantIslands::GetOffsetOf(MachineInstr *MI) const { 654 MachineBasicBlock *MBB = MI->getParent(); 655 656 // The offset is composed of two things: the sum of the sizes of all MBB's 657 // before this instruction's block, and the offset from the start of the block 658 // it is in. 659 unsigned Offset = BBOffsets[MBB->getNumber()]; 660 661 // If we're looking for a CONSTPOOL_ENTRY in Thumb, see if this block has 662 // alignment padding, and compensate if so. 663 if (isThumb && 664 MI->getOpcode() == ARM::CONSTPOOL_ENTRY && 665 (Offset%4 != 0 || HasInlineAsm)) 666 Offset += 2; 667 668 // Sum instructions before MI in MBB. 669 for (MachineBasicBlock::iterator I = MBB->begin(); ; ++I) { 670 assert(I != MBB->end() && "Didn't find MI in its own basic block?"); 671 if (&*I == MI) return Offset; 672 Offset += TII->GetInstSizeInBytes(I); 673 } 674} 675 676/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 677/// ID. 678static bool CompareMBBNumbers(const MachineBasicBlock *LHS, 679 const MachineBasicBlock *RHS) { 680 return LHS->getNumber() < RHS->getNumber(); 681} 682 683/// UpdateForInsertedWaterBlock - When a block is newly inserted into the 684/// machine function, it upsets all of the block numbers. Renumber the blocks 685/// and update the arrays that parallel this numbering. 686void ARMConstantIslands::UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB) { 687 // Renumber the MBB's to keep them consequtive. 688 NewBB->getParent()->RenumberBlocks(NewBB); 689 690 // Insert a size into BBSizes to align it properly with the (newly 691 // renumbered) block numbers. 692 BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0); 693 694 // Likewise for BBOffsets. 695 BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0); 696 697 // Next, update WaterList. Specifically, we need to add NewMBB as having 698 // available water after it. 699 water_iterator IP = 700 std::lower_bound(WaterList.begin(), WaterList.end(), NewBB, 701 CompareMBBNumbers); 702 WaterList.insert(IP, NewBB); 703} 704 705 706/// Split the basic block containing MI into two blocks, which are joined by 707/// an unconditional branch. Update data structures and renumber blocks to 708/// account for this change and returns the newly created block. 709MachineBasicBlock *ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr *MI) { 710 MachineBasicBlock *OrigBB = MI->getParent(); 711 MachineFunction &MF = *OrigBB->getParent(); 712 713 // Create a new MBB for the code after the OrigBB. 714 MachineBasicBlock *NewBB = 715 MF.CreateMachineBasicBlock(OrigBB->getBasicBlock()); 716 MachineFunction::iterator MBBI = OrigBB; ++MBBI; 717 MF.insert(MBBI, NewBB); 718 719 // Splice the instructions starting with MI over to NewBB. 720 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 721 722 // Add an unconditional branch from OrigBB to NewBB. 723 // Note the new unconditional branch is not being recorded. 724 // There doesn't seem to be meaningful DebugInfo available; this doesn't 725 // correspond to anything in the source. 726 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B; 727 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB); 728 ++NumSplit; 729 730 // Update the CFG. All succs of OrigBB are now succs of NewBB. 731 while (!OrigBB->succ_empty()) { 732 MachineBasicBlock *Succ = *OrigBB->succ_begin(); 733 OrigBB->removeSuccessor(Succ); 734 NewBB->addSuccessor(Succ); 735 736 // This pass should be run after register allocation, so there should be no 737 // PHI nodes to update. 738 assert((Succ->empty() || !Succ->begin()->isPHI()) 739 && "PHI nodes should be eliminated by now!"); 740 } 741 742 // OrigBB branches to NewBB. 743 OrigBB->addSuccessor(NewBB); 744 745 // Update internal data structures to account for the newly inserted MBB. 746 // This is almost the same as UpdateForInsertedWaterBlock, except that 747 // the Water goes after OrigBB, not NewBB. 748 MF.RenumberBlocks(NewBB); 749 750 // Insert a size into BBSizes to align it properly with the (newly 751 // renumbered) block numbers. 752 BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0); 753 754 // Likewise for BBOffsets. 755 BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0); 756 757 // Next, update WaterList. Specifically, we need to add OrigMBB as having 758 // available water after it (but not if it's already there, which happens 759 // when splitting before a conditional branch that is followed by an 760 // unconditional branch - in that case we want to insert NewBB). 761 water_iterator IP = 762 std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB, 763 CompareMBBNumbers); 764 MachineBasicBlock* WaterBB = *IP; 765 if (WaterBB == OrigBB) 766 WaterList.insert(llvm::next(IP), NewBB); 767 else 768 WaterList.insert(IP, OrigBB); 769 NewWaterList.insert(OrigBB); 770 771 // Figure out how large the first NewMBB is. (It cannot 772 // contain a constpool_entry or tablejump.) 773 unsigned NewBBSize = 0; 774 for (MachineBasicBlock::iterator I = NewBB->begin(), E = NewBB->end(); 775 I != E; ++I) 776 NewBBSize += TII->GetInstSizeInBytes(I); 777 778 unsigned OrigBBI = OrigBB->getNumber(); 779 unsigned NewBBI = NewBB->getNumber(); 780 // Set the size of NewBB in BBSizes. 781 BBSizes[NewBBI] = NewBBSize; 782 783 // We removed instructions from UserMBB, subtract that off from its size. 784 // Add 2 or 4 to the block to count the unconditional branch we added to it. 785 int delta = isThumb1 ? 2 : 4; 786 BBSizes[OrigBBI] -= NewBBSize - delta; 787 788 // ...and adjust BBOffsets for NewBB accordingly. 789 BBOffsets[NewBBI] = BBOffsets[OrigBBI] + BBSizes[OrigBBI]; 790 791 // All BBOffsets following these blocks must be modified. 792 AdjustBBOffsetsAfter(NewBB, delta); 793 794 return NewBB; 795} 796 797/// OffsetIsInRange - Checks whether UserOffset (the location of a constant pool 798/// reference) is within MaxDisp of TrialOffset (a proposed location of a 799/// constant pool entry). 800bool ARMConstantIslands::OffsetIsInRange(unsigned UserOffset, 801 unsigned TrialOffset, unsigned MaxDisp, 802 bool NegativeOK, bool IsSoImm) { 803 // On Thumb offsets==2 mod 4 are rounded down by the hardware for 804 // purposes of the displacement computation; compensate for that here. 805 // Effectively, the valid range of displacements is 2 bytes smaller for such 806 // references. 807 unsigned TotalAdj = 0; 808 if (isThumb && UserOffset%4 !=0) { 809 UserOffset -= 2; 810 TotalAdj = 2; 811 } 812 // CPEs will be rounded up to a multiple of 4. 813 if (isThumb && TrialOffset%4 != 0) { 814 TrialOffset += 2; 815 TotalAdj += 2; 816 } 817 818 // In Thumb2 mode, later branch adjustments can shift instructions up and 819 // cause alignment change. In the worst case scenario this can cause the 820 // user's effective address to be subtracted by 2 and the CPE's address to 821 // be plus 2. 822 if (isThumb2 && TotalAdj != 4) 823 MaxDisp -= (4 - TotalAdj); 824 825 if (UserOffset <= TrialOffset) { 826 // User before the Trial. 827 if (TrialOffset - UserOffset <= MaxDisp) 828 return true; 829 // FIXME: Make use full range of soimm values. 830 } else if (NegativeOK) { 831 if (UserOffset - TrialOffset <= MaxDisp) 832 return true; 833 // FIXME: Make use full range of soimm values. 834 } 835 return false; 836} 837 838/// WaterIsInRange - Returns true if a CPE placed after the specified 839/// Water (a basic block) will be in range for the specific MI. 840 841bool ARMConstantIslands::WaterIsInRange(unsigned UserOffset, 842 MachineBasicBlock* Water, CPUser &U) { 843 unsigned MaxDisp = U.MaxDisp; 844 unsigned CPEOffset = BBOffsets[Water->getNumber()] + 845 BBSizes[Water->getNumber()]; 846 847 // If the CPE is to be inserted before the instruction, that will raise 848 // the offset of the instruction. 849 if (CPEOffset < UserOffset) 850 UserOffset += U.CPEMI->getOperand(2).getImm(); 851 852 return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, U.NegOk, U.IsSoImm); 853} 854 855/// CPEIsInRange - Returns true if the distance between specific MI and 856/// specific ConstPool entry instruction can fit in MI's displacement field. 857bool ARMConstantIslands::CPEIsInRange(MachineInstr *MI, unsigned UserOffset, 858 MachineInstr *CPEMI, unsigned MaxDisp, 859 bool NegOk, bool DoDump) { 860 unsigned CPEOffset = GetOffsetOf(CPEMI); 861 assert((CPEOffset%4 == 0 || HasInlineAsm) && "Misaligned CPE"); 862 863 if (DoDump) { 864 DEBUG(errs() << "User of CPE#" << CPEMI->getOperand(0).getImm() 865 << " max delta=" << MaxDisp 866 << " insn address=" << UserOffset 867 << " CPE address=" << CPEOffset 868 << " offset=" << int(CPEOffset-UserOffset) << "\t" << *MI); 869 } 870 871 return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, NegOk); 872} 873 874#ifndef NDEBUG 875/// BBIsJumpedOver - Return true of the specified basic block's only predecessor 876/// unconditionally branches to its only successor. 877static bool BBIsJumpedOver(MachineBasicBlock *MBB) { 878 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 879 return false; 880 881 MachineBasicBlock *Succ = *MBB->succ_begin(); 882 MachineBasicBlock *Pred = *MBB->pred_begin(); 883 MachineInstr *PredMI = &Pred->back(); 884 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB 885 || PredMI->getOpcode() == ARM::t2B) 886 return PredMI->getOperand(0).getMBB() == Succ; 887 return false; 888} 889#endif // NDEBUG 890 891void ARMConstantIslands::AdjustBBOffsetsAfter(MachineBasicBlock *BB, 892 int delta) { 893 MachineFunction::iterator MBBI = BB; MBBI = llvm::next(MBBI); 894 for(unsigned i = BB->getNumber()+1, e = BB->getParent()->getNumBlockIDs(); 895 i < e; ++i) { 896 BBOffsets[i] += delta; 897 // If some existing blocks have padding, adjust the padding as needed, a 898 // bit tricky. delta can be negative so don't use % on that. 899 if (!isThumb) 900 continue; 901 MachineBasicBlock *MBB = MBBI; 902 if (!MBB->empty() && !HasInlineAsm) { 903 // Constant pool entries require padding. 904 if (MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) { 905 unsigned OldOffset = BBOffsets[i] - delta; 906 if ((OldOffset%4) == 0 && (BBOffsets[i]%4) != 0) { 907 // add new padding 908 BBSizes[i] += 2; 909 delta += 2; 910 } else if ((OldOffset%4) != 0 && (BBOffsets[i]%4) == 0) { 911 // remove existing padding 912 BBSizes[i] -= 2; 913 delta -= 2; 914 } 915 } 916 // Thumb1 jump tables require padding. They should be at the end; 917 // following unconditional branches are removed by AnalyzeBranch. 918 MachineInstr *ThumbJTMI = prior(MBB->end()); 919 if (ThumbJTMI->getOpcode() == ARM::tBR_JTr) { 920 unsigned NewMIOffset = GetOffsetOf(ThumbJTMI); 921 unsigned OldMIOffset = NewMIOffset - delta; 922 if ((OldMIOffset%4) == 0 && (NewMIOffset%4) != 0) { 923 // remove existing padding 924 BBSizes[i] -= 2; 925 delta -= 2; 926 } else if ((OldMIOffset%4) != 0 && (NewMIOffset%4) == 0) { 927 // add new padding 928 BBSizes[i] += 2; 929 delta += 2; 930 } 931 } 932 if (delta==0) 933 return; 934 } 935 MBBI = llvm::next(MBBI); 936 } 937} 938 939/// DecrementOldEntry - find the constant pool entry with index CPI 940/// and instruction CPEMI, and decrement its refcount. If the refcount 941/// becomes 0 remove the entry and instruction. Returns true if we removed 942/// the entry, false if we didn't. 943 944bool ARMConstantIslands::DecrementOldEntry(unsigned CPI, MachineInstr *CPEMI) { 945 // Find the old entry. Eliminate it if it is no longer used. 946 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 947 assert(CPE && "Unexpected!"); 948 if (--CPE->RefCount == 0) { 949 RemoveDeadCPEMI(CPEMI); 950 CPE->CPEMI = NULL; 951 --NumCPEs; 952 return true; 953 } 954 return false; 955} 956 957/// LookForCPEntryInRange - see if the currently referenced CPE is in range; 958/// if not, see if an in-range clone of the CPE is in range, and if so, 959/// change the data structures so the user references the clone. Returns: 960/// 0 = no existing entry found 961/// 1 = entry found, and there were no code insertions or deletions 962/// 2 = entry found, and there were code insertions or deletions 963int ARMConstantIslands::LookForExistingCPEntry(CPUser& U, unsigned UserOffset) 964{ 965 MachineInstr *UserMI = U.MI; 966 MachineInstr *CPEMI = U.CPEMI; 967 968 // Check to see if the CPE is already in-range. 969 if (CPEIsInRange(UserMI, UserOffset, CPEMI, U.MaxDisp, U.NegOk, true)) { 970 DEBUG(errs() << "In range\n"); 971 return 1; 972 } 973 974 // No. Look for previously created clones of the CPE that are in range. 975 unsigned CPI = CPEMI->getOperand(1).getIndex(); 976 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 977 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 978 // We already tried this one 979 if (CPEs[i].CPEMI == CPEMI) 980 continue; 981 // Removing CPEs can leave empty entries, skip 982 if (CPEs[i].CPEMI == NULL) 983 continue; 984 if (CPEIsInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.MaxDisp, U.NegOk)) { 985 DEBUG(errs() << "Replacing CPE#" << CPI << " with CPE#" 986 << CPEs[i].CPI << "\n"); 987 // Point the CPUser node to the replacement 988 U.CPEMI = CPEs[i].CPEMI; 989 // Change the CPI in the instruction operand to refer to the clone. 990 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) 991 if (UserMI->getOperand(j).isCPI()) { 992 UserMI->getOperand(j).setIndex(CPEs[i].CPI); 993 break; 994 } 995 // Adjust the refcount of the clone... 996 CPEs[i].RefCount++; 997 // ...and the original. If we didn't remove the old entry, none of the 998 // addresses changed, so we don't need another pass. 999 return DecrementOldEntry(CPI, CPEMI) ? 2 : 1; 1000 } 1001 } 1002 return 0; 1003} 1004 1005/// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 1006/// the specific unconditional branch instruction. 1007static inline unsigned getUnconditionalBrDisp(int Opc) { 1008 switch (Opc) { 1009 case ARM::tB: 1010 return ((1<<10)-1)*2; 1011 case ARM::t2B: 1012 return ((1<<23)-1)*2; 1013 default: 1014 break; 1015 } 1016 1017 return ((1<<23)-1)*4; 1018} 1019 1020/// LookForWater - Look for an existing entry in the WaterList in which 1021/// we can place the CPE referenced from U so it's within range of U's MI. 1022/// Returns true if found, false if not. If it returns true, WaterIter 1023/// is set to the WaterList entry. For Thumb, prefer water that will not 1024/// introduce padding to water that will. To ensure that this pass 1025/// terminates, the CPE location for a particular CPUser is only allowed to 1026/// move to a lower address, so search backward from the end of the list and 1027/// prefer the first water that is in range. 1028bool ARMConstantIslands::LookForWater(CPUser &U, unsigned UserOffset, 1029 water_iterator &WaterIter) { 1030 if (WaterList.empty()) 1031 return false; 1032 1033 bool FoundWaterThatWouldPad = false; 1034 water_iterator IPThatWouldPad; 1035 for (water_iterator IP = prior(WaterList.end()), 1036 B = WaterList.begin();; --IP) { 1037 MachineBasicBlock* WaterBB = *IP; 1038 // Check if water is in range and is either at a lower address than the 1039 // current "high water mark" or a new water block that was created since 1040 // the previous iteration by inserting an unconditional branch. In the 1041 // latter case, we want to allow resetting the high water mark back to 1042 // this new water since we haven't seen it before. Inserting branches 1043 // should be relatively uncommon and when it does happen, we want to be 1044 // sure to take advantage of it for all the CPEs near that block, so that 1045 // we don't insert more branches than necessary. 1046 if (WaterIsInRange(UserOffset, WaterBB, U) && 1047 (WaterBB->getNumber() < U.HighWaterMark->getNumber() || 1048 NewWaterList.count(WaterBB))) { 1049 unsigned WBBId = WaterBB->getNumber(); 1050 if (isThumb && 1051 (BBOffsets[WBBId] + BBSizes[WBBId])%4 != 0) { 1052 // This is valid Water, but would introduce padding. Remember 1053 // it in case we don't find any Water that doesn't do this. 1054 if (!FoundWaterThatWouldPad) { 1055 FoundWaterThatWouldPad = true; 1056 IPThatWouldPad = IP; 1057 } 1058 } else { 1059 WaterIter = IP; 1060 return true; 1061 } 1062 } 1063 if (IP == B) 1064 break; 1065 } 1066 if (FoundWaterThatWouldPad) { 1067 WaterIter = IPThatWouldPad; 1068 return true; 1069 } 1070 return false; 1071} 1072 1073/// CreateNewWater - No existing WaterList entry will work for 1074/// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 1075/// block is used if in range, and the conditional branch munged so control 1076/// flow is correct. Otherwise the block is split to create a hole with an 1077/// unconditional branch around it. In either case NewMBB is set to a 1078/// block following which the new island can be inserted (the WaterList 1079/// is not adjusted). 1080void ARMConstantIslands::CreateNewWater(unsigned CPUserIndex, 1081 unsigned UserOffset, 1082 MachineBasicBlock *&NewMBB) { 1083 CPUser &U = CPUsers[CPUserIndex]; 1084 MachineInstr *UserMI = U.MI; 1085 MachineInstr *CPEMI = U.CPEMI; 1086 MachineBasicBlock *UserMBB = UserMI->getParent(); 1087 unsigned OffsetOfNextBlock = BBOffsets[UserMBB->getNumber()] + 1088 BBSizes[UserMBB->getNumber()]; 1089 assert(OffsetOfNextBlock== BBOffsets[UserMBB->getNumber()+1]); 1090 1091 // If the block does not end in an unconditional branch already, and if the 1092 // end of the block is within range, make new water there. (The addition 1093 // below is for the unconditional branch we will be adding: 4 bytes on ARM + 1094 // Thumb2, 2 on Thumb1. Possible Thumb1 alignment padding is allowed for 1095 // inside OffsetIsInRange. 1096 if (BBHasFallthrough(UserMBB) && 1097 OffsetIsInRange(UserOffset, OffsetOfNextBlock + (isThumb1 ? 2: 4), 1098 U.MaxDisp, U.NegOk, U.IsSoImm)) { 1099 DEBUG(errs() << "Split at end of block\n"); 1100 if (&UserMBB->back() == UserMI) 1101 assert(BBHasFallthrough(UserMBB) && "Expected a fallthrough BB!"); 1102 NewMBB = llvm::next(MachineFunction::iterator(UserMBB)); 1103 // Add an unconditional branch from UserMBB to fallthrough block. 1104 // Record it for branch lengthening; this new branch will not get out of 1105 // range, but if the preceding conditional branch is out of range, the 1106 // targets will be exchanged, and the altered branch may be out of 1107 // range, so the machinery has to know about it. 1108 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B; 1109 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB); 1110 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 1111 ImmBranches.push_back(ImmBranch(&UserMBB->back(), 1112 MaxDisp, false, UncondBr)); 1113 int delta = isThumb1 ? 2 : 4; 1114 BBSizes[UserMBB->getNumber()] += delta; 1115 AdjustBBOffsetsAfter(UserMBB, delta); 1116 } else { 1117 // What a big block. Find a place within the block to split it. 1118 // This is a little tricky on Thumb1 since instructions are 2 bytes 1119 // and constant pool entries are 4 bytes: if instruction I references 1120 // island CPE, and instruction I+1 references CPE', it will 1121 // not work well to put CPE as far forward as possible, since then 1122 // CPE' cannot immediately follow it (that location is 2 bytes 1123 // farther away from I+1 than CPE was from I) and we'd need to create 1124 // a new island. So, we make a first guess, then walk through the 1125 // instructions between the one currently being looked at and the 1126 // possible insertion point, and make sure any other instructions 1127 // that reference CPEs will be able to use the same island area; 1128 // if not, we back up the insertion point. 1129 1130 // The 4 in the following is for the unconditional branch we'll be 1131 // inserting (allows for long branch on Thumb1). Alignment of the 1132 // island is handled inside OffsetIsInRange. 1133 unsigned BaseInsertOffset = UserOffset + U.MaxDisp -4; 1134 // This could point off the end of the block if we've already got 1135 // constant pool entries following this block; only the last one is 1136 // in the water list. Back past any possible branches (allow for a 1137 // conditional and a maximally long unconditional). 1138 if (BaseInsertOffset >= BBOffsets[UserMBB->getNumber()+1]) 1139 BaseInsertOffset = BBOffsets[UserMBB->getNumber()+1] - 1140 (isThumb1 ? 6 : 8); 1141 unsigned EndInsertOffset = BaseInsertOffset + 1142 CPEMI->getOperand(2).getImm(); 1143 MachineBasicBlock::iterator MI = UserMI; 1144 ++MI; 1145 unsigned CPUIndex = CPUserIndex+1; 1146 for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI); 1147 Offset < BaseInsertOffset; 1148 Offset += TII->GetInstSizeInBytes(MI), 1149 MI = llvm::next(MI)) { 1150 if (CPUIndex < CPUsers.size() && CPUsers[CPUIndex].MI == MI) { 1151 CPUser &U = CPUsers[CPUIndex]; 1152 if (!OffsetIsInRange(Offset, EndInsertOffset, 1153 U.MaxDisp, U.NegOk, U.IsSoImm)) { 1154 BaseInsertOffset -= (isThumb1 ? 2 : 4); 1155 EndInsertOffset -= (isThumb1 ? 2 : 4); 1156 } 1157 // This is overly conservative, as we don't account for CPEMIs 1158 // being reused within the block, but it doesn't matter much. 1159 EndInsertOffset += CPUsers[CPUIndex].CPEMI->getOperand(2).getImm(); 1160 CPUIndex++; 1161 } 1162 } 1163 DEBUG(errs() << "Split in middle of big block\n"); 1164 NewMBB = SplitBlockBeforeInstr(prior(MI)); 1165 } 1166} 1167 1168/// HandleConstantPoolUser - Analyze the specified user, checking to see if it 1169/// is out-of-range. If so, pick up the constant pool value and move it some 1170/// place in-range. Return true if we changed any addresses (thus must run 1171/// another pass of branch lengthening), false otherwise. 1172bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction &MF, 1173 unsigned CPUserIndex) { 1174 CPUser &U = CPUsers[CPUserIndex]; 1175 MachineInstr *UserMI = U.MI; 1176 MachineInstr *CPEMI = U.CPEMI; 1177 unsigned CPI = CPEMI->getOperand(1).getIndex(); 1178 unsigned Size = CPEMI->getOperand(2).getImm(); 1179 // Compute this only once, it's expensive. The 4 or 8 is the value the 1180 // hardware keeps in the PC. 1181 unsigned UserOffset = GetOffsetOf(UserMI) + (isThumb ? 4 : 8); 1182 1183 // See if the current entry is within range, or there is a clone of it 1184 // in range. 1185 int result = LookForExistingCPEntry(U, UserOffset); 1186 if (result==1) return false; 1187 else if (result==2) return true; 1188 1189 // No existing clone of this CPE is within range. 1190 // We will be generating a new clone. Get a UID for it. 1191 unsigned ID = AFI->createConstPoolEntryUId(); 1192 1193 // Look for water where we can place this CPE. 1194 MachineBasicBlock *NewIsland = MF.CreateMachineBasicBlock(); 1195 MachineBasicBlock *NewMBB; 1196 water_iterator IP; 1197 if (LookForWater(U, UserOffset, IP)) { 1198 DEBUG(errs() << "found water in range\n"); 1199 MachineBasicBlock *WaterBB = *IP; 1200 1201 // If the original WaterList entry was "new water" on this iteration, 1202 // propagate that to the new island. This is just keeping NewWaterList 1203 // updated to match the WaterList, which will be updated below. 1204 if (NewWaterList.count(WaterBB)) { 1205 NewWaterList.erase(WaterBB); 1206 NewWaterList.insert(NewIsland); 1207 } 1208 // The new CPE goes before the following block (NewMBB). 1209 NewMBB = llvm::next(MachineFunction::iterator(WaterBB)); 1210 1211 } else { 1212 // No water found. 1213 DEBUG(errs() << "No water found\n"); 1214 CreateNewWater(CPUserIndex, UserOffset, NewMBB); 1215 1216 // SplitBlockBeforeInstr adds to WaterList, which is important when it is 1217 // called while handling branches so that the water will be seen on the 1218 // next iteration for constant pools, but in this context, we don't want 1219 // it. Check for this so it will be removed from the WaterList. 1220 // Also remove any entry from NewWaterList. 1221 MachineBasicBlock *WaterBB = prior(MachineFunction::iterator(NewMBB)); 1222 IP = std::find(WaterList.begin(), WaterList.end(), WaterBB); 1223 if (IP != WaterList.end()) 1224 NewWaterList.erase(WaterBB); 1225 1226 // We are adding new water. Update NewWaterList. 1227 NewWaterList.insert(NewIsland); 1228 } 1229 1230 // Remove the original WaterList entry; we want subsequent insertions in 1231 // this vicinity to go after the one we're about to insert. This 1232 // considerably reduces the number of times we have to move the same CPE 1233 // more than once and is also important to ensure the algorithm terminates. 1234 if (IP != WaterList.end()) 1235 WaterList.erase(IP); 1236 1237 // Okay, we know we can put an island before NewMBB now, do it! 1238 MF.insert(NewMBB, NewIsland); 1239 1240 // Update internal data structures to account for the newly inserted MBB. 1241 UpdateForInsertedWaterBlock(NewIsland); 1242 1243 // Decrement the old entry, and remove it if refcount becomes 0. 1244 DecrementOldEntry(CPI, CPEMI); 1245 1246 // Now that we have an island to add the CPE to, clone the original CPE and 1247 // add it to the island. 1248 U.HighWaterMark = NewIsland; 1249 U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 1250 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size); 1251 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1252 ++NumCPEs; 1253 1254 BBOffsets[NewIsland->getNumber()] = BBOffsets[NewMBB->getNumber()]; 1255 // Compensate for .align 2 in thumb mode. 1256 if (isThumb && (BBOffsets[NewIsland->getNumber()]%4 != 0 || HasInlineAsm)) 1257 Size += 2; 1258 // Increase the size of the island block to account for the new entry. 1259 BBSizes[NewIsland->getNumber()] += Size; 1260 AdjustBBOffsetsAfter(NewIsland, Size); 1261 1262 // Finally, change the CPI in the instruction operand to be ID. 1263 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) 1264 if (UserMI->getOperand(i).isCPI()) { 1265 UserMI->getOperand(i).setIndex(ID); 1266 break; 1267 } 1268 1269 DEBUG(errs() << " Moved CPE to #" << ID << " CPI=" << CPI 1270 << '\t' << *UserMI); 1271 1272 return true; 1273} 1274 1275/// RemoveDeadCPEMI - Remove a dead constant pool entry instruction. Update 1276/// sizes and offsets of impacted basic blocks. 1277void ARMConstantIslands::RemoveDeadCPEMI(MachineInstr *CPEMI) { 1278 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1279 unsigned Size = CPEMI->getOperand(2).getImm(); 1280 CPEMI->eraseFromParent(); 1281 BBSizes[CPEBB->getNumber()] -= Size; 1282 // All succeeding offsets have the current size value added in, fix this. 1283 if (CPEBB->empty()) { 1284 // In thumb1 mode, the size of island may be padded by two to compensate for 1285 // the alignment requirement. Then it will now be 2 when the block is 1286 // empty, so fix this. 1287 // All succeeding offsets have the current size value added in, fix this. 1288 if (BBSizes[CPEBB->getNumber()] != 0) { 1289 Size += BBSizes[CPEBB->getNumber()]; 1290 BBSizes[CPEBB->getNumber()] = 0; 1291 } 1292 } 1293 AdjustBBOffsetsAfter(CPEBB, -Size); 1294 // An island has only one predecessor BB and one successor BB. Check if 1295 // this BB's predecessor jumps directly to this BB's successor. This 1296 // shouldn't happen currently. 1297 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); 1298 // FIXME: remove the empty blocks after all the work is done? 1299} 1300 1301/// RemoveUnusedCPEntries - Remove constant pool entries whose refcounts 1302/// are zero. 1303bool ARMConstantIslands::RemoveUnusedCPEntries() { 1304 unsigned MadeChange = false; 1305 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 1306 std::vector<CPEntry> &CPEs = CPEntries[i]; 1307 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { 1308 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { 1309 RemoveDeadCPEMI(CPEs[j].CPEMI); 1310 CPEs[j].CPEMI = NULL; 1311 MadeChange = true; 1312 } 1313 } 1314 } 1315 return MadeChange; 1316} 1317 1318/// BBIsInRange - Returns true if the distance between specific MI and 1319/// specific BB can fit in MI's displacement field. 1320bool ARMConstantIslands::BBIsInRange(MachineInstr *MI,MachineBasicBlock *DestBB, 1321 unsigned MaxDisp) { 1322 unsigned PCAdj = isThumb ? 4 : 8; 1323 unsigned BrOffset = GetOffsetOf(MI) + PCAdj; 1324 unsigned DestOffset = BBOffsets[DestBB->getNumber()]; 1325 1326 DEBUG(errs() << "Branch of destination BB#" << DestBB->getNumber() 1327 << " from BB#" << MI->getParent()->getNumber() 1328 << " max delta=" << MaxDisp 1329 << " from " << GetOffsetOf(MI) << " to " << DestOffset 1330 << " offset " << int(DestOffset-BrOffset) << "\t" << *MI); 1331 1332 if (BrOffset <= DestOffset) { 1333 // Branch before the Dest. 1334 if (DestOffset-BrOffset <= MaxDisp) 1335 return true; 1336 } else { 1337 if (BrOffset-DestOffset <= MaxDisp) 1338 return true; 1339 } 1340 return false; 1341} 1342 1343/// FixUpImmediateBr - Fix up an immediate branch whose destination is too far 1344/// away to fit in its displacement field. 1345bool ARMConstantIslands::FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br) { 1346 MachineInstr *MI = Br.MI; 1347 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1348 1349 // Check to see if the DestBB is already in-range. 1350 if (BBIsInRange(MI, DestBB, Br.MaxDisp)) 1351 return false; 1352 1353 if (!Br.isCond) 1354 return FixUpUnconditionalBr(MF, Br); 1355 return FixUpConditionalBr(MF, Br); 1356} 1357 1358/// FixUpUnconditionalBr - Fix up an unconditional branch whose destination is 1359/// too far away to fit in its displacement field. If the LR register has been 1360/// spilled in the epilogue, then we can use BL to implement a far jump. 1361/// Otherwise, add an intermediate branch instruction to a branch. 1362bool 1363ARMConstantIslands::FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br) { 1364 MachineInstr *MI = Br.MI; 1365 MachineBasicBlock *MBB = MI->getParent(); 1366 if (!isThumb1) 1367 llvm_unreachable("FixUpUnconditionalBr is Thumb1 only!"); 1368 1369 // Use BL to implement far jump. 1370 Br.MaxDisp = (1 << 21) * 2; 1371 MI->setDesc(TII->get(ARM::tBfar)); 1372 BBSizes[MBB->getNumber()] += 2; 1373 AdjustBBOffsetsAfter(MBB, 2); 1374 HasFarJump = true; 1375 ++NumUBrFixed; 1376 1377 DEBUG(errs() << " Changed B to long jump " << *MI); 1378 1379 return true; 1380} 1381 1382/// FixUpConditionalBr - Fix up a conditional branch whose destination is too 1383/// far away to fit in its displacement field. It is converted to an inverse 1384/// conditional branch + an unconditional branch to the destination. 1385bool 1386ARMConstantIslands::FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br) { 1387 MachineInstr *MI = Br.MI; 1388 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1389 1390 // Add an unconditional branch to the destination and invert the branch 1391 // condition to jump over it: 1392 // blt L1 1393 // => 1394 // bge L2 1395 // b L1 1396 // L2: 1397 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm(); 1398 CC = ARMCC::getOppositeCondition(CC); 1399 unsigned CCReg = MI->getOperand(2).getReg(); 1400 1401 // If the branch is at the end of its MBB and that has a fall-through block, 1402 // direct the updated conditional branch to the fall-through block. Otherwise, 1403 // split the MBB before the next instruction. 1404 MachineBasicBlock *MBB = MI->getParent(); 1405 MachineInstr *BMI = &MBB->back(); 1406 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); 1407 1408 ++NumCBrFixed; 1409 if (BMI != MI) { 1410 if (llvm::next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) && 1411 BMI->getOpcode() == Br.UncondBr) { 1412 // Last MI in the BB is an unconditional branch. Can we simply invert the 1413 // condition and swap destinations: 1414 // beq L1 1415 // b L2 1416 // => 1417 // bne L2 1418 // b L1 1419 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); 1420 if (BBIsInRange(MI, NewDest, Br.MaxDisp)) { 1421 DEBUG(errs() << " Invert Bcc condition and swap its destination with " 1422 << *BMI); 1423 BMI->getOperand(0).setMBB(DestBB); 1424 MI->getOperand(0).setMBB(NewDest); 1425 MI->getOperand(1).setImm(CC); 1426 return true; 1427 } 1428 } 1429 } 1430 1431 if (NeedSplit) { 1432 SplitBlockBeforeInstr(MI); 1433 // No need for the branch to the next block. We're adding an unconditional 1434 // branch to the destination. 1435 int delta = TII->GetInstSizeInBytes(&MBB->back()); 1436 BBSizes[MBB->getNumber()] -= delta; 1437 MachineBasicBlock* SplitBB = llvm::next(MachineFunction::iterator(MBB)); 1438 AdjustBBOffsetsAfter(SplitBB, -delta); 1439 MBB->back().eraseFromParent(); 1440 // BBOffsets[SplitBB] is wrong temporarily, fixed below 1441 } 1442 MachineBasicBlock *NextBB = llvm::next(MachineFunction::iterator(MBB)); 1443 1444 DEBUG(errs() << " Insert B to BB#" << DestBB->getNumber() 1445 << " also invert condition and change dest. to BB#" 1446 << NextBB->getNumber() << "\n"); 1447 1448 // Insert a new conditional branch and a new unconditional branch. 1449 // Also update the ImmBranch as well as adding a new entry for the new branch. 1450 BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode())) 1451 .addMBB(NextBB).addImm(CC).addReg(CCReg); 1452 Br.MI = &MBB->back(); 1453 BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back()); 1454 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); 1455 BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back()); 1456 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1457 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1458 1459 // Remove the old conditional branch. It may or may not still be in MBB. 1460 BBSizes[MI->getParent()->getNumber()] -= TII->GetInstSizeInBytes(MI); 1461 MI->eraseFromParent(); 1462 1463 // The net size change is an addition of one unconditional branch. 1464 int delta = TII->GetInstSizeInBytes(&MBB->back()); 1465 AdjustBBOffsetsAfter(MBB, delta); 1466 return true; 1467} 1468 1469/// UndoLRSpillRestore - Remove Thumb push / pop instructions that only spills 1470/// LR / restores LR to pc. FIXME: This is done here because it's only possible 1471/// to do this if tBfar is not used. 1472bool ARMConstantIslands::UndoLRSpillRestore() { 1473 bool MadeChange = false; 1474 for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) { 1475 MachineInstr *MI = PushPopMIs[i]; 1476 // First two operands are predicates. 1477 if (MI->getOpcode() == ARM::tPOP_RET && 1478 MI->getOperand(2).getReg() == ARM::PC && 1479 MI->getNumExplicitOperands() == 3) { 1480 BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET)); 1481 MI->eraseFromParent(); 1482 MadeChange = true; 1483 } 1484 } 1485 return MadeChange; 1486} 1487 1488bool ARMConstantIslands::OptimizeThumb2Instructions(MachineFunction &MF) { 1489 bool MadeChange = false; 1490 1491 // Shrink ADR and LDR from constantpool. 1492 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 1493 CPUser &U = CPUsers[i]; 1494 unsigned Opcode = U.MI->getOpcode(); 1495 unsigned NewOpc = 0; 1496 unsigned Scale = 1; 1497 unsigned Bits = 0; 1498 switch (Opcode) { 1499 default: break; 1500 case ARM::t2LEApcrel: 1501 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1502 NewOpc = ARM::tLEApcrel; 1503 Bits = 8; 1504 Scale = 4; 1505 } 1506 break; 1507 case ARM::t2LDRpci: 1508 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1509 NewOpc = ARM::tLDRpci; 1510 Bits = 8; 1511 Scale = 4; 1512 } 1513 break; 1514 } 1515 1516 if (!NewOpc) 1517 continue; 1518 1519 unsigned UserOffset = GetOffsetOf(U.MI) + 4; 1520 unsigned MaxOffs = ((1 << Bits) - 1) * Scale; 1521 // FIXME: Check if offset is multiple of scale if scale is not 4. 1522 if (CPEIsInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) { 1523 U.MI->setDesc(TII->get(NewOpc)); 1524 MachineBasicBlock *MBB = U.MI->getParent(); 1525 BBSizes[MBB->getNumber()] -= 2; 1526 AdjustBBOffsetsAfter(MBB, -2); 1527 ++NumT2CPShrunk; 1528 MadeChange = true; 1529 } 1530 } 1531 1532 MadeChange |= OptimizeThumb2Branches(MF); 1533 MadeChange |= OptimizeThumb2JumpTables(MF); 1534 return MadeChange; 1535} 1536 1537bool ARMConstantIslands::OptimizeThumb2Branches(MachineFunction &MF) { 1538 bool MadeChange = false; 1539 1540 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) { 1541 ImmBranch &Br = ImmBranches[i]; 1542 unsigned Opcode = Br.MI->getOpcode(); 1543 unsigned NewOpc = 0; 1544 unsigned Scale = 1; 1545 unsigned Bits = 0; 1546 switch (Opcode) { 1547 default: break; 1548 case ARM::t2B: 1549 NewOpc = ARM::tB; 1550 Bits = 11; 1551 Scale = 2; 1552 break; 1553 case ARM::t2Bcc: { 1554 NewOpc = ARM::tBcc; 1555 Bits = 8; 1556 Scale = 2; 1557 break; 1558 } 1559 } 1560 if (NewOpc) { 1561 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 1562 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1563 if (BBIsInRange(Br.MI, DestBB, MaxOffs)) { 1564 Br.MI->setDesc(TII->get(NewOpc)); 1565 MachineBasicBlock *MBB = Br.MI->getParent(); 1566 BBSizes[MBB->getNumber()] -= 2; 1567 AdjustBBOffsetsAfter(MBB, -2); 1568 ++NumT2BrShrunk; 1569 MadeChange = true; 1570 } 1571 } 1572 1573 Opcode = Br.MI->getOpcode(); 1574 if (Opcode != ARM::tBcc) 1575 continue; 1576 1577 NewOpc = 0; 1578 unsigned PredReg = 0; 1579 ARMCC::CondCodes Pred = llvm::getInstrPredicate(Br.MI, PredReg); 1580 if (Pred == ARMCC::EQ) 1581 NewOpc = ARM::tCBZ; 1582 else if (Pred == ARMCC::NE) 1583 NewOpc = ARM::tCBNZ; 1584 if (!NewOpc) 1585 continue; 1586 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1587 // Check if the distance is within 126. Subtract starting offset by 2 1588 // because the cmp will be eliminated. 1589 unsigned BrOffset = GetOffsetOf(Br.MI) + 4 - 2; 1590 unsigned DestOffset = BBOffsets[DestBB->getNumber()]; 1591 if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) { 1592 MachineBasicBlock::iterator CmpMI = Br.MI; --CmpMI; 1593 if (CmpMI->getOpcode() == ARM::tCMPzi8) { 1594 unsigned Reg = CmpMI->getOperand(0).getReg(); 1595 Pred = llvm::getInstrPredicate(CmpMI, PredReg); 1596 if (Pred == ARMCC::AL && 1597 CmpMI->getOperand(1).getImm() == 0 && 1598 isARMLowRegister(Reg)) { 1599 MachineBasicBlock *MBB = Br.MI->getParent(); 1600 MachineInstr *NewBR = 1601 BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc)) 1602 .addReg(Reg).addMBB(DestBB, Br.MI->getOperand(0).getTargetFlags()); 1603 CmpMI->eraseFromParent(); 1604 Br.MI->eraseFromParent(); 1605 Br.MI = NewBR; 1606 BBSizes[MBB->getNumber()] -= 2; 1607 AdjustBBOffsetsAfter(MBB, -2); 1608 ++NumCBZ; 1609 MadeChange = true; 1610 } 1611 } 1612 } 1613 } 1614 1615 return MadeChange; 1616} 1617 1618/// OptimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller 1619/// jumptables when it's possible. 1620bool ARMConstantIslands::OptimizeThumb2JumpTables(MachineFunction &MF) { 1621 bool MadeChange = false; 1622 1623 // FIXME: After the tables are shrunk, can we get rid some of the 1624 // constantpool tables? 1625 MachineJumpTableInfo *MJTI = MF.getJumpTableInfo(); 1626 if (MJTI == 0) return false; 1627 1628 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1629 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 1630 MachineInstr *MI = T2JumpTables[i]; 1631 const TargetInstrDesc &TID = MI->getDesc(); 1632 unsigned NumOps = TID.getNumOperands(); 1633 unsigned JTOpIdx = NumOps - (TID.isPredicable() ? 3 : 2); 1634 MachineOperand JTOP = MI->getOperand(JTOpIdx); 1635 unsigned JTI = JTOP.getIndex(); 1636 assert(JTI < JT.size()); 1637 1638 bool ByteOk = true; 1639 bool HalfWordOk = true; 1640 unsigned JTOffset = GetOffsetOf(MI) + 4; 1641 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1642 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 1643 MachineBasicBlock *MBB = JTBBs[j]; 1644 unsigned DstOffset = BBOffsets[MBB->getNumber()]; 1645 // Negative offset is not ok. FIXME: We should change BB layout to make 1646 // sure all the branches are forward. 1647 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2) 1648 ByteOk = false; 1649 unsigned TBHLimit = ((1<<16)-1)*2; 1650 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit) 1651 HalfWordOk = false; 1652 if (!ByteOk && !HalfWordOk) 1653 break; 1654 } 1655 1656 if (ByteOk || HalfWordOk) { 1657 MachineBasicBlock *MBB = MI->getParent(); 1658 unsigned BaseReg = MI->getOperand(0).getReg(); 1659 bool BaseRegKill = MI->getOperand(0).isKill(); 1660 if (!BaseRegKill) 1661 continue; 1662 unsigned IdxReg = MI->getOperand(1).getReg(); 1663 bool IdxRegKill = MI->getOperand(1).isKill(); 1664 MachineBasicBlock::iterator PrevI = MI; 1665 if (PrevI == MBB->begin()) 1666 continue; 1667 1668 MachineInstr *AddrMI = --PrevI; 1669 bool OptOk = true; 1670 // Examine the instruction that calculate the jumptable entry address. 1671 // If it's not the one just before the t2BR_JT, we won't delete it, then 1672 // it's not worth doing the optimization. 1673 for (unsigned k = 0, eee = AddrMI->getNumOperands(); k != eee; ++k) { 1674 const MachineOperand &MO = AddrMI->getOperand(k); 1675 if (!MO.isReg() || !MO.getReg()) 1676 continue; 1677 if (MO.isDef() && MO.getReg() != BaseReg) { 1678 OptOk = false; 1679 break; 1680 } 1681 if (MO.isUse() && !MO.isKill() && MO.getReg() != IdxReg) { 1682 OptOk = false; 1683 break; 1684 } 1685 } 1686 if (!OptOk) 1687 continue; 1688 1689 // The previous instruction should be a tLEApcrel or t2LEApcrelJT, we want 1690 // to delete it as well. 1691 MachineInstr *LeaMI = --PrevI; 1692 if ((LeaMI->getOpcode() != ARM::tLEApcrelJT && 1693 LeaMI->getOpcode() != ARM::t2LEApcrelJT) || 1694 LeaMI->getOperand(0).getReg() != BaseReg) 1695 OptOk = false; 1696 1697 if (!OptOk) 1698 continue; 1699 1700 unsigned Opc = ByteOk ? ARM::t2TBB : ARM::t2TBH; 1701 MachineInstr *NewJTMI = BuildMI(MBB, MI->getDebugLoc(), TII->get(Opc)) 1702 .addReg(IdxReg, getKillRegState(IdxRegKill)) 1703 .addJumpTableIndex(JTI, JTOP.getTargetFlags()) 1704 .addImm(MI->getOperand(JTOpIdx+1).getImm()); 1705 // FIXME: Insert an "ALIGN" instruction to ensure the next instruction 1706 // is 2-byte aligned. For now, asm printer will fix it up. 1707 unsigned NewSize = TII->GetInstSizeInBytes(NewJTMI); 1708 unsigned OrigSize = TII->GetInstSizeInBytes(AddrMI); 1709 OrigSize += TII->GetInstSizeInBytes(LeaMI); 1710 OrigSize += TII->GetInstSizeInBytes(MI); 1711 1712 AddrMI->eraseFromParent(); 1713 LeaMI->eraseFromParent(); 1714 MI->eraseFromParent(); 1715 1716 int delta = OrigSize - NewSize; 1717 BBSizes[MBB->getNumber()] -= delta; 1718 AdjustBBOffsetsAfter(MBB, -delta); 1719 1720 ++NumTBs; 1721 MadeChange = true; 1722 } 1723 } 1724 1725 return MadeChange; 1726} 1727 1728/// ReorderThumb2JumpTables - Adjust the function's block layout to ensure that 1729/// jump tables always branch forwards, since that's what tbb and tbh need. 1730bool ARMConstantIslands::ReorderThumb2JumpTables(MachineFunction &MF) { 1731 bool MadeChange = false; 1732 1733 MachineJumpTableInfo *MJTI = MF.getJumpTableInfo(); 1734 if (MJTI == 0) return false; 1735 1736 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1737 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 1738 MachineInstr *MI = T2JumpTables[i]; 1739 const TargetInstrDesc &TID = MI->getDesc(); 1740 unsigned NumOps = TID.getNumOperands(); 1741 unsigned JTOpIdx = NumOps - (TID.isPredicable() ? 3 : 2); 1742 MachineOperand JTOP = MI->getOperand(JTOpIdx); 1743 unsigned JTI = JTOP.getIndex(); 1744 assert(JTI < JT.size()); 1745 1746 // We prefer if target blocks for the jump table come after the jump 1747 // instruction so we can use TB[BH]. Loop through the target blocks 1748 // and try to adjust them such that that's true. 1749 int JTNumber = MI->getParent()->getNumber(); 1750 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1751 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 1752 MachineBasicBlock *MBB = JTBBs[j]; 1753 int DTNumber = MBB->getNumber(); 1754 1755 if (DTNumber < JTNumber) { 1756 // The destination precedes the switch. Try to move the block forward 1757 // so we have a positive offset. 1758 MachineBasicBlock *NewBB = 1759 AdjustJTTargetBlockForward(MBB, MI->getParent()); 1760 if (NewBB) 1761 MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB); 1762 MadeChange = true; 1763 } 1764 } 1765 } 1766 1767 return MadeChange; 1768} 1769 1770MachineBasicBlock *ARMConstantIslands:: 1771AdjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) 1772{ 1773 MachineFunction &MF = *BB->getParent(); 1774 1775 // If it's the destination block is terminated by an unconditional branch, 1776 // try to move it; otherwise, create a new block following the jump 1777 // table that branches back to the actual target. This is a very simple 1778 // heuristic. FIXME: We can definitely improve it. 1779 MachineBasicBlock *TBB = 0, *FBB = 0; 1780 SmallVector<MachineOperand, 4> Cond; 1781 SmallVector<MachineOperand, 4> CondPrior; 1782 MachineFunction::iterator BBi = BB; 1783 MachineFunction::iterator OldPrior = prior(BBi); 1784 1785 // If the block terminator isn't analyzable, don't try to move the block 1786 bool B = TII->AnalyzeBranch(*BB, TBB, FBB, Cond); 1787 1788 // If the block ends in an unconditional branch, move it. The prior block 1789 // has to have an analyzable terminator for us to move this one. Be paranoid 1790 // and make sure we're not trying to move the entry block of the function. 1791 if (!B && Cond.empty() && BB != MF.begin() && 1792 !TII->AnalyzeBranch(*OldPrior, TBB, FBB, CondPrior)) { 1793 BB->moveAfter(JTBB); 1794 OldPrior->updateTerminator(); 1795 BB->updateTerminator(); 1796 // Update numbering to account for the block being moved. 1797 MF.RenumberBlocks(); 1798 ++NumJTMoved; 1799 return NULL; 1800 } 1801 1802 // Create a new MBB for the code after the jump BB. 1803 MachineBasicBlock *NewBB = 1804 MF.CreateMachineBasicBlock(JTBB->getBasicBlock()); 1805 MachineFunction::iterator MBBI = JTBB; ++MBBI; 1806 MF.insert(MBBI, NewBB); 1807 1808 // Add an unconditional branch from NewBB to BB. 1809 // There doesn't seem to be meaningful DebugInfo available; this doesn't 1810 // correspond directly to anything in the source. 1811 assert (isThumb2 && "Adjusting for TB[BH] but not in Thumb2?"); 1812 BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)).addMBB(BB); 1813 1814 // Update internal data structures to account for the newly inserted MBB. 1815 MF.RenumberBlocks(NewBB); 1816 1817 // Update the CFG. 1818 NewBB->addSuccessor(BB); 1819 JTBB->removeSuccessor(BB); 1820 JTBB->addSuccessor(NewBB); 1821 1822 ++NumJTInserted; 1823 return NewBB; 1824} 1825