HexagonHardwareLoops.cpp revision d04a8d4b33ff316ca4cf961e06c9e312eff8e64f
14ef8dd6e8736097bf9e3c387139c668565d89dcaChris Lattner//===-- HexagonHardwareLoops.cpp - Identify and generate hardware loops ---===//
24ef8dd6e8736097bf9e3c387139c668565d89dcaChris Lattner//
34ef8dd6e8736097bf9e3c387139c668565d89dcaChris Lattner//                     The LLVM Compiler Infrastructure
44ef8dd6e8736097bf9e3c387139c668565d89dcaChris Lattner//
54ef8dd6e8736097bf9e3c387139c668565d89dcaChris Lattner// This file is distributed under the University of Illinois Open Source
64ef8dd6e8736097bf9e3c387139c668565d89dcaChris Lattner// License. See LICENSE.TXT for details.
74cc627111453b75519d5130b57e06256da7b00e8Chris Lattner//
84cc627111453b75519d5130b57e06256da7b00e8Chris Lattner//===----------------------------------------------------------------------===//
94cc627111453b75519d5130b57e06256da7b00e8Chris Lattner//
104cc627111453b75519d5130b57e06256da7b00e8Chris Lattner// This pass identifies loops where we can generate the Hexagon hardware
11d411e04db18f7d07a889d51086861b23cbe05518Chris Lattner// loop instruction.  The hardware loop can perform loop branches with a
12d411e04db18f7d07a889d51086861b23cbe05518Chris Lattner// zero-cycle overhead.
13d411e04db18f7d07a889d51086861b23cbe05518Chris Lattner//
14d411e04db18f7d07a889d51086861b23cbe05518Chris Lattner// The pattern that defines the induction variable can changed depending on
15d411e04db18f7d07a889d51086861b23cbe05518Chris Lattner// prior optimizations.  For example, the IndVarSimplify phase run by 'opt'
16a312ce2bdaaff62f21d560bad6cb0519f613d334Eli Friedman// normalizes induction variables, and the Loop Strength Reduction pass
17a312ce2bdaaff62f21d560bad6cb0519f613d334Eli Friedman// run by 'llc' may also make changes to the induction variable.
18a312ce2bdaaff62f21d560bad6cb0519f613d334Eli Friedman// The pattern detected by this phase is due to running Strength Reduction.
19a312ce2bdaaff62f21d560bad6cb0519f613d334Eli Friedman//
20be34ac67225fc4af6134c7f3507c777cceeec867Chris Lattner// Criteria for hardware loops:
21be34ac67225fc4af6134c7f3507c777cceeec867Chris Lattner//  - Countable loops (w/ ind. var for a trip count)
22be34ac67225fc4af6134c7f3507c777cceeec867Chris Lattner//  - Assumes loops are normalized by IndVarSimplify
23be34ac67225fc4af6134c7f3507c777cceeec867Chris Lattner//  - Try inner-most loops first
24be34ac67225fc4af6134c7f3507c777cceeec867Chris Lattner//  - No nested hardware loops.
25be34ac67225fc4af6134c7f3507c777cceeec867Chris Lattner//  - No function calls in loops.
26be34ac67225fc4af6134c7f3507c777cceeec867Chris Lattner//
27be34ac67225fc4af6134c7f3507c777cceeec867Chris Lattner//===----------------------------------------------------------------------===//
28be34ac67225fc4af6134c7f3507c777cceeec867Chris Lattner
29be34ac67225fc4af6134c7f3507c777cceeec867Chris Lattner#define DEBUG_TYPE "hwloops"
30be34ac67225fc4af6134c7f3507c777cceeec867Chris Lattner#include "Hexagon.h"
31be34ac67225fc4af6134c7f3507c777cceeec867Chris Lattner#include "HexagonTargetMachine.h"
32be34ac67225fc4af6134c7f3507c777cceeec867Chris Lattner#include "llvm/ADT/DenseMap.h"
3397c0a391138d20e1066174a9cfa92860fb06e5a1Eli Friedman#include "llvm/ADT/Statistic.h"
3497c0a391138d20e1066174a9cfa92860fb06e5a1Eli Friedman#include "llvm/CodeGen/MachineDominators.h"
3597c0a391138d20e1066174a9cfa92860fb06e5a1Eli Friedman#include "llvm/CodeGen/MachineFunction.h"
3697c0a391138d20e1066174a9cfa92860fb06e5a1Eli Friedman#include "llvm/CodeGen/MachineFunctionPass.h"
3797c0a391138d20e1066174a9cfa92860fb06e5a1Eli Friedman#include "llvm/CodeGen/MachineInstrBuilder.h"
3897c0a391138d20e1066174a9cfa92860fb06e5a1Eli Friedman#include "llvm/CodeGen/MachineLoopInfo.h"
3997c0a391138d20e1066174a9cfa92860fb06e5a1Eli Friedman#include "llvm/CodeGen/MachineRegisterInfo.h"
4097c0a391138d20e1066174a9cfa92860fb06e5a1Eli Friedman#include "llvm/CodeGen/Passes.h"
4197c0a391138d20e1066174a9cfa92860fb06e5a1Eli Friedman#include "llvm/CodeGen/RegisterScavenging.h"
4297c0a391138d20e1066174a9cfa92860fb06e5a1Eli Friedman#include "llvm/Constants.h"
4397c0a391138d20e1066174a9cfa92860fb06e5a1Eli Friedman#include "llvm/PassSupport.h"
4497c0a391138d20e1066174a9cfa92860fb06e5a1Eli Friedman#include "llvm/Support/Debug.h"
45f8f873deef78de611dd793a1e1201bef0d5a54a3Eli Friedman#include "llvm/Support/raw_ostream.h"
46f8f873deef78de611dd793a1e1201bef0d5a54a3Eli Friedman#include "llvm/Target/TargetInstrInfo.h"
47f8f873deef78de611dd793a1e1201bef0d5a54a3Eli Friedman#include <algorithm>
48f8f873deef78de611dd793a1e1201bef0d5a54a3Eli Friedman
49f8f873deef78de611dd793a1e1201bef0d5a54a3Eli Friedmanusing namespace llvm;
50f8f873deef78de611dd793a1e1201bef0d5a54a3Eli Friedman
51f8f873deef78de611dd793a1e1201bef0d5a54a3Eli FriedmanSTATISTIC(NumHWLoops, "Number of loops converted to hardware loops");
52f8f873deef78de611dd793a1e1201bef0d5a54a3Eli Friedman
53namespace {
54  class CountValue;
55  struct HexagonHardwareLoops : public MachineFunctionPass {
56    MachineLoopInfo       *MLI;
57    MachineRegisterInfo   *MRI;
58    const TargetInstrInfo *TII;
59
60  public:
61    static char ID;   // Pass identification, replacement for typeid
62
63    HexagonHardwareLoops() : MachineFunctionPass(ID) {}
64
65    virtual bool runOnMachineFunction(MachineFunction &MF);
66
67    const char *getPassName() const { return "Hexagon Hardware Loops"; }
68
69    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
70      AU.setPreservesCFG();
71      AU.addRequired<MachineDominatorTree>();
72      AU.addPreserved<MachineDominatorTree>();
73      AU.addRequired<MachineLoopInfo>();
74      AU.addPreserved<MachineLoopInfo>();
75      MachineFunctionPass::getAnalysisUsage(AU);
76    }
77
78  private:
79    /// getCanonicalInductionVariable - Check to see if the loop has a canonical
80    /// induction variable.
81    /// Should be defined in MachineLoop. Based upon version in class Loop.
82    const MachineInstr *getCanonicalInductionVariable(MachineLoop *L) const;
83
84    /// getTripCount - Return a loop-invariant LLVM register indicating the
85    /// number of times the loop will be executed.  If the trip-count cannot
86    /// be determined, this return null.
87    CountValue *getTripCount(MachineLoop *L) const;
88
89    /// isInductionOperation - Return true if the instruction matches the
90    /// pattern for an opertion that defines an induction variable.
91    bool isInductionOperation(const MachineInstr *MI, unsigned IVReg) const;
92
93    /// isInvalidOperation - Return true if the instruction is not valid within
94    /// a hardware loop.
95    bool isInvalidLoopOperation(const MachineInstr *MI) const;
96
97    /// containsInavlidInstruction - Return true if the loop contains an
98    /// instruction that inhibits using the hardware loop.
99    bool containsInvalidInstruction(MachineLoop *L) const;
100
101    /// converToHardwareLoop - Given a loop, check if we can convert it to a
102    /// hardware loop.  If so, then perform the conversion and return true.
103    bool convertToHardwareLoop(MachineLoop *L);
104
105  };
106
107  char HexagonHardwareLoops::ID = 0;
108
109
110  // CountValue class - Abstraction for a trip count of a loop. A
111  // smaller vesrsion of the MachineOperand class without the concerns
112  // of changing the operand representation.
113  class CountValue {
114  public:
115    enum CountValueType {
116      CV_Register,
117      CV_Immediate
118    };
119  private:
120    CountValueType Kind;
121    union Values {
122      unsigned RegNum;
123      int64_t ImmVal;
124      Values(unsigned r) : RegNum(r) {}
125      Values(int64_t i) : ImmVal(i) {}
126    } Contents;
127    bool isNegative;
128
129  public:
130    CountValue(unsigned r, bool neg) : Kind(CV_Register), Contents(r),
131                                       isNegative(neg) {}
132    explicit CountValue(int64_t i) : Kind(CV_Immediate), Contents(i),
133                                     isNegative(i < 0) {}
134    CountValueType getType() const { return Kind; }
135    bool isReg() const { return Kind == CV_Register; }
136    bool isImm() const { return Kind == CV_Immediate; }
137    bool isNeg() const { return isNegative; }
138
139    unsigned getReg() const {
140      assert(isReg() && "Wrong CountValue accessor");
141      return Contents.RegNum;
142    }
143    void setReg(unsigned Val) {
144      Contents.RegNum = Val;
145    }
146    int64_t getImm() const {
147      assert(isImm() && "Wrong CountValue accessor");
148      if (isNegative) {
149        return -Contents.ImmVal;
150      }
151      return Contents.ImmVal;
152    }
153    void setImm(int64_t Val) {
154      Contents.ImmVal = Val;
155    }
156
157    void print(raw_ostream &OS, const TargetMachine *TM = 0) const {
158      if (isReg()) { OS << PrintReg(getReg()); }
159      if (isImm()) { OS << getImm(); }
160    }
161  };
162
163  struct HexagonFixupHwLoops : public MachineFunctionPass {
164  public:
165    static char ID;     // Pass identification, replacement for typeid.
166
167    HexagonFixupHwLoops() : MachineFunctionPass(ID) {}
168
169    virtual bool runOnMachineFunction(MachineFunction &MF);
170
171    const char *getPassName() const { return "Hexagon Hardware Loop Fixup"; }
172
173    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
174      AU.setPreservesCFG();
175      MachineFunctionPass::getAnalysisUsage(AU);
176    }
177
178  private:
179    /// Maximum distance between the loop instr and the basic block.
180    /// Just an estimate.
181    static const unsigned MAX_LOOP_DISTANCE = 200;
182
183    /// fixupLoopInstrs - Check the offset between each loop instruction and
184    /// the loop basic block to determine if we can use the LOOP instruction
185    /// or if we need to set the LC/SA registers explicitly.
186    bool fixupLoopInstrs(MachineFunction &MF);
187
188    /// convertLoopInstr - Add the instruction to set the LC and SA registers
189    /// explicitly.
190    void convertLoopInstr(MachineFunction &MF,
191                          MachineBasicBlock::iterator &MII,
192                          RegScavenger &RS);
193
194  };
195
196  char HexagonFixupHwLoops::ID = 0;
197
198} // end anonymous namespace
199
200
201/// isHardwareLoop - Returns true if the instruction is a hardware loop
202/// instruction.
203static bool isHardwareLoop(const MachineInstr *MI) {
204  return MI->getOpcode() == Hexagon::LOOP0_r ||
205    MI->getOpcode() == Hexagon::LOOP0_i;
206}
207
208/// isCompareEquals - Returns true if the instruction is a compare equals
209/// instruction with an immediate operand.
210static bool isCompareEqualsImm(const MachineInstr *MI) {
211  return MI->getOpcode() == Hexagon::CMPEQri;
212}
213
214
215/// createHexagonHardwareLoops - Factory for creating
216/// the hardware loop phase.
217FunctionPass *llvm::createHexagonHardwareLoops() {
218  return new HexagonHardwareLoops();
219}
220
221
222bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) {
223  DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n");
224
225  bool Changed = false;
226
227  // get the loop information
228  MLI = &getAnalysis<MachineLoopInfo>();
229  // get the register information
230  MRI = &MF.getRegInfo();
231  // the target specific instructio info.
232  TII = MF.getTarget().getInstrInfo();
233
234  for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end();
235       I != E; ++I) {
236    MachineLoop *L = *I;
237    if (!L->getParentLoop()) {
238      Changed |= convertToHardwareLoop(L);
239    }
240  }
241
242  return Changed;
243}
244
245/// getCanonicalInductionVariable - Check to see if the loop has a canonical
246/// induction variable. We check for a simple recurrence pattern - an
247/// integer recurrence that decrements by one each time through the loop and
248/// ends at zero.  If so, return the phi node that corresponds to it.
249///
250/// Based upon the similar code in LoopInfo except this code is specific to
251/// the machine.
252/// This method assumes that the IndVarSimplify pass has been run by 'opt'.
253///
254const MachineInstr
255*HexagonHardwareLoops::getCanonicalInductionVariable(MachineLoop *L) const {
256  MachineBasicBlock *TopMBB = L->getTopBlock();
257  MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin();
258  assert(PI != TopMBB->pred_end() &&
259         "Loop must have more than one incoming edge!");
260  MachineBasicBlock *Backedge = *PI++;
261  if (PI == TopMBB->pred_end()) return 0;  // dead loop
262  MachineBasicBlock *Incoming = *PI++;
263  if (PI != TopMBB->pred_end()) return 0;  // multiple backedges?
264
265  // make sure there is one incoming and one backedge and determine which
266  // is which.
267  if (L->contains(Incoming)) {
268    if (L->contains(Backedge))
269      return 0;
270    std::swap(Incoming, Backedge);
271  } else if (!L->contains(Backedge))
272    return 0;
273
274  // Loop over all of the PHI nodes, looking for a canonical induction variable:
275  //   - The PHI node is "reg1 = PHI reg2, BB1, reg3, BB2".
276  //   - The recurrence comes from the backedge.
277  //   - the definition is an induction operatio.n
278  for (MachineBasicBlock::iterator I = TopMBB->begin(), E = TopMBB->end();
279       I != E && I->isPHI(); ++I) {
280    const MachineInstr *MPhi = &*I;
281    unsigned DefReg = MPhi->getOperand(0).getReg();
282    for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
283      // Check each operand for the value from the backedge.
284      MachineBasicBlock *MBB = MPhi->getOperand(i+1).getMBB();
285      if (L->contains(MBB)) { // operands comes from the backedge
286        // Check if the definition is an induction operation.
287        const MachineInstr *DI = MRI->getVRegDef(MPhi->getOperand(i).getReg());
288        if (isInductionOperation(DI, DefReg)) {
289          return MPhi;
290        }
291      }
292    }
293  }
294  return 0;
295}
296
297/// getTripCount - Return a loop-invariant LLVM value indicating the
298/// number of times the loop will be executed.  The trip count can
299/// be either a register or a constant value.  If the trip-count
300/// cannot be determined, this returns null.
301///
302/// We find the trip count from the phi instruction that defines the
303/// induction variable.  We follow the links to the CMP instruction
304/// to get the trip count.
305///
306/// Based upon getTripCount in LoopInfo.
307///
308CountValue *HexagonHardwareLoops::getTripCount(MachineLoop *L) const {
309  // Check that the loop has a induction variable.
310  const MachineInstr *IV_Inst = getCanonicalInductionVariable(L);
311  if (IV_Inst == 0) return 0;
312
313  // Canonical loops will end with a 'cmpeq_ri IV, Imm',
314  //  if Imm is 0, get the count from the PHI opnd
315  //  if Imm is -M, than M is the count
316  //  Otherwise, Imm is the count
317  const MachineOperand *IV_Opnd;
318  const MachineOperand *InitialValue;
319  if (!L->contains(IV_Inst->getOperand(2).getMBB())) {
320    InitialValue = &IV_Inst->getOperand(1);
321    IV_Opnd = &IV_Inst->getOperand(3);
322  } else {
323    InitialValue = &IV_Inst->getOperand(3);
324    IV_Opnd = &IV_Inst->getOperand(1);
325  }
326
327  // Look for the cmp instruction to determine if we
328  // can get a useful trip count.  The trip count can
329  // be either a register or an immediate.  The location
330  // of the value depends upon the type (reg or imm).
331  for (MachineRegisterInfo::reg_iterator
332       RI = MRI->reg_begin(IV_Opnd->getReg()), RE = MRI->reg_end();
333       RI != RE; ++RI) {
334    IV_Opnd = &RI.getOperand();
335    const MachineInstr *MI = IV_Opnd->getParent();
336    if (L->contains(MI) && isCompareEqualsImm(MI)) {
337      const MachineOperand &MO = MI->getOperand(2);
338      assert(MO.isImm() && "IV Cmp Operand should be 0");
339      int64_t ImmVal = MO.getImm();
340
341      const MachineInstr *IV_DefInstr = MRI->getVRegDef(IV_Opnd->getReg());
342      assert(L->contains(IV_DefInstr->getParent()) &&
343             "IV definition should occurs in loop");
344      int64_t iv_value = IV_DefInstr->getOperand(2).getImm();
345
346      if (ImmVal == 0) {
347        // Make sure the induction variable changes by one on each iteration.
348        if (iv_value != 1 && iv_value != -1) {
349          return 0;
350        }
351        return new CountValue(InitialValue->getReg(), iv_value > 0);
352      } else {
353        assert(InitialValue->isReg() && "Expecting register for init value");
354        const MachineInstr *DefInstr = MRI->getVRegDef(InitialValue->getReg());
355        if (DefInstr && DefInstr->getOpcode() == Hexagon::TFRI) {
356          int64_t count = ImmVal - DefInstr->getOperand(1).getImm();
357          if ((count % iv_value) != 0) {
358            return 0;
359          }
360          return new CountValue(count/iv_value);
361        }
362      }
363    }
364  }
365  return 0;
366}
367
368/// isInductionOperation - return true if the operation is matches the
369/// pattern that defines an induction variable:
370///    add iv, c
371///
372bool
373HexagonHardwareLoops::isInductionOperation(const MachineInstr *MI,
374                                           unsigned IVReg) const {
375  return (MI->getOpcode() ==
376          Hexagon::ADD_ri && MI->getOperand(1).getReg() == IVReg);
377}
378
379/// isInvalidOperation - Return true if the operation is invalid within
380/// hardware loop.
381bool
382HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr *MI) const {
383
384  // call is not allowed because the callee may use a hardware loop
385  if (MI->getDesc().isCall()) {
386    return true;
387  }
388  // do not allow nested hardware loops
389  if (isHardwareLoop(MI)) {
390    return true;
391  }
392  // check if the instruction defines a hardware loop register
393  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
394    const MachineOperand &MO = MI->getOperand(i);
395    if (MO.isReg() && MO.isDef() &&
396        (MO.getReg() == Hexagon::LC0 || MO.getReg() == Hexagon::LC1 ||
397         MO.getReg() == Hexagon::SA0 || MO.getReg() == Hexagon::SA0)) {
398      return true;
399    }
400  }
401  return false;
402}
403
404/// containsInvalidInstruction - Return true if the loop contains
405/// an instruction that inhibits the use of the hardware loop function.
406///
407bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L) const {
408  const std::vector<MachineBasicBlock*> Blocks = L->getBlocks();
409  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
410    MachineBasicBlock *MBB = Blocks[i];
411    for (MachineBasicBlock::iterator
412           MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) {
413      const MachineInstr *MI = &*MII;
414      if (isInvalidLoopOperation(MI)) {
415        return true;
416      }
417    }
418  }
419  return false;
420}
421
422/// converToHardwareLoop - check if the loop is a candidate for
423/// converting to a hardware loop.  If so, then perform the
424/// transformation.
425///
426/// This function works on innermost loops first.  A loop can
427/// be converted if it is a counting loop; either a register
428/// value or an immediate.
429///
430/// The code makes several assumptions about the representation
431/// of the loop in llvm.
432bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L) {
433  bool Changed = false;
434  // Process nested loops first.
435  for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) {
436    Changed |= convertToHardwareLoop(*I);
437  }
438  // If a nested loop has been converted, then we can't convert this loop.
439  if (Changed) {
440    return Changed;
441  }
442  // Are we able to determine the trip count for the loop?
443  CountValue *TripCount = getTripCount(L);
444  if (TripCount == 0) {
445    return false;
446  }
447  // Does the loop contain any invalid instructions?
448  if (containsInvalidInstruction(L)) {
449    return false;
450  }
451  MachineBasicBlock *Preheader = L->getLoopPreheader();
452  // No preheader means there's not place for the loop instr.
453  if (Preheader == 0) {
454    return false;
455  }
456  MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator();
457
458  MachineBasicBlock *LastMBB = L->getExitingBlock();
459  // Don't generate hw loop if the loop has more than one exit.
460  if (LastMBB == 0) {
461    return false;
462  }
463  MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator();
464
465  // Determine the loop start.
466  MachineBasicBlock *LoopStart = L->getTopBlock();
467  if (L->getLoopLatch() != LastMBB) {
468    // When the exit and latch are not the same, use the latch block as the
469    // start.
470    // The loop start address is used only after the 1st iteration, and the loop
471    // latch may contains instrs. that need to be executed after the 1st iter.
472    LoopStart = L->getLoopLatch();
473    // Make sure the latch is a successor of the exit, otherwise it won't work.
474    if (!LastMBB->isSuccessor(LoopStart)) {
475      return false;
476    }
477  }
478
479  // Convert the loop to a hardware loop
480  DEBUG(dbgs() << "Change to hardware loop at "; L->dump());
481
482  if (TripCount->isReg()) {
483    // Create a copy of the loop count register.
484    MachineFunction *MF = LastMBB->getParent();
485    const TargetRegisterClass *RC =
486      MF->getRegInfo().getRegClass(TripCount->getReg());
487    unsigned CountReg = MF->getRegInfo().createVirtualRegister(RC);
488    BuildMI(*Preheader, InsertPos, InsertPos->getDebugLoc(),
489            TII->get(TargetOpcode::COPY), CountReg).addReg(TripCount->getReg());
490    if (TripCount->isNeg()) {
491      unsigned CountReg1 = CountReg;
492      CountReg = MF->getRegInfo().createVirtualRegister(RC);
493      BuildMI(*Preheader, InsertPos, InsertPos->getDebugLoc(),
494              TII->get(Hexagon::NEG), CountReg).addReg(CountReg1);
495    }
496
497    // Add the Loop instruction to the beginning of the loop.
498    BuildMI(*Preheader, InsertPos, InsertPos->getDebugLoc(),
499            TII->get(Hexagon::LOOP0_r)).addMBB(LoopStart).addReg(CountReg);
500  } else {
501    assert(TripCount->isImm() && "Expecting immedate vaule for trip count");
502    // Add the Loop immediate instruction to the beginning of the loop.
503    int64_t CountImm = TripCount->getImm();
504    BuildMI(*Preheader, InsertPos, InsertPos->getDebugLoc(),
505            TII->get(Hexagon::LOOP0_i)).addMBB(LoopStart).addImm(CountImm);
506  }
507
508  // Make sure the loop start always has a reference in the CFG.  We need to
509  // create a BlockAddress operand to get this mechanism to work both the
510  // MachineBasicBlock and BasicBlock objects need the flag set.
511  LoopStart->setHasAddressTaken();
512  // This line is needed to set the hasAddressTaken flag on the BasicBlock
513  // object
514  BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock()));
515
516  // Replace the loop branch with an endloop instruction.
517  DebugLoc dl = LastI->getDebugLoc();
518  BuildMI(*LastMBB, LastI, dl, TII->get(Hexagon::ENDLOOP0)).addMBB(LoopStart);
519
520  // The loop ends with either:
521  //  - a conditional branch followed by an unconditional branch, or
522  //  - a conditional branch to the loop start.
523  if (LastI->getOpcode() == Hexagon::JMP_c ||
524      LastI->getOpcode() == Hexagon::JMP_cNot) {
525    // delete one and change/add an uncond. branch to out of the loop
526    MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB();
527    LastI = LastMBB->erase(LastI);
528    if (!L->contains(BranchTarget)) {
529      if (LastI != LastMBB->end()) {
530        TII->RemoveBranch(*LastMBB);
531      }
532      SmallVector<MachineOperand, 0> Cond;
533      TII->InsertBranch(*LastMBB, BranchTarget, 0, Cond, dl);
534    }
535  } else {
536    // Conditional branch to loop start; just delete it.
537    LastMBB->erase(LastI);
538  }
539  delete TripCount;
540
541  ++NumHWLoops;
542  return true;
543}
544
545/// createHexagonFixupHwLoops - Factory for creating the hardware loop
546/// phase.
547FunctionPass *llvm::createHexagonFixupHwLoops() {
548  return new HexagonFixupHwLoops();
549}
550
551bool HexagonFixupHwLoops::runOnMachineFunction(MachineFunction &MF) {
552  DEBUG(dbgs() << "****** Hexagon Hardware Loop Fixup ******\n");
553
554  bool Changed = fixupLoopInstrs(MF);
555  return Changed;
556}
557
558/// fixupLoopInsts - For Hexagon, if the loop label is to far from the
559/// loop instruction then we need to set the LC0 and SA0 registers
560/// explicitly instead of using LOOP(start,count).  This function
561/// checks the distance, and generates register assignments if needed.
562///
563/// This function makes two passes over the basic blocks.  The first
564/// pass computes the offset of the basic block from the start.
565/// The second pass checks all the loop instructions.
566bool HexagonFixupHwLoops::fixupLoopInstrs(MachineFunction &MF) {
567
568  // Offset of the current instruction from the start.
569  unsigned InstOffset = 0;
570  // Map for each basic block to it's first instruction.
571  DenseMap<MachineBasicBlock*, unsigned> BlockToInstOffset;
572
573  // First pass - compute the offset of each basic block.
574  for (MachineFunction::iterator MBB = MF.begin(), MBBe = MF.end();
575       MBB != MBBe; ++MBB) {
576    BlockToInstOffset[MBB] = InstOffset;
577    InstOffset += (MBB->size() * 4);
578  }
579
580  // Second pass - check each loop instruction to see if it needs to
581  // be converted.
582  InstOffset = 0;
583  bool Changed = false;
584  RegScavenger RS;
585
586  // Loop over all the basic blocks.
587  for (MachineFunction::iterator MBB = MF.begin(), MBBe = MF.end();
588       MBB != MBBe; ++MBB) {
589    InstOffset = BlockToInstOffset[MBB];
590    RS.enterBasicBlock(MBB);
591
592    // Loop over all the instructions.
593    MachineBasicBlock::iterator MIE = MBB->end();
594    MachineBasicBlock::iterator MII = MBB->begin();
595    while (MII != MIE) {
596      if (isHardwareLoop(MII)) {
597        RS.forward(MII);
598        assert(MII->getOperand(0).isMBB() &&
599               "Expect a basic block as loop operand");
600        int diff = InstOffset - BlockToInstOffset[MII->getOperand(0).getMBB()];
601        diff = (diff > 0 ? diff : -diff);
602        if ((unsigned)diff > MAX_LOOP_DISTANCE) {
603          // Convert to explicity setting LC0 and SA0.
604          convertLoopInstr(MF, MII, RS);
605          MII = MBB->erase(MII);
606          Changed = true;
607        } else {
608          ++MII;
609        }
610      } else {
611        ++MII;
612      }
613      InstOffset += 4;
614    }
615  }
616
617  return Changed;
618
619}
620
621/// convertLoopInstr - convert a loop instruction to a sequence of instructions
622/// that set the lc and sa register explicitly.
623void HexagonFixupHwLoops::convertLoopInstr(MachineFunction &MF,
624                                           MachineBasicBlock::iterator &MII,
625                                           RegScavenger &RS) {
626  const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
627  MachineBasicBlock *MBB = MII->getParent();
628  DebugLoc DL = MII->getDebugLoc();
629  unsigned Scratch = RS.scavengeRegister(&Hexagon::IntRegsRegClass, MII, 0);
630
631  // First, set the LC0 with the trip count.
632  if (MII->getOperand(1).isReg()) {
633    // Trip count is a register
634    BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFCR), Hexagon::LC0)
635      .addReg(MII->getOperand(1).getReg());
636  } else {
637    // Trip count is an immediate.
638    BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFRI), Scratch)
639      .addImm(MII->getOperand(1).getImm());
640    BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFCR), Hexagon::LC0)
641      .addReg(Scratch);
642  }
643  // Then, set the SA0 with the loop start address.
644  BuildMI(*MBB, MII, DL, TII->get(Hexagon::CONST32_Label), Scratch)
645    .addMBB(MII->getOperand(0).getMBB());
646  BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFCR), Hexagon::SA0).addReg(Scratch);
647}
648