Mips16ISelLowering.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===-- Mips16ISelLowering.h - Mips16 DAG Lowering Interface ----*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// Subclass of MipsTargetLowering specialized for mips16. 11// 12//===----------------------------------------------------------------------===// 13#include "Mips16ISelLowering.h" 14#include "MCTargetDesc/MipsBaseInfo.h" 15#include "MipsRegisterInfo.h" 16#include "MipsTargetMachine.h" 17#include "llvm/ADT/StringRef.h" 18#include "llvm/CodeGen/MachineInstrBuilder.h" 19#include "llvm/Support/CommandLine.h" 20#include "llvm/Target/TargetInstrInfo.h" 21#include <string> 22 23using namespace llvm; 24 25#define DEBUG_TYPE "mips-lower" 26 27static cl::opt<bool> DontExpandCondPseudos16( 28 "mips16-dont-expand-cond-pseudo", 29 cl::init(false), 30 cl::desc("Dont expand conditional move related " 31 "pseudos for Mips 16"), 32 cl::Hidden); 33 34namespace { 35struct Mips16Libcall { 36 RTLIB::Libcall Libcall; 37 const char *Name; 38 39 bool operator<(const Mips16Libcall &RHS) const { 40 return std::strcmp(Name, RHS.Name) < 0; 41 } 42}; 43 44struct Mips16IntrinsicHelperType{ 45 const char* Name; 46 const char* Helper; 47 48 bool operator<(const Mips16IntrinsicHelperType &RHS) const { 49 return std::strcmp(Name, RHS.Name) < 0; 50 } 51 bool operator==(const Mips16IntrinsicHelperType &RHS) const { 52 return std::strcmp(Name, RHS.Name) == 0; 53 } 54}; 55} 56 57// Libcalls for which no helper is generated. Sorted by name for binary search. 58static const Mips16Libcall HardFloatLibCalls[] = { 59 { RTLIB::ADD_F64, "__mips16_adddf3" }, 60 { RTLIB::ADD_F32, "__mips16_addsf3" }, 61 { RTLIB::DIV_F64, "__mips16_divdf3" }, 62 { RTLIB::DIV_F32, "__mips16_divsf3" }, 63 { RTLIB::OEQ_F64, "__mips16_eqdf2" }, 64 { RTLIB::OEQ_F32, "__mips16_eqsf2" }, 65 { RTLIB::FPEXT_F32_F64, "__mips16_extendsfdf2" }, 66 { RTLIB::FPTOSINT_F64_I32, "__mips16_fix_truncdfsi" }, 67 { RTLIB::FPTOSINT_F32_I32, "__mips16_fix_truncsfsi" }, 68 { RTLIB::SINTTOFP_I32_F64, "__mips16_floatsidf" }, 69 { RTLIB::SINTTOFP_I32_F32, "__mips16_floatsisf" }, 70 { RTLIB::UINTTOFP_I32_F64, "__mips16_floatunsidf" }, 71 { RTLIB::UINTTOFP_I32_F32, "__mips16_floatunsisf" }, 72 { RTLIB::OGE_F64, "__mips16_gedf2" }, 73 { RTLIB::OGE_F32, "__mips16_gesf2" }, 74 { RTLIB::OGT_F64, "__mips16_gtdf2" }, 75 { RTLIB::OGT_F32, "__mips16_gtsf2" }, 76 { RTLIB::OLE_F64, "__mips16_ledf2" }, 77 { RTLIB::OLE_F32, "__mips16_lesf2" }, 78 { RTLIB::OLT_F64, "__mips16_ltdf2" }, 79 { RTLIB::OLT_F32, "__mips16_ltsf2" }, 80 { RTLIB::MUL_F64, "__mips16_muldf3" }, 81 { RTLIB::MUL_F32, "__mips16_mulsf3" }, 82 { RTLIB::UNE_F64, "__mips16_nedf2" }, 83 { RTLIB::UNE_F32, "__mips16_nesf2" }, 84 { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_dc" }, // No associated libcall. 85 { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_df" }, // No associated libcall. 86 { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_sc" }, // No associated libcall. 87 { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_sf" }, // No associated libcall. 88 { RTLIB::SUB_F64, "__mips16_subdf3" }, 89 { RTLIB::SUB_F32, "__mips16_subsf3" }, 90 { RTLIB::FPROUND_F64_F32, "__mips16_truncdfsf2" }, 91 { RTLIB::UO_F64, "__mips16_unorddf2" }, 92 { RTLIB::UO_F32, "__mips16_unordsf2" } 93}; 94 95static const Mips16IntrinsicHelperType Mips16IntrinsicHelper[] = { 96 {"__fixunsdfsi", "__mips16_call_stub_2" }, 97 {"ceil", "__mips16_call_stub_df_2"}, 98 {"ceilf", "__mips16_call_stub_sf_1"}, 99 {"copysign", "__mips16_call_stub_df_10"}, 100 {"copysignf", "__mips16_call_stub_sf_5"}, 101 {"cos", "__mips16_call_stub_df_2"}, 102 {"cosf", "__mips16_call_stub_sf_1"}, 103 {"exp2", "__mips16_call_stub_df_2"}, 104 {"exp2f", "__mips16_call_stub_sf_1"}, 105 {"floor", "__mips16_call_stub_df_2"}, 106 {"floorf", "__mips16_call_stub_sf_1"}, 107 {"log2", "__mips16_call_stub_df_2"}, 108 {"log2f", "__mips16_call_stub_sf_1"}, 109 {"nearbyint", "__mips16_call_stub_df_2"}, 110 {"nearbyintf", "__mips16_call_stub_sf_1"}, 111 {"rint", "__mips16_call_stub_df_2"}, 112 {"rintf", "__mips16_call_stub_sf_1"}, 113 {"sin", "__mips16_call_stub_df_2"}, 114 {"sinf", "__mips16_call_stub_sf_1"}, 115 {"sqrt", "__mips16_call_stub_df_2"}, 116 {"sqrtf", "__mips16_call_stub_sf_1"}, 117 {"trunc", "__mips16_call_stub_df_2"}, 118 {"truncf", "__mips16_call_stub_sf_1"}, 119}; 120 121Mips16TargetLowering::Mips16TargetLowering(MipsTargetMachine &TM) 122 : MipsTargetLowering(TM) { 123 // 124 // set up as if mips32 and then revert so we can test the mechanism 125 // for switching 126 addRegisterClass(MVT::i32, &Mips::GPR32RegClass); 127 addRegisterClass(MVT::f32, &Mips::FGR32RegClass); 128 computeRegisterProperties(); 129 clearRegisterClasses(); 130 131 // Set up the register classes 132 addRegisterClass(MVT::i32, &Mips::CPU16RegsRegClass); 133 134 if (Subtarget->inMips16HardFloat()) 135 setMips16HardFloatLibCalls(); 136 137 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Expand); 138 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Expand); 139 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Expand); 140 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Expand); 141 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand); 142 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Expand); 143 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Expand); 144 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Expand); 145 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand); 146 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand); 147 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand); 148 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand); 149 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand); 150 151 setOperationAction(ISD::ROTR, MVT::i32, Expand); 152 setOperationAction(ISD::ROTR, MVT::i64, Expand); 153 setOperationAction(ISD::BSWAP, MVT::i32, Expand); 154 setOperationAction(ISD::BSWAP, MVT::i64, Expand); 155 156 computeRegisterProperties(); 157} 158 159const MipsTargetLowering * 160llvm::createMips16TargetLowering(MipsTargetMachine &TM) { 161 return new Mips16TargetLowering(TM); 162} 163 164bool 165Mips16TargetLowering::allowsUnalignedMemoryAccesses(EVT VT, 166 unsigned, 167 bool *Fast) const { 168 return false; 169} 170 171MachineBasicBlock * 172Mips16TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 173 MachineBasicBlock *BB) const { 174 switch (MI->getOpcode()) { 175 default: 176 return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB); 177 case Mips::SelBeqZ: 178 return emitSel16(Mips::BeqzRxImm16, MI, BB); 179 case Mips::SelBneZ: 180 return emitSel16(Mips::BnezRxImm16, MI, BB); 181 case Mips::SelTBteqZCmpi: 182 return emitSeliT16(Mips::Bteqz16, Mips::CmpiRxImmX16, MI, BB); 183 case Mips::SelTBteqZSlti: 184 return emitSeliT16(Mips::Bteqz16, Mips::SltiRxImmX16, MI, BB); 185 case Mips::SelTBteqZSltiu: 186 return emitSeliT16(Mips::Bteqz16, Mips::SltiuRxImmX16, MI, BB); 187 case Mips::SelTBtneZCmpi: 188 return emitSeliT16(Mips::Btnez16, Mips::CmpiRxImmX16, MI, BB); 189 case Mips::SelTBtneZSlti: 190 return emitSeliT16(Mips::Btnez16, Mips::SltiRxImmX16, MI, BB); 191 case Mips::SelTBtneZSltiu: 192 return emitSeliT16(Mips::Btnez16, Mips::SltiuRxImmX16, MI, BB); 193 case Mips::SelTBteqZCmp: 194 return emitSelT16(Mips::Bteqz16, Mips::CmpRxRy16, MI, BB); 195 case Mips::SelTBteqZSlt: 196 return emitSelT16(Mips::Bteqz16, Mips::SltRxRy16, MI, BB); 197 case Mips::SelTBteqZSltu: 198 return emitSelT16(Mips::Bteqz16, Mips::SltuRxRy16, MI, BB); 199 case Mips::SelTBtneZCmp: 200 return emitSelT16(Mips::Btnez16, Mips::CmpRxRy16, MI, BB); 201 case Mips::SelTBtneZSlt: 202 return emitSelT16(Mips::Btnez16, Mips::SltRxRy16, MI, BB); 203 case Mips::SelTBtneZSltu: 204 return emitSelT16(Mips::Btnez16, Mips::SltuRxRy16, MI, BB); 205 case Mips::BteqzT8CmpX16: 206 return emitFEXT_T8I816_ins(Mips::Bteqz16, Mips::CmpRxRy16, MI, BB); 207 case Mips::BteqzT8SltX16: 208 return emitFEXT_T8I816_ins(Mips::Bteqz16, Mips::SltRxRy16, MI, BB); 209 case Mips::BteqzT8SltuX16: 210 // TBD: figure out a way to get this or remove the instruction 211 // altogether. 212 return emitFEXT_T8I816_ins(Mips::Bteqz16, Mips::SltuRxRy16, MI, BB); 213 case Mips::BtnezT8CmpX16: 214 return emitFEXT_T8I816_ins(Mips::Btnez16, Mips::CmpRxRy16, MI, BB); 215 case Mips::BtnezT8SltX16: 216 return emitFEXT_T8I816_ins(Mips::Btnez16, Mips::SltRxRy16, MI, BB); 217 case Mips::BtnezT8SltuX16: 218 // TBD: figure out a way to get this or remove the instruction 219 // altogether. 220 return emitFEXT_T8I816_ins(Mips::Btnez16, Mips::SltuRxRy16, MI, BB); 221 case Mips::BteqzT8CmpiX16: return emitFEXT_T8I8I16_ins( 222 Mips::Bteqz16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, false, MI, BB); 223 case Mips::BteqzT8SltiX16: return emitFEXT_T8I8I16_ins( 224 Mips::Bteqz16, Mips::SltiRxImm16, Mips::SltiRxImmX16, true, MI, BB); 225 case Mips::BteqzT8SltiuX16: return emitFEXT_T8I8I16_ins( 226 Mips::Bteqz16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, false, MI, BB); 227 case Mips::BtnezT8CmpiX16: return emitFEXT_T8I8I16_ins( 228 Mips::Btnez16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, false, MI, BB); 229 case Mips::BtnezT8SltiX16: return emitFEXT_T8I8I16_ins( 230 Mips::Btnez16, Mips::SltiRxImm16, Mips::SltiRxImmX16, true, MI, BB); 231 case Mips::BtnezT8SltiuX16: return emitFEXT_T8I8I16_ins( 232 Mips::Btnez16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, false, MI, BB); 233 break; 234 case Mips::SltCCRxRy16: 235 return emitFEXT_CCRX16_ins(Mips::SltRxRy16, MI, BB); 236 break; 237 case Mips::SltiCCRxImmX16: 238 return emitFEXT_CCRXI16_ins 239 (Mips::SltiRxImm16, Mips::SltiRxImmX16, MI, BB); 240 case Mips::SltiuCCRxImmX16: 241 return emitFEXT_CCRXI16_ins 242 (Mips::SltiuRxImm16, Mips::SltiuRxImmX16, MI, BB); 243 case Mips::SltuCCRxRy16: 244 return emitFEXT_CCRX16_ins 245 (Mips::SltuRxRy16, MI, BB); 246 } 247} 248 249bool Mips16TargetLowering:: 250isEligibleForTailCallOptimization(const MipsCC &MipsCCInfo, 251 unsigned NextStackOffset, 252 const MipsFunctionInfo& FI) const { 253 // No tail call optimization for mips16. 254 return false; 255} 256 257void Mips16TargetLowering::setMips16HardFloatLibCalls() { 258 for (unsigned I = 0; I != array_lengthof(HardFloatLibCalls); ++I) { 259 assert((I == 0 || HardFloatLibCalls[I - 1] < HardFloatLibCalls[I]) && 260 "Array not sorted!"); 261 if (HardFloatLibCalls[I].Libcall != RTLIB::UNKNOWN_LIBCALL) 262 setLibcallName(HardFloatLibCalls[I].Libcall, HardFloatLibCalls[I].Name); 263 } 264 265 setLibcallName(RTLIB::O_F64, "__mips16_unorddf2"); 266 setLibcallName(RTLIB::O_F32, "__mips16_unordsf2"); 267} 268 269// 270// The Mips16 hard float is a crazy quilt inherited from gcc. I have a much 271// cleaner way to do all of this but it will have to wait until the traditional 272// gcc mechanism is completed. 273// 274// For Pic, in order for Mips16 code to call Mips32 code which according the abi 275// have either arguments or returned values placed in floating point registers, 276// we use a set of helper functions. (This includes functions which return type 277// complex which on Mips are returned in a pair of floating point registers). 278// 279// This is an encoding that we inherited from gcc. 280// In Mips traditional O32, N32 ABI, floating point numbers are passed in 281// floating point argument registers 1,2 only when the first and optionally 282// the second arguments are float (sf) or double (df). 283// For Mips16 we are only concerned with the situations where floating point 284// arguments are being passed in floating point registers by the ABI, because 285// Mips16 mode code cannot execute floating point instructions to load those 286// values and hence helper functions are needed. 287// The possibilities are (), (sf), (sf, sf), (sf, df), (df), (df, sf), (df, df) 288// the helper function suffixs for these are: 289// 0, 1, 5, 9, 2, 6, 10 290// this suffix can then be calculated as follows: 291// for a given argument Arg: 292// Arg1x, Arg2x = 1 : Arg is sf 293// 2 : Arg is df 294// 0: Arg is neither sf or df 295// So this stub is the string for number Arg1x + Arg2x*4. 296// However not all numbers between 0 and 10 are possible, we check anyway and 297// assert if the impossible exists. 298// 299 300unsigned int Mips16TargetLowering::getMips16HelperFunctionStubNumber 301 (ArgListTy &Args) const { 302 unsigned int resultNum = 0; 303 if (Args.size() >= 1) { 304 Type *t = Args[0].Ty; 305 if (t->isFloatTy()) { 306 resultNum = 1; 307 } 308 else if (t->isDoubleTy()) { 309 resultNum = 2; 310 } 311 } 312 if (resultNum) { 313 if (Args.size() >=2) { 314 Type *t = Args[1].Ty; 315 if (t->isFloatTy()) { 316 resultNum += 4; 317 } 318 else if (t->isDoubleTy()) { 319 resultNum += 8; 320 } 321 } 322 } 323 return resultNum; 324} 325 326// 327// prefixs are attached to stub numbers depending on the return type . 328// return type: float sf_ 329// double df_ 330// single complex sc_ 331// double complext dc_ 332// others NO PREFIX 333// 334// 335// The full name of a helper function is__mips16_call_stub + 336// return type dependent prefix + stub number 337// 338// 339// This is something that probably should be in a different source file and 340// perhaps done differently but my main purpose is to not waste runtime 341// on something that we can enumerate in the source. Another possibility is 342// to have a python script to generate these mapping tables. This will do 343// for now. There are a whole series of helper function mapping arrays, one 344// for each return type class as outlined above. There there are 11 possible 345// entries. Ones with 0 are ones which should never be selected 346// 347// All the arrays are similar except for ones which return neither 348// sf, df, sc, dc, in which only care about ones which have sf or df as a 349// first parameter. 350// 351#define P_ "__mips16_call_stub_" 352#define MAX_STUB_NUMBER 10 353#define T1 P "1", P "2", 0, 0, P "5", P "6", 0, 0, P "9", P "10" 354#define T P "0" , T1 355#define P P_ 356static char const * vMips16Helper[MAX_STUB_NUMBER+1] = 357 {nullptr, T1 }; 358#undef P 359#define P P_ "sf_" 360static char const * sfMips16Helper[MAX_STUB_NUMBER+1] = 361 { T }; 362#undef P 363#define P P_ "df_" 364static char const * dfMips16Helper[MAX_STUB_NUMBER+1] = 365 { T }; 366#undef P 367#define P P_ "sc_" 368static char const * scMips16Helper[MAX_STUB_NUMBER+1] = 369 { T }; 370#undef P 371#define P P_ "dc_" 372static char const * dcMips16Helper[MAX_STUB_NUMBER+1] = 373 { T }; 374#undef P 375#undef P_ 376 377 378const char* Mips16TargetLowering:: 379 getMips16HelperFunction 380 (Type* RetTy, ArgListTy &Args, bool &needHelper) const { 381 const unsigned int stubNum = getMips16HelperFunctionStubNumber(Args); 382#ifndef NDEBUG 383 const unsigned int maxStubNum = 10; 384 assert(stubNum <= maxStubNum); 385 const bool validStubNum[maxStubNum+1] = 386 {true, true, true, false, false, true, true, false, false, true, true}; 387 assert(validStubNum[stubNum]); 388#endif 389 const char *result; 390 if (RetTy->isFloatTy()) { 391 result = sfMips16Helper[stubNum]; 392 } 393 else if (RetTy ->isDoubleTy()) { 394 result = dfMips16Helper[stubNum]; 395 } 396 else if (RetTy->isStructTy()) { 397 // check if it's complex 398 if (RetTy->getNumContainedTypes() == 2) { 399 if ((RetTy->getContainedType(0)->isFloatTy()) && 400 (RetTy->getContainedType(1)->isFloatTy())) { 401 result = scMips16Helper[stubNum]; 402 } 403 else if ((RetTy->getContainedType(0)->isDoubleTy()) && 404 (RetTy->getContainedType(1)->isDoubleTy())) { 405 result = dcMips16Helper[stubNum]; 406 } 407 else { 408 llvm_unreachable("Uncovered condition"); 409 } 410 } 411 else { 412 llvm_unreachable("Uncovered condition"); 413 } 414 } 415 else { 416 if (stubNum == 0) { 417 needHelper = false; 418 return ""; 419 } 420 result = vMips16Helper[stubNum]; 421 } 422 needHelper = true; 423 return result; 424} 425 426void Mips16TargetLowering:: 427getOpndList(SmallVectorImpl<SDValue> &Ops, 428 std::deque< std::pair<unsigned, SDValue> > &RegsToPass, 429 bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage, 430 CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const { 431 SelectionDAG &DAG = CLI.DAG; 432 MachineFunction &MF = DAG.getMachineFunction(); 433 MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>(); 434 const char* Mips16HelperFunction = nullptr; 435 bool NeedMips16Helper = false; 436 437 if (Subtarget->inMips16HardFloat()) { 438 // 439 // currently we don't have symbols tagged with the mips16 or mips32 440 // qualifier so we will assume that we don't know what kind it is. 441 // and generate the helper 442 // 443 bool LookupHelper = true; 444 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(CLI.Callee)) { 445 Mips16Libcall Find = { RTLIB::UNKNOWN_LIBCALL, S->getSymbol() }; 446 447 if (std::binary_search(std::begin(HardFloatLibCalls), 448 std::end(HardFloatLibCalls), Find)) 449 LookupHelper = false; 450 else { 451 const char *Symbol = S->getSymbol(); 452 Mips16IntrinsicHelperType IntrinsicFind = { Symbol, "" }; 453 const Mips16HardFloatInfo::FuncSignature *Signature = 454 Mips16HardFloatInfo::findFuncSignature(Symbol); 455 if (!IsPICCall && (Signature && (FuncInfo->StubsNeeded.find(Symbol) == 456 FuncInfo->StubsNeeded.end()))) { 457 FuncInfo->StubsNeeded[Symbol] = Signature; 458 // 459 // S2 is normally saved if the stub is for a function which 460 // returns a float or double value and is not otherwise. This is 461 // because more work is required after the function the stub 462 // is calling completes, and so the stub cannot directly return 463 // and the stub has no stack space to store the return address so 464 // S2 is used for that purpose. 465 // In order to take advantage of not saving S2, we need to also 466 // optimize the call in the stub and this requires some further 467 // functionality in MipsAsmPrinter which we don't have yet. 468 // So for now we always save S2. The optimization will be done 469 // in a follow-on patch. 470 // 471 if (1 || (Signature->RetSig != Mips16HardFloatInfo::NoFPRet)) 472 FuncInfo->setSaveS2(); 473 } 474 // one more look at list of intrinsics 475 const Mips16IntrinsicHelperType *Helper = 476 std::lower_bound(std::begin(Mips16IntrinsicHelper), 477 std::end(Mips16IntrinsicHelper), IntrinsicFind); 478 if (Helper != std::end(Mips16IntrinsicHelper) && 479 *Helper == IntrinsicFind) { 480 Mips16HelperFunction = Helper->Helper; 481 NeedMips16Helper = true; 482 LookupHelper = false; 483 } 484 485 } 486 } else if (GlobalAddressSDNode *G = 487 dyn_cast<GlobalAddressSDNode>(CLI.Callee)) { 488 Mips16Libcall Find = { RTLIB::UNKNOWN_LIBCALL, 489 G->getGlobal()->getName().data() }; 490 491 if (std::binary_search(std::begin(HardFloatLibCalls), 492 std::end(HardFloatLibCalls), Find)) 493 LookupHelper = false; 494 } 495 if (LookupHelper) 496 Mips16HelperFunction = 497 getMips16HelperFunction(CLI.RetTy, CLI.getArgs(), NeedMips16Helper); 498 } 499 500 SDValue JumpTarget = Callee; 501 502 // T9 should contain the address of the callee function if 503 // -reloction-model=pic or it is an indirect call. 504 if (IsPICCall || !GlobalOrExternal) { 505 unsigned V0Reg = Mips::V0; 506 if (NeedMips16Helper) { 507 RegsToPass.push_front(std::make_pair(V0Reg, Callee)); 508 JumpTarget = DAG.getExternalSymbol(Mips16HelperFunction, getPointerTy()); 509 ExternalSymbolSDNode *S = cast<ExternalSymbolSDNode>(JumpTarget); 510 JumpTarget = getAddrGlobal(S, JumpTarget.getValueType(), DAG, 511 MipsII::MO_GOT, Chain, 512 FuncInfo->callPtrInfo(S->getSymbol())); 513 } else 514 RegsToPass.push_front(std::make_pair((unsigned)Mips::T9, Callee)); 515 } 516 517 Ops.push_back(JumpTarget); 518 519 MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal, 520 InternalLinkage, CLI, Callee, Chain); 521} 522 523MachineBasicBlock *Mips16TargetLowering:: 524emitSel16(unsigned Opc, MachineInstr *MI, MachineBasicBlock *BB) const { 525 if (DontExpandCondPseudos16) 526 return BB; 527 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 528 DebugLoc DL = MI->getDebugLoc(); 529 // To "insert" a SELECT_CC instruction, we actually have to insert the 530 // diamond control-flow pattern. The incoming instruction knows the 531 // destination vreg to set, the condition code register to branch on, the 532 // true/false values to select between, and a branch opcode to use. 533 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 534 MachineFunction::iterator It = BB; 535 ++It; 536 537 // thisMBB: 538 // ... 539 // TrueVal = ... 540 // setcc r1, r2, r3 541 // bNE r1, r0, copy1MBB 542 // fallthrough --> copy0MBB 543 MachineBasicBlock *thisMBB = BB; 544 MachineFunction *F = BB->getParent(); 545 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 546 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 547 F->insert(It, copy0MBB); 548 F->insert(It, sinkMBB); 549 550 // Transfer the remainder of BB and its successor edges to sinkMBB. 551 sinkMBB->splice(sinkMBB->begin(), BB, 552 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 553 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 554 555 // Next, add the true and fallthrough blocks as its successors. 556 BB->addSuccessor(copy0MBB); 557 BB->addSuccessor(sinkMBB); 558 559 BuildMI(BB, DL, TII->get(Opc)).addReg(MI->getOperand(3).getReg()) 560 .addMBB(sinkMBB); 561 562 // copy0MBB: 563 // %FalseValue = ... 564 // # fallthrough to sinkMBB 565 BB = copy0MBB; 566 567 // Update machine-CFG edges 568 BB->addSuccessor(sinkMBB); 569 570 // sinkMBB: 571 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ] 572 // ... 573 BB = sinkMBB; 574 575 BuildMI(*BB, BB->begin(), DL, 576 TII->get(Mips::PHI), MI->getOperand(0).getReg()) 577 .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB) 578 .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB); 579 580 MI->eraseFromParent(); // The pseudo instruction is gone now. 581 return BB; 582} 583 584MachineBasicBlock *Mips16TargetLowering::emitSelT16 585 (unsigned Opc1, unsigned Opc2, 586 MachineInstr *MI, MachineBasicBlock *BB) const { 587 if (DontExpandCondPseudos16) 588 return BB; 589 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 590 DebugLoc DL = MI->getDebugLoc(); 591 // To "insert" a SELECT_CC instruction, we actually have to insert the 592 // diamond control-flow pattern. The incoming instruction knows the 593 // destination vreg to set, the condition code register to branch on, the 594 // true/false values to select between, and a branch opcode to use. 595 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 596 MachineFunction::iterator It = BB; 597 ++It; 598 599 // thisMBB: 600 // ... 601 // TrueVal = ... 602 // setcc r1, r2, r3 603 // bNE r1, r0, copy1MBB 604 // fallthrough --> copy0MBB 605 MachineBasicBlock *thisMBB = BB; 606 MachineFunction *F = BB->getParent(); 607 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 608 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 609 F->insert(It, copy0MBB); 610 F->insert(It, sinkMBB); 611 612 // Transfer the remainder of BB and its successor edges to sinkMBB. 613 sinkMBB->splice(sinkMBB->begin(), BB, 614 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 615 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 616 617 // Next, add the true and fallthrough blocks as its successors. 618 BB->addSuccessor(copy0MBB); 619 BB->addSuccessor(sinkMBB); 620 621 BuildMI(BB, DL, TII->get(Opc2)).addReg(MI->getOperand(3).getReg()) 622 .addReg(MI->getOperand(4).getReg()); 623 BuildMI(BB, DL, TII->get(Opc1)).addMBB(sinkMBB); 624 625 // copy0MBB: 626 // %FalseValue = ... 627 // # fallthrough to sinkMBB 628 BB = copy0MBB; 629 630 // Update machine-CFG edges 631 BB->addSuccessor(sinkMBB); 632 633 // sinkMBB: 634 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ] 635 // ... 636 BB = sinkMBB; 637 638 BuildMI(*BB, BB->begin(), DL, 639 TII->get(Mips::PHI), MI->getOperand(0).getReg()) 640 .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB) 641 .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB); 642 643 MI->eraseFromParent(); // The pseudo instruction is gone now. 644 return BB; 645 646} 647 648MachineBasicBlock *Mips16TargetLowering::emitSeliT16 649 (unsigned Opc1, unsigned Opc2, 650 MachineInstr *MI, MachineBasicBlock *BB) const { 651 if (DontExpandCondPseudos16) 652 return BB; 653 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 654 DebugLoc DL = MI->getDebugLoc(); 655 // To "insert" a SELECT_CC instruction, we actually have to insert the 656 // diamond control-flow pattern. The incoming instruction knows the 657 // destination vreg to set, the condition code register to branch on, the 658 // true/false values to select between, and a branch opcode to use. 659 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 660 MachineFunction::iterator It = BB; 661 ++It; 662 663 // thisMBB: 664 // ... 665 // TrueVal = ... 666 // setcc r1, r2, r3 667 // bNE r1, r0, copy1MBB 668 // fallthrough --> copy0MBB 669 MachineBasicBlock *thisMBB = BB; 670 MachineFunction *F = BB->getParent(); 671 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 672 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 673 F->insert(It, copy0MBB); 674 F->insert(It, sinkMBB); 675 676 // Transfer the remainder of BB and its successor edges to sinkMBB. 677 sinkMBB->splice(sinkMBB->begin(), BB, 678 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 679 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 680 681 // Next, add the true and fallthrough blocks as its successors. 682 BB->addSuccessor(copy0MBB); 683 BB->addSuccessor(sinkMBB); 684 685 BuildMI(BB, DL, TII->get(Opc2)).addReg(MI->getOperand(3).getReg()) 686 .addImm(MI->getOperand(4).getImm()); 687 BuildMI(BB, DL, TII->get(Opc1)).addMBB(sinkMBB); 688 689 // copy0MBB: 690 // %FalseValue = ... 691 // # fallthrough to sinkMBB 692 BB = copy0MBB; 693 694 // Update machine-CFG edges 695 BB->addSuccessor(sinkMBB); 696 697 // sinkMBB: 698 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ] 699 // ... 700 BB = sinkMBB; 701 702 BuildMI(*BB, BB->begin(), DL, 703 TII->get(Mips::PHI), MI->getOperand(0).getReg()) 704 .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB) 705 .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB); 706 707 MI->eraseFromParent(); // The pseudo instruction is gone now. 708 return BB; 709 710} 711 712MachineBasicBlock 713 *Mips16TargetLowering::emitFEXT_T8I816_ins(unsigned BtOpc, unsigned CmpOpc, 714 MachineInstr *MI, 715 MachineBasicBlock *BB) const { 716 if (DontExpandCondPseudos16) 717 return BB; 718 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 719 unsigned regX = MI->getOperand(0).getReg(); 720 unsigned regY = MI->getOperand(1).getReg(); 721 MachineBasicBlock *target = MI->getOperand(2).getMBB(); 722 BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(CmpOpc)).addReg(regX) 723 .addReg(regY); 724 BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(BtOpc)).addMBB(target); 725 MI->eraseFromParent(); // The pseudo instruction is gone now. 726 return BB; 727} 728 729MachineBasicBlock *Mips16TargetLowering::emitFEXT_T8I8I16_ins( 730 unsigned BtOpc, unsigned CmpiOpc, unsigned CmpiXOpc, bool ImmSigned, 731 MachineInstr *MI, MachineBasicBlock *BB) const { 732 if (DontExpandCondPseudos16) 733 return BB; 734 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 735 unsigned regX = MI->getOperand(0).getReg(); 736 int64_t imm = MI->getOperand(1).getImm(); 737 MachineBasicBlock *target = MI->getOperand(2).getMBB(); 738 unsigned CmpOpc; 739 if (isUInt<8>(imm)) 740 CmpOpc = CmpiOpc; 741 else if ((!ImmSigned && isUInt<16>(imm)) || 742 (ImmSigned && isInt<16>(imm))) 743 CmpOpc = CmpiXOpc; 744 else 745 llvm_unreachable("immediate field not usable"); 746 BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(CmpOpc)).addReg(regX) 747 .addImm(imm); 748 BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(BtOpc)).addMBB(target); 749 MI->eraseFromParent(); // The pseudo instruction is gone now. 750 return BB; 751} 752 753static unsigned Mips16WhichOp8uOr16simm 754 (unsigned shortOp, unsigned longOp, int64_t Imm) { 755 if (isUInt<8>(Imm)) 756 return shortOp; 757 else if (isInt<16>(Imm)) 758 return longOp; 759 else 760 llvm_unreachable("immediate field not usable"); 761} 762 763MachineBasicBlock *Mips16TargetLowering::emitFEXT_CCRX16_ins( 764 unsigned SltOpc, 765 MachineInstr *MI, MachineBasicBlock *BB) const { 766 if (DontExpandCondPseudos16) 767 return BB; 768 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 769 unsigned CC = MI->getOperand(0).getReg(); 770 unsigned regX = MI->getOperand(1).getReg(); 771 unsigned regY = MI->getOperand(2).getReg(); 772 BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(SltOpc)).addReg(regX).addReg( 773 regY); 774 BuildMI(*BB, MI, MI->getDebugLoc(), 775 TII->get(Mips::MoveR3216), CC).addReg(Mips::T8); 776 MI->eraseFromParent(); // The pseudo instruction is gone now. 777 return BB; 778} 779 780MachineBasicBlock *Mips16TargetLowering::emitFEXT_CCRXI16_ins( 781 unsigned SltiOpc, unsigned SltiXOpc, 782 MachineInstr *MI, MachineBasicBlock *BB )const { 783 if (DontExpandCondPseudos16) 784 return BB; 785 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 786 unsigned CC = MI->getOperand(0).getReg(); 787 unsigned regX = MI->getOperand(1).getReg(); 788 int64_t Imm = MI->getOperand(2).getImm(); 789 unsigned SltOpc = Mips16WhichOp8uOr16simm(SltiOpc, SltiXOpc, Imm); 790 BuildMI(*BB, MI, MI->getDebugLoc(), 791 TII->get(SltOpc)).addReg(regX).addImm(Imm); 792 BuildMI(*BB, MI, MI->getDebugLoc(), 793 TII->get(Mips::MoveR3216), CC).addReg(Mips::T8); 794 MI->eraseFromParent(); // The pseudo instruction is gone now. 795 return BB; 796 797} 798