X86ISelDAGToDAG.cpp revision 094fad37b90946c91a09eb9270a0dbe800f49d87
1//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a DAG pattern matching instruction selector for X86,
11// converting from a legalized dag to a X86 dag.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86MachineFunctionInfo.h"
20#include "X86RegisterInfo.h"
21#include "X86Subtarget.h"
22#include "X86TargetMachine.h"
23#include "llvm/GlobalValue.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/Support/CFG.h"
27#include "llvm/Type.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/CodeGen/SelectionDAGISel.h"
34#include "llvm/Target/TargetMachine.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/Support/Compiler.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/MathExtras.h"
39#include "llvm/Support/Streams.h"
40#include "llvm/ADT/SmallPtrSet.h"
41#include "llvm/ADT/Statistic.h"
42using namespace llvm;
43
44#include "llvm/Support/CommandLine.h"
45static cl::opt<bool> AvoidDupAddrCompute("x86-avoid-dup-address", cl::Hidden);
46
47STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
48
49//===----------------------------------------------------------------------===//
50//                      Pattern Matcher Implementation
51//===----------------------------------------------------------------------===//
52
53namespace {
54  /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
55  /// SDValue's instead of register numbers for the leaves of the matched
56  /// tree.
57  struct X86ISelAddressMode {
58    enum {
59      RegBase,
60      FrameIndexBase
61    } BaseType;
62
63    struct {            // This is really a union, discriminated by BaseType!
64      SDValue Reg;
65      int FrameIndex;
66    } Base;
67
68    bool isRIPRel;     // RIP as base?
69    unsigned Scale;
70    SDValue IndexReg;
71    int32_t Disp;
72    SDValue Segment;
73    GlobalValue *GV;
74    Constant *CP;
75    const char *ES;
76    int JT;
77    unsigned Align;    // CP alignment.
78
79    X86ISelAddressMode()
80      : BaseType(RegBase), isRIPRel(false), Scale(1), IndexReg(), Disp(0),
81        Segment(), GV(0), CP(0), ES(0), JT(-1), Align(0) {
82    }
83
84    bool hasSymbolicDisplacement() const {
85      return GV != 0 || CP != 0 || ES != 0 || JT != -1;
86    }
87
88    void dump() {
89      cerr << "X86ISelAddressMode " << this << "\n";
90      cerr << "Base.Reg ";
91              if (Base.Reg.getNode() != 0) Base.Reg.getNode()->dump();
92              else cerr << "nul";
93      cerr << " Base.FrameIndex " << Base.FrameIndex << "\n";
94      cerr << "isRIPRel " << isRIPRel << " Scale" << Scale << "\n";
95      cerr << "IndexReg ";
96              if (IndexReg.getNode() != 0) IndexReg.getNode()->dump();
97              else cerr << "nul";
98      cerr << " Disp " << Disp << "\n";
99      cerr << "GV "; if (GV) GV->dump();
100                     else cerr << "nul";
101      cerr << " CP "; if (CP) CP->dump();
102                     else cerr << "nul";
103      cerr << "\n";
104      cerr << "ES "; if (ES) cerr << ES; else cerr << "nul";
105      cerr  << " JT" << JT << " Align" << Align << "\n";
106    }
107  };
108}
109
110namespace {
111  //===--------------------------------------------------------------------===//
112  /// ISel - X86 specific code to select X86 machine instructions for
113  /// SelectionDAG operations.
114  ///
115  class VISIBILITY_HIDDEN X86DAGToDAGISel : public SelectionDAGISel {
116    /// TM - Keep a reference to X86TargetMachine.
117    ///
118    X86TargetMachine &TM;
119
120    /// X86Lowering - This object fully describes how to lower LLVM code to an
121    /// X86-specific SelectionDAG.
122    X86TargetLowering &X86Lowering;
123
124    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
125    /// make the right decision when generating code for different targets.
126    const X86Subtarget *Subtarget;
127
128    /// CurBB - Current BB being isel'd.
129    ///
130    MachineBasicBlock *CurBB;
131
132    /// OptForSize - If true, selector should try to optimize for code size
133    /// instead of performance.
134    bool OptForSize;
135
136  public:
137    X86DAGToDAGISel(X86TargetMachine &tm, bool fast)
138      : SelectionDAGISel(tm, fast),
139        TM(tm), X86Lowering(*TM.getTargetLowering()),
140        Subtarget(&TM.getSubtarget<X86Subtarget>()),
141        OptForSize(false) {}
142
143    virtual const char *getPassName() const {
144      return "X86 DAG->DAG Instruction Selection";
145    }
146
147    /// InstructionSelect - This callback is invoked by
148    /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
149    virtual void InstructionSelect();
150
151    virtual void EmitFunctionEntryCode(Function &Fn, MachineFunction &MF);
152
153    virtual
154      bool IsLegalAndProfitableToFold(SDNode *N, SDNode *U, SDNode *Root) const;
155
156// Include the pieces autogenerated from the target description.
157#include "X86GenDAGISel.inc"
158
159  private:
160    SDNode *Select(SDValue N);
161    SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
162
163    bool MatchSegmentBaseAddress(SDValue N, X86ISelAddressMode &AM);
164    bool MatchLoad(SDValue N, X86ISelAddressMode &AM);
165    bool MatchAddress(SDValue N, X86ISelAddressMode &AM,
166                      unsigned Depth = 0);
167    bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
168    bool SelectAddr(SDValue Op, SDValue N, SDValue &Base,
169                    SDValue &Scale, SDValue &Index, SDValue &Disp,
170                    SDValue &Segment);
171    bool SelectLEAAddr(SDValue Op, SDValue N, SDValue &Base,
172                       SDValue &Scale, SDValue &Index, SDValue &Disp);
173    bool SelectScalarSSELoad(SDValue Op, SDValue Pred,
174                             SDValue N, SDValue &Base, SDValue &Scale,
175                             SDValue &Index, SDValue &Disp,
176                             SDValue &Segment,
177                             SDValue &InChain, SDValue &OutChain);
178    bool TryFoldLoad(SDValue P, SDValue N,
179                     SDValue &Base, SDValue &Scale,
180                     SDValue &Index, SDValue &Disp,
181                     SDValue &Segment);
182    void PreprocessForRMW();
183    void PreprocessForFPConvert();
184
185    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
186    /// inline asm expressions.
187    virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
188                                              char ConstraintCode,
189                                              std::vector<SDValue> &OutOps);
190
191    void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
192
193    inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
194                                   SDValue &Scale, SDValue &Index,
195                                   SDValue &Disp, SDValue &Segment) {
196      Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
197        CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, TLI.getPointerTy()) :
198        AM.Base.Reg;
199      Scale = getI8Imm(AM.Scale);
200      Index = AM.IndexReg;
201      // These are 32-bit even in 64-bit mode since RIP relative offset
202      // is 32-bit.
203      if (AM.GV)
204        Disp = CurDAG->getTargetGlobalAddress(AM.GV, MVT::i32, AM.Disp);
205      else if (AM.CP)
206        Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
207                                             AM.Align, AM.Disp);
208      else if (AM.ES)
209        Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32);
210      else if (AM.JT != -1)
211        Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32);
212      else
213        Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
214
215      if (AM.Segment.getNode())
216        Segment = AM.Segment;
217      else
218        Segment = CurDAG->getRegister(0, MVT::i32);
219    }
220
221    /// getI8Imm - Return a target constant with the specified value, of type
222    /// i8.
223    inline SDValue getI8Imm(unsigned Imm) {
224      return CurDAG->getTargetConstant(Imm, MVT::i8);
225    }
226
227    /// getI16Imm - Return a target constant with the specified value, of type
228    /// i16.
229    inline SDValue getI16Imm(unsigned Imm) {
230      return CurDAG->getTargetConstant(Imm, MVT::i16);
231    }
232
233    /// getI32Imm - Return a target constant with the specified value, of type
234    /// i32.
235    inline SDValue getI32Imm(unsigned Imm) {
236      return CurDAG->getTargetConstant(Imm, MVT::i32);
237    }
238
239    /// getGlobalBaseReg - Return an SDNode that returns the value of
240    /// the global base register. Output instructions required to
241    /// initialize the global base register, if necessary.
242    ///
243    SDNode *getGlobalBaseReg();
244
245    /// getTruncateTo8Bit - return an SDNode that implements a subreg based
246    /// truncate of the specified operand to i8. This can be done with tablegen,
247    /// except that this code uses MVT::Flag in a tricky way that happens to
248    /// improve scheduling in some cases.
249    SDNode *getTruncateTo8Bit(SDValue N0);
250
251#ifndef NDEBUG
252    unsigned Indent;
253#endif
254  };
255}
256
257/// findFlagUse - Return use of MVT::Flag value produced by the specified
258/// SDNode.
259///
260static SDNode *findFlagUse(SDNode *N) {
261  unsigned FlagResNo = N->getNumValues()-1;
262  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
263    SDUse &Use = I.getUse();
264    if (Use.getResNo() == FlagResNo)
265      return Use.getUser();
266  }
267  return NULL;
268}
269
270/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
271/// This function recursively traverses up the operand chain, ignoring
272/// certain nodes.
273static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
274                          SDNode *Root,
275                          SmallPtrSet<SDNode*, 16> &Visited) {
276  if (Use->getNodeId() < Def->getNodeId() ||
277      !Visited.insert(Use))
278    return false;
279
280  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
281    SDNode *N = Use->getOperand(i).getNode();
282    if (N == Def) {
283      if (Use == ImmedUse || Use == Root)
284        continue;  // We are not looking for immediate use.
285      assert(N != Root);
286      return true;
287    }
288
289    // Traverse up the operand chain.
290    if (findNonImmUse(N, Def, ImmedUse, Root, Visited))
291      return true;
292  }
293  return false;
294}
295
296/// isNonImmUse - Start searching from Root up the DAG to check is Def can
297/// be reached. Return true if that's the case. However, ignore direct uses
298/// by ImmedUse (which would be U in the example illustrated in
299/// IsLegalAndProfitableToFold) and by Root (which can happen in the store
300/// case).
301/// FIXME: to be really generic, we should allow direct use by any node
302/// that is being folded. But realisticly since we only fold loads which
303/// have one non-chain use, we only need to watch out for load/op/store
304/// and load/op/cmp case where the root (store / cmp) may reach the load via
305/// its chain operand.
306static inline bool isNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse) {
307  SmallPtrSet<SDNode*, 16> Visited;
308  return findNonImmUse(Root, Def, ImmedUse, Root, Visited);
309}
310
311
312bool X86DAGToDAGISel::IsLegalAndProfitableToFold(SDNode *N, SDNode *U,
313                                                 SDNode *Root) const {
314  if (Fast) return false;
315
316  if (U == Root)
317    switch (U->getOpcode()) {
318    default: break;
319    case ISD::ADD:
320    case ISD::ADDC:
321    case ISD::ADDE:
322    case ISD::AND:
323    case ISD::OR:
324    case ISD::XOR: {
325      // If the other operand is a 8-bit immediate we should fold the immediate
326      // instead. This reduces code size.
327      // e.g.
328      // movl 4(%esp), %eax
329      // addl $4, %eax
330      // vs.
331      // movl $4, %eax
332      // addl 4(%esp), %eax
333      // The former is 2 bytes shorter. In case where the increment is 1, then
334      // the saving can be 4 bytes (by using incl %eax).
335      if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(U->getOperand(1)))
336        if (Imm->getAPIntValue().isSignedIntN(8))
337          return false;
338    }
339    }
340
341  // If Root use can somehow reach N through a path that that doesn't contain
342  // U then folding N would create a cycle. e.g. In the following
343  // diagram, Root can reach N through X. If N is folded into into Root, then
344  // X is both a predecessor and a successor of U.
345  //
346  //          [N*]           //
347  //         ^   ^           //
348  //        /     \          //
349  //      [U*]    [X]?       //
350  //        ^     ^          //
351  //         \   /           //
352  //          \ /            //
353  //         [Root*]         //
354  //
355  // * indicates nodes to be folded together.
356  //
357  // If Root produces a flag, then it gets (even more) interesting. Since it
358  // will be "glued" together with its flag use in the scheduler, we need to
359  // check if it might reach N.
360  //
361  //          [N*]           //
362  //         ^   ^           //
363  //        /     \          //
364  //      [U*]    [X]?       //
365  //        ^       ^        //
366  //         \       \       //
367  //          \      |       //
368  //         [Root*] |       //
369  //          ^      |       //
370  //          f      |       //
371  //          |      /       //
372  //         [Y]    /        //
373  //           ^   /         //
374  //           f  /          //
375  //           | /           //
376  //          [FU]           //
377  //
378  // If FU (flag use) indirectly reaches N (the load), and Root folds N
379  // (call it Fold), then X is a predecessor of FU and a successor of
380  // Fold. But since Fold and FU are flagged together, this will create
381  // a cycle in the scheduling graph.
382
383  MVT VT = Root->getValueType(Root->getNumValues()-1);
384  while (VT == MVT::Flag) {
385    SDNode *FU = findFlagUse(Root);
386    if (FU == NULL)
387      break;
388    Root = FU;
389    VT = Root->getValueType(Root->getNumValues()-1);
390  }
391
392  return !isNonImmUse(Root, N, U);
393}
394
395/// MoveBelowTokenFactor - Replace TokenFactor operand with load's chain operand
396/// and move load below the TokenFactor. Replace store's chain operand with
397/// load's chain result.
398static void MoveBelowTokenFactor(SelectionDAG *CurDAG, SDValue Load,
399                                 SDValue Store, SDValue TF) {
400  SmallVector<SDValue, 4> Ops;
401  for (unsigned i = 0, e = TF.getNode()->getNumOperands(); i != e; ++i)
402    if (Load.getNode() == TF.getOperand(i).getNode())
403      Ops.push_back(Load.getOperand(0));
404    else
405      Ops.push_back(TF.getOperand(i));
406  CurDAG->UpdateNodeOperands(TF, &Ops[0], Ops.size());
407  CurDAG->UpdateNodeOperands(Load, TF, Load.getOperand(1), Load.getOperand(2));
408  CurDAG->UpdateNodeOperands(Store, Load.getValue(1), Store.getOperand(1),
409                             Store.getOperand(2), Store.getOperand(3));
410}
411
412/// isRMWLoad - Return true if N is a load that's part of RMW sub-DAG.
413///
414static bool isRMWLoad(SDValue N, SDValue Chain, SDValue Address,
415                      SDValue &Load) {
416  if (N.getOpcode() == ISD::BIT_CONVERT)
417    N = N.getOperand(0);
418
419  LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
420  if (!LD || LD->isVolatile())
421    return false;
422  if (LD->getAddressingMode() != ISD::UNINDEXED)
423    return false;
424
425  ISD::LoadExtType ExtType = LD->getExtensionType();
426  if (ExtType != ISD::NON_EXTLOAD && ExtType != ISD::EXTLOAD)
427    return false;
428
429  if (N.hasOneUse() &&
430      N.getOperand(1) == Address &&
431      N.getNode()->isOperandOf(Chain.getNode())) {
432    Load = N;
433    return true;
434  }
435  return false;
436}
437
438/// MoveBelowCallSeqStart - Replace CALLSEQ_START operand with load's chain
439/// operand and move load below the call's chain operand.
440static void MoveBelowCallSeqStart(SelectionDAG *CurDAG, SDValue Load,
441                                  SDValue Call, SDValue CallSeqStart) {
442  SmallVector<SDValue, 8> Ops;
443  SDValue Chain = CallSeqStart.getOperand(0);
444  if (Chain.getNode() == Load.getNode())
445    Ops.push_back(Load.getOperand(0));
446  else {
447    assert(Chain.getOpcode() == ISD::TokenFactor &&
448           "Unexpected CallSeqStart chain operand");
449    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
450      if (Chain.getOperand(i).getNode() == Load.getNode())
451        Ops.push_back(Load.getOperand(0));
452      else
453        Ops.push_back(Chain.getOperand(i));
454    SDValue NewChain =
455      CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(),
456                      MVT::Other, &Ops[0], Ops.size());
457    Ops.clear();
458    Ops.push_back(NewChain);
459  }
460  for (unsigned i = 1, e = CallSeqStart.getNumOperands(); i != e; ++i)
461    Ops.push_back(CallSeqStart.getOperand(i));
462  CurDAG->UpdateNodeOperands(CallSeqStart, &Ops[0], Ops.size());
463  CurDAG->UpdateNodeOperands(Load, Call.getOperand(0),
464                             Load.getOperand(1), Load.getOperand(2));
465  Ops.clear();
466  Ops.push_back(SDValue(Load.getNode(), 1));
467  for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i)
468    Ops.push_back(Call.getOperand(i));
469  CurDAG->UpdateNodeOperands(Call, &Ops[0], Ops.size());
470}
471
472/// isCalleeLoad - Return true if call address is a load and it can be
473/// moved below CALLSEQ_START and the chains leading up to the call.
474/// Return the CALLSEQ_START by reference as a second output.
475static bool isCalleeLoad(SDValue Callee, SDValue &Chain) {
476  if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
477    return false;
478  LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
479  if (!LD ||
480      LD->isVolatile() ||
481      LD->getAddressingMode() != ISD::UNINDEXED ||
482      LD->getExtensionType() != ISD::NON_EXTLOAD)
483    return false;
484
485  // Now let's find the callseq_start.
486  while (Chain.getOpcode() != ISD::CALLSEQ_START) {
487    if (!Chain.hasOneUse())
488      return false;
489    Chain = Chain.getOperand(0);
490  }
491
492  if (Chain.getOperand(0).getNode() == Callee.getNode())
493    return true;
494  if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
495      Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()))
496    return true;
497  return false;
498}
499
500
501/// PreprocessForRMW - Preprocess the DAG to make instruction selection better.
502/// This is only run if not in -fast mode (aka -O0).
503/// This allows the instruction selector to pick more read-modify-write
504/// instructions. This is a common case:
505///
506///     [Load chain]
507///         ^
508///         |
509///       [Load]
510///       ^    ^
511///       |    |
512///      /      \-
513///     /         |
514/// [TokenFactor] [Op]
515///     ^          ^
516///     |          |
517///      \        /
518///       \      /
519///       [Store]
520///
521/// The fact the store's chain operand != load's chain will prevent the
522/// (store (op (load))) instruction from being selected. We can transform it to:
523///
524///     [Load chain]
525///         ^
526///         |
527///    [TokenFactor]
528///         ^
529///         |
530///       [Load]
531///       ^    ^
532///       |    |
533///       |     \-
534///       |       |
535///       |     [Op]
536///       |       ^
537///       |       |
538///       \      /
539///        \    /
540///       [Store]
541void X86DAGToDAGISel::PreprocessForRMW() {
542  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
543         E = CurDAG->allnodes_end(); I != E; ++I) {
544    if (I->getOpcode() == X86ISD::CALL) {
545      /// Also try moving call address load from outside callseq_start to just
546      /// before the call to allow it to be folded.
547      ///
548      ///     [Load chain]
549      ///         ^
550      ///         |
551      ///       [Load]
552      ///       ^    ^
553      ///       |    |
554      ///      /      \--
555      ///     /          |
556      ///[CALLSEQ_START] |
557      ///     ^          |
558      ///     |          |
559      /// [LOAD/C2Reg]   |
560      ///     |          |
561      ///      \        /
562      ///       \      /
563      ///       [CALL]
564      SDValue Chain = I->getOperand(0);
565      SDValue Load  = I->getOperand(1);
566      if (!isCalleeLoad(Load, Chain))
567        continue;
568      MoveBelowCallSeqStart(CurDAG, Load, SDValue(I, 0), Chain);
569      ++NumLoadMoved;
570      continue;
571    }
572
573    if (!ISD::isNON_TRUNCStore(I))
574      continue;
575    SDValue Chain = I->getOperand(0);
576
577    if (Chain.getNode()->getOpcode() != ISD::TokenFactor)
578      continue;
579
580    SDValue N1 = I->getOperand(1);
581    SDValue N2 = I->getOperand(2);
582    if ((N1.getValueType().isFloatingPoint() &&
583         !N1.getValueType().isVector()) ||
584        !N1.hasOneUse())
585      continue;
586
587    bool RModW = false;
588    SDValue Load;
589    unsigned Opcode = N1.getNode()->getOpcode();
590    switch (Opcode) {
591    case ISD::ADD:
592    case ISD::MUL:
593    case ISD::AND:
594    case ISD::OR:
595    case ISD::XOR:
596    case ISD::ADDC:
597    case ISD::ADDE:
598    case ISD::VECTOR_SHUFFLE: {
599      SDValue N10 = N1.getOperand(0);
600      SDValue N11 = N1.getOperand(1);
601      RModW = isRMWLoad(N10, Chain, N2, Load);
602      if (!RModW)
603        RModW = isRMWLoad(N11, Chain, N2, Load);
604      break;
605    }
606    case ISD::SUB:
607    case ISD::SHL:
608    case ISD::SRA:
609    case ISD::SRL:
610    case ISD::ROTL:
611    case ISD::ROTR:
612    case ISD::SUBC:
613    case ISD::SUBE:
614    case X86ISD::SHLD:
615    case X86ISD::SHRD: {
616      SDValue N10 = N1.getOperand(0);
617      RModW = isRMWLoad(N10, Chain, N2, Load);
618      break;
619    }
620    }
621
622    if (RModW) {
623      MoveBelowTokenFactor(CurDAG, Load, SDValue(I, 0), Chain);
624      ++NumLoadMoved;
625    }
626  }
627}
628
629
630/// PreprocessForFPConvert - Walk over the dag lowering fpround and fpextend
631/// nodes that target the FP stack to be store and load to the stack.  This is a
632/// gross hack.  We would like to simply mark these as being illegal, but when
633/// we do that, legalize produces these when it expands calls, then expands
634/// these in the same legalize pass.  We would like dag combine to be able to
635/// hack on these between the call expansion and the node legalization.  As such
636/// this pass basically does "really late" legalization of these inline with the
637/// X86 isel pass.
638void X86DAGToDAGISel::PreprocessForFPConvert() {
639  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
640       E = CurDAG->allnodes_end(); I != E; ) {
641    SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.
642    if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
643      continue;
644
645    // If the source and destination are SSE registers, then this is a legal
646    // conversion that should not be lowered.
647    MVT SrcVT = N->getOperand(0).getValueType();
648    MVT DstVT = N->getValueType(0);
649    bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
650    bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
651    if (SrcIsSSE && DstIsSSE)
652      continue;
653
654    if (!SrcIsSSE && !DstIsSSE) {
655      // If this is an FPStack extension, it is a noop.
656      if (N->getOpcode() == ISD::FP_EXTEND)
657        continue;
658      // If this is a value-preserving FPStack truncation, it is a noop.
659      if (N->getConstantOperandVal(1))
660        continue;
661    }
662
663    // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
664    // FPStack has extload and truncstore.  SSE can fold direct loads into other
665    // operations.  Based on this, decide what we want to do.
666    MVT MemVT;
667    if (N->getOpcode() == ISD::FP_ROUND)
668      MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'.
669    else
670      MemVT = SrcIsSSE ? SrcVT : DstVT;
671
672    SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
673    DebugLoc dl = N->getDebugLoc();
674
675    // FIXME: optimize the case where the src/dest is a load or store?
676    SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
677                                          N->getOperand(0),
678                                          MemTmp, NULL, 0, MemVT);
679    SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
680                                        NULL, 0, MemVT);
681
682    // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
683    // extload we created.  This will cause general havok on the dag because
684    // anything below the conversion could be folded into other existing nodes.
685    // To avoid invalidating 'I', back it up to the convert node.
686    --I;
687    CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
688
689    // Now that we did that, the node is dead.  Increment the iterator to the
690    // next node to process, then delete N.
691    ++I;
692    CurDAG->DeleteNode(N);
693  }
694}
695
696/// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel
697/// when it has created a SelectionDAG for us to codegen.
698void X86DAGToDAGISel::InstructionSelect() {
699  CurBB = BB;  // BB can change as result of isel.
700  const Function *F = CurDAG->getMachineFunction().getFunction();
701  OptForSize = F->hasFnAttr(Attribute::OptimizeForSize);
702
703  DEBUG(BB->dump());
704  if (!Fast)
705    PreprocessForRMW();
706
707  // FIXME: This should only happen when not -fast.
708  PreprocessForFPConvert();
709
710  // Codegen the basic block.
711#ifndef NDEBUG
712  DOUT << "===== Instruction selection begins:\n";
713  Indent = 0;
714#endif
715  SelectRoot(*CurDAG);
716#ifndef NDEBUG
717  DOUT << "===== Instruction selection ends:\n";
718#endif
719
720  CurDAG->RemoveDeadNodes();
721}
722
723/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
724/// the main function.
725void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
726                                             MachineFrameInfo *MFI) {
727  const TargetInstrInfo *TII = TM.getInstrInfo();
728  if (Subtarget->isTargetCygMing())
729    BuildMI(BB, DebugLoc::getUnknownLoc(),
730            TII->get(X86::CALLpcrel32)).addExternalSymbol("__main");
731}
732
733void X86DAGToDAGISel::EmitFunctionEntryCode(Function &Fn, MachineFunction &MF) {
734  // If this is main, emit special code for main.
735  MachineBasicBlock *BB = MF.begin();
736  if (Fn.hasExternalLinkage() && Fn.getName() == "main")
737    EmitSpecialCodeForMain(BB, MF.getFrameInfo());
738}
739
740
741bool X86DAGToDAGISel::MatchSegmentBaseAddress(SDValue N,
742                                              X86ISelAddressMode &AM) {
743  assert(N.getOpcode() == X86ISD::SegmentBaseAddress);
744  SDValue Segment = N.getOperand(0);
745
746  if (AM.Segment.getNode() == 0) {
747    AM.Segment = Segment;
748    return false;
749  }
750
751  return true;
752}
753
754bool X86DAGToDAGISel::MatchLoad(SDValue N, X86ISelAddressMode &AM) {
755  // This optimization is valid because the GNU TLS model defines that
756  // gs:0 (or fs:0 on X86-64) contains its own address.
757  // For more information see http://people.redhat.com/drepper/tls.pdf
758
759  SDValue Address = N.getOperand(1);
760  if (Address.getOpcode() == X86ISD::SegmentBaseAddress &&
761      !MatchSegmentBaseAddress (Address, AM))
762    return false;
763
764  return true;
765}
766
767/// MatchAddress - Add the specified node to the specified addressing mode,
768/// returning true if it cannot be done.  This just pattern matches for the
769/// addressing mode.
770bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM,
771                                   unsigned Depth) {
772  bool is64Bit = Subtarget->is64Bit();
773  DebugLoc dl = N.getDebugLoc();
774  DOUT << "MatchAddress: "; DEBUG(AM.dump());
775  // Limit recursion.
776  if (Depth > 5)
777    return MatchAddressBase(N, AM);
778
779  // RIP relative addressing: %rip + 32-bit displacement!
780  if (AM.isRIPRel) {
781    if (!AM.ES && AM.JT != -1 && N.getOpcode() == ISD::Constant) {
782      uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
783      if (!is64Bit || isInt32(AM.Disp + Val)) {
784        AM.Disp += Val;
785        return false;
786      }
787    }
788    return true;
789  }
790
791  switch (N.getOpcode()) {
792  default: break;
793  case ISD::Constant: {
794    uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
795    if (!is64Bit || isInt32(AM.Disp + Val)) {
796      AM.Disp += Val;
797      return false;
798    }
799    break;
800  }
801
802  case X86ISD::SegmentBaseAddress:
803    if (!MatchSegmentBaseAddress(N, AM))
804      return false;
805    break;
806
807  case X86ISD::Wrapper: {
808    DOUT << "Wrapper: 64bit " << is64Bit;
809    DOUT << " AM "; DEBUG(AM.dump()); DOUT << "\n";
810    // Under X86-64 non-small code model, GV (and friends) are 64-bits.
811    // Also, base and index reg must be 0 in order to use rip as base.
812    if (is64Bit && (TM.getCodeModel() != CodeModel::Small ||
813                    AM.Base.Reg.getNode() || AM.IndexReg.getNode()))
814      break;
815    if (AM.hasSymbolicDisplacement())
816      break;
817    // If value is available in a register both base and index components have
818    // been picked, we can't fit the result available in the register in the
819    // addressing mode. Duplicate GlobalAddress or ConstantPool as displacement.
820    {
821      SDValue N0 = N.getOperand(0);
822      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
823        uint64_t Offset = G->getOffset();
824        if (!is64Bit || isInt32(AM.Disp + Offset)) {
825          GlobalValue *GV = G->getGlobal();
826          AM.GV = GV;
827          AM.Disp += Offset;
828          AM.isRIPRel = TM.symbolicAddressesAreRIPRel();
829          return false;
830        }
831      } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
832        uint64_t Offset = CP->getOffset();
833        if (!is64Bit || isInt32(AM.Disp + Offset)) {
834          AM.CP = CP->getConstVal();
835          AM.Align = CP->getAlignment();
836          AM.Disp += Offset;
837          AM.isRIPRel = TM.symbolicAddressesAreRIPRel();
838          return false;
839        }
840      } else if (ExternalSymbolSDNode *S =dyn_cast<ExternalSymbolSDNode>(N0)) {
841        AM.ES = S->getSymbol();
842        AM.isRIPRel = TM.symbolicAddressesAreRIPRel();
843        return false;
844      } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
845        AM.JT = J->getIndex();
846        AM.isRIPRel = TM.symbolicAddressesAreRIPRel();
847        return false;
848      }
849    }
850    break;
851  }
852
853  case ISD::LOAD:
854    if (!MatchLoad(N, AM))
855      return false;
856    break;
857
858  case ISD::FrameIndex:
859    if (AM.BaseType == X86ISelAddressMode::RegBase
860        && AM.Base.Reg.getNode() == 0) {
861      AM.BaseType = X86ISelAddressMode::FrameIndexBase;
862      AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
863      return false;
864    }
865    break;
866
867  case ISD::SHL:
868    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1 || AM.isRIPRel)
869      break;
870
871    if (ConstantSDNode
872          *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
873      unsigned Val = CN->getZExtValue();
874      if (Val == 1 || Val == 2 || Val == 3) {
875        AM.Scale = 1 << Val;
876        SDValue ShVal = N.getNode()->getOperand(0);
877
878        // Okay, we know that we have a scale by now.  However, if the scaled
879        // value is an add of something and a constant, we can fold the
880        // constant into the disp field here.
881        if (ShVal.getNode()->getOpcode() == ISD::ADD && ShVal.hasOneUse() &&
882            isa<ConstantSDNode>(ShVal.getNode()->getOperand(1))) {
883          AM.IndexReg = ShVal.getNode()->getOperand(0);
884          ConstantSDNode *AddVal =
885            cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
886          uint64_t Disp = AM.Disp + (AddVal->getSExtValue() << Val);
887          if (!is64Bit || isInt32(Disp))
888            AM.Disp = Disp;
889          else
890            AM.IndexReg = ShVal;
891        } else {
892          AM.IndexReg = ShVal;
893        }
894        return false;
895      }
896    break;
897    }
898
899  case ISD::SMUL_LOHI:
900  case ISD::UMUL_LOHI:
901    // A mul_lohi where we need the low part can be folded as a plain multiply.
902    if (N.getResNo() != 0) break;
903    // FALL THROUGH
904  case ISD::MUL:
905  case X86ISD::MUL_IMM:
906    // X*[3,5,9] -> X+X*[2,4,8]
907    if (AM.BaseType == X86ISelAddressMode::RegBase &&
908        AM.Base.Reg.getNode() == 0 &&
909        AM.IndexReg.getNode() == 0 &&
910        !AM.isRIPRel) {
911      if (ConstantSDNode
912            *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
913        if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
914            CN->getZExtValue() == 9) {
915          AM.Scale = unsigned(CN->getZExtValue())-1;
916
917          SDValue MulVal = N.getNode()->getOperand(0);
918          SDValue Reg;
919
920          // Okay, we know that we have a scale by now.  However, if the scaled
921          // value is an add of something and a constant, we can fold the
922          // constant into the disp field here.
923          if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
924              isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
925            Reg = MulVal.getNode()->getOperand(0);
926            ConstantSDNode *AddVal =
927              cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
928            uint64_t Disp = AM.Disp + AddVal->getSExtValue() *
929                                      CN->getZExtValue();
930            if (!is64Bit || isInt32(Disp))
931              AM.Disp = Disp;
932            else
933              Reg = N.getNode()->getOperand(0);
934          } else {
935            Reg = N.getNode()->getOperand(0);
936          }
937
938          AM.IndexReg = AM.Base.Reg = Reg;
939          return false;
940        }
941    }
942    break;
943
944  case ISD::ADD: {
945    X86ISelAddressMode Backup = AM;
946    if (!MatchAddress(N.getNode()->getOperand(0), AM, Depth+1) &&
947        !MatchAddress(N.getNode()->getOperand(1), AM, Depth+1))
948      return false;
949    AM = Backup;
950    if (!MatchAddress(N.getNode()->getOperand(1), AM, Depth+1) &&
951        !MatchAddress(N.getNode()->getOperand(0), AM, Depth+1))
952      return false;
953    AM = Backup;
954
955    // If we couldn't fold both operands into the address at the same time,
956    // see if we can just put each operand into a register and fold at least
957    // the add.
958    if (AM.BaseType == X86ISelAddressMode::RegBase &&
959        !AM.Base.Reg.getNode() &&
960        !AM.IndexReg.getNode() &&
961        !AM.isRIPRel) {
962      AM.Base.Reg = N.getNode()->getOperand(0);
963      AM.IndexReg = N.getNode()->getOperand(1);
964      AM.Scale = 1;
965      return false;
966    }
967    break;
968  }
969
970  case ISD::OR:
971    // Handle "X | C" as "X + C" iff X is known to have C bits clear.
972    if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
973      X86ISelAddressMode Backup = AM;
974      uint64_t Offset = CN->getSExtValue();
975      // Start with the LHS as an addr mode.
976      if (!MatchAddress(N.getOperand(0), AM, Depth+1) &&
977          // Address could not have picked a GV address for the displacement.
978          AM.GV == NULL &&
979          // On x86-64, the resultant disp must fit in 32-bits.
980          (!is64Bit || isInt32(AM.Disp + Offset)) &&
981          // Check to see if the LHS & C is zero.
982          CurDAG->MaskedValueIsZero(N.getOperand(0), CN->getAPIntValue())) {
983        AM.Disp += Offset;
984        return false;
985      }
986      AM = Backup;
987    }
988    break;
989
990  case ISD::AND: {
991    // Handle "(x << C1) & C2" as "(X & (C2>>C1)) << C1" if safe and if this
992    // allows us to fold the shift into this addressing mode.
993    SDValue Shift = N.getOperand(0);
994    if (Shift.getOpcode() != ISD::SHL) break;
995
996    // Scale must not be used already.
997    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
998
999    // Not when RIP is used as the base.
1000    if (AM.isRIPRel) break;
1001
1002    ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N.getOperand(1));
1003    ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
1004    if (!C1 || !C2) break;
1005
1006    // Not likely to be profitable if either the AND or SHIFT node has more
1007    // than one use (unless all uses are for address computation). Besides,
1008    // isel mechanism requires their node ids to be reused.
1009    if (!N.hasOneUse() || !Shift.hasOneUse())
1010      break;
1011
1012    // Verify that the shift amount is something we can fold.
1013    unsigned ShiftCst = C1->getZExtValue();
1014    if (ShiftCst != 1 && ShiftCst != 2 && ShiftCst != 3)
1015      break;
1016
1017    // Get the new AND mask, this folds to a constant.
1018    SDValue X = Shift.getOperand(0);
1019    SDValue NewANDMask = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
1020                                         SDValue(C2, 0), SDValue(C1, 0));
1021    SDValue NewAND = CurDAG->getNode(ISD::AND, dl, N.getValueType(), X,
1022                                     NewANDMask);
1023    SDValue NewSHIFT = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
1024                                       NewAND, SDValue(C1, 0));
1025
1026    // Insert the new nodes into the topological ordering.
1027    if (C1->getNodeId() > X.getNode()->getNodeId()) {
1028      CurDAG->RepositionNode(X.getNode(), C1);
1029      C1->setNodeId(X.getNode()->getNodeId());
1030    }
1031    if (NewANDMask.getNode()->getNodeId() == -1 ||
1032        NewANDMask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1033      CurDAG->RepositionNode(X.getNode(), NewANDMask.getNode());
1034      NewANDMask.getNode()->setNodeId(X.getNode()->getNodeId());
1035    }
1036    if (NewAND.getNode()->getNodeId() == -1 ||
1037        NewAND.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
1038      CurDAG->RepositionNode(Shift.getNode(), NewAND.getNode());
1039      NewAND.getNode()->setNodeId(Shift.getNode()->getNodeId());
1040    }
1041    if (NewSHIFT.getNode()->getNodeId() == -1 ||
1042        NewSHIFT.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1043      CurDAG->RepositionNode(N.getNode(), NewSHIFT.getNode());
1044      NewSHIFT.getNode()->setNodeId(N.getNode()->getNodeId());
1045    }
1046
1047    CurDAG->ReplaceAllUsesWith(N, NewSHIFT);
1048
1049    AM.Scale = 1 << ShiftCst;
1050    AM.IndexReg = NewAND;
1051    return false;
1052  }
1053  }
1054
1055  return MatchAddressBase(N, AM);
1056}
1057
1058/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
1059/// specified addressing mode without any further recursion.
1060bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
1061  // Is the base register already occupied?
1062  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.getNode()) {
1063    // If so, check to see if the scale index register is set.
1064    if (AM.IndexReg.getNode() == 0 && !AM.isRIPRel) {
1065      AM.IndexReg = N;
1066      AM.Scale = 1;
1067      return false;
1068    }
1069
1070    // Otherwise, we cannot select it.
1071    return true;
1072  }
1073
1074  // Default, generate it as a register.
1075  AM.BaseType = X86ISelAddressMode::RegBase;
1076  AM.Base.Reg = N;
1077  return false;
1078}
1079
1080/// SelectAddr - returns true if it is able pattern match an addressing mode.
1081/// It returns the operands which make up the maximal addressing mode it can
1082/// match by reference.
1083bool X86DAGToDAGISel::SelectAddr(SDValue Op, SDValue N, SDValue &Base,
1084                                 SDValue &Scale, SDValue &Index,
1085                                 SDValue &Disp, SDValue &Segment) {
1086  X86ISelAddressMode AM;
1087  bool Done = false;
1088  if (AvoidDupAddrCompute && !N.hasOneUse()) {
1089    unsigned Opcode = N.getOpcode();
1090    if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex &&
1091        Opcode != X86ISD::Wrapper) {
1092      // If we are able to fold N into addressing mode, then we'll allow it even
1093      // if N has multiple uses. In general, addressing computation is used as
1094      // addresses by all of its uses. But watch out for CopyToReg uses, that
1095      // means the address computation is liveout. It will be computed by a LEA
1096      // so we want to avoid computing the address twice.
1097      for (SDNode::use_iterator UI = N.getNode()->use_begin(),
1098             UE = N.getNode()->use_end(); UI != UE; ++UI) {
1099        if (UI->getOpcode() == ISD::CopyToReg) {
1100          MatchAddressBase(N, AM);
1101          Done = true;
1102          break;
1103        }
1104      }
1105    }
1106  }
1107
1108  if (!Done && MatchAddress(N, AM))
1109    return false;
1110
1111  MVT VT = N.getValueType();
1112  if (AM.BaseType == X86ISelAddressMode::RegBase) {
1113    if (!AM.Base.Reg.getNode())
1114      AM.Base.Reg = CurDAG->getRegister(0, VT);
1115  }
1116
1117  if (!AM.IndexReg.getNode())
1118    AM.IndexReg = CurDAG->getRegister(0, VT);
1119
1120  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1121  return true;
1122}
1123
1124/// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
1125/// match a load whose top elements are either undef or zeros.  The load flavor
1126/// is derived from the type of N, which is either v4f32 or v2f64.
1127bool X86DAGToDAGISel::SelectScalarSSELoad(SDValue Op, SDValue Pred,
1128                                          SDValue N, SDValue &Base,
1129                                          SDValue &Scale, SDValue &Index,
1130                                          SDValue &Disp, SDValue &Segment,
1131                                          SDValue &InChain,
1132                                          SDValue &OutChain) {
1133  if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1134    InChain = N.getOperand(0).getValue(1);
1135    if (ISD::isNON_EXTLoad(InChain.getNode()) &&
1136        InChain.getValue(0).hasOneUse() &&
1137        N.hasOneUse() &&
1138        IsLegalAndProfitableToFold(N.getNode(), Pred.getNode(), Op.getNode())) {
1139      LoadSDNode *LD = cast<LoadSDNode>(InChain);
1140      if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1141        return false;
1142      OutChain = LD->getChain();
1143      return true;
1144    }
1145  }
1146
1147  // Also handle the case where we explicitly require zeros in the top
1148  // elements.  This is a vector shuffle from the zero vector.
1149  if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1150      // Check to see if the top elements are all zeros (or bitcast of zeros).
1151      N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
1152      N.getOperand(0).getNode()->hasOneUse() &&
1153      ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
1154      N.getOperand(0).getOperand(0).hasOneUse()) {
1155    // Okay, this is a zero extending load.  Fold it.
1156    LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
1157    if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1158      return false;
1159    OutChain = LD->getChain();
1160    InChain = SDValue(LD, 1);
1161    return true;
1162  }
1163  return false;
1164}
1165
1166
1167/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
1168/// mode it matches can be cost effectively emitted as an LEA instruction.
1169bool X86DAGToDAGISel::SelectLEAAddr(SDValue Op, SDValue N,
1170                                    SDValue &Base, SDValue &Scale,
1171                                    SDValue &Index, SDValue &Disp) {
1172  X86ISelAddressMode AM;
1173  if (MatchAddress(N, AM))
1174    return false;
1175
1176  //Is it better to set AM.Segment before calling MatchAddress to
1177  //prevent it from adding a segment?
1178  if (AM.Segment.getNode())
1179    return false;
1180
1181  MVT VT = N.getValueType();
1182  unsigned Complexity = 0;
1183  if (AM.BaseType == X86ISelAddressMode::RegBase)
1184    if (AM.Base.Reg.getNode())
1185      Complexity = 1;
1186    else
1187      AM.Base.Reg = CurDAG->getRegister(0, VT);
1188  else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1189    Complexity = 4;
1190
1191  if (AM.IndexReg.getNode())
1192    Complexity++;
1193  else
1194    AM.IndexReg = CurDAG->getRegister(0, VT);
1195
1196  // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1197  // a simple shift.
1198  if (AM.Scale > 1)
1199    Complexity++;
1200
1201  // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1202  // to a LEA. This is determined with some expermentation but is by no means
1203  // optimal (especially for code size consideration). LEA is nice because of
1204  // its three-address nature. Tweak the cost function again when we can run
1205  // convertToThreeAddress() at register allocation time.
1206  if (AM.hasSymbolicDisplacement()) {
1207    // For X86-64, we should always use lea to materialize RIP relative
1208    // addresses.
1209    if (Subtarget->is64Bit())
1210      Complexity = 4;
1211    else
1212      Complexity += 2;
1213  }
1214
1215  if (AM.Disp && (AM.Base.Reg.getNode() || AM.IndexReg.getNode()))
1216    Complexity++;
1217
1218  if (Complexity > 2) {
1219    SDValue Segment;
1220    getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1221    return true;
1222  }
1223  return false;
1224}
1225
1226bool X86DAGToDAGISel::TryFoldLoad(SDValue P, SDValue N,
1227                                  SDValue &Base, SDValue &Scale,
1228                                  SDValue &Index, SDValue &Disp,
1229                                  SDValue &Segment) {
1230  if (ISD::isNON_EXTLoad(N.getNode()) &&
1231      N.hasOneUse() &&
1232      IsLegalAndProfitableToFold(N.getNode(), P.getNode(), P.getNode()))
1233    return SelectAddr(P, N.getOperand(1), Base, Scale, Index, Disp, Segment);
1234  return false;
1235}
1236
1237/// getGlobalBaseReg - Return an SDNode that returns the value of
1238/// the global base register. Output instructions required to
1239/// initialize the global base register, if necessary.
1240///
1241SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
1242  MachineFunction *MF = CurBB->getParent();
1243  unsigned GlobalBaseReg = TM.getInstrInfo()->getGlobalBaseReg(MF);
1244  return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
1245}
1246
1247static SDNode *FindCallStartFromCall(SDNode *Node) {
1248  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
1249    assert(Node->getOperand(0).getValueType() == MVT::Other &&
1250         "Node doesn't have a token chain argument!");
1251  return FindCallStartFromCall(Node->getOperand(0).getNode());
1252}
1253
1254/// getTruncateTo8Bit - return an SDNode that implements a subreg based
1255/// truncate of the specified operand to i8. This can be done with tablegen,
1256/// except that this code uses MVT::Flag in a tricky way that happens to
1257/// improve scheduling in some cases.
1258SDNode *X86DAGToDAGISel::getTruncateTo8Bit(SDValue N0) {
1259  assert(!Subtarget->is64Bit() &&
1260         "getTruncateTo8Bit is only needed on x86-32!");
1261  SDValue SRIdx = CurDAG->getTargetConstant(1, MVT::i32); // SubRegSet 1
1262  DebugLoc dl = N0.getDebugLoc();
1263
1264  // Ensure that the source register has an 8-bit subreg on 32-bit targets
1265  unsigned Opc;
1266  MVT N0VT = N0.getValueType();
1267  switch (N0VT.getSimpleVT()) {
1268  default: assert(0 && "Unknown truncate!");
1269  case MVT::i16:
1270    Opc = X86::MOV16to16_;
1271    break;
1272  case MVT::i32:
1273    Opc = X86::MOV32to32_;
1274    break;
1275  }
1276
1277  // The use of MVT::Flag here is not strictly accurate, but it helps
1278  // scheduling in some cases.
1279  N0 = SDValue(CurDAG->getTargetNode(Opc, dl, N0VT, MVT::Flag, N0), 0);
1280  return CurDAG->getTargetNode(X86::EXTRACT_SUBREG, dl,
1281                               MVT::i8, N0, SRIdx, N0.getValue(1));
1282}
1283
1284SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
1285  SDValue Chain = Node->getOperand(0);
1286  SDValue In1 = Node->getOperand(1);
1287  SDValue In2L = Node->getOperand(2);
1288  SDValue In2H = Node->getOperand(3);
1289  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1290  if (!SelectAddr(In1, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1291    return NULL;
1292  SDValue LSI = Node->getOperand(4);    // MemOperand
1293  const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, LSI, Chain};
1294  return CurDAG->getTargetNode(Opc, Node->getDebugLoc(),
1295                               MVT::i32, MVT::i32, MVT::Other, Ops,
1296                               array_lengthof(Ops));
1297}
1298
1299SDNode *X86DAGToDAGISel::Select(SDValue N) {
1300  SDNode *Node = N.getNode();
1301  MVT NVT = Node->getValueType(0);
1302  unsigned Opc, MOpc;
1303  unsigned Opcode = Node->getOpcode();
1304  DebugLoc dl = Node->getDebugLoc();
1305
1306#ifndef NDEBUG
1307  DOUT << std::string(Indent, ' ') << "Selecting: ";
1308  DEBUG(Node->dump(CurDAG));
1309  DOUT << "\n";
1310  Indent += 2;
1311#endif
1312
1313  if (Node->isMachineOpcode()) {
1314#ifndef NDEBUG
1315    DOUT << std::string(Indent-2, ' ') << "== ";
1316    DEBUG(Node->dump(CurDAG));
1317    DOUT << "\n";
1318    Indent -= 2;
1319#endif
1320    return NULL;   // Already selected.
1321  }
1322
1323  switch (Opcode) {
1324    default: break;
1325    case X86ISD::GlobalBaseReg:
1326      return getGlobalBaseReg();
1327
1328    case X86ISD::ATOMOR64_DAG:
1329      return SelectAtomic64(Node, X86::ATOMOR6432);
1330    case X86ISD::ATOMXOR64_DAG:
1331      return SelectAtomic64(Node, X86::ATOMXOR6432);
1332    case X86ISD::ATOMADD64_DAG:
1333      return SelectAtomic64(Node, X86::ATOMADD6432);
1334    case X86ISD::ATOMSUB64_DAG:
1335      return SelectAtomic64(Node, X86::ATOMSUB6432);
1336    case X86ISD::ATOMNAND64_DAG:
1337      return SelectAtomic64(Node, X86::ATOMNAND6432);
1338    case X86ISD::ATOMAND64_DAG:
1339      return SelectAtomic64(Node, X86::ATOMAND6432);
1340    case X86ISD::ATOMSWAP64_DAG:
1341      return SelectAtomic64(Node, X86::ATOMSWAP6432);
1342
1343    case ISD::SMUL_LOHI:
1344    case ISD::UMUL_LOHI: {
1345      SDValue N0 = Node->getOperand(0);
1346      SDValue N1 = Node->getOperand(1);
1347
1348      bool isSigned = Opcode == ISD::SMUL_LOHI;
1349      if (!isSigned)
1350        switch (NVT.getSimpleVT()) {
1351        default: assert(0 && "Unsupported VT!");
1352        case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
1353        case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
1354        case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
1355        case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
1356        }
1357      else
1358        switch (NVT.getSimpleVT()) {
1359        default: assert(0 && "Unsupported VT!");
1360        case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
1361        case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
1362        case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
1363        case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
1364        }
1365
1366      unsigned LoReg, HiReg;
1367      switch (NVT.getSimpleVT()) {
1368      default: assert(0 && "Unsupported VT!");
1369      case MVT::i8:  LoReg = X86::AL;  HiReg = X86::AH;  break;
1370      case MVT::i16: LoReg = X86::AX;  HiReg = X86::DX;  break;
1371      case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
1372      case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break;
1373      }
1374
1375      SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1376      bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1377      // multiplty is commmutative
1378      if (!foldedLoad) {
1379        foldedLoad = TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1380        if (foldedLoad)
1381          std::swap(N0, N1);
1382      }
1383
1384      SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
1385                                              N0, SDValue()).getValue(1);
1386
1387      if (foldedLoad) {
1388        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
1389                          InFlag };
1390        SDNode *CNode =
1391          CurDAG->getTargetNode(MOpc, dl, MVT::Other, MVT::Flag, Ops,
1392                                array_lengthof(Ops));
1393        InFlag = SDValue(CNode, 1);
1394        // Update the chain.
1395        ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1396      } else {
1397        InFlag =
1398          SDValue(CurDAG->getTargetNode(Opc, dl, MVT::Flag, N1, InFlag), 0);
1399      }
1400
1401      // Copy the low half of the result, if it is needed.
1402      if (!N.getValue(0).use_empty()) {
1403        SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1404                                                  LoReg, NVT, InFlag);
1405        InFlag = Result.getValue(2);
1406        ReplaceUses(N.getValue(0), Result);
1407#ifndef NDEBUG
1408        DOUT << std::string(Indent-2, ' ') << "=> ";
1409        DEBUG(Result.getNode()->dump(CurDAG));
1410        DOUT << "\n";
1411#endif
1412      }
1413      // Copy the high half of the result, if it is needed.
1414      if (!N.getValue(1).use_empty()) {
1415        SDValue Result;
1416        if (HiReg == X86::AH && Subtarget->is64Bit()) {
1417          // Prevent use of AH in a REX instruction by referencing AX instead.
1418          // Shift it down 8 bits.
1419          Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1420                                          X86::AX, MVT::i16, InFlag);
1421          InFlag = Result.getValue(2);
1422          Result = SDValue(CurDAG->getTargetNode(X86::SHR16ri, dl, MVT::i16,
1423                                                 Result,
1424                                     CurDAG->getTargetConstant(8, MVT::i8)), 0);
1425          // Then truncate it down to i8.
1426          SDValue SRIdx = CurDAG->getTargetConstant(1, MVT::i32); // SubRegSet 1
1427          Result = SDValue(CurDAG->getTargetNode(X86::EXTRACT_SUBREG, dl,
1428                                                   MVT::i8, Result, SRIdx), 0);
1429        } else {
1430          Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1431                                          HiReg, NVT, InFlag);
1432          InFlag = Result.getValue(2);
1433        }
1434        ReplaceUses(N.getValue(1), Result);
1435#ifndef NDEBUG
1436        DOUT << std::string(Indent-2, ' ') << "=> ";
1437        DEBUG(Result.getNode()->dump(CurDAG));
1438        DOUT << "\n";
1439#endif
1440      }
1441
1442#ifndef NDEBUG
1443      Indent -= 2;
1444#endif
1445
1446      return NULL;
1447    }
1448
1449    case ISD::SDIVREM:
1450    case ISD::UDIVREM: {
1451      SDValue N0 = Node->getOperand(0);
1452      SDValue N1 = Node->getOperand(1);
1453
1454      bool isSigned = Opcode == ISD::SDIVREM;
1455      if (!isSigned)
1456        switch (NVT.getSimpleVT()) {
1457        default: assert(0 && "Unsupported VT!");
1458        case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
1459        case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
1460        case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
1461        case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
1462        }
1463      else
1464        switch (NVT.getSimpleVT()) {
1465        default: assert(0 && "Unsupported VT!");
1466        case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
1467        case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
1468        case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
1469        case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
1470        }
1471
1472      unsigned LoReg, HiReg;
1473      unsigned ClrOpcode, SExtOpcode;
1474      switch (NVT.getSimpleVT()) {
1475      default: assert(0 && "Unsupported VT!");
1476      case MVT::i8:
1477        LoReg = X86::AL;  HiReg = X86::AH;
1478        ClrOpcode  = 0;
1479        SExtOpcode = X86::CBW;
1480        break;
1481      case MVT::i16:
1482        LoReg = X86::AX;  HiReg = X86::DX;
1483        ClrOpcode  = X86::MOV16r0;
1484        SExtOpcode = X86::CWD;
1485        break;
1486      case MVT::i32:
1487        LoReg = X86::EAX; HiReg = X86::EDX;
1488        ClrOpcode  = X86::MOV32r0;
1489        SExtOpcode = X86::CDQ;
1490        break;
1491      case MVT::i64:
1492        LoReg = X86::RAX; HiReg = X86::RDX;
1493        ClrOpcode  = X86::MOV64r0;
1494        SExtOpcode = X86::CQO;
1495        break;
1496      }
1497
1498      SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1499      bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1500      bool signBitIsZero = CurDAG->SignBitIsZero(N0);
1501
1502      SDValue InFlag;
1503      if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
1504        // Special case for div8, just use a move with zero extension to AX to
1505        // clear the upper 8 bits (AH).
1506        SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
1507        if (TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
1508          SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
1509          Move =
1510            SDValue(CurDAG->getTargetNode(X86::MOVZX16rm8, dl, MVT::i16,
1511                                          MVT::Other, Ops,
1512                                          array_lengthof(Ops)), 0);
1513          Chain = Move.getValue(1);
1514          ReplaceUses(N0.getValue(1), Chain);
1515        } else {
1516          Move =
1517            SDValue(CurDAG->getTargetNode(X86::MOVZX16rr8, dl, MVT::i16, N0),0);
1518          Chain = CurDAG->getEntryNode();
1519        }
1520        Chain  = CurDAG->getCopyToReg(Chain, dl, X86::AX, Move, SDValue());
1521        InFlag = Chain.getValue(1);
1522      } else {
1523        InFlag =
1524          CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
1525                               LoReg, N0, SDValue()).getValue(1);
1526        if (isSigned && !signBitIsZero) {
1527          // Sign extend the low part into the high part.
1528          InFlag =
1529            SDValue(CurDAG->getTargetNode(SExtOpcode, dl, MVT::Flag, InFlag),0);
1530        } else {
1531          // Zero out the high part, effectively zero extending the input.
1532          SDValue ClrNode = SDValue(CurDAG->getTargetNode(ClrOpcode, dl, NVT),
1533                                    0);
1534          InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, HiReg,
1535                                        ClrNode, InFlag).getValue(1);
1536        }
1537      }
1538
1539      if (foldedLoad) {
1540        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
1541                          InFlag };
1542        SDNode *CNode =
1543          CurDAG->getTargetNode(MOpc, dl, MVT::Other, MVT::Flag, Ops,
1544                                array_lengthof(Ops));
1545        InFlag = SDValue(CNode, 1);
1546        // Update the chain.
1547        ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1548      } else {
1549        InFlag =
1550          SDValue(CurDAG->getTargetNode(Opc, dl, MVT::Flag, N1, InFlag), 0);
1551      }
1552
1553      // Copy the division (low) result, if it is needed.
1554      if (!N.getValue(0).use_empty()) {
1555        SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1556                                                  LoReg, NVT, InFlag);
1557        InFlag = Result.getValue(2);
1558        ReplaceUses(N.getValue(0), Result);
1559#ifndef NDEBUG
1560        DOUT << std::string(Indent-2, ' ') << "=> ";
1561        DEBUG(Result.getNode()->dump(CurDAG));
1562        DOUT << "\n";
1563#endif
1564      }
1565      // Copy the remainder (high) result, if it is needed.
1566      if (!N.getValue(1).use_empty()) {
1567        SDValue Result;
1568        if (HiReg == X86::AH && Subtarget->is64Bit()) {
1569          // Prevent use of AH in a REX instruction by referencing AX instead.
1570          // Shift it down 8 bits.
1571          Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1572                                          X86::AX, MVT::i16, InFlag);
1573          InFlag = Result.getValue(2);
1574          Result = SDValue(CurDAG->getTargetNode(X86::SHR16ri, dl, MVT::i16,
1575                                        Result,
1576                                        CurDAG->getTargetConstant(8, MVT::i8)),
1577                           0);
1578          // Then truncate it down to i8.
1579          SDValue SRIdx = CurDAG->getTargetConstant(1, MVT::i32); // SubRegSet 1
1580          Result = SDValue(CurDAG->getTargetNode(X86::EXTRACT_SUBREG, dl,
1581                                                   MVT::i8, Result, SRIdx), 0);
1582        } else {
1583          Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1584                                          HiReg, NVT, InFlag);
1585          InFlag = Result.getValue(2);
1586        }
1587        ReplaceUses(N.getValue(1), Result);
1588#ifndef NDEBUG
1589        DOUT << std::string(Indent-2, ' ') << "=> ";
1590        DEBUG(Result.getNode()->dump(CurDAG));
1591        DOUT << "\n";
1592#endif
1593      }
1594
1595#ifndef NDEBUG
1596      Indent -= 2;
1597#endif
1598
1599      return NULL;
1600    }
1601
1602    case ISD::SIGN_EXTEND_INREG: {
1603      MVT SVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
1604      if (SVT == MVT::i8 && !Subtarget->is64Bit()) {
1605        SDValue N0 = Node->getOperand(0);
1606
1607        SDValue TruncOp = SDValue(getTruncateTo8Bit(N0), 0);
1608        unsigned Opc = 0;
1609        switch (NVT.getSimpleVT()) {
1610        default: assert(0 && "Unknown sign_extend_inreg!");
1611        case MVT::i16:
1612          Opc = X86::MOVSX16rr8;
1613          break;
1614        case MVT::i32:
1615          Opc = X86::MOVSX32rr8;
1616          break;
1617        }
1618
1619        SDNode *ResNode = CurDAG->getTargetNode(Opc, dl, NVT, TruncOp);
1620
1621#ifndef NDEBUG
1622        DOUT << std::string(Indent-2, ' ') << "=> ";
1623        DEBUG(TruncOp.getNode()->dump(CurDAG));
1624        DOUT << "\n";
1625        DOUT << std::string(Indent-2, ' ') << "=> ";
1626        DEBUG(ResNode->dump(CurDAG));
1627        DOUT << "\n";
1628        Indent -= 2;
1629#endif
1630        return ResNode;
1631      }
1632      break;
1633    }
1634
1635    case ISD::TRUNCATE: {
1636      if (NVT == MVT::i8 && !Subtarget->is64Bit()) {
1637        SDValue Input = Node->getOperand(0);
1638        SDNode *ResNode = getTruncateTo8Bit(Input);
1639
1640#ifndef NDEBUG
1641        DOUT << std::string(Indent-2, ' ') << "=> ";
1642        DEBUG(ResNode->dump(CurDAG));
1643        DOUT << "\n";
1644        Indent -= 2;
1645#endif
1646        return ResNode;
1647      }
1648      break;
1649    }
1650
1651    case ISD::DECLARE: {
1652      // Handle DECLARE nodes here because the second operand may have been
1653      // wrapped in X86ISD::Wrapper.
1654      SDValue Chain = Node->getOperand(0);
1655      SDValue N1 = Node->getOperand(1);
1656      SDValue N2 = Node->getOperand(2);
1657      FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N1);
1658
1659      // FIXME: We need to handle this for VLAs.
1660      if (!FINode) {
1661        ReplaceUses(N.getValue(0), Chain);
1662        return NULL;
1663      }
1664
1665      if (N2.getOpcode() == ISD::ADD &&
1666          N2.getOperand(0).getOpcode() == X86ISD::GlobalBaseReg)
1667        N2 = N2.getOperand(1);
1668
1669      // If N2 is not Wrapper(decriptor) then the llvm.declare is mangled
1670      // somehow, just ignore it.
1671      if (N2.getOpcode() != X86ISD::Wrapper) {
1672        ReplaceUses(N.getValue(0), Chain);
1673        return NULL;
1674      }
1675      GlobalAddressSDNode *GVNode =
1676        dyn_cast<GlobalAddressSDNode>(N2.getOperand(0));
1677      if (GVNode == 0) {
1678        ReplaceUses(N.getValue(0), Chain);
1679        return NULL;
1680      }
1681      SDValue Tmp1 = CurDAG->getTargetFrameIndex(FINode->getIndex(),
1682                                                 TLI.getPointerTy());
1683      SDValue Tmp2 = CurDAG->getTargetGlobalAddress(GVNode->getGlobal(),
1684                                                    TLI.getPointerTy());
1685      SDValue Ops[] = { Tmp1, Tmp2, Chain };
1686      return CurDAG->getTargetNode(TargetInstrInfo::DECLARE, dl,
1687                                   MVT::Other, Ops,
1688                                   array_lengthof(Ops));
1689    }
1690  }
1691
1692  SDNode *ResNode = SelectCode(N);
1693
1694#ifndef NDEBUG
1695  DOUT << std::string(Indent-2, ' ') << "=> ";
1696  if (ResNode == NULL || ResNode == N.getNode())
1697    DEBUG(N.getNode()->dump(CurDAG));
1698  else
1699    DEBUG(ResNode->dump(CurDAG));
1700  DOUT << "\n";
1701  Indent -= 2;
1702#endif
1703
1704  return ResNode;
1705}
1706
1707bool X86DAGToDAGISel::
1708SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
1709                             std::vector<SDValue> &OutOps) {
1710  SDValue Op0, Op1, Op2, Op3, Op4;
1711  switch (ConstraintCode) {
1712  case 'o':   // offsetable        ??
1713  case 'v':   // not offsetable    ??
1714  default: return true;
1715  case 'm':   // memory
1716    if (!SelectAddr(Op, Op, Op0, Op1, Op2, Op3, Op4))
1717      return true;
1718    break;
1719  }
1720
1721  OutOps.push_back(Op0);
1722  OutOps.push_back(Op1);
1723  OutOps.push_back(Op2);
1724  OutOps.push_back(Op3);
1725  OutOps.push_back(Op4);
1726  return false;
1727}
1728
1729/// createX86ISelDag - This pass converts a legalized DAG into a
1730/// X86-specific DAG, ready for instruction scheduling.
1731///
1732FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM, bool Fast) {
1733  return new X86DAGToDAGISel(TM, Fast);
1734}
1735