X86ISelDAGToDAG.cpp revision 37ed9c199ca639565f6ce88105f9e39e898d82d0
1//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a DAG pattern matching instruction selector for X86,
11// converting from a legalized dag to a X86 dag.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86MachineFunctionInfo.h"
18#include "X86RegisterInfo.h"
19#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/SelectionDAGISel.h"
27#include "llvm/IR/Function.h"
28#include "llvm/IR/Instructions.h"
29#include "llvm/IR/Intrinsics.h"
30#include "llvm/IR/Type.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetMachine.h"
36#include "llvm/Target/TargetOptions.h"
37#include <stdint.h>
38using namespace llvm;
39
40#define DEBUG_TYPE "x86-isel"
41
42STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
43
44//===----------------------------------------------------------------------===//
45//                      Pattern Matcher Implementation
46//===----------------------------------------------------------------------===//
47
48namespace {
49  /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
50  /// SDValue's instead of register numbers for the leaves of the matched
51  /// tree.
52  struct X86ISelAddressMode {
53    enum {
54      RegBase,
55      FrameIndexBase
56    } BaseType;
57
58    // This is really a union, discriminated by BaseType!
59    SDValue Base_Reg;
60    int Base_FrameIndex;
61
62    unsigned Scale;
63    SDValue IndexReg;
64    int32_t Disp;
65    SDValue Segment;
66    const GlobalValue *GV;
67    const Constant *CP;
68    const BlockAddress *BlockAddr;
69    const char *ES;
70    int JT;
71    unsigned Align;    // CP alignment.
72    unsigned char SymbolFlags;  // X86II::MO_*
73
74    X86ISelAddressMode()
75      : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
76        Segment(), GV(nullptr), CP(nullptr), BlockAddr(nullptr), ES(nullptr),
77        JT(-1), Align(0), SymbolFlags(X86II::MO_NO_FLAG) {
78    }
79
80    bool hasSymbolicDisplacement() const {
81      return GV != nullptr || CP != nullptr || ES != nullptr ||
82             JT != -1 || BlockAddr != nullptr;
83    }
84
85    bool hasBaseOrIndexReg() const {
86      return BaseType == FrameIndexBase ||
87             IndexReg.getNode() != nullptr || Base_Reg.getNode() != nullptr;
88    }
89
90    /// isRIPRelative - Return true if this addressing mode is already RIP
91    /// relative.
92    bool isRIPRelative() const {
93      if (BaseType != RegBase) return false;
94      if (RegisterSDNode *RegNode =
95            dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
96        return RegNode->getReg() == X86::RIP;
97      return false;
98    }
99
100    void setBaseReg(SDValue Reg) {
101      BaseType = RegBase;
102      Base_Reg = Reg;
103    }
104
105#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
106    void dump() {
107      dbgs() << "X86ISelAddressMode " << this << '\n';
108      dbgs() << "Base_Reg ";
109      if (Base_Reg.getNode())
110        Base_Reg.getNode()->dump();
111      else
112        dbgs() << "nul";
113      dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n'
114             << " Scale" << Scale << '\n'
115             << "IndexReg ";
116      if (IndexReg.getNode())
117        IndexReg.getNode()->dump();
118      else
119        dbgs() << "nul";
120      dbgs() << " Disp " << Disp << '\n'
121             << "GV ";
122      if (GV)
123        GV->dump();
124      else
125        dbgs() << "nul";
126      dbgs() << " CP ";
127      if (CP)
128        CP->dump();
129      else
130        dbgs() << "nul";
131      dbgs() << '\n'
132             << "ES ";
133      if (ES)
134        dbgs() << ES;
135      else
136        dbgs() << "nul";
137      dbgs() << " JT" << JT << " Align" << Align << '\n';
138    }
139#endif
140  };
141}
142
143namespace {
144  //===--------------------------------------------------------------------===//
145  /// ISel - X86 specific code to select X86 machine instructions for
146  /// SelectionDAG operations.
147  ///
148  class X86DAGToDAGISel final : public SelectionDAGISel {
149    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
150    /// make the right decision when generating code for different targets.
151    const X86Subtarget *Subtarget;
152
153    /// OptForSize - If true, selector should try to optimize for code size
154    /// instead of performance.
155    bool OptForSize;
156
157  public:
158    explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
159      : SelectionDAGISel(tm, OptLevel),
160        Subtarget(&tm.getSubtarget<X86Subtarget>()),
161        OptForSize(false) {}
162
163    const char *getPassName() const override {
164      return "X86 DAG->DAG Instruction Selection";
165    }
166
167    bool runOnMachineFunction(MachineFunction &MF) override {
168      // Reset the subtarget each time through.
169      Subtarget = &TM.getSubtarget<X86Subtarget>();
170      SelectionDAGISel::runOnMachineFunction(MF);
171      return true;
172    }
173
174    void EmitFunctionEntryCode() override;
175
176    bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override;
177
178    void PreprocessISelDAG() override;
179
180    inline bool immSext8(SDNode *N) const {
181      return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue());
182    }
183
184    // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
185    // sign extended field.
186    inline bool i64immSExt32(SDNode *N) const {
187      uint64_t v = cast<ConstantSDNode>(N)->getZExtValue();
188      return (int64_t)v == (int32_t)v;
189    }
190
191// Include the pieces autogenerated from the target description.
192#include "X86GenDAGISel.inc"
193
194  private:
195    SDNode *Select(SDNode *N) override;
196    SDNode *SelectGather(SDNode *N, unsigned Opc);
197    SDNode *SelectAtomicLoadArith(SDNode *Node, MVT NVT);
198
199    bool FoldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
200    bool MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM);
201    bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
202    bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
203    bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
204                                 unsigned Depth);
205    bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
206    bool SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
207                    SDValue &Scale, SDValue &Index, SDValue &Disp,
208                    SDValue &Segment);
209    bool SelectMOV64Imm32(SDValue N, SDValue &Imm);
210    bool SelectLEAAddr(SDValue N, SDValue &Base,
211                       SDValue &Scale, SDValue &Index, SDValue &Disp,
212                       SDValue &Segment);
213    bool SelectLEA64_32Addr(SDValue N, SDValue &Base,
214                            SDValue &Scale, SDValue &Index, SDValue &Disp,
215                            SDValue &Segment);
216    bool SelectTLSADDRAddr(SDValue N, SDValue &Base,
217                           SDValue &Scale, SDValue &Index, SDValue &Disp,
218                           SDValue &Segment);
219    bool SelectScalarSSELoad(SDNode *Root, SDValue N,
220                             SDValue &Base, SDValue &Scale,
221                             SDValue &Index, SDValue &Disp,
222                             SDValue &Segment,
223                             SDValue &NodeWithChain);
224
225    bool TryFoldLoad(SDNode *P, SDValue N,
226                     SDValue &Base, SDValue &Scale,
227                     SDValue &Index, SDValue &Disp,
228                     SDValue &Segment);
229
230    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
231    /// inline asm expressions.
232    bool SelectInlineAsmMemoryOperand(const SDValue &Op,
233                                      char ConstraintCode,
234                                      std::vector<SDValue> &OutOps) override;
235
236    void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
237
238    inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
239                                   SDValue &Scale, SDValue &Index,
240                                   SDValue &Disp, SDValue &Segment) {
241      Base = (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
242                 ? CurDAG->getTargetFrameIndex(AM.Base_FrameIndex,
243                                               TLI->getPointerTy())
244                 : AM.Base_Reg;
245      Scale = getI8Imm(AM.Scale);
246      Index = AM.IndexReg;
247      // These are 32-bit even in 64-bit mode since RIP relative offset
248      // is 32-bit.
249      if (AM.GV)
250        Disp = CurDAG->getTargetGlobalAddress(AM.GV, SDLoc(),
251                                              MVT::i32, AM.Disp,
252                                              AM.SymbolFlags);
253      else if (AM.CP)
254        Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
255                                             AM.Align, AM.Disp, AM.SymbolFlags);
256      else if (AM.ES) {
257        assert(!AM.Disp && "Non-zero displacement is ignored with ES.");
258        Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
259      } else if (AM.JT != -1) {
260        assert(!AM.Disp && "Non-zero displacement is ignored with JT.");
261        Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
262      } else if (AM.BlockAddr)
263        Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp,
264                                             AM.SymbolFlags);
265      else
266        Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
267
268      if (AM.Segment.getNode())
269        Segment = AM.Segment;
270      else
271        Segment = CurDAG->getRegister(0, MVT::i32);
272    }
273
274    /// getI8Imm - Return a target constant with the specified value, of type
275    /// i8.
276    inline SDValue getI8Imm(unsigned Imm) {
277      return CurDAG->getTargetConstant(Imm, MVT::i8);
278    }
279
280    /// getI32Imm - Return a target constant with the specified value, of type
281    /// i32.
282    inline SDValue getI32Imm(unsigned Imm) {
283      return CurDAG->getTargetConstant(Imm, MVT::i32);
284    }
285
286    /// getGlobalBaseReg - Return an SDNode that returns the value of
287    /// the global base register. Output instructions required to
288    /// initialize the global base register, if necessary.
289    ///
290    SDNode *getGlobalBaseReg();
291
292    /// getTargetMachine - Return a reference to the TargetMachine, casted
293    /// to the target-specific type.
294    const X86TargetMachine &getTargetMachine() const {
295      return static_cast<const X86TargetMachine &>(TM);
296    }
297
298    /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
299    /// to the target-specific type.
300    const X86InstrInfo *getInstrInfo() const {
301      return getTargetMachine().getSubtargetImpl()->getInstrInfo();
302    }
303
304    /// \brief Address-mode matching performs shift-of-and to and-of-shift
305    /// reassociation in order to expose more scaled addressing
306    /// opportunities.
307    bool ComplexPatternFuncMutatesDAG() const override {
308      return true;
309    }
310  };
311}
312
313
314bool
315X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
316  if (OptLevel == CodeGenOpt::None) return false;
317
318  if (!N.hasOneUse())
319    return false;
320
321  if (N.getOpcode() != ISD::LOAD)
322    return true;
323
324  // If N is a load, do additional profitability checks.
325  if (U == Root) {
326    switch (U->getOpcode()) {
327    default: break;
328    case X86ISD::ADD:
329    case X86ISD::SUB:
330    case X86ISD::AND:
331    case X86ISD::XOR:
332    case X86ISD::OR:
333    case ISD::ADD:
334    case ISD::ADDC:
335    case ISD::ADDE:
336    case ISD::AND:
337    case ISD::OR:
338    case ISD::XOR: {
339      SDValue Op1 = U->getOperand(1);
340
341      // If the other operand is a 8-bit immediate we should fold the immediate
342      // instead. This reduces code size.
343      // e.g.
344      // movl 4(%esp), %eax
345      // addl $4, %eax
346      // vs.
347      // movl $4, %eax
348      // addl 4(%esp), %eax
349      // The former is 2 bytes shorter. In case where the increment is 1, then
350      // the saving can be 4 bytes (by using incl %eax).
351      if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
352        if (Imm->getAPIntValue().isSignedIntN(8))
353          return false;
354
355      // If the other operand is a TLS address, we should fold it instead.
356      // This produces
357      // movl    %gs:0, %eax
358      // leal    i@NTPOFF(%eax), %eax
359      // instead of
360      // movl    $i@NTPOFF, %eax
361      // addl    %gs:0, %eax
362      // if the block also has an access to a second TLS address this will save
363      // a load.
364      // FIXME: This is probably also true for non-TLS addresses.
365      if (Op1.getOpcode() == X86ISD::Wrapper) {
366        SDValue Val = Op1.getOperand(0);
367        if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
368          return false;
369      }
370    }
371    }
372  }
373
374  return true;
375}
376
377/// MoveBelowCallOrigChain - Replace the original chain operand of the call with
378/// load's chain operand and move load below the call's chain operand.
379static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
380                               SDValue Call, SDValue OrigChain) {
381  SmallVector<SDValue, 8> Ops;
382  SDValue Chain = OrigChain.getOperand(0);
383  if (Chain.getNode() == Load.getNode())
384    Ops.push_back(Load.getOperand(0));
385  else {
386    assert(Chain.getOpcode() == ISD::TokenFactor &&
387           "Unexpected chain operand");
388    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
389      if (Chain.getOperand(i).getNode() == Load.getNode())
390        Ops.push_back(Load.getOperand(0));
391      else
392        Ops.push_back(Chain.getOperand(i));
393    SDValue NewChain =
394      CurDAG->getNode(ISD::TokenFactor, SDLoc(Load), MVT::Other, Ops);
395    Ops.clear();
396    Ops.push_back(NewChain);
397  }
398  for (unsigned i = 1, e = OrigChain.getNumOperands(); i != e; ++i)
399    Ops.push_back(OrigChain.getOperand(i));
400  CurDAG->UpdateNodeOperands(OrigChain.getNode(), Ops);
401  CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
402                             Load.getOperand(1), Load.getOperand(2));
403
404  unsigned NumOps = Call.getNode()->getNumOperands();
405  Ops.clear();
406  Ops.push_back(SDValue(Load.getNode(), 1));
407  for (unsigned i = 1, e = NumOps; i != e; ++i)
408    Ops.push_back(Call.getOperand(i));
409  CurDAG->UpdateNodeOperands(Call.getNode(), Ops);
410}
411
412/// isCalleeLoad - Return true if call address is a load and it can be
413/// moved below CALLSEQ_START and the chains leading up to the call.
414/// Return the CALLSEQ_START by reference as a second output.
415/// In the case of a tail call, there isn't a callseq node between the call
416/// chain and the load.
417static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
418  // The transformation is somewhat dangerous if the call's chain was glued to
419  // the call. After MoveBelowOrigChain the load is moved between the call and
420  // the chain, this can create a cycle if the load is not folded. So it is
421  // *really* important that we are sure the load will be folded.
422  if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
423    return false;
424  LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
425  if (!LD ||
426      LD->isVolatile() ||
427      LD->getAddressingMode() != ISD::UNINDEXED ||
428      LD->getExtensionType() != ISD::NON_EXTLOAD)
429    return false;
430
431  // Now let's find the callseq_start.
432  while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
433    if (!Chain.hasOneUse())
434      return false;
435    Chain = Chain.getOperand(0);
436  }
437
438  if (!Chain.getNumOperands())
439    return false;
440  // Since we are not checking for AA here, conservatively abort if the chain
441  // writes to memory. It's not safe to move the callee (a load) across a store.
442  if (isa<MemSDNode>(Chain.getNode()) &&
443      cast<MemSDNode>(Chain.getNode())->writeMem())
444    return false;
445  if (Chain.getOperand(0).getNode() == Callee.getNode())
446    return true;
447  if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
448      Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
449      Callee.getValue(1).hasOneUse())
450    return true;
451  return false;
452}
453
454void X86DAGToDAGISel::PreprocessISelDAG() {
455  // OptForSize is used in pattern predicates that isel is matching.
456  OptForSize = MF->getFunction()->getAttributes().
457    hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
458
459  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
460       E = CurDAG->allnodes_end(); I != E; ) {
461    SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.
462
463    if (OptLevel != CodeGenOpt::None &&
464        // Only does this when target favors doesn't favor register indirect
465        // call.
466        ((N->getOpcode() == X86ISD::CALL && !Subtarget->callRegIndirect()) ||
467         (N->getOpcode() == X86ISD::TC_RETURN &&
468          // Only does this if load can be folded into TC_RETURN.
469          (Subtarget->is64Bit() ||
470           getTargetMachine().getRelocationModel() != Reloc::PIC_)))) {
471      /// Also try moving call address load from outside callseq_start to just
472      /// before the call to allow it to be folded.
473      ///
474      ///     [Load chain]
475      ///         ^
476      ///         |
477      ///       [Load]
478      ///       ^    ^
479      ///       |    |
480      ///      /      \--
481      ///     /          |
482      ///[CALLSEQ_START] |
483      ///     ^          |
484      ///     |          |
485      /// [LOAD/C2Reg]   |
486      ///     |          |
487      ///      \        /
488      ///       \      /
489      ///       [CALL]
490      bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
491      SDValue Chain = N->getOperand(0);
492      SDValue Load  = N->getOperand(1);
493      if (!isCalleeLoad(Load, Chain, HasCallSeq))
494        continue;
495      MoveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
496      ++NumLoadMoved;
497      continue;
498    }
499
500    // Lower fpround and fpextend nodes that target the FP stack to be store and
501    // load to the stack.  This is a gross hack.  We would like to simply mark
502    // these as being illegal, but when we do that, legalize produces these when
503    // it expands calls, then expands these in the same legalize pass.  We would
504    // like dag combine to be able to hack on these between the call expansion
505    // and the node legalization.  As such this pass basically does "really
506    // late" legalization of these inline with the X86 isel pass.
507    // FIXME: This should only happen when not compiled with -O0.
508    if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
509      continue;
510
511    MVT SrcVT = N->getOperand(0).getSimpleValueType();
512    MVT DstVT = N->getSimpleValueType(0);
513
514    // If any of the sources are vectors, no fp stack involved.
515    if (SrcVT.isVector() || DstVT.isVector())
516      continue;
517
518    // If the source and destination are SSE registers, then this is a legal
519    // conversion that should not be lowered.
520    const X86TargetLowering *X86Lowering =
521        static_cast<const X86TargetLowering *>(TLI);
522    bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
523    bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
524    if (SrcIsSSE && DstIsSSE)
525      continue;
526
527    if (!SrcIsSSE && !DstIsSSE) {
528      // If this is an FPStack extension, it is a noop.
529      if (N->getOpcode() == ISD::FP_EXTEND)
530        continue;
531      // If this is a value-preserving FPStack truncation, it is a noop.
532      if (N->getConstantOperandVal(1))
533        continue;
534    }
535
536    // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
537    // FPStack has extload and truncstore.  SSE can fold direct loads into other
538    // operations.  Based on this, decide what we want to do.
539    MVT MemVT;
540    if (N->getOpcode() == ISD::FP_ROUND)
541      MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'.
542    else
543      MemVT = SrcIsSSE ? SrcVT : DstVT;
544
545    SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
546    SDLoc dl(N);
547
548    // FIXME: optimize the case where the src/dest is a load or store?
549    SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
550                                          N->getOperand(0),
551                                          MemTmp, MachinePointerInfo(), MemVT,
552                                          false, false, 0);
553    SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
554                                        MachinePointerInfo(),
555                                        MemVT, false, false, false, 0);
556
557    // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
558    // extload we created.  This will cause general havok on the dag because
559    // anything below the conversion could be folded into other existing nodes.
560    // To avoid invalidating 'I', back it up to the convert node.
561    --I;
562    CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
563
564    // Now that we did that, the node is dead.  Increment the iterator to the
565    // next node to process, then delete N.
566    ++I;
567    CurDAG->DeleteNode(N);
568  }
569}
570
571
572/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
573/// the main function.
574void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
575                                             MachineFrameInfo *MFI) {
576  const TargetInstrInfo *TII = TM.getSubtargetImpl()->getInstrInfo();
577  if (Subtarget->isTargetCygMing()) {
578    unsigned CallOp =
579      Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32;
580    BuildMI(BB, DebugLoc(),
581            TII->get(CallOp)).addExternalSymbol("__main");
582  }
583}
584
585void X86DAGToDAGISel::EmitFunctionEntryCode() {
586  // If this is main, emit special code for main.
587  if (const Function *Fn = MF->getFunction())
588    if (Fn->hasExternalLinkage() && Fn->getName() == "main")
589      EmitSpecialCodeForMain(MF->begin(), MF->getFrameInfo());
590}
591
592static bool isDispSafeForFrameIndex(int64_t Val) {
593  // On 64-bit platforms, we can run into an issue where a frame index
594  // includes a displacement that, when added to the explicit displacement,
595  // will overflow the displacement field. Assuming that the frame index
596  // displacement fits into a 31-bit integer  (which is only slightly more
597  // aggressive than the current fundamental assumption that it fits into
598  // a 32-bit integer), a 31-bit disp should always be safe.
599  return isInt<31>(Val);
600}
601
602bool X86DAGToDAGISel::FoldOffsetIntoAddress(uint64_t Offset,
603                                            X86ISelAddressMode &AM) {
604  int64_t Val = AM.Disp + Offset;
605  CodeModel::Model M = TM.getCodeModel();
606  if (Subtarget->is64Bit()) {
607    if (!X86::isOffsetSuitableForCodeModel(Val, M,
608                                           AM.hasSymbolicDisplacement()))
609      return true;
610    // In addition to the checks required for a register base, check that
611    // we do not try to use an unsafe Disp with a frame index.
612    if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
613        !isDispSafeForFrameIndex(Val))
614      return true;
615  }
616  AM.Disp = Val;
617  return false;
618
619}
620
621bool X86DAGToDAGISel::MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){
622  SDValue Address = N->getOperand(1);
623
624  // load gs:0 -> GS segment register.
625  // load fs:0 -> FS segment register.
626  //
627  // This optimization is valid because the GNU TLS model defines that
628  // gs:0 (or fs:0 on X86-64) contains its own address.
629  // For more information see http://people.redhat.com/drepper/tls.pdf
630  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address))
631    if (C->getSExtValue() == 0 && AM.Segment.getNode() == nullptr &&
632        Subtarget->isTargetLinux())
633      switch (N->getPointerInfo().getAddrSpace()) {
634      case 256:
635        AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
636        return false;
637      case 257:
638        AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
639        return false;
640      }
641
642  return true;
643}
644
645/// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
646/// into an addressing mode.  These wrap things that will resolve down into a
647/// symbol reference.  If no match is possible, this returns true, otherwise it
648/// returns false.
649bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
650  // If the addressing mode already has a symbol as the displacement, we can
651  // never match another symbol.
652  if (AM.hasSymbolicDisplacement())
653    return true;
654
655  SDValue N0 = N.getOperand(0);
656  CodeModel::Model M = TM.getCodeModel();
657
658  // Handle X86-64 rip-relative addresses.  We check this before checking direct
659  // folding because RIP is preferable to non-RIP accesses.
660  if (Subtarget->is64Bit() && N.getOpcode() == X86ISD::WrapperRIP &&
661      // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
662      // they cannot be folded into immediate fields.
663      // FIXME: This can be improved for kernel and other models?
664      (M == CodeModel::Small || M == CodeModel::Kernel)) {
665    // Base and index reg must be 0 in order to use %rip as base.
666    if (AM.hasBaseOrIndexReg())
667      return true;
668    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
669      X86ISelAddressMode Backup = AM;
670      AM.GV = G->getGlobal();
671      AM.SymbolFlags = G->getTargetFlags();
672      if (FoldOffsetIntoAddress(G->getOffset(), AM)) {
673        AM = Backup;
674        return true;
675      }
676    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
677      X86ISelAddressMode Backup = AM;
678      AM.CP = CP->getConstVal();
679      AM.Align = CP->getAlignment();
680      AM.SymbolFlags = CP->getTargetFlags();
681      if (FoldOffsetIntoAddress(CP->getOffset(), AM)) {
682        AM = Backup;
683        return true;
684      }
685    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
686      AM.ES = S->getSymbol();
687      AM.SymbolFlags = S->getTargetFlags();
688    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
689      AM.JT = J->getIndex();
690      AM.SymbolFlags = J->getTargetFlags();
691    } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
692      X86ISelAddressMode Backup = AM;
693      AM.BlockAddr = BA->getBlockAddress();
694      AM.SymbolFlags = BA->getTargetFlags();
695      if (FoldOffsetIntoAddress(BA->getOffset(), AM)) {
696        AM = Backup;
697        return true;
698      }
699    } else
700      llvm_unreachable("Unhandled symbol reference node.");
701
702    if (N.getOpcode() == X86ISD::WrapperRIP)
703      AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
704    return false;
705  }
706
707  // Handle the case when globals fit in our immediate field: This is true for
708  // X86-32 always and X86-64 when in -mcmodel=small mode.  In 64-bit
709  // mode, this only applies to a non-RIP-relative computation.
710  if (!Subtarget->is64Bit() ||
711      M == CodeModel::Small || M == CodeModel::Kernel) {
712    assert(N.getOpcode() != X86ISD::WrapperRIP &&
713           "RIP-relative addressing already handled");
714    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
715      AM.GV = G->getGlobal();
716      AM.Disp += G->getOffset();
717      AM.SymbolFlags = G->getTargetFlags();
718    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
719      AM.CP = CP->getConstVal();
720      AM.Align = CP->getAlignment();
721      AM.Disp += CP->getOffset();
722      AM.SymbolFlags = CP->getTargetFlags();
723    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
724      AM.ES = S->getSymbol();
725      AM.SymbolFlags = S->getTargetFlags();
726    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
727      AM.JT = J->getIndex();
728      AM.SymbolFlags = J->getTargetFlags();
729    } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
730      AM.BlockAddr = BA->getBlockAddress();
731      AM.Disp += BA->getOffset();
732      AM.SymbolFlags = BA->getTargetFlags();
733    } else
734      llvm_unreachable("Unhandled symbol reference node.");
735    return false;
736  }
737
738  return true;
739}
740
741/// MatchAddress - Add the specified node to the specified addressing mode,
742/// returning true if it cannot be done.  This just pattern matches for the
743/// addressing mode.
744bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
745  if (MatchAddressRecursively(N, AM, 0))
746    return true;
747
748  // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
749  // a smaller encoding and avoids a scaled-index.
750  if (AM.Scale == 2 &&
751      AM.BaseType == X86ISelAddressMode::RegBase &&
752      AM.Base_Reg.getNode() == nullptr) {
753    AM.Base_Reg = AM.IndexReg;
754    AM.Scale = 1;
755  }
756
757  // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
758  // because it has a smaller encoding.
759  // TODO: Which other code models can use this?
760  if (TM.getCodeModel() == CodeModel::Small &&
761      Subtarget->is64Bit() &&
762      AM.Scale == 1 &&
763      AM.BaseType == X86ISelAddressMode::RegBase &&
764      AM.Base_Reg.getNode() == nullptr &&
765      AM.IndexReg.getNode() == nullptr &&
766      AM.SymbolFlags == X86II::MO_NO_FLAG &&
767      AM.hasSymbolicDisplacement())
768    AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
769
770  return false;
771}
772
773// Insert a node into the DAG at least before the Pos node's position. This
774// will reposition the node as needed, and will assign it a node ID that is <=
775// the Pos node's ID. Note that this does *not* preserve the uniqueness of node
776// IDs! The selection DAG must no longer depend on their uniqueness when this
777// is used.
778static void InsertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) {
779  if (N.getNode()->getNodeId() == -1 ||
780      N.getNode()->getNodeId() > Pos.getNode()->getNodeId()) {
781    DAG.RepositionNode(Pos.getNode(), N.getNode());
782    N.getNode()->setNodeId(Pos.getNode()->getNodeId());
783  }
784}
785
786// Transform "(X >> (8-C1)) & (0xff << C1)" to "((X >> 8) & 0xff) << C1" if
787// safe. This allows us to convert the shift and and into an h-register
788// extract and a scaled index. Returns false if the simplification is
789// performed.
790static bool FoldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N,
791                                      uint64_t Mask,
792                                      SDValue Shift, SDValue X,
793                                      X86ISelAddressMode &AM) {
794  if (Shift.getOpcode() != ISD::SRL ||
795      !isa<ConstantSDNode>(Shift.getOperand(1)) ||
796      !Shift.hasOneUse())
797    return true;
798
799  int ScaleLog = 8 - Shift.getConstantOperandVal(1);
800  if (ScaleLog <= 0 || ScaleLog >= 4 ||
801      Mask != (0xffu << ScaleLog))
802    return true;
803
804  MVT VT = N.getSimpleValueType();
805  SDLoc DL(N);
806  SDValue Eight = DAG.getConstant(8, MVT::i8);
807  SDValue NewMask = DAG.getConstant(0xff, VT);
808  SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight);
809  SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask);
810  SDValue ShlCount = DAG.getConstant(ScaleLog, MVT::i8);
811  SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount);
812
813  // Insert the new nodes into the topological ordering. We must do this in
814  // a valid topological ordering as nothing is going to go back and re-sort
815  // these nodes. We continually insert before 'N' in sequence as this is
816  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
817  // hierarchy left to express.
818  InsertDAGNode(DAG, N, Eight);
819  InsertDAGNode(DAG, N, Srl);
820  InsertDAGNode(DAG, N, NewMask);
821  InsertDAGNode(DAG, N, And);
822  InsertDAGNode(DAG, N, ShlCount);
823  InsertDAGNode(DAG, N, Shl);
824  DAG.ReplaceAllUsesWith(N, Shl);
825  AM.IndexReg = And;
826  AM.Scale = (1 << ScaleLog);
827  return false;
828}
829
830// Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this
831// allows us to fold the shift into this addressing mode. Returns false if the
832// transform succeeded.
833static bool FoldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N,
834                                        uint64_t Mask,
835                                        SDValue Shift, SDValue X,
836                                        X86ISelAddressMode &AM) {
837  if (Shift.getOpcode() != ISD::SHL ||
838      !isa<ConstantSDNode>(Shift.getOperand(1)))
839    return true;
840
841  // Not likely to be profitable if either the AND or SHIFT node has more
842  // than one use (unless all uses are for address computation). Besides,
843  // isel mechanism requires their node ids to be reused.
844  if (!N.hasOneUse() || !Shift.hasOneUse())
845    return true;
846
847  // Verify that the shift amount is something we can fold.
848  unsigned ShiftAmt = Shift.getConstantOperandVal(1);
849  if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3)
850    return true;
851
852  MVT VT = N.getSimpleValueType();
853  SDLoc DL(N);
854  SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, VT);
855  SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask);
856  SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1));
857
858  // Insert the new nodes into the topological ordering. We must do this in
859  // a valid topological ordering as nothing is going to go back and re-sort
860  // these nodes. We continually insert before 'N' in sequence as this is
861  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
862  // hierarchy left to express.
863  InsertDAGNode(DAG, N, NewMask);
864  InsertDAGNode(DAG, N, NewAnd);
865  InsertDAGNode(DAG, N, NewShift);
866  DAG.ReplaceAllUsesWith(N, NewShift);
867
868  AM.Scale = 1 << ShiftAmt;
869  AM.IndexReg = NewAnd;
870  return false;
871}
872
873// Implement some heroics to detect shifts of masked values where the mask can
874// be replaced by extending the shift and undoing that in the addressing mode
875// scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and
876// (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in
877// the addressing mode. This results in code such as:
878//
879//   int f(short *y, int *lookup_table) {
880//     ...
881//     return *y + lookup_table[*y >> 11];
882//   }
883//
884// Turning into:
885//   movzwl (%rdi), %eax
886//   movl %eax, %ecx
887//   shrl $11, %ecx
888//   addl (%rsi,%rcx,4), %eax
889//
890// Instead of:
891//   movzwl (%rdi), %eax
892//   movl %eax, %ecx
893//   shrl $9, %ecx
894//   andl $124, %rcx
895//   addl (%rsi,%rcx), %eax
896//
897// Note that this function assumes the mask is provided as a mask *after* the
898// value is shifted. The input chain may or may not match that, but computing
899// such a mask is trivial.
900static bool FoldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N,
901                                    uint64_t Mask,
902                                    SDValue Shift, SDValue X,
903                                    X86ISelAddressMode &AM) {
904  if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() ||
905      !isa<ConstantSDNode>(Shift.getOperand(1)))
906    return true;
907
908  unsigned ShiftAmt = Shift.getConstantOperandVal(1);
909  unsigned MaskLZ = countLeadingZeros(Mask);
910  unsigned MaskTZ = countTrailingZeros(Mask);
911
912  // The amount of shift we're trying to fit into the addressing mode is taken
913  // from the trailing zeros of the mask.
914  unsigned AMShiftAmt = MaskTZ;
915
916  // There is nothing we can do here unless the mask is removing some bits.
917  // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
918  if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true;
919
920  // We also need to ensure that mask is a continuous run of bits.
921  if (CountTrailingOnes_64(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true;
922
923  // Scale the leading zero count down based on the actual size of the value.
924  // Also scale it down based on the size of the shift.
925  MaskLZ -= (64 - X.getSimpleValueType().getSizeInBits()) + ShiftAmt;
926
927  // The final check is to ensure that any masked out high bits of X are
928  // already known to be zero. Otherwise, the mask has a semantic impact
929  // other than masking out a couple of low bits. Unfortunately, because of
930  // the mask, zero extensions will be removed from operands in some cases.
931  // This code works extra hard to look through extensions because we can
932  // replace them with zero extensions cheaply if necessary.
933  bool ReplacingAnyExtend = false;
934  if (X.getOpcode() == ISD::ANY_EXTEND) {
935    unsigned ExtendBits = X.getSimpleValueType().getSizeInBits() -
936                          X.getOperand(0).getSimpleValueType().getSizeInBits();
937    // Assume that we'll replace the any-extend with a zero-extend, and
938    // narrow the search to the extended value.
939    X = X.getOperand(0);
940    MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits;
941    ReplacingAnyExtend = true;
942  }
943  APInt MaskedHighBits =
944    APInt::getHighBitsSet(X.getSimpleValueType().getSizeInBits(), MaskLZ);
945  APInt KnownZero, KnownOne;
946  DAG.computeKnownBits(X, KnownZero, KnownOne);
947  if (MaskedHighBits != KnownZero) return true;
948
949  // We've identified a pattern that can be transformed into a single shift
950  // and an addressing mode. Make it so.
951  MVT VT = N.getSimpleValueType();
952  if (ReplacingAnyExtend) {
953    assert(X.getValueType() != VT);
954    // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND.
955    SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(X), VT, X);
956    InsertDAGNode(DAG, N, NewX);
957    X = NewX;
958  }
959  SDLoc DL(N);
960  SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, MVT::i8);
961  SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
962  SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, MVT::i8);
963  SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt);
964
965  // Insert the new nodes into the topological ordering. We must do this in
966  // a valid topological ordering as nothing is going to go back and re-sort
967  // these nodes. We continually insert before 'N' in sequence as this is
968  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
969  // hierarchy left to express.
970  InsertDAGNode(DAG, N, NewSRLAmt);
971  InsertDAGNode(DAG, N, NewSRL);
972  InsertDAGNode(DAG, N, NewSHLAmt);
973  InsertDAGNode(DAG, N, NewSHL);
974  DAG.ReplaceAllUsesWith(N, NewSHL);
975
976  AM.Scale = 1 << AMShiftAmt;
977  AM.IndexReg = NewSRL;
978  return false;
979}
980
981bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
982                                              unsigned Depth) {
983  SDLoc dl(N);
984  DEBUG({
985      dbgs() << "MatchAddress: ";
986      AM.dump();
987    });
988  // Limit recursion.
989  if (Depth > 5)
990    return MatchAddressBase(N, AM);
991
992  // If this is already a %rip relative address, we can only merge immediates
993  // into it.  Instead of handling this in every case, we handle it here.
994  // RIP relative addressing: %rip + 32-bit displacement!
995  if (AM.isRIPRelative()) {
996    // FIXME: JumpTable and ExternalSymbol address currently don't like
997    // displacements.  It isn't very important, but this should be fixed for
998    // consistency.
999    if (!AM.ES && AM.JT != -1) return true;
1000
1001    if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N))
1002      if (!FoldOffsetIntoAddress(Cst->getSExtValue(), AM))
1003        return false;
1004    return true;
1005  }
1006
1007  switch (N.getOpcode()) {
1008  default: break;
1009  case ISD::Constant: {
1010    uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
1011    if (!FoldOffsetIntoAddress(Val, AM))
1012      return false;
1013    break;
1014  }
1015
1016  case X86ISD::Wrapper:
1017  case X86ISD::WrapperRIP:
1018    if (!MatchWrapper(N, AM))
1019      return false;
1020    break;
1021
1022  case ISD::LOAD:
1023    if (!MatchLoadInAddress(cast<LoadSDNode>(N), AM))
1024      return false;
1025    break;
1026
1027  case ISD::FrameIndex:
1028    if (AM.BaseType == X86ISelAddressMode::RegBase &&
1029        AM.Base_Reg.getNode() == nullptr &&
1030        (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
1031      AM.BaseType = X86ISelAddressMode::FrameIndexBase;
1032      AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
1033      return false;
1034    }
1035    break;
1036
1037  case ISD::SHL:
1038    if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
1039      break;
1040
1041    if (ConstantSDNode
1042          *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
1043      unsigned Val = CN->getZExtValue();
1044      // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
1045      // that the base operand remains free for further matching. If
1046      // the base doesn't end up getting used, a post-processing step
1047      // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
1048      if (Val == 1 || Val == 2 || Val == 3) {
1049        AM.Scale = 1 << Val;
1050        SDValue ShVal = N.getNode()->getOperand(0);
1051
1052        // Okay, we know that we have a scale by now.  However, if the scaled
1053        // value is an add of something and a constant, we can fold the
1054        // constant into the disp field here.
1055        if (CurDAG->isBaseWithConstantOffset(ShVal)) {
1056          AM.IndexReg = ShVal.getNode()->getOperand(0);
1057          ConstantSDNode *AddVal =
1058            cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
1059          uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val;
1060          if (!FoldOffsetIntoAddress(Disp, AM))
1061            return false;
1062        }
1063
1064        AM.IndexReg = ShVal;
1065        return false;
1066      }
1067    }
1068    break;
1069
1070  case ISD::SRL: {
1071    // Scale must not be used already.
1072    if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
1073
1074    SDValue And = N.getOperand(0);
1075    if (And.getOpcode() != ISD::AND) break;
1076    SDValue X = And.getOperand(0);
1077
1078    // We only handle up to 64-bit values here as those are what matter for
1079    // addressing mode optimizations.
1080    if (X.getSimpleValueType().getSizeInBits() > 64) break;
1081
1082    // The mask used for the transform is expected to be post-shift, but we
1083    // found the shift first so just apply the shift to the mask before passing
1084    // it down.
1085    if (!isa<ConstantSDNode>(N.getOperand(1)) ||
1086        !isa<ConstantSDNode>(And.getOperand(1)))
1087      break;
1088    uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1);
1089
1090    // Try to fold the mask and shift into the scale, and return false if we
1091    // succeed.
1092    if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM))
1093      return false;
1094    break;
1095  }
1096
1097  case ISD::SMUL_LOHI:
1098  case ISD::UMUL_LOHI:
1099    // A mul_lohi where we need the low part can be folded as a plain multiply.
1100    if (N.getResNo() != 0) break;
1101    // FALL THROUGH
1102  case ISD::MUL:
1103  case X86ISD::MUL_IMM:
1104    // X*[3,5,9] -> X+X*[2,4,8]
1105    if (AM.BaseType == X86ISelAddressMode::RegBase &&
1106        AM.Base_Reg.getNode() == nullptr &&
1107        AM.IndexReg.getNode() == nullptr) {
1108      if (ConstantSDNode
1109            *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
1110        if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
1111            CN->getZExtValue() == 9) {
1112          AM.Scale = unsigned(CN->getZExtValue())-1;
1113
1114          SDValue MulVal = N.getNode()->getOperand(0);
1115          SDValue Reg;
1116
1117          // Okay, we know that we have a scale by now.  However, if the scaled
1118          // value is an add of something and a constant, we can fold the
1119          // constant into the disp field here.
1120          if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
1121              isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
1122            Reg = MulVal.getNode()->getOperand(0);
1123            ConstantSDNode *AddVal =
1124              cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
1125            uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
1126            if (FoldOffsetIntoAddress(Disp, AM))
1127              Reg = N.getNode()->getOperand(0);
1128          } else {
1129            Reg = N.getNode()->getOperand(0);
1130          }
1131
1132          AM.IndexReg = AM.Base_Reg = Reg;
1133          return false;
1134        }
1135    }
1136    break;
1137
1138  case ISD::SUB: {
1139    // Given A-B, if A can be completely folded into the address and
1140    // the index field with the index field unused, use -B as the index.
1141    // This is a win if a has multiple parts that can be folded into
1142    // the address. Also, this saves a mov if the base register has
1143    // other uses, since it avoids a two-address sub instruction, however
1144    // it costs an additional mov if the index register has other uses.
1145
1146    // Add an artificial use to this node so that we can keep track of
1147    // it if it gets CSE'd with a different node.
1148    HandleSDNode Handle(N);
1149
1150    // Test if the LHS of the sub can be folded.
1151    X86ISelAddressMode Backup = AM;
1152    if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
1153      AM = Backup;
1154      break;
1155    }
1156    // Test if the index field is free for use.
1157    if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
1158      AM = Backup;
1159      break;
1160    }
1161
1162    int Cost = 0;
1163    SDValue RHS = Handle.getValue().getNode()->getOperand(1);
1164    // If the RHS involves a register with multiple uses, this
1165    // transformation incurs an extra mov, due to the neg instruction
1166    // clobbering its operand.
1167    if (!RHS.getNode()->hasOneUse() ||
1168        RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
1169        RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
1170        RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
1171        (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
1172         RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
1173      ++Cost;
1174    // If the base is a register with multiple uses, this
1175    // transformation may save a mov.
1176    if ((AM.BaseType == X86ISelAddressMode::RegBase &&
1177         AM.Base_Reg.getNode() &&
1178         !AM.Base_Reg.getNode()->hasOneUse()) ||
1179        AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1180      --Cost;
1181    // If the folded LHS was interesting, this transformation saves
1182    // address arithmetic.
1183    if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
1184        ((AM.Disp != 0) && (Backup.Disp == 0)) +
1185        (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
1186      --Cost;
1187    // If it doesn't look like it may be an overall win, don't do it.
1188    if (Cost >= 0) {
1189      AM = Backup;
1190      break;
1191    }
1192
1193    // Ok, the transformation is legal and appears profitable. Go for it.
1194    SDValue Zero = CurDAG->getConstant(0, N.getValueType());
1195    SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
1196    AM.IndexReg = Neg;
1197    AM.Scale = 1;
1198
1199    // Insert the new nodes into the topological ordering.
1200    InsertDAGNode(*CurDAG, N, Zero);
1201    InsertDAGNode(*CurDAG, N, Neg);
1202    return false;
1203  }
1204
1205  case ISD::ADD: {
1206    // Add an artificial use to this node so that we can keep track of
1207    // it if it gets CSE'd with a different node.
1208    HandleSDNode Handle(N);
1209
1210    X86ISelAddressMode Backup = AM;
1211    if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1212        !MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
1213      return false;
1214    AM = Backup;
1215
1216    // Try again after commuting the operands.
1217    if (!MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)&&
1218        !MatchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1))
1219      return false;
1220    AM = Backup;
1221
1222    // If we couldn't fold both operands into the address at the same time,
1223    // see if we can just put each operand into a register and fold at least
1224    // the add.
1225    if (AM.BaseType == X86ISelAddressMode::RegBase &&
1226        !AM.Base_Reg.getNode() &&
1227        !AM.IndexReg.getNode()) {
1228      N = Handle.getValue();
1229      AM.Base_Reg = N.getOperand(0);
1230      AM.IndexReg = N.getOperand(1);
1231      AM.Scale = 1;
1232      return false;
1233    }
1234    N = Handle.getValue();
1235    break;
1236  }
1237
1238  case ISD::OR:
1239    // Handle "X | C" as "X + C" iff X is known to have C bits clear.
1240    if (CurDAG->isBaseWithConstantOffset(N)) {
1241      X86ISelAddressMode Backup = AM;
1242      ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1));
1243
1244      // Start with the LHS as an addr mode.
1245      if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1246          !FoldOffsetIntoAddress(CN->getSExtValue(), AM))
1247        return false;
1248      AM = Backup;
1249    }
1250    break;
1251
1252  case ISD::AND: {
1253    // Perform some heroic transforms on an and of a constant-count shift
1254    // with a constant to enable use of the scaled offset field.
1255
1256    // Scale must not be used already.
1257    if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
1258
1259    SDValue Shift = N.getOperand(0);
1260    if (Shift.getOpcode() != ISD::SRL && Shift.getOpcode() != ISD::SHL) break;
1261    SDValue X = Shift.getOperand(0);
1262
1263    // We only handle up to 64-bit values here as those are what matter for
1264    // addressing mode optimizations.
1265    if (X.getSimpleValueType().getSizeInBits() > 64) break;
1266
1267    if (!isa<ConstantSDNode>(N.getOperand(1)))
1268      break;
1269    uint64_t Mask = N.getConstantOperandVal(1);
1270
1271    // Try to fold the mask and shift into an extract and scale.
1272    if (!FoldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM))
1273      return false;
1274
1275    // Try to fold the mask and shift directly into the scale.
1276    if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM))
1277      return false;
1278
1279    // Try to swap the mask and shift to place shifts which can be done as
1280    // a scale on the outside of the mask.
1281    if (!FoldMaskedShiftToScaledMask(*CurDAG, N, Mask, Shift, X, AM))
1282      return false;
1283    break;
1284  }
1285  }
1286
1287  return MatchAddressBase(N, AM);
1288}
1289
1290/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
1291/// specified addressing mode without any further recursion.
1292bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
1293  // Is the base register already occupied?
1294  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
1295    // If so, check to see if the scale index register is set.
1296    if (!AM.IndexReg.getNode()) {
1297      AM.IndexReg = N;
1298      AM.Scale = 1;
1299      return false;
1300    }
1301
1302    // Otherwise, we cannot select it.
1303    return true;
1304  }
1305
1306  // Default, generate it as a register.
1307  AM.BaseType = X86ISelAddressMode::RegBase;
1308  AM.Base_Reg = N;
1309  return false;
1310}
1311
1312/// SelectAddr - returns true if it is able pattern match an addressing mode.
1313/// It returns the operands which make up the maximal addressing mode it can
1314/// match by reference.
1315///
1316/// Parent is the parent node of the addr operand that is being matched.  It
1317/// is always a load, store, atomic node, or null.  It is only null when
1318/// checking memory operands for inline asm nodes.
1319bool X86DAGToDAGISel::SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
1320                                 SDValue &Scale, SDValue &Index,
1321                                 SDValue &Disp, SDValue &Segment) {
1322  X86ISelAddressMode AM;
1323
1324  if (Parent &&
1325      // This list of opcodes are all the nodes that have an "addr:$ptr" operand
1326      // that are not a MemSDNode, and thus don't have proper addrspace info.
1327      Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
1328      Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
1329      Parent->getOpcode() != X86ISD::TLSCALL && // Fixme
1330      Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp
1331      Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp
1332    unsigned AddrSpace =
1333      cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
1334    // AddrSpace 256 -> GS, 257 -> FS.
1335    if (AddrSpace == 256)
1336      AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1337    if (AddrSpace == 257)
1338      AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1339  }
1340
1341  if (MatchAddress(N, AM))
1342    return false;
1343
1344  MVT VT = N.getSimpleValueType();
1345  if (AM.BaseType == X86ISelAddressMode::RegBase) {
1346    if (!AM.Base_Reg.getNode())
1347      AM.Base_Reg = CurDAG->getRegister(0, VT);
1348  }
1349
1350  if (!AM.IndexReg.getNode())
1351    AM.IndexReg = CurDAG->getRegister(0, VT);
1352
1353  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1354  return true;
1355}
1356
1357/// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
1358/// match a load whose top elements are either undef or zeros.  The load flavor
1359/// is derived from the type of N, which is either v4f32 or v2f64.
1360///
1361/// We also return:
1362///   PatternChainNode: this is the matched node that has a chain input and
1363///   output.
1364bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root,
1365                                          SDValue N, SDValue &Base,
1366                                          SDValue &Scale, SDValue &Index,
1367                                          SDValue &Disp, SDValue &Segment,
1368                                          SDValue &PatternNodeWithChain) {
1369  if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1370    PatternNodeWithChain = N.getOperand(0);
1371    if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) &&
1372        PatternNodeWithChain.hasOneUse() &&
1373        IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1374        IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1375      LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
1376      if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1377        return false;
1378      return true;
1379    }
1380  }
1381
1382  // Also handle the case where we explicitly require zeros in the top
1383  // elements.  This is a vector shuffle from the zero vector.
1384  if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1385      // Check to see if the top elements are all zeros (or bitcast of zeros).
1386      N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
1387      N.getOperand(0).getNode()->hasOneUse() &&
1388      ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
1389      N.getOperand(0).getOperand(0).hasOneUse() &&
1390      IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1391      IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1392    // Okay, this is a zero extending load.  Fold it.
1393    LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
1394    if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1395      return false;
1396    PatternNodeWithChain = SDValue(LD, 0);
1397    return true;
1398  }
1399  return false;
1400}
1401
1402
1403bool X86DAGToDAGISel::SelectMOV64Imm32(SDValue N, SDValue &Imm) {
1404  if (const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1405    uint64_t ImmVal = CN->getZExtValue();
1406    if ((uint32_t)ImmVal != (uint64_t)ImmVal)
1407      return false;
1408
1409    Imm = CurDAG->getTargetConstant(ImmVal, MVT::i64);
1410    return true;
1411  }
1412
1413  // In static codegen with small code model, we can get the address of a label
1414  // into a register with 'movl'. TableGen has already made sure we're looking
1415  // at a label of some kind.
1416  assert(N->getOpcode() == X86ISD::Wrapper &&
1417         "Unexpected node type for MOV32ri64");
1418  N = N.getOperand(0);
1419
1420  if (N->getOpcode() != ISD::TargetConstantPool &&
1421      N->getOpcode() != ISD::TargetJumpTable &&
1422      N->getOpcode() != ISD::TargetGlobalAddress &&
1423      N->getOpcode() != ISD::TargetExternalSymbol &&
1424      N->getOpcode() != ISD::TargetBlockAddress)
1425    return false;
1426
1427  Imm = N;
1428  return TM.getCodeModel() == CodeModel::Small;
1429}
1430
1431bool X86DAGToDAGISel::SelectLEA64_32Addr(SDValue N, SDValue &Base,
1432                                         SDValue &Scale, SDValue &Index,
1433                                         SDValue &Disp, SDValue &Segment) {
1434  if (!SelectLEAAddr(N, Base, Scale, Index, Disp, Segment))
1435    return false;
1436
1437  SDLoc DL(N);
1438  RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Base);
1439  if (RN && RN->getReg() == 0)
1440    Base = CurDAG->getRegister(0, MVT::i64);
1441  else if (Base.getValueType() == MVT::i32 && !dyn_cast<FrameIndexSDNode>(Base)) {
1442    // Base could already be %rip, particularly in the x32 ABI.
1443    Base = SDValue(CurDAG->getMachineNode(
1444                       TargetOpcode::SUBREG_TO_REG, DL, MVT::i64,
1445                       CurDAG->getTargetConstant(0, MVT::i64),
1446                       Base,
1447                       CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)),
1448                   0);
1449  }
1450
1451  RN = dyn_cast<RegisterSDNode>(Index);
1452  if (RN && RN->getReg() == 0)
1453    Index = CurDAG->getRegister(0, MVT::i64);
1454  else {
1455    assert(Index.getValueType() == MVT::i32 &&
1456           "Expect to be extending 32-bit registers for use in LEA");
1457    Index = SDValue(CurDAG->getMachineNode(
1458                        TargetOpcode::SUBREG_TO_REG, DL, MVT::i64,
1459                        CurDAG->getTargetConstant(0, MVT::i64),
1460                        Index,
1461                        CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)),
1462                    0);
1463  }
1464
1465  return true;
1466}
1467
1468/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
1469/// mode it matches can be cost effectively emitted as an LEA instruction.
1470bool X86DAGToDAGISel::SelectLEAAddr(SDValue N,
1471                                    SDValue &Base, SDValue &Scale,
1472                                    SDValue &Index, SDValue &Disp,
1473                                    SDValue &Segment) {
1474  X86ISelAddressMode AM;
1475
1476  // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
1477  // segments.
1478  SDValue Copy = AM.Segment;
1479  SDValue T = CurDAG->getRegister(0, MVT::i32);
1480  AM.Segment = T;
1481  if (MatchAddress(N, AM))
1482    return false;
1483  assert (T == AM.Segment);
1484  AM.Segment = Copy;
1485
1486  MVT VT = N.getSimpleValueType();
1487  unsigned Complexity = 0;
1488  if (AM.BaseType == X86ISelAddressMode::RegBase)
1489    if (AM.Base_Reg.getNode())
1490      Complexity = 1;
1491    else
1492      AM.Base_Reg = CurDAG->getRegister(0, VT);
1493  else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1494    Complexity = 4;
1495
1496  if (AM.IndexReg.getNode())
1497    Complexity++;
1498  else
1499    AM.IndexReg = CurDAG->getRegister(0, VT);
1500
1501  // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1502  // a simple shift.
1503  if (AM.Scale > 1)
1504    Complexity++;
1505
1506  // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1507  // to a LEA. This is determined with some expermentation but is by no means
1508  // optimal (especially for code size consideration). LEA is nice because of
1509  // its three-address nature. Tweak the cost function again when we can run
1510  // convertToThreeAddress() at register allocation time.
1511  if (AM.hasSymbolicDisplacement()) {
1512    // For X86-64, we should always use lea to materialize RIP relative
1513    // addresses.
1514    if (Subtarget->is64Bit())
1515      Complexity = 4;
1516    else
1517      Complexity += 2;
1518  }
1519
1520  if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode()))
1521    Complexity++;
1522
1523  // If it isn't worth using an LEA, reject it.
1524  if (Complexity <= 2)
1525    return false;
1526
1527  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1528  return true;
1529}
1530
1531/// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
1532bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue N, SDValue &Base,
1533                                        SDValue &Scale, SDValue &Index,
1534                                        SDValue &Disp, SDValue &Segment) {
1535  assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
1536  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
1537
1538  X86ISelAddressMode AM;
1539  AM.GV = GA->getGlobal();
1540  AM.Disp += GA->getOffset();
1541  AM.Base_Reg = CurDAG->getRegister(0, N.getValueType());
1542  AM.SymbolFlags = GA->getTargetFlags();
1543
1544  if (N.getValueType() == MVT::i32) {
1545    AM.Scale = 1;
1546    AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
1547  } else {
1548    AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
1549  }
1550
1551  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1552  return true;
1553}
1554
1555
1556bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
1557                                  SDValue &Base, SDValue &Scale,
1558                                  SDValue &Index, SDValue &Disp,
1559                                  SDValue &Segment) {
1560  if (!ISD::isNON_EXTLoad(N.getNode()) ||
1561      !IsProfitableToFold(N, P, P) ||
1562      !IsLegalToFold(N, P, P, OptLevel))
1563    return false;
1564
1565  return SelectAddr(N.getNode(),
1566                    N.getOperand(1), Base, Scale, Index, Disp, Segment);
1567}
1568
1569/// getGlobalBaseReg - Return an SDNode that returns the value of
1570/// the global base register. Output instructions required to
1571/// initialize the global base register, if necessary.
1572///
1573SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
1574  unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
1575  return CurDAG->getRegister(GlobalBaseReg, TLI->getPointerTy()).getNode();
1576}
1577
1578/// Atomic opcode table
1579///
1580enum AtomicOpc {
1581  ADD,
1582  SUB,
1583  INC,
1584  DEC,
1585  OR,
1586  AND,
1587  XOR,
1588  AtomicOpcEnd
1589};
1590
1591enum AtomicSz {
1592  ConstantI8,
1593  I8,
1594  SextConstantI16,
1595  ConstantI16,
1596  I16,
1597  SextConstantI32,
1598  ConstantI32,
1599  I32,
1600  SextConstantI64,
1601  ConstantI64,
1602  I64,
1603  AtomicSzEnd
1604};
1605
1606static const uint16_t AtomicOpcTbl[AtomicOpcEnd][AtomicSzEnd] = {
1607  {
1608    X86::LOCK_ADD8mi,
1609    X86::LOCK_ADD8mr,
1610    X86::LOCK_ADD16mi8,
1611    X86::LOCK_ADD16mi,
1612    X86::LOCK_ADD16mr,
1613    X86::LOCK_ADD32mi8,
1614    X86::LOCK_ADD32mi,
1615    X86::LOCK_ADD32mr,
1616    X86::LOCK_ADD64mi8,
1617    X86::LOCK_ADD64mi32,
1618    X86::LOCK_ADD64mr,
1619  },
1620  {
1621    X86::LOCK_SUB8mi,
1622    X86::LOCK_SUB8mr,
1623    X86::LOCK_SUB16mi8,
1624    X86::LOCK_SUB16mi,
1625    X86::LOCK_SUB16mr,
1626    X86::LOCK_SUB32mi8,
1627    X86::LOCK_SUB32mi,
1628    X86::LOCK_SUB32mr,
1629    X86::LOCK_SUB64mi8,
1630    X86::LOCK_SUB64mi32,
1631    X86::LOCK_SUB64mr,
1632  },
1633  {
1634    0,
1635    X86::LOCK_INC8m,
1636    0,
1637    0,
1638    X86::LOCK_INC16m,
1639    0,
1640    0,
1641    X86::LOCK_INC32m,
1642    0,
1643    0,
1644    X86::LOCK_INC64m,
1645  },
1646  {
1647    0,
1648    X86::LOCK_DEC8m,
1649    0,
1650    0,
1651    X86::LOCK_DEC16m,
1652    0,
1653    0,
1654    X86::LOCK_DEC32m,
1655    0,
1656    0,
1657    X86::LOCK_DEC64m,
1658  },
1659  {
1660    X86::LOCK_OR8mi,
1661    X86::LOCK_OR8mr,
1662    X86::LOCK_OR16mi8,
1663    X86::LOCK_OR16mi,
1664    X86::LOCK_OR16mr,
1665    X86::LOCK_OR32mi8,
1666    X86::LOCK_OR32mi,
1667    X86::LOCK_OR32mr,
1668    X86::LOCK_OR64mi8,
1669    X86::LOCK_OR64mi32,
1670    X86::LOCK_OR64mr,
1671  },
1672  {
1673    X86::LOCK_AND8mi,
1674    X86::LOCK_AND8mr,
1675    X86::LOCK_AND16mi8,
1676    X86::LOCK_AND16mi,
1677    X86::LOCK_AND16mr,
1678    X86::LOCK_AND32mi8,
1679    X86::LOCK_AND32mi,
1680    X86::LOCK_AND32mr,
1681    X86::LOCK_AND64mi8,
1682    X86::LOCK_AND64mi32,
1683    X86::LOCK_AND64mr,
1684  },
1685  {
1686    X86::LOCK_XOR8mi,
1687    X86::LOCK_XOR8mr,
1688    X86::LOCK_XOR16mi8,
1689    X86::LOCK_XOR16mi,
1690    X86::LOCK_XOR16mr,
1691    X86::LOCK_XOR32mi8,
1692    X86::LOCK_XOR32mi,
1693    X86::LOCK_XOR32mr,
1694    X86::LOCK_XOR64mi8,
1695    X86::LOCK_XOR64mi32,
1696    X86::LOCK_XOR64mr,
1697  }
1698};
1699
1700// Return the target constant operand for atomic-load-op and do simple
1701// translations, such as from atomic-load-add to lock-sub. The return value is
1702// one of the following 3 cases:
1703// + target-constant, the operand could be supported as a target constant.
1704// + empty, the operand is not needed any more with the new op selected.
1705// + non-empty, otherwise.
1706static SDValue getAtomicLoadArithTargetConstant(SelectionDAG *CurDAG,
1707                                                SDLoc dl,
1708                                                enum AtomicOpc &Op, MVT NVT,
1709                                                SDValue Val,
1710                                                const X86Subtarget *Subtarget) {
1711  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val)) {
1712    int64_t CNVal = CN->getSExtValue();
1713    // Quit if not 32-bit imm.
1714    if ((int32_t)CNVal != CNVal)
1715      return Val;
1716    // Quit if INT32_MIN: it would be negated as it is negative and overflow,
1717    // producing an immediate that does not fit in the 32 bits available for
1718    // an immediate operand to sub. However, it still fits in 32 bits for the
1719    // add (since it is not negated) so we can return target-constant.
1720    if (CNVal == INT32_MIN)
1721      return CurDAG->getTargetConstant(CNVal, NVT);
1722    // For atomic-load-add, we could do some optimizations.
1723    if (Op == ADD) {
1724      // Translate to INC/DEC if ADD by 1 or -1.
1725      if (((CNVal == 1) || (CNVal == -1)) && !Subtarget->slowIncDec()) {
1726        Op = (CNVal == 1) ? INC : DEC;
1727        // No more constant operand after being translated into INC/DEC.
1728        return SDValue();
1729      }
1730      // Translate to SUB if ADD by negative value.
1731      if (CNVal < 0) {
1732        Op = SUB;
1733        CNVal = -CNVal;
1734      }
1735    }
1736    return CurDAG->getTargetConstant(CNVal, NVT);
1737  }
1738
1739  // If the value operand is single-used, try to optimize it.
1740  if (Op == ADD && Val.hasOneUse()) {
1741    // Translate (atomic-load-add ptr (sub 0 x)) back to (lock-sub x).
1742    if (Val.getOpcode() == ISD::SUB && X86::isZeroNode(Val.getOperand(0))) {
1743      Op = SUB;
1744      return Val.getOperand(1);
1745    }
1746    // A special case for i16, which needs truncating as, in most cases, it's
1747    // promoted to i32. We will translate
1748    // (atomic-load-add (truncate (sub 0 x))) to (lock-sub (EXTRACT_SUBREG x))
1749    if (Val.getOpcode() == ISD::TRUNCATE && NVT == MVT::i16 &&
1750        Val.getOperand(0).getOpcode() == ISD::SUB &&
1751        X86::isZeroNode(Val.getOperand(0).getOperand(0))) {
1752      Op = SUB;
1753      Val = Val.getOperand(0);
1754      return CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl, NVT,
1755                                            Val.getOperand(1));
1756    }
1757  }
1758
1759  return Val;
1760}
1761
1762SDNode *X86DAGToDAGISel::SelectAtomicLoadArith(SDNode *Node, MVT NVT) {
1763  if (Node->hasAnyUseOfValue(0))
1764    return nullptr;
1765
1766  SDLoc dl(Node);
1767
1768  // Optimize common patterns for __sync_or_and_fetch and similar arith
1769  // operations where the result is not used. This allows us to use the "lock"
1770  // version of the arithmetic instruction.
1771  SDValue Chain = Node->getOperand(0);
1772  SDValue Ptr = Node->getOperand(1);
1773  SDValue Val = Node->getOperand(2);
1774  SDValue Base, Scale, Index, Disp, Segment;
1775  if (!SelectAddr(Node, Ptr, Base, Scale, Index, Disp, Segment))
1776    return nullptr;
1777
1778  // Which index into the table.
1779  enum AtomicOpc Op;
1780  switch (Node->getOpcode()) {
1781    default:
1782      return nullptr;
1783    case ISD::ATOMIC_LOAD_OR:
1784      Op = OR;
1785      break;
1786    case ISD::ATOMIC_LOAD_AND:
1787      Op = AND;
1788      break;
1789    case ISD::ATOMIC_LOAD_XOR:
1790      Op = XOR;
1791      break;
1792    case ISD::ATOMIC_LOAD_ADD:
1793      Op = ADD;
1794      break;
1795  }
1796
1797  Val = getAtomicLoadArithTargetConstant(CurDAG, dl, Op, NVT, Val, Subtarget);
1798  bool isUnOp = !Val.getNode();
1799  bool isCN = Val.getNode() && (Val.getOpcode() == ISD::TargetConstant);
1800
1801  unsigned Opc = 0;
1802  switch (NVT.SimpleTy) {
1803    default: return nullptr;
1804    case MVT::i8:
1805      if (isCN)
1806        Opc = AtomicOpcTbl[Op][ConstantI8];
1807      else
1808        Opc = AtomicOpcTbl[Op][I8];
1809      break;
1810    case MVT::i16:
1811      if (isCN) {
1812        if (immSext8(Val.getNode()))
1813          Opc = AtomicOpcTbl[Op][SextConstantI16];
1814        else
1815          Opc = AtomicOpcTbl[Op][ConstantI16];
1816      } else
1817        Opc = AtomicOpcTbl[Op][I16];
1818      break;
1819    case MVT::i32:
1820      if (isCN) {
1821        if (immSext8(Val.getNode()))
1822          Opc = AtomicOpcTbl[Op][SextConstantI32];
1823        else
1824          Opc = AtomicOpcTbl[Op][ConstantI32];
1825      } else
1826        Opc = AtomicOpcTbl[Op][I32];
1827      break;
1828    case MVT::i64:
1829      if (isCN) {
1830        if (immSext8(Val.getNode()))
1831          Opc = AtomicOpcTbl[Op][SextConstantI64];
1832        else if (i64immSExt32(Val.getNode()))
1833          Opc = AtomicOpcTbl[Op][ConstantI64];
1834        else
1835          llvm_unreachable("True 64 bits constant in SelectAtomicLoadArith");
1836      } else
1837        Opc = AtomicOpcTbl[Op][I64];
1838      break;
1839  }
1840
1841  assert(Opc != 0 && "Invalid arith lock transform!");
1842
1843  // Building the new node.
1844  SDValue Ret;
1845  if (isUnOp) {
1846    SDValue Ops[] = { Base, Scale, Index, Disp, Segment, Chain };
1847    Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops), 0);
1848  } else {
1849    SDValue Ops[] = { Base, Scale, Index, Disp, Segment, Val, Chain };
1850    Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops), 0);
1851  }
1852
1853  // Copying the MachineMemOperand.
1854  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1855  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1856  cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1857
1858  // We need to have two outputs as that is what the original instruction had.
1859  // So we add a dummy, undefined output. This is safe as we checked first
1860  // that no-one uses our output anyway.
1861  SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1862                                                 dl, NVT), 0);
1863  SDValue RetVals[] = { Undef, Ret };
1864  return CurDAG->getMergeValues(RetVals, dl).getNode();
1865}
1866
1867/// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has
1868/// any uses which require the SF or OF bits to be accurate.
1869static bool HasNoSignedComparisonUses(SDNode *N) {
1870  // Examine each user of the node.
1871  for (SDNode::use_iterator UI = N->use_begin(),
1872         UE = N->use_end(); UI != UE; ++UI) {
1873    // Only examine CopyToReg uses.
1874    if (UI->getOpcode() != ISD::CopyToReg)
1875      return false;
1876    // Only examine CopyToReg uses that copy to EFLAGS.
1877    if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
1878          X86::EFLAGS)
1879      return false;
1880    // Examine each user of the CopyToReg use.
1881    for (SDNode::use_iterator FlagUI = UI->use_begin(),
1882           FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
1883      // Only examine the Flag result.
1884      if (FlagUI.getUse().getResNo() != 1) continue;
1885      // Anything unusual: assume conservatively.
1886      if (!FlagUI->isMachineOpcode()) return false;
1887      // Examine the opcode of the user.
1888      switch (FlagUI->getMachineOpcode()) {
1889      // These comparisons don't treat the most significant bit specially.
1890      case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
1891      case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
1892      case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
1893      case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
1894      case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4:
1895      case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4:
1896      case X86::CMOVA16rr: case X86::CMOVA16rm:
1897      case X86::CMOVA32rr: case X86::CMOVA32rm:
1898      case X86::CMOVA64rr: case X86::CMOVA64rm:
1899      case X86::CMOVAE16rr: case X86::CMOVAE16rm:
1900      case X86::CMOVAE32rr: case X86::CMOVAE32rm:
1901      case X86::CMOVAE64rr: case X86::CMOVAE64rm:
1902      case X86::CMOVB16rr: case X86::CMOVB16rm:
1903      case X86::CMOVB32rr: case X86::CMOVB32rm:
1904      case X86::CMOVB64rr: case X86::CMOVB64rm:
1905      case X86::CMOVBE16rr: case X86::CMOVBE16rm:
1906      case X86::CMOVBE32rr: case X86::CMOVBE32rm:
1907      case X86::CMOVBE64rr: case X86::CMOVBE64rm:
1908      case X86::CMOVE16rr: case X86::CMOVE16rm:
1909      case X86::CMOVE32rr: case X86::CMOVE32rm:
1910      case X86::CMOVE64rr: case X86::CMOVE64rm:
1911      case X86::CMOVNE16rr: case X86::CMOVNE16rm:
1912      case X86::CMOVNE32rr: case X86::CMOVNE32rm:
1913      case X86::CMOVNE64rr: case X86::CMOVNE64rm:
1914      case X86::CMOVNP16rr: case X86::CMOVNP16rm:
1915      case X86::CMOVNP32rr: case X86::CMOVNP32rm:
1916      case X86::CMOVNP64rr: case X86::CMOVNP64rm:
1917      case X86::CMOVP16rr: case X86::CMOVP16rm:
1918      case X86::CMOVP32rr: case X86::CMOVP32rm:
1919      case X86::CMOVP64rr: case X86::CMOVP64rm:
1920        continue;
1921      // Anything else: assume conservatively.
1922      default: return false;
1923      }
1924    }
1925  }
1926  return true;
1927}
1928
1929/// isLoadIncOrDecStore - Check whether or not the chain ending in StoreNode
1930/// is suitable for doing the {load; increment or decrement; store} to modify
1931/// transformation.
1932static bool isLoadIncOrDecStore(StoreSDNode *StoreNode, unsigned Opc,
1933                                SDValue StoredVal, SelectionDAG *CurDAG,
1934                                LoadSDNode* &LoadNode, SDValue &InputChain) {
1935
1936  // is the value stored the result of a DEC or INC?
1937  if (!(Opc == X86ISD::DEC || Opc == X86ISD::INC)) return false;
1938
1939  // is the stored value result 0 of the load?
1940  if (StoredVal.getResNo() != 0) return false;
1941
1942  // are there other uses of the loaded value than the inc or dec?
1943  if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false;
1944
1945  // is the store non-extending and non-indexed?
1946  if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
1947    return false;
1948
1949  SDValue Load = StoredVal->getOperand(0);
1950  // Is the stored value a non-extending and non-indexed load?
1951  if (!ISD::isNormalLoad(Load.getNode())) return false;
1952
1953  // Return LoadNode by reference.
1954  LoadNode = cast<LoadSDNode>(Load);
1955  // is the size of the value one that we can handle? (i.e. 64, 32, 16, or 8)
1956  EVT LdVT = LoadNode->getMemoryVT();
1957  if (LdVT != MVT::i64 && LdVT != MVT::i32 && LdVT != MVT::i16 &&
1958      LdVT != MVT::i8)
1959    return false;
1960
1961  // Is store the only read of the loaded value?
1962  if (!Load.hasOneUse())
1963    return false;
1964
1965  // Is the address of the store the same as the load?
1966  if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
1967      LoadNode->getOffset() != StoreNode->getOffset())
1968    return false;
1969
1970  // Check if the chain is produced by the load or is a TokenFactor with
1971  // the load output chain as an operand. Return InputChain by reference.
1972  SDValue Chain = StoreNode->getChain();
1973
1974  bool ChainCheck = false;
1975  if (Chain == Load.getValue(1)) {
1976    ChainCheck = true;
1977    InputChain = LoadNode->getChain();
1978  } else if (Chain.getOpcode() == ISD::TokenFactor) {
1979    SmallVector<SDValue, 4> ChainOps;
1980    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
1981      SDValue Op = Chain.getOperand(i);
1982      if (Op == Load.getValue(1)) {
1983        ChainCheck = true;
1984        continue;
1985      }
1986
1987      // Make sure using Op as part of the chain would not cause a cycle here.
1988      // In theory, we could check whether the chain node is a predecessor of
1989      // the load. But that can be very expensive. Instead visit the uses and
1990      // make sure they all have smaller node id than the load.
1991      int LoadId = LoadNode->getNodeId();
1992      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
1993             UE = UI->use_end(); UI != UE; ++UI) {
1994        if (UI.getUse().getResNo() != 0)
1995          continue;
1996        if (UI->getNodeId() > LoadId)
1997          return false;
1998      }
1999
2000      ChainOps.push_back(Op);
2001    }
2002
2003    if (ChainCheck)
2004      // Make a new TokenFactor with all the other input chains except
2005      // for the load.
2006      InputChain = CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain),
2007                                   MVT::Other, ChainOps);
2008  }
2009  if (!ChainCheck)
2010    return false;
2011
2012  return true;
2013}
2014
2015/// getFusedLdStOpcode - Get the appropriate X86 opcode for an in memory
2016/// increment or decrement. Opc should be X86ISD::DEC or X86ISD::INC.
2017static unsigned getFusedLdStOpcode(EVT &LdVT, unsigned Opc) {
2018  if (Opc == X86ISD::DEC) {
2019    if (LdVT == MVT::i64) return X86::DEC64m;
2020    if (LdVT == MVT::i32) return X86::DEC32m;
2021    if (LdVT == MVT::i16) return X86::DEC16m;
2022    if (LdVT == MVT::i8)  return X86::DEC8m;
2023  } else {
2024    assert(Opc == X86ISD::INC && "unrecognized opcode");
2025    if (LdVT == MVT::i64) return X86::INC64m;
2026    if (LdVT == MVT::i32) return X86::INC32m;
2027    if (LdVT == MVT::i16) return X86::INC16m;
2028    if (LdVT == MVT::i8)  return X86::INC8m;
2029  }
2030  llvm_unreachable("unrecognized size for LdVT");
2031}
2032
2033/// SelectGather - Customized ISel for GATHER operations.
2034///
2035SDNode *X86DAGToDAGISel::SelectGather(SDNode *Node, unsigned Opc) {
2036  // Operands of Gather: VSrc, Base, VIdx, VMask, Scale
2037  SDValue Chain = Node->getOperand(0);
2038  SDValue VSrc = Node->getOperand(2);
2039  SDValue Base = Node->getOperand(3);
2040  SDValue VIdx = Node->getOperand(4);
2041  SDValue VMask = Node->getOperand(5);
2042  ConstantSDNode *Scale = dyn_cast<ConstantSDNode>(Node->getOperand(6));
2043  if (!Scale)
2044    return nullptr;
2045
2046  SDVTList VTs = CurDAG->getVTList(VSrc.getValueType(), VSrc.getValueType(),
2047                                   MVT::Other);
2048
2049  // Memory Operands: Base, Scale, Index, Disp, Segment
2050  SDValue Disp = CurDAG->getTargetConstant(0, MVT::i32);
2051  SDValue Segment = CurDAG->getRegister(0, MVT::i32);
2052  const SDValue Ops[] = { VSrc, Base, getI8Imm(Scale->getSExtValue()), VIdx,
2053                          Disp, Segment, VMask, Chain};
2054  SDNode *ResNode = CurDAG->getMachineNode(Opc, SDLoc(Node), VTs, Ops);
2055  // Node has 2 outputs: VDst and MVT::Other.
2056  // ResNode has 3 outputs: VDst, VMask_wb, and MVT::Other.
2057  // We replace VDst of Node with VDst of ResNode, and Other of Node with Other
2058  // of ResNode.
2059  ReplaceUses(SDValue(Node, 0), SDValue(ResNode, 0));
2060  ReplaceUses(SDValue(Node, 1), SDValue(ResNode, 2));
2061  return ResNode;
2062}
2063
2064SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
2065  MVT NVT = Node->getSimpleValueType(0);
2066  unsigned Opc, MOpc;
2067  unsigned Opcode = Node->getOpcode();
2068  SDLoc dl(Node);
2069
2070  DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n');
2071
2072  if (Node->isMachineOpcode()) {
2073    DEBUG(dbgs() << "== ";  Node->dump(CurDAG); dbgs() << '\n');
2074    Node->setNodeId(-1);
2075    return nullptr;   // Already selected.
2076  }
2077
2078  switch (Opcode) {
2079  default: break;
2080  case ISD::INTRINSIC_W_CHAIN: {
2081    unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
2082    switch (IntNo) {
2083    default: break;
2084    case Intrinsic::x86_avx2_gather_d_pd:
2085    case Intrinsic::x86_avx2_gather_d_pd_256:
2086    case Intrinsic::x86_avx2_gather_q_pd:
2087    case Intrinsic::x86_avx2_gather_q_pd_256:
2088    case Intrinsic::x86_avx2_gather_d_ps:
2089    case Intrinsic::x86_avx2_gather_d_ps_256:
2090    case Intrinsic::x86_avx2_gather_q_ps:
2091    case Intrinsic::x86_avx2_gather_q_ps_256:
2092    case Intrinsic::x86_avx2_gather_d_q:
2093    case Intrinsic::x86_avx2_gather_d_q_256:
2094    case Intrinsic::x86_avx2_gather_q_q:
2095    case Intrinsic::x86_avx2_gather_q_q_256:
2096    case Intrinsic::x86_avx2_gather_d_d:
2097    case Intrinsic::x86_avx2_gather_d_d_256:
2098    case Intrinsic::x86_avx2_gather_q_d:
2099    case Intrinsic::x86_avx2_gather_q_d_256: {
2100      if (!Subtarget->hasAVX2())
2101        break;
2102      unsigned Opc;
2103      switch (IntNo) {
2104      default: llvm_unreachable("Impossible intrinsic");
2105      case Intrinsic::x86_avx2_gather_d_pd:     Opc = X86::VGATHERDPDrm;  break;
2106      case Intrinsic::x86_avx2_gather_d_pd_256: Opc = X86::VGATHERDPDYrm; break;
2107      case Intrinsic::x86_avx2_gather_q_pd:     Opc = X86::VGATHERQPDrm;  break;
2108      case Intrinsic::x86_avx2_gather_q_pd_256: Opc = X86::VGATHERQPDYrm; break;
2109      case Intrinsic::x86_avx2_gather_d_ps:     Opc = X86::VGATHERDPSrm;  break;
2110      case Intrinsic::x86_avx2_gather_d_ps_256: Opc = X86::VGATHERDPSYrm; break;
2111      case Intrinsic::x86_avx2_gather_q_ps:     Opc = X86::VGATHERQPSrm;  break;
2112      case Intrinsic::x86_avx2_gather_q_ps_256: Opc = X86::VGATHERQPSYrm; break;
2113      case Intrinsic::x86_avx2_gather_d_q:      Opc = X86::VPGATHERDQrm;  break;
2114      case Intrinsic::x86_avx2_gather_d_q_256:  Opc = X86::VPGATHERDQYrm; break;
2115      case Intrinsic::x86_avx2_gather_q_q:      Opc = X86::VPGATHERQQrm;  break;
2116      case Intrinsic::x86_avx2_gather_q_q_256:  Opc = X86::VPGATHERQQYrm; break;
2117      case Intrinsic::x86_avx2_gather_d_d:      Opc = X86::VPGATHERDDrm;  break;
2118      case Intrinsic::x86_avx2_gather_d_d_256:  Opc = X86::VPGATHERDDYrm; break;
2119      case Intrinsic::x86_avx2_gather_q_d:      Opc = X86::VPGATHERQDrm;  break;
2120      case Intrinsic::x86_avx2_gather_q_d_256:  Opc = X86::VPGATHERQDYrm; break;
2121      }
2122      SDNode *RetVal = SelectGather(Node, Opc);
2123      if (RetVal)
2124        // We already called ReplaceUses inside SelectGather.
2125        return nullptr;
2126      break;
2127    }
2128    }
2129    break;
2130  }
2131  case X86ISD::GlobalBaseReg:
2132    return getGlobalBaseReg();
2133
2134  case X86ISD::SHRUNKBLEND: {
2135    // SHRUNKBLEND selects like a regular VSELECT.
2136    SDValue VSelect = CurDAG->getNode(
2137        ISD::VSELECT, SDLoc(Node), Node->getValueType(0), Node->getOperand(0),
2138        Node->getOperand(1), Node->getOperand(2));
2139    ReplaceUses(SDValue(Node, 0), VSelect);
2140    SelectCode(VSelect.getNode());
2141    // We already called ReplaceUses.
2142    return nullptr;
2143  }
2144
2145  case ISD::ATOMIC_LOAD_XOR:
2146  case ISD::ATOMIC_LOAD_AND:
2147  case ISD::ATOMIC_LOAD_OR:
2148  case ISD::ATOMIC_LOAD_ADD: {
2149    SDNode *RetVal = SelectAtomicLoadArith(Node, NVT);
2150    if (RetVal)
2151      return RetVal;
2152    break;
2153  }
2154  case ISD::AND:
2155  case ISD::OR:
2156  case ISD::XOR: {
2157    // For operations of the form (x << C1) op C2, check if we can use a smaller
2158    // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
2159    SDValue N0 = Node->getOperand(0);
2160    SDValue N1 = Node->getOperand(1);
2161
2162    if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse())
2163      break;
2164
2165    // i8 is unshrinkable, i16 should be promoted to i32.
2166    if (NVT != MVT::i32 && NVT != MVT::i64)
2167      break;
2168
2169    ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
2170    ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
2171    if (!Cst || !ShlCst)
2172      break;
2173
2174    int64_t Val = Cst->getSExtValue();
2175    uint64_t ShlVal = ShlCst->getZExtValue();
2176
2177    // Make sure that we don't change the operation by removing bits.
2178    // This only matters for OR and XOR, AND is unaffected.
2179    uint64_t RemovedBitsMask = (1ULL << ShlVal) - 1;
2180    if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0)
2181      break;
2182
2183    unsigned ShlOp, Op;
2184    MVT CstVT = NVT;
2185
2186    // Check the minimum bitwidth for the new constant.
2187    // TODO: AND32ri is the same as AND64ri32 with zext imm.
2188    // TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr
2189    // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
2190    if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal))
2191      CstVT = MVT::i8;
2192    else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal))
2193      CstVT = MVT::i32;
2194
2195    // Bail if there is no smaller encoding.
2196    if (NVT == CstVT)
2197      break;
2198
2199    switch (NVT.SimpleTy) {
2200    default: llvm_unreachable("Unsupported VT!");
2201    case MVT::i32:
2202      assert(CstVT == MVT::i8);
2203      ShlOp = X86::SHL32ri;
2204
2205      switch (Opcode) {
2206      default: llvm_unreachable("Impossible opcode");
2207      case ISD::AND: Op = X86::AND32ri8; break;
2208      case ISD::OR:  Op =  X86::OR32ri8; break;
2209      case ISD::XOR: Op = X86::XOR32ri8; break;
2210      }
2211      break;
2212    case MVT::i64:
2213      assert(CstVT == MVT::i8 || CstVT == MVT::i32);
2214      ShlOp = X86::SHL64ri;
2215
2216      switch (Opcode) {
2217      default: llvm_unreachable("Impossible opcode");
2218      case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break;
2219      case ISD::OR:  Op = CstVT==MVT::i8?  X86::OR64ri8 :  X86::OR64ri32; break;
2220      case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break;
2221      }
2222      break;
2223    }
2224
2225    // Emit the smaller op and the shift.
2226    SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, CstVT);
2227    SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst);
2228    return CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0),
2229                                getI8Imm(ShlVal));
2230  }
2231  case X86ISD::UMUL8:
2232  case X86ISD::SMUL8: {
2233    SDValue N0 = Node->getOperand(0);
2234    SDValue N1 = Node->getOperand(1);
2235
2236    Opc = (Opcode == X86ISD::SMUL8 ? X86::IMUL8r : X86::MUL8r);
2237
2238    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::AL,
2239                                          N0, SDValue()).getValue(1);
2240
2241    SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32);
2242    SDValue Ops[] = {N1, InFlag};
2243    SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
2244
2245    ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
2246    ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1));
2247    return nullptr;
2248  }
2249
2250  case X86ISD::UMUL: {
2251    SDValue N0 = Node->getOperand(0);
2252    SDValue N1 = Node->getOperand(1);
2253
2254    unsigned LoReg;
2255    switch (NVT.SimpleTy) {
2256    default: llvm_unreachable("Unsupported VT!");
2257    case MVT::i8:  LoReg = X86::AL;  Opc = X86::MUL8r; break;
2258    case MVT::i16: LoReg = X86::AX;  Opc = X86::MUL16r; break;
2259    case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break;
2260    case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break;
2261    }
2262
2263    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
2264                                          N0, SDValue()).getValue(1);
2265
2266    SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
2267    SDValue Ops[] = {N1, InFlag};
2268    SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
2269
2270    ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
2271    ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1));
2272    ReplaceUses(SDValue(Node, 2), SDValue(CNode, 2));
2273    return nullptr;
2274  }
2275
2276  case ISD::SMUL_LOHI:
2277  case ISD::UMUL_LOHI: {
2278    SDValue N0 = Node->getOperand(0);
2279    SDValue N1 = Node->getOperand(1);
2280
2281    bool isSigned = Opcode == ISD::SMUL_LOHI;
2282    bool hasBMI2 = Subtarget->hasBMI2();
2283    if (!isSigned) {
2284      switch (NVT.SimpleTy) {
2285      default: llvm_unreachable("Unsupported VT!");
2286      case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
2287      case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
2288      case MVT::i32: Opc = hasBMI2 ? X86::MULX32rr : X86::MUL32r;
2289                     MOpc = hasBMI2 ? X86::MULX32rm : X86::MUL32m; break;
2290      case MVT::i64: Opc = hasBMI2 ? X86::MULX64rr : X86::MUL64r;
2291                     MOpc = hasBMI2 ? X86::MULX64rm : X86::MUL64m; break;
2292      }
2293    } else {
2294      switch (NVT.SimpleTy) {
2295      default: llvm_unreachable("Unsupported VT!");
2296      case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
2297      case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
2298      case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
2299      case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
2300      }
2301    }
2302
2303    unsigned SrcReg, LoReg, HiReg;
2304    switch (Opc) {
2305    default: llvm_unreachable("Unknown MUL opcode!");
2306    case X86::IMUL8r:
2307    case X86::MUL8r:
2308      SrcReg = LoReg = X86::AL; HiReg = X86::AH;
2309      break;
2310    case X86::IMUL16r:
2311    case X86::MUL16r:
2312      SrcReg = LoReg = X86::AX; HiReg = X86::DX;
2313      break;
2314    case X86::IMUL32r:
2315    case X86::MUL32r:
2316      SrcReg = LoReg = X86::EAX; HiReg = X86::EDX;
2317      break;
2318    case X86::IMUL64r:
2319    case X86::MUL64r:
2320      SrcReg = LoReg = X86::RAX; HiReg = X86::RDX;
2321      break;
2322    case X86::MULX32rr:
2323      SrcReg = X86::EDX; LoReg = HiReg = 0;
2324      break;
2325    case X86::MULX64rr:
2326      SrcReg = X86::RDX; LoReg = HiReg = 0;
2327      break;
2328    }
2329
2330    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
2331    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2332    // Multiply is commmutative.
2333    if (!foldedLoad) {
2334      foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2335      if (foldedLoad)
2336        std::swap(N0, N1);
2337    }
2338
2339    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, SrcReg,
2340                                          N0, SDValue()).getValue(1);
2341    SDValue ResHi, ResLo;
2342
2343    if (foldedLoad) {
2344      SDValue Chain;
2345      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
2346                        InFlag };
2347      if (MOpc == X86::MULX32rm || MOpc == X86::MULX64rm) {
2348        SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other, MVT::Glue);
2349        SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
2350        ResHi = SDValue(CNode, 0);
2351        ResLo = SDValue(CNode, 1);
2352        Chain = SDValue(CNode, 2);
2353        InFlag = SDValue(CNode, 3);
2354      } else {
2355        SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
2356        SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
2357        Chain = SDValue(CNode, 0);
2358        InFlag = SDValue(CNode, 1);
2359      }
2360
2361      // Update the chain.
2362      ReplaceUses(N1.getValue(1), Chain);
2363    } else {
2364      SDValue Ops[] = { N1, InFlag };
2365      if (Opc == X86::MULX32rr || Opc == X86::MULX64rr) {
2366        SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Glue);
2367        SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
2368        ResHi = SDValue(CNode, 0);
2369        ResLo = SDValue(CNode, 1);
2370        InFlag = SDValue(CNode, 2);
2371      } else {
2372        SDVTList VTs = CurDAG->getVTList(MVT::Glue);
2373        SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
2374        InFlag = SDValue(CNode, 0);
2375      }
2376    }
2377
2378    // Prevent use of AH in a REX instruction by referencing AX instead.
2379    if (HiReg == X86::AH && Subtarget->is64Bit() &&
2380        !SDValue(Node, 1).use_empty()) {
2381      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2382                                              X86::AX, MVT::i16, InFlag);
2383      InFlag = Result.getValue(2);
2384      // Get the low part if needed. Don't use getCopyFromReg for aliasing
2385      // registers.
2386      if (!SDValue(Node, 0).use_empty())
2387        ReplaceUses(SDValue(Node, 1),
2388          CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2389
2390      // Shift AX down 8 bits.
2391      Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
2392                                              Result,
2393                                     CurDAG->getTargetConstant(8, MVT::i8)), 0);
2394      // Then truncate it down to i8.
2395      ReplaceUses(SDValue(Node, 1),
2396        CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2397    }
2398    // Copy the low half of the result, if it is needed.
2399    if (!SDValue(Node, 0).use_empty()) {
2400      if (!ResLo.getNode()) {
2401        assert(LoReg && "Register for low half is not defined!");
2402        ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg, NVT,
2403                                       InFlag);
2404        InFlag = ResLo.getValue(2);
2405      }
2406      ReplaceUses(SDValue(Node, 0), ResLo);
2407      DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG); dbgs() << '\n');
2408    }
2409    // Copy the high half of the result, if it is needed.
2410    if (!SDValue(Node, 1).use_empty()) {
2411      if (!ResHi.getNode()) {
2412        assert(HiReg && "Register for high half is not defined!");
2413        ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg, NVT,
2414                                       InFlag);
2415        InFlag = ResHi.getValue(2);
2416      }
2417      ReplaceUses(SDValue(Node, 1), ResHi);
2418      DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG); dbgs() << '\n');
2419    }
2420
2421    return nullptr;
2422  }
2423
2424  case ISD::SDIVREM:
2425  case ISD::UDIVREM:
2426  case X86ISD::SDIVREM8_SEXT_HREG:
2427  case X86ISD::UDIVREM8_ZEXT_HREG: {
2428    SDValue N0 = Node->getOperand(0);
2429    SDValue N1 = Node->getOperand(1);
2430
2431    bool isSigned = (Opcode == ISD::SDIVREM ||
2432                     Opcode == X86ISD::SDIVREM8_SEXT_HREG);
2433    if (!isSigned) {
2434      switch (NVT.SimpleTy) {
2435      default: llvm_unreachable("Unsupported VT!");
2436      case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
2437      case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
2438      case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
2439      case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
2440      }
2441    } else {
2442      switch (NVT.SimpleTy) {
2443      default: llvm_unreachable("Unsupported VT!");
2444      case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
2445      case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
2446      case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
2447      case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
2448      }
2449    }
2450
2451    unsigned LoReg, HiReg, ClrReg;
2452    unsigned SExtOpcode;
2453    switch (NVT.SimpleTy) {
2454    default: llvm_unreachable("Unsupported VT!");
2455    case MVT::i8:
2456      LoReg = X86::AL;  ClrReg = HiReg = X86::AH;
2457      SExtOpcode = X86::CBW;
2458      break;
2459    case MVT::i16:
2460      LoReg = X86::AX;  HiReg = X86::DX;
2461      ClrReg = X86::DX;
2462      SExtOpcode = X86::CWD;
2463      break;
2464    case MVT::i32:
2465      LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
2466      SExtOpcode = X86::CDQ;
2467      break;
2468    case MVT::i64:
2469      LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
2470      SExtOpcode = X86::CQO;
2471      break;
2472    }
2473
2474    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
2475    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2476    bool signBitIsZero = CurDAG->SignBitIsZero(N0);
2477
2478    SDValue InFlag;
2479    if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
2480      // Special case for div8, just use a move with zero extension to AX to
2481      // clear the upper 8 bits (AH).
2482      SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
2483      if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
2484        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
2485        Move =
2486          SDValue(CurDAG->getMachineNode(X86::MOVZX32rm8, dl, MVT::i32,
2487                                         MVT::Other, Ops), 0);
2488        Chain = Move.getValue(1);
2489        ReplaceUses(N0.getValue(1), Chain);
2490      } else {
2491        Move =
2492          SDValue(CurDAG->getMachineNode(X86::MOVZX32rr8, dl, MVT::i32, N0),0);
2493        Chain = CurDAG->getEntryNode();
2494      }
2495      Chain  = CurDAG->getCopyToReg(Chain, dl, X86::EAX, Move, SDValue());
2496      InFlag = Chain.getValue(1);
2497    } else {
2498      InFlag =
2499        CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
2500                             LoReg, N0, SDValue()).getValue(1);
2501      if (isSigned && !signBitIsZero) {
2502        // Sign extend the low part into the high part.
2503        InFlag =
2504          SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
2505      } else {
2506        // Zero out the high part, effectively zero extending the input.
2507        SDValue ClrNode = SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, NVT), 0);
2508        switch (NVT.SimpleTy) {
2509        case MVT::i16:
2510          ClrNode =
2511              SDValue(CurDAG->getMachineNode(
2512                          TargetOpcode::EXTRACT_SUBREG, dl, MVT::i16, ClrNode,
2513                          CurDAG->getTargetConstant(X86::sub_16bit, MVT::i32)),
2514                      0);
2515          break;
2516        case MVT::i32:
2517          break;
2518        case MVT::i64:
2519          ClrNode =
2520              SDValue(CurDAG->getMachineNode(
2521                          TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
2522                          CurDAG->getTargetConstant(0, MVT::i64), ClrNode,
2523                          CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)),
2524                      0);
2525          break;
2526        default:
2527          llvm_unreachable("Unexpected division source");
2528        }
2529
2530        InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
2531                                      ClrNode, InFlag).getValue(1);
2532      }
2533    }
2534
2535    if (foldedLoad) {
2536      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
2537                        InFlag };
2538      SDNode *CNode =
2539        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops);
2540      InFlag = SDValue(CNode, 1);
2541      // Update the chain.
2542      ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
2543    } else {
2544      InFlag =
2545        SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0);
2546    }
2547
2548    // Prevent use of AH in a REX instruction by explicitly copying it to
2549    // an ABCD_L register.
2550    //
2551    // The current assumption of the register allocator is that isel
2552    // won't generate explicit references to the GR8_ABCD_H registers. If
2553    // the allocator and/or the backend get enhanced to be more robust in
2554    // that regard, this can be, and should be, removed.
2555    if (HiReg == X86::AH && !SDValue(Node, 1).use_empty()) {
2556      SDValue AHCopy = CurDAG->getRegister(X86::AH, MVT::i8);
2557      unsigned AHExtOpcode =
2558          isSigned ? X86::MOVSX32_NOREXrr8 : X86::MOVZX32_NOREXrr8;
2559
2560      SDNode *RNode = CurDAG->getMachineNode(AHExtOpcode, dl, MVT::i32,
2561                                             MVT::Glue, AHCopy, InFlag);
2562      SDValue Result(RNode, 0);
2563      InFlag = SDValue(RNode, 1);
2564
2565      if (Opcode == X86ISD::UDIVREM8_ZEXT_HREG ||
2566          Opcode == X86ISD::SDIVREM8_SEXT_HREG) {
2567        if (Node->getValueType(1) == MVT::i64) {
2568          // It's not possible to directly movsx AH to a 64bit register, because
2569          // the latter needs the REX prefix, but the former can't have it.
2570          assert(Opcode != X86ISD::SDIVREM8_SEXT_HREG &&
2571                 "Unexpected i64 sext of h-register");
2572          Result =
2573              SDValue(CurDAG->getMachineNode(
2574                          TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
2575                          CurDAG->getTargetConstant(0, MVT::i64), Result,
2576                          CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)),
2577                      0);
2578        }
2579      } else {
2580        Result =
2581            CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result);
2582      }
2583      ReplaceUses(SDValue(Node, 1), Result);
2584      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2585    }
2586    // Copy the division (low) result, if it is needed.
2587    if (!SDValue(Node, 0).use_empty()) {
2588      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2589                                                LoReg, NVT, InFlag);
2590      InFlag = Result.getValue(2);
2591      ReplaceUses(SDValue(Node, 0), Result);
2592      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2593    }
2594    // Copy the remainder (high) result, if it is needed.
2595    if (!SDValue(Node, 1).use_empty()) {
2596      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2597                                              HiReg, NVT, InFlag);
2598      InFlag = Result.getValue(2);
2599      ReplaceUses(SDValue(Node, 1), Result);
2600      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2601    }
2602    return nullptr;
2603  }
2604
2605  case X86ISD::CMP:
2606  case X86ISD::SUB: {
2607    // Sometimes a SUB is used to perform comparison.
2608    if (Opcode == X86ISD::SUB && Node->hasAnyUseOfValue(0))
2609      // This node is not a CMP.
2610      break;
2611    SDValue N0 = Node->getOperand(0);
2612    SDValue N1 = Node->getOperand(1);
2613
2614    if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
2615        HasNoSignedComparisonUses(Node)) {
2616      // Look for (X86cmp (truncate $op, i1), 0) and try to convert to a
2617      // smaller encoding
2618      if (Opcode == X86ISD::CMP && N0.getValueType() == MVT::i1 &&
2619          X86::isZeroNode(N1)) {
2620        SDValue Reg = N0.getOperand(0);
2621        SDValue Imm = CurDAG->getTargetConstant(1, MVT::i8);
2622
2623        // Emit testb
2624        if (Reg.getScalarValueSizeInBits() > 8)
2625          Reg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Reg);
2626        // Emit a testb.
2627        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32,
2628                                                Reg, Imm);
2629        ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
2630        return nullptr;
2631      }
2632
2633      N0 = N0.getOperand(0);
2634    }
2635    // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
2636    // use a smaller encoding.
2637    // Look past the truncate if CMP is the only use of it.
2638    if ((N0.getNode()->getOpcode() == ISD::AND ||
2639         (N0.getResNo() == 0 && N0.getNode()->getOpcode() == X86ISD::AND)) &&
2640        N0.getNode()->hasOneUse() &&
2641        N0.getValueType() != MVT::i8 &&
2642        X86::isZeroNode(N1)) {
2643      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
2644      if (!C) break;
2645
2646      // For example, convert "testl %eax, $8" to "testb %al, $8"
2647      if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
2648          (!(C->getZExtValue() & 0x80) ||
2649           HasNoSignedComparisonUses(Node))) {
2650        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8);
2651        SDValue Reg = N0.getNode()->getOperand(0);
2652
2653        // On x86-32, only the ABCD registers have 8-bit subregisters.
2654        if (!Subtarget->is64Bit()) {
2655          const TargetRegisterClass *TRC;
2656          switch (N0.getSimpleValueType().SimpleTy) {
2657          case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2658          case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2659          default: llvm_unreachable("Unsupported TEST operand type!");
2660          }
2661          SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2662          Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2663                                               Reg.getValueType(), Reg, RC), 0);
2664        }
2665
2666        // Extract the l-register.
2667        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl,
2668                                                        MVT::i8, Reg);
2669
2670        // Emit a testb.
2671        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32,
2672                                                 Subreg, Imm);
2673        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2674        // one, do not call ReplaceAllUsesWith.
2675        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2676                    SDValue(NewNode, 0));
2677        return nullptr;
2678      }
2679
2680      // For example, "testl %eax, $2048" to "testb %ah, $8".
2681      if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 &&
2682          (!(C->getZExtValue() & 0x8000) ||
2683           HasNoSignedComparisonUses(Node))) {
2684        // Shift the immediate right by 8 bits.
2685        SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
2686                                                       MVT::i8);
2687        SDValue Reg = N0.getNode()->getOperand(0);
2688
2689        // Put the value in an ABCD register.
2690        const TargetRegisterClass *TRC;
2691        switch (N0.getSimpleValueType().SimpleTy) {
2692        case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
2693        case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2694        case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2695        default: llvm_unreachable("Unsupported TEST operand type!");
2696        }
2697        SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2698        Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2699                                             Reg.getValueType(), Reg, RC), 0);
2700
2701        // Extract the h-register.
2702        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl,
2703                                                        MVT::i8, Reg);
2704
2705        // Emit a testb.  The EXTRACT_SUBREG becomes a COPY that can only
2706        // target GR8_NOREX registers, so make sure the register class is
2707        // forced.
2708        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri_NOREX, dl,
2709                                                 MVT::i32, Subreg, ShiftedImm);
2710        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2711        // one, do not call ReplaceAllUsesWith.
2712        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2713                    SDValue(NewNode, 0));
2714        return nullptr;
2715      }
2716
2717      // For example, "testl %eax, $32776" to "testw %ax, $32776".
2718      if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
2719          N0.getValueType() != MVT::i16 &&
2720          (!(C->getZExtValue() & 0x8000) ||
2721           HasNoSignedComparisonUses(Node))) {
2722        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16);
2723        SDValue Reg = N0.getNode()->getOperand(0);
2724
2725        // Extract the 16-bit subregister.
2726        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl,
2727                                                        MVT::i16, Reg);
2728
2729        // Emit a testw.
2730        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32,
2731                                                 Subreg, Imm);
2732        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2733        // one, do not call ReplaceAllUsesWith.
2734        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2735                    SDValue(NewNode, 0));
2736        return nullptr;
2737      }
2738
2739      // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
2740      if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
2741          N0.getValueType() == MVT::i64 &&
2742          (!(C->getZExtValue() & 0x80000000) ||
2743           HasNoSignedComparisonUses(Node))) {
2744        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
2745        SDValue Reg = N0.getNode()->getOperand(0);
2746
2747        // Extract the 32-bit subregister.
2748        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl,
2749                                                        MVT::i32, Reg);
2750
2751        // Emit a testl.
2752        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32,
2753                                                 Subreg, Imm);
2754        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2755        // one, do not call ReplaceAllUsesWith.
2756        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2757                    SDValue(NewNode, 0));
2758        return nullptr;
2759      }
2760    }
2761    break;
2762  }
2763  case ISD::STORE: {
2764    // Change a chain of {load; incr or dec; store} of the same value into
2765    // a simple increment or decrement through memory of that value, if the
2766    // uses of the modified value and its address are suitable.
2767    // The DEC64m tablegen pattern is currently not able to match the case where
2768    // the EFLAGS on the original DEC are used. (This also applies to
2769    // {INC,DEC}X{64,32,16,8}.)
2770    // We'll need to improve tablegen to allow flags to be transferred from a
2771    // node in the pattern to the result node.  probably with a new keyword
2772    // for example, we have this
2773    // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2774    //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2775    //   (implicit EFLAGS)]>;
2776    // but maybe need something like this
2777    // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2778    //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2779    //   (transferrable EFLAGS)]>;
2780
2781    StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
2782    SDValue StoredVal = StoreNode->getOperand(1);
2783    unsigned Opc = StoredVal->getOpcode();
2784
2785    LoadSDNode *LoadNode = nullptr;
2786    SDValue InputChain;
2787    if (!isLoadIncOrDecStore(StoreNode, Opc, StoredVal, CurDAG,
2788                             LoadNode, InputChain))
2789      break;
2790
2791    SDValue Base, Scale, Index, Disp, Segment;
2792    if (!SelectAddr(LoadNode, LoadNode->getBasePtr(),
2793                    Base, Scale, Index, Disp, Segment))
2794      break;
2795
2796    MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(2);
2797    MemOp[0] = StoreNode->getMemOperand();
2798    MemOp[1] = LoadNode->getMemOperand();
2799    const SDValue Ops[] = { Base, Scale, Index, Disp, Segment, InputChain };
2800    EVT LdVT = LoadNode->getMemoryVT();
2801    unsigned newOpc = getFusedLdStOpcode(LdVT, Opc);
2802    MachineSDNode *Result = CurDAG->getMachineNode(newOpc,
2803                                                   SDLoc(Node),
2804                                                   MVT::i32, MVT::Other, Ops);
2805    Result->setMemRefs(MemOp, MemOp + 2);
2806
2807    ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
2808    ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
2809
2810    return Result;
2811  }
2812  }
2813
2814  SDNode *ResNode = SelectCode(Node);
2815
2816  DEBUG(dbgs() << "=> ";
2817        if (ResNode == nullptr || ResNode == Node)
2818          Node->dump(CurDAG);
2819        else
2820          ResNode->dump(CurDAG);
2821        dbgs() << '\n');
2822
2823  return ResNode;
2824}
2825
2826bool X86DAGToDAGISel::
2827SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
2828                             std::vector<SDValue> &OutOps) {
2829  SDValue Op0, Op1, Op2, Op3, Op4;
2830  switch (ConstraintCode) {
2831  case 'o':   // offsetable        ??
2832  case 'v':   // not offsetable    ??
2833  default: return true;
2834  case 'm':   // memory
2835    if (!SelectAddr(nullptr, Op, Op0, Op1, Op2, Op3, Op4))
2836      return true;
2837    break;
2838  }
2839
2840  OutOps.push_back(Op0);
2841  OutOps.push_back(Op1);
2842  OutOps.push_back(Op2);
2843  OutOps.push_back(Op3);
2844  OutOps.push_back(Op4);
2845  return false;
2846}
2847
2848/// createX86ISelDag - This pass converts a legalized DAG into a
2849/// X86-specific DAG, ready for instruction scheduling.
2850///
2851FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
2852                                     CodeGenOpt::Level OptLevel) {
2853  return new X86DAGToDAGISel(TM, OptLevel);
2854}
2855