X86ISelDAGToDAG.cpp revision 6726b6d75a8b679068a58cb954ba97cf9d1690ba
1//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a DAG pattern matching instruction selector for X86,
11// converting from a legalized dag to a X86 dag.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86MachineFunctionInfo.h"
20#include "X86RegisterInfo.h"
21#include "X86Subtarget.h"
22#include "X86TargetMachine.h"
23#include "llvm/GlobalValue.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/Support/CFG.h"
27#include "llvm/Type.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/CodeGen/SelectionDAGISel.h"
34#include "llvm/Target/TargetMachine.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/Support/Compiler.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Support/MathExtras.h"
40#include "llvm/Support/raw_ostream.h"
41#include "llvm/ADT/SmallPtrSet.h"
42#include "llvm/ADT/Statistic.h"
43using namespace llvm;
44
45#include "llvm/Support/CommandLine.h"
46static cl::opt<bool> AvoidDupAddrCompute("x86-avoid-dup-address", cl::Hidden);
47
48STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
49
50//===----------------------------------------------------------------------===//
51//                      Pattern Matcher Implementation
52//===----------------------------------------------------------------------===//
53
54namespace {
55  /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
56  /// SDValue's instead of register numbers for the leaves of the matched
57  /// tree.
58  struct X86ISelAddressMode {
59    enum {
60      RegBase,
61      FrameIndexBase
62    } BaseType;
63
64    struct {            // This is really a union, discriminated by BaseType!
65      SDValue Reg;
66      int FrameIndex;
67    } Base;
68
69    unsigned Scale;
70    SDValue IndexReg;
71    int32_t Disp;
72    SDValue Segment;
73    GlobalValue *GV;
74    Constant *CP;
75    const char *ES;
76    int JT;
77    unsigned Align;    // CP alignment.
78    unsigned char SymbolFlags;  // X86II::MO_*
79
80    X86ISelAddressMode()
81      : BaseType(RegBase), Scale(1), IndexReg(), Disp(0),
82        Segment(), GV(0), CP(0), ES(0), JT(-1), Align(0),
83        SymbolFlags(X86II::MO_NO_FLAG) {
84    }
85
86    bool hasSymbolicDisplacement() const {
87      return GV != 0 || CP != 0 || ES != 0 || JT != -1;
88    }
89
90    bool hasBaseOrIndexReg() const {
91      return IndexReg.getNode() != 0 || Base.Reg.getNode() != 0;
92    }
93
94    /// isRIPRelative - Return true if this addressing mode is already RIP
95    /// relative.
96    bool isRIPRelative() const {
97      if (BaseType != RegBase) return false;
98      if (RegisterSDNode *RegNode =
99            dyn_cast_or_null<RegisterSDNode>(Base.Reg.getNode()))
100        return RegNode->getReg() == X86::RIP;
101      return false;
102    }
103
104    void setBaseReg(SDValue Reg) {
105      BaseType = RegBase;
106      Base.Reg = Reg;
107    }
108
109    void dump() {
110      errs() << "X86ISelAddressMode " << this << '\n';
111      errs() << "Base.Reg ";
112      if (Base.Reg.getNode() != 0)
113        Base.Reg.getNode()->dump();
114      else
115        errs() << "nul";
116      errs() << " Base.FrameIndex " << Base.FrameIndex << '\n'
117             << " Scale" << Scale << '\n'
118             << "IndexReg ";
119      if (IndexReg.getNode() != 0)
120        IndexReg.getNode()->dump();
121      else
122        errs() << "nul";
123      errs() << " Disp " << Disp << '\n'
124             << "GV ";
125      if (GV)
126        GV->dump();
127      else
128        errs() << "nul";
129      errs() << " CP ";
130      if (CP)
131        CP->dump();
132      else
133        errs() << "nul";
134      errs() << '\n'
135             << "ES ";
136      if (ES)
137        errs() << ES;
138      else
139        errs() << "nul";
140      errs() << " JT" << JT << " Align" << Align << '\n';
141    }
142  };
143}
144
145namespace {
146  //===--------------------------------------------------------------------===//
147  /// ISel - X86 specific code to select X86 machine instructions for
148  /// SelectionDAG operations.
149  ///
150  class X86DAGToDAGISel : public SelectionDAGISel {
151    /// X86Lowering - This object fully describes how to lower LLVM code to an
152    /// X86-specific SelectionDAG.
153    X86TargetLowering &X86Lowering;
154
155    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
156    /// make the right decision when generating code for different targets.
157    const X86Subtarget *Subtarget;
158
159    /// OptForSize - If true, selector should try to optimize for code size
160    /// instead of performance.
161    bool OptForSize;
162
163  public:
164    explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
165      : SelectionDAGISel(tm, OptLevel),
166        X86Lowering(*tm.getTargetLowering()),
167        Subtarget(&tm.getSubtarget<X86Subtarget>()),
168        OptForSize(false) {}
169
170    virtual const char *getPassName() const {
171      return "X86 DAG->DAG Instruction Selection";
172    }
173
174    /// InstructionSelect - This callback is invoked by
175    /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
176    virtual void InstructionSelect();
177
178    virtual void EmitFunctionEntryCode(Function &Fn, MachineFunction &MF);
179
180    virtual
181      bool IsLegalAndProfitableToFold(SDNode *N, SDNode *U, SDNode *Root) const;
182
183// Include the pieces autogenerated from the target description.
184#include "X86GenDAGISel.inc"
185
186  private:
187    SDNode *Select(SDValue N);
188    SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
189    SDNode *SelectAtomicLoadAdd(SDNode *Node, EVT NVT);
190
191    bool MatchSegmentBaseAddress(SDValue N, X86ISelAddressMode &AM);
192    bool MatchLoad(SDValue N, X86ISelAddressMode &AM);
193    bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
194    bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
195    bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
196                                 unsigned Depth);
197    bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
198    bool SelectAddr(SDValue Op, SDValue N, SDValue &Base,
199                    SDValue &Scale, SDValue &Index, SDValue &Disp,
200                    SDValue &Segment);
201    bool SelectLEAAddr(SDValue Op, SDValue N, SDValue &Base,
202                       SDValue &Scale, SDValue &Index, SDValue &Disp);
203    bool SelectTLSADDRAddr(SDValue Op, SDValue N, SDValue &Base,
204                       SDValue &Scale, SDValue &Index, SDValue &Disp);
205    bool SelectScalarSSELoad(SDValue Op, SDValue Pred,
206                             SDValue N, SDValue &Base, SDValue &Scale,
207                             SDValue &Index, SDValue &Disp,
208                             SDValue &Segment,
209                             SDValue &InChain, SDValue &OutChain);
210    bool TryFoldLoad(SDValue P, SDValue N,
211                     SDValue &Base, SDValue &Scale,
212                     SDValue &Index, SDValue &Disp,
213                     SDValue &Segment);
214    void PreprocessForRMW();
215    void PreprocessForFPConvert();
216
217    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
218    /// inline asm expressions.
219    virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
220                                              char ConstraintCode,
221                                              std::vector<SDValue> &OutOps);
222
223    void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
224
225    inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
226                                   SDValue &Scale, SDValue &Index,
227                                   SDValue &Disp, SDValue &Segment) {
228      Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
229        CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, TLI.getPointerTy()) :
230        AM.Base.Reg;
231      Scale = getI8Imm(AM.Scale);
232      Index = AM.IndexReg;
233      // These are 32-bit even in 64-bit mode since RIP relative offset
234      // is 32-bit.
235      if (AM.GV)
236        Disp = CurDAG->getTargetGlobalAddress(AM.GV, MVT::i32, AM.Disp,
237                                              AM.SymbolFlags);
238      else if (AM.CP)
239        Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
240                                             AM.Align, AM.Disp, AM.SymbolFlags);
241      else if (AM.ES)
242        Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
243      else if (AM.JT != -1)
244        Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
245      else
246        Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
247
248      if (AM.Segment.getNode())
249        Segment = AM.Segment;
250      else
251        Segment = CurDAG->getRegister(0, MVT::i32);
252    }
253
254    /// getI8Imm - Return a target constant with the specified value, of type
255    /// i8.
256    inline SDValue getI8Imm(unsigned Imm) {
257      return CurDAG->getTargetConstant(Imm, MVT::i8);
258    }
259
260    /// getI16Imm - Return a target constant with the specified value, of type
261    /// i16.
262    inline SDValue getI16Imm(unsigned Imm) {
263      return CurDAG->getTargetConstant(Imm, MVT::i16);
264    }
265
266    /// getI32Imm - Return a target constant with the specified value, of type
267    /// i32.
268    inline SDValue getI32Imm(unsigned Imm) {
269      return CurDAG->getTargetConstant(Imm, MVT::i32);
270    }
271
272    /// getGlobalBaseReg - Return an SDNode that returns the value of
273    /// the global base register. Output instructions required to
274    /// initialize the global base register, if necessary.
275    ///
276    SDNode *getGlobalBaseReg();
277
278    /// getTargetMachine - Return a reference to the TargetMachine, casted
279    /// to the target-specific type.
280    const X86TargetMachine &getTargetMachine() {
281      return static_cast<const X86TargetMachine &>(TM);
282    }
283
284    /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
285    /// to the target-specific type.
286    const X86InstrInfo *getInstrInfo() {
287      return getTargetMachine().getInstrInfo();
288    }
289
290#ifndef NDEBUG
291    unsigned Indent;
292#endif
293  };
294}
295
296
297bool X86DAGToDAGISel::IsLegalAndProfitableToFold(SDNode *N, SDNode *U,
298                                                 SDNode *Root) const {
299  if (OptLevel == CodeGenOpt::None) return false;
300
301  if (U == Root)
302    switch (U->getOpcode()) {
303    default: break;
304    case ISD::ADD:
305    case ISD::ADDC:
306    case ISD::ADDE:
307    case ISD::AND:
308    case ISD::OR:
309    case ISD::XOR: {
310      SDValue Op1 = U->getOperand(1);
311
312      // If the other operand is a 8-bit immediate we should fold the immediate
313      // instead. This reduces code size.
314      // e.g.
315      // movl 4(%esp), %eax
316      // addl $4, %eax
317      // vs.
318      // movl $4, %eax
319      // addl 4(%esp), %eax
320      // The former is 2 bytes shorter. In case where the increment is 1, then
321      // the saving can be 4 bytes (by using incl %eax).
322      if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
323        if (Imm->getAPIntValue().isSignedIntN(8))
324          return false;
325
326      // If the other operand is a TLS address, we should fold it instead.
327      // This produces
328      // movl    %gs:0, %eax
329      // leal    i@NTPOFF(%eax), %eax
330      // instead of
331      // movl    $i@NTPOFF, %eax
332      // addl    %gs:0, %eax
333      // if the block also has an access to a second TLS address this will save
334      // a load.
335      // FIXME: This is probably also true for non TLS addresses.
336      if (Op1.getOpcode() == X86ISD::Wrapper) {
337        SDValue Val = Op1.getOperand(0);
338        if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
339          return false;
340      }
341    }
342    }
343
344  // Proceed to 'generic' cycle finder code
345  return SelectionDAGISel::IsLegalAndProfitableToFold(N, U, Root);
346}
347
348/// MoveBelowTokenFactor - Replace TokenFactor operand with load's chain operand
349/// and move load below the TokenFactor. Replace store's chain operand with
350/// load's chain result.
351static void MoveBelowTokenFactor(SelectionDAG *CurDAG, SDValue Load,
352                                 SDValue Store, SDValue TF) {
353  SmallVector<SDValue, 4> Ops;
354  for (unsigned i = 0, e = TF.getNode()->getNumOperands(); i != e; ++i)
355    if (Load.getNode() == TF.getOperand(i).getNode())
356      Ops.push_back(Load.getOperand(0));
357    else
358      Ops.push_back(TF.getOperand(i));
359  SDValue NewTF = CurDAG->UpdateNodeOperands(TF, &Ops[0], Ops.size());
360  SDValue NewLoad = CurDAG->UpdateNodeOperands(Load, NewTF,
361                                               Load.getOperand(1),
362                                               Load.getOperand(2));
363  CurDAG->UpdateNodeOperands(Store, NewLoad.getValue(1), Store.getOperand(1),
364                             Store.getOperand(2), Store.getOperand(3));
365}
366
367/// isRMWLoad - Return true if N is a load that's part of RMW sub-DAG.  The
368/// chain produced by the load must only be used by the store's chain operand,
369/// otherwise this may produce a cycle in the DAG.
370///
371static bool isRMWLoad(SDValue N, SDValue Chain, SDValue Address,
372                      SDValue &Load) {
373  if (N.getOpcode() == ISD::BIT_CONVERT)
374    N = N.getOperand(0);
375
376  LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
377  if (!LD || LD->isVolatile())
378    return false;
379  if (LD->getAddressingMode() != ISD::UNINDEXED)
380    return false;
381
382  ISD::LoadExtType ExtType = LD->getExtensionType();
383  if (ExtType != ISD::NON_EXTLOAD && ExtType != ISD::EXTLOAD)
384    return false;
385
386  if (N.hasOneUse() &&
387      LD->hasNUsesOfValue(1, 1) &&
388      N.getOperand(1) == Address &&
389      LD->isOperandOf(Chain.getNode())) {
390    Load = N;
391    return true;
392  }
393  return false;
394}
395
396/// MoveBelowCallSeqStart - Replace CALLSEQ_START operand with load's chain
397/// operand and move load below the call's chain operand.
398static void MoveBelowCallSeqStart(SelectionDAG *CurDAG, SDValue Load,
399                                  SDValue Call, SDValue CallSeqStart) {
400  SmallVector<SDValue, 8> Ops;
401  SDValue Chain = CallSeqStart.getOperand(0);
402  if (Chain.getNode() == Load.getNode())
403    Ops.push_back(Load.getOperand(0));
404  else {
405    assert(Chain.getOpcode() == ISD::TokenFactor &&
406           "Unexpected CallSeqStart chain operand");
407    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
408      if (Chain.getOperand(i).getNode() == Load.getNode())
409        Ops.push_back(Load.getOperand(0));
410      else
411        Ops.push_back(Chain.getOperand(i));
412    SDValue NewChain =
413      CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(),
414                      MVT::Other, &Ops[0], Ops.size());
415    Ops.clear();
416    Ops.push_back(NewChain);
417  }
418  for (unsigned i = 1, e = CallSeqStart.getNumOperands(); i != e; ++i)
419    Ops.push_back(CallSeqStart.getOperand(i));
420  CurDAG->UpdateNodeOperands(CallSeqStart, &Ops[0], Ops.size());
421  CurDAG->UpdateNodeOperands(Load, Call.getOperand(0),
422                             Load.getOperand(1), Load.getOperand(2));
423  Ops.clear();
424  Ops.push_back(SDValue(Load.getNode(), 1));
425  for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i)
426    Ops.push_back(Call.getOperand(i));
427  CurDAG->UpdateNodeOperands(Call, &Ops[0], Ops.size());
428}
429
430/// isCalleeLoad - Return true if call address is a load and it can be
431/// moved below CALLSEQ_START and the chains leading up to the call.
432/// Return the CALLSEQ_START by reference as a second output.
433static bool isCalleeLoad(SDValue Callee, SDValue &Chain) {
434  if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
435    return false;
436  LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
437  if (!LD ||
438      LD->isVolatile() ||
439      LD->getAddressingMode() != ISD::UNINDEXED ||
440      LD->getExtensionType() != ISD::NON_EXTLOAD)
441    return false;
442
443  // Now let's find the callseq_start.
444  while (Chain.getOpcode() != ISD::CALLSEQ_START) {
445    if (!Chain.hasOneUse())
446      return false;
447    Chain = Chain.getOperand(0);
448  }
449
450  if (Chain.getOperand(0).getNode() == Callee.getNode())
451    return true;
452  if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
453      Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
454      Callee.getValue(1).hasOneUse())
455    return true;
456  return false;
457}
458
459
460/// PreprocessForRMW - Preprocess the DAG to make instruction selection better.
461/// This is only run if not in -O0 mode.
462/// This allows the instruction selector to pick more read-modify-write
463/// instructions. This is a common case:
464///
465///     [Load chain]
466///         ^
467///         |
468///       [Load]
469///       ^    ^
470///       |    |
471///      /      \-
472///     /         |
473/// [TokenFactor] [Op]
474///     ^          ^
475///     |          |
476///      \        /
477///       \      /
478///       [Store]
479///
480/// The fact the store's chain operand != load's chain will prevent the
481/// (store (op (load))) instruction from being selected. We can transform it to:
482///
483///     [Load chain]
484///         ^
485///         |
486///    [TokenFactor]
487///         ^
488///         |
489///       [Load]
490///       ^    ^
491///       |    |
492///       |     \-
493///       |       |
494///       |     [Op]
495///       |       ^
496///       |       |
497///       \      /
498///        \    /
499///       [Store]
500void X86DAGToDAGISel::PreprocessForRMW() {
501  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
502         E = CurDAG->allnodes_end(); I != E; ++I) {
503    if (I->getOpcode() == X86ISD::CALL) {
504      /// Also try moving call address load from outside callseq_start to just
505      /// before the call to allow it to be folded.
506      ///
507      ///     [Load chain]
508      ///         ^
509      ///         |
510      ///       [Load]
511      ///       ^    ^
512      ///       |    |
513      ///      /      \--
514      ///     /          |
515      ///[CALLSEQ_START] |
516      ///     ^          |
517      ///     |          |
518      /// [LOAD/C2Reg]   |
519      ///     |          |
520      ///      \        /
521      ///       \      /
522      ///       [CALL]
523      SDValue Chain = I->getOperand(0);
524      SDValue Load  = I->getOperand(1);
525      if (!isCalleeLoad(Load, Chain))
526        continue;
527      MoveBelowCallSeqStart(CurDAG, Load, SDValue(I, 0), Chain);
528      ++NumLoadMoved;
529      continue;
530    }
531
532    if (!ISD::isNON_TRUNCStore(I))
533      continue;
534    SDValue Chain = I->getOperand(0);
535
536    if (Chain.getNode()->getOpcode() != ISD::TokenFactor)
537      continue;
538
539    SDValue N1 = I->getOperand(1);
540    SDValue N2 = I->getOperand(2);
541    if ((N1.getValueType().isFloatingPoint() &&
542         !N1.getValueType().isVector()) ||
543        !N1.hasOneUse())
544      continue;
545
546    bool RModW = false;
547    SDValue Load;
548    unsigned Opcode = N1.getNode()->getOpcode();
549    switch (Opcode) {
550    case ISD::ADD:
551    case ISD::MUL:
552    case ISD::AND:
553    case ISD::OR:
554    case ISD::XOR:
555    case ISD::ADDC:
556    case ISD::ADDE:
557    case ISD::VECTOR_SHUFFLE: {
558      SDValue N10 = N1.getOperand(0);
559      SDValue N11 = N1.getOperand(1);
560      RModW = isRMWLoad(N10, Chain, N2, Load);
561      if (!RModW)
562        RModW = isRMWLoad(N11, Chain, N2, Load);
563      break;
564    }
565    case ISD::SUB:
566    case ISD::SHL:
567    case ISD::SRA:
568    case ISD::SRL:
569    case ISD::ROTL:
570    case ISD::ROTR:
571    case ISD::SUBC:
572    case ISD::SUBE:
573    case X86ISD::SHLD:
574    case X86ISD::SHRD: {
575      SDValue N10 = N1.getOperand(0);
576      RModW = isRMWLoad(N10, Chain, N2, Load);
577      break;
578    }
579    }
580
581    if (RModW) {
582      MoveBelowTokenFactor(CurDAG, Load, SDValue(I, 0), Chain);
583      ++NumLoadMoved;
584    }
585  }
586}
587
588
589/// PreprocessForFPConvert - Walk over the dag lowering fpround and fpextend
590/// nodes that target the FP stack to be store and load to the stack.  This is a
591/// gross hack.  We would like to simply mark these as being illegal, but when
592/// we do that, legalize produces these when it expands calls, then expands
593/// these in the same legalize pass.  We would like dag combine to be able to
594/// hack on these between the call expansion and the node legalization.  As such
595/// this pass basically does "really late" legalization of these inline with the
596/// X86 isel pass.
597void X86DAGToDAGISel::PreprocessForFPConvert() {
598  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
599       E = CurDAG->allnodes_end(); I != E; ) {
600    SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.
601    if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
602      continue;
603
604    // If the source and destination are SSE registers, then this is a legal
605    // conversion that should not be lowered.
606    EVT SrcVT = N->getOperand(0).getValueType();
607    EVT DstVT = N->getValueType(0);
608    bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
609    bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
610    if (SrcIsSSE && DstIsSSE)
611      continue;
612
613    if (!SrcIsSSE && !DstIsSSE) {
614      // If this is an FPStack extension, it is a noop.
615      if (N->getOpcode() == ISD::FP_EXTEND)
616        continue;
617      // If this is a value-preserving FPStack truncation, it is a noop.
618      if (N->getConstantOperandVal(1))
619        continue;
620    }
621
622    // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
623    // FPStack has extload and truncstore.  SSE can fold direct loads into other
624    // operations.  Based on this, decide what we want to do.
625    EVT MemVT;
626    if (N->getOpcode() == ISD::FP_ROUND)
627      MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'.
628    else
629      MemVT = SrcIsSSE ? SrcVT : DstVT;
630
631    SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
632    DebugLoc dl = N->getDebugLoc();
633
634    // FIXME: optimize the case where the src/dest is a load or store?
635    SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
636                                          N->getOperand(0),
637                                          MemTmp, NULL, 0, MemVT);
638    SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
639                                        NULL, 0, MemVT);
640
641    // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
642    // extload we created.  This will cause general havok on the dag because
643    // anything below the conversion could be folded into other existing nodes.
644    // To avoid invalidating 'I', back it up to the convert node.
645    --I;
646    CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
647
648    // Now that we did that, the node is dead.  Increment the iterator to the
649    // next node to process, then delete N.
650    ++I;
651    CurDAG->DeleteNode(N);
652  }
653}
654
655/// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel
656/// when it has created a SelectionDAG for us to codegen.
657void X86DAGToDAGISel::InstructionSelect() {
658  const Function *F = MF->getFunction();
659  OptForSize = F->hasFnAttr(Attribute::OptimizeForSize);
660
661  DEBUG(BB->dump());
662  if (OptLevel != CodeGenOpt::None)
663    PreprocessForRMW();
664
665  // FIXME: This should only happen when not compiled with -O0.
666  PreprocessForFPConvert();
667
668  // Codegen the basic block.
669#ifndef NDEBUG
670  DEBUG(errs() << "===== Instruction selection begins:\n");
671  Indent = 0;
672#endif
673  SelectRoot(*CurDAG);
674#ifndef NDEBUG
675  DEBUG(errs() << "===== Instruction selection ends:\n");
676#endif
677
678  CurDAG->RemoveDeadNodes();
679}
680
681/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
682/// the main function.
683void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
684                                             MachineFrameInfo *MFI) {
685  const TargetInstrInfo *TII = TM.getInstrInfo();
686  if (Subtarget->isTargetCygMing())
687    BuildMI(BB, DebugLoc::getUnknownLoc(),
688            TII->get(X86::CALLpcrel32)).addExternalSymbol("__main");
689}
690
691void X86DAGToDAGISel::EmitFunctionEntryCode(Function &Fn, MachineFunction &MF) {
692  // If this is main, emit special code for main.
693  MachineBasicBlock *BB = MF.begin();
694  if (Fn.hasExternalLinkage() && Fn.getName() == "main")
695    EmitSpecialCodeForMain(BB, MF.getFrameInfo());
696}
697
698
699bool X86DAGToDAGISel::MatchSegmentBaseAddress(SDValue N,
700                                              X86ISelAddressMode &AM) {
701  assert(N.getOpcode() == X86ISD::SegmentBaseAddress);
702  SDValue Segment = N.getOperand(0);
703
704  if (AM.Segment.getNode() == 0) {
705    AM.Segment = Segment;
706    return false;
707  }
708
709  return true;
710}
711
712bool X86DAGToDAGISel::MatchLoad(SDValue N, X86ISelAddressMode &AM) {
713  // This optimization is valid because the GNU TLS model defines that
714  // gs:0 (or fs:0 on X86-64) contains its own address.
715  // For more information see http://people.redhat.com/drepper/tls.pdf
716
717  SDValue Address = N.getOperand(1);
718  if (Address.getOpcode() == X86ISD::SegmentBaseAddress &&
719      !MatchSegmentBaseAddress (Address, AM))
720    return false;
721
722  return true;
723}
724
725/// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
726/// into an addressing mode.  These wrap things that will resolve down into a
727/// symbol reference.  If no match is possible, this returns true, otherwise it
728/// returns false.
729bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
730  // If the addressing mode already has a symbol as the displacement, we can
731  // never match another symbol.
732  if (AM.hasSymbolicDisplacement())
733    return true;
734
735  SDValue N0 = N.getOperand(0);
736  CodeModel::Model M = TM.getCodeModel();
737
738  // Handle X86-64 rip-relative addresses.  We check this before checking direct
739  // folding because RIP is preferable to non-RIP accesses.
740  if (Subtarget->is64Bit() &&
741      // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
742      // they cannot be folded into immediate fields.
743      // FIXME: This can be improved for kernel and other models?
744      (M == CodeModel::Small || M == CodeModel::Kernel) &&
745      // Base and index reg must be 0 in order to use %rip as base and lowering
746      // must allow RIP.
747      !AM.hasBaseOrIndexReg() && N.getOpcode() == X86ISD::WrapperRIP) {
748    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
749      int64_t Offset = AM.Disp + G->getOffset();
750      if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true;
751      AM.GV = G->getGlobal();
752      AM.Disp = Offset;
753      AM.SymbolFlags = G->getTargetFlags();
754    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
755      int64_t Offset = AM.Disp + CP->getOffset();
756      if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true;
757      AM.CP = CP->getConstVal();
758      AM.Align = CP->getAlignment();
759      AM.Disp = Offset;
760      AM.SymbolFlags = CP->getTargetFlags();
761    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
762      AM.ES = S->getSymbol();
763      AM.SymbolFlags = S->getTargetFlags();
764    } else {
765      JumpTableSDNode *J = cast<JumpTableSDNode>(N0);
766      AM.JT = J->getIndex();
767      AM.SymbolFlags = J->getTargetFlags();
768    }
769
770    if (N.getOpcode() == X86ISD::WrapperRIP)
771      AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
772    return false;
773  }
774
775  // Handle the case when globals fit in our immediate field: This is true for
776  // X86-32 always and X86-64 when in -static -mcmodel=small mode.  In 64-bit
777  // mode, this results in a non-RIP-relative computation.
778  if (!Subtarget->is64Bit() ||
779      ((M == CodeModel::Small || M == CodeModel::Kernel) &&
780       TM.getRelocationModel() == Reloc::Static)) {
781    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
782      AM.GV = G->getGlobal();
783      AM.Disp += G->getOffset();
784      AM.SymbolFlags = G->getTargetFlags();
785    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
786      AM.CP = CP->getConstVal();
787      AM.Align = CP->getAlignment();
788      AM.Disp += CP->getOffset();
789      AM.SymbolFlags = CP->getTargetFlags();
790    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
791      AM.ES = S->getSymbol();
792      AM.SymbolFlags = S->getTargetFlags();
793    } else {
794      JumpTableSDNode *J = cast<JumpTableSDNode>(N0);
795      AM.JT = J->getIndex();
796      AM.SymbolFlags = J->getTargetFlags();
797    }
798    return false;
799  }
800
801  return true;
802}
803
804/// MatchAddress - Add the specified node to the specified addressing mode,
805/// returning true if it cannot be done.  This just pattern matches for the
806/// addressing mode.
807bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
808  if (MatchAddressRecursively(N, AM, 0))
809    return true;
810
811  // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
812  // a smaller encoding and avoids a scaled-index.
813  if (AM.Scale == 2 &&
814      AM.BaseType == X86ISelAddressMode::RegBase &&
815      AM.Base.Reg.getNode() == 0) {
816    AM.Base.Reg = AM.IndexReg;
817    AM.Scale = 1;
818  }
819
820  // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
821  // because it has a smaller encoding.
822  // TODO: Which other code models can use this?
823  if (TM.getCodeModel() == CodeModel::Small &&
824      Subtarget->is64Bit() &&
825      AM.Scale == 1 &&
826      AM.BaseType == X86ISelAddressMode::RegBase &&
827      AM.Base.Reg.getNode() == 0 &&
828      AM.IndexReg.getNode() == 0 &&
829      AM.SymbolFlags == X86II::MO_NO_FLAG &&
830      AM.hasSymbolicDisplacement())
831    AM.Base.Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
832
833  return false;
834}
835
836bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
837                                              unsigned Depth) {
838  bool is64Bit = Subtarget->is64Bit();
839  DebugLoc dl = N.getDebugLoc();
840  DEBUG({
841      errs() << "MatchAddress: ";
842      AM.dump();
843    });
844  // Limit recursion.
845  if (Depth > 5)
846    return MatchAddressBase(N, AM);
847
848  CodeModel::Model M = TM.getCodeModel();
849
850  // If this is already a %rip relative address, we can only merge immediates
851  // into it.  Instead of handling this in every case, we handle it here.
852  // RIP relative addressing: %rip + 32-bit displacement!
853  if (AM.isRIPRelative()) {
854    // FIXME: JumpTable and ExternalSymbol address currently don't like
855    // displacements.  It isn't very important, but this should be fixed for
856    // consistency.
857    if (!AM.ES && AM.JT != -1) return true;
858
859    if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N)) {
860      int64_t Val = AM.Disp + Cst->getSExtValue();
861      if (X86::isOffsetSuitableForCodeModel(Val, M,
862                                            AM.hasSymbolicDisplacement())) {
863        AM.Disp = Val;
864        return false;
865      }
866    }
867    return true;
868  }
869
870  switch (N.getOpcode()) {
871  default: break;
872  case ISD::Constant: {
873    uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
874    if (!is64Bit ||
875        X86::isOffsetSuitableForCodeModel(AM.Disp + Val, M,
876                                          AM.hasSymbolicDisplacement())) {
877      AM.Disp += Val;
878      return false;
879    }
880    break;
881  }
882
883  case X86ISD::SegmentBaseAddress:
884    if (!MatchSegmentBaseAddress(N, AM))
885      return false;
886    break;
887
888  case X86ISD::Wrapper:
889  case X86ISD::WrapperRIP:
890    if (!MatchWrapper(N, AM))
891      return false;
892    break;
893
894  case ISD::LOAD:
895    if (!MatchLoad(N, AM))
896      return false;
897    break;
898
899  case ISD::FrameIndex:
900    if (AM.BaseType == X86ISelAddressMode::RegBase
901        && AM.Base.Reg.getNode() == 0) {
902      AM.BaseType = X86ISelAddressMode::FrameIndexBase;
903      AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
904      return false;
905    }
906    break;
907
908  case ISD::SHL:
909    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1)
910      break;
911
912    if (ConstantSDNode
913          *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
914      unsigned Val = CN->getZExtValue();
915      // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
916      // that the base operand remains free for further matching. If
917      // the base doesn't end up getting used, a post-processing step
918      // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
919      if (Val == 1 || Val == 2 || Val == 3) {
920        AM.Scale = 1 << Val;
921        SDValue ShVal = N.getNode()->getOperand(0);
922
923        // Okay, we know that we have a scale by now.  However, if the scaled
924        // value is an add of something and a constant, we can fold the
925        // constant into the disp field here.
926        if (ShVal.getNode()->getOpcode() == ISD::ADD && ShVal.hasOneUse() &&
927            isa<ConstantSDNode>(ShVal.getNode()->getOperand(1))) {
928          AM.IndexReg = ShVal.getNode()->getOperand(0);
929          ConstantSDNode *AddVal =
930            cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
931          uint64_t Disp = AM.Disp + (AddVal->getSExtValue() << Val);
932          if (!is64Bit ||
933              X86::isOffsetSuitableForCodeModel(Disp, M,
934                                                AM.hasSymbolicDisplacement()))
935            AM.Disp = Disp;
936          else
937            AM.IndexReg = ShVal;
938        } else {
939          AM.IndexReg = ShVal;
940        }
941        return false;
942      }
943    break;
944    }
945
946  case ISD::SMUL_LOHI:
947  case ISD::UMUL_LOHI:
948    // A mul_lohi where we need the low part can be folded as a plain multiply.
949    if (N.getResNo() != 0) break;
950    // FALL THROUGH
951  case ISD::MUL:
952  case X86ISD::MUL_IMM:
953    // X*[3,5,9] -> X+X*[2,4,8]
954    if (AM.BaseType == X86ISelAddressMode::RegBase &&
955        AM.Base.Reg.getNode() == 0 &&
956        AM.IndexReg.getNode() == 0) {
957      if (ConstantSDNode
958            *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
959        if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
960            CN->getZExtValue() == 9) {
961          AM.Scale = unsigned(CN->getZExtValue())-1;
962
963          SDValue MulVal = N.getNode()->getOperand(0);
964          SDValue Reg;
965
966          // Okay, we know that we have a scale by now.  However, if the scaled
967          // value is an add of something and a constant, we can fold the
968          // constant into the disp field here.
969          if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
970              isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
971            Reg = MulVal.getNode()->getOperand(0);
972            ConstantSDNode *AddVal =
973              cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
974            uint64_t Disp = AM.Disp + AddVal->getSExtValue() *
975                                      CN->getZExtValue();
976            if (!is64Bit ||
977                X86::isOffsetSuitableForCodeModel(Disp, M,
978                                                  AM.hasSymbolicDisplacement()))
979              AM.Disp = Disp;
980            else
981              Reg = N.getNode()->getOperand(0);
982          } else {
983            Reg = N.getNode()->getOperand(0);
984          }
985
986          AM.IndexReg = AM.Base.Reg = Reg;
987          return false;
988        }
989    }
990    break;
991
992  case ISD::SUB: {
993    // Given A-B, if A can be completely folded into the address and
994    // the index field with the index field unused, use -B as the index.
995    // This is a win if a has multiple parts that can be folded into
996    // the address. Also, this saves a mov if the base register has
997    // other uses, since it avoids a two-address sub instruction, however
998    // it costs an additional mov if the index register has other uses.
999
1000    // Test if the LHS of the sub can be folded.
1001    X86ISelAddressMode Backup = AM;
1002    if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
1003      AM = Backup;
1004      break;
1005    }
1006    // Test if the index field is free for use.
1007    if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
1008      AM = Backup;
1009      break;
1010    }
1011    int Cost = 0;
1012    SDValue RHS = N.getNode()->getOperand(1);
1013    // If the RHS involves a register with multiple uses, this
1014    // transformation incurs an extra mov, due to the neg instruction
1015    // clobbering its operand.
1016    if (!RHS.getNode()->hasOneUse() ||
1017        RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
1018        RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
1019        RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
1020        (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
1021         RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
1022      ++Cost;
1023    // If the base is a register with multiple uses, this
1024    // transformation may save a mov.
1025    if ((AM.BaseType == X86ISelAddressMode::RegBase &&
1026         AM.Base.Reg.getNode() &&
1027         !AM.Base.Reg.getNode()->hasOneUse()) ||
1028        AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1029      --Cost;
1030    // If the folded LHS was interesting, this transformation saves
1031    // address arithmetic.
1032    if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
1033        ((AM.Disp != 0) && (Backup.Disp == 0)) +
1034        (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
1035      --Cost;
1036    // If it doesn't look like it may be an overall win, don't do it.
1037    if (Cost >= 0) {
1038      AM = Backup;
1039      break;
1040    }
1041
1042    // Ok, the transformation is legal and appears profitable. Go for it.
1043    SDValue Zero = CurDAG->getConstant(0, N.getValueType());
1044    SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
1045    AM.IndexReg = Neg;
1046    AM.Scale = 1;
1047
1048    // Insert the new nodes into the topological ordering.
1049    if (Zero.getNode()->getNodeId() == -1 ||
1050        Zero.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1051      CurDAG->RepositionNode(N.getNode(), Zero.getNode());
1052      Zero.getNode()->setNodeId(N.getNode()->getNodeId());
1053    }
1054    if (Neg.getNode()->getNodeId() == -1 ||
1055        Neg.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1056      CurDAG->RepositionNode(N.getNode(), Neg.getNode());
1057      Neg.getNode()->setNodeId(N.getNode()->getNodeId());
1058    }
1059    return false;
1060  }
1061
1062  case ISD::ADD: {
1063    X86ISelAddressMode Backup = AM;
1064    if (!MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1) &&
1065        !MatchAddressRecursively(N.getNode()->getOperand(1), AM, Depth+1))
1066      return false;
1067    AM = Backup;
1068    if (!MatchAddressRecursively(N.getNode()->getOperand(1), AM, Depth+1) &&
1069        !MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1))
1070      return false;
1071    AM = Backup;
1072
1073    // If we couldn't fold both operands into the address at the same time,
1074    // see if we can just put each operand into a register and fold at least
1075    // the add.
1076    if (AM.BaseType == X86ISelAddressMode::RegBase &&
1077        !AM.Base.Reg.getNode() &&
1078        !AM.IndexReg.getNode()) {
1079      AM.Base.Reg = N.getNode()->getOperand(0);
1080      AM.IndexReg = N.getNode()->getOperand(1);
1081      AM.Scale = 1;
1082      return false;
1083    }
1084    break;
1085  }
1086
1087  case ISD::OR:
1088    // Handle "X | C" as "X + C" iff X is known to have C bits clear.
1089    if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1090      X86ISelAddressMode Backup = AM;
1091      uint64_t Offset = CN->getSExtValue();
1092      // Start with the LHS as an addr mode.
1093      if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1094          // Address could not have picked a GV address for the displacement.
1095          AM.GV == NULL &&
1096          // On x86-64, the resultant disp must fit in 32-bits.
1097          (!is64Bit ||
1098           X86::isOffsetSuitableForCodeModel(AM.Disp + Offset, M,
1099                                             AM.hasSymbolicDisplacement())) &&
1100          // Check to see if the LHS & C is zero.
1101          CurDAG->MaskedValueIsZero(N.getOperand(0), CN->getAPIntValue())) {
1102        AM.Disp += Offset;
1103        return false;
1104      }
1105      AM = Backup;
1106    }
1107    break;
1108
1109  case ISD::AND: {
1110    // Perform some heroic transforms on an and of a constant-count shift
1111    // with a constant to enable use of the scaled offset field.
1112
1113    SDValue Shift = N.getOperand(0);
1114    if (Shift.getNumOperands() != 2) break;
1115
1116    // Scale must not be used already.
1117    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
1118
1119    SDValue X = Shift.getOperand(0);
1120    ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N.getOperand(1));
1121    ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
1122    if (!C1 || !C2) break;
1123
1124    // Handle "(X >> (8-C1)) & C2" as "(X >> 8) & 0xff)" if safe. This
1125    // allows us to convert the shift and and into an h-register extract and
1126    // a scaled index.
1127    if (Shift.getOpcode() == ISD::SRL && Shift.hasOneUse()) {
1128      unsigned ScaleLog = 8 - C1->getZExtValue();
1129      if (ScaleLog > 0 && ScaleLog < 4 &&
1130          C2->getZExtValue() == (UINT64_C(0xff) << ScaleLog)) {
1131        SDValue Eight = CurDAG->getConstant(8, MVT::i8);
1132        SDValue Mask = CurDAG->getConstant(0xff, N.getValueType());
1133        SDValue Srl = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
1134                                      X, Eight);
1135        SDValue And = CurDAG->getNode(ISD::AND, dl, N.getValueType(),
1136                                      Srl, Mask);
1137        SDValue ShlCount = CurDAG->getConstant(ScaleLog, MVT::i8);
1138        SDValue Shl = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
1139                                      And, ShlCount);
1140
1141        // Insert the new nodes into the topological ordering.
1142        if (Eight.getNode()->getNodeId() == -1 ||
1143            Eight.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1144          CurDAG->RepositionNode(X.getNode(), Eight.getNode());
1145          Eight.getNode()->setNodeId(X.getNode()->getNodeId());
1146        }
1147        if (Mask.getNode()->getNodeId() == -1 ||
1148            Mask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1149          CurDAG->RepositionNode(X.getNode(), Mask.getNode());
1150          Mask.getNode()->setNodeId(X.getNode()->getNodeId());
1151        }
1152        if (Srl.getNode()->getNodeId() == -1 ||
1153            Srl.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
1154          CurDAG->RepositionNode(Shift.getNode(), Srl.getNode());
1155          Srl.getNode()->setNodeId(Shift.getNode()->getNodeId());
1156        }
1157        if (And.getNode()->getNodeId() == -1 ||
1158            And.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1159          CurDAG->RepositionNode(N.getNode(), And.getNode());
1160          And.getNode()->setNodeId(N.getNode()->getNodeId());
1161        }
1162        if (ShlCount.getNode()->getNodeId() == -1 ||
1163            ShlCount.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1164          CurDAG->RepositionNode(X.getNode(), ShlCount.getNode());
1165          ShlCount.getNode()->setNodeId(N.getNode()->getNodeId());
1166        }
1167        if (Shl.getNode()->getNodeId() == -1 ||
1168            Shl.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1169          CurDAG->RepositionNode(N.getNode(), Shl.getNode());
1170          Shl.getNode()->setNodeId(N.getNode()->getNodeId());
1171        }
1172        CurDAG->ReplaceAllUsesWith(N, Shl);
1173        AM.IndexReg = And;
1174        AM.Scale = (1 << ScaleLog);
1175        return false;
1176      }
1177    }
1178
1179    // Handle "(X << C1) & C2" as "(X & (C2>>C1)) << C1" if safe and if this
1180    // allows us to fold the shift into this addressing mode.
1181    if (Shift.getOpcode() != ISD::SHL) break;
1182
1183    // Not likely to be profitable if either the AND or SHIFT node has more
1184    // than one use (unless all uses are for address computation). Besides,
1185    // isel mechanism requires their node ids to be reused.
1186    if (!N.hasOneUse() || !Shift.hasOneUse())
1187      break;
1188
1189    // Verify that the shift amount is something we can fold.
1190    unsigned ShiftCst = C1->getZExtValue();
1191    if (ShiftCst != 1 && ShiftCst != 2 && ShiftCst != 3)
1192      break;
1193
1194    // Get the new AND mask, this folds to a constant.
1195    SDValue NewANDMask = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
1196                                         SDValue(C2, 0), SDValue(C1, 0));
1197    SDValue NewAND = CurDAG->getNode(ISD::AND, dl, N.getValueType(), X,
1198                                     NewANDMask);
1199    SDValue NewSHIFT = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
1200                                       NewAND, SDValue(C1, 0));
1201
1202    // Insert the new nodes into the topological ordering.
1203    if (C1->getNodeId() > X.getNode()->getNodeId()) {
1204      CurDAG->RepositionNode(X.getNode(), C1);
1205      C1->setNodeId(X.getNode()->getNodeId());
1206    }
1207    if (NewANDMask.getNode()->getNodeId() == -1 ||
1208        NewANDMask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1209      CurDAG->RepositionNode(X.getNode(), NewANDMask.getNode());
1210      NewANDMask.getNode()->setNodeId(X.getNode()->getNodeId());
1211    }
1212    if (NewAND.getNode()->getNodeId() == -1 ||
1213        NewAND.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
1214      CurDAG->RepositionNode(Shift.getNode(), NewAND.getNode());
1215      NewAND.getNode()->setNodeId(Shift.getNode()->getNodeId());
1216    }
1217    if (NewSHIFT.getNode()->getNodeId() == -1 ||
1218        NewSHIFT.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1219      CurDAG->RepositionNode(N.getNode(), NewSHIFT.getNode());
1220      NewSHIFT.getNode()->setNodeId(N.getNode()->getNodeId());
1221    }
1222
1223    CurDAG->ReplaceAllUsesWith(N, NewSHIFT);
1224
1225    AM.Scale = 1 << ShiftCst;
1226    AM.IndexReg = NewAND;
1227    return false;
1228  }
1229  }
1230
1231  return MatchAddressBase(N, AM);
1232}
1233
1234/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
1235/// specified addressing mode without any further recursion.
1236bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
1237  // Is the base register already occupied?
1238  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.getNode()) {
1239    // If so, check to see if the scale index register is set.
1240    if (AM.IndexReg.getNode() == 0) {
1241      AM.IndexReg = N;
1242      AM.Scale = 1;
1243      return false;
1244    }
1245
1246    // Otherwise, we cannot select it.
1247    return true;
1248  }
1249
1250  // Default, generate it as a register.
1251  AM.BaseType = X86ISelAddressMode::RegBase;
1252  AM.Base.Reg = N;
1253  return false;
1254}
1255
1256/// SelectAddr - returns true if it is able pattern match an addressing mode.
1257/// It returns the operands which make up the maximal addressing mode it can
1258/// match by reference.
1259bool X86DAGToDAGISel::SelectAddr(SDValue Op, SDValue N, SDValue &Base,
1260                                 SDValue &Scale, SDValue &Index,
1261                                 SDValue &Disp, SDValue &Segment) {
1262  X86ISelAddressMode AM;
1263  bool Done = false;
1264  if (AvoidDupAddrCompute && !N.hasOneUse()) {
1265    unsigned Opcode = N.getOpcode();
1266    if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex &&
1267        Opcode != X86ISD::Wrapper && Opcode != X86ISD::WrapperRIP) {
1268      // If we are able to fold N into addressing mode, then we'll allow it even
1269      // if N has multiple uses. In general, addressing computation is used as
1270      // addresses by all of its uses. But watch out for CopyToReg uses, that
1271      // means the address computation is liveout. It will be computed by a LEA
1272      // so we want to avoid computing the address twice.
1273      for (SDNode::use_iterator UI = N.getNode()->use_begin(),
1274             UE = N.getNode()->use_end(); UI != UE; ++UI) {
1275        if (UI->getOpcode() == ISD::CopyToReg) {
1276          MatchAddressBase(N, AM);
1277          Done = true;
1278          break;
1279        }
1280      }
1281    }
1282  }
1283
1284  if (!Done && MatchAddress(N, AM))
1285    return false;
1286
1287  EVT VT = N.getValueType();
1288  if (AM.BaseType == X86ISelAddressMode::RegBase) {
1289    if (!AM.Base.Reg.getNode())
1290      AM.Base.Reg = CurDAG->getRegister(0, VT);
1291  }
1292
1293  if (!AM.IndexReg.getNode())
1294    AM.IndexReg = CurDAG->getRegister(0, VT);
1295
1296  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1297  return true;
1298}
1299
1300/// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
1301/// match a load whose top elements are either undef or zeros.  The load flavor
1302/// is derived from the type of N, which is either v4f32 or v2f64.
1303bool X86DAGToDAGISel::SelectScalarSSELoad(SDValue Op, SDValue Pred,
1304                                          SDValue N, SDValue &Base,
1305                                          SDValue &Scale, SDValue &Index,
1306                                          SDValue &Disp, SDValue &Segment,
1307                                          SDValue &InChain,
1308                                          SDValue &OutChain) {
1309  if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1310    InChain = N.getOperand(0).getValue(1);
1311    if (ISD::isNON_EXTLoad(InChain.getNode()) &&
1312        InChain.getValue(0).hasOneUse() &&
1313        N.hasOneUse() &&
1314        IsLegalAndProfitableToFold(N.getNode(), Pred.getNode(), Op.getNode())) {
1315      LoadSDNode *LD = cast<LoadSDNode>(InChain);
1316      if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1317        return false;
1318      OutChain = LD->getChain();
1319      return true;
1320    }
1321  }
1322
1323  // Also handle the case where we explicitly require zeros in the top
1324  // elements.  This is a vector shuffle from the zero vector.
1325  if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1326      // Check to see if the top elements are all zeros (or bitcast of zeros).
1327      N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
1328      N.getOperand(0).getNode()->hasOneUse() &&
1329      ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
1330      N.getOperand(0).getOperand(0).hasOneUse()) {
1331    // Okay, this is a zero extending load.  Fold it.
1332    LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
1333    if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1334      return false;
1335    OutChain = LD->getChain();
1336    InChain = SDValue(LD, 1);
1337    return true;
1338  }
1339  return false;
1340}
1341
1342
1343/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
1344/// mode it matches can be cost effectively emitted as an LEA instruction.
1345bool X86DAGToDAGISel::SelectLEAAddr(SDValue Op, SDValue N,
1346                                    SDValue &Base, SDValue &Scale,
1347                                    SDValue &Index, SDValue &Disp) {
1348  X86ISelAddressMode AM;
1349
1350  // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
1351  // segments.
1352  SDValue Copy = AM.Segment;
1353  SDValue T = CurDAG->getRegister(0, MVT::i32);
1354  AM.Segment = T;
1355  if (MatchAddress(N, AM))
1356    return false;
1357  assert (T == AM.Segment);
1358  AM.Segment = Copy;
1359
1360  EVT VT = N.getValueType();
1361  unsigned Complexity = 0;
1362  if (AM.BaseType == X86ISelAddressMode::RegBase)
1363    if (AM.Base.Reg.getNode())
1364      Complexity = 1;
1365    else
1366      AM.Base.Reg = CurDAG->getRegister(0, VT);
1367  else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1368    Complexity = 4;
1369
1370  if (AM.IndexReg.getNode())
1371    Complexity++;
1372  else
1373    AM.IndexReg = CurDAG->getRegister(0, VT);
1374
1375  // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1376  // a simple shift.
1377  if (AM.Scale > 1)
1378    Complexity++;
1379
1380  // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1381  // to a LEA. This is determined with some expermentation but is by no means
1382  // optimal (especially for code size consideration). LEA is nice because of
1383  // its three-address nature. Tweak the cost function again when we can run
1384  // convertToThreeAddress() at register allocation time.
1385  if (AM.hasSymbolicDisplacement()) {
1386    // For X86-64, we should always use lea to materialize RIP relative
1387    // addresses.
1388    if (Subtarget->is64Bit())
1389      Complexity = 4;
1390    else
1391      Complexity += 2;
1392  }
1393
1394  if (AM.Disp && (AM.Base.Reg.getNode() || AM.IndexReg.getNode()))
1395    Complexity++;
1396
1397  // If it isn't worth using an LEA, reject it.
1398  if (Complexity <= 2)
1399    return false;
1400
1401  SDValue Segment;
1402  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1403  return true;
1404}
1405
1406/// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
1407bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue Op, SDValue N, SDValue &Base,
1408                                        SDValue &Scale, SDValue &Index,
1409                                        SDValue &Disp) {
1410  assert(Op.getOpcode() == X86ISD::TLSADDR);
1411  assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
1412  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
1413
1414  X86ISelAddressMode AM;
1415  AM.GV = GA->getGlobal();
1416  AM.Disp += GA->getOffset();
1417  AM.Base.Reg = CurDAG->getRegister(0, N.getValueType());
1418  AM.SymbolFlags = GA->getTargetFlags();
1419
1420  if (N.getValueType() == MVT::i32) {
1421    AM.Scale = 1;
1422    AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
1423  } else {
1424    AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
1425  }
1426
1427  SDValue Segment;
1428  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1429  return true;
1430}
1431
1432
1433bool X86DAGToDAGISel::TryFoldLoad(SDValue P, SDValue N,
1434                                  SDValue &Base, SDValue &Scale,
1435                                  SDValue &Index, SDValue &Disp,
1436                                  SDValue &Segment) {
1437  if (ISD::isNON_EXTLoad(N.getNode()) &&
1438      N.hasOneUse() &&
1439      IsLegalAndProfitableToFold(N.getNode(), P.getNode(), P.getNode()))
1440    return SelectAddr(P, N.getOperand(1), Base, Scale, Index, Disp, Segment);
1441  return false;
1442}
1443
1444/// getGlobalBaseReg - Return an SDNode that returns the value of
1445/// the global base register. Output instructions required to
1446/// initialize the global base register, if necessary.
1447///
1448SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
1449  unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
1450  return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
1451}
1452
1453static SDNode *FindCallStartFromCall(SDNode *Node) {
1454  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
1455    assert(Node->getOperand(0).getValueType() == MVT::Other &&
1456         "Node doesn't have a token chain argument!");
1457  return FindCallStartFromCall(Node->getOperand(0).getNode());
1458}
1459
1460SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
1461  SDValue Chain = Node->getOperand(0);
1462  SDValue In1 = Node->getOperand(1);
1463  SDValue In2L = Node->getOperand(2);
1464  SDValue In2H = Node->getOperand(3);
1465  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1466  if (!SelectAddr(In1, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1467    return NULL;
1468  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1469  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1470  const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain};
1471  SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(),
1472                                           MVT::i32, MVT::i32, MVT::Other, Ops,
1473                                           array_lengthof(Ops));
1474  cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
1475  return ResNode;
1476}
1477
1478SDNode *X86DAGToDAGISel::SelectAtomicLoadAdd(SDNode *Node, EVT NVT) {
1479  if (Node->hasAnyUseOfValue(0))
1480    return 0;
1481
1482  // Optimize common patterns for __sync_add_and_fetch and
1483  // __sync_sub_and_fetch where the result is not used. This allows us
1484  // to use "lock" version of add, sub, inc, dec instructions.
1485  // FIXME: Do not use special instructions but instead add the "lock"
1486  // prefix to the target node somehow. The extra information will then be
1487  // transferred to machine instruction and it denotes the prefix.
1488  SDValue Chain = Node->getOperand(0);
1489  SDValue Ptr = Node->getOperand(1);
1490  SDValue Val = Node->getOperand(2);
1491  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1492  if (!SelectAddr(Ptr, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1493    return 0;
1494
1495  bool isInc = false, isDec = false, isSub = false, isCN = false;
1496  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val);
1497  if (CN) {
1498    isCN = true;
1499    int64_t CNVal = CN->getSExtValue();
1500    if (CNVal == 1)
1501      isInc = true;
1502    else if (CNVal == -1)
1503      isDec = true;
1504    else if (CNVal >= 0)
1505      Val = CurDAG->getTargetConstant(CNVal, NVT);
1506    else {
1507      isSub = true;
1508      Val = CurDAG->getTargetConstant(-CNVal, NVT);
1509    }
1510  } else if (Val.hasOneUse() &&
1511             Val.getOpcode() == ISD::SUB &&
1512             X86::isZeroNode(Val.getOperand(0))) {
1513    isSub = true;
1514    Val = Val.getOperand(1);
1515  }
1516
1517  unsigned Opc = 0;
1518  switch (NVT.getSimpleVT().SimpleTy) {
1519  default: return 0;
1520  case MVT::i8:
1521    if (isInc)
1522      Opc = X86::LOCK_INC8m;
1523    else if (isDec)
1524      Opc = X86::LOCK_DEC8m;
1525    else if (isSub) {
1526      if (isCN)
1527        Opc = X86::LOCK_SUB8mi;
1528      else
1529        Opc = X86::LOCK_SUB8mr;
1530    } else {
1531      if (isCN)
1532        Opc = X86::LOCK_ADD8mi;
1533      else
1534        Opc = X86::LOCK_ADD8mr;
1535    }
1536    break;
1537  case MVT::i16:
1538    if (isInc)
1539      Opc = X86::LOCK_INC16m;
1540    else if (isDec)
1541      Opc = X86::LOCK_DEC16m;
1542    else if (isSub) {
1543      if (isCN) {
1544        if (Predicate_i16immSExt8(Val.getNode()))
1545          Opc = X86::LOCK_SUB16mi8;
1546        else
1547          Opc = X86::LOCK_SUB16mi;
1548      } else
1549        Opc = X86::LOCK_SUB16mr;
1550    } else {
1551      if (isCN) {
1552        if (Predicate_i16immSExt8(Val.getNode()))
1553          Opc = X86::LOCK_ADD16mi8;
1554        else
1555          Opc = X86::LOCK_ADD16mi;
1556      } else
1557        Opc = X86::LOCK_ADD16mr;
1558    }
1559    break;
1560  case MVT::i32:
1561    if (isInc)
1562      Opc = X86::LOCK_INC32m;
1563    else if (isDec)
1564      Opc = X86::LOCK_DEC32m;
1565    else if (isSub) {
1566      if (isCN) {
1567        if (Predicate_i32immSExt8(Val.getNode()))
1568          Opc = X86::LOCK_SUB32mi8;
1569        else
1570          Opc = X86::LOCK_SUB32mi;
1571      } else
1572        Opc = X86::LOCK_SUB32mr;
1573    } else {
1574      if (isCN) {
1575        if (Predicate_i32immSExt8(Val.getNode()))
1576          Opc = X86::LOCK_ADD32mi8;
1577        else
1578          Opc = X86::LOCK_ADD32mi;
1579      } else
1580        Opc = X86::LOCK_ADD32mr;
1581    }
1582    break;
1583  case MVT::i64:
1584    if (isInc)
1585      Opc = X86::LOCK_INC64m;
1586    else if (isDec)
1587      Opc = X86::LOCK_DEC64m;
1588    else if (isSub) {
1589      Opc = X86::LOCK_SUB64mr;
1590      if (isCN) {
1591        if (Predicate_i64immSExt8(Val.getNode()))
1592          Opc = X86::LOCK_SUB64mi8;
1593        else if (Predicate_i64immSExt32(Val.getNode()))
1594          Opc = X86::LOCK_SUB64mi32;
1595      }
1596    } else {
1597      Opc = X86::LOCK_ADD64mr;
1598      if (isCN) {
1599        if (Predicate_i64immSExt8(Val.getNode()))
1600          Opc = X86::LOCK_ADD64mi8;
1601        else if (Predicate_i64immSExt32(Val.getNode()))
1602          Opc = X86::LOCK_ADD64mi32;
1603      }
1604    }
1605    break;
1606  }
1607
1608  DebugLoc dl = Node->getDebugLoc();
1609  SDValue Undef = SDValue(CurDAG->getMachineNode(TargetInstrInfo::IMPLICIT_DEF,
1610                                                 dl, NVT), 0);
1611  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1612  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1613  if (isInc || isDec) {
1614    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain };
1615    SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 6), 0);
1616    cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1617    SDValue RetVals[] = { Undef, Ret };
1618    return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1619  } else {
1620    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
1621    SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 7), 0);
1622    cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1623    SDValue RetVals[] = { Undef, Ret };
1624    return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1625  }
1626}
1627
1628/// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has
1629/// any uses which require the SF or OF bits to be accurate.
1630static bool HasNoSignedComparisonUses(SDNode *N) {
1631  // Examine each user of the node.
1632  for (SDNode::use_iterator UI = N->use_begin(),
1633         UE = N->use_end(); UI != UE; ++UI) {
1634    // Only examine CopyToReg uses.
1635    if (UI->getOpcode() != ISD::CopyToReg)
1636      return false;
1637    // Only examine CopyToReg uses that copy to EFLAGS.
1638    if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
1639          X86::EFLAGS)
1640      return false;
1641    // Examine each user of the CopyToReg use.
1642    for (SDNode::use_iterator FlagUI = UI->use_begin(),
1643           FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
1644      // Only examine the Flag result.
1645      if (FlagUI.getUse().getResNo() != 1) continue;
1646      // Anything unusual: assume conservatively.
1647      if (!FlagUI->isMachineOpcode()) return false;
1648      // Examine the opcode of the user.
1649      switch (FlagUI->getMachineOpcode()) {
1650      // These comparisons don't treat the most significant bit specially.
1651      case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
1652      case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
1653      case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
1654      case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
1655      case X86::JA: case X86::JAE: case X86::JB: case X86::JBE:
1656      case X86::JE: case X86::JNE: case X86::JP: case X86::JNP:
1657      case X86::CMOVA16rr: case X86::CMOVA16rm:
1658      case X86::CMOVA32rr: case X86::CMOVA32rm:
1659      case X86::CMOVA64rr: case X86::CMOVA64rm:
1660      case X86::CMOVAE16rr: case X86::CMOVAE16rm:
1661      case X86::CMOVAE32rr: case X86::CMOVAE32rm:
1662      case X86::CMOVAE64rr: case X86::CMOVAE64rm:
1663      case X86::CMOVB16rr: case X86::CMOVB16rm:
1664      case X86::CMOVB32rr: case X86::CMOVB32rm:
1665      case X86::CMOVB64rr: case X86::CMOVB64rm:
1666      case X86::CMOVBE16rr: case X86::CMOVBE16rm:
1667      case X86::CMOVBE32rr: case X86::CMOVBE32rm:
1668      case X86::CMOVBE64rr: case X86::CMOVBE64rm:
1669      case X86::CMOVE16rr: case X86::CMOVE16rm:
1670      case X86::CMOVE32rr: case X86::CMOVE32rm:
1671      case X86::CMOVE64rr: case X86::CMOVE64rm:
1672      case X86::CMOVNE16rr: case X86::CMOVNE16rm:
1673      case X86::CMOVNE32rr: case X86::CMOVNE32rm:
1674      case X86::CMOVNE64rr: case X86::CMOVNE64rm:
1675      case X86::CMOVNP16rr: case X86::CMOVNP16rm:
1676      case X86::CMOVNP32rr: case X86::CMOVNP32rm:
1677      case X86::CMOVNP64rr: case X86::CMOVNP64rm:
1678      case X86::CMOVP16rr: case X86::CMOVP16rm:
1679      case X86::CMOVP32rr: case X86::CMOVP32rm:
1680      case X86::CMOVP64rr: case X86::CMOVP64rm:
1681        continue;
1682      // Anything else: assume conservatively.
1683      default: return false;
1684      }
1685    }
1686  }
1687  return true;
1688}
1689
1690SDNode *X86DAGToDAGISel::Select(SDValue N) {
1691  SDNode *Node = N.getNode();
1692  EVT NVT = Node->getValueType(0);
1693  unsigned Opc, MOpc;
1694  unsigned Opcode = Node->getOpcode();
1695  DebugLoc dl = Node->getDebugLoc();
1696
1697#ifndef NDEBUG
1698  DEBUG({
1699      errs() << std::string(Indent, ' ') << "Selecting: ";
1700      Node->dump(CurDAG);
1701      errs() << '\n';
1702    });
1703  Indent += 2;
1704#endif
1705
1706  if (Node->isMachineOpcode()) {
1707#ifndef NDEBUG
1708    DEBUG({
1709        errs() << std::string(Indent-2, ' ') << "== ";
1710        Node->dump(CurDAG);
1711        errs() << '\n';
1712      });
1713    Indent -= 2;
1714#endif
1715    return NULL;   // Already selected.
1716  }
1717
1718  switch (Opcode) {
1719  default: break;
1720  case X86ISD::GlobalBaseReg:
1721    return getGlobalBaseReg();
1722
1723  case X86ISD::ATOMOR64_DAG:
1724    return SelectAtomic64(Node, X86::ATOMOR6432);
1725  case X86ISD::ATOMXOR64_DAG:
1726    return SelectAtomic64(Node, X86::ATOMXOR6432);
1727  case X86ISD::ATOMADD64_DAG:
1728    return SelectAtomic64(Node, X86::ATOMADD6432);
1729  case X86ISD::ATOMSUB64_DAG:
1730    return SelectAtomic64(Node, X86::ATOMSUB6432);
1731  case X86ISD::ATOMNAND64_DAG:
1732    return SelectAtomic64(Node, X86::ATOMNAND6432);
1733  case X86ISD::ATOMAND64_DAG:
1734    return SelectAtomic64(Node, X86::ATOMAND6432);
1735  case X86ISD::ATOMSWAP64_DAG:
1736    return SelectAtomic64(Node, X86::ATOMSWAP6432);
1737
1738  case ISD::ATOMIC_LOAD_ADD: {
1739    SDNode *RetVal = SelectAtomicLoadAdd(Node, NVT);
1740    if (RetVal)
1741      return RetVal;
1742    break;
1743  }
1744
1745  case ISD::SMUL_LOHI:
1746  case ISD::UMUL_LOHI: {
1747    SDValue N0 = Node->getOperand(0);
1748    SDValue N1 = Node->getOperand(1);
1749
1750    bool isSigned = Opcode == ISD::SMUL_LOHI;
1751    if (!isSigned) {
1752      switch (NVT.getSimpleVT().SimpleTy) {
1753      default: llvm_unreachable("Unsupported VT!");
1754      case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
1755      case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
1756      case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
1757      case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
1758      }
1759    } else {
1760      switch (NVT.getSimpleVT().SimpleTy) {
1761      default: llvm_unreachable("Unsupported VT!");
1762      case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
1763      case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
1764      case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
1765      case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
1766      }
1767    }
1768
1769    unsigned LoReg, HiReg;
1770    switch (NVT.getSimpleVT().SimpleTy) {
1771    default: llvm_unreachable("Unsupported VT!");
1772    case MVT::i8:  LoReg = X86::AL;  HiReg = X86::AH;  break;
1773    case MVT::i16: LoReg = X86::AX;  HiReg = X86::DX;  break;
1774    case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
1775    case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break;
1776    }
1777
1778    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1779    bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1780    // Multiply is commmutative.
1781    if (!foldedLoad) {
1782      foldedLoad = TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1783      if (foldedLoad)
1784        std::swap(N0, N1);
1785    }
1786
1787    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
1788                                            N0, SDValue()).getValue(1);
1789
1790    if (foldedLoad) {
1791      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
1792                        InFlag };
1793      SDNode *CNode =
1794        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Flag, Ops,
1795                               array_lengthof(Ops));
1796      InFlag = SDValue(CNode, 1);
1797      // Update the chain.
1798      ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1799    } else {
1800      InFlag =
1801        SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Flag, N1, InFlag), 0);
1802    }
1803
1804    // Copy the low half of the result, if it is needed.
1805    if (!N.getValue(0).use_empty()) {
1806      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1807                                                LoReg, NVT, InFlag);
1808      InFlag = Result.getValue(2);
1809      ReplaceUses(N.getValue(0), Result);
1810#ifndef NDEBUG
1811      DEBUG({
1812          errs() << std::string(Indent-2, ' ') << "=> ";
1813          Result.getNode()->dump(CurDAG);
1814          errs() << '\n';
1815        });
1816#endif
1817    }
1818    // Copy the high half of the result, if it is needed.
1819    if (!N.getValue(1).use_empty()) {
1820      SDValue Result;
1821      if (HiReg == X86::AH && Subtarget->is64Bit()) {
1822        // Prevent use of AH in a REX instruction by referencing AX instead.
1823        // Shift it down 8 bits.
1824        Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1825                                        X86::AX, MVT::i16, InFlag);
1826        InFlag = Result.getValue(2);
1827        Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
1828                                                Result,
1829                                   CurDAG->getTargetConstant(8, MVT::i8)), 0);
1830        // Then truncate it down to i8.
1831        Result = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT, dl,
1832                                                MVT::i8, Result);
1833      } else {
1834        Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1835                                        HiReg, NVT, InFlag);
1836        InFlag = Result.getValue(2);
1837      }
1838      ReplaceUses(N.getValue(1), Result);
1839#ifndef NDEBUG
1840      DEBUG({
1841          errs() << std::string(Indent-2, ' ') << "=> ";
1842          Result.getNode()->dump(CurDAG);
1843          errs() << '\n';
1844        });
1845#endif
1846    }
1847
1848#ifndef NDEBUG
1849    Indent -= 2;
1850#endif
1851
1852    return NULL;
1853  }
1854
1855  case ISD::SDIVREM:
1856  case ISD::UDIVREM: {
1857    SDValue N0 = Node->getOperand(0);
1858    SDValue N1 = Node->getOperand(1);
1859
1860    bool isSigned = Opcode == ISD::SDIVREM;
1861    if (!isSigned) {
1862      switch (NVT.getSimpleVT().SimpleTy) {
1863      default: llvm_unreachable("Unsupported VT!");
1864      case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
1865      case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
1866      case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
1867      case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
1868      }
1869    } else {
1870      switch (NVT.getSimpleVT().SimpleTy) {
1871      default: llvm_unreachable("Unsupported VT!");
1872      case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
1873      case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
1874      case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
1875      case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
1876      }
1877    }
1878
1879    unsigned LoReg, HiReg;
1880    unsigned ClrOpcode, SExtOpcode;
1881    switch (NVT.getSimpleVT().SimpleTy) {
1882    default: llvm_unreachable("Unsupported VT!");
1883    case MVT::i8:
1884      LoReg = X86::AL;  HiReg = X86::AH;
1885      ClrOpcode  = 0;
1886      SExtOpcode = X86::CBW;
1887      break;
1888    case MVT::i16:
1889      LoReg = X86::AX;  HiReg = X86::DX;
1890      ClrOpcode  = X86::MOV16r0;
1891      SExtOpcode = X86::CWD;
1892      break;
1893    case MVT::i32:
1894      LoReg = X86::EAX; HiReg = X86::EDX;
1895      ClrOpcode  = X86::MOV32r0;
1896      SExtOpcode = X86::CDQ;
1897      break;
1898    case MVT::i64:
1899      LoReg = X86::RAX; HiReg = X86::RDX;
1900      ClrOpcode  = ~0U; // NOT USED.
1901      SExtOpcode = X86::CQO;
1902      break;
1903    }
1904
1905    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1906    bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1907    bool signBitIsZero = CurDAG->SignBitIsZero(N0);
1908
1909    SDValue InFlag;
1910    if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
1911      // Special case for div8, just use a move with zero extension to AX to
1912      // clear the upper 8 bits (AH).
1913      SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
1914      if (TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
1915        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
1916        Move =
1917          SDValue(CurDAG->getMachineNode(X86::MOVZX16rm8, dl, MVT::i16,
1918                                         MVT::Other, Ops,
1919                                         array_lengthof(Ops)), 0);
1920        Chain = Move.getValue(1);
1921        ReplaceUses(N0.getValue(1), Chain);
1922      } else {
1923        Move =
1924          SDValue(CurDAG->getMachineNode(X86::MOVZX16rr8, dl, MVT::i16, N0),0);
1925        Chain = CurDAG->getEntryNode();
1926      }
1927      Chain  = CurDAG->getCopyToReg(Chain, dl, X86::AX, Move, SDValue());
1928      InFlag = Chain.getValue(1);
1929    } else {
1930      InFlag =
1931        CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
1932                             LoReg, N0, SDValue()).getValue(1);
1933      if (isSigned && !signBitIsZero) {
1934        // Sign extend the low part into the high part.
1935        InFlag =
1936          SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Flag, InFlag),0);
1937      } else {
1938        // Zero out the high part, effectively zero extending the input.
1939        SDValue ClrNode;
1940
1941        if (NVT.getSimpleVT() == MVT::i64) {
1942          ClrNode = SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, MVT::i32),
1943                            0);
1944          // We just did a 32-bit clear, insert it into a 64-bit register to
1945          // clear the whole 64-bit reg.
1946          SDValue Undef =
1947            SDValue(CurDAG->getMachineNode(TargetInstrInfo::IMPLICIT_DEF,
1948                                           dl, MVT::i64), 0);
1949          SDValue SubRegNo =
1950            CurDAG->getTargetConstant(X86::SUBREG_32BIT, MVT::i32);
1951          ClrNode =
1952            SDValue(CurDAG->getMachineNode(TargetInstrInfo::INSERT_SUBREG, dl,
1953                                           MVT::i64, Undef, ClrNode, SubRegNo),
1954                    0);
1955        } else {
1956          ClrNode = SDValue(CurDAG->getMachineNode(ClrOpcode, dl, NVT), 0);
1957        }
1958
1959        InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, HiReg,
1960                                      ClrNode, InFlag).getValue(1);
1961      }
1962    }
1963
1964    if (foldedLoad) {
1965      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
1966                        InFlag };
1967      SDNode *CNode =
1968        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Flag, Ops,
1969                               array_lengthof(Ops));
1970      InFlag = SDValue(CNode, 1);
1971      // Update the chain.
1972      ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1973    } else {
1974      InFlag =
1975        SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Flag, N1, InFlag), 0);
1976    }
1977
1978    // Copy the division (low) result, if it is needed.
1979    if (!N.getValue(0).use_empty()) {
1980      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1981                                                LoReg, NVT, InFlag);
1982      InFlag = Result.getValue(2);
1983      ReplaceUses(N.getValue(0), Result);
1984#ifndef NDEBUG
1985      DEBUG({
1986          errs() << std::string(Indent-2, ' ') << "=> ";
1987          Result.getNode()->dump(CurDAG);
1988          errs() << '\n';
1989        });
1990#endif
1991    }
1992    // Copy the remainder (high) result, if it is needed.
1993    if (!N.getValue(1).use_empty()) {
1994      SDValue Result;
1995      if (HiReg == X86::AH && Subtarget->is64Bit()) {
1996        // Prevent use of AH in a REX instruction by referencing AX instead.
1997        // Shift it down 8 bits.
1998        Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1999                                        X86::AX, MVT::i16, InFlag);
2000        InFlag = Result.getValue(2);
2001        Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
2002                                      Result,
2003                                      CurDAG->getTargetConstant(8, MVT::i8)),
2004                         0);
2005        // Then truncate it down to i8.
2006        Result = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT, dl,
2007                                                MVT::i8, Result);
2008      } else {
2009        Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2010                                        HiReg, NVT, InFlag);
2011        InFlag = Result.getValue(2);
2012      }
2013      ReplaceUses(N.getValue(1), Result);
2014#ifndef NDEBUG
2015      DEBUG({
2016          errs() << std::string(Indent-2, ' ') << "=> ";
2017          Result.getNode()->dump(CurDAG);
2018          errs() << '\n';
2019        });
2020#endif
2021    }
2022
2023#ifndef NDEBUG
2024    Indent -= 2;
2025#endif
2026
2027    return NULL;
2028  }
2029
2030  case X86ISD::CMP: {
2031    SDValue N0 = Node->getOperand(0);
2032    SDValue N1 = Node->getOperand(1);
2033
2034    // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
2035    // use a smaller encoding.
2036    if (N0.getNode()->getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
2037        N0.getValueType() != MVT::i8 &&
2038        X86::isZeroNode(N1)) {
2039      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
2040      if (!C) break;
2041
2042      // For example, convert "testl %eax, $8" to "testb %al, $8"
2043      if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
2044          (!(C->getZExtValue() & 0x80) ||
2045           HasNoSignedComparisonUses(Node))) {
2046        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8);
2047        SDValue Reg = N0.getNode()->getOperand(0);
2048
2049        // On x86-32, only the ABCD registers have 8-bit subregisters.
2050        if (!Subtarget->is64Bit()) {
2051          TargetRegisterClass *TRC = 0;
2052          switch (N0.getValueType().getSimpleVT().SimpleTy) {
2053          case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2054          case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2055          default: llvm_unreachable("Unsupported TEST operand type!");
2056          }
2057          SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2058          Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2059                                               Reg.getValueType(), Reg, RC), 0);
2060        }
2061
2062        // Extract the l-register.
2063        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT, dl,
2064                                                        MVT::i8, Reg);
2065
2066        // Emit a testb.
2067        return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32, Subreg, Imm);
2068      }
2069
2070      // For example, "testl %eax, $2048" to "testb %ah, $8".
2071      if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 &&
2072          (!(C->getZExtValue() & 0x8000) ||
2073           HasNoSignedComparisonUses(Node))) {
2074        // Shift the immediate right by 8 bits.
2075        SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
2076                                                       MVT::i8);
2077        SDValue Reg = N0.getNode()->getOperand(0);
2078
2079        // Put the value in an ABCD register.
2080        TargetRegisterClass *TRC = 0;
2081        switch (N0.getValueType().getSimpleVT().SimpleTy) {
2082        case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
2083        case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2084        case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2085        default: llvm_unreachable("Unsupported TEST operand type!");
2086        }
2087        SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2088        Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2089                                             Reg.getValueType(), Reg, RC), 0);
2090
2091        // Extract the h-register.
2092        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT_HI, dl,
2093                                                        MVT::i8, Reg);
2094
2095        // Emit a testb. No special NOREX tricks are needed since there's
2096        // only one GPR operand!
2097        return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32,
2098                                      Subreg, ShiftedImm);
2099      }
2100
2101      // For example, "testl %eax, $32776" to "testw %ax, $32776".
2102      if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
2103          N0.getValueType() != MVT::i16 &&
2104          (!(C->getZExtValue() & 0x8000) ||
2105           HasNoSignedComparisonUses(Node))) {
2106        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16);
2107        SDValue Reg = N0.getNode()->getOperand(0);
2108
2109        // Extract the 16-bit subregister.
2110        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_16BIT, dl,
2111                                                        MVT::i16, Reg);
2112
2113        // Emit a testw.
2114        return CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32, Subreg, Imm);
2115      }
2116
2117      // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
2118      if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
2119          N0.getValueType() == MVT::i64 &&
2120          (!(C->getZExtValue() & 0x80000000) ||
2121           HasNoSignedComparisonUses(Node))) {
2122        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
2123        SDValue Reg = N0.getNode()->getOperand(0);
2124
2125        // Extract the 32-bit subregister.
2126        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_32BIT, dl,
2127                                                        MVT::i32, Reg);
2128
2129        // Emit a testl.
2130        return CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32, Subreg, Imm);
2131      }
2132    }
2133    break;
2134  }
2135  }
2136
2137  SDNode *ResNode = SelectCode(N);
2138
2139#ifndef NDEBUG
2140  DEBUG({
2141      errs() << std::string(Indent-2, ' ') << "=> ";
2142      if (ResNode == NULL || ResNode == N.getNode())
2143        N.getNode()->dump(CurDAG);
2144      else
2145        ResNode->dump(CurDAG);
2146      errs() << '\n';
2147    });
2148  Indent -= 2;
2149#endif
2150
2151  return ResNode;
2152}
2153
2154bool X86DAGToDAGISel::
2155SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
2156                             std::vector<SDValue> &OutOps) {
2157  SDValue Op0, Op1, Op2, Op3, Op4;
2158  switch (ConstraintCode) {
2159  case 'o':   // offsetable        ??
2160  case 'v':   // not offsetable    ??
2161  default: return true;
2162  case 'm':   // memory
2163    if (!SelectAddr(Op, Op, Op0, Op1, Op2, Op3, Op4))
2164      return true;
2165    break;
2166  }
2167
2168  OutOps.push_back(Op0);
2169  OutOps.push_back(Op1);
2170  OutOps.push_back(Op2);
2171  OutOps.push_back(Op3);
2172  OutOps.push_back(Op4);
2173  return false;
2174}
2175
2176/// createX86ISelDag - This pass converts a legalized DAG into a
2177/// X86-specific DAG, ready for instruction scheduling.
2178///
2179FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
2180                                     llvm::CodeGenOpt::Level OptLevel) {
2181  return new X86DAGToDAGISel(TM, OptLevel);
2182}
2183