X86ISelDAGToDAG.cpp revision 73ebbd8aac979cd6a62f15434f0e5423306f82dd
1//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file defines a DAG pattern matching instruction selector for X86, 11// converting from a legalized dag to a X86 dag. 12// 13//===----------------------------------------------------------------------===// 14 15// Force NDEBUG on in any optimized build on Darwin. 16// 17// FIXME: This is a huge hack, to work around ridiculously awful compile times 18// on this file with gcc-4.2 on Darwin, in Release mode. 19#if (!defined(__llvm__) && defined(__APPLE__) && \ 20 defined(__OPTIMIZE__) && !defined(NDEBUG)) 21#define NDEBUG 22#endif 23 24#define DEBUG_TYPE "x86-isel" 25#include "X86.h" 26#include "X86InstrBuilder.h" 27#include "X86ISelLowering.h" 28#include "X86MachineFunctionInfo.h" 29#include "X86RegisterInfo.h" 30#include "X86Subtarget.h" 31#include "X86TargetMachine.h" 32#include "llvm/GlobalValue.h" 33#include "llvm/Instructions.h" 34#include "llvm/Intrinsics.h" 35#include "llvm/Support/CFG.h" 36#include "llvm/Type.h" 37#include "llvm/CodeGen/MachineConstantPool.h" 38#include "llvm/CodeGen/MachineFunction.h" 39#include "llvm/CodeGen/MachineFrameInfo.h" 40#include "llvm/CodeGen/MachineInstrBuilder.h" 41#include "llvm/CodeGen/MachineRegisterInfo.h" 42#include "llvm/CodeGen/SelectionDAGISel.h" 43#include "llvm/Target/TargetMachine.h" 44#include "llvm/Target/TargetOptions.h" 45#include "llvm/Support/Debug.h" 46#include "llvm/Support/ErrorHandling.h" 47#include "llvm/Support/MathExtras.h" 48#include "llvm/Support/raw_ostream.h" 49#include "llvm/ADT/SmallPtrSet.h" 50#include "llvm/ADT/Statistic.h" 51using namespace llvm; 52 53STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor"); 54 55//===----------------------------------------------------------------------===// 56// Pattern Matcher Implementation 57//===----------------------------------------------------------------------===// 58 59namespace { 60 /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses 61 /// SDValue's instead of register numbers for the leaves of the matched 62 /// tree. 63 struct X86ISelAddressMode { 64 enum { 65 RegBase, 66 FrameIndexBase 67 } BaseType; 68 69 struct { // This is really a union, discriminated by BaseType! 70 SDValue Reg; 71 int FrameIndex; 72 } Base; 73 74 unsigned Scale; 75 SDValue IndexReg; 76 int32_t Disp; 77 SDValue Segment; 78 GlobalValue *GV; 79 Constant *CP; 80 BlockAddress *BlockAddr; 81 const char *ES; 82 int JT; 83 unsigned Align; // CP alignment. 84 unsigned char SymbolFlags; // X86II::MO_* 85 86 X86ISelAddressMode() 87 : BaseType(RegBase), Scale(1), IndexReg(), Disp(0), 88 Segment(), GV(0), CP(0), BlockAddr(0), ES(0), JT(-1), Align(0), 89 SymbolFlags(X86II::MO_NO_FLAG) { 90 } 91 92 bool hasSymbolicDisplacement() const { 93 return GV != 0 || CP != 0 || ES != 0 || JT != -1 || BlockAddr != 0; 94 } 95 96 bool hasBaseOrIndexReg() const { 97 return IndexReg.getNode() != 0 || Base.Reg.getNode() != 0; 98 } 99 100 /// isRIPRelative - Return true if this addressing mode is already RIP 101 /// relative. 102 bool isRIPRelative() const { 103 if (BaseType != RegBase) return false; 104 if (RegisterSDNode *RegNode = 105 dyn_cast_or_null<RegisterSDNode>(Base.Reg.getNode())) 106 return RegNode->getReg() == X86::RIP; 107 return false; 108 } 109 110 void setBaseReg(SDValue Reg) { 111 BaseType = RegBase; 112 Base.Reg = Reg; 113 } 114 115 void dump() { 116 errs() << "X86ISelAddressMode " << this << '\n'; 117 errs() << "Base.Reg "; 118 if (Base.Reg.getNode() != 0) 119 Base.Reg.getNode()->dump(); 120 else 121 errs() << "nul"; 122 errs() << " Base.FrameIndex " << Base.FrameIndex << '\n' 123 << " Scale" << Scale << '\n' 124 << "IndexReg "; 125 if (IndexReg.getNode() != 0) 126 IndexReg.getNode()->dump(); 127 else 128 errs() << "nul"; 129 errs() << " Disp " << Disp << '\n' 130 << "GV "; 131 if (GV) 132 GV->dump(); 133 else 134 errs() << "nul"; 135 errs() << " CP "; 136 if (CP) 137 CP->dump(); 138 else 139 errs() << "nul"; 140 errs() << '\n' 141 << "ES "; 142 if (ES) 143 errs() << ES; 144 else 145 errs() << "nul"; 146 errs() << " JT" << JT << " Align" << Align << '\n'; 147 } 148 }; 149} 150 151namespace { 152 //===--------------------------------------------------------------------===// 153 /// ISel - X86 specific code to select X86 machine instructions for 154 /// SelectionDAG operations. 155 /// 156 class X86DAGToDAGISel : public SelectionDAGISel { 157 /// X86Lowering - This object fully describes how to lower LLVM code to an 158 /// X86-specific SelectionDAG. 159 X86TargetLowering &X86Lowering; 160 161 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can 162 /// make the right decision when generating code for different targets. 163 const X86Subtarget *Subtarget; 164 165 /// OptForSize - If true, selector should try to optimize for code size 166 /// instead of performance. 167 bool OptForSize; 168 169 public: 170 explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel) 171 : SelectionDAGISel(tm, OptLevel), 172 X86Lowering(*tm.getTargetLowering()), 173 Subtarget(&tm.getSubtarget<X86Subtarget>()), 174 OptForSize(false) {} 175 176 virtual const char *getPassName() const { 177 return "X86 DAG->DAG Instruction Selection"; 178 } 179 180 /// InstructionSelect - This callback is invoked by 181 /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. 182 virtual void InstructionSelect(); 183 184 virtual void EmitFunctionEntryCode(Function &Fn, MachineFunction &MF); 185 186 virtual 187 bool IsLegalAndProfitableToFold(SDNode *N, SDNode *U, SDNode *Root) const; 188 189// Include the pieces autogenerated from the target description. 190#include "X86GenDAGISel.inc" 191 192 private: 193 SDNode *Select(SDValue N); 194 SDNode *SelectAtomic64(SDNode *Node, unsigned Opc); 195 SDNode *SelectAtomicLoadAdd(SDNode *Node, EVT NVT); 196 197 bool MatchSegmentBaseAddress(SDValue N, X86ISelAddressMode &AM); 198 bool MatchLoad(SDValue N, X86ISelAddressMode &AM); 199 bool MatchWrapper(SDValue N, X86ISelAddressMode &AM); 200 bool MatchAddress(SDValue N, X86ISelAddressMode &AM); 201 bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM, 202 unsigned Depth); 203 bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM); 204 bool SelectAddr(SDValue Op, SDValue N, SDValue &Base, 205 SDValue &Scale, SDValue &Index, SDValue &Disp, 206 SDValue &Segment); 207 bool SelectLEAAddr(SDValue Op, SDValue N, SDValue &Base, 208 SDValue &Scale, SDValue &Index, SDValue &Disp); 209 bool SelectTLSADDRAddr(SDValue Op, SDValue N, SDValue &Base, 210 SDValue &Scale, SDValue &Index, SDValue &Disp); 211 bool SelectScalarSSELoad(SDValue Op, SDValue Pred, 212 SDValue N, SDValue &Base, SDValue &Scale, 213 SDValue &Index, SDValue &Disp, 214 SDValue &Segment, 215 SDValue &InChain, SDValue &OutChain); 216 bool TryFoldLoad(SDValue P, SDValue N, 217 SDValue &Base, SDValue &Scale, 218 SDValue &Index, SDValue &Disp, 219 SDValue &Segment); 220 void PreprocessForRMW(); 221 void PreprocessForFPConvert(); 222 223 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for 224 /// inline asm expressions. 225 virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op, 226 char ConstraintCode, 227 std::vector<SDValue> &OutOps); 228 229 void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI); 230 231 inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base, 232 SDValue &Scale, SDValue &Index, 233 SDValue &Disp, SDValue &Segment) { 234 Base = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ? 235 CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, TLI.getPointerTy()) : 236 AM.Base.Reg; 237 Scale = getI8Imm(AM.Scale); 238 Index = AM.IndexReg; 239 // These are 32-bit even in 64-bit mode since RIP relative offset 240 // is 32-bit. 241 if (AM.GV) 242 Disp = CurDAG->getTargetGlobalAddress(AM.GV, MVT::i32, AM.Disp, 243 AM.SymbolFlags); 244 else if (AM.CP) 245 Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32, 246 AM.Align, AM.Disp, AM.SymbolFlags); 247 else if (AM.ES) 248 Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags); 249 else if (AM.JT != -1) 250 Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags); 251 else if (AM.BlockAddr) 252 Disp = CurDAG->getBlockAddress(AM.BlockAddr, MVT::i32, 253 true, AM.SymbolFlags); 254 else 255 Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32); 256 257 if (AM.Segment.getNode()) 258 Segment = AM.Segment; 259 else 260 Segment = CurDAG->getRegister(0, MVT::i32); 261 } 262 263 /// getI8Imm - Return a target constant with the specified value, of type 264 /// i8. 265 inline SDValue getI8Imm(unsigned Imm) { 266 return CurDAG->getTargetConstant(Imm, MVT::i8); 267 } 268 269 /// getI16Imm - Return a target constant with the specified value, of type 270 /// i16. 271 inline SDValue getI16Imm(unsigned Imm) { 272 return CurDAG->getTargetConstant(Imm, MVT::i16); 273 } 274 275 /// getI32Imm - Return a target constant with the specified value, of type 276 /// i32. 277 inline SDValue getI32Imm(unsigned Imm) { 278 return CurDAG->getTargetConstant(Imm, MVT::i32); 279 } 280 281 /// getGlobalBaseReg - Return an SDNode that returns the value of 282 /// the global base register. Output instructions required to 283 /// initialize the global base register, if necessary. 284 /// 285 SDNode *getGlobalBaseReg(); 286 287 /// getTargetMachine - Return a reference to the TargetMachine, casted 288 /// to the target-specific type. 289 const X86TargetMachine &getTargetMachine() { 290 return static_cast<const X86TargetMachine &>(TM); 291 } 292 293 /// getInstrInfo - Return a reference to the TargetInstrInfo, casted 294 /// to the target-specific type. 295 const X86InstrInfo *getInstrInfo() { 296 return getTargetMachine().getInstrInfo(); 297 } 298 299#ifndef NDEBUG 300 unsigned Indent; 301#endif 302 }; 303} 304 305 306bool X86DAGToDAGISel::IsLegalAndProfitableToFold(SDNode *N, SDNode *U, 307 SDNode *Root) const { 308 if (OptLevel == CodeGenOpt::None) return false; 309 310 if (U == Root) 311 switch (U->getOpcode()) { 312 default: break; 313 case ISD::ADD: 314 case ISD::ADDC: 315 case ISD::ADDE: 316 case ISD::AND: 317 case ISD::OR: 318 case ISD::XOR: { 319 SDValue Op1 = U->getOperand(1); 320 321 // If the other operand is a 8-bit immediate we should fold the immediate 322 // instead. This reduces code size. 323 // e.g. 324 // movl 4(%esp), %eax 325 // addl $4, %eax 326 // vs. 327 // movl $4, %eax 328 // addl 4(%esp), %eax 329 // The former is 2 bytes shorter. In case where the increment is 1, then 330 // the saving can be 4 bytes (by using incl %eax). 331 if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1)) 332 if (Imm->getAPIntValue().isSignedIntN(8)) 333 return false; 334 335 // If the other operand is a TLS address, we should fold it instead. 336 // This produces 337 // movl %gs:0, %eax 338 // leal i@NTPOFF(%eax), %eax 339 // instead of 340 // movl $i@NTPOFF, %eax 341 // addl %gs:0, %eax 342 // if the block also has an access to a second TLS address this will save 343 // a load. 344 // FIXME: This is probably also true for non TLS addresses. 345 if (Op1.getOpcode() == X86ISD::Wrapper) { 346 SDValue Val = Op1.getOperand(0); 347 if (Val.getOpcode() == ISD::TargetGlobalTLSAddress) 348 return false; 349 } 350 } 351 } 352 353 // Proceed to 'generic' cycle finder code 354 return SelectionDAGISel::IsLegalAndProfitableToFold(N, U, Root); 355} 356 357/// MoveBelowTokenFactor - Replace TokenFactor operand with load's chain operand 358/// and move load below the TokenFactor. Replace store's chain operand with 359/// load's chain result. 360static void MoveBelowTokenFactor(SelectionDAG *CurDAG, SDValue Load, 361 SDValue Store, SDValue TF) { 362 SmallVector<SDValue, 4> Ops; 363 for (unsigned i = 0, e = TF.getNode()->getNumOperands(); i != e; ++i) 364 if (Load.getNode() == TF.getOperand(i).getNode()) 365 Ops.push_back(Load.getOperand(0)); 366 else 367 Ops.push_back(TF.getOperand(i)); 368 SDValue NewTF = CurDAG->UpdateNodeOperands(TF, &Ops[0], Ops.size()); 369 SDValue NewLoad = CurDAG->UpdateNodeOperands(Load, NewTF, 370 Load.getOperand(1), 371 Load.getOperand(2)); 372 CurDAG->UpdateNodeOperands(Store, NewLoad.getValue(1), Store.getOperand(1), 373 Store.getOperand(2), Store.getOperand(3)); 374} 375 376/// isRMWLoad - Return true if N is a load that's part of RMW sub-DAG. The 377/// chain produced by the load must only be used by the store's chain operand, 378/// otherwise this may produce a cycle in the DAG. 379/// 380static bool isRMWLoad(SDValue N, SDValue Chain, SDValue Address, 381 SDValue &Load) { 382 if (N.getOpcode() == ISD::BIT_CONVERT) 383 N = N.getOperand(0); 384 385 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 386 if (!LD || LD->isVolatile()) 387 return false; 388 if (LD->getAddressingMode() != ISD::UNINDEXED) 389 return false; 390 391 ISD::LoadExtType ExtType = LD->getExtensionType(); 392 if (ExtType != ISD::NON_EXTLOAD && ExtType != ISD::EXTLOAD) 393 return false; 394 395 if (N.hasOneUse() && 396 LD->hasNUsesOfValue(1, 1) && 397 N.getOperand(1) == Address && 398 LD->isOperandOf(Chain.getNode())) { 399 Load = N; 400 return true; 401 } 402 return false; 403} 404 405/// MoveBelowCallSeqStart - Replace CALLSEQ_START operand with load's chain 406/// operand and move load below the call's chain operand. 407static void MoveBelowCallSeqStart(SelectionDAG *CurDAG, SDValue Load, 408 SDValue Call, SDValue CallSeqStart) { 409 SmallVector<SDValue, 8> Ops; 410 SDValue Chain = CallSeqStart.getOperand(0); 411 if (Chain.getNode() == Load.getNode()) 412 Ops.push_back(Load.getOperand(0)); 413 else { 414 assert(Chain.getOpcode() == ISD::TokenFactor && 415 "Unexpected CallSeqStart chain operand"); 416 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) 417 if (Chain.getOperand(i).getNode() == Load.getNode()) 418 Ops.push_back(Load.getOperand(0)); 419 else 420 Ops.push_back(Chain.getOperand(i)); 421 SDValue NewChain = 422 CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(), 423 MVT::Other, &Ops[0], Ops.size()); 424 Ops.clear(); 425 Ops.push_back(NewChain); 426 } 427 for (unsigned i = 1, e = CallSeqStart.getNumOperands(); i != e; ++i) 428 Ops.push_back(CallSeqStart.getOperand(i)); 429 CurDAG->UpdateNodeOperands(CallSeqStart, &Ops[0], Ops.size()); 430 CurDAG->UpdateNodeOperands(Load, Call.getOperand(0), 431 Load.getOperand(1), Load.getOperand(2)); 432 Ops.clear(); 433 Ops.push_back(SDValue(Load.getNode(), 1)); 434 for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i) 435 Ops.push_back(Call.getOperand(i)); 436 CurDAG->UpdateNodeOperands(Call, &Ops[0], Ops.size()); 437} 438 439/// isCalleeLoad - Return true if call address is a load and it can be 440/// moved below CALLSEQ_START and the chains leading up to the call. 441/// Return the CALLSEQ_START by reference as a second output. 442static bool isCalleeLoad(SDValue Callee, SDValue &Chain) { 443 if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse()) 444 return false; 445 LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode()); 446 if (!LD || 447 LD->isVolatile() || 448 LD->getAddressingMode() != ISD::UNINDEXED || 449 LD->getExtensionType() != ISD::NON_EXTLOAD) 450 return false; 451 452 // Now let's find the callseq_start. 453 while (Chain.getOpcode() != ISD::CALLSEQ_START) { 454 if (!Chain.hasOneUse()) 455 return false; 456 Chain = Chain.getOperand(0); 457 } 458 459 if (Chain.getOperand(0).getNode() == Callee.getNode()) 460 return true; 461 if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor && 462 Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) && 463 Callee.getValue(1).hasOneUse()) 464 return true; 465 return false; 466} 467 468 469/// PreprocessForRMW - Preprocess the DAG to make instruction selection better. 470/// This is only run if not in -O0 mode. 471/// This allows the instruction selector to pick more read-modify-write 472/// instructions. This is a common case: 473/// 474/// [Load chain] 475/// ^ 476/// | 477/// [Load] 478/// ^ ^ 479/// | | 480/// / \- 481/// / | 482/// [TokenFactor] [Op] 483/// ^ ^ 484/// | | 485/// \ / 486/// \ / 487/// [Store] 488/// 489/// The fact the store's chain operand != load's chain will prevent the 490/// (store (op (load))) instruction from being selected. We can transform it to: 491/// 492/// [Load chain] 493/// ^ 494/// | 495/// [TokenFactor] 496/// ^ 497/// | 498/// [Load] 499/// ^ ^ 500/// | | 501/// | \- 502/// | | 503/// | [Op] 504/// | ^ 505/// | | 506/// \ / 507/// \ / 508/// [Store] 509void X86DAGToDAGISel::PreprocessForRMW() { 510 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(), 511 E = CurDAG->allnodes_end(); I != E; ++I) { 512 if (I->getOpcode() == X86ISD::CALL) { 513 /// Also try moving call address load from outside callseq_start to just 514 /// before the call to allow it to be folded. 515 /// 516 /// [Load chain] 517 /// ^ 518 /// | 519 /// [Load] 520 /// ^ ^ 521 /// | | 522 /// / \-- 523 /// / | 524 ///[CALLSEQ_START] | 525 /// ^ | 526 /// | | 527 /// [LOAD/C2Reg] | 528 /// | | 529 /// \ / 530 /// \ / 531 /// [CALL] 532 SDValue Chain = I->getOperand(0); 533 SDValue Load = I->getOperand(1); 534 if (!isCalleeLoad(Load, Chain)) 535 continue; 536 MoveBelowCallSeqStart(CurDAG, Load, SDValue(I, 0), Chain); 537 ++NumLoadMoved; 538 continue; 539 } 540 541 if (!ISD::isNON_TRUNCStore(I)) 542 continue; 543 SDValue Chain = I->getOperand(0); 544 545 if (Chain.getNode()->getOpcode() != ISD::TokenFactor) 546 continue; 547 548 SDValue N1 = I->getOperand(1); 549 SDValue N2 = I->getOperand(2); 550 if ((N1.getValueType().isFloatingPoint() && 551 !N1.getValueType().isVector()) || 552 !N1.hasOneUse()) 553 continue; 554 555 bool RModW = false; 556 SDValue Load; 557 unsigned Opcode = N1.getNode()->getOpcode(); 558 switch (Opcode) { 559 case ISD::ADD: 560 case ISD::MUL: 561 case ISD::AND: 562 case ISD::OR: 563 case ISD::XOR: 564 case ISD::ADDC: 565 case ISD::ADDE: 566 case ISD::VECTOR_SHUFFLE: { 567 SDValue N10 = N1.getOperand(0); 568 SDValue N11 = N1.getOperand(1); 569 RModW = isRMWLoad(N10, Chain, N2, Load); 570 if (!RModW) 571 RModW = isRMWLoad(N11, Chain, N2, Load); 572 break; 573 } 574 case ISD::SUB: 575 case ISD::SHL: 576 case ISD::SRA: 577 case ISD::SRL: 578 case ISD::ROTL: 579 case ISD::ROTR: 580 case ISD::SUBC: 581 case ISD::SUBE: 582 case X86ISD::SHLD: 583 case X86ISD::SHRD: { 584 SDValue N10 = N1.getOperand(0); 585 RModW = isRMWLoad(N10, Chain, N2, Load); 586 break; 587 } 588 } 589 590 if (RModW) { 591 MoveBelowTokenFactor(CurDAG, Load, SDValue(I, 0), Chain); 592 ++NumLoadMoved; 593 } 594 } 595} 596 597 598/// PreprocessForFPConvert - Walk over the dag lowering fpround and fpextend 599/// nodes that target the FP stack to be store and load to the stack. This is a 600/// gross hack. We would like to simply mark these as being illegal, but when 601/// we do that, legalize produces these when it expands calls, then expands 602/// these in the same legalize pass. We would like dag combine to be able to 603/// hack on these between the call expansion and the node legalization. As such 604/// this pass basically does "really late" legalization of these inline with the 605/// X86 isel pass. 606void X86DAGToDAGISel::PreprocessForFPConvert() { 607 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(), 608 E = CurDAG->allnodes_end(); I != E; ) { 609 SDNode *N = I++; // Preincrement iterator to avoid invalidation issues. 610 if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND) 611 continue; 612 613 // If the source and destination are SSE registers, then this is a legal 614 // conversion that should not be lowered. 615 EVT SrcVT = N->getOperand(0).getValueType(); 616 EVT DstVT = N->getValueType(0); 617 bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT); 618 bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT); 619 if (SrcIsSSE && DstIsSSE) 620 continue; 621 622 if (!SrcIsSSE && !DstIsSSE) { 623 // If this is an FPStack extension, it is a noop. 624 if (N->getOpcode() == ISD::FP_EXTEND) 625 continue; 626 // If this is a value-preserving FPStack truncation, it is a noop. 627 if (N->getConstantOperandVal(1)) 628 continue; 629 } 630 631 // Here we could have an FP stack truncation or an FPStack <-> SSE convert. 632 // FPStack has extload and truncstore. SSE can fold direct loads into other 633 // operations. Based on this, decide what we want to do. 634 EVT MemVT; 635 if (N->getOpcode() == ISD::FP_ROUND) 636 MemVT = DstVT; // FP_ROUND must use DstVT, we can't do a 'trunc load'. 637 else 638 MemVT = SrcIsSSE ? SrcVT : DstVT; 639 640 SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT); 641 DebugLoc dl = N->getDebugLoc(); 642 643 // FIXME: optimize the case where the src/dest is a load or store? 644 SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl, 645 N->getOperand(0), 646 MemTmp, NULL, 0, MemVT); 647 SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp, 648 NULL, 0, MemVT); 649 650 // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the 651 // extload we created. This will cause general havok on the dag because 652 // anything below the conversion could be folded into other existing nodes. 653 // To avoid invalidating 'I', back it up to the convert node. 654 --I; 655 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); 656 657 // Now that we did that, the node is dead. Increment the iterator to the 658 // next node to process, then delete N. 659 ++I; 660 CurDAG->DeleteNode(N); 661 } 662} 663 664/// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel 665/// when it has created a SelectionDAG for us to codegen. 666void X86DAGToDAGISel::InstructionSelect() { 667 const Function *F = MF->getFunction(); 668 OptForSize = F->hasFnAttr(Attribute::OptimizeForSize); 669 670 if (OptLevel != CodeGenOpt::None) 671 PreprocessForRMW(); 672 673 // FIXME: This should only happen when not compiled with -O0. 674 PreprocessForFPConvert(); 675 676 // Codegen the basic block. 677#ifndef NDEBUG 678 DEBUG(errs() << "===== Instruction selection begins:\n"); 679 Indent = 0; 680#endif 681 SelectRoot(*CurDAG); 682#ifndef NDEBUG 683 DEBUG(errs() << "===== Instruction selection ends:\n"); 684#endif 685 686 CurDAG->RemoveDeadNodes(); 687} 688 689/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in 690/// the main function. 691void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB, 692 MachineFrameInfo *MFI) { 693 const TargetInstrInfo *TII = TM.getInstrInfo(); 694 if (Subtarget->isTargetCygMing()) 695 BuildMI(BB, DebugLoc::getUnknownLoc(), 696 TII->get(X86::CALLpcrel32)).addExternalSymbol("__main"); 697} 698 699void X86DAGToDAGISel::EmitFunctionEntryCode(Function &Fn, MachineFunction &MF) { 700 // If this is main, emit special code for main. 701 MachineBasicBlock *BB = MF.begin(); 702 if (Fn.hasExternalLinkage() && Fn.getName() == "main") 703 EmitSpecialCodeForMain(BB, MF.getFrameInfo()); 704} 705 706 707bool X86DAGToDAGISel::MatchSegmentBaseAddress(SDValue N, 708 X86ISelAddressMode &AM) { 709 assert(N.getOpcode() == X86ISD::SegmentBaseAddress); 710 SDValue Segment = N.getOperand(0); 711 712 if (AM.Segment.getNode() == 0) { 713 AM.Segment = Segment; 714 return false; 715 } 716 717 return true; 718} 719 720bool X86DAGToDAGISel::MatchLoad(SDValue N, X86ISelAddressMode &AM) { 721 // This optimization is valid because the GNU TLS model defines that 722 // gs:0 (or fs:0 on X86-64) contains its own address. 723 // For more information see http://people.redhat.com/drepper/tls.pdf 724 725 SDValue Address = N.getOperand(1); 726 if (Address.getOpcode() == X86ISD::SegmentBaseAddress && 727 !MatchSegmentBaseAddress (Address, AM)) 728 return false; 729 730 return true; 731} 732 733/// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes 734/// into an addressing mode. These wrap things that will resolve down into a 735/// symbol reference. If no match is possible, this returns true, otherwise it 736/// returns false. 737bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) { 738 // If the addressing mode already has a symbol as the displacement, we can 739 // never match another symbol. 740 if (AM.hasSymbolicDisplacement()) 741 return true; 742 743 SDValue N0 = N.getOperand(0); 744 CodeModel::Model M = TM.getCodeModel(); 745 746 // Handle X86-64 rip-relative addresses. We check this before checking direct 747 // folding because RIP is preferable to non-RIP accesses. 748 if (Subtarget->is64Bit() && 749 // Under X86-64 non-small code model, GV (and friends) are 64-bits, so 750 // they cannot be folded into immediate fields. 751 // FIXME: This can be improved for kernel and other models? 752 (M == CodeModel::Small || M == CodeModel::Kernel) && 753 // Base and index reg must be 0 in order to use %rip as base and lowering 754 // must allow RIP. 755 !AM.hasBaseOrIndexReg() && N.getOpcode() == X86ISD::WrapperRIP) { 756 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) { 757 int64_t Offset = AM.Disp + G->getOffset(); 758 if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true; 759 AM.GV = G->getGlobal(); 760 AM.Disp = Offset; 761 AM.SymbolFlags = G->getTargetFlags(); 762 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) { 763 int64_t Offset = AM.Disp + CP->getOffset(); 764 if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true; 765 AM.CP = CP->getConstVal(); 766 AM.Align = CP->getAlignment(); 767 AM.Disp = Offset; 768 AM.SymbolFlags = CP->getTargetFlags(); 769 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) { 770 AM.ES = S->getSymbol(); 771 AM.SymbolFlags = S->getTargetFlags(); 772 } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) { 773 AM.JT = J->getIndex(); 774 AM.SymbolFlags = J->getTargetFlags(); 775 } else { 776 AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress(); 777 AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags(); 778 } 779 780 if (N.getOpcode() == X86ISD::WrapperRIP) 781 AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64)); 782 return false; 783 } 784 785 // Handle the case when globals fit in our immediate field: This is true for 786 // X86-32 always and X86-64 when in -static -mcmodel=small mode. In 64-bit 787 // mode, this results in a non-RIP-relative computation. 788 if (!Subtarget->is64Bit() || 789 ((M == CodeModel::Small || M == CodeModel::Kernel) && 790 TM.getRelocationModel() == Reloc::Static)) { 791 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) { 792 AM.GV = G->getGlobal(); 793 AM.Disp += G->getOffset(); 794 AM.SymbolFlags = G->getTargetFlags(); 795 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) { 796 AM.CP = CP->getConstVal(); 797 AM.Align = CP->getAlignment(); 798 AM.Disp += CP->getOffset(); 799 AM.SymbolFlags = CP->getTargetFlags(); 800 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) { 801 AM.ES = S->getSymbol(); 802 AM.SymbolFlags = S->getTargetFlags(); 803 } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) { 804 AM.JT = J->getIndex(); 805 AM.SymbolFlags = J->getTargetFlags(); 806 } else { 807 AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress(); 808 AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags(); 809 } 810 return false; 811 } 812 813 return true; 814} 815 816/// MatchAddress - Add the specified node to the specified addressing mode, 817/// returning true if it cannot be done. This just pattern matches for the 818/// addressing mode. 819bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) { 820 if (MatchAddressRecursively(N, AM, 0)) 821 return true; 822 823 // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has 824 // a smaller encoding and avoids a scaled-index. 825 if (AM.Scale == 2 && 826 AM.BaseType == X86ISelAddressMode::RegBase && 827 AM.Base.Reg.getNode() == 0) { 828 AM.Base.Reg = AM.IndexReg; 829 AM.Scale = 1; 830 } 831 832 // Post-processing: Convert foo to foo(%rip), even in non-PIC mode, 833 // because it has a smaller encoding. 834 // TODO: Which other code models can use this? 835 if (TM.getCodeModel() == CodeModel::Small && 836 Subtarget->is64Bit() && 837 AM.Scale == 1 && 838 AM.BaseType == X86ISelAddressMode::RegBase && 839 AM.Base.Reg.getNode() == 0 && 840 AM.IndexReg.getNode() == 0 && 841 AM.SymbolFlags == X86II::MO_NO_FLAG && 842 AM.hasSymbolicDisplacement()) 843 AM.Base.Reg = CurDAG->getRegister(X86::RIP, MVT::i64); 844 845 return false; 846} 847 848bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM, 849 unsigned Depth) { 850 bool is64Bit = Subtarget->is64Bit(); 851 DebugLoc dl = N.getDebugLoc(); 852 DEBUG({ 853 errs() << "MatchAddress: "; 854 AM.dump(); 855 }); 856 // Limit recursion. 857 if (Depth > 5) 858 return MatchAddressBase(N, AM); 859 860 CodeModel::Model M = TM.getCodeModel(); 861 862 // If this is already a %rip relative address, we can only merge immediates 863 // into it. Instead of handling this in every case, we handle it here. 864 // RIP relative addressing: %rip + 32-bit displacement! 865 if (AM.isRIPRelative()) { 866 // FIXME: JumpTable and ExternalSymbol address currently don't like 867 // displacements. It isn't very important, but this should be fixed for 868 // consistency. 869 if (!AM.ES && AM.JT != -1) return true; 870 871 if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N)) { 872 int64_t Val = AM.Disp + Cst->getSExtValue(); 873 if (X86::isOffsetSuitableForCodeModel(Val, M, 874 AM.hasSymbolicDisplacement())) { 875 AM.Disp = Val; 876 return false; 877 } 878 } 879 return true; 880 } 881 882 switch (N.getOpcode()) { 883 default: break; 884 case ISD::Constant: { 885 uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue(); 886 if (!is64Bit || 887 X86::isOffsetSuitableForCodeModel(AM.Disp + Val, M, 888 AM.hasSymbolicDisplacement())) { 889 AM.Disp += Val; 890 return false; 891 } 892 break; 893 } 894 895 case X86ISD::SegmentBaseAddress: 896 if (!MatchSegmentBaseAddress(N, AM)) 897 return false; 898 break; 899 900 case X86ISD::Wrapper: 901 case X86ISD::WrapperRIP: 902 if (!MatchWrapper(N, AM)) 903 return false; 904 break; 905 906 case ISD::LOAD: 907 if (!MatchLoad(N, AM)) 908 return false; 909 break; 910 911 case ISD::FrameIndex: 912 if (AM.BaseType == X86ISelAddressMode::RegBase 913 && AM.Base.Reg.getNode() == 0) { 914 AM.BaseType = X86ISelAddressMode::FrameIndexBase; 915 AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex(); 916 return false; 917 } 918 break; 919 920 case ISD::SHL: 921 if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) 922 break; 923 924 if (ConstantSDNode 925 *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) { 926 unsigned Val = CN->getZExtValue(); 927 // Note that we handle x<<1 as (,x,2) rather than (x,x) here so 928 // that the base operand remains free for further matching. If 929 // the base doesn't end up getting used, a post-processing step 930 // in MatchAddress turns (,x,2) into (x,x), which is cheaper. 931 if (Val == 1 || Val == 2 || Val == 3) { 932 AM.Scale = 1 << Val; 933 SDValue ShVal = N.getNode()->getOperand(0); 934 935 // Okay, we know that we have a scale by now. However, if the scaled 936 // value is an add of something and a constant, we can fold the 937 // constant into the disp field here. 938 if (ShVal.getNode()->getOpcode() == ISD::ADD && ShVal.hasOneUse() && 939 isa<ConstantSDNode>(ShVal.getNode()->getOperand(1))) { 940 AM.IndexReg = ShVal.getNode()->getOperand(0); 941 ConstantSDNode *AddVal = 942 cast<ConstantSDNode>(ShVal.getNode()->getOperand(1)); 943 uint64_t Disp = AM.Disp + (AddVal->getSExtValue() << Val); 944 if (!is64Bit || 945 X86::isOffsetSuitableForCodeModel(Disp, M, 946 AM.hasSymbolicDisplacement())) 947 AM.Disp = Disp; 948 else 949 AM.IndexReg = ShVal; 950 } else { 951 AM.IndexReg = ShVal; 952 } 953 return false; 954 } 955 break; 956 } 957 958 case ISD::SMUL_LOHI: 959 case ISD::UMUL_LOHI: 960 // A mul_lohi where we need the low part can be folded as a plain multiply. 961 if (N.getResNo() != 0) break; 962 // FALL THROUGH 963 case ISD::MUL: 964 case X86ISD::MUL_IMM: 965 // X*[3,5,9] -> X+X*[2,4,8] 966 if (AM.BaseType == X86ISelAddressMode::RegBase && 967 AM.Base.Reg.getNode() == 0 && 968 AM.IndexReg.getNode() == 0) { 969 if (ConstantSDNode 970 *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) 971 if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 || 972 CN->getZExtValue() == 9) { 973 AM.Scale = unsigned(CN->getZExtValue())-1; 974 975 SDValue MulVal = N.getNode()->getOperand(0); 976 SDValue Reg; 977 978 // Okay, we know that we have a scale by now. However, if the scaled 979 // value is an add of something and a constant, we can fold the 980 // constant into the disp field here. 981 if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() && 982 isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) { 983 Reg = MulVal.getNode()->getOperand(0); 984 ConstantSDNode *AddVal = 985 cast<ConstantSDNode>(MulVal.getNode()->getOperand(1)); 986 uint64_t Disp = AM.Disp + AddVal->getSExtValue() * 987 CN->getZExtValue(); 988 if (!is64Bit || 989 X86::isOffsetSuitableForCodeModel(Disp, M, 990 AM.hasSymbolicDisplacement())) 991 AM.Disp = Disp; 992 else 993 Reg = N.getNode()->getOperand(0); 994 } else { 995 Reg = N.getNode()->getOperand(0); 996 } 997 998 AM.IndexReg = AM.Base.Reg = Reg; 999 return false; 1000 } 1001 } 1002 break; 1003 1004 case ISD::SUB: { 1005 // Given A-B, if A can be completely folded into the address and 1006 // the index field with the index field unused, use -B as the index. 1007 // This is a win if a has multiple parts that can be folded into 1008 // the address. Also, this saves a mov if the base register has 1009 // other uses, since it avoids a two-address sub instruction, however 1010 // it costs an additional mov if the index register has other uses. 1011 1012 // Test if the LHS of the sub can be folded. 1013 X86ISelAddressMode Backup = AM; 1014 if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) { 1015 AM = Backup; 1016 break; 1017 } 1018 // Test if the index field is free for use. 1019 if (AM.IndexReg.getNode() || AM.isRIPRelative()) { 1020 AM = Backup; 1021 break; 1022 } 1023 int Cost = 0; 1024 SDValue RHS = N.getNode()->getOperand(1); 1025 // If the RHS involves a register with multiple uses, this 1026 // transformation incurs an extra mov, due to the neg instruction 1027 // clobbering its operand. 1028 if (!RHS.getNode()->hasOneUse() || 1029 RHS.getNode()->getOpcode() == ISD::CopyFromReg || 1030 RHS.getNode()->getOpcode() == ISD::TRUNCATE || 1031 RHS.getNode()->getOpcode() == ISD::ANY_EXTEND || 1032 (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND && 1033 RHS.getNode()->getOperand(0).getValueType() == MVT::i32)) 1034 ++Cost; 1035 // If the base is a register with multiple uses, this 1036 // transformation may save a mov. 1037 if ((AM.BaseType == X86ISelAddressMode::RegBase && 1038 AM.Base.Reg.getNode() && 1039 !AM.Base.Reg.getNode()->hasOneUse()) || 1040 AM.BaseType == X86ISelAddressMode::FrameIndexBase) 1041 --Cost; 1042 // If the folded LHS was interesting, this transformation saves 1043 // address arithmetic. 1044 if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) + 1045 ((AM.Disp != 0) && (Backup.Disp == 0)) + 1046 (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2) 1047 --Cost; 1048 // If it doesn't look like it may be an overall win, don't do it. 1049 if (Cost >= 0) { 1050 AM = Backup; 1051 break; 1052 } 1053 1054 // Ok, the transformation is legal and appears profitable. Go for it. 1055 SDValue Zero = CurDAG->getConstant(0, N.getValueType()); 1056 SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS); 1057 AM.IndexReg = Neg; 1058 AM.Scale = 1; 1059 1060 // Insert the new nodes into the topological ordering. 1061 if (Zero.getNode()->getNodeId() == -1 || 1062 Zero.getNode()->getNodeId() > N.getNode()->getNodeId()) { 1063 CurDAG->RepositionNode(N.getNode(), Zero.getNode()); 1064 Zero.getNode()->setNodeId(N.getNode()->getNodeId()); 1065 } 1066 if (Neg.getNode()->getNodeId() == -1 || 1067 Neg.getNode()->getNodeId() > N.getNode()->getNodeId()) { 1068 CurDAG->RepositionNode(N.getNode(), Neg.getNode()); 1069 Neg.getNode()->setNodeId(N.getNode()->getNodeId()); 1070 } 1071 return false; 1072 } 1073 1074 case ISD::ADD: { 1075 X86ISelAddressMode Backup = AM; 1076 if (!MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1) && 1077 !MatchAddressRecursively(N.getNode()->getOperand(1), AM, Depth+1)) 1078 return false; 1079 AM = Backup; 1080 if (!MatchAddressRecursively(N.getNode()->getOperand(1), AM, Depth+1) && 1081 !MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) 1082 return false; 1083 AM = Backup; 1084 1085 // If we couldn't fold both operands into the address at the same time, 1086 // see if we can just put each operand into a register and fold at least 1087 // the add. 1088 if (AM.BaseType == X86ISelAddressMode::RegBase && 1089 !AM.Base.Reg.getNode() && 1090 !AM.IndexReg.getNode()) { 1091 AM.Base.Reg = N.getNode()->getOperand(0); 1092 AM.IndexReg = N.getNode()->getOperand(1); 1093 AM.Scale = 1; 1094 return false; 1095 } 1096 break; 1097 } 1098 1099 case ISD::OR: 1100 // Handle "X | C" as "X + C" iff X is known to have C bits clear. 1101 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) { 1102 X86ISelAddressMode Backup = AM; 1103 uint64_t Offset = CN->getSExtValue(); 1104 // Start with the LHS as an addr mode. 1105 if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) && 1106 // Address could not have picked a GV address for the displacement. 1107 AM.GV == NULL && 1108 // On x86-64, the resultant disp must fit in 32-bits. 1109 (!is64Bit || 1110 X86::isOffsetSuitableForCodeModel(AM.Disp + Offset, M, 1111 AM.hasSymbolicDisplacement())) && 1112 // Check to see if the LHS & C is zero. 1113 CurDAG->MaskedValueIsZero(N.getOperand(0), CN->getAPIntValue())) { 1114 AM.Disp += Offset; 1115 return false; 1116 } 1117 AM = Backup; 1118 } 1119 break; 1120 1121 case ISD::AND: { 1122 // Perform some heroic transforms on an and of a constant-count shift 1123 // with a constant to enable use of the scaled offset field. 1124 1125 SDValue Shift = N.getOperand(0); 1126 if (Shift.getNumOperands() != 2) break; 1127 1128 // Scale must not be used already. 1129 if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break; 1130 1131 SDValue X = Shift.getOperand(0); 1132 ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N.getOperand(1)); 1133 ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Shift.getOperand(1)); 1134 if (!C1 || !C2) break; 1135 1136 // Handle "(X >> (8-C1)) & C2" as "(X >> 8) & 0xff)" if safe. This 1137 // allows us to convert the shift and and into an h-register extract and 1138 // a scaled index. 1139 if (Shift.getOpcode() == ISD::SRL && Shift.hasOneUse()) { 1140 unsigned ScaleLog = 8 - C1->getZExtValue(); 1141 if (ScaleLog > 0 && ScaleLog < 4 && 1142 C2->getZExtValue() == (UINT64_C(0xff) << ScaleLog)) { 1143 SDValue Eight = CurDAG->getConstant(8, MVT::i8); 1144 SDValue Mask = CurDAG->getConstant(0xff, N.getValueType()); 1145 SDValue Srl = CurDAG->getNode(ISD::SRL, dl, N.getValueType(), 1146 X, Eight); 1147 SDValue And = CurDAG->getNode(ISD::AND, dl, N.getValueType(), 1148 Srl, Mask); 1149 SDValue ShlCount = CurDAG->getConstant(ScaleLog, MVT::i8); 1150 SDValue Shl = CurDAG->getNode(ISD::SHL, dl, N.getValueType(), 1151 And, ShlCount); 1152 1153 // Insert the new nodes into the topological ordering. 1154 if (Eight.getNode()->getNodeId() == -1 || 1155 Eight.getNode()->getNodeId() > X.getNode()->getNodeId()) { 1156 CurDAG->RepositionNode(X.getNode(), Eight.getNode()); 1157 Eight.getNode()->setNodeId(X.getNode()->getNodeId()); 1158 } 1159 if (Mask.getNode()->getNodeId() == -1 || 1160 Mask.getNode()->getNodeId() > X.getNode()->getNodeId()) { 1161 CurDAG->RepositionNode(X.getNode(), Mask.getNode()); 1162 Mask.getNode()->setNodeId(X.getNode()->getNodeId()); 1163 } 1164 if (Srl.getNode()->getNodeId() == -1 || 1165 Srl.getNode()->getNodeId() > Shift.getNode()->getNodeId()) { 1166 CurDAG->RepositionNode(Shift.getNode(), Srl.getNode()); 1167 Srl.getNode()->setNodeId(Shift.getNode()->getNodeId()); 1168 } 1169 if (And.getNode()->getNodeId() == -1 || 1170 And.getNode()->getNodeId() > N.getNode()->getNodeId()) { 1171 CurDAG->RepositionNode(N.getNode(), And.getNode()); 1172 And.getNode()->setNodeId(N.getNode()->getNodeId()); 1173 } 1174 if (ShlCount.getNode()->getNodeId() == -1 || 1175 ShlCount.getNode()->getNodeId() > X.getNode()->getNodeId()) { 1176 CurDAG->RepositionNode(X.getNode(), ShlCount.getNode()); 1177 ShlCount.getNode()->setNodeId(N.getNode()->getNodeId()); 1178 } 1179 if (Shl.getNode()->getNodeId() == -1 || 1180 Shl.getNode()->getNodeId() > N.getNode()->getNodeId()) { 1181 CurDAG->RepositionNode(N.getNode(), Shl.getNode()); 1182 Shl.getNode()->setNodeId(N.getNode()->getNodeId()); 1183 } 1184 CurDAG->ReplaceAllUsesWith(N, Shl); 1185 AM.IndexReg = And; 1186 AM.Scale = (1 << ScaleLog); 1187 return false; 1188 } 1189 } 1190 1191 // Handle "(X << C1) & C2" as "(X & (C2>>C1)) << C1" if safe and if this 1192 // allows us to fold the shift into this addressing mode. 1193 if (Shift.getOpcode() != ISD::SHL) break; 1194 1195 // Not likely to be profitable if either the AND or SHIFT node has more 1196 // than one use (unless all uses are for address computation). Besides, 1197 // isel mechanism requires their node ids to be reused. 1198 if (!N.hasOneUse() || !Shift.hasOneUse()) 1199 break; 1200 1201 // Verify that the shift amount is something we can fold. 1202 unsigned ShiftCst = C1->getZExtValue(); 1203 if (ShiftCst != 1 && ShiftCst != 2 && ShiftCst != 3) 1204 break; 1205 1206 // Get the new AND mask, this folds to a constant. 1207 SDValue NewANDMask = CurDAG->getNode(ISD::SRL, dl, N.getValueType(), 1208 SDValue(C2, 0), SDValue(C1, 0)); 1209 SDValue NewAND = CurDAG->getNode(ISD::AND, dl, N.getValueType(), X, 1210 NewANDMask); 1211 SDValue NewSHIFT = CurDAG->getNode(ISD::SHL, dl, N.getValueType(), 1212 NewAND, SDValue(C1, 0)); 1213 1214 // Insert the new nodes into the topological ordering. 1215 if (C1->getNodeId() > X.getNode()->getNodeId()) { 1216 CurDAG->RepositionNode(X.getNode(), C1); 1217 C1->setNodeId(X.getNode()->getNodeId()); 1218 } 1219 if (NewANDMask.getNode()->getNodeId() == -1 || 1220 NewANDMask.getNode()->getNodeId() > X.getNode()->getNodeId()) { 1221 CurDAG->RepositionNode(X.getNode(), NewANDMask.getNode()); 1222 NewANDMask.getNode()->setNodeId(X.getNode()->getNodeId()); 1223 } 1224 if (NewAND.getNode()->getNodeId() == -1 || 1225 NewAND.getNode()->getNodeId() > Shift.getNode()->getNodeId()) { 1226 CurDAG->RepositionNode(Shift.getNode(), NewAND.getNode()); 1227 NewAND.getNode()->setNodeId(Shift.getNode()->getNodeId()); 1228 } 1229 if (NewSHIFT.getNode()->getNodeId() == -1 || 1230 NewSHIFT.getNode()->getNodeId() > N.getNode()->getNodeId()) { 1231 CurDAG->RepositionNode(N.getNode(), NewSHIFT.getNode()); 1232 NewSHIFT.getNode()->setNodeId(N.getNode()->getNodeId()); 1233 } 1234 1235 CurDAG->ReplaceAllUsesWith(N, NewSHIFT); 1236 1237 AM.Scale = 1 << ShiftCst; 1238 AM.IndexReg = NewAND; 1239 return false; 1240 } 1241 } 1242 1243 return MatchAddressBase(N, AM); 1244} 1245 1246/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the 1247/// specified addressing mode without any further recursion. 1248bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) { 1249 // Is the base register already occupied? 1250 if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.getNode()) { 1251 // If so, check to see if the scale index register is set. 1252 if (AM.IndexReg.getNode() == 0) { 1253 AM.IndexReg = N; 1254 AM.Scale = 1; 1255 return false; 1256 } 1257 1258 // Otherwise, we cannot select it. 1259 return true; 1260 } 1261 1262 // Default, generate it as a register. 1263 AM.BaseType = X86ISelAddressMode::RegBase; 1264 AM.Base.Reg = N; 1265 return false; 1266} 1267 1268/// SelectAddr - returns true if it is able pattern match an addressing mode. 1269/// It returns the operands which make up the maximal addressing mode it can 1270/// match by reference. 1271bool X86DAGToDAGISel::SelectAddr(SDValue Op, SDValue N, SDValue &Base, 1272 SDValue &Scale, SDValue &Index, 1273 SDValue &Disp, SDValue &Segment) { 1274 X86ISelAddressMode AM; 1275 bool Done = false; 1276 if (!N.hasOneUse()) { 1277 unsigned Opcode = N.getOpcode(); 1278 if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex && 1279 Opcode != X86ISD::Wrapper && Opcode != X86ISD::WrapperRIP) { 1280 // If we are able to fold N into addressing mode, then we'll allow it even 1281 // if N has multiple uses. In general, addressing computation is used as 1282 // addresses by all of its uses. But watch out for CopyToReg uses, that 1283 // means the address computation is liveout. It will be computed by a LEA 1284 // so we want to avoid computing the address twice. 1285 for (SDNode::use_iterator UI = N.getNode()->use_begin(), 1286 UE = N.getNode()->use_end(); UI != UE; ++UI) { 1287 if (UI->getOpcode() == ISD::CopyToReg) { 1288 MatchAddressBase(N, AM); 1289 Done = true; 1290 break; 1291 } 1292 } 1293 } 1294 } 1295 1296 if (!Done && MatchAddress(N, AM)) 1297 return false; 1298 1299 EVT VT = N.getValueType(); 1300 if (AM.BaseType == X86ISelAddressMode::RegBase) { 1301 if (!AM.Base.Reg.getNode()) 1302 AM.Base.Reg = CurDAG->getRegister(0, VT); 1303 } 1304 1305 if (!AM.IndexReg.getNode()) 1306 AM.IndexReg = CurDAG->getRegister(0, VT); 1307 1308 getAddressOperands(AM, Base, Scale, Index, Disp, Segment); 1309 return true; 1310} 1311 1312/// SelectScalarSSELoad - Match a scalar SSE load. In particular, we want to 1313/// match a load whose top elements are either undef or zeros. The load flavor 1314/// is derived from the type of N, which is either v4f32 or v2f64. 1315bool X86DAGToDAGISel::SelectScalarSSELoad(SDValue Op, SDValue Pred, 1316 SDValue N, SDValue &Base, 1317 SDValue &Scale, SDValue &Index, 1318 SDValue &Disp, SDValue &Segment, 1319 SDValue &InChain, 1320 SDValue &OutChain) { 1321 if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) { 1322 InChain = N.getOperand(0).getValue(1); 1323 if (ISD::isNON_EXTLoad(InChain.getNode()) && 1324 InChain.getValue(0).hasOneUse() && 1325 N.hasOneUse() && 1326 IsLegalAndProfitableToFold(N.getNode(), Pred.getNode(), Op.getNode())) { 1327 LoadSDNode *LD = cast<LoadSDNode>(InChain); 1328 if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp, Segment)) 1329 return false; 1330 OutChain = LD->getChain(); 1331 return true; 1332 } 1333 } 1334 1335 // Also handle the case where we explicitly require zeros in the top 1336 // elements. This is a vector shuffle from the zero vector. 1337 if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() && 1338 // Check to see if the top elements are all zeros (or bitcast of zeros). 1339 N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR && 1340 N.getOperand(0).getNode()->hasOneUse() && 1341 ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) && 1342 N.getOperand(0).getOperand(0).hasOneUse()) { 1343 // Okay, this is a zero extending load. Fold it. 1344 LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0)); 1345 if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp, Segment)) 1346 return false; 1347 OutChain = LD->getChain(); 1348 InChain = SDValue(LD, 1); 1349 return true; 1350 } 1351 return false; 1352} 1353 1354 1355/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing 1356/// mode it matches can be cost effectively emitted as an LEA instruction. 1357bool X86DAGToDAGISel::SelectLEAAddr(SDValue Op, SDValue N, 1358 SDValue &Base, SDValue &Scale, 1359 SDValue &Index, SDValue &Disp) { 1360 X86ISelAddressMode AM; 1361 1362 // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support 1363 // segments. 1364 SDValue Copy = AM.Segment; 1365 SDValue T = CurDAG->getRegister(0, MVT::i32); 1366 AM.Segment = T; 1367 if (MatchAddress(N, AM)) 1368 return false; 1369 assert (T == AM.Segment); 1370 AM.Segment = Copy; 1371 1372 EVT VT = N.getValueType(); 1373 unsigned Complexity = 0; 1374 if (AM.BaseType == X86ISelAddressMode::RegBase) 1375 if (AM.Base.Reg.getNode()) 1376 Complexity = 1; 1377 else 1378 AM.Base.Reg = CurDAG->getRegister(0, VT); 1379 else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase) 1380 Complexity = 4; 1381 1382 if (AM.IndexReg.getNode()) 1383 Complexity++; 1384 else 1385 AM.IndexReg = CurDAG->getRegister(0, VT); 1386 1387 // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with 1388 // a simple shift. 1389 if (AM.Scale > 1) 1390 Complexity++; 1391 1392 // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA 1393 // to a LEA. This is determined with some expermentation but is by no means 1394 // optimal (especially for code size consideration). LEA is nice because of 1395 // its three-address nature. Tweak the cost function again when we can run 1396 // convertToThreeAddress() at register allocation time. 1397 if (AM.hasSymbolicDisplacement()) { 1398 // For X86-64, we should always use lea to materialize RIP relative 1399 // addresses. 1400 if (Subtarget->is64Bit()) 1401 Complexity = 4; 1402 else 1403 Complexity += 2; 1404 } 1405 1406 if (AM.Disp && (AM.Base.Reg.getNode() || AM.IndexReg.getNode())) 1407 Complexity++; 1408 1409 // If it isn't worth using an LEA, reject it. 1410 if (Complexity <= 2) 1411 return false; 1412 1413 SDValue Segment; 1414 getAddressOperands(AM, Base, Scale, Index, Disp, Segment); 1415 return true; 1416} 1417 1418/// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes. 1419bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue Op, SDValue N, SDValue &Base, 1420 SDValue &Scale, SDValue &Index, 1421 SDValue &Disp) { 1422 assert(Op.getOpcode() == X86ISD::TLSADDR); 1423 assert(N.getOpcode() == ISD::TargetGlobalTLSAddress); 1424 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 1425 1426 X86ISelAddressMode AM; 1427 AM.GV = GA->getGlobal(); 1428 AM.Disp += GA->getOffset(); 1429 AM.Base.Reg = CurDAG->getRegister(0, N.getValueType()); 1430 AM.SymbolFlags = GA->getTargetFlags(); 1431 1432 if (N.getValueType() == MVT::i32) { 1433 AM.Scale = 1; 1434 AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32); 1435 } else { 1436 AM.IndexReg = CurDAG->getRegister(0, MVT::i64); 1437 } 1438 1439 SDValue Segment; 1440 getAddressOperands(AM, Base, Scale, Index, Disp, Segment); 1441 return true; 1442} 1443 1444 1445bool X86DAGToDAGISel::TryFoldLoad(SDValue P, SDValue N, 1446 SDValue &Base, SDValue &Scale, 1447 SDValue &Index, SDValue &Disp, 1448 SDValue &Segment) { 1449 if (ISD::isNON_EXTLoad(N.getNode()) && 1450 N.hasOneUse() && 1451 IsLegalAndProfitableToFold(N.getNode(), P.getNode(), P.getNode())) 1452 return SelectAddr(P, N.getOperand(1), Base, Scale, Index, Disp, Segment); 1453 return false; 1454} 1455 1456/// getGlobalBaseReg - Return an SDNode that returns the value of 1457/// the global base register. Output instructions required to 1458/// initialize the global base register, if necessary. 1459/// 1460SDNode *X86DAGToDAGISel::getGlobalBaseReg() { 1461 unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF); 1462 return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode(); 1463} 1464 1465static SDNode *FindCallStartFromCall(SDNode *Node) { 1466 if (Node->getOpcode() == ISD::CALLSEQ_START) return Node; 1467 assert(Node->getOperand(0).getValueType() == MVT::Other && 1468 "Node doesn't have a token chain argument!"); 1469 return FindCallStartFromCall(Node->getOperand(0).getNode()); 1470} 1471 1472SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) { 1473 SDValue Chain = Node->getOperand(0); 1474 SDValue In1 = Node->getOperand(1); 1475 SDValue In2L = Node->getOperand(2); 1476 SDValue In2H = Node->getOperand(3); 1477 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 1478 if (!SelectAddr(In1, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) 1479 return NULL; 1480 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); 1481 MemOp[0] = cast<MemSDNode>(Node)->getMemOperand(); 1482 const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain}; 1483 SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(), 1484 MVT::i32, MVT::i32, MVT::Other, Ops, 1485 array_lengthof(Ops)); 1486 cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1); 1487 return ResNode; 1488} 1489 1490SDNode *X86DAGToDAGISel::SelectAtomicLoadAdd(SDNode *Node, EVT NVT) { 1491 if (Node->hasAnyUseOfValue(0)) 1492 return 0; 1493 1494 // Optimize common patterns for __sync_add_and_fetch and 1495 // __sync_sub_and_fetch where the result is not used. This allows us 1496 // to use "lock" version of add, sub, inc, dec instructions. 1497 // FIXME: Do not use special instructions but instead add the "lock" 1498 // prefix to the target node somehow. The extra information will then be 1499 // transferred to machine instruction and it denotes the prefix. 1500 SDValue Chain = Node->getOperand(0); 1501 SDValue Ptr = Node->getOperand(1); 1502 SDValue Val = Node->getOperand(2); 1503 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 1504 if (!SelectAddr(Ptr, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) 1505 return 0; 1506 1507 bool isInc = false, isDec = false, isSub = false, isCN = false; 1508 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val); 1509 if (CN) { 1510 isCN = true; 1511 int64_t CNVal = CN->getSExtValue(); 1512 if (CNVal == 1) 1513 isInc = true; 1514 else if (CNVal == -1) 1515 isDec = true; 1516 else if (CNVal >= 0) 1517 Val = CurDAG->getTargetConstant(CNVal, NVT); 1518 else { 1519 isSub = true; 1520 Val = CurDAG->getTargetConstant(-CNVal, NVT); 1521 } 1522 } else if (Val.hasOneUse() && 1523 Val.getOpcode() == ISD::SUB && 1524 X86::isZeroNode(Val.getOperand(0))) { 1525 isSub = true; 1526 Val = Val.getOperand(1); 1527 } 1528 1529 unsigned Opc = 0; 1530 switch (NVT.getSimpleVT().SimpleTy) { 1531 default: return 0; 1532 case MVT::i8: 1533 if (isInc) 1534 Opc = X86::LOCK_INC8m; 1535 else if (isDec) 1536 Opc = X86::LOCK_DEC8m; 1537 else if (isSub) { 1538 if (isCN) 1539 Opc = X86::LOCK_SUB8mi; 1540 else 1541 Opc = X86::LOCK_SUB8mr; 1542 } else { 1543 if (isCN) 1544 Opc = X86::LOCK_ADD8mi; 1545 else 1546 Opc = X86::LOCK_ADD8mr; 1547 } 1548 break; 1549 case MVT::i16: 1550 if (isInc) 1551 Opc = X86::LOCK_INC16m; 1552 else if (isDec) 1553 Opc = X86::LOCK_DEC16m; 1554 else if (isSub) { 1555 if (isCN) { 1556 if (Predicate_i16immSExt8(Val.getNode())) 1557 Opc = X86::LOCK_SUB16mi8; 1558 else 1559 Opc = X86::LOCK_SUB16mi; 1560 } else 1561 Opc = X86::LOCK_SUB16mr; 1562 } else { 1563 if (isCN) { 1564 if (Predicate_i16immSExt8(Val.getNode())) 1565 Opc = X86::LOCK_ADD16mi8; 1566 else 1567 Opc = X86::LOCK_ADD16mi; 1568 } else 1569 Opc = X86::LOCK_ADD16mr; 1570 } 1571 break; 1572 case MVT::i32: 1573 if (isInc) 1574 Opc = X86::LOCK_INC32m; 1575 else if (isDec) 1576 Opc = X86::LOCK_DEC32m; 1577 else if (isSub) { 1578 if (isCN) { 1579 if (Predicate_i32immSExt8(Val.getNode())) 1580 Opc = X86::LOCK_SUB32mi8; 1581 else 1582 Opc = X86::LOCK_SUB32mi; 1583 } else 1584 Opc = X86::LOCK_SUB32mr; 1585 } else { 1586 if (isCN) { 1587 if (Predicate_i32immSExt8(Val.getNode())) 1588 Opc = X86::LOCK_ADD32mi8; 1589 else 1590 Opc = X86::LOCK_ADD32mi; 1591 } else 1592 Opc = X86::LOCK_ADD32mr; 1593 } 1594 break; 1595 case MVT::i64: 1596 if (isInc) 1597 Opc = X86::LOCK_INC64m; 1598 else if (isDec) 1599 Opc = X86::LOCK_DEC64m; 1600 else if (isSub) { 1601 Opc = X86::LOCK_SUB64mr; 1602 if (isCN) { 1603 if (Predicate_i64immSExt8(Val.getNode())) 1604 Opc = X86::LOCK_SUB64mi8; 1605 else if (Predicate_i64immSExt32(Val.getNode())) 1606 Opc = X86::LOCK_SUB64mi32; 1607 } 1608 } else { 1609 Opc = X86::LOCK_ADD64mr; 1610 if (isCN) { 1611 if (Predicate_i64immSExt8(Val.getNode())) 1612 Opc = X86::LOCK_ADD64mi8; 1613 else if (Predicate_i64immSExt32(Val.getNode())) 1614 Opc = X86::LOCK_ADD64mi32; 1615 } 1616 } 1617 break; 1618 } 1619 1620 DebugLoc dl = Node->getDebugLoc(); 1621 SDValue Undef = SDValue(CurDAG->getMachineNode(TargetInstrInfo::IMPLICIT_DEF, 1622 dl, NVT), 0); 1623 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); 1624 MemOp[0] = cast<MemSDNode>(Node)->getMemOperand(); 1625 if (isInc || isDec) { 1626 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain }; 1627 SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 6), 0); 1628 cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1); 1629 SDValue RetVals[] = { Undef, Ret }; 1630 return CurDAG->getMergeValues(RetVals, 2, dl).getNode(); 1631 } else { 1632 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain }; 1633 SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 7), 0); 1634 cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1); 1635 SDValue RetVals[] = { Undef, Ret }; 1636 return CurDAG->getMergeValues(RetVals, 2, dl).getNode(); 1637 } 1638} 1639 1640/// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has 1641/// any uses which require the SF or OF bits to be accurate. 1642static bool HasNoSignedComparisonUses(SDNode *N) { 1643 // Examine each user of the node. 1644 for (SDNode::use_iterator UI = N->use_begin(), 1645 UE = N->use_end(); UI != UE; ++UI) { 1646 // Only examine CopyToReg uses. 1647 if (UI->getOpcode() != ISD::CopyToReg) 1648 return false; 1649 // Only examine CopyToReg uses that copy to EFLAGS. 1650 if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() != 1651 X86::EFLAGS) 1652 return false; 1653 // Examine each user of the CopyToReg use. 1654 for (SDNode::use_iterator FlagUI = UI->use_begin(), 1655 FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) { 1656 // Only examine the Flag result. 1657 if (FlagUI.getUse().getResNo() != 1) continue; 1658 // Anything unusual: assume conservatively. 1659 if (!FlagUI->isMachineOpcode()) return false; 1660 // Examine the opcode of the user. 1661 switch (FlagUI->getMachineOpcode()) { 1662 // These comparisons don't treat the most significant bit specially. 1663 case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr: 1664 case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr: 1665 case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm: 1666 case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm: 1667 case X86::JA: case X86::JAE: case X86::JB: case X86::JBE: 1668 case X86::JE: case X86::JNE: case X86::JP: case X86::JNP: 1669 case X86::CMOVA16rr: case X86::CMOVA16rm: 1670 case X86::CMOVA32rr: case X86::CMOVA32rm: 1671 case X86::CMOVA64rr: case X86::CMOVA64rm: 1672 case X86::CMOVAE16rr: case X86::CMOVAE16rm: 1673 case X86::CMOVAE32rr: case X86::CMOVAE32rm: 1674 case X86::CMOVAE64rr: case X86::CMOVAE64rm: 1675 case X86::CMOVB16rr: case X86::CMOVB16rm: 1676 case X86::CMOVB32rr: case X86::CMOVB32rm: 1677 case X86::CMOVB64rr: case X86::CMOVB64rm: 1678 case X86::CMOVBE16rr: case X86::CMOVBE16rm: 1679 case X86::CMOVBE32rr: case X86::CMOVBE32rm: 1680 case X86::CMOVBE64rr: case X86::CMOVBE64rm: 1681 case X86::CMOVE16rr: case X86::CMOVE16rm: 1682 case X86::CMOVE32rr: case X86::CMOVE32rm: 1683 case X86::CMOVE64rr: case X86::CMOVE64rm: 1684 case X86::CMOVNE16rr: case X86::CMOVNE16rm: 1685 case X86::CMOVNE32rr: case X86::CMOVNE32rm: 1686 case X86::CMOVNE64rr: case X86::CMOVNE64rm: 1687 case X86::CMOVNP16rr: case X86::CMOVNP16rm: 1688 case X86::CMOVNP32rr: case X86::CMOVNP32rm: 1689 case X86::CMOVNP64rr: case X86::CMOVNP64rm: 1690 case X86::CMOVP16rr: case X86::CMOVP16rm: 1691 case X86::CMOVP32rr: case X86::CMOVP32rm: 1692 case X86::CMOVP64rr: case X86::CMOVP64rm: 1693 continue; 1694 // Anything else: assume conservatively. 1695 default: return false; 1696 } 1697 } 1698 } 1699 return true; 1700} 1701 1702SDNode *X86DAGToDAGISel::Select(SDValue N) { 1703 SDNode *Node = N.getNode(); 1704 EVT NVT = Node->getValueType(0); 1705 unsigned Opc, MOpc; 1706 unsigned Opcode = Node->getOpcode(); 1707 DebugLoc dl = Node->getDebugLoc(); 1708 1709#ifndef NDEBUG 1710 DEBUG({ 1711 errs() << std::string(Indent, ' ') << "Selecting: "; 1712 Node->dump(CurDAG); 1713 errs() << '\n'; 1714 }); 1715 Indent += 2; 1716#endif 1717 1718 if (Node->isMachineOpcode()) { 1719#ifndef NDEBUG 1720 DEBUG({ 1721 errs() << std::string(Indent-2, ' ') << "== "; 1722 Node->dump(CurDAG); 1723 errs() << '\n'; 1724 }); 1725 Indent -= 2; 1726#endif 1727 return NULL; // Already selected. 1728 } 1729 1730 switch (Opcode) { 1731 default: break; 1732 case X86ISD::GlobalBaseReg: 1733 return getGlobalBaseReg(); 1734 1735 case X86ISD::ATOMOR64_DAG: 1736 return SelectAtomic64(Node, X86::ATOMOR6432); 1737 case X86ISD::ATOMXOR64_DAG: 1738 return SelectAtomic64(Node, X86::ATOMXOR6432); 1739 case X86ISD::ATOMADD64_DAG: 1740 return SelectAtomic64(Node, X86::ATOMADD6432); 1741 case X86ISD::ATOMSUB64_DAG: 1742 return SelectAtomic64(Node, X86::ATOMSUB6432); 1743 case X86ISD::ATOMNAND64_DAG: 1744 return SelectAtomic64(Node, X86::ATOMNAND6432); 1745 case X86ISD::ATOMAND64_DAG: 1746 return SelectAtomic64(Node, X86::ATOMAND6432); 1747 case X86ISD::ATOMSWAP64_DAG: 1748 return SelectAtomic64(Node, X86::ATOMSWAP6432); 1749 1750 case ISD::ATOMIC_LOAD_ADD: { 1751 SDNode *RetVal = SelectAtomicLoadAdd(Node, NVT); 1752 if (RetVal) 1753 return RetVal; 1754 break; 1755 } 1756 1757 case ISD::SMUL_LOHI: 1758 case ISD::UMUL_LOHI: { 1759 SDValue N0 = Node->getOperand(0); 1760 SDValue N1 = Node->getOperand(1); 1761 1762 bool isSigned = Opcode == ISD::SMUL_LOHI; 1763 if (!isSigned) { 1764 switch (NVT.getSimpleVT().SimpleTy) { 1765 default: llvm_unreachable("Unsupported VT!"); 1766 case MVT::i8: Opc = X86::MUL8r; MOpc = X86::MUL8m; break; 1767 case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break; 1768 case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break; 1769 case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break; 1770 } 1771 } else { 1772 switch (NVT.getSimpleVT().SimpleTy) { 1773 default: llvm_unreachable("Unsupported VT!"); 1774 case MVT::i8: Opc = X86::IMUL8r; MOpc = X86::IMUL8m; break; 1775 case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break; 1776 case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break; 1777 case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break; 1778 } 1779 } 1780 1781 unsigned LoReg, HiReg; 1782 switch (NVT.getSimpleVT().SimpleTy) { 1783 default: llvm_unreachable("Unsupported VT!"); 1784 case MVT::i8: LoReg = X86::AL; HiReg = X86::AH; break; 1785 case MVT::i16: LoReg = X86::AX; HiReg = X86::DX; break; 1786 case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break; 1787 case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break; 1788 } 1789 1790 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 1791 bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); 1792 // Multiply is commmutative. 1793 if (!foldedLoad) { 1794 foldedLoad = TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); 1795 if (foldedLoad) 1796 std::swap(N0, N1); 1797 } 1798 1799 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg, 1800 N0, SDValue()).getValue(1); 1801 1802 if (foldedLoad) { 1803 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0), 1804 InFlag }; 1805 SDNode *CNode = 1806 CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Flag, Ops, 1807 array_lengthof(Ops)); 1808 InFlag = SDValue(CNode, 1); 1809 // Update the chain. 1810 ReplaceUses(N1.getValue(1), SDValue(CNode, 0)); 1811 } else { 1812 InFlag = 1813 SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Flag, N1, InFlag), 0); 1814 } 1815 1816 // Copy the low half of the result, if it is needed. 1817 if (!N.getValue(0).use_empty()) { 1818 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, 1819 LoReg, NVT, InFlag); 1820 InFlag = Result.getValue(2); 1821 ReplaceUses(N.getValue(0), Result); 1822#ifndef NDEBUG 1823 DEBUG({ 1824 errs() << std::string(Indent-2, ' ') << "=> "; 1825 Result.getNode()->dump(CurDAG); 1826 errs() << '\n'; 1827 }); 1828#endif 1829 } 1830 // Copy the high half of the result, if it is needed. 1831 if (!N.getValue(1).use_empty()) { 1832 SDValue Result; 1833 if (HiReg == X86::AH && Subtarget->is64Bit()) { 1834 // Prevent use of AH in a REX instruction by referencing AX instead. 1835 // Shift it down 8 bits. 1836 Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, 1837 X86::AX, MVT::i16, InFlag); 1838 InFlag = Result.getValue(2); 1839 Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16, 1840 Result, 1841 CurDAG->getTargetConstant(8, MVT::i8)), 0); 1842 // Then truncate it down to i8. 1843 Result = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT, dl, 1844 MVT::i8, Result); 1845 } else { 1846 Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, 1847 HiReg, NVT, InFlag); 1848 InFlag = Result.getValue(2); 1849 } 1850 ReplaceUses(N.getValue(1), Result); 1851#ifndef NDEBUG 1852 DEBUG({ 1853 errs() << std::string(Indent-2, ' ') << "=> "; 1854 Result.getNode()->dump(CurDAG); 1855 errs() << '\n'; 1856 }); 1857#endif 1858 } 1859 1860#ifndef NDEBUG 1861 Indent -= 2; 1862#endif 1863 1864 return NULL; 1865 } 1866 1867 case ISD::SDIVREM: 1868 case ISD::UDIVREM: { 1869 SDValue N0 = Node->getOperand(0); 1870 SDValue N1 = Node->getOperand(1); 1871 1872 bool isSigned = Opcode == ISD::SDIVREM; 1873 if (!isSigned) { 1874 switch (NVT.getSimpleVT().SimpleTy) { 1875 default: llvm_unreachable("Unsupported VT!"); 1876 case MVT::i8: Opc = X86::DIV8r; MOpc = X86::DIV8m; break; 1877 case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break; 1878 case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break; 1879 case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break; 1880 } 1881 } else { 1882 switch (NVT.getSimpleVT().SimpleTy) { 1883 default: llvm_unreachable("Unsupported VT!"); 1884 case MVT::i8: Opc = X86::IDIV8r; MOpc = X86::IDIV8m; break; 1885 case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break; 1886 case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break; 1887 case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break; 1888 } 1889 } 1890 1891 unsigned LoReg, HiReg; 1892 unsigned ClrOpcode, SExtOpcode; 1893 switch (NVT.getSimpleVT().SimpleTy) { 1894 default: llvm_unreachable("Unsupported VT!"); 1895 case MVT::i8: 1896 LoReg = X86::AL; HiReg = X86::AH; 1897 ClrOpcode = 0; 1898 SExtOpcode = X86::CBW; 1899 break; 1900 case MVT::i16: 1901 LoReg = X86::AX; HiReg = X86::DX; 1902 ClrOpcode = X86::MOV16r0; 1903 SExtOpcode = X86::CWD; 1904 break; 1905 case MVT::i32: 1906 LoReg = X86::EAX; HiReg = X86::EDX; 1907 ClrOpcode = X86::MOV32r0; 1908 SExtOpcode = X86::CDQ; 1909 break; 1910 case MVT::i64: 1911 LoReg = X86::RAX; HiReg = X86::RDX; 1912 ClrOpcode = ~0U; // NOT USED. 1913 SExtOpcode = X86::CQO; 1914 break; 1915 } 1916 1917 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 1918 bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); 1919 bool signBitIsZero = CurDAG->SignBitIsZero(N0); 1920 1921 SDValue InFlag; 1922 if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) { 1923 // Special case for div8, just use a move with zero extension to AX to 1924 // clear the upper 8 bits (AH). 1925 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain; 1926 if (TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) { 1927 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) }; 1928 Move = 1929 SDValue(CurDAG->getMachineNode(X86::MOVZX16rm8, dl, MVT::i16, 1930 MVT::Other, Ops, 1931 array_lengthof(Ops)), 0); 1932 Chain = Move.getValue(1); 1933 ReplaceUses(N0.getValue(1), Chain); 1934 } else { 1935 Move = 1936 SDValue(CurDAG->getMachineNode(X86::MOVZX16rr8, dl, MVT::i16, N0),0); 1937 Chain = CurDAG->getEntryNode(); 1938 } 1939 Chain = CurDAG->getCopyToReg(Chain, dl, X86::AX, Move, SDValue()); 1940 InFlag = Chain.getValue(1); 1941 } else { 1942 InFlag = 1943 CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, 1944 LoReg, N0, SDValue()).getValue(1); 1945 if (isSigned && !signBitIsZero) { 1946 // Sign extend the low part into the high part. 1947 InFlag = 1948 SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Flag, InFlag),0); 1949 } else { 1950 // Zero out the high part, effectively zero extending the input. 1951 SDValue ClrNode; 1952 1953 if (NVT.getSimpleVT() == MVT::i64) { 1954 ClrNode = SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, MVT::i32), 1955 0); 1956 // We just did a 32-bit clear, insert it into a 64-bit register to 1957 // clear the whole 64-bit reg. 1958 SDValue Zero = CurDAG->getTargetConstant(0, MVT::i64); 1959 SDValue SubRegNo = 1960 CurDAG->getTargetConstant(X86::SUBREG_32BIT, MVT::i32); 1961 ClrNode = 1962 SDValue(CurDAG->getMachineNode(TargetInstrInfo::SUBREG_TO_REG, dl, 1963 MVT::i64, Zero, ClrNode, SubRegNo), 1964 0); 1965 } else { 1966 ClrNode = SDValue(CurDAG->getMachineNode(ClrOpcode, dl, NVT), 0); 1967 } 1968 1969 InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, HiReg, 1970 ClrNode, InFlag).getValue(1); 1971 } 1972 } 1973 1974 if (foldedLoad) { 1975 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0), 1976 InFlag }; 1977 SDNode *CNode = 1978 CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Flag, Ops, 1979 array_lengthof(Ops)); 1980 InFlag = SDValue(CNode, 1); 1981 // Update the chain. 1982 ReplaceUses(N1.getValue(1), SDValue(CNode, 0)); 1983 } else { 1984 InFlag = 1985 SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Flag, N1, InFlag), 0); 1986 } 1987 1988 // Copy the division (low) result, if it is needed. 1989 if (!N.getValue(0).use_empty()) { 1990 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, 1991 LoReg, NVT, InFlag); 1992 InFlag = Result.getValue(2); 1993 ReplaceUses(N.getValue(0), Result); 1994#ifndef NDEBUG 1995 DEBUG({ 1996 errs() << std::string(Indent-2, ' ') << "=> "; 1997 Result.getNode()->dump(CurDAG); 1998 errs() << '\n'; 1999 }); 2000#endif 2001 } 2002 // Copy the remainder (high) result, if it is needed. 2003 if (!N.getValue(1).use_empty()) { 2004 SDValue Result; 2005 if (HiReg == X86::AH && Subtarget->is64Bit()) { 2006 // Prevent use of AH in a REX instruction by referencing AX instead. 2007 // Shift it down 8 bits. 2008 Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, 2009 X86::AX, MVT::i16, InFlag); 2010 InFlag = Result.getValue(2); 2011 Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16, 2012 Result, 2013 CurDAG->getTargetConstant(8, MVT::i8)), 2014 0); 2015 // Then truncate it down to i8. 2016 Result = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT, dl, 2017 MVT::i8, Result); 2018 } else { 2019 Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, 2020 HiReg, NVT, InFlag); 2021 InFlag = Result.getValue(2); 2022 } 2023 ReplaceUses(N.getValue(1), Result); 2024#ifndef NDEBUG 2025 DEBUG({ 2026 errs() << std::string(Indent-2, ' ') << "=> "; 2027 Result.getNode()->dump(CurDAG); 2028 errs() << '\n'; 2029 }); 2030#endif 2031 } 2032 2033#ifndef NDEBUG 2034 Indent -= 2; 2035#endif 2036 2037 return NULL; 2038 } 2039 2040 case X86ISD::CMP: { 2041 SDValue N0 = Node->getOperand(0); 2042 SDValue N1 = Node->getOperand(1); 2043 2044 // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to 2045 // use a smaller encoding. 2046 if (N0.getNode()->getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && 2047 N0.getValueType() != MVT::i8 && 2048 X86::isZeroNode(N1)) { 2049 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1)); 2050 if (!C) break; 2051 2052 // For example, convert "testl %eax, $8" to "testb %al, $8" 2053 if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 && 2054 (!(C->getZExtValue() & 0x80) || 2055 HasNoSignedComparisonUses(Node))) { 2056 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8); 2057 SDValue Reg = N0.getNode()->getOperand(0); 2058 2059 // On x86-32, only the ABCD registers have 8-bit subregisters. 2060 if (!Subtarget->is64Bit()) { 2061 TargetRegisterClass *TRC = 0; 2062 switch (N0.getValueType().getSimpleVT().SimpleTy) { 2063 case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break; 2064 case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break; 2065 default: llvm_unreachable("Unsupported TEST operand type!"); 2066 } 2067 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32); 2068 Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl, 2069 Reg.getValueType(), Reg, RC), 0); 2070 } 2071 2072 // Extract the l-register. 2073 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT, dl, 2074 MVT::i8, Reg); 2075 2076 // Emit a testb. 2077 return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32, Subreg, Imm); 2078 } 2079 2080 // For example, "testl %eax, $2048" to "testb %ah, $8". 2081 if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 && 2082 (!(C->getZExtValue() & 0x8000) || 2083 HasNoSignedComparisonUses(Node))) { 2084 // Shift the immediate right by 8 bits. 2085 SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8, 2086 MVT::i8); 2087 SDValue Reg = N0.getNode()->getOperand(0); 2088 2089 // Put the value in an ABCD register. 2090 TargetRegisterClass *TRC = 0; 2091 switch (N0.getValueType().getSimpleVT().SimpleTy) { 2092 case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break; 2093 case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break; 2094 case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break; 2095 default: llvm_unreachable("Unsupported TEST operand type!"); 2096 } 2097 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32); 2098 Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl, 2099 Reg.getValueType(), Reg, RC), 0); 2100 2101 // Extract the h-register. 2102 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT_HI, dl, 2103 MVT::i8, Reg); 2104 2105 // Emit a testb. No special NOREX tricks are needed since there's 2106 // only one GPR operand! 2107 return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32, 2108 Subreg, ShiftedImm); 2109 } 2110 2111 // For example, "testl %eax, $32776" to "testw %ax, $32776". 2112 if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 && 2113 N0.getValueType() != MVT::i16 && 2114 (!(C->getZExtValue() & 0x8000) || 2115 HasNoSignedComparisonUses(Node))) { 2116 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16); 2117 SDValue Reg = N0.getNode()->getOperand(0); 2118 2119 // Extract the 16-bit subregister. 2120 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_16BIT, dl, 2121 MVT::i16, Reg); 2122 2123 // Emit a testw. 2124 return CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32, Subreg, Imm); 2125 } 2126 2127 // For example, "testq %rax, $268468232" to "testl %eax, $268468232". 2128 if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 && 2129 N0.getValueType() == MVT::i64 && 2130 (!(C->getZExtValue() & 0x80000000) || 2131 HasNoSignedComparisonUses(Node))) { 2132 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32); 2133 SDValue Reg = N0.getNode()->getOperand(0); 2134 2135 // Extract the 32-bit subregister. 2136 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_32BIT, dl, 2137 MVT::i32, Reg); 2138 2139 // Emit a testl. 2140 return CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32, Subreg, Imm); 2141 } 2142 } 2143 break; 2144 } 2145 } 2146 2147 SDNode *ResNode = SelectCode(N); 2148 2149#ifndef NDEBUG 2150 DEBUG({ 2151 errs() << std::string(Indent-2, ' ') << "=> "; 2152 if (ResNode == NULL || ResNode == N.getNode()) 2153 N.getNode()->dump(CurDAG); 2154 else 2155 ResNode->dump(CurDAG); 2156 errs() << '\n'; 2157 }); 2158 Indent -= 2; 2159#endif 2160 2161 return ResNode; 2162} 2163 2164bool X86DAGToDAGISel:: 2165SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode, 2166 std::vector<SDValue> &OutOps) { 2167 SDValue Op0, Op1, Op2, Op3, Op4; 2168 switch (ConstraintCode) { 2169 case 'o': // offsetable ?? 2170 case 'v': // not offsetable ?? 2171 default: return true; 2172 case 'm': // memory 2173 if (!SelectAddr(Op, Op, Op0, Op1, Op2, Op3, Op4)) 2174 return true; 2175 break; 2176 } 2177 2178 OutOps.push_back(Op0); 2179 OutOps.push_back(Op1); 2180 OutOps.push_back(Op2); 2181 OutOps.push_back(Op3); 2182 OutOps.push_back(Op4); 2183 return false; 2184} 2185 2186/// createX86ISelDag - This pass converts a legalized DAG into a 2187/// X86-specific DAG, ready for instruction scheduling. 2188/// 2189FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM, 2190 llvm::CodeGenOpt::Level OptLevel) { 2191 return new X86DAGToDAGISel(TM, OptLevel); 2192} 2193