X86ISelDAGToDAG.cpp revision 78d15761e40a542b992ac811b4e3909c33d1513a
1//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a DAG pattern matching instruction selector for X86,
11// converting from a legalized dag to a X86 dag.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86RegisterInfo.h"
20#include "X86Subtarget.h"
21#include "X86TargetMachine.h"
22#include "llvm/Instructions.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/Support/CFG.h"
25#include "llvm/Type.h"
26#include "llvm/CodeGen/MachineConstantPool.h"
27#include "llvm/CodeGen/MachineFunction.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/MachineRegisterInfo.h"
31#include "llvm/CodeGen/SelectionDAGISel.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/ADT/SmallPtrSet.h"
39#include "llvm/ADT/Statistic.h"
40using namespace llvm;
41
42STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
43
44//===----------------------------------------------------------------------===//
45//                      Pattern Matcher Implementation
46//===----------------------------------------------------------------------===//
47
48namespace {
49  /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
50  /// SDValue's instead of register numbers for the leaves of the matched
51  /// tree.
52  struct X86ISelAddressMode {
53    enum {
54      RegBase,
55      FrameIndexBase
56    } BaseType;
57
58    // This is really a union, discriminated by BaseType!
59    SDValue Base_Reg;
60    int Base_FrameIndex;
61
62    unsigned Scale;
63    SDValue IndexReg;
64    int32_t Disp;
65    SDValue Segment;
66    const GlobalValue *GV;
67    const Constant *CP;
68    const BlockAddress *BlockAddr;
69    const char *ES;
70    int JT;
71    unsigned Align;    // CP alignment.
72    unsigned char SymbolFlags;  // X86II::MO_*
73
74    X86ISelAddressMode()
75      : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
76        Segment(), GV(0), CP(0), BlockAddr(0), ES(0), JT(-1), Align(0),
77        SymbolFlags(X86II::MO_NO_FLAG) {
78    }
79
80    bool hasSymbolicDisplacement() const {
81      return GV != 0 || CP != 0 || ES != 0 || JT != -1 || BlockAddr != 0;
82    }
83
84    bool hasBaseOrIndexReg() const {
85      return IndexReg.getNode() != 0 || Base_Reg.getNode() != 0;
86    }
87
88    /// isRIPRelative - Return true if this addressing mode is already RIP
89    /// relative.
90    bool isRIPRelative() const {
91      if (BaseType != RegBase) return false;
92      if (RegisterSDNode *RegNode =
93            dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
94        return RegNode->getReg() == X86::RIP;
95      return false;
96    }
97
98    void setBaseReg(SDValue Reg) {
99      BaseType = RegBase;
100      Base_Reg = Reg;
101    }
102
103    void dump() {
104      dbgs() << "X86ISelAddressMode " << this << '\n';
105      dbgs() << "Base_Reg ";
106      if (Base_Reg.getNode() != 0)
107        Base_Reg.getNode()->dump();
108      else
109        dbgs() << "nul";
110      dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n'
111             << " Scale" << Scale << '\n'
112             << "IndexReg ";
113      if (IndexReg.getNode() != 0)
114        IndexReg.getNode()->dump();
115      else
116        dbgs() << "nul";
117      dbgs() << " Disp " << Disp << '\n'
118             << "GV ";
119      if (GV)
120        GV->dump();
121      else
122        dbgs() << "nul";
123      dbgs() << " CP ";
124      if (CP)
125        CP->dump();
126      else
127        dbgs() << "nul";
128      dbgs() << '\n'
129             << "ES ";
130      if (ES)
131        dbgs() << ES;
132      else
133        dbgs() << "nul";
134      dbgs() << " JT" << JT << " Align" << Align << '\n';
135    }
136  };
137}
138
139namespace {
140  //===--------------------------------------------------------------------===//
141  /// ISel - X86 specific code to select X86 machine instructions for
142  /// SelectionDAG operations.
143  ///
144  class X86DAGToDAGISel : public SelectionDAGISel {
145    /// X86Lowering - This object fully describes how to lower LLVM code to an
146    /// X86-specific SelectionDAG.
147    const X86TargetLowering &X86Lowering;
148
149    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
150    /// make the right decision when generating code for different targets.
151    const X86Subtarget *Subtarget;
152
153    /// OptForSize - If true, selector should try to optimize for code size
154    /// instead of performance.
155    bool OptForSize;
156
157  public:
158    explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
159      : SelectionDAGISel(tm, OptLevel),
160        X86Lowering(*tm.getTargetLowering()),
161        Subtarget(&tm.getSubtarget<X86Subtarget>()),
162        OptForSize(false) {}
163
164    virtual const char *getPassName() const {
165      return "X86 DAG->DAG Instruction Selection";
166    }
167
168    virtual void EmitFunctionEntryCode();
169
170    virtual bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const;
171
172    virtual void PreprocessISelDAG();
173
174    inline bool immSext8(SDNode *N) const {
175      return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue());
176    }
177
178    // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
179    // sign extended field.
180    inline bool i64immSExt32(SDNode *N) const {
181      uint64_t v = cast<ConstantSDNode>(N)->getZExtValue();
182      return (int64_t)v == (int32_t)v;
183    }
184
185// Include the pieces autogenerated from the target description.
186#include "X86GenDAGISel.inc"
187
188  private:
189    SDNode *Select(SDNode *N);
190    SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
191    SDNode *SelectAtomicLoadAdd(SDNode *Node, EVT NVT);
192
193    bool MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM);
194    bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
195    bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
196    bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
197                                 unsigned Depth);
198    bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
199    bool SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
200                    SDValue &Scale, SDValue &Index, SDValue &Disp,
201                    SDValue &Segment);
202    bool SelectLEAAddr(SDValue N, SDValue &Base,
203                       SDValue &Scale, SDValue &Index, SDValue &Disp,
204                       SDValue &Segment);
205    bool SelectTLSADDRAddr(SDValue N, SDValue &Base,
206                           SDValue &Scale, SDValue &Index, SDValue &Disp,
207                           SDValue &Segment);
208    bool SelectScalarSSELoad(SDNode *Root, SDValue N,
209                             SDValue &Base, SDValue &Scale,
210                             SDValue &Index, SDValue &Disp,
211                             SDValue &Segment,
212                             SDValue &NodeWithChain);
213
214    bool TryFoldLoad(SDNode *P, SDValue N,
215                     SDValue &Base, SDValue &Scale,
216                     SDValue &Index, SDValue &Disp,
217                     SDValue &Segment);
218
219    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
220    /// inline asm expressions.
221    virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
222                                              char ConstraintCode,
223                                              std::vector<SDValue> &OutOps);
224
225    void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
226
227    inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
228                                   SDValue &Scale, SDValue &Index,
229                                   SDValue &Disp, SDValue &Segment) {
230      Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
231        CurDAG->getTargetFrameIndex(AM.Base_FrameIndex, TLI.getPointerTy()) :
232        AM.Base_Reg;
233      Scale = getI8Imm(AM.Scale);
234      Index = AM.IndexReg;
235      // These are 32-bit even in 64-bit mode since RIP relative offset
236      // is 32-bit.
237      if (AM.GV)
238        Disp = CurDAG->getTargetGlobalAddress(AM.GV, DebugLoc(),
239                                              MVT::i32, AM.Disp,
240                                              AM.SymbolFlags);
241      else if (AM.CP)
242        Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
243                                             AM.Align, AM.Disp, AM.SymbolFlags);
244      else if (AM.ES)
245        Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
246      else if (AM.JT != -1)
247        Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
248      else if (AM.BlockAddr)
249        Disp = CurDAG->getBlockAddress(AM.BlockAddr, MVT::i32,
250                                       true, AM.SymbolFlags);
251      else
252        Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
253
254      if (AM.Segment.getNode())
255        Segment = AM.Segment;
256      else
257        Segment = CurDAG->getRegister(0, MVT::i32);
258    }
259
260    /// getI8Imm - Return a target constant with the specified value, of type
261    /// i8.
262    inline SDValue getI8Imm(unsigned Imm) {
263      return CurDAG->getTargetConstant(Imm, MVT::i8);
264    }
265
266    /// getI32Imm - Return a target constant with the specified value, of type
267    /// i32.
268    inline SDValue getI32Imm(unsigned Imm) {
269      return CurDAG->getTargetConstant(Imm, MVT::i32);
270    }
271
272    /// getGlobalBaseReg - Return an SDNode that returns the value of
273    /// the global base register. Output instructions required to
274    /// initialize the global base register, if necessary.
275    ///
276    SDNode *getGlobalBaseReg();
277
278    /// getTargetMachine - Return a reference to the TargetMachine, casted
279    /// to the target-specific type.
280    const X86TargetMachine &getTargetMachine() {
281      return static_cast<const X86TargetMachine &>(TM);
282    }
283
284    /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
285    /// to the target-specific type.
286    const X86InstrInfo *getInstrInfo() {
287      return getTargetMachine().getInstrInfo();
288    }
289  };
290}
291
292
293bool
294X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
295  if (OptLevel == CodeGenOpt::None) return false;
296
297  if (!N.hasOneUse())
298    return false;
299
300  if (N.getOpcode() != ISD::LOAD)
301    return true;
302
303  // If N is a load, do additional profitability checks.
304  if (U == Root) {
305    switch (U->getOpcode()) {
306    default: break;
307    case X86ISD::ADD:
308    case X86ISD::SUB:
309    case X86ISD::AND:
310    case X86ISD::XOR:
311    case X86ISD::OR:
312    case ISD::ADD:
313    case ISD::ADDC:
314    case ISD::ADDE:
315    case ISD::AND:
316    case ISD::OR:
317    case ISD::XOR: {
318      SDValue Op1 = U->getOperand(1);
319
320      // If the other operand is a 8-bit immediate we should fold the immediate
321      // instead. This reduces code size.
322      // e.g.
323      // movl 4(%esp), %eax
324      // addl $4, %eax
325      // vs.
326      // movl $4, %eax
327      // addl 4(%esp), %eax
328      // The former is 2 bytes shorter. In case where the increment is 1, then
329      // the saving can be 4 bytes (by using incl %eax).
330      if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
331        if (Imm->getAPIntValue().isSignedIntN(8))
332          return false;
333
334      // If the other operand is a TLS address, we should fold it instead.
335      // This produces
336      // movl    %gs:0, %eax
337      // leal    i@NTPOFF(%eax), %eax
338      // instead of
339      // movl    $i@NTPOFF, %eax
340      // addl    %gs:0, %eax
341      // if the block also has an access to a second TLS address this will save
342      // a load.
343      // FIXME: This is probably also true for non TLS addresses.
344      if (Op1.getOpcode() == X86ISD::Wrapper) {
345        SDValue Val = Op1.getOperand(0);
346        if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
347          return false;
348      }
349    }
350    }
351  }
352
353  return true;
354}
355
356/// MoveBelowCallOrigChain - Replace the original chain operand of the call with
357/// load's chain operand and move load below the call's chain operand.
358static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
359                                  SDValue Call, SDValue OrigChain) {
360  SmallVector<SDValue, 8> Ops;
361  SDValue Chain = OrigChain.getOperand(0);
362  if (Chain.getNode() == Load.getNode())
363    Ops.push_back(Load.getOperand(0));
364  else {
365    assert(Chain.getOpcode() == ISD::TokenFactor &&
366           "Unexpected chain operand");
367    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
368      if (Chain.getOperand(i).getNode() == Load.getNode())
369        Ops.push_back(Load.getOperand(0));
370      else
371        Ops.push_back(Chain.getOperand(i));
372    SDValue NewChain =
373      CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(),
374                      MVT::Other, &Ops[0], Ops.size());
375    Ops.clear();
376    Ops.push_back(NewChain);
377  }
378  for (unsigned i = 1, e = OrigChain.getNumOperands(); i != e; ++i)
379    Ops.push_back(OrigChain.getOperand(i));
380  CurDAG->UpdateNodeOperands(OrigChain.getNode(), &Ops[0], Ops.size());
381  CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
382                             Load.getOperand(1), Load.getOperand(2));
383  Ops.clear();
384  Ops.push_back(SDValue(Load.getNode(), 1));
385  for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i)
386    Ops.push_back(Call.getOperand(i));
387  CurDAG->UpdateNodeOperands(Call.getNode(), &Ops[0], Ops.size());
388}
389
390/// isCalleeLoad - Return true if call address is a load and it can be
391/// moved below CALLSEQ_START and the chains leading up to the call.
392/// Return the CALLSEQ_START by reference as a second output.
393/// In the case of a tail call, there isn't a callseq node between the call
394/// chain and the load.
395static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
396  if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
397    return false;
398  LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
399  if (!LD ||
400      LD->isVolatile() ||
401      LD->getAddressingMode() != ISD::UNINDEXED ||
402      LD->getExtensionType() != ISD::NON_EXTLOAD)
403    return false;
404
405  // Now let's find the callseq_start.
406  while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
407    if (!Chain.hasOneUse())
408      return false;
409    Chain = Chain.getOperand(0);
410  }
411
412  if (!Chain.getNumOperands())
413    return false;
414  if (Chain.getOperand(0).getNode() == Callee.getNode())
415    return true;
416  if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
417      Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
418      Callee.getValue(1).hasOneUse())
419    return true;
420  return false;
421}
422
423void X86DAGToDAGISel::PreprocessISelDAG() {
424  // OptForSize is used in pattern predicates that isel is matching.
425  OptForSize = MF->getFunction()->hasFnAttr(Attribute::OptimizeForSize);
426
427  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
428       E = CurDAG->allnodes_end(); I != E; ) {
429    SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.
430
431    if (OptLevel != CodeGenOpt::None &&
432        (N->getOpcode() == X86ISD::CALL ||
433         N->getOpcode() == X86ISD::TC_RETURN)) {
434      /// Also try moving call address load from outside callseq_start to just
435      /// before the call to allow it to be folded.
436      ///
437      ///     [Load chain]
438      ///         ^
439      ///         |
440      ///       [Load]
441      ///       ^    ^
442      ///       |    |
443      ///      /      \--
444      ///     /          |
445      ///[CALLSEQ_START] |
446      ///     ^          |
447      ///     |          |
448      /// [LOAD/C2Reg]   |
449      ///     |          |
450      ///      \        /
451      ///       \      /
452      ///       [CALL]
453      bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
454      SDValue Chain = N->getOperand(0);
455      SDValue Load  = N->getOperand(1);
456      if (!isCalleeLoad(Load, Chain, HasCallSeq))
457        continue;
458      MoveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
459      ++NumLoadMoved;
460      continue;
461    }
462
463    // Lower fpround and fpextend nodes that target the FP stack to be store and
464    // load to the stack.  This is a gross hack.  We would like to simply mark
465    // these as being illegal, but when we do that, legalize produces these when
466    // it expands calls, then expands these in the same legalize pass.  We would
467    // like dag combine to be able to hack on these between the call expansion
468    // and the node legalization.  As such this pass basically does "really
469    // late" legalization of these inline with the X86 isel pass.
470    // FIXME: This should only happen when not compiled with -O0.
471    if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
472      continue;
473
474    // If the source and destination are SSE registers, then this is a legal
475    // conversion that should not be lowered.
476    EVT SrcVT = N->getOperand(0).getValueType();
477    EVT DstVT = N->getValueType(0);
478    bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
479    bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
480    if (SrcIsSSE && DstIsSSE)
481      continue;
482
483    if (!SrcIsSSE && !DstIsSSE) {
484      // If this is an FPStack extension, it is a noop.
485      if (N->getOpcode() == ISD::FP_EXTEND)
486        continue;
487      // If this is a value-preserving FPStack truncation, it is a noop.
488      if (N->getConstantOperandVal(1))
489        continue;
490    }
491
492    // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
493    // FPStack has extload and truncstore.  SSE can fold direct loads into other
494    // operations.  Based on this, decide what we want to do.
495    EVT MemVT;
496    if (N->getOpcode() == ISD::FP_ROUND)
497      MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'.
498    else
499      MemVT = SrcIsSSE ? SrcVT : DstVT;
500
501    SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
502    DebugLoc dl = N->getDebugLoc();
503
504    // FIXME: optimize the case where the src/dest is a load or store?
505    SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
506                                          N->getOperand(0),
507                                          MemTmp, MachinePointerInfo(), MemVT,
508                                          false, false, 0);
509    SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, DstVT, dl, Store, MemTmp,
510                                        MachinePointerInfo(),
511                                        MemVT, false, false, 0);
512
513    // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
514    // extload we created.  This will cause general havok on the dag because
515    // anything below the conversion could be folded into other existing nodes.
516    // To avoid invalidating 'I', back it up to the convert node.
517    --I;
518    CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
519
520    // Now that we did that, the node is dead.  Increment the iterator to the
521    // next node to process, then delete N.
522    ++I;
523    CurDAG->DeleteNode(N);
524  }
525}
526
527
528/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
529/// the main function.
530void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
531                                             MachineFrameInfo *MFI) {
532  const TargetInstrInfo *TII = TM.getInstrInfo();
533  if (Subtarget->isTargetCygMing()) {
534    unsigned CallOp =
535      Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32;
536    BuildMI(BB, DebugLoc(),
537            TII->get(CallOp)).addExternalSymbol("__main");
538  }
539}
540
541void X86DAGToDAGISel::EmitFunctionEntryCode() {
542  // If this is main, emit special code for main.
543  if (const Function *Fn = MF->getFunction())
544    if (Fn->hasExternalLinkage() && Fn->getName() == "main")
545      EmitSpecialCodeForMain(MF->begin(), MF->getFrameInfo());
546}
547
548
549bool X86DAGToDAGISel::MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){
550  SDValue Address = N->getOperand(1);
551
552  // load gs:0 -> GS segment register.
553  // load fs:0 -> FS segment register.
554  //
555  // This optimization is valid because the GNU TLS model defines that
556  // gs:0 (or fs:0 on X86-64) contains its own address.
557  // For more information see http://people.redhat.com/drepper/tls.pdf
558  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address))
559    if (C->getSExtValue() == 0 && AM.Segment.getNode() == 0 &&
560        Subtarget->isTargetELF())
561      switch (N->getPointerInfo().getAddrSpace()) {
562      case 256:
563        AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
564        return false;
565      case 257:
566        AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
567        return false;
568      }
569
570  return true;
571}
572
573/// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
574/// into an addressing mode.  These wrap things that will resolve down into a
575/// symbol reference.  If no match is possible, this returns true, otherwise it
576/// returns false.
577bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
578  // If the addressing mode already has a symbol as the displacement, we can
579  // never match another symbol.
580  if (AM.hasSymbolicDisplacement())
581    return true;
582
583  SDValue N0 = N.getOperand(0);
584  CodeModel::Model M = TM.getCodeModel();
585
586  // Handle X86-64 rip-relative addresses.  We check this before checking direct
587  // folding because RIP is preferable to non-RIP accesses.
588  if (Subtarget->is64Bit() &&
589      // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
590      // they cannot be folded into immediate fields.
591      // FIXME: This can be improved for kernel and other models?
592      (M == CodeModel::Small || M == CodeModel::Kernel) &&
593      // Base and index reg must be 0 in order to use %rip as base and lowering
594      // must allow RIP.
595      !AM.hasBaseOrIndexReg() && N.getOpcode() == X86ISD::WrapperRIP) {
596    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
597      int64_t Offset = AM.Disp + G->getOffset();
598      if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true;
599      AM.GV = G->getGlobal();
600      AM.Disp = Offset;
601      AM.SymbolFlags = G->getTargetFlags();
602    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
603      int64_t Offset = AM.Disp + CP->getOffset();
604      if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true;
605      AM.CP = CP->getConstVal();
606      AM.Align = CP->getAlignment();
607      AM.Disp = Offset;
608      AM.SymbolFlags = CP->getTargetFlags();
609    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
610      AM.ES = S->getSymbol();
611      AM.SymbolFlags = S->getTargetFlags();
612    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
613      AM.JT = J->getIndex();
614      AM.SymbolFlags = J->getTargetFlags();
615    } else {
616      AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress();
617      AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags();
618    }
619
620    if (N.getOpcode() == X86ISD::WrapperRIP)
621      AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
622    return false;
623  }
624
625  // Handle the case when globals fit in our immediate field: This is true for
626  // X86-32 always and X86-64 when in -static -mcmodel=small mode.  In 64-bit
627  // mode, this results in a non-RIP-relative computation.
628  if (!Subtarget->is64Bit() ||
629      ((M == CodeModel::Small || M == CodeModel::Kernel) &&
630       TM.getRelocationModel() == Reloc::Static)) {
631    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
632      AM.GV = G->getGlobal();
633      AM.Disp += G->getOffset();
634      AM.SymbolFlags = G->getTargetFlags();
635    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
636      AM.CP = CP->getConstVal();
637      AM.Align = CP->getAlignment();
638      AM.Disp += CP->getOffset();
639      AM.SymbolFlags = CP->getTargetFlags();
640    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
641      AM.ES = S->getSymbol();
642      AM.SymbolFlags = S->getTargetFlags();
643    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
644      AM.JT = J->getIndex();
645      AM.SymbolFlags = J->getTargetFlags();
646    } else {
647      AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress();
648      AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags();
649    }
650    return false;
651  }
652
653  return true;
654}
655
656/// MatchAddress - Add the specified node to the specified addressing mode,
657/// returning true if it cannot be done.  This just pattern matches for the
658/// addressing mode.
659bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
660  if (MatchAddressRecursively(N, AM, 0))
661    return true;
662
663  // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
664  // a smaller encoding and avoids a scaled-index.
665  if (AM.Scale == 2 &&
666      AM.BaseType == X86ISelAddressMode::RegBase &&
667      AM.Base_Reg.getNode() == 0) {
668    AM.Base_Reg = AM.IndexReg;
669    AM.Scale = 1;
670  }
671
672  // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
673  // because it has a smaller encoding.
674  // TODO: Which other code models can use this?
675  if (TM.getCodeModel() == CodeModel::Small &&
676      Subtarget->is64Bit() &&
677      AM.Scale == 1 &&
678      AM.BaseType == X86ISelAddressMode::RegBase &&
679      AM.Base_Reg.getNode() == 0 &&
680      AM.IndexReg.getNode() == 0 &&
681      AM.SymbolFlags == X86II::MO_NO_FLAG &&
682      AM.hasSymbolicDisplacement())
683    AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
684
685  return false;
686}
687
688/// isLogicallyAddWithConstant - Return true if this node is semantically an
689/// add of a value with a constantint.
690static bool isLogicallyAddWithConstant(SDValue V, SelectionDAG *CurDAG) {
691  // Check for (add x, Cst)
692  if (V->getOpcode() == ISD::ADD)
693    return isa<ConstantSDNode>(V->getOperand(1));
694
695  // Check for (or x, Cst), where Cst & x == 0.
696  if (V->getOpcode() != ISD::OR ||
697      !isa<ConstantSDNode>(V->getOperand(1)))
698    return false;
699
700  // Handle "X | C" as "X + C" iff X is known to have C bits clear.
701  ConstantSDNode *CN = cast<ConstantSDNode>(V->getOperand(1));
702
703  // Check to see if the LHS & C is zero.
704  return CurDAG->MaskedValueIsZero(V->getOperand(0), CN->getAPIntValue());
705}
706
707bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
708                                              unsigned Depth) {
709  bool is64Bit = Subtarget->is64Bit();
710  DebugLoc dl = N.getDebugLoc();
711  DEBUG({
712      dbgs() << "MatchAddress: ";
713      AM.dump();
714    });
715  // Limit recursion.
716  if (Depth > 5)
717    return MatchAddressBase(N, AM);
718
719  CodeModel::Model M = TM.getCodeModel();
720
721  // If this is already a %rip relative address, we can only merge immediates
722  // into it.  Instead of handling this in every case, we handle it here.
723  // RIP relative addressing: %rip + 32-bit displacement!
724  if (AM.isRIPRelative()) {
725    // FIXME: JumpTable and ExternalSymbol address currently don't like
726    // displacements.  It isn't very important, but this should be fixed for
727    // consistency.
728    if (!AM.ES && AM.JT != -1) return true;
729
730    if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N)) {
731      int64_t Val = AM.Disp + Cst->getSExtValue();
732      if (X86::isOffsetSuitableForCodeModel(Val, M,
733                                            AM.hasSymbolicDisplacement())) {
734        AM.Disp = Val;
735        return false;
736      }
737    }
738    return true;
739  }
740
741  switch (N.getOpcode()) {
742  default: break;
743  case ISD::Constant: {
744    uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
745    if (!is64Bit ||
746        X86::isOffsetSuitableForCodeModel(AM.Disp + Val, M,
747                                          AM.hasSymbolicDisplacement())) {
748      AM.Disp += Val;
749      return false;
750    }
751    break;
752  }
753
754  case X86ISD::Wrapper:
755  case X86ISD::WrapperRIP:
756    if (!MatchWrapper(N, AM))
757      return false;
758    break;
759
760  case ISD::LOAD:
761    if (!MatchLoadInAddress(cast<LoadSDNode>(N), AM))
762      return false;
763    break;
764
765  case ISD::FrameIndex:
766    if (AM.BaseType == X86ISelAddressMode::RegBase
767        && AM.Base_Reg.getNode() == 0) {
768      AM.BaseType = X86ISelAddressMode::FrameIndexBase;
769      AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
770      return false;
771    }
772    break;
773
774  case ISD::SHL:
775    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1)
776      break;
777
778    if (ConstantSDNode
779          *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
780      unsigned Val = CN->getZExtValue();
781      // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
782      // that the base operand remains free for further matching. If
783      // the base doesn't end up getting used, a post-processing step
784      // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
785      if (Val == 1 || Val == 2 || Val == 3) {
786        AM.Scale = 1 << Val;
787        SDValue ShVal = N.getNode()->getOperand(0);
788
789        // Okay, we know that we have a scale by now.  However, if the scaled
790        // value is an add of something and a constant, we can fold the
791        // constant into the disp field here.
792        if (isLogicallyAddWithConstant(ShVal, CurDAG)) {
793          AM.IndexReg = ShVal.getNode()->getOperand(0);
794          ConstantSDNode *AddVal =
795            cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
796          uint64_t Disp = AM.Disp + (AddVal->getSExtValue() << Val);
797          if (!is64Bit ||
798              X86::isOffsetSuitableForCodeModel(Disp, M,
799                                                AM.hasSymbolicDisplacement()))
800            AM.Disp = Disp;
801          else
802            AM.IndexReg = ShVal;
803        } else {
804          AM.IndexReg = ShVal;
805        }
806        return false;
807      }
808    break;
809    }
810
811  case ISD::SMUL_LOHI:
812  case ISD::UMUL_LOHI:
813    // A mul_lohi where we need the low part can be folded as a plain multiply.
814    if (N.getResNo() != 0) break;
815    // FALL THROUGH
816  case ISD::MUL:
817  case X86ISD::MUL_IMM:
818    // X*[3,5,9] -> X+X*[2,4,8]
819    if (AM.BaseType == X86ISelAddressMode::RegBase &&
820        AM.Base_Reg.getNode() == 0 &&
821        AM.IndexReg.getNode() == 0) {
822      if (ConstantSDNode
823            *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
824        if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
825            CN->getZExtValue() == 9) {
826          AM.Scale = unsigned(CN->getZExtValue())-1;
827
828          SDValue MulVal = N.getNode()->getOperand(0);
829          SDValue Reg;
830
831          // Okay, we know that we have a scale by now.  However, if the scaled
832          // value is an add of something and a constant, we can fold the
833          // constant into the disp field here.
834          if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
835              isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
836            Reg = MulVal.getNode()->getOperand(0);
837            ConstantSDNode *AddVal =
838              cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
839            uint64_t Disp = AM.Disp + AddVal->getSExtValue() *
840                                      CN->getZExtValue();
841            if (!is64Bit ||
842                X86::isOffsetSuitableForCodeModel(Disp, M,
843                                                  AM.hasSymbolicDisplacement()))
844              AM.Disp = Disp;
845            else
846              Reg = N.getNode()->getOperand(0);
847          } else {
848            Reg = N.getNode()->getOperand(0);
849          }
850
851          AM.IndexReg = AM.Base_Reg = Reg;
852          return false;
853        }
854    }
855    break;
856
857  case ISD::SUB: {
858    // Given A-B, if A can be completely folded into the address and
859    // the index field with the index field unused, use -B as the index.
860    // This is a win if a has multiple parts that can be folded into
861    // the address. Also, this saves a mov if the base register has
862    // other uses, since it avoids a two-address sub instruction, however
863    // it costs an additional mov if the index register has other uses.
864
865    // Add an artificial use to this node so that we can keep track of
866    // it if it gets CSE'd with a different node.
867    HandleSDNode Handle(N);
868
869    // Test if the LHS of the sub can be folded.
870    X86ISelAddressMode Backup = AM;
871    if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
872      AM = Backup;
873      break;
874    }
875    // Test if the index field is free for use.
876    if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
877      AM = Backup;
878      break;
879    }
880
881    int Cost = 0;
882    SDValue RHS = Handle.getValue().getNode()->getOperand(1);
883    // If the RHS involves a register with multiple uses, this
884    // transformation incurs an extra mov, due to the neg instruction
885    // clobbering its operand.
886    if (!RHS.getNode()->hasOneUse() ||
887        RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
888        RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
889        RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
890        (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
891         RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
892      ++Cost;
893    // If the base is a register with multiple uses, this
894    // transformation may save a mov.
895    if ((AM.BaseType == X86ISelAddressMode::RegBase &&
896         AM.Base_Reg.getNode() &&
897         !AM.Base_Reg.getNode()->hasOneUse()) ||
898        AM.BaseType == X86ISelAddressMode::FrameIndexBase)
899      --Cost;
900    // If the folded LHS was interesting, this transformation saves
901    // address arithmetic.
902    if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
903        ((AM.Disp != 0) && (Backup.Disp == 0)) +
904        (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
905      --Cost;
906    // If it doesn't look like it may be an overall win, don't do it.
907    if (Cost >= 0) {
908      AM = Backup;
909      break;
910    }
911
912    // Ok, the transformation is legal and appears profitable. Go for it.
913    SDValue Zero = CurDAG->getConstant(0, N.getValueType());
914    SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
915    AM.IndexReg = Neg;
916    AM.Scale = 1;
917
918    // Insert the new nodes into the topological ordering.
919    if (Zero.getNode()->getNodeId() == -1 ||
920        Zero.getNode()->getNodeId() > N.getNode()->getNodeId()) {
921      CurDAG->RepositionNode(N.getNode(), Zero.getNode());
922      Zero.getNode()->setNodeId(N.getNode()->getNodeId());
923    }
924    if (Neg.getNode()->getNodeId() == -1 ||
925        Neg.getNode()->getNodeId() > N.getNode()->getNodeId()) {
926      CurDAG->RepositionNode(N.getNode(), Neg.getNode());
927      Neg.getNode()->setNodeId(N.getNode()->getNodeId());
928    }
929    return false;
930  }
931
932  case ISD::ADD: {
933    // Add an artificial use to this node so that we can keep track of
934    // it if it gets CSE'd with a different node.
935    HandleSDNode Handle(N);
936    SDValue LHS = Handle.getValue().getNode()->getOperand(0);
937    SDValue RHS = Handle.getValue().getNode()->getOperand(1);
938
939    X86ISelAddressMode Backup = AM;
940    if (!MatchAddressRecursively(LHS, AM, Depth+1) &&
941        !MatchAddressRecursively(RHS, AM, Depth+1))
942      return false;
943    AM = Backup;
944    LHS = Handle.getValue().getNode()->getOperand(0);
945    RHS = Handle.getValue().getNode()->getOperand(1);
946
947    // Try again after commuting the operands.
948    if (!MatchAddressRecursively(RHS, AM, Depth+1) &&
949        !MatchAddressRecursively(LHS, AM, Depth+1))
950      return false;
951    AM = Backup;
952    LHS = Handle.getValue().getNode()->getOperand(0);
953    RHS = Handle.getValue().getNode()->getOperand(1);
954
955    // If we couldn't fold both operands into the address at the same time,
956    // see if we can just put each operand into a register and fold at least
957    // the add.
958    if (AM.BaseType == X86ISelAddressMode::RegBase &&
959        !AM.Base_Reg.getNode() &&
960        !AM.IndexReg.getNode()) {
961      AM.Base_Reg = LHS;
962      AM.IndexReg = RHS;
963      AM.Scale = 1;
964      return false;
965    }
966    break;
967  }
968
969  case ISD::OR:
970    // Handle "X | C" as "X + C" iff X is known to have C bits clear.
971    if (isLogicallyAddWithConstant(N, CurDAG)) {
972      X86ISelAddressMode Backup = AM;
973      ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1));
974      uint64_t Offset = CN->getSExtValue();
975
976      // Start with the LHS as an addr mode.
977      if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
978          // Address could not have picked a GV address for the displacement.
979          AM.GV == NULL &&
980          // On x86-64, the resultant disp must fit in 32-bits.
981          (!is64Bit ||
982           X86::isOffsetSuitableForCodeModel(AM.Disp + Offset, M,
983                                             AM.hasSymbolicDisplacement()))) {
984        AM.Disp += Offset;
985        return false;
986      }
987      AM = Backup;
988    }
989    break;
990
991  case ISD::AND: {
992    // Perform some heroic transforms on an and of a constant-count shift
993    // with a constant to enable use of the scaled offset field.
994
995    SDValue Shift = N.getOperand(0);
996    if (Shift.getNumOperands() != 2) break;
997
998    // Scale must not be used already.
999    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
1000
1001    SDValue X = Shift.getOperand(0);
1002    ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N.getOperand(1));
1003    ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
1004    if (!C1 || !C2) break;
1005
1006    // Handle "(X >> (8-C1)) & C2" as "(X >> 8) & 0xff)" if safe. This
1007    // allows us to convert the shift and and into an h-register extract and
1008    // a scaled index.
1009    if (Shift.getOpcode() == ISD::SRL && Shift.hasOneUse()) {
1010      unsigned ScaleLog = 8 - C1->getZExtValue();
1011      if (ScaleLog > 0 && ScaleLog < 4 &&
1012          C2->getZExtValue() == (UINT64_C(0xff) << ScaleLog)) {
1013        SDValue Eight = CurDAG->getConstant(8, MVT::i8);
1014        SDValue Mask = CurDAG->getConstant(0xff, N.getValueType());
1015        SDValue Srl = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
1016                                      X, Eight);
1017        SDValue And = CurDAG->getNode(ISD::AND, dl, N.getValueType(),
1018                                      Srl, Mask);
1019        SDValue ShlCount = CurDAG->getConstant(ScaleLog, MVT::i8);
1020        SDValue Shl = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
1021                                      And, ShlCount);
1022
1023        // Insert the new nodes into the topological ordering.
1024        if (Eight.getNode()->getNodeId() == -1 ||
1025            Eight.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1026          CurDAG->RepositionNode(X.getNode(), Eight.getNode());
1027          Eight.getNode()->setNodeId(X.getNode()->getNodeId());
1028        }
1029        if (Mask.getNode()->getNodeId() == -1 ||
1030            Mask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1031          CurDAG->RepositionNode(X.getNode(), Mask.getNode());
1032          Mask.getNode()->setNodeId(X.getNode()->getNodeId());
1033        }
1034        if (Srl.getNode()->getNodeId() == -1 ||
1035            Srl.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
1036          CurDAG->RepositionNode(Shift.getNode(), Srl.getNode());
1037          Srl.getNode()->setNodeId(Shift.getNode()->getNodeId());
1038        }
1039        if (And.getNode()->getNodeId() == -1 ||
1040            And.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1041          CurDAG->RepositionNode(N.getNode(), And.getNode());
1042          And.getNode()->setNodeId(N.getNode()->getNodeId());
1043        }
1044        if (ShlCount.getNode()->getNodeId() == -1 ||
1045            ShlCount.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1046          CurDAG->RepositionNode(X.getNode(), ShlCount.getNode());
1047          ShlCount.getNode()->setNodeId(N.getNode()->getNodeId());
1048        }
1049        if (Shl.getNode()->getNodeId() == -1 ||
1050            Shl.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1051          CurDAG->RepositionNode(N.getNode(), Shl.getNode());
1052          Shl.getNode()->setNodeId(N.getNode()->getNodeId());
1053        }
1054        CurDAG->ReplaceAllUsesWith(N, Shl);
1055        AM.IndexReg = And;
1056        AM.Scale = (1 << ScaleLog);
1057        return false;
1058      }
1059    }
1060
1061    // Handle "(X << C1) & C2" as "(X & (C2>>C1)) << C1" if safe and if this
1062    // allows us to fold the shift into this addressing mode.
1063    if (Shift.getOpcode() != ISD::SHL) break;
1064
1065    // Not likely to be profitable if either the AND or SHIFT node has more
1066    // than one use (unless all uses are for address computation). Besides,
1067    // isel mechanism requires their node ids to be reused.
1068    if (!N.hasOneUse() || !Shift.hasOneUse())
1069      break;
1070
1071    // Verify that the shift amount is something we can fold.
1072    unsigned ShiftCst = C1->getZExtValue();
1073    if (ShiftCst != 1 && ShiftCst != 2 && ShiftCst != 3)
1074      break;
1075
1076    // Get the new AND mask, this folds to a constant.
1077    SDValue NewANDMask = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
1078                                         SDValue(C2, 0), SDValue(C1, 0));
1079    SDValue NewAND = CurDAG->getNode(ISD::AND, dl, N.getValueType(), X,
1080                                     NewANDMask);
1081    SDValue NewSHIFT = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
1082                                       NewAND, SDValue(C1, 0));
1083
1084    // Insert the new nodes into the topological ordering.
1085    if (C1->getNodeId() > X.getNode()->getNodeId()) {
1086      CurDAG->RepositionNode(X.getNode(), C1);
1087      C1->setNodeId(X.getNode()->getNodeId());
1088    }
1089    if (NewANDMask.getNode()->getNodeId() == -1 ||
1090        NewANDMask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1091      CurDAG->RepositionNode(X.getNode(), NewANDMask.getNode());
1092      NewANDMask.getNode()->setNodeId(X.getNode()->getNodeId());
1093    }
1094    if (NewAND.getNode()->getNodeId() == -1 ||
1095        NewAND.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
1096      CurDAG->RepositionNode(Shift.getNode(), NewAND.getNode());
1097      NewAND.getNode()->setNodeId(Shift.getNode()->getNodeId());
1098    }
1099    if (NewSHIFT.getNode()->getNodeId() == -1 ||
1100        NewSHIFT.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1101      CurDAG->RepositionNode(N.getNode(), NewSHIFT.getNode());
1102      NewSHIFT.getNode()->setNodeId(N.getNode()->getNodeId());
1103    }
1104
1105    CurDAG->ReplaceAllUsesWith(N, NewSHIFT);
1106
1107    AM.Scale = 1 << ShiftCst;
1108    AM.IndexReg = NewAND;
1109    return false;
1110  }
1111  }
1112
1113  return MatchAddressBase(N, AM);
1114}
1115
1116/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
1117/// specified addressing mode without any further recursion.
1118bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
1119  // Is the base register already occupied?
1120  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
1121    // If so, check to see if the scale index register is set.
1122    if (AM.IndexReg.getNode() == 0) {
1123      AM.IndexReg = N;
1124      AM.Scale = 1;
1125      return false;
1126    }
1127
1128    // Otherwise, we cannot select it.
1129    return true;
1130  }
1131
1132  // Default, generate it as a register.
1133  AM.BaseType = X86ISelAddressMode::RegBase;
1134  AM.Base_Reg = N;
1135  return false;
1136}
1137
1138/// SelectAddr - returns true if it is able pattern match an addressing mode.
1139/// It returns the operands which make up the maximal addressing mode it can
1140/// match by reference.
1141///
1142/// Parent is the parent node of the addr operand that is being matched.  It
1143/// is always a load, store, atomic node, or null.  It is only null when
1144/// checking memory operands for inline asm nodes.
1145bool X86DAGToDAGISel::SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
1146                                 SDValue &Scale, SDValue &Index,
1147                                 SDValue &Disp, SDValue &Segment) {
1148  X86ISelAddressMode AM;
1149
1150  if (Parent &&
1151      // This list of opcodes are all the nodes that have an "addr:$ptr" operand
1152      // that are not a MemSDNode, and thus don't have proper addrspace info.
1153      Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
1154      Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
1155      Parent->getOpcode() != X86ISD::TLSCALL) { // Fixme
1156    unsigned AddrSpace =
1157      cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
1158    // AddrSpace 256 -> GS, 257 -> FS.
1159    if (AddrSpace == 256)
1160      AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1161    if (AddrSpace == 257)
1162      AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1163  }
1164
1165  if (MatchAddress(N, AM))
1166    return false;
1167
1168  EVT VT = N.getValueType();
1169  if (AM.BaseType == X86ISelAddressMode::RegBase) {
1170    if (!AM.Base_Reg.getNode())
1171      AM.Base_Reg = CurDAG->getRegister(0, VT);
1172  }
1173
1174  if (!AM.IndexReg.getNode())
1175    AM.IndexReg = CurDAG->getRegister(0, VT);
1176
1177  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1178  return true;
1179}
1180
1181/// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
1182/// match a load whose top elements are either undef or zeros.  The load flavor
1183/// is derived from the type of N, which is either v4f32 or v2f64.
1184///
1185/// We also return:
1186///   PatternChainNode: this is the matched node that has a chain input and
1187///   output.
1188bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root,
1189                                          SDValue N, SDValue &Base,
1190                                          SDValue &Scale, SDValue &Index,
1191                                          SDValue &Disp, SDValue &Segment,
1192                                          SDValue &PatternNodeWithChain) {
1193  if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1194    PatternNodeWithChain = N.getOperand(0);
1195    if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) &&
1196        PatternNodeWithChain.hasOneUse() &&
1197        IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1198        IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1199      LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
1200      if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1201        return false;
1202      return true;
1203    }
1204  }
1205
1206  // Also handle the case where we explicitly require zeros in the top
1207  // elements.  This is a vector shuffle from the zero vector.
1208  if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1209      // Check to see if the top elements are all zeros (or bitcast of zeros).
1210      N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
1211      N.getOperand(0).getNode()->hasOneUse() &&
1212      ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
1213      N.getOperand(0).getOperand(0).hasOneUse() &&
1214      IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1215      IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1216    // Okay, this is a zero extending load.  Fold it.
1217    LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
1218    if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1219      return false;
1220    PatternNodeWithChain = SDValue(LD, 0);
1221    return true;
1222  }
1223  return false;
1224}
1225
1226
1227/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
1228/// mode it matches can be cost effectively emitted as an LEA instruction.
1229bool X86DAGToDAGISel::SelectLEAAddr(SDValue N,
1230                                    SDValue &Base, SDValue &Scale,
1231                                    SDValue &Index, SDValue &Disp,
1232                                    SDValue &Segment) {
1233  X86ISelAddressMode AM;
1234
1235  // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
1236  // segments.
1237  SDValue Copy = AM.Segment;
1238  SDValue T = CurDAG->getRegister(0, MVT::i32);
1239  AM.Segment = T;
1240  if (MatchAddress(N, AM))
1241    return false;
1242  assert (T == AM.Segment);
1243  AM.Segment = Copy;
1244
1245  EVT VT = N.getValueType();
1246  unsigned Complexity = 0;
1247  if (AM.BaseType == X86ISelAddressMode::RegBase)
1248    if (AM.Base_Reg.getNode())
1249      Complexity = 1;
1250    else
1251      AM.Base_Reg = CurDAG->getRegister(0, VT);
1252  else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1253    Complexity = 4;
1254
1255  if (AM.IndexReg.getNode())
1256    Complexity++;
1257  else
1258    AM.IndexReg = CurDAG->getRegister(0, VT);
1259
1260  // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1261  // a simple shift.
1262  if (AM.Scale > 1)
1263    Complexity++;
1264
1265  // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1266  // to a LEA. This is determined with some expermentation but is by no means
1267  // optimal (especially for code size consideration). LEA is nice because of
1268  // its three-address nature. Tweak the cost function again when we can run
1269  // convertToThreeAddress() at register allocation time.
1270  if (AM.hasSymbolicDisplacement()) {
1271    // For X86-64, we should always use lea to materialize RIP relative
1272    // addresses.
1273    if (Subtarget->is64Bit())
1274      Complexity = 4;
1275    else
1276      Complexity += 2;
1277  }
1278
1279  if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode()))
1280    Complexity++;
1281
1282  // If it isn't worth using an LEA, reject it.
1283  if (Complexity <= 2)
1284    return false;
1285
1286  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1287  return true;
1288}
1289
1290/// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
1291bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue N, SDValue &Base,
1292                                        SDValue &Scale, SDValue &Index,
1293                                        SDValue &Disp, SDValue &Segment) {
1294  assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
1295  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
1296
1297  X86ISelAddressMode AM;
1298  AM.GV = GA->getGlobal();
1299  AM.Disp += GA->getOffset();
1300  AM.Base_Reg = CurDAG->getRegister(0, N.getValueType());
1301  AM.SymbolFlags = GA->getTargetFlags();
1302
1303  if (N.getValueType() == MVT::i32) {
1304    AM.Scale = 1;
1305    AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
1306  } else {
1307    AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
1308  }
1309
1310  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1311  return true;
1312}
1313
1314
1315bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
1316                                  SDValue &Base, SDValue &Scale,
1317                                  SDValue &Index, SDValue &Disp,
1318                                  SDValue &Segment) {
1319  if (!ISD::isNON_EXTLoad(N.getNode()) ||
1320      !IsProfitableToFold(N, P, P) ||
1321      !IsLegalToFold(N, P, P, OptLevel))
1322    return false;
1323
1324  return SelectAddr(N.getNode(),
1325                    N.getOperand(1), Base, Scale, Index, Disp, Segment);
1326}
1327
1328/// getGlobalBaseReg - Return an SDNode that returns the value of
1329/// the global base register. Output instructions required to
1330/// initialize the global base register, if necessary.
1331///
1332SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
1333  unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
1334  return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
1335}
1336
1337SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
1338  SDValue Chain = Node->getOperand(0);
1339  SDValue In1 = Node->getOperand(1);
1340  SDValue In2L = Node->getOperand(2);
1341  SDValue In2H = Node->getOperand(3);
1342  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1343  if (!SelectAddr(Node, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1344    return NULL;
1345  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1346  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1347  const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain};
1348  SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(),
1349                                           MVT::i32, MVT::i32, MVT::Other, Ops,
1350                                           array_lengthof(Ops));
1351  cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
1352  return ResNode;
1353}
1354
1355SDNode *X86DAGToDAGISel::SelectAtomicLoadAdd(SDNode *Node, EVT NVT) {
1356  if (Node->hasAnyUseOfValue(0))
1357    return 0;
1358
1359  // Optimize common patterns for __sync_add_and_fetch and
1360  // __sync_sub_and_fetch where the result is not used. This allows us
1361  // to use "lock" version of add, sub, inc, dec instructions.
1362  // FIXME: Do not use special instructions but instead add the "lock"
1363  // prefix to the target node somehow. The extra information will then be
1364  // transferred to machine instruction and it denotes the prefix.
1365  SDValue Chain = Node->getOperand(0);
1366  SDValue Ptr = Node->getOperand(1);
1367  SDValue Val = Node->getOperand(2);
1368  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1369  if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1370    return 0;
1371
1372  bool isInc = false, isDec = false, isSub = false, isCN = false;
1373  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val);
1374  if (CN) {
1375    isCN = true;
1376    int64_t CNVal = CN->getSExtValue();
1377    if (CNVal == 1)
1378      isInc = true;
1379    else if (CNVal == -1)
1380      isDec = true;
1381    else if (CNVal >= 0)
1382      Val = CurDAG->getTargetConstant(CNVal, NVT);
1383    else {
1384      isSub = true;
1385      Val = CurDAG->getTargetConstant(-CNVal, NVT);
1386    }
1387  } else if (Val.hasOneUse() &&
1388             Val.getOpcode() == ISD::SUB &&
1389             X86::isZeroNode(Val.getOperand(0))) {
1390    isSub = true;
1391    Val = Val.getOperand(1);
1392  }
1393
1394  unsigned Opc = 0;
1395  switch (NVT.getSimpleVT().SimpleTy) {
1396  default: return 0;
1397  case MVT::i8:
1398    if (isInc)
1399      Opc = X86::LOCK_INC8m;
1400    else if (isDec)
1401      Opc = X86::LOCK_DEC8m;
1402    else if (isSub) {
1403      if (isCN)
1404        Opc = X86::LOCK_SUB8mi;
1405      else
1406        Opc = X86::LOCK_SUB8mr;
1407    } else {
1408      if (isCN)
1409        Opc = X86::LOCK_ADD8mi;
1410      else
1411        Opc = X86::LOCK_ADD8mr;
1412    }
1413    break;
1414  case MVT::i16:
1415    if (isInc)
1416      Opc = X86::LOCK_INC16m;
1417    else if (isDec)
1418      Opc = X86::LOCK_DEC16m;
1419    else if (isSub) {
1420      if (isCN) {
1421        if (immSext8(Val.getNode()))
1422          Opc = X86::LOCK_SUB16mi8;
1423        else
1424          Opc = X86::LOCK_SUB16mi;
1425      } else
1426        Opc = X86::LOCK_SUB16mr;
1427    } else {
1428      if (isCN) {
1429        if (immSext8(Val.getNode()))
1430          Opc = X86::LOCK_ADD16mi8;
1431        else
1432          Opc = X86::LOCK_ADD16mi;
1433      } else
1434        Opc = X86::LOCK_ADD16mr;
1435    }
1436    break;
1437  case MVT::i32:
1438    if (isInc)
1439      Opc = X86::LOCK_INC32m;
1440    else if (isDec)
1441      Opc = X86::LOCK_DEC32m;
1442    else if (isSub) {
1443      if (isCN) {
1444        if (immSext8(Val.getNode()))
1445          Opc = X86::LOCK_SUB32mi8;
1446        else
1447          Opc = X86::LOCK_SUB32mi;
1448      } else
1449        Opc = X86::LOCK_SUB32mr;
1450    } else {
1451      if (isCN) {
1452        if (immSext8(Val.getNode()))
1453          Opc = X86::LOCK_ADD32mi8;
1454        else
1455          Opc = X86::LOCK_ADD32mi;
1456      } else
1457        Opc = X86::LOCK_ADD32mr;
1458    }
1459    break;
1460  case MVT::i64:
1461    if (isInc)
1462      Opc = X86::LOCK_INC64m;
1463    else if (isDec)
1464      Opc = X86::LOCK_DEC64m;
1465    else if (isSub) {
1466      Opc = X86::LOCK_SUB64mr;
1467      if (isCN) {
1468        if (immSext8(Val.getNode()))
1469          Opc = X86::LOCK_SUB64mi8;
1470        else if (i64immSExt32(Val.getNode()))
1471          Opc = X86::LOCK_SUB64mi32;
1472      }
1473    } else {
1474      Opc = X86::LOCK_ADD64mr;
1475      if (isCN) {
1476        if (immSext8(Val.getNode()))
1477          Opc = X86::LOCK_ADD64mi8;
1478        else if (i64immSExt32(Val.getNode()))
1479          Opc = X86::LOCK_ADD64mi32;
1480      }
1481    }
1482    break;
1483  }
1484
1485  DebugLoc dl = Node->getDebugLoc();
1486  SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1487                                                 dl, NVT), 0);
1488  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1489  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1490  if (isInc || isDec) {
1491    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain };
1492    SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 6), 0);
1493    cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1494    SDValue RetVals[] = { Undef, Ret };
1495    return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1496  } else {
1497    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
1498    SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 7), 0);
1499    cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1500    SDValue RetVals[] = { Undef, Ret };
1501    return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1502  }
1503}
1504
1505/// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has
1506/// any uses which require the SF or OF bits to be accurate.
1507static bool HasNoSignedComparisonUses(SDNode *N) {
1508  // Examine each user of the node.
1509  for (SDNode::use_iterator UI = N->use_begin(),
1510         UE = N->use_end(); UI != UE; ++UI) {
1511    // Only examine CopyToReg uses.
1512    if (UI->getOpcode() != ISD::CopyToReg)
1513      return false;
1514    // Only examine CopyToReg uses that copy to EFLAGS.
1515    if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
1516          X86::EFLAGS)
1517      return false;
1518    // Examine each user of the CopyToReg use.
1519    for (SDNode::use_iterator FlagUI = UI->use_begin(),
1520           FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
1521      // Only examine the Flag result.
1522      if (FlagUI.getUse().getResNo() != 1) continue;
1523      // Anything unusual: assume conservatively.
1524      if (!FlagUI->isMachineOpcode()) return false;
1525      // Examine the opcode of the user.
1526      switch (FlagUI->getMachineOpcode()) {
1527      // These comparisons don't treat the most significant bit specially.
1528      case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
1529      case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
1530      case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
1531      case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
1532      case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4:
1533      case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4:
1534      case X86::CMOVA16rr: case X86::CMOVA16rm:
1535      case X86::CMOVA32rr: case X86::CMOVA32rm:
1536      case X86::CMOVA64rr: case X86::CMOVA64rm:
1537      case X86::CMOVAE16rr: case X86::CMOVAE16rm:
1538      case X86::CMOVAE32rr: case X86::CMOVAE32rm:
1539      case X86::CMOVAE64rr: case X86::CMOVAE64rm:
1540      case X86::CMOVB16rr: case X86::CMOVB16rm:
1541      case X86::CMOVB32rr: case X86::CMOVB32rm:
1542      case X86::CMOVB64rr: case X86::CMOVB64rm:
1543      case X86::CMOVBE16rr: case X86::CMOVBE16rm:
1544      case X86::CMOVBE32rr: case X86::CMOVBE32rm:
1545      case X86::CMOVBE64rr: case X86::CMOVBE64rm:
1546      case X86::CMOVE16rr: case X86::CMOVE16rm:
1547      case X86::CMOVE32rr: case X86::CMOVE32rm:
1548      case X86::CMOVE64rr: case X86::CMOVE64rm:
1549      case X86::CMOVNE16rr: case X86::CMOVNE16rm:
1550      case X86::CMOVNE32rr: case X86::CMOVNE32rm:
1551      case X86::CMOVNE64rr: case X86::CMOVNE64rm:
1552      case X86::CMOVNP16rr: case X86::CMOVNP16rm:
1553      case X86::CMOVNP32rr: case X86::CMOVNP32rm:
1554      case X86::CMOVNP64rr: case X86::CMOVNP64rm:
1555      case X86::CMOVP16rr: case X86::CMOVP16rm:
1556      case X86::CMOVP32rr: case X86::CMOVP32rm:
1557      case X86::CMOVP64rr: case X86::CMOVP64rm:
1558        continue;
1559      // Anything else: assume conservatively.
1560      default: return false;
1561      }
1562    }
1563  }
1564  return true;
1565}
1566
1567SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
1568  EVT NVT = Node->getValueType(0);
1569  unsigned Opc, MOpc;
1570  unsigned Opcode = Node->getOpcode();
1571  DebugLoc dl = Node->getDebugLoc();
1572
1573  DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n');
1574
1575  if (Node->isMachineOpcode()) {
1576    DEBUG(dbgs() << "== ";  Node->dump(CurDAG); dbgs() << '\n');
1577    return NULL;   // Already selected.
1578  }
1579
1580  switch (Opcode) {
1581  default: break;
1582  case X86ISD::GlobalBaseReg:
1583    return getGlobalBaseReg();
1584
1585  case X86ISD::ATOMOR64_DAG:
1586    return SelectAtomic64(Node, X86::ATOMOR6432);
1587  case X86ISD::ATOMXOR64_DAG:
1588    return SelectAtomic64(Node, X86::ATOMXOR6432);
1589  case X86ISD::ATOMADD64_DAG:
1590    return SelectAtomic64(Node, X86::ATOMADD6432);
1591  case X86ISD::ATOMSUB64_DAG:
1592    return SelectAtomic64(Node, X86::ATOMSUB6432);
1593  case X86ISD::ATOMNAND64_DAG:
1594    return SelectAtomic64(Node, X86::ATOMNAND6432);
1595  case X86ISD::ATOMAND64_DAG:
1596    return SelectAtomic64(Node, X86::ATOMAND6432);
1597  case X86ISD::ATOMSWAP64_DAG:
1598    return SelectAtomic64(Node, X86::ATOMSWAP6432);
1599
1600  case ISD::ATOMIC_LOAD_ADD: {
1601    SDNode *RetVal = SelectAtomicLoadAdd(Node, NVT);
1602    if (RetVal)
1603      return RetVal;
1604    break;
1605  }
1606  case X86ISD::UMUL: {
1607    SDValue N0 = Node->getOperand(0);
1608    SDValue N1 = Node->getOperand(1);
1609
1610    unsigned LoReg, HiReg;
1611    switch (NVT.getSimpleVT().SimpleTy) {
1612    default: llvm_unreachable("Unsupported VT!");
1613    case MVT::i8:  LoReg = X86::AL;  HiReg = X86::AH;  Opc = X86::MUL8r; break;
1614    case MVT::i16: LoReg = X86::AX;  HiReg = X86::DX;  Opc = X86::MUL16r; break;
1615    case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; Opc = X86::MUL32r; break;
1616    case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; Opc = X86::MUL64r; break;
1617    }
1618
1619    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
1620                                          N0, SDValue()).getValue(1);
1621
1622    SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
1623    SDValue Ops[] = {N1, InFlag};
1624    SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops, 2);
1625
1626    ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
1627    ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1));
1628    ReplaceUses(SDValue(Node, 2), SDValue(CNode, 2));
1629    return NULL;
1630  }
1631
1632  case ISD::SMUL_LOHI:
1633  case ISD::UMUL_LOHI: {
1634    SDValue N0 = Node->getOperand(0);
1635    SDValue N1 = Node->getOperand(1);
1636
1637    bool isSigned = Opcode == ISD::SMUL_LOHI;
1638    if (!isSigned) {
1639      switch (NVT.getSimpleVT().SimpleTy) {
1640      default: llvm_unreachable("Unsupported VT!");
1641      case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
1642      case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
1643      case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
1644      case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
1645      }
1646    } else {
1647      switch (NVT.getSimpleVT().SimpleTy) {
1648      default: llvm_unreachable("Unsupported VT!");
1649      case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
1650      case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
1651      case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
1652      case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
1653      }
1654    }
1655
1656    unsigned LoReg, HiReg;
1657    switch (NVT.getSimpleVT().SimpleTy) {
1658    default: llvm_unreachable("Unsupported VT!");
1659    case MVT::i8:  LoReg = X86::AL;  HiReg = X86::AH;  break;
1660    case MVT::i16: LoReg = X86::AX;  HiReg = X86::DX;  break;
1661    case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
1662    case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break;
1663    }
1664
1665    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1666    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1667    // Multiply is commmutative.
1668    if (!foldedLoad) {
1669      foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1670      if (foldedLoad)
1671        std::swap(N0, N1);
1672    }
1673
1674    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
1675                                            N0, SDValue()).getValue(1);
1676
1677    if (foldedLoad) {
1678      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
1679                        InFlag };
1680      SDNode *CNode =
1681        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops,
1682                               array_lengthof(Ops));
1683      InFlag = SDValue(CNode, 1);
1684
1685      // Update the chain.
1686      ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1687    } else {
1688      SDNode *CNode = CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag);
1689      InFlag = SDValue(CNode, 0);
1690    }
1691
1692    // Prevent use of AH in a REX instruction by referencing AX instead.
1693    if (HiReg == X86::AH && Subtarget->is64Bit() &&
1694        !SDValue(Node, 1).use_empty()) {
1695      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1696                                              X86::AX, MVT::i16, InFlag);
1697      InFlag = Result.getValue(2);
1698      // Get the low part if needed. Don't use getCopyFromReg for aliasing
1699      // registers.
1700      if (!SDValue(Node, 0).use_empty())
1701        ReplaceUses(SDValue(Node, 1),
1702          CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
1703
1704      // Shift AX down 8 bits.
1705      Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
1706                                              Result,
1707                                     CurDAG->getTargetConstant(8, MVT::i8)), 0);
1708      // Then truncate it down to i8.
1709      ReplaceUses(SDValue(Node, 1),
1710        CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
1711    }
1712    // Copy the low half of the result, if it is needed.
1713    if (!SDValue(Node, 0).use_empty()) {
1714      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1715                                                LoReg, NVT, InFlag);
1716      InFlag = Result.getValue(2);
1717      ReplaceUses(SDValue(Node, 0), Result);
1718      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
1719    }
1720    // Copy the high half of the result, if it is needed.
1721    if (!SDValue(Node, 1).use_empty()) {
1722      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1723                                              HiReg, NVT, InFlag);
1724      InFlag = Result.getValue(2);
1725      ReplaceUses(SDValue(Node, 1), Result);
1726      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
1727    }
1728
1729    return NULL;
1730  }
1731
1732  case ISD::SDIVREM:
1733  case ISD::UDIVREM: {
1734    SDValue N0 = Node->getOperand(0);
1735    SDValue N1 = Node->getOperand(1);
1736
1737    bool isSigned = Opcode == ISD::SDIVREM;
1738    if (!isSigned) {
1739      switch (NVT.getSimpleVT().SimpleTy) {
1740      default: llvm_unreachable("Unsupported VT!");
1741      case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
1742      case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
1743      case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
1744      case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
1745      }
1746    } else {
1747      switch (NVT.getSimpleVT().SimpleTy) {
1748      default: llvm_unreachable("Unsupported VT!");
1749      case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
1750      case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
1751      case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
1752      case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
1753      }
1754    }
1755
1756    unsigned LoReg, HiReg, ClrReg;
1757    unsigned ClrOpcode, SExtOpcode;
1758    switch (NVT.getSimpleVT().SimpleTy) {
1759    default: llvm_unreachable("Unsupported VT!");
1760    case MVT::i8:
1761      LoReg = X86::AL;  ClrReg = HiReg = X86::AH;
1762      ClrOpcode  = 0;
1763      SExtOpcode = X86::CBW;
1764      break;
1765    case MVT::i16:
1766      LoReg = X86::AX;  HiReg = X86::DX;
1767      ClrOpcode  = X86::MOV16r0; ClrReg = X86::DX;
1768      SExtOpcode = X86::CWD;
1769      break;
1770    case MVT::i32:
1771      LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
1772      ClrOpcode  = X86::MOV32r0;
1773      SExtOpcode = X86::CDQ;
1774      break;
1775    case MVT::i64:
1776      LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
1777      ClrOpcode  = X86::MOV64r0;
1778      SExtOpcode = X86::CQO;
1779      break;
1780    }
1781
1782    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1783    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1784    bool signBitIsZero = CurDAG->SignBitIsZero(N0);
1785
1786    SDValue InFlag;
1787    if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
1788      // Special case for div8, just use a move with zero extension to AX to
1789      // clear the upper 8 bits (AH).
1790      SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
1791      if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
1792        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
1793        Move =
1794          SDValue(CurDAG->getMachineNode(X86::MOVZX16rm8, dl, MVT::i16,
1795                                         MVT::Other, Ops,
1796                                         array_lengthof(Ops)), 0);
1797        Chain = Move.getValue(1);
1798        ReplaceUses(N0.getValue(1), Chain);
1799      } else {
1800        Move =
1801          SDValue(CurDAG->getMachineNode(X86::MOVZX16rr8, dl, MVT::i16, N0),0);
1802        Chain = CurDAG->getEntryNode();
1803      }
1804      Chain  = CurDAG->getCopyToReg(Chain, dl, X86::AX, Move, SDValue());
1805      InFlag = Chain.getValue(1);
1806    } else {
1807      InFlag =
1808        CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
1809                             LoReg, N0, SDValue()).getValue(1);
1810      if (isSigned && !signBitIsZero) {
1811        // Sign extend the low part into the high part.
1812        InFlag =
1813          SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
1814      } else {
1815        // Zero out the high part, effectively zero extending the input.
1816        SDValue ClrNode =
1817          SDValue(CurDAG->getMachineNode(ClrOpcode, dl, NVT), 0);
1818        InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
1819                                      ClrNode, InFlag).getValue(1);
1820      }
1821    }
1822
1823    if (foldedLoad) {
1824      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
1825                        InFlag };
1826      SDNode *CNode =
1827        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops,
1828                               array_lengthof(Ops));
1829      InFlag = SDValue(CNode, 1);
1830      // Update the chain.
1831      ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1832    } else {
1833      InFlag =
1834        SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0);
1835    }
1836
1837    // Prevent use of AH in a REX instruction by referencing AX instead.
1838    // Shift it down 8 bits.
1839    if (HiReg == X86::AH && Subtarget->is64Bit() &&
1840        !SDValue(Node, 1).use_empty()) {
1841      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1842                                              X86::AX, MVT::i16, InFlag);
1843      InFlag = Result.getValue(2);
1844
1845      // If we also need AL (the quotient), get it by extracting a subreg from
1846      // Result. The fast register allocator does not like multiple CopyFromReg
1847      // nodes using aliasing registers.
1848      if (!SDValue(Node, 0).use_empty())
1849        ReplaceUses(SDValue(Node, 0),
1850          CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
1851
1852      // Shift AX right by 8 bits instead of using AH.
1853      Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
1854                                         Result,
1855                                         CurDAG->getTargetConstant(8, MVT::i8)),
1856                       0);
1857      ReplaceUses(SDValue(Node, 1),
1858        CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
1859    }
1860    // Copy the division (low) result, if it is needed.
1861    if (!SDValue(Node, 0).use_empty()) {
1862      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1863                                                LoReg, NVT, InFlag);
1864      InFlag = Result.getValue(2);
1865      ReplaceUses(SDValue(Node, 0), Result);
1866      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
1867    }
1868    // Copy the remainder (high) result, if it is needed.
1869    if (!SDValue(Node, 1).use_empty()) {
1870      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1871                                              HiReg, NVT, InFlag);
1872      InFlag = Result.getValue(2);
1873      ReplaceUses(SDValue(Node, 1), Result);
1874      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
1875    }
1876    return NULL;
1877  }
1878
1879  case X86ISD::CMP: {
1880    SDValue N0 = Node->getOperand(0);
1881    SDValue N1 = Node->getOperand(1);
1882
1883    // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
1884    // use a smaller encoding.
1885    if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
1886        HasNoSignedComparisonUses(Node))
1887      // Look past the truncate if CMP is the only use of it.
1888      N0 = N0.getOperand(0);
1889    if (N0.getNode()->getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
1890        N0.getValueType() != MVT::i8 &&
1891        X86::isZeroNode(N1)) {
1892      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
1893      if (!C) break;
1894
1895      // For example, convert "testl %eax, $8" to "testb %al, $8"
1896      if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
1897          (!(C->getZExtValue() & 0x80) ||
1898           HasNoSignedComparisonUses(Node))) {
1899        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8);
1900        SDValue Reg = N0.getNode()->getOperand(0);
1901
1902        // On x86-32, only the ABCD registers have 8-bit subregisters.
1903        if (!Subtarget->is64Bit()) {
1904          TargetRegisterClass *TRC = 0;
1905          switch (N0.getValueType().getSimpleVT().SimpleTy) {
1906          case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
1907          case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
1908          default: llvm_unreachable("Unsupported TEST operand type!");
1909          }
1910          SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
1911          Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
1912                                               Reg.getValueType(), Reg, RC), 0);
1913        }
1914
1915        // Extract the l-register.
1916        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl,
1917                                                        MVT::i8, Reg);
1918
1919        // Emit a testb.
1920        return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32, Subreg, Imm);
1921      }
1922
1923      // For example, "testl %eax, $2048" to "testb %ah, $8".
1924      if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 &&
1925          (!(C->getZExtValue() & 0x8000) ||
1926           HasNoSignedComparisonUses(Node))) {
1927        // Shift the immediate right by 8 bits.
1928        SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
1929                                                       MVT::i8);
1930        SDValue Reg = N0.getNode()->getOperand(0);
1931
1932        // Put the value in an ABCD register.
1933        TargetRegisterClass *TRC = 0;
1934        switch (N0.getValueType().getSimpleVT().SimpleTy) {
1935        case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
1936        case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
1937        case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
1938        default: llvm_unreachable("Unsupported TEST operand type!");
1939        }
1940        SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
1941        Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
1942                                             Reg.getValueType(), Reg, RC), 0);
1943
1944        // Extract the h-register.
1945        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl,
1946                                                        MVT::i8, Reg);
1947
1948        // Emit a testb. No special NOREX tricks are needed since there's
1949        // only one GPR operand!
1950        return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32,
1951                                      Subreg, ShiftedImm);
1952      }
1953
1954      // For example, "testl %eax, $32776" to "testw %ax, $32776".
1955      if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
1956          N0.getValueType() != MVT::i16 &&
1957          (!(C->getZExtValue() & 0x8000) ||
1958           HasNoSignedComparisonUses(Node))) {
1959        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16);
1960        SDValue Reg = N0.getNode()->getOperand(0);
1961
1962        // Extract the 16-bit subregister.
1963        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl,
1964                                                        MVT::i16, Reg);
1965
1966        // Emit a testw.
1967        return CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32, Subreg, Imm);
1968      }
1969
1970      // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
1971      if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
1972          N0.getValueType() == MVT::i64 &&
1973          (!(C->getZExtValue() & 0x80000000) ||
1974           HasNoSignedComparisonUses(Node))) {
1975        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
1976        SDValue Reg = N0.getNode()->getOperand(0);
1977
1978        // Extract the 32-bit subregister.
1979        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl,
1980                                                        MVT::i32, Reg);
1981
1982        // Emit a testl.
1983        return CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32, Subreg, Imm);
1984      }
1985    }
1986    break;
1987  }
1988  }
1989
1990  SDNode *ResNode = SelectCode(Node);
1991
1992  DEBUG(dbgs() << "=> ";
1993        if (ResNode == NULL || ResNode == Node)
1994          Node->dump(CurDAG);
1995        else
1996          ResNode->dump(CurDAG);
1997        dbgs() << '\n');
1998
1999  return ResNode;
2000}
2001
2002bool X86DAGToDAGISel::
2003SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
2004                             std::vector<SDValue> &OutOps) {
2005  SDValue Op0, Op1, Op2, Op3, Op4;
2006  switch (ConstraintCode) {
2007  case 'o':   // offsetable        ??
2008  case 'v':   // not offsetable    ??
2009  default: return true;
2010  case 'm':   // memory
2011    if (!SelectAddr(0, Op, Op0, Op1, Op2, Op3, Op4))
2012      return true;
2013    break;
2014  }
2015
2016  OutOps.push_back(Op0);
2017  OutOps.push_back(Op1);
2018  OutOps.push_back(Op2);
2019  OutOps.push_back(Op3);
2020  OutOps.push_back(Op4);
2021  return false;
2022}
2023
2024/// createX86ISelDag - This pass converts a legalized DAG into a
2025/// X86-specific DAG, ready for instruction scheduling.
2026///
2027FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
2028                                     llvm::CodeGenOpt::Level OptLevel) {
2029  return new X86DAGToDAGISel(TM, OptLevel);
2030}
2031