X86ISelDAGToDAG.cpp revision 78d15761e40a542b992ac811b4e3909c33d1513a
1//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file defines a DAG pattern matching instruction selector for X86, 11// converting from a legalized dag to a X86 dag. 12// 13//===----------------------------------------------------------------------===// 14 15#define DEBUG_TYPE "x86-isel" 16#include "X86.h" 17#include "X86InstrBuilder.h" 18#include "X86MachineFunctionInfo.h" 19#include "X86RegisterInfo.h" 20#include "X86Subtarget.h" 21#include "X86TargetMachine.h" 22#include "llvm/Instructions.h" 23#include "llvm/Intrinsics.h" 24#include "llvm/Support/CFG.h" 25#include "llvm/Type.h" 26#include "llvm/CodeGen/MachineConstantPool.h" 27#include "llvm/CodeGen/MachineFunction.h" 28#include "llvm/CodeGen/MachineFrameInfo.h" 29#include "llvm/CodeGen/MachineInstrBuilder.h" 30#include "llvm/CodeGen/MachineRegisterInfo.h" 31#include "llvm/CodeGen/SelectionDAGISel.h" 32#include "llvm/Target/TargetMachine.h" 33#include "llvm/Target/TargetOptions.h" 34#include "llvm/Support/Debug.h" 35#include "llvm/Support/ErrorHandling.h" 36#include "llvm/Support/MathExtras.h" 37#include "llvm/Support/raw_ostream.h" 38#include "llvm/ADT/SmallPtrSet.h" 39#include "llvm/ADT/Statistic.h" 40using namespace llvm; 41 42STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor"); 43 44//===----------------------------------------------------------------------===// 45// Pattern Matcher Implementation 46//===----------------------------------------------------------------------===// 47 48namespace { 49 /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses 50 /// SDValue's instead of register numbers for the leaves of the matched 51 /// tree. 52 struct X86ISelAddressMode { 53 enum { 54 RegBase, 55 FrameIndexBase 56 } BaseType; 57 58 // This is really a union, discriminated by BaseType! 59 SDValue Base_Reg; 60 int Base_FrameIndex; 61 62 unsigned Scale; 63 SDValue IndexReg; 64 int32_t Disp; 65 SDValue Segment; 66 const GlobalValue *GV; 67 const Constant *CP; 68 const BlockAddress *BlockAddr; 69 const char *ES; 70 int JT; 71 unsigned Align; // CP alignment. 72 unsigned char SymbolFlags; // X86II::MO_* 73 74 X86ISelAddressMode() 75 : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0), 76 Segment(), GV(0), CP(0), BlockAddr(0), ES(0), JT(-1), Align(0), 77 SymbolFlags(X86II::MO_NO_FLAG) { 78 } 79 80 bool hasSymbolicDisplacement() const { 81 return GV != 0 || CP != 0 || ES != 0 || JT != -1 || BlockAddr != 0; 82 } 83 84 bool hasBaseOrIndexReg() const { 85 return IndexReg.getNode() != 0 || Base_Reg.getNode() != 0; 86 } 87 88 /// isRIPRelative - Return true if this addressing mode is already RIP 89 /// relative. 90 bool isRIPRelative() const { 91 if (BaseType != RegBase) return false; 92 if (RegisterSDNode *RegNode = 93 dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode())) 94 return RegNode->getReg() == X86::RIP; 95 return false; 96 } 97 98 void setBaseReg(SDValue Reg) { 99 BaseType = RegBase; 100 Base_Reg = Reg; 101 } 102 103 void dump() { 104 dbgs() << "X86ISelAddressMode " << this << '\n'; 105 dbgs() << "Base_Reg "; 106 if (Base_Reg.getNode() != 0) 107 Base_Reg.getNode()->dump(); 108 else 109 dbgs() << "nul"; 110 dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n' 111 << " Scale" << Scale << '\n' 112 << "IndexReg "; 113 if (IndexReg.getNode() != 0) 114 IndexReg.getNode()->dump(); 115 else 116 dbgs() << "nul"; 117 dbgs() << " Disp " << Disp << '\n' 118 << "GV "; 119 if (GV) 120 GV->dump(); 121 else 122 dbgs() << "nul"; 123 dbgs() << " CP "; 124 if (CP) 125 CP->dump(); 126 else 127 dbgs() << "nul"; 128 dbgs() << '\n' 129 << "ES "; 130 if (ES) 131 dbgs() << ES; 132 else 133 dbgs() << "nul"; 134 dbgs() << " JT" << JT << " Align" << Align << '\n'; 135 } 136 }; 137} 138 139namespace { 140 //===--------------------------------------------------------------------===// 141 /// ISel - X86 specific code to select X86 machine instructions for 142 /// SelectionDAG operations. 143 /// 144 class X86DAGToDAGISel : public SelectionDAGISel { 145 /// X86Lowering - This object fully describes how to lower LLVM code to an 146 /// X86-specific SelectionDAG. 147 const X86TargetLowering &X86Lowering; 148 149 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can 150 /// make the right decision when generating code for different targets. 151 const X86Subtarget *Subtarget; 152 153 /// OptForSize - If true, selector should try to optimize for code size 154 /// instead of performance. 155 bool OptForSize; 156 157 public: 158 explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel) 159 : SelectionDAGISel(tm, OptLevel), 160 X86Lowering(*tm.getTargetLowering()), 161 Subtarget(&tm.getSubtarget<X86Subtarget>()), 162 OptForSize(false) {} 163 164 virtual const char *getPassName() const { 165 return "X86 DAG->DAG Instruction Selection"; 166 } 167 168 virtual void EmitFunctionEntryCode(); 169 170 virtual bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const; 171 172 virtual void PreprocessISelDAG(); 173 174 inline bool immSext8(SDNode *N) const { 175 return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue()); 176 } 177 178 // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit 179 // sign extended field. 180 inline bool i64immSExt32(SDNode *N) const { 181 uint64_t v = cast<ConstantSDNode>(N)->getZExtValue(); 182 return (int64_t)v == (int32_t)v; 183 } 184 185// Include the pieces autogenerated from the target description. 186#include "X86GenDAGISel.inc" 187 188 private: 189 SDNode *Select(SDNode *N); 190 SDNode *SelectAtomic64(SDNode *Node, unsigned Opc); 191 SDNode *SelectAtomicLoadAdd(SDNode *Node, EVT NVT); 192 193 bool MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM); 194 bool MatchWrapper(SDValue N, X86ISelAddressMode &AM); 195 bool MatchAddress(SDValue N, X86ISelAddressMode &AM); 196 bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM, 197 unsigned Depth); 198 bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM); 199 bool SelectAddr(SDNode *Parent, SDValue N, SDValue &Base, 200 SDValue &Scale, SDValue &Index, SDValue &Disp, 201 SDValue &Segment); 202 bool SelectLEAAddr(SDValue N, SDValue &Base, 203 SDValue &Scale, SDValue &Index, SDValue &Disp, 204 SDValue &Segment); 205 bool SelectTLSADDRAddr(SDValue N, SDValue &Base, 206 SDValue &Scale, SDValue &Index, SDValue &Disp, 207 SDValue &Segment); 208 bool SelectScalarSSELoad(SDNode *Root, SDValue N, 209 SDValue &Base, SDValue &Scale, 210 SDValue &Index, SDValue &Disp, 211 SDValue &Segment, 212 SDValue &NodeWithChain); 213 214 bool TryFoldLoad(SDNode *P, SDValue N, 215 SDValue &Base, SDValue &Scale, 216 SDValue &Index, SDValue &Disp, 217 SDValue &Segment); 218 219 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for 220 /// inline asm expressions. 221 virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op, 222 char ConstraintCode, 223 std::vector<SDValue> &OutOps); 224 225 void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI); 226 227 inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base, 228 SDValue &Scale, SDValue &Index, 229 SDValue &Disp, SDValue &Segment) { 230 Base = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ? 231 CurDAG->getTargetFrameIndex(AM.Base_FrameIndex, TLI.getPointerTy()) : 232 AM.Base_Reg; 233 Scale = getI8Imm(AM.Scale); 234 Index = AM.IndexReg; 235 // These are 32-bit even in 64-bit mode since RIP relative offset 236 // is 32-bit. 237 if (AM.GV) 238 Disp = CurDAG->getTargetGlobalAddress(AM.GV, DebugLoc(), 239 MVT::i32, AM.Disp, 240 AM.SymbolFlags); 241 else if (AM.CP) 242 Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32, 243 AM.Align, AM.Disp, AM.SymbolFlags); 244 else if (AM.ES) 245 Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags); 246 else if (AM.JT != -1) 247 Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags); 248 else if (AM.BlockAddr) 249 Disp = CurDAG->getBlockAddress(AM.BlockAddr, MVT::i32, 250 true, AM.SymbolFlags); 251 else 252 Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32); 253 254 if (AM.Segment.getNode()) 255 Segment = AM.Segment; 256 else 257 Segment = CurDAG->getRegister(0, MVT::i32); 258 } 259 260 /// getI8Imm - Return a target constant with the specified value, of type 261 /// i8. 262 inline SDValue getI8Imm(unsigned Imm) { 263 return CurDAG->getTargetConstant(Imm, MVT::i8); 264 } 265 266 /// getI32Imm - Return a target constant with the specified value, of type 267 /// i32. 268 inline SDValue getI32Imm(unsigned Imm) { 269 return CurDAG->getTargetConstant(Imm, MVT::i32); 270 } 271 272 /// getGlobalBaseReg - Return an SDNode that returns the value of 273 /// the global base register. Output instructions required to 274 /// initialize the global base register, if necessary. 275 /// 276 SDNode *getGlobalBaseReg(); 277 278 /// getTargetMachine - Return a reference to the TargetMachine, casted 279 /// to the target-specific type. 280 const X86TargetMachine &getTargetMachine() { 281 return static_cast<const X86TargetMachine &>(TM); 282 } 283 284 /// getInstrInfo - Return a reference to the TargetInstrInfo, casted 285 /// to the target-specific type. 286 const X86InstrInfo *getInstrInfo() { 287 return getTargetMachine().getInstrInfo(); 288 } 289 }; 290} 291 292 293bool 294X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const { 295 if (OptLevel == CodeGenOpt::None) return false; 296 297 if (!N.hasOneUse()) 298 return false; 299 300 if (N.getOpcode() != ISD::LOAD) 301 return true; 302 303 // If N is a load, do additional profitability checks. 304 if (U == Root) { 305 switch (U->getOpcode()) { 306 default: break; 307 case X86ISD::ADD: 308 case X86ISD::SUB: 309 case X86ISD::AND: 310 case X86ISD::XOR: 311 case X86ISD::OR: 312 case ISD::ADD: 313 case ISD::ADDC: 314 case ISD::ADDE: 315 case ISD::AND: 316 case ISD::OR: 317 case ISD::XOR: { 318 SDValue Op1 = U->getOperand(1); 319 320 // If the other operand is a 8-bit immediate we should fold the immediate 321 // instead. This reduces code size. 322 // e.g. 323 // movl 4(%esp), %eax 324 // addl $4, %eax 325 // vs. 326 // movl $4, %eax 327 // addl 4(%esp), %eax 328 // The former is 2 bytes shorter. In case where the increment is 1, then 329 // the saving can be 4 bytes (by using incl %eax). 330 if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1)) 331 if (Imm->getAPIntValue().isSignedIntN(8)) 332 return false; 333 334 // If the other operand is a TLS address, we should fold it instead. 335 // This produces 336 // movl %gs:0, %eax 337 // leal i@NTPOFF(%eax), %eax 338 // instead of 339 // movl $i@NTPOFF, %eax 340 // addl %gs:0, %eax 341 // if the block also has an access to a second TLS address this will save 342 // a load. 343 // FIXME: This is probably also true for non TLS addresses. 344 if (Op1.getOpcode() == X86ISD::Wrapper) { 345 SDValue Val = Op1.getOperand(0); 346 if (Val.getOpcode() == ISD::TargetGlobalTLSAddress) 347 return false; 348 } 349 } 350 } 351 } 352 353 return true; 354} 355 356/// MoveBelowCallOrigChain - Replace the original chain operand of the call with 357/// load's chain operand and move load below the call's chain operand. 358static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load, 359 SDValue Call, SDValue OrigChain) { 360 SmallVector<SDValue, 8> Ops; 361 SDValue Chain = OrigChain.getOperand(0); 362 if (Chain.getNode() == Load.getNode()) 363 Ops.push_back(Load.getOperand(0)); 364 else { 365 assert(Chain.getOpcode() == ISD::TokenFactor && 366 "Unexpected chain operand"); 367 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) 368 if (Chain.getOperand(i).getNode() == Load.getNode()) 369 Ops.push_back(Load.getOperand(0)); 370 else 371 Ops.push_back(Chain.getOperand(i)); 372 SDValue NewChain = 373 CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(), 374 MVT::Other, &Ops[0], Ops.size()); 375 Ops.clear(); 376 Ops.push_back(NewChain); 377 } 378 for (unsigned i = 1, e = OrigChain.getNumOperands(); i != e; ++i) 379 Ops.push_back(OrigChain.getOperand(i)); 380 CurDAG->UpdateNodeOperands(OrigChain.getNode(), &Ops[0], Ops.size()); 381 CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0), 382 Load.getOperand(1), Load.getOperand(2)); 383 Ops.clear(); 384 Ops.push_back(SDValue(Load.getNode(), 1)); 385 for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i) 386 Ops.push_back(Call.getOperand(i)); 387 CurDAG->UpdateNodeOperands(Call.getNode(), &Ops[0], Ops.size()); 388} 389 390/// isCalleeLoad - Return true if call address is a load and it can be 391/// moved below CALLSEQ_START and the chains leading up to the call. 392/// Return the CALLSEQ_START by reference as a second output. 393/// In the case of a tail call, there isn't a callseq node between the call 394/// chain and the load. 395static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) { 396 if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse()) 397 return false; 398 LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode()); 399 if (!LD || 400 LD->isVolatile() || 401 LD->getAddressingMode() != ISD::UNINDEXED || 402 LD->getExtensionType() != ISD::NON_EXTLOAD) 403 return false; 404 405 // Now let's find the callseq_start. 406 while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) { 407 if (!Chain.hasOneUse()) 408 return false; 409 Chain = Chain.getOperand(0); 410 } 411 412 if (!Chain.getNumOperands()) 413 return false; 414 if (Chain.getOperand(0).getNode() == Callee.getNode()) 415 return true; 416 if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor && 417 Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) && 418 Callee.getValue(1).hasOneUse()) 419 return true; 420 return false; 421} 422 423void X86DAGToDAGISel::PreprocessISelDAG() { 424 // OptForSize is used in pattern predicates that isel is matching. 425 OptForSize = MF->getFunction()->hasFnAttr(Attribute::OptimizeForSize); 426 427 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(), 428 E = CurDAG->allnodes_end(); I != E; ) { 429 SDNode *N = I++; // Preincrement iterator to avoid invalidation issues. 430 431 if (OptLevel != CodeGenOpt::None && 432 (N->getOpcode() == X86ISD::CALL || 433 N->getOpcode() == X86ISD::TC_RETURN)) { 434 /// Also try moving call address load from outside callseq_start to just 435 /// before the call to allow it to be folded. 436 /// 437 /// [Load chain] 438 /// ^ 439 /// | 440 /// [Load] 441 /// ^ ^ 442 /// | | 443 /// / \-- 444 /// / | 445 ///[CALLSEQ_START] | 446 /// ^ | 447 /// | | 448 /// [LOAD/C2Reg] | 449 /// | | 450 /// \ / 451 /// \ / 452 /// [CALL] 453 bool HasCallSeq = N->getOpcode() == X86ISD::CALL; 454 SDValue Chain = N->getOperand(0); 455 SDValue Load = N->getOperand(1); 456 if (!isCalleeLoad(Load, Chain, HasCallSeq)) 457 continue; 458 MoveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain); 459 ++NumLoadMoved; 460 continue; 461 } 462 463 // Lower fpround and fpextend nodes that target the FP stack to be store and 464 // load to the stack. This is a gross hack. We would like to simply mark 465 // these as being illegal, but when we do that, legalize produces these when 466 // it expands calls, then expands these in the same legalize pass. We would 467 // like dag combine to be able to hack on these between the call expansion 468 // and the node legalization. As such this pass basically does "really 469 // late" legalization of these inline with the X86 isel pass. 470 // FIXME: This should only happen when not compiled with -O0. 471 if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND) 472 continue; 473 474 // If the source and destination are SSE registers, then this is a legal 475 // conversion that should not be lowered. 476 EVT SrcVT = N->getOperand(0).getValueType(); 477 EVT DstVT = N->getValueType(0); 478 bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT); 479 bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT); 480 if (SrcIsSSE && DstIsSSE) 481 continue; 482 483 if (!SrcIsSSE && !DstIsSSE) { 484 // If this is an FPStack extension, it is a noop. 485 if (N->getOpcode() == ISD::FP_EXTEND) 486 continue; 487 // If this is a value-preserving FPStack truncation, it is a noop. 488 if (N->getConstantOperandVal(1)) 489 continue; 490 } 491 492 // Here we could have an FP stack truncation or an FPStack <-> SSE convert. 493 // FPStack has extload and truncstore. SSE can fold direct loads into other 494 // operations. Based on this, decide what we want to do. 495 EVT MemVT; 496 if (N->getOpcode() == ISD::FP_ROUND) 497 MemVT = DstVT; // FP_ROUND must use DstVT, we can't do a 'trunc load'. 498 else 499 MemVT = SrcIsSSE ? SrcVT : DstVT; 500 501 SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT); 502 DebugLoc dl = N->getDebugLoc(); 503 504 // FIXME: optimize the case where the src/dest is a load or store? 505 SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl, 506 N->getOperand(0), 507 MemTmp, MachinePointerInfo(), MemVT, 508 false, false, 0); 509 SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, DstVT, dl, Store, MemTmp, 510 MachinePointerInfo(), 511 MemVT, false, false, 0); 512 513 // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the 514 // extload we created. This will cause general havok on the dag because 515 // anything below the conversion could be folded into other existing nodes. 516 // To avoid invalidating 'I', back it up to the convert node. 517 --I; 518 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); 519 520 // Now that we did that, the node is dead. Increment the iterator to the 521 // next node to process, then delete N. 522 ++I; 523 CurDAG->DeleteNode(N); 524 } 525} 526 527 528/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in 529/// the main function. 530void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB, 531 MachineFrameInfo *MFI) { 532 const TargetInstrInfo *TII = TM.getInstrInfo(); 533 if (Subtarget->isTargetCygMing()) { 534 unsigned CallOp = 535 Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32; 536 BuildMI(BB, DebugLoc(), 537 TII->get(CallOp)).addExternalSymbol("__main"); 538 } 539} 540 541void X86DAGToDAGISel::EmitFunctionEntryCode() { 542 // If this is main, emit special code for main. 543 if (const Function *Fn = MF->getFunction()) 544 if (Fn->hasExternalLinkage() && Fn->getName() == "main") 545 EmitSpecialCodeForMain(MF->begin(), MF->getFrameInfo()); 546} 547 548 549bool X86DAGToDAGISel::MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){ 550 SDValue Address = N->getOperand(1); 551 552 // load gs:0 -> GS segment register. 553 // load fs:0 -> FS segment register. 554 // 555 // This optimization is valid because the GNU TLS model defines that 556 // gs:0 (or fs:0 on X86-64) contains its own address. 557 // For more information see http://people.redhat.com/drepper/tls.pdf 558 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address)) 559 if (C->getSExtValue() == 0 && AM.Segment.getNode() == 0 && 560 Subtarget->isTargetELF()) 561 switch (N->getPointerInfo().getAddrSpace()) { 562 case 256: 563 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16); 564 return false; 565 case 257: 566 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16); 567 return false; 568 } 569 570 return true; 571} 572 573/// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes 574/// into an addressing mode. These wrap things that will resolve down into a 575/// symbol reference. If no match is possible, this returns true, otherwise it 576/// returns false. 577bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) { 578 // If the addressing mode already has a symbol as the displacement, we can 579 // never match another symbol. 580 if (AM.hasSymbolicDisplacement()) 581 return true; 582 583 SDValue N0 = N.getOperand(0); 584 CodeModel::Model M = TM.getCodeModel(); 585 586 // Handle X86-64 rip-relative addresses. We check this before checking direct 587 // folding because RIP is preferable to non-RIP accesses. 588 if (Subtarget->is64Bit() && 589 // Under X86-64 non-small code model, GV (and friends) are 64-bits, so 590 // they cannot be folded into immediate fields. 591 // FIXME: This can be improved for kernel and other models? 592 (M == CodeModel::Small || M == CodeModel::Kernel) && 593 // Base and index reg must be 0 in order to use %rip as base and lowering 594 // must allow RIP. 595 !AM.hasBaseOrIndexReg() && N.getOpcode() == X86ISD::WrapperRIP) { 596 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) { 597 int64_t Offset = AM.Disp + G->getOffset(); 598 if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true; 599 AM.GV = G->getGlobal(); 600 AM.Disp = Offset; 601 AM.SymbolFlags = G->getTargetFlags(); 602 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) { 603 int64_t Offset = AM.Disp + CP->getOffset(); 604 if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true; 605 AM.CP = CP->getConstVal(); 606 AM.Align = CP->getAlignment(); 607 AM.Disp = Offset; 608 AM.SymbolFlags = CP->getTargetFlags(); 609 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) { 610 AM.ES = S->getSymbol(); 611 AM.SymbolFlags = S->getTargetFlags(); 612 } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) { 613 AM.JT = J->getIndex(); 614 AM.SymbolFlags = J->getTargetFlags(); 615 } else { 616 AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress(); 617 AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags(); 618 } 619 620 if (N.getOpcode() == X86ISD::WrapperRIP) 621 AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64)); 622 return false; 623 } 624 625 // Handle the case when globals fit in our immediate field: This is true for 626 // X86-32 always and X86-64 when in -static -mcmodel=small mode. In 64-bit 627 // mode, this results in a non-RIP-relative computation. 628 if (!Subtarget->is64Bit() || 629 ((M == CodeModel::Small || M == CodeModel::Kernel) && 630 TM.getRelocationModel() == Reloc::Static)) { 631 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) { 632 AM.GV = G->getGlobal(); 633 AM.Disp += G->getOffset(); 634 AM.SymbolFlags = G->getTargetFlags(); 635 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) { 636 AM.CP = CP->getConstVal(); 637 AM.Align = CP->getAlignment(); 638 AM.Disp += CP->getOffset(); 639 AM.SymbolFlags = CP->getTargetFlags(); 640 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) { 641 AM.ES = S->getSymbol(); 642 AM.SymbolFlags = S->getTargetFlags(); 643 } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) { 644 AM.JT = J->getIndex(); 645 AM.SymbolFlags = J->getTargetFlags(); 646 } else { 647 AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress(); 648 AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags(); 649 } 650 return false; 651 } 652 653 return true; 654} 655 656/// MatchAddress - Add the specified node to the specified addressing mode, 657/// returning true if it cannot be done. This just pattern matches for the 658/// addressing mode. 659bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) { 660 if (MatchAddressRecursively(N, AM, 0)) 661 return true; 662 663 // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has 664 // a smaller encoding and avoids a scaled-index. 665 if (AM.Scale == 2 && 666 AM.BaseType == X86ISelAddressMode::RegBase && 667 AM.Base_Reg.getNode() == 0) { 668 AM.Base_Reg = AM.IndexReg; 669 AM.Scale = 1; 670 } 671 672 // Post-processing: Convert foo to foo(%rip), even in non-PIC mode, 673 // because it has a smaller encoding. 674 // TODO: Which other code models can use this? 675 if (TM.getCodeModel() == CodeModel::Small && 676 Subtarget->is64Bit() && 677 AM.Scale == 1 && 678 AM.BaseType == X86ISelAddressMode::RegBase && 679 AM.Base_Reg.getNode() == 0 && 680 AM.IndexReg.getNode() == 0 && 681 AM.SymbolFlags == X86II::MO_NO_FLAG && 682 AM.hasSymbolicDisplacement()) 683 AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64); 684 685 return false; 686} 687 688/// isLogicallyAddWithConstant - Return true if this node is semantically an 689/// add of a value with a constantint. 690static bool isLogicallyAddWithConstant(SDValue V, SelectionDAG *CurDAG) { 691 // Check for (add x, Cst) 692 if (V->getOpcode() == ISD::ADD) 693 return isa<ConstantSDNode>(V->getOperand(1)); 694 695 // Check for (or x, Cst), where Cst & x == 0. 696 if (V->getOpcode() != ISD::OR || 697 !isa<ConstantSDNode>(V->getOperand(1))) 698 return false; 699 700 // Handle "X | C" as "X + C" iff X is known to have C bits clear. 701 ConstantSDNode *CN = cast<ConstantSDNode>(V->getOperand(1)); 702 703 // Check to see if the LHS & C is zero. 704 return CurDAG->MaskedValueIsZero(V->getOperand(0), CN->getAPIntValue()); 705} 706 707bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM, 708 unsigned Depth) { 709 bool is64Bit = Subtarget->is64Bit(); 710 DebugLoc dl = N.getDebugLoc(); 711 DEBUG({ 712 dbgs() << "MatchAddress: "; 713 AM.dump(); 714 }); 715 // Limit recursion. 716 if (Depth > 5) 717 return MatchAddressBase(N, AM); 718 719 CodeModel::Model M = TM.getCodeModel(); 720 721 // If this is already a %rip relative address, we can only merge immediates 722 // into it. Instead of handling this in every case, we handle it here. 723 // RIP relative addressing: %rip + 32-bit displacement! 724 if (AM.isRIPRelative()) { 725 // FIXME: JumpTable and ExternalSymbol address currently don't like 726 // displacements. It isn't very important, but this should be fixed for 727 // consistency. 728 if (!AM.ES && AM.JT != -1) return true; 729 730 if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N)) { 731 int64_t Val = AM.Disp + Cst->getSExtValue(); 732 if (X86::isOffsetSuitableForCodeModel(Val, M, 733 AM.hasSymbolicDisplacement())) { 734 AM.Disp = Val; 735 return false; 736 } 737 } 738 return true; 739 } 740 741 switch (N.getOpcode()) { 742 default: break; 743 case ISD::Constant: { 744 uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue(); 745 if (!is64Bit || 746 X86::isOffsetSuitableForCodeModel(AM.Disp + Val, M, 747 AM.hasSymbolicDisplacement())) { 748 AM.Disp += Val; 749 return false; 750 } 751 break; 752 } 753 754 case X86ISD::Wrapper: 755 case X86ISD::WrapperRIP: 756 if (!MatchWrapper(N, AM)) 757 return false; 758 break; 759 760 case ISD::LOAD: 761 if (!MatchLoadInAddress(cast<LoadSDNode>(N), AM)) 762 return false; 763 break; 764 765 case ISD::FrameIndex: 766 if (AM.BaseType == X86ISelAddressMode::RegBase 767 && AM.Base_Reg.getNode() == 0) { 768 AM.BaseType = X86ISelAddressMode::FrameIndexBase; 769 AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex(); 770 return false; 771 } 772 break; 773 774 case ISD::SHL: 775 if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) 776 break; 777 778 if (ConstantSDNode 779 *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) { 780 unsigned Val = CN->getZExtValue(); 781 // Note that we handle x<<1 as (,x,2) rather than (x,x) here so 782 // that the base operand remains free for further matching. If 783 // the base doesn't end up getting used, a post-processing step 784 // in MatchAddress turns (,x,2) into (x,x), which is cheaper. 785 if (Val == 1 || Val == 2 || Val == 3) { 786 AM.Scale = 1 << Val; 787 SDValue ShVal = N.getNode()->getOperand(0); 788 789 // Okay, we know that we have a scale by now. However, if the scaled 790 // value is an add of something and a constant, we can fold the 791 // constant into the disp field here. 792 if (isLogicallyAddWithConstant(ShVal, CurDAG)) { 793 AM.IndexReg = ShVal.getNode()->getOperand(0); 794 ConstantSDNode *AddVal = 795 cast<ConstantSDNode>(ShVal.getNode()->getOperand(1)); 796 uint64_t Disp = AM.Disp + (AddVal->getSExtValue() << Val); 797 if (!is64Bit || 798 X86::isOffsetSuitableForCodeModel(Disp, M, 799 AM.hasSymbolicDisplacement())) 800 AM.Disp = Disp; 801 else 802 AM.IndexReg = ShVal; 803 } else { 804 AM.IndexReg = ShVal; 805 } 806 return false; 807 } 808 break; 809 } 810 811 case ISD::SMUL_LOHI: 812 case ISD::UMUL_LOHI: 813 // A mul_lohi where we need the low part can be folded as a plain multiply. 814 if (N.getResNo() != 0) break; 815 // FALL THROUGH 816 case ISD::MUL: 817 case X86ISD::MUL_IMM: 818 // X*[3,5,9] -> X+X*[2,4,8] 819 if (AM.BaseType == X86ISelAddressMode::RegBase && 820 AM.Base_Reg.getNode() == 0 && 821 AM.IndexReg.getNode() == 0) { 822 if (ConstantSDNode 823 *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) 824 if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 || 825 CN->getZExtValue() == 9) { 826 AM.Scale = unsigned(CN->getZExtValue())-1; 827 828 SDValue MulVal = N.getNode()->getOperand(0); 829 SDValue Reg; 830 831 // Okay, we know that we have a scale by now. However, if the scaled 832 // value is an add of something and a constant, we can fold the 833 // constant into the disp field here. 834 if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() && 835 isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) { 836 Reg = MulVal.getNode()->getOperand(0); 837 ConstantSDNode *AddVal = 838 cast<ConstantSDNode>(MulVal.getNode()->getOperand(1)); 839 uint64_t Disp = AM.Disp + AddVal->getSExtValue() * 840 CN->getZExtValue(); 841 if (!is64Bit || 842 X86::isOffsetSuitableForCodeModel(Disp, M, 843 AM.hasSymbolicDisplacement())) 844 AM.Disp = Disp; 845 else 846 Reg = N.getNode()->getOperand(0); 847 } else { 848 Reg = N.getNode()->getOperand(0); 849 } 850 851 AM.IndexReg = AM.Base_Reg = Reg; 852 return false; 853 } 854 } 855 break; 856 857 case ISD::SUB: { 858 // Given A-B, if A can be completely folded into the address and 859 // the index field with the index field unused, use -B as the index. 860 // This is a win if a has multiple parts that can be folded into 861 // the address. Also, this saves a mov if the base register has 862 // other uses, since it avoids a two-address sub instruction, however 863 // it costs an additional mov if the index register has other uses. 864 865 // Add an artificial use to this node so that we can keep track of 866 // it if it gets CSE'd with a different node. 867 HandleSDNode Handle(N); 868 869 // Test if the LHS of the sub can be folded. 870 X86ISelAddressMode Backup = AM; 871 if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) { 872 AM = Backup; 873 break; 874 } 875 // Test if the index field is free for use. 876 if (AM.IndexReg.getNode() || AM.isRIPRelative()) { 877 AM = Backup; 878 break; 879 } 880 881 int Cost = 0; 882 SDValue RHS = Handle.getValue().getNode()->getOperand(1); 883 // If the RHS involves a register with multiple uses, this 884 // transformation incurs an extra mov, due to the neg instruction 885 // clobbering its operand. 886 if (!RHS.getNode()->hasOneUse() || 887 RHS.getNode()->getOpcode() == ISD::CopyFromReg || 888 RHS.getNode()->getOpcode() == ISD::TRUNCATE || 889 RHS.getNode()->getOpcode() == ISD::ANY_EXTEND || 890 (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND && 891 RHS.getNode()->getOperand(0).getValueType() == MVT::i32)) 892 ++Cost; 893 // If the base is a register with multiple uses, this 894 // transformation may save a mov. 895 if ((AM.BaseType == X86ISelAddressMode::RegBase && 896 AM.Base_Reg.getNode() && 897 !AM.Base_Reg.getNode()->hasOneUse()) || 898 AM.BaseType == X86ISelAddressMode::FrameIndexBase) 899 --Cost; 900 // If the folded LHS was interesting, this transformation saves 901 // address arithmetic. 902 if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) + 903 ((AM.Disp != 0) && (Backup.Disp == 0)) + 904 (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2) 905 --Cost; 906 // If it doesn't look like it may be an overall win, don't do it. 907 if (Cost >= 0) { 908 AM = Backup; 909 break; 910 } 911 912 // Ok, the transformation is legal and appears profitable. Go for it. 913 SDValue Zero = CurDAG->getConstant(0, N.getValueType()); 914 SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS); 915 AM.IndexReg = Neg; 916 AM.Scale = 1; 917 918 // Insert the new nodes into the topological ordering. 919 if (Zero.getNode()->getNodeId() == -1 || 920 Zero.getNode()->getNodeId() > N.getNode()->getNodeId()) { 921 CurDAG->RepositionNode(N.getNode(), Zero.getNode()); 922 Zero.getNode()->setNodeId(N.getNode()->getNodeId()); 923 } 924 if (Neg.getNode()->getNodeId() == -1 || 925 Neg.getNode()->getNodeId() > N.getNode()->getNodeId()) { 926 CurDAG->RepositionNode(N.getNode(), Neg.getNode()); 927 Neg.getNode()->setNodeId(N.getNode()->getNodeId()); 928 } 929 return false; 930 } 931 932 case ISD::ADD: { 933 // Add an artificial use to this node so that we can keep track of 934 // it if it gets CSE'd with a different node. 935 HandleSDNode Handle(N); 936 SDValue LHS = Handle.getValue().getNode()->getOperand(0); 937 SDValue RHS = Handle.getValue().getNode()->getOperand(1); 938 939 X86ISelAddressMode Backup = AM; 940 if (!MatchAddressRecursively(LHS, AM, Depth+1) && 941 !MatchAddressRecursively(RHS, AM, Depth+1)) 942 return false; 943 AM = Backup; 944 LHS = Handle.getValue().getNode()->getOperand(0); 945 RHS = Handle.getValue().getNode()->getOperand(1); 946 947 // Try again after commuting the operands. 948 if (!MatchAddressRecursively(RHS, AM, Depth+1) && 949 !MatchAddressRecursively(LHS, AM, Depth+1)) 950 return false; 951 AM = Backup; 952 LHS = Handle.getValue().getNode()->getOperand(0); 953 RHS = Handle.getValue().getNode()->getOperand(1); 954 955 // If we couldn't fold both operands into the address at the same time, 956 // see if we can just put each operand into a register and fold at least 957 // the add. 958 if (AM.BaseType == X86ISelAddressMode::RegBase && 959 !AM.Base_Reg.getNode() && 960 !AM.IndexReg.getNode()) { 961 AM.Base_Reg = LHS; 962 AM.IndexReg = RHS; 963 AM.Scale = 1; 964 return false; 965 } 966 break; 967 } 968 969 case ISD::OR: 970 // Handle "X | C" as "X + C" iff X is known to have C bits clear. 971 if (isLogicallyAddWithConstant(N, CurDAG)) { 972 X86ISelAddressMode Backup = AM; 973 ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1)); 974 uint64_t Offset = CN->getSExtValue(); 975 976 // Start with the LHS as an addr mode. 977 if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) && 978 // Address could not have picked a GV address for the displacement. 979 AM.GV == NULL && 980 // On x86-64, the resultant disp must fit in 32-bits. 981 (!is64Bit || 982 X86::isOffsetSuitableForCodeModel(AM.Disp + Offset, M, 983 AM.hasSymbolicDisplacement()))) { 984 AM.Disp += Offset; 985 return false; 986 } 987 AM = Backup; 988 } 989 break; 990 991 case ISD::AND: { 992 // Perform some heroic transforms on an and of a constant-count shift 993 // with a constant to enable use of the scaled offset field. 994 995 SDValue Shift = N.getOperand(0); 996 if (Shift.getNumOperands() != 2) break; 997 998 // Scale must not be used already. 999 if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break; 1000 1001 SDValue X = Shift.getOperand(0); 1002 ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N.getOperand(1)); 1003 ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Shift.getOperand(1)); 1004 if (!C1 || !C2) break; 1005 1006 // Handle "(X >> (8-C1)) & C2" as "(X >> 8) & 0xff)" if safe. This 1007 // allows us to convert the shift and and into an h-register extract and 1008 // a scaled index. 1009 if (Shift.getOpcode() == ISD::SRL && Shift.hasOneUse()) { 1010 unsigned ScaleLog = 8 - C1->getZExtValue(); 1011 if (ScaleLog > 0 && ScaleLog < 4 && 1012 C2->getZExtValue() == (UINT64_C(0xff) << ScaleLog)) { 1013 SDValue Eight = CurDAG->getConstant(8, MVT::i8); 1014 SDValue Mask = CurDAG->getConstant(0xff, N.getValueType()); 1015 SDValue Srl = CurDAG->getNode(ISD::SRL, dl, N.getValueType(), 1016 X, Eight); 1017 SDValue And = CurDAG->getNode(ISD::AND, dl, N.getValueType(), 1018 Srl, Mask); 1019 SDValue ShlCount = CurDAG->getConstant(ScaleLog, MVT::i8); 1020 SDValue Shl = CurDAG->getNode(ISD::SHL, dl, N.getValueType(), 1021 And, ShlCount); 1022 1023 // Insert the new nodes into the topological ordering. 1024 if (Eight.getNode()->getNodeId() == -1 || 1025 Eight.getNode()->getNodeId() > X.getNode()->getNodeId()) { 1026 CurDAG->RepositionNode(X.getNode(), Eight.getNode()); 1027 Eight.getNode()->setNodeId(X.getNode()->getNodeId()); 1028 } 1029 if (Mask.getNode()->getNodeId() == -1 || 1030 Mask.getNode()->getNodeId() > X.getNode()->getNodeId()) { 1031 CurDAG->RepositionNode(X.getNode(), Mask.getNode()); 1032 Mask.getNode()->setNodeId(X.getNode()->getNodeId()); 1033 } 1034 if (Srl.getNode()->getNodeId() == -1 || 1035 Srl.getNode()->getNodeId() > Shift.getNode()->getNodeId()) { 1036 CurDAG->RepositionNode(Shift.getNode(), Srl.getNode()); 1037 Srl.getNode()->setNodeId(Shift.getNode()->getNodeId()); 1038 } 1039 if (And.getNode()->getNodeId() == -1 || 1040 And.getNode()->getNodeId() > N.getNode()->getNodeId()) { 1041 CurDAG->RepositionNode(N.getNode(), And.getNode()); 1042 And.getNode()->setNodeId(N.getNode()->getNodeId()); 1043 } 1044 if (ShlCount.getNode()->getNodeId() == -1 || 1045 ShlCount.getNode()->getNodeId() > X.getNode()->getNodeId()) { 1046 CurDAG->RepositionNode(X.getNode(), ShlCount.getNode()); 1047 ShlCount.getNode()->setNodeId(N.getNode()->getNodeId()); 1048 } 1049 if (Shl.getNode()->getNodeId() == -1 || 1050 Shl.getNode()->getNodeId() > N.getNode()->getNodeId()) { 1051 CurDAG->RepositionNode(N.getNode(), Shl.getNode()); 1052 Shl.getNode()->setNodeId(N.getNode()->getNodeId()); 1053 } 1054 CurDAG->ReplaceAllUsesWith(N, Shl); 1055 AM.IndexReg = And; 1056 AM.Scale = (1 << ScaleLog); 1057 return false; 1058 } 1059 } 1060 1061 // Handle "(X << C1) & C2" as "(X & (C2>>C1)) << C1" if safe and if this 1062 // allows us to fold the shift into this addressing mode. 1063 if (Shift.getOpcode() != ISD::SHL) break; 1064 1065 // Not likely to be profitable if either the AND or SHIFT node has more 1066 // than one use (unless all uses are for address computation). Besides, 1067 // isel mechanism requires their node ids to be reused. 1068 if (!N.hasOneUse() || !Shift.hasOneUse()) 1069 break; 1070 1071 // Verify that the shift amount is something we can fold. 1072 unsigned ShiftCst = C1->getZExtValue(); 1073 if (ShiftCst != 1 && ShiftCst != 2 && ShiftCst != 3) 1074 break; 1075 1076 // Get the new AND mask, this folds to a constant. 1077 SDValue NewANDMask = CurDAG->getNode(ISD::SRL, dl, N.getValueType(), 1078 SDValue(C2, 0), SDValue(C1, 0)); 1079 SDValue NewAND = CurDAG->getNode(ISD::AND, dl, N.getValueType(), X, 1080 NewANDMask); 1081 SDValue NewSHIFT = CurDAG->getNode(ISD::SHL, dl, N.getValueType(), 1082 NewAND, SDValue(C1, 0)); 1083 1084 // Insert the new nodes into the topological ordering. 1085 if (C1->getNodeId() > X.getNode()->getNodeId()) { 1086 CurDAG->RepositionNode(X.getNode(), C1); 1087 C1->setNodeId(X.getNode()->getNodeId()); 1088 } 1089 if (NewANDMask.getNode()->getNodeId() == -1 || 1090 NewANDMask.getNode()->getNodeId() > X.getNode()->getNodeId()) { 1091 CurDAG->RepositionNode(X.getNode(), NewANDMask.getNode()); 1092 NewANDMask.getNode()->setNodeId(X.getNode()->getNodeId()); 1093 } 1094 if (NewAND.getNode()->getNodeId() == -1 || 1095 NewAND.getNode()->getNodeId() > Shift.getNode()->getNodeId()) { 1096 CurDAG->RepositionNode(Shift.getNode(), NewAND.getNode()); 1097 NewAND.getNode()->setNodeId(Shift.getNode()->getNodeId()); 1098 } 1099 if (NewSHIFT.getNode()->getNodeId() == -1 || 1100 NewSHIFT.getNode()->getNodeId() > N.getNode()->getNodeId()) { 1101 CurDAG->RepositionNode(N.getNode(), NewSHIFT.getNode()); 1102 NewSHIFT.getNode()->setNodeId(N.getNode()->getNodeId()); 1103 } 1104 1105 CurDAG->ReplaceAllUsesWith(N, NewSHIFT); 1106 1107 AM.Scale = 1 << ShiftCst; 1108 AM.IndexReg = NewAND; 1109 return false; 1110 } 1111 } 1112 1113 return MatchAddressBase(N, AM); 1114} 1115 1116/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the 1117/// specified addressing mode without any further recursion. 1118bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) { 1119 // Is the base register already occupied? 1120 if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) { 1121 // If so, check to see if the scale index register is set. 1122 if (AM.IndexReg.getNode() == 0) { 1123 AM.IndexReg = N; 1124 AM.Scale = 1; 1125 return false; 1126 } 1127 1128 // Otherwise, we cannot select it. 1129 return true; 1130 } 1131 1132 // Default, generate it as a register. 1133 AM.BaseType = X86ISelAddressMode::RegBase; 1134 AM.Base_Reg = N; 1135 return false; 1136} 1137 1138/// SelectAddr - returns true if it is able pattern match an addressing mode. 1139/// It returns the operands which make up the maximal addressing mode it can 1140/// match by reference. 1141/// 1142/// Parent is the parent node of the addr operand that is being matched. It 1143/// is always a load, store, atomic node, or null. It is only null when 1144/// checking memory operands for inline asm nodes. 1145bool X86DAGToDAGISel::SelectAddr(SDNode *Parent, SDValue N, SDValue &Base, 1146 SDValue &Scale, SDValue &Index, 1147 SDValue &Disp, SDValue &Segment) { 1148 X86ISelAddressMode AM; 1149 1150 if (Parent && 1151 // This list of opcodes are all the nodes that have an "addr:$ptr" operand 1152 // that are not a MemSDNode, and thus don't have proper addrspace info. 1153 Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme 1154 Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores 1155 Parent->getOpcode() != X86ISD::TLSCALL) { // Fixme 1156 unsigned AddrSpace = 1157 cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace(); 1158 // AddrSpace 256 -> GS, 257 -> FS. 1159 if (AddrSpace == 256) 1160 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16); 1161 if (AddrSpace == 257) 1162 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16); 1163 } 1164 1165 if (MatchAddress(N, AM)) 1166 return false; 1167 1168 EVT VT = N.getValueType(); 1169 if (AM.BaseType == X86ISelAddressMode::RegBase) { 1170 if (!AM.Base_Reg.getNode()) 1171 AM.Base_Reg = CurDAG->getRegister(0, VT); 1172 } 1173 1174 if (!AM.IndexReg.getNode()) 1175 AM.IndexReg = CurDAG->getRegister(0, VT); 1176 1177 getAddressOperands(AM, Base, Scale, Index, Disp, Segment); 1178 return true; 1179} 1180 1181/// SelectScalarSSELoad - Match a scalar SSE load. In particular, we want to 1182/// match a load whose top elements are either undef or zeros. The load flavor 1183/// is derived from the type of N, which is either v4f32 or v2f64. 1184/// 1185/// We also return: 1186/// PatternChainNode: this is the matched node that has a chain input and 1187/// output. 1188bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root, 1189 SDValue N, SDValue &Base, 1190 SDValue &Scale, SDValue &Index, 1191 SDValue &Disp, SDValue &Segment, 1192 SDValue &PatternNodeWithChain) { 1193 if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) { 1194 PatternNodeWithChain = N.getOperand(0); 1195 if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) && 1196 PatternNodeWithChain.hasOneUse() && 1197 IsProfitableToFold(N.getOperand(0), N.getNode(), Root) && 1198 IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) { 1199 LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain); 1200 if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment)) 1201 return false; 1202 return true; 1203 } 1204 } 1205 1206 // Also handle the case where we explicitly require zeros in the top 1207 // elements. This is a vector shuffle from the zero vector. 1208 if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() && 1209 // Check to see if the top elements are all zeros (or bitcast of zeros). 1210 N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR && 1211 N.getOperand(0).getNode()->hasOneUse() && 1212 ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) && 1213 N.getOperand(0).getOperand(0).hasOneUse() && 1214 IsProfitableToFold(N.getOperand(0), N.getNode(), Root) && 1215 IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) { 1216 // Okay, this is a zero extending load. Fold it. 1217 LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0)); 1218 if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment)) 1219 return false; 1220 PatternNodeWithChain = SDValue(LD, 0); 1221 return true; 1222 } 1223 return false; 1224} 1225 1226 1227/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing 1228/// mode it matches can be cost effectively emitted as an LEA instruction. 1229bool X86DAGToDAGISel::SelectLEAAddr(SDValue N, 1230 SDValue &Base, SDValue &Scale, 1231 SDValue &Index, SDValue &Disp, 1232 SDValue &Segment) { 1233 X86ISelAddressMode AM; 1234 1235 // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support 1236 // segments. 1237 SDValue Copy = AM.Segment; 1238 SDValue T = CurDAG->getRegister(0, MVT::i32); 1239 AM.Segment = T; 1240 if (MatchAddress(N, AM)) 1241 return false; 1242 assert (T == AM.Segment); 1243 AM.Segment = Copy; 1244 1245 EVT VT = N.getValueType(); 1246 unsigned Complexity = 0; 1247 if (AM.BaseType == X86ISelAddressMode::RegBase) 1248 if (AM.Base_Reg.getNode()) 1249 Complexity = 1; 1250 else 1251 AM.Base_Reg = CurDAG->getRegister(0, VT); 1252 else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase) 1253 Complexity = 4; 1254 1255 if (AM.IndexReg.getNode()) 1256 Complexity++; 1257 else 1258 AM.IndexReg = CurDAG->getRegister(0, VT); 1259 1260 // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with 1261 // a simple shift. 1262 if (AM.Scale > 1) 1263 Complexity++; 1264 1265 // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA 1266 // to a LEA. This is determined with some expermentation but is by no means 1267 // optimal (especially for code size consideration). LEA is nice because of 1268 // its three-address nature. Tweak the cost function again when we can run 1269 // convertToThreeAddress() at register allocation time. 1270 if (AM.hasSymbolicDisplacement()) { 1271 // For X86-64, we should always use lea to materialize RIP relative 1272 // addresses. 1273 if (Subtarget->is64Bit()) 1274 Complexity = 4; 1275 else 1276 Complexity += 2; 1277 } 1278 1279 if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode())) 1280 Complexity++; 1281 1282 // If it isn't worth using an LEA, reject it. 1283 if (Complexity <= 2) 1284 return false; 1285 1286 getAddressOperands(AM, Base, Scale, Index, Disp, Segment); 1287 return true; 1288} 1289 1290/// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes. 1291bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue N, SDValue &Base, 1292 SDValue &Scale, SDValue &Index, 1293 SDValue &Disp, SDValue &Segment) { 1294 assert(N.getOpcode() == ISD::TargetGlobalTLSAddress); 1295 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 1296 1297 X86ISelAddressMode AM; 1298 AM.GV = GA->getGlobal(); 1299 AM.Disp += GA->getOffset(); 1300 AM.Base_Reg = CurDAG->getRegister(0, N.getValueType()); 1301 AM.SymbolFlags = GA->getTargetFlags(); 1302 1303 if (N.getValueType() == MVT::i32) { 1304 AM.Scale = 1; 1305 AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32); 1306 } else { 1307 AM.IndexReg = CurDAG->getRegister(0, MVT::i64); 1308 } 1309 1310 getAddressOperands(AM, Base, Scale, Index, Disp, Segment); 1311 return true; 1312} 1313 1314 1315bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N, 1316 SDValue &Base, SDValue &Scale, 1317 SDValue &Index, SDValue &Disp, 1318 SDValue &Segment) { 1319 if (!ISD::isNON_EXTLoad(N.getNode()) || 1320 !IsProfitableToFold(N, P, P) || 1321 !IsLegalToFold(N, P, P, OptLevel)) 1322 return false; 1323 1324 return SelectAddr(N.getNode(), 1325 N.getOperand(1), Base, Scale, Index, Disp, Segment); 1326} 1327 1328/// getGlobalBaseReg - Return an SDNode that returns the value of 1329/// the global base register. Output instructions required to 1330/// initialize the global base register, if necessary. 1331/// 1332SDNode *X86DAGToDAGISel::getGlobalBaseReg() { 1333 unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF); 1334 return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode(); 1335} 1336 1337SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) { 1338 SDValue Chain = Node->getOperand(0); 1339 SDValue In1 = Node->getOperand(1); 1340 SDValue In2L = Node->getOperand(2); 1341 SDValue In2H = Node->getOperand(3); 1342 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 1343 if (!SelectAddr(Node, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) 1344 return NULL; 1345 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); 1346 MemOp[0] = cast<MemSDNode>(Node)->getMemOperand(); 1347 const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain}; 1348 SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(), 1349 MVT::i32, MVT::i32, MVT::Other, Ops, 1350 array_lengthof(Ops)); 1351 cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1); 1352 return ResNode; 1353} 1354 1355SDNode *X86DAGToDAGISel::SelectAtomicLoadAdd(SDNode *Node, EVT NVT) { 1356 if (Node->hasAnyUseOfValue(0)) 1357 return 0; 1358 1359 // Optimize common patterns for __sync_add_and_fetch and 1360 // __sync_sub_and_fetch where the result is not used. This allows us 1361 // to use "lock" version of add, sub, inc, dec instructions. 1362 // FIXME: Do not use special instructions but instead add the "lock" 1363 // prefix to the target node somehow. The extra information will then be 1364 // transferred to machine instruction and it denotes the prefix. 1365 SDValue Chain = Node->getOperand(0); 1366 SDValue Ptr = Node->getOperand(1); 1367 SDValue Val = Node->getOperand(2); 1368 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 1369 if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) 1370 return 0; 1371 1372 bool isInc = false, isDec = false, isSub = false, isCN = false; 1373 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val); 1374 if (CN) { 1375 isCN = true; 1376 int64_t CNVal = CN->getSExtValue(); 1377 if (CNVal == 1) 1378 isInc = true; 1379 else if (CNVal == -1) 1380 isDec = true; 1381 else if (CNVal >= 0) 1382 Val = CurDAG->getTargetConstant(CNVal, NVT); 1383 else { 1384 isSub = true; 1385 Val = CurDAG->getTargetConstant(-CNVal, NVT); 1386 } 1387 } else if (Val.hasOneUse() && 1388 Val.getOpcode() == ISD::SUB && 1389 X86::isZeroNode(Val.getOperand(0))) { 1390 isSub = true; 1391 Val = Val.getOperand(1); 1392 } 1393 1394 unsigned Opc = 0; 1395 switch (NVT.getSimpleVT().SimpleTy) { 1396 default: return 0; 1397 case MVT::i8: 1398 if (isInc) 1399 Opc = X86::LOCK_INC8m; 1400 else if (isDec) 1401 Opc = X86::LOCK_DEC8m; 1402 else if (isSub) { 1403 if (isCN) 1404 Opc = X86::LOCK_SUB8mi; 1405 else 1406 Opc = X86::LOCK_SUB8mr; 1407 } else { 1408 if (isCN) 1409 Opc = X86::LOCK_ADD8mi; 1410 else 1411 Opc = X86::LOCK_ADD8mr; 1412 } 1413 break; 1414 case MVT::i16: 1415 if (isInc) 1416 Opc = X86::LOCK_INC16m; 1417 else if (isDec) 1418 Opc = X86::LOCK_DEC16m; 1419 else if (isSub) { 1420 if (isCN) { 1421 if (immSext8(Val.getNode())) 1422 Opc = X86::LOCK_SUB16mi8; 1423 else 1424 Opc = X86::LOCK_SUB16mi; 1425 } else 1426 Opc = X86::LOCK_SUB16mr; 1427 } else { 1428 if (isCN) { 1429 if (immSext8(Val.getNode())) 1430 Opc = X86::LOCK_ADD16mi8; 1431 else 1432 Opc = X86::LOCK_ADD16mi; 1433 } else 1434 Opc = X86::LOCK_ADD16mr; 1435 } 1436 break; 1437 case MVT::i32: 1438 if (isInc) 1439 Opc = X86::LOCK_INC32m; 1440 else if (isDec) 1441 Opc = X86::LOCK_DEC32m; 1442 else if (isSub) { 1443 if (isCN) { 1444 if (immSext8(Val.getNode())) 1445 Opc = X86::LOCK_SUB32mi8; 1446 else 1447 Opc = X86::LOCK_SUB32mi; 1448 } else 1449 Opc = X86::LOCK_SUB32mr; 1450 } else { 1451 if (isCN) { 1452 if (immSext8(Val.getNode())) 1453 Opc = X86::LOCK_ADD32mi8; 1454 else 1455 Opc = X86::LOCK_ADD32mi; 1456 } else 1457 Opc = X86::LOCK_ADD32mr; 1458 } 1459 break; 1460 case MVT::i64: 1461 if (isInc) 1462 Opc = X86::LOCK_INC64m; 1463 else if (isDec) 1464 Opc = X86::LOCK_DEC64m; 1465 else if (isSub) { 1466 Opc = X86::LOCK_SUB64mr; 1467 if (isCN) { 1468 if (immSext8(Val.getNode())) 1469 Opc = X86::LOCK_SUB64mi8; 1470 else if (i64immSExt32(Val.getNode())) 1471 Opc = X86::LOCK_SUB64mi32; 1472 } 1473 } else { 1474 Opc = X86::LOCK_ADD64mr; 1475 if (isCN) { 1476 if (immSext8(Val.getNode())) 1477 Opc = X86::LOCK_ADD64mi8; 1478 else if (i64immSExt32(Val.getNode())) 1479 Opc = X86::LOCK_ADD64mi32; 1480 } 1481 } 1482 break; 1483 } 1484 1485 DebugLoc dl = Node->getDebugLoc(); 1486 SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, 1487 dl, NVT), 0); 1488 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); 1489 MemOp[0] = cast<MemSDNode>(Node)->getMemOperand(); 1490 if (isInc || isDec) { 1491 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain }; 1492 SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 6), 0); 1493 cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1); 1494 SDValue RetVals[] = { Undef, Ret }; 1495 return CurDAG->getMergeValues(RetVals, 2, dl).getNode(); 1496 } else { 1497 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain }; 1498 SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 7), 0); 1499 cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1); 1500 SDValue RetVals[] = { Undef, Ret }; 1501 return CurDAG->getMergeValues(RetVals, 2, dl).getNode(); 1502 } 1503} 1504 1505/// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has 1506/// any uses which require the SF or OF bits to be accurate. 1507static bool HasNoSignedComparisonUses(SDNode *N) { 1508 // Examine each user of the node. 1509 for (SDNode::use_iterator UI = N->use_begin(), 1510 UE = N->use_end(); UI != UE; ++UI) { 1511 // Only examine CopyToReg uses. 1512 if (UI->getOpcode() != ISD::CopyToReg) 1513 return false; 1514 // Only examine CopyToReg uses that copy to EFLAGS. 1515 if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() != 1516 X86::EFLAGS) 1517 return false; 1518 // Examine each user of the CopyToReg use. 1519 for (SDNode::use_iterator FlagUI = UI->use_begin(), 1520 FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) { 1521 // Only examine the Flag result. 1522 if (FlagUI.getUse().getResNo() != 1) continue; 1523 // Anything unusual: assume conservatively. 1524 if (!FlagUI->isMachineOpcode()) return false; 1525 // Examine the opcode of the user. 1526 switch (FlagUI->getMachineOpcode()) { 1527 // These comparisons don't treat the most significant bit specially. 1528 case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr: 1529 case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr: 1530 case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm: 1531 case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm: 1532 case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4: 1533 case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4: 1534 case X86::CMOVA16rr: case X86::CMOVA16rm: 1535 case X86::CMOVA32rr: case X86::CMOVA32rm: 1536 case X86::CMOVA64rr: case X86::CMOVA64rm: 1537 case X86::CMOVAE16rr: case X86::CMOVAE16rm: 1538 case X86::CMOVAE32rr: case X86::CMOVAE32rm: 1539 case X86::CMOVAE64rr: case X86::CMOVAE64rm: 1540 case X86::CMOVB16rr: case X86::CMOVB16rm: 1541 case X86::CMOVB32rr: case X86::CMOVB32rm: 1542 case X86::CMOVB64rr: case X86::CMOVB64rm: 1543 case X86::CMOVBE16rr: case X86::CMOVBE16rm: 1544 case X86::CMOVBE32rr: case X86::CMOVBE32rm: 1545 case X86::CMOVBE64rr: case X86::CMOVBE64rm: 1546 case X86::CMOVE16rr: case X86::CMOVE16rm: 1547 case X86::CMOVE32rr: case X86::CMOVE32rm: 1548 case X86::CMOVE64rr: case X86::CMOVE64rm: 1549 case X86::CMOVNE16rr: case X86::CMOVNE16rm: 1550 case X86::CMOVNE32rr: case X86::CMOVNE32rm: 1551 case X86::CMOVNE64rr: case X86::CMOVNE64rm: 1552 case X86::CMOVNP16rr: case X86::CMOVNP16rm: 1553 case X86::CMOVNP32rr: case X86::CMOVNP32rm: 1554 case X86::CMOVNP64rr: case X86::CMOVNP64rm: 1555 case X86::CMOVP16rr: case X86::CMOVP16rm: 1556 case X86::CMOVP32rr: case X86::CMOVP32rm: 1557 case X86::CMOVP64rr: case X86::CMOVP64rm: 1558 continue; 1559 // Anything else: assume conservatively. 1560 default: return false; 1561 } 1562 } 1563 } 1564 return true; 1565} 1566 1567SDNode *X86DAGToDAGISel::Select(SDNode *Node) { 1568 EVT NVT = Node->getValueType(0); 1569 unsigned Opc, MOpc; 1570 unsigned Opcode = Node->getOpcode(); 1571 DebugLoc dl = Node->getDebugLoc(); 1572 1573 DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n'); 1574 1575 if (Node->isMachineOpcode()) { 1576 DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << '\n'); 1577 return NULL; // Already selected. 1578 } 1579 1580 switch (Opcode) { 1581 default: break; 1582 case X86ISD::GlobalBaseReg: 1583 return getGlobalBaseReg(); 1584 1585 case X86ISD::ATOMOR64_DAG: 1586 return SelectAtomic64(Node, X86::ATOMOR6432); 1587 case X86ISD::ATOMXOR64_DAG: 1588 return SelectAtomic64(Node, X86::ATOMXOR6432); 1589 case X86ISD::ATOMADD64_DAG: 1590 return SelectAtomic64(Node, X86::ATOMADD6432); 1591 case X86ISD::ATOMSUB64_DAG: 1592 return SelectAtomic64(Node, X86::ATOMSUB6432); 1593 case X86ISD::ATOMNAND64_DAG: 1594 return SelectAtomic64(Node, X86::ATOMNAND6432); 1595 case X86ISD::ATOMAND64_DAG: 1596 return SelectAtomic64(Node, X86::ATOMAND6432); 1597 case X86ISD::ATOMSWAP64_DAG: 1598 return SelectAtomic64(Node, X86::ATOMSWAP6432); 1599 1600 case ISD::ATOMIC_LOAD_ADD: { 1601 SDNode *RetVal = SelectAtomicLoadAdd(Node, NVT); 1602 if (RetVal) 1603 return RetVal; 1604 break; 1605 } 1606 case X86ISD::UMUL: { 1607 SDValue N0 = Node->getOperand(0); 1608 SDValue N1 = Node->getOperand(1); 1609 1610 unsigned LoReg, HiReg; 1611 switch (NVT.getSimpleVT().SimpleTy) { 1612 default: llvm_unreachable("Unsupported VT!"); 1613 case MVT::i8: LoReg = X86::AL; HiReg = X86::AH; Opc = X86::MUL8r; break; 1614 case MVT::i16: LoReg = X86::AX; HiReg = X86::DX; Opc = X86::MUL16r; break; 1615 case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; Opc = X86::MUL32r; break; 1616 case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; Opc = X86::MUL64r; break; 1617 } 1618 1619 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg, 1620 N0, SDValue()).getValue(1); 1621 1622 SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32); 1623 SDValue Ops[] = {N1, InFlag}; 1624 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops, 2); 1625 1626 ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0)); 1627 ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1)); 1628 ReplaceUses(SDValue(Node, 2), SDValue(CNode, 2)); 1629 return NULL; 1630 } 1631 1632 case ISD::SMUL_LOHI: 1633 case ISD::UMUL_LOHI: { 1634 SDValue N0 = Node->getOperand(0); 1635 SDValue N1 = Node->getOperand(1); 1636 1637 bool isSigned = Opcode == ISD::SMUL_LOHI; 1638 if (!isSigned) { 1639 switch (NVT.getSimpleVT().SimpleTy) { 1640 default: llvm_unreachable("Unsupported VT!"); 1641 case MVT::i8: Opc = X86::MUL8r; MOpc = X86::MUL8m; break; 1642 case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break; 1643 case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break; 1644 case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break; 1645 } 1646 } else { 1647 switch (NVT.getSimpleVT().SimpleTy) { 1648 default: llvm_unreachable("Unsupported VT!"); 1649 case MVT::i8: Opc = X86::IMUL8r; MOpc = X86::IMUL8m; break; 1650 case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break; 1651 case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break; 1652 case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break; 1653 } 1654 } 1655 1656 unsigned LoReg, HiReg; 1657 switch (NVT.getSimpleVT().SimpleTy) { 1658 default: llvm_unreachable("Unsupported VT!"); 1659 case MVT::i8: LoReg = X86::AL; HiReg = X86::AH; break; 1660 case MVT::i16: LoReg = X86::AX; HiReg = X86::DX; break; 1661 case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break; 1662 case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break; 1663 } 1664 1665 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 1666 bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); 1667 // Multiply is commmutative. 1668 if (!foldedLoad) { 1669 foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); 1670 if (foldedLoad) 1671 std::swap(N0, N1); 1672 } 1673 1674 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg, 1675 N0, SDValue()).getValue(1); 1676 1677 if (foldedLoad) { 1678 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0), 1679 InFlag }; 1680 SDNode *CNode = 1681 CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops, 1682 array_lengthof(Ops)); 1683 InFlag = SDValue(CNode, 1); 1684 1685 // Update the chain. 1686 ReplaceUses(N1.getValue(1), SDValue(CNode, 0)); 1687 } else { 1688 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag); 1689 InFlag = SDValue(CNode, 0); 1690 } 1691 1692 // Prevent use of AH in a REX instruction by referencing AX instead. 1693 if (HiReg == X86::AH && Subtarget->is64Bit() && 1694 !SDValue(Node, 1).use_empty()) { 1695 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, 1696 X86::AX, MVT::i16, InFlag); 1697 InFlag = Result.getValue(2); 1698 // Get the low part if needed. Don't use getCopyFromReg for aliasing 1699 // registers. 1700 if (!SDValue(Node, 0).use_empty()) 1701 ReplaceUses(SDValue(Node, 1), 1702 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result)); 1703 1704 // Shift AX down 8 bits. 1705 Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16, 1706 Result, 1707 CurDAG->getTargetConstant(8, MVT::i8)), 0); 1708 // Then truncate it down to i8. 1709 ReplaceUses(SDValue(Node, 1), 1710 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result)); 1711 } 1712 // Copy the low half of the result, if it is needed. 1713 if (!SDValue(Node, 0).use_empty()) { 1714 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, 1715 LoReg, NVT, InFlag); 1716 InFlag = Result.getValue(2); 1717 ReplaceUses(SDValue(Node, 0), Result); 1718 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n'); 1719 } 1720 // Copy the high half of the result, if it is needed. 1721 if (!SDValue(Node, 1).use_empty()) { 1722 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, 1723 HiReg, NVT, InFlag); 1724 InFlag = Result.getValue(2); 1725 ReplaceUses(SDValue(Node, 1), Result); 1726 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n'); 1727 } 1728 1729 return NULL; 1730 } 1731 1732 case ISD::SDIVREM: 1733 case ISD::UDIVREM: { 1734 SDValue N0 = Node->getOperand(0); 1735 SDValue N1 = Node->getOperand(1); 1736 1737 bool isSigned = Opcode == ISD::SDIVREM; 1738 if (!isSigned) { 1739 switch (NVT.getSimpleVT().SimpleTy) { 1740 default: llvm_unreachable("Unsupported VT!"); 1741 case MVT::i8: Opc = X86::DIV8r; MOpc = X86::DIV8m; break; 1742 case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break; 1743 case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break; 1744 case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break; 1745 } 1746 } else { 1747 switch (NVT.getSimpleVT().SimpleTy) { 1748 default: llvm_unreachable("Unsupported VT!"); 1749 case MVT::i8: Opc = X86::IDIV8r; MOpc = X86::IDIV8m; break; 1750 case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break; 1751 case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break; 1752 case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break; 1753 } 1754 } 1755 1756 unsigned LoReg, HiReg, ClrReg; 1757 unsigned ClrOpcode, SExtOpcode; 1758 switch (NVT.getSimpleVT().SimpleTy) { 1759 default: llvm_unreachable("Unsupported VT!"); 1760 case MVT::i8: 1761 LoReg = X86::AL; ClrReg = HiReg = X86::AH; 1762 ClrOpcode = 0; 1763 SExtOpcode = X86::CBW; 1764 break; 1765 case MVT::i16: 1766 LoReg = X86::AX; HiReg = X86::DX; 1767 ClrOpcode = X86::MOV16r0; ClrReg = X86::DX; 1768 SExtOpcode = X86::CWD; 1769 break; 1770 case MVT::i32: 1771 LoReg = X86::EAX; ClrReg = HiReg = X86::EDX; 1772 ClrOpcode = X86::MOV32r0; 1773 SExtOpcode = X86::CDQ; 1774 break; 1775 case MVT::i64: 1776 LoReg = X86::RAX; ClrReg = HiReg = X86::RDX; 1777 ClrOpcode = X86::MOV64r0; 1778 SExtOpcode = X86::CQO; 1779 break; 1780 } 1781 1782 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 1783 bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); 1784 bool signBitIsZero = CurDAG->SignBitIsZero(N0); 1785 1786 SDValue InFlag; 1787 if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) { 1788 // Special case for div8, just use a move with zero extension to AX to 1789 // clear the upper 8 bits (AH). 1790 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain; 1791 if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) { 1792 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) }; 1793 Move = 1794 SDValue(CurDAG->getMachineNode(X86::MOVZX16rm8, dl, MVT::i16, 1795 MVT::Other, Ops, 1796 array_lengthof(Ops)), 0); 1797 Chain = Move.getValue(1); 1798 ReplaceUses(N0.getValue(1), Chain); 1799 } else { 1800 Move = 1801 SDValue(CurDAG->getMachineNode(X86::MOVZX16rr8, dl, MVT::i16, N0),0); 1802 Chain = CurDAG->getEntryNode(); 1803 } 1804 Chain = CurDAG->getCopyToReg(Chain, dl, X86::AX, Move, SDValue()); 1805 InFlag = Chain.getValue(1); 1806 } else { 1807 InFlag = 1808 CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, 1809 LoReg, N0, SDValue()).getValue(1); 1810 if (isSigned && !signBitIsZero) { 1811 // Sign extend the low part into the high part. 1812 InFlag = 1813 SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0); 1814 } else { 1815 // Zero out the high part, effectively zero extending the input. 1816 SDValue ClrNode = 1817 SDValue(CurDAG->getMachineNode(ClrOpcode, dl, NVT), 0); 1818 InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg, 1819 ClrNode, InFlag).getValue(1); 1820 } 1821 } 1822 1823 if (foldedLoad) { 1824 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0), 1825 InFlag }; 1826 SDNode *CNode = 1827 CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops, 1828 array_lengthof(Ops)); 1829 InFlag = SDValue(CNode, 1); 1830 // Update the chain. 1831 ReplaceUses(N1.getValue(1), SDValue(CNode, 0)); 1832 } else { 1833 InFlag = 1834 SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0); 1835 } 1836 1837 // Prevent use of AH in a REX instruction by referencing AX instead. 1838 // Shift it down 8 bits. 1839 if (HiReg == X86::AH && Subtarget->is64Bit() && 1840 !SDValue(Node, 1).use_empty()) { 1841 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, 1842 X86::AX, MVT::i16, InFlag); 1843 InFlag = Result.getValue(2); 1844 1845 // If we also need AL (the quotient), get it by extracting a subreg from 1846 // Result. The fast register allocator does not like multiple CopyFromReg 1847 // nodes using aliasing registers. 1848 if (!SDValue(Node, 0).use_empty()) 1849 ReplaceUses(SDValue(Node, 0), 1850 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result)); 1851 1852 // Shift AX right by 8 bits instead of using AH. 1853 Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16, 1854 Result, 1855 CurDAG->getTargetConstant(8, MVT::i8)), 1856 0); 1857 ReplaceUses(SDValue(Node, 1), 1858 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result)); 1859 } 1860 // Copy the division (low) result, if it is needed. 1861 if (!SDValue(Node, 0).use_empty()) { 1862 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, 1863 LoReg, NVT, InFlag); 1864 InFlag = Result.getValue(2); 1865 ReplaceUses(SDValue(Node, 0), Result); 1866 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n'); 1867 } 1868 // Copy the remainder (high) result, if it is needed. 1869 if (!SDValue(Node, 1).use_empty()) { 1870 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, 1871 HiReg, NVT, InFlag); 1872 InFlag = Result.getValue(2); 1873 ReplaceUses(SDValue(Node, 1), Result); 1874 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n'); 1875 } 1876 return NULL; 1877 } 1878 1879 case X86ISD::CMP: { 1880 SDValue N0 = Node->getOperand(0); 1881 SDValue N1 = Node->getOperand(1); 1882 1883 // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to 1884 // use a smaller encoding. 1885 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && 1886 HasNoSignedComparisonUses(Node)) 1887 // Look past the truncate if CMP is the only use of it. 1888 N0 = N0.getOperand(0); 1889 if (N0.getNode()->getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && 1890 N0.getValueType() != MVT::i8 && 1891 X86::isZeroNode(N1)) { 1892 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1)); 1893 if (!C) break; 1894 1895 // For example, convert "testl %eax, $8" to "testb %al, $8" 1896 if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 && 1897 (!(C->getZExtValue() & 0x80) || 1898 HasNoSignedComparisonUses(Node))) { 1899 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8); 1900 SDValue Reg = N0.getNode()->getOperand(0); 1901 1902 // On x86-32, only the ABCD registers have 8-bit subregisters. 1903 if (!Subtarget->is64Bit()) { 1904 TargetRegisterClass *TRC = 0; 1905 switch (N0.getValueType().getSimpleVT().SimpleTy) { 1906 case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break; 1907 case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break; 1908 default: llvm_unreachable("Unsupported TEST operand type!"); 1909 } 1910 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32); 1911 Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl, 1912 Reg.getValueType(), Reg, RC), 0); 1913 } 1914 1915 // Extract the l-register. 1916 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, 1917 MVT::i8, Reg); 1918 1919 // Emit a testb. 1920 return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32, Subreg, Imm); 1921 } 1922 1923 // For example, "testl %eax, $2048" to "testb %ah, $8". 1924 if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 && 1925 (!(C->getZExtValue() & 0x8000) || 1926 HasNoSignedComparisonUses(Node))) { 1927 // Shift the immediate right by 8 bits. 1928 SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8, 1929 MVT::i8); 1930 SDValue Reg = N0.getNode()->getOperand(0); 1931 1932 // Put the value in an ABCD register. 1933 TargetRegisterClass *TRC = 0; 1934 switch (N0.getValueType().getSimpleVT().SimpleTy) { 1935 case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break; 1936 case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break; 1937 case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break; 1938 default: llvm_unreachable("Unsupported TEST operand type!"); 1939 } 1940 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32); 1941 Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl, 1942 Reg.getValueType(), Reg, RC), 0); 1943 1944 // Extract the h-register. 1945 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl, 1946 MVT::i8, Reg); 1947 1948 // Emit a testb. No special NOREX tricks are needed since there's 1949 // only one GPR operand! 1950 return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32, 1951 Subreg, ShiftedImm); 1952 } 1953 1954 // For example, "testl %eax, $32776" to "testw %ax, $32776". 1955 if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 && 1956 N0.getValueType() != MVT::i16 && 1957 (!(C->getZExtValue() & 0x8000) || 1958 HasNoSignedComparisonUses(Node))) { 1959 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16); 1960 SDValue Reg = N0.getNode()->getOperand(0); 1961 1962 // Extract the 16-bit subregister. 1963 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl, 1964 MVT::i16, Reg); 1965 1966 // Emit a testw. 1967 return CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32, Subreg, Imm); 1968 } 1969 1970 // For example, "testq %rax, $268468232" to "testl %eax, $268468232". 1971 if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 && 1972 N0.getValueType() == MVT::i64 && 1973 (!(C->getZExtValue() & 0x80000000) || 1974 HasNoSignedComparisonUses(Node))) { 1975 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32); 1976 SDValue Reg = N0.getNode()->getOperand(0); 1977 1978 // Extract the 32-bit subregister. 1979 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl, 1980 MVT::i32, Reg); 1981 1982 // Emit a testl. 1983 return CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32, Subreg, Imm); 1984 } 1985 } 1986 break; 1987 } 1988 } 1989 1990 SDNode *ResNode = SelectCode(Node); 1991 1992 DEBUG(dbgs() << "=> "; 1993 if (ResNode == NULL || ResNode == Node) 1994 Node->dump(CurDAG); 1995 else 1996 ResNode->dump(CurDAG); 1997 dbgs() << '\n'); 1998 1999 return ResNode; 2000} 2001 2002bool X86DAGToDAGISel:: 2003SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode, 2004 std::vector<SDValue> &OutOps) { 2005 SDValue Op0, Op1, Op2, Op3, Op4; 2006 switch (ConstraintCode) { 2007 case 'o': // offsetable ?? 2008 case 'v': // not offsetable ?? 2009 default: return true; 2010 case 'm': // memory 2011 if (!SelectAddr(0, Op, Op0, Op1, Op2, Op3, Op4)) 2012 return true; 2013 break; 2014 } 2015 2016 OutOps.push_back(Op0); 2017 OutOps.push_back(Op1); 2018 OutOps.push_back(Op2); 2019 OutOps.push_back(Op3); 2020 OutOps.push_back(Op4); 2021 return false; 2022} 2023 2024/// createX86ISelDag - This pass converts a legalized DAG into a 2025/// X86-specific DAG, ready for instruction scheduling. 2026/// 2027FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM, 2028 llvm::CodeGenOpt::Level OptLevel) { 2029 return new X86DAGToDAGISel(TM, OptLevel); 2030} 2031