X86ISelDAGToDAG.cpp revision 7e2c793a2b5c746344652b6579e958ee42fafdcc
1//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file defines a DAG pattern matching instruction selector for X86, 11// converting from a legalized dag to a X86 dag. 12// 13//===----------------------------------------------------------------------===// 14 15#define DEBUG_TYPE "x86-isel" 16#include "X86.h" 17#include "X86InstrBuilder.h" 18#include "X86MachineFunctionInfo.h" 19#include "X86RegisterInfo.h" 20#include "X86Subtarget.h" 21#include "X86TargetMachine.h" 22#include "llvm/Instructions.h" 23#include "llvm/Intrinsics.h" 24#include "llvm/Type.h" 25#include "llvm/CodeGen/FunctionLoweringInfo.h" 26#include "llvm/CodeGen/MachineConstantPool.h" 27#include "llvm/CodeGen/MachineFunction.h" 28#include "llvm/CodeGen/MachineFrameInfo.h" 29#include "llvm/CodeGen/MachineInstrBuilder.h" 30#include "llvm/CodeGen/MachineRegisterInfo.h" 31#include "llvm/CodeGen/SelectionDAGISel.h" 32#include "llvm/Target/TargetMachine.h" 33#include "llvm/Target/TargetOptions.h" 34#include "llvm/Support/CFG.h" 35#include "llvm/Support/Debug.h" 36#include "llvm/Support/ErrorHandling.h" 37#include "llvm/Support/MathExtras.h" 38#include "llvm/Support/raw_ostream.h" 39#include "llvm/ADT/Statistic.h" 40using namespace llvm; 41 42STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor"); 43 44//===----------------------------------------------------------------------===// 45// Pattern Matcher Implementation 46//===----------------------------------------------------------------------===// 47 48namespace { 49 /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses 50 /// SDValue's instead of register numbers for the leaves of the matched 51 /// tree. 52 struct X86ISelAddressMode { 53 enum { 54 RegBase, 55 FrameIndexBase 56 } BaseType; 57 58 // This is really a union, discriminated by BaseType! 59 SDValue Base_Reg; 60 int Base_FrameIndex; 61 62 unsigned Scale; 63 SDValue IndexReg; 64 int32_t Disp; 65 SDValue Segment; 66 const GlobalValue *GV; 67 const Constant *CP; 68 const BlockAddress *BlockAddr; 69 const char *ES; 70 int JT; 71 unsigned Align; // CP alignment. 72 unsigned char SymbolFlags; // X86II::MO_* 73 74 X86ISelAddressMode() 75 : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0), 76 Segment(), GV(0), CP(0), BlockAddr(0), ES(0), JT(-1), Align(0), 77 SymbolFlags(X86II::MO_NO_FLAG) { 78 } 79 80 bool hasSymbolicDisplacement() const { 81 return GV != 0 || CP != 0 || ES != 0 || JT != -1 || BlockAddr != 0; 82 } 83 84 bool hasBaseOrIndexReg() const { 85 return IndexReg.getNode() != 0 || Base_Reg.getNode() != 0; 86 } 87 88 /// isRIPRelative - Return true if this addressing mode is already RIP 89 /// relative. 90 bool isRIPRelative() const { 91 if (BaseType != RegBase) return false; 92 if (RegisterSDNode *RegNode = 93 dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode())) 94 return RegNode->getReg() == X86::RIP; 95 return false; 96 } 97 98 void setBaseReg(SDValue Reg) { 99 BaseType = RegBase; 100 Base_Reg = Reg; 101 } 102 103#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 104 void dump() { 105 dbgs() << "X86ISelAddressMode " << this << '\n'; 106 dbgs() << "Base_Reg "; 107 if (Base_Reg.getNode() != 0) 108 Base_Reg.getNode()->dump(); 109 else 110 dbgs() << "nul"; 111 dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n' 112 << " Scale" << Scale << '\n' 113 << "IndexReg "; 114 if (IndexReg.getNode() != 0) 115 IndexReg.getNode()->dump(); 116 else 117 dbgs() << "nul"; 118 dbgs() << " Disp " << Disp << '\n' 119 << "GV "; 120 if (GV) 121 GV->dump(); 122 else 123 dbgs() << "nul"; 124 dbgs() << " CP "; 125 if (CP) 126 CP->dump(); 127 else 128 dbgs() << "nul"; 129 dbgs() << '\n' 130 << "ES "; 131 if (ES) 132 dbgs() << ES; 133 else 134 dbgs() << "nul"; 135 dbgs() << " JT" << JT << " Align" << Align << '\n'; 136 } 137#endif 138 }; 139} 140 141namespace { 142 //===--------------------------------------------------------------------===// 143 /// ISel - X86 specific code to select X86 machine instructions for 144 /// SelectionDAG operations. 145 /// 146 class X86DAGToDAGISel : public SelectionDAGISel { 147 /// X86Lowering - This object fully describes how to lower LLVM code to an 148 /// X86-specific SelectionDAG. 149 const X86TargetLowering &X86Lowering; 150 151 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can 152 /// make the right decision when generating code for different targets. 153 const X86Subtarget *Subtarget; 154 155 /// OptForSize - If true, selector should try to optimize for code size 156 /// instead of performance. 157 bool OptForSize; 158 159 public: 160 explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel) 161 : SelectionDAGISel(tm, OptLevel), 162 X86Lowering(*tm.getTargetLowering()), 163 Subtarget(&tm.getSubtarget<X86Subtarget>()), 164 OptForSize(false) {} 165 166 virtual const char *getPassName() const { 167 return "X86 DAG->DAG Instruction Selection"; 168 } 169 170 virtual void EmitFunctionEntryCode(); 171 172 virtual bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const; 173 174 virtual void PreprocessISelDAG(); 175 176 inline bool immSext8(SDNode *N) const { 177 return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue()); 178 } 179 180 // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit 181 // sign extended field. 182 inline bool i64immSExt32(SDNode *N) const { 183 uint64_t v = cast<ConstantSDNode>(N)->getZExtValue(); 184 return (int64_t)v == (int32_t)v; 185 } 186 187// Include the pieces autogenerated from the target description. 188#include "X86GenDAGISel.inc" 189 190 private: 191 SDNode *Select(SDNode *N); 192 SDNode *SelectGather(SDNode *N, unsigned Opc); 193 SDNode *SelectAtomic64(SDNode *Node, unsigned Opc); 194 SDNode *SelectAtomicLoadArith(SDNode *Node, EVT NVT); 195 196 bool FoldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM); 197 bool MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM); 198 bool MatchWrapper(SDValue N, X86ISelAddressMode &AM); 199 bool MatchAddress(SDValue N, X86ISelAddressMode &AM); 200 bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM, 201 unsigned Depth); 202 bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM); 203 bool SelectAddr(SDNode *Parent, SDValue N, SDValue &Base, 204 SDValue &Scale, SDValue &Index, SDValue &Disp, 205 SDValue &Segment); 206 bool SelectLEAAddr(SDValue N, SDValue &Base, 207 SDValue &Scale, SDValue &Index, SDValue &Disp, 208 SDValue &Segment); 209 bool SelectTLSADDRAddr(SDValue N, SDValue &Base, 210 SDValue &Scale, SDValue &Index, SDValue &Disp, 211 SDValue &Segment); 212 bool SelectScalarSSELoad(SDNode *Root, SDValue N, 213 SDValue &Base, SDValue &Scale, 214 SDValue &Index, SDValue &Disp, 215 SDValue &Segment, 216 SDValue &NodeWithChain); 217 218 bool TryFoldLoad(SDNode *P, SDValue N, 219 SDValue &Base, SDValue &Scale, 220 SDValue &Index, SDValue &Disp, 221 SDValue &Segment); 222 223 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for 224 /// inline asm expressions. 225 virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op, 226 char ConstraintCode, 227 std::vector<SDValue> &OutOps); 228 229 void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI); 230 231 inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base, 232 SDValue &Scale, SDValue &Index, 233 SDValue &Disp, SDValue &Segment) { 234 Base = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ? 235 CurDAG->getTargetFrameIndex(AM.Base_FrameIndex, TLI.getPointerTy()) : 236 AM.Base_Reg; 237 Scale = getI8Imm(AM.Scale); 238 Index = AM.IndexReg; 239 // These are 32-bit even in 64-bit mode since RIP relative offset 240 // is 32-bit. 241 if (AM.GV) 242 Disp = CurDAG->getTargetGlobalAddress(AM.GV, DebugLoc(), 243 MVT::i32, AM.Disp, 244 AM.SymbolFlags); 245 else if (AM.CP) 246 Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32, 247 AM.Align, AM.Disp, AM.SymbolFlags); 248 else if (AM.ES) { 249 assert(!AM.Disp && "Non-zero displacement is ignored with ES."); 250 Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags); 251 } else if (AM.JT != -1) { 252 assert(!AM.Disp && "Non-zero displacement is ignored with JT."); 253 Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags); 254 } else if (AM.BlockAddr) 255 Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp, 256 AM.SymbolFlags); 257 else 258 Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32); 259 260 if (AM.Segment.getNode()) 261 Segment = AM.Segment; 262 else 263 Segment = CurDAG->getRegister(0, MVT::i32); 264 } 265 266 /// getI8Imm - Return a target constant with the specified value, of type 267 /// i8. 268 inline SDValue getI8Imm(unsigned Imm) { 269 return CurDAG->getTargetConstant(Imm, MVT::i8); 270 } 271 272 /// getI32Imm - Return a target constant with the specified value, of type 273 /// i32. 274 inline SDValue getI32Imm(unsigned Imm) { 275 return CurDAG->getTargetConstant(Imm, MVT::i32); 276 } 277 278 /// getGlobalBaseReg - Return an SDNode that returns the value of 279 /// the global base register. Output instructions required to 280 /// initialize the global base register, if necessary. 281 /// 282 SDNode *getGlobalBaseReg(); 283 284 /// getTargetMachine - Return a reference to the TargetMachine, casted 285 /// to the target-specific type. 286 const X86TargetMachine &getTargetMachine() { 287 return static_cast<const X86TargetMachine &>(TM); 288 } 289 290 /// getInstrInfo - Return a reference to the TargetInstrInfo, casted 291 /// to the target-specific type. 292 const X86InstrInfo *getInstrInfo() { 293 return getTargetMachine().getInstrInfo(); 294 } 295 }; 296} 297 298 299bool 300X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const { 301 if (OptLevel == CodeGenOpt::None) return false; 302 303 if (!N.hasOneUse()) 304 return false; 305 306 if (N.getOpcode() != ISD::LOAD) 307 return true; 308 309 // If N is a load, do additional profitability checks. 310 if (U == Root) { 311 switch (U->getOpcode()) { 312 default: break; 313 case X86ISD::ADD: 314 case X86ISD::SUB: 315 case X86ISD::AND: 316 case X86ISD::XOR: 317 case X86ISD::OR: 318 case ISD::ADD: 319 case ISD::ADDC: 320 case ISD::ADDE: 321 case ISD::AND: 322 case ISD::OR: 323 case ISD::XOR: { 324 SDValue Op1 = U->getOperand(1); 325 326 // If the other operand is a 8-bit immediate we should fold the immediate 327 // instead. This reduces code size. 328 // e.g. 329 // movl 4(%esp), %eax 330 // addl $4, %eax 331 // vs. 332 // movl $4, %eax 333 // addl 4(%esp), %eax 334 // The former is 2 bytes shorter. In case where the increment is 1, then 335 // the saving can be 4 bytes (by using incl %eax). 336 if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1)) 337 if (Imm->getAPIntValue().isSignedIntN(8)) 338 return false; 339 340 // If the other operand is a TLS address, we should fold it instead. 341 // This produces 342 // movl %gs:0, %eax 343 // leal i@NTPOFF(%eax), %eax 344 // instead of 345 // movl $i@NTPOFF, %eax 346 // addl %gs:0, %eax 347 // if the block also has an access to a second TLS address this will save 348 // a load. 349 // FIXME: This is probably also true for non TLS addresses. 350 if (Op1.getOpcode() == X86ISD::Wrapper) { 351 SDValue Val = Op1.getOperand(0); 352 if (Val.getOpcode() == ISD::TargetGlobalTLSAddress) 353 return false; 354 } 355 } 356 } 357 } 358 359 return true; 360} 361 362/// MoveBelowCallOrigChain - Replace the original chain operand of the call with 363/// load's chain operand and move load below the call's chain operand. 364static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load, 365 SDValue Call, SDValue OrigChain) { 366 SmallVector<SDValue, 8> Ops; 367 SDValue Chain = OrigChain.getOperand(0); 368 if (Chain.getNode() == Load.getNode()) 369 Ops.push_back(Load.getOperand(0)); 370 else { 371 assert(Chain.getOpcode() == ISD::TokenFactor && 372 "Unexpected chain operand"); 373 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) 374 if (Chain.getOperand(i).getNode() == Load.getNode()) 375 Ops.push_back(Load.getOperand(0)); 376 else 377 Ops.push_back(Chain.getOperand(i)); 378 SDValue NewChain = 379 CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(), 380 MVT::Other, &Ops[0], Ops.size()); 381 Ops.clear(); 382 Ops.push_back(NewChain); 383 } 384 for (unsigned i = 1, e = OrigChain.getNumOperands(); i != e; ++i) 385 Ops.push_back(OrigChain.getOperand(i)); 386 CurDAG->UpdateNodeOperands(OrigChain.getNode(), &Ops[0], Ops.size()); 387 CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0), 388 Load.getOperand(1), Load.getOperand(2)); 389 Ops.clear(); 390 Ops.push_back(SDValue(Load.getNode(), 1)); 391 for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i) 392 Ops.push_back(Call.getOperand(i)); 393 CurDAG->UpdateNodeOperands(Call.getNode(), &Ops[0], Ops.size()); 394} 395 396/// isCalleeLoad - Return true if call address is a load and it can be 397/// moved below CALLSEQ_START and the chains leading up to the call. 398/// Return the CALLSEQ_START by reference as a second output. 399/// In the case of a tail call, there isn't a callseq node between the call 400/// chain and the load. 401static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) { 402 if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse()) 403 return false; 404 LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode()); 405 if (!LD || 406 LD->isVolatile() || 407 LD->getAddressingMode() != ISD::UNINDEXED || 408 LD->getExtensionType() != ISD::NON_EXTLOAD) 409 return false; 410 411 // Now let's find the callseq_start. 412 while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) { 413 if (!Chain.hasOneUse()) 414 return false; 415 Chain = Chain.getOperand(0); 416 } 417 418 if (!Chain.getNumOperands()) 419 return false; 420 if (Chain.getOperand(0).getNode() == Callee.getNode()) 421 return true; 422 if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor && 423 Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) && 424 Callee.getValue(1).hasOneUse()) 425 return true; 426 return false; 427} 428 429void X86DAGToDAGISel::PreprocessISelDAG() { 430 // OptForSize is used in pattern predicates that isel is matching. 431 OptForSize = MF->getFunction()->getFnAttributes().hasOptimizeForSizeAttr(); 432 433 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(), 434 E = CurDAG->allnodes_end(); I != E; ) { 435 SDNode *N = I++; // Preincrement iterator to avoid invalidation issues. 436 437 if (OptLevel != CodeGenOpt::None && 438 (N->getOpcode() == X86ISD::CALL || 439 N->getOpcode() == X86ISD::TC_RETURN)) { 440 /// Also try moving call address load from outside callseq_start to just 441 /// before the call to allow it to be folded. 442 /// 443 /// [Load chain] 444 /// ^ 445 /// | 446 /// [Load] 447 /// ^ ^ 448 /// | | 449 /// / \-- 450 /// / | 451 ///[CALLSEQ_START] | 452 /// ^ | 453 /// | | 454 /// [LOAD/C2Reg] | 455 /// | | 456 /// \ / 457 /// \ / 458 /// [CALL] 459 bool HasCallSeq = N->getOpcode() == X86ISD::CALL; 460 SDValue Chain = N->getOperand(0); 461 SDValue Load = N->getOperand(1); 462 if (!isCalleeLoad(Load, Chain, HasCallSeq)) 463 continue; 464 MoveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain); 465 ++NumLoadMoved; 466 continue; 467 } 468 469 // Lower fpround and fpextend nodes that target the FP stack to be store and 470 // load to the stack. This is a gross hack. We would like to simply mark 471 // these as being illegal, but when we do that, legalize produces these when 472 // it expands calls, then expands these in the same legalize pass. We would 473 // like dag combine to be able to hack on these between the call expansion 474 // and the node legalization. As such this pass basically does "really 475 // late" legalization of these inline with the X86 isel pass. 476 // FIXME: This should only happen when not compiled with -O0. 477 if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND) 478 continue; 479 480 EVT SrcVT = N->getOperand(0).getValueType(); 481 EVT DstVT = N->getValueType(0); 482 483 // If any of the sources are vectors, no fp stack involved. 484 if (SrcVT.isVector() || DstVT.isVector()) 485 continue; 486 487 // If the source and destination are SSE registers, then this is a legal 488 // conversion that should not be lowered. 489 bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT); 490 bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT); 491 if (SrcIsSSE && DstIsSSE) 492 continue; 493 494 if (!SrcIsSSE && !DstIsSSE) { 495 // If this is an FPStack extension, it is a noop. 496 if (N->getOpcode() == ISD::FP_EXTEND) 497 continue; 498 // If this is a value-preserving FPStack truncation, it is a noop. 499 if (N->getConstantOperandVal(1)) 500 continue; 501 } 502 503 // Here we could have an FP stack truncation or an FPStack <-> SSE convert. 504 // FPStack has extload and truncstore. SSE can fold direct loads into other 505 // operations. Based on this, decide what we want to do. 506 EVT MemVT; 507 if (N->getOpcode() == ISD::FP_ROUND) 508 MemVT = DstVT; // FP_ROUND must use DstVT, we can't do a 'trunc load'. 509 else 510 MemVT = SrcIsSSE ? SrcVT : DstVT; 511 512 SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT); 513 DebugLoc dl = N->getDebugLoc(); 514 515 // FIXME: optimize the case where the src/dest is a load or store? 516 SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl, 517 N->getOperand(0), 518 MemTmp, MachinePointerInfo(), MemVT, 519 false, false, 0); 520 SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp, 521 MachinePointerInfo(), 522 MemVT, false, false, 0); 523 524 // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the 525 // extload we created. This will cause general havok on the dag because 526 // anything below the conversion could be folded into other existing nodes. 527 // To avoid invalidating 'I', back it up to the convert node. 528 --I; 529 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); 530 531 // Now that we did that, the node is dead. Increment the iterator to the 532 // next node to process, then delete N. 533 ++I; 534 CurDAG->DeleteNode(N); 535 } 536} 537 538 539/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in 540/// the main function. 541void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB, 542 MachineFrameInfo *MFI) { 543 const TargetInstrInfo *TII = TM.getInstrInfo(); 544 if (Subtarget->isTargetCygMing()) { 545 unsigned CallOp = 546 Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32; 547 BuildMI(BB, DebugLoc(), 548 TII->get(CallOp)).addExternalSymbol("__main"); 549 } 550} 551 552void X86DAGToDAGISel::EmitFunctionEntryCode() { 553 // If this is main, emit special code for main. 554 if (const Function *Fn = MF->getFunction()) 555 if (Fn->hasExternalLinkage() && Fn->getName() == "main") 556 EmitSpecialCodeForMain(MF->begin(), MF->getFrameInfo()); 557} 558 559static bool isDispSafeForFrameIndex(int64_t Val) { 560 // On 64-bit platforms, we can run into an issue where a frame index 561 // includes a displacement that, when added to the explicit displacement, 562 // will overflow the displacement field. Assuming that the frame index 563 // displacement fits into a 31-bit integer (which is only slightly more 564 // aggressive than the current fundamental assumption that it fits into 565 // a 32-bit integer), a 31-bit disp should always be safe. 566 return isInt<31>(Val); 567} 568 569bool X86DAGToDAGISel::FoldOffsetIntoAddress(uint64_t Offset, 570 X86ISelAddressMode &AM) { 571 int64_t Val = AM.Disp + Offset; 572 CodeModel::Model M = TM.getCodeModel(); 573 if (Subtarget->is64Bit()) { 574 if (!X86::isOffsetSuitableForCodeModel(Val, M, 575 AM.hasSymbolicDisplacement())) 576 return true; 577 // In addition to the checks required for a register base, check that 578 // we do not try to use an unsafe Disp with a frame index. 579 if (AM.BaseType == X86ISelAddressMode::FrameIndexBase && 580 !isDispSafeForFrameIndex(Val)) 581 return true; 582 } 583 AM.Disp = Val; 584 return false; 585 586} 587 588bool X86DAGToDAGISel::MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){ 589 SDValue Address = N->getOperand(1); 590 591 // load gs:0 -> GS segment register. 592 // load fs:0 -> FS segment register. 593 // 594 // This optimization is valid because the GNU TLS model defines that 595 // gs:0 (or fs:0 on X86-64) contains its own address. 596 // For more information see http://people.redhat.com/drepper/tls.pdf 597 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address)) 598 if (C->getSExtValue() == 0 && AM.Segment.getNode() == 0 && 599 Subtarget->isTargetLinux()) 600 switch (N->getPointerInfo().getAddrSpace()) { 601 case 256: 602 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16); 603 return false; 604 case 257: 605 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16); 606 return false; 607 } 608 609 return true; 610} 611 612/// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes 613/// into an addressing mode. These wrap things that will resolve down into a 614/// symbol reference. If no match is possible, this returns true, otherwise it 615/// returns false. 616bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) { 617 // If the addressing mode already has a symbol as the displacement, we can 618 // never match another symbol. 619 if (AM.hasSymbolicDisplacement()) 620 return true; 621 622 SDValue N0 = N.getOperand(0); 623 CodeModel::Model M = TM.getCodeModel(); 624 625 // Handle X86-64 rip-relative addresses. We check this before checking direct 626 // folding because RIP is preferable to non-RIP accesses. 627 if (Subtarget->is64Bit() && N.getOpcode() == X86ISD::WrapperRIP && 628 // Under X86-64 non-small code model, GV (and friends) are 64-bits, so 629 // they cannot be folded into immediate fields. 630 // FIXME: This can be improved for kernel and other models? 631 (M == CodeModel::Small || M == CodeModel::Kernel)) { 632 // Base and index reg must be 0 in order to use %rip as base. 633 if (AM.hasBaseOrIndexReg()) 634 return true; 635 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) { 636 X86ISelAddressMode Backup = AM; 637 AM.GV = G->getGlobal(); 638 AM.SymbolFlags = G->getTargetFlags(); 639 if (FoldOffsetIntoAddress(G->getOffset(), AM)) { 640 AM = Backup; 641 return true; 642 } 643 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) { 644 X86ISelAddressMode Backup = AM; 645 AM.CP = CP->getConstVal(); 646 AM.Align = CP->getAlignment(); 647 AM.SymbolFlags = CP->getTargetFlags(); 648 if (FoldOffsetIntoAddress(CP->getOffset(), AM)) { 649 AM = Backup; 650 return true; 651 } 652 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) { 653 AM.ES = S->getSymbol(); 654 AM.SymbolFlags = S->getTargetFlags(); 655 } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) { 656 AM.JT = J->getIndex(); 657 AM.SymbolFlags = J->getTargetFlags(); 658 } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) { 659 X86ISelAddressMode Backup = AM; 660 AM.BlockAddr = BA->getBlockAddress(); 661 AM.SymbolFlags = BA->getTargetFlags(); 662 if (FoldOffsetIntoAddress(BA->getOffset(), AM)) { 663 AM = Backup; 664 return true; 665 } 666 } else 667 llvm_unreachable("Unhandled symbol reference node."); 668 669 if (N.getOpcode() == X86ISD::WrapperRIP) 670 AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64)); 671 return false; 672 } 673 674 // Handle the case when globals fit in our immediate field: This is true for 675 // X86-32 always and X86-64 when in -mcmodel=small mode. In 64-bit 676 // mode, this only applies to a non-RIP-relative computation. 677 if (!Subtarget->is64Bit() || 678 M == CodeModel::Small || M == CodeModel::Kernel) { 679 assert(N.getOpcode() != X86ISD::WrapperRIP && 680 "RIP-relative addressing already handled"); 681 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) { 682 AM.GV = G->getGlobal(); 683 AM.Disp += G->getOffset(); 684 AM.SymbolFlags = G->getTargetFlags(); 685 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) { 686 AM.CP = CP->getConstVal(); 687 AM.Align = CP->getAlignment(); 688 AM.Disp += CP->getOffset(); 689 AM.SymbolFlags = CP->getTargetFlags(); 690 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) { 691 AM.ES = S->getSymbol(); 692 AM.SymbolFlags = S->getTargetFlags(); 693 } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) { 694 AM.JT = J->getIndex(); 695 AM.SymbolFlags = J->getTargetFlags(); 696 } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) { 697 AM.BlockAddr = BA->getBlockAddress(); 698 AM.Disp += BA->getOffset(); 699 AM.SymbolFlags = BA->getTargetFlags(); 700 } else 701 llvm_unreachable("Unhandled symbol reference node."); 702 return false; 703 } 704 705 return true; 706} 707 708/// MatchAddress - Add the specified node to the specified addressing mode, 709/// returning true if it cannot be done. This just pattern matches for the 710/// addressing mode. 711bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) { 712 if (MatchAddressRecursively(N, AM, 0)) 713 return true; 714 715 // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has 716 // a smaller encoding and avoids a scaled-index. 717 if (AM.Scale == 2 && 718 AM.BaseType == X86ISelAddressMode::RegBase && 719 AM.Base_Reg.getNode() == 0) { 720 AM.Base_Reg = AM.IndexReg; 721 AM.Scale = 1; 722 } 723 724 // Post-processing: Convert foo to foo(%rip), even in non-PIC mode, 725 // because it has a smaller encoding. 726 // TODO: Which other code models can use this? 727 if (TM.getCodeModel() == CodeModel::Small && 728 Subtarget->is64Bit() && 729 AM.Scale == 1 && 730 AM.BaseType == X86ISelAddressMode::RegBase && 731 AM.Base_Reg.getNode() == 0 && 732 AM.IndexReg.getNode() == 0 && 733 AM.SymbolFlags == X86II::MO_NO_FLAG && 734 AM.hasSymbolicDisplacement()) 735 AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64); 736 737 return false; 738} 739 740// Insert a node into the DAG at least before the Pos node's position. This 741// will reposition the node as needed, and will assign it a node ID that is <= 742// the Pos node's ID. Note that this does *not* preserve the uniqueness of node 743// IDs! The selection DAG must no longer depend on their uniqueness when this 744// is used. 745static void InsertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) { 746 if (N.getNode()->getNodeId() == -1 || 747 N.getNode()->getNodeId() > Pos.getNode()->getNodeId()) { 748 DAG.RepositionNode(Pos.getNode(), N.getNode()); 749 N.getNode()->setNodeId(Pos.getNode()->getNodeId()); 750 } 751} 752 753// Transform "(X >> (8-C1)) & C2" to "(X >> 8) & 0xff)" if safe. This 754// allows us to convert the shift and and into an h-register extract and 755// a scaled index. Returns false if the simplification is performed. 756static bool FoldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N, 757 uint64_t Mask, 758 SDValue Shift, SDValue X, 759 X86ISelAddressMode &AM) { 760 if (Shift.getOpcode() != ISD::SRL || 761 !isa<ConstantSDNode>(Shift.getOperand(1)) || 762 !Shift.hasOneUse()) 763 return true; 764 765 int ScaleLog = 8 - Shift.getConstantOperandVal(1); 766 if (ScaleLog <= 0 || ScaleLog >= 4 || 767 Mask != (0xffu << ScaleLog)) 768 return true; 769 770 EVT VT = N.getValueType(); 771 DebugLoc DL = N.getDebugLoc(); 772 SDValue Eight = DAG.getConstant(8, MVT::i8); 773 SDValue NewMask = DAG.getConstant(0xff, VT); 774 SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight); 775 SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask); 776 SDValue ShlCount = DAG.getConstant(ScaleLog, MVT::i8); 777 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount); 778 779 // Insert the new nodes into the topological ordering. We must do this in 780 // a valid topological ordering as nothing is going to go back and re-sort 781 // these nodes. We continually insert before 'N' in sequence as this is 782 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no 783 // hierarchy left to express. 784 InsertDAGNode(DAG, N, Eight); 785 InsertDAGNode(DAG, N, Srl); 786 InsertDAGNode(DAG, N, NewMask); 787 InsertDAGNode(DAG, N, And); 788 InsertDAGNode(DAG, N, ShlCount); 789 InsertDAGNode(DAG, N, Shl); 790 DAG.ReplaceAllUsesWith(N, Shl); 791 AM.IndexReg = And; 792 AM.Scale = (1 << ScaleLog); 793 return false; 794} 795 796// Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this 797// allows us to fold the shift into this addressing mode. Returns false if the 798// transform succeeded. 799static bool FoldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N, 800 uint64_t Mask, 801 SDValue Shift, SDValue X, 802 X86ISelAddressMode &AM) { 803 if (Shift.getOpcode() != ISD::SHL || 804 !isa<ConstantSDNode>(Shift.getOperand(1))) 805 return true; 806 807 // Not likely to be profitable if either the AND or SHIFT node has more 808 // than one use (unless all uses are for address computation). Besides, 809 // isel mechanism requires their node ids to be reused. 810 if (!N.hasOneUse() || !Shift.hasOneUse()) 811 return true; 812 813 // Verify that the shift amount is something we can fold. 814 unsigned ShiftAmt = Shift.getConstantOperandVal(1); 815 if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3) 816 return true; 817 818 EVT VT = N.getValueType(); 819 DebugLoc DL = N.getDebugLoc(); 820 SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, VT); 821 SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask); 822 SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1)); 823 824 // Insert the new nodes into the topological ordering. We must do this in 825 // a valid topological ordering as nothing is going to go back and re-sort 826 // these nodes. We continually insert before 'N' in sequence as this is 827 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no 828 // hierarchy left to express. 829 InsertDAGNode(DAG, N, NewMask); 830 InsertDAGNode(DAG, N, NewAnd); 831 InsertDAGNode(DAG, N, NewShift); 832 DAG.ReplaceAllUsesWith(N, NewShift); 833 834 AM.Scale = 1 << ShiftAmt; 835 AM.IndexReg = NewAnd; 836 return false; 837} 838 839// Implement some heroics to detect shifts of masked values where the mask can 840// be replaced by extending the shift and undoing that in the addressing mode 841// scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and 842// (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in 843// the addressing mode. This results in code such as: 844// 845// int f(short *y, int *lookup_table) { 846// ... 847// return *y + lookup_table[*y >> 11]; 848// } 849// 850// Turning into: 851// movzwl (%rdi), %eax 852// movl %eax, %ecx 853// shrl $11, %ecx 854// addl (%rsi,%rcx,4), %eax 855// 856// Instead of: 857// movzwl (%rdi), %eax 858// movl %eax, %ecx 859// shrl $9, %ecx 860// andl $124, %rcx 861// addl (%rsi,%rcx), %eax 862// 863// Note that this function assumes the mask is provided as a mask *after* the 864// value is shifted. The input chain may or may not match that, but computing 865// such a mask is trivial. 866static bool FoldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N, 867 uint64_t Mask, 868 SDValue Shift, SDValue X, 869 X86ISelAddressMode &AM) { 870 if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() || 871 !isa<ConstantSDNode>(Shift.getOperand(1))) 872 return true; 873 874 unsigned ShiftAmt = Shift.getConstantOperandVal(1); 875 unsigned MaskLZ = CountLeadingZeros_64(Mask); 876 unsigned MaskTZ = CountTrailingZeros_64(Mask); 877 878 // The amount of shift we're trying to fit into the addressing mode is taken 879 // from the trailing zeros of the mask. 880 unsigned AMShiftAmt = MaskTZ; 881 882 // There is nothing we can do here unless the mask is removing some bits. 883 // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits. 884 if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true; 885 886 // We also need to ensure that mask is a continuous run of bits. 887 if (CountTrailingOnes_64(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true; 888 889 // Scale the leading zero count down based on the actual size of the value. 890 // Also scale it down based on the size of the shift. 891 MaskLZ -= (64 - X.getValueSizeInBits()) + ShiftAmt; 892 893 // The final check is to ensure that any masked out high bits of X are 894 // already known to be zero. Otherwise, the mask has a semantic impact 895 // other than masking out a couple of low bits. Unfortunately, because of 896 // the mask, zero extensions will be removed from operands in some cases. 897 // This code works extra hard to look through extensions because we can 898 // replace them with zero extensions cheaply if necessary. 899 bool ReplacingAnyExtend = false; 900 if (X.getOpcode() == ISD::ANY_EXTEND) { 901 unsigned ExtendBits = 902 X.getValueSizeInBits() - X.getOperand(0).getValueSizeInBits(); 903 // Assume that we'll replace the any-extend with a zero-extend, and 904 // narrow the search to the extended value. 905 X = X.getOperand(0); 906 MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits; 907 ReplacingAnyExtend = true; 908 } 909 APInt MaskedHighBits = APInt::getHighBitsSet(X.getValueSizeInBits(), 910 MaskLZ); 911 APInt KnownZero, KnownOne; 912 DAG.ComputeMaskedBits(X, KnownZero, KnownOne); 913 if (MaskedHighBits != KnownZero) return true; 914 915 // We've identified a pattern that can be transformed into a single shift 916 // and an addressing mode. Make it so. 917 EVT VT = N.getValueType(); 918 if (ReplacingAnyExtend) { 919 assert(X.getValueType() != VT); 920 // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND. 921 SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, X.getDebugLoc(), VT, X); 922 InsertDAGNode(DAG, N, NewX); 923 X = NewX; 924 } 925 DebugLoc DL = N.getDebugLoc(); 926 SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, MVT::i8); 927 SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt); 928 SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, MVT::i8); 929 SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt); 930 931 // Insert the new nodes into the topological ordering. We must do this in 932 // a valid topological ordering as nothing is going to go back and re-sort 933 // these nodes. We continually insert before 'N' in sequence as this is 934 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no 935 // hierarchy left to express. 936 InsertDAGNode(DAG, N, NewSRLAmt); 937 InsertDAGNode(DAG, N, NewSRL); 938 InsertDAGNode(DAG, N, NewSHLAmt); 939 InsertDAGNode(DAG, N, NewSHL); 940 DAG.ReplaceAllUsesWith(N, NewSHL); 941 942 AM.Scale = 1 << AMShiftAmt; 943 AM.IndexReg = NewSRL; 944 return false; 945} 946 947bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM, 948 unsigned Depth) { 949 DebugLoc dl = N.getDebugLoc(); 950 DEBUG({ 951 dbgs() << "MatchAddress: "; 952 AM.dump(); 953 }); 954 // Limit recursion. 955 if (Depth > 5) 956 return MatchAddressBase(N, AM); 957 958 // If this is already a %rip relative address, we can only merge immediates 959 // into it. Instead of handling this in every case, we handle it here. 960 // RIP relative addressing: %rip + 32-bit displacement! 961 if (AM.isRIPRelative()) { 962 // FIXME: JumpTable and ExternalSymbol address currently don't like 963 // displacements. It isn't very important, but this should be fixed for 964 // consistency. 965 if (!AM.ES && AM.JT != -1) return true; 966 967 if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N)) 968 if (!FoldOffsetIntoAddress(Cst->getSExtValue(), AM)) 969 return false; 970 return true; 971 } 972 973 switch (N.getOpcode()) { 974 default: break; 975 case ISD::Constant: { 976 uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue(); 977 if (!FoldOffsetIntoAddress(Val, AM)) 978 return false; 979 break; 980 } 981 982 case X86ISD::Wrapper: 983 case X86ISD::WrapperRIP: 984 if (!MatchWrapper(N, AM)) 985 return false; 986 break; 987 988 case ISD::LOAD: 989 if (!MatchLoadInAddress(cast<LoadSDNode>(N), AM)) 990 return false; 991 break; 992 993 case ISD::FrameIndex: 994 if (AM.BaseType == X86ISelAddressMode::RegBase && 995 AM.Base_Reg.getNode() == 0 && 996 (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) { 997 AM.BaseType = X86ISelAddressMode::FrameIndexBase; 998 AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex(); 999 return false; 1000 } 1001 break; 1002 1003 case ISD::SHL: 1004 if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) 1005 break; 1006 1007 if (ConstantSDNode 1008 *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) { 1009 unsigned Val = CN->getZExtValue(); 1010 // Note that we handle x<<1 as (,x,2) rather than (x,x) here so 1011 // that the base operand remains free for further matching. If 1012 // the base doesn't end up getting used, a post-processing step 1013 // in MatchAddress turns (,x,2) into (x,x), which is cheaper. 1014 if (Val == 1 || Val == 2 || Val == 3) { 1015 AM.Scale = 1 << Val; 1016 SDValue ShVal = N.getNode()->getOperand(0); 1017 1018 // Okay, we know that we have a scale by now. However, if the scaled 1019 // value is an add of something and a constant, we can fold the 1020 // constant into the disp field here. 1021 if (CurDAG->isBaseWithConstantOffset(ShVal)) { 1022 AM.IndexReg = ShVal.getNode()->getOperand(0); 1023 ConstantSDNode *AddVal = 1024 cast<ConstantSDNode>(ShVal.getNode()->getOperand(1)); 1025 uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val; 1026 if (!FoldOffsetIntoAddress(Disp, AM)) 1027 return false; 1028 } 1029 1030 AM.IndexReg = ShVal; 1031 return false; 1032 } 1033 break; 1034 } 1035 1036 case ISD::SRL: { 1037 // Scale must not be used already. 1038 if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break; 1039 1040 SDValue And = N.getOperand(0); 1041 if (And.getOpcode() != ISD::AND) break; 1042 SDValue X = And.getOperand(0); 1043 1044 // We only handle up to 64-bit values here as those are what matter for 1045 // addressing mode optimizations. 1046 if (X.getValueSizeInBits() > 64) break; 1047 1048 // The mask used for the transform is expected to be post-shift, but we 1049 // found the shift first so just apply the shift to the mask before passing 1050 // it down. 1051 if (!isa<ConstantSDNode>(N.getOperand(1)) || 1052 !isa<ConstantSDNode>(And.getOperand(1))) 1053 break; 1054 uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1); 1055 1056 // Try to fold the mask and shift into the scale, and return false if we 1057 // succeed. 1058 if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM)) 1059 return false; 1060 break; 1061 } 1062 1063 case ISD::SMUL_LOHI: 1064 case ISD::UMUL_LOHI: 1065 // A mul_lohi where we need the low part can be folded as a plain multiply. 1066 if (N.getResNo() != 0) break; 1067 // FALL THROUGH 1068 case ISD::MUL: 1069 case X86ISD::MUL_IMM: 1070 // X*[3,5,9] -> X+X*[2,4,8] 1071 if (AM.BaseType == X86ISelAddressMode::RegBase && 1072 AM.Base_Reg.getNode() == 0 && 1073 AM.IndexReg.getNode() == 0) { 1074 if (ConstantSDNode 1075 *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) 1076 if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 || 1077 CN->getZExtValue() == 9) { 1078 AM.Scale = unsigned(CN->getZExtValue())-1; 1079 1080 SDValue MulVal = N.getNode()->getOperand(0); 1081 SDValue Reg; 1082 1083 // Okay, we know that we have a scale by now. However, if the scaled 1084 // value is an add of something and a constant, we can fold the 1085 // constant into the disp field here. 1086 if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() && 1087 isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) { 1088 Reg = MulVal.getNode()->getOperand(0); 1089 ConstantSDNode *AddVal = 1090 cast<ConstantSDNode>(MulVal.getNode()->getOperand(1)); 1091 uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue(); 1092 if (FoldOffsetIntoAddress(Disp, AM)) 1093 Reg = N.getNode()->getOperand(0); 1094 } else { 1095 Reg = N.getNode()->getOperand(0); 1096 } 1097 1098 AM.IndexReg = AM.Base_Reg = Reg; 1099 return false; 1100 } 1101 } 1102 break; 1103 1104 case ISD::SUB: { 1105 // Given A-B, if A can be completely folded into the address and 1106 // the index field with the index field unused, use -B as the index. 1107 // This is a win if a has multiple parts that can be folded into 1108 // the address. Also, this saves a mov if the base register has 1109 // other uses, since it avoids a two-address sub instruction, however 1110 // it costs an additional mov if the index register has other uses. 1111 1112 // Add an artificial use to this node so that we can keep track of 1113 // it if it gets CSE'd with a different node. 1114 HandleSDNode Handle(N); 1115 1116 // Test if the LHS of the sub can be folded. 1117 X86ISelAddressMode Backup = AM; 1118 if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) { 1119 AM = Backup; 1120 break; 1121 } 1122 // Test if the index field is free for use. 1123 if (AM.IndexReg.getNode() || AM.isRIPRelative()) { 1124 AM = Backup; 1125 break; 1126 } 1127 1128 int Cost = 0; 1129 SDValue RHS = Handle.getValue().getNode()->getOperand(1); 1130 // If the RHS involves a register with multiple uses, this 1131 // transformation incurs an extra mov, due to the neg instruction 1132 // clobbering its operand. 1133 if (!RHS.getNode()->hasOneUse() || 1134 RHS.getNode()->getOpcode() == ISD::CopyFromReg || 1135 RHS.getNode()->getOpcode() == ISD::TRUNCATE || 1136 RHS.getNode()->getOpcode() == ISD::ANY_EXTEND || 1137 (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND && 1138 RHS.getNode()->getOperand(0).getValueType() == MVT::i32)) 1139 ++Cost; 1140 // If the base is a register with multiple uses, this 1141 // transformation may save a mov. 1142 if ((AM.BaseType == X86ISelAddressMode::RegBase && 1143 AM.Base_Reg.getNode() && 1144 !AM.Base_Reg.getNode()->hasOneUse()) || 1145 AM.BaseType == X86ISelAddressMode::FrameIndexBase) 1146 --Cost; 1147 // If the folded LHS was interesting, this transformation saves 1148 // address arithmetic. 1149 if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) + 1150 ((AM.Disp != 0) && (Backup.Disp == 0)) + 1151 (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2) 1152 --Cost; 1153 // If it doesn't look like it may be an overall win, don't do it. 1154 if (Cost >= 0) { 1155 AM = Backup; 1156 break; 1157 } 1158 1159 // Ok, the transformation is legal and appears profitable. Go for it. 1160 SDValue Zero = CurDAG->getConstant(0, N.getValueType()); 1161 SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS); 1162 AM.IndexReg = Neg; 1163 AM.Scale = 1; 1164 1165 // Insert the new nodes into the topological ordering. 1166 InsertDAGNode(*CurDAG, N, Zero); 1167 InsertDAGNode(*CurDAG, N, Neg); 1168 return false; 1169 } 1170 1171 case ISD::ADD: { 1172 // Add an artificial use to this node so that we can keep track of 1173 // it if it gets CSE'd with a different node. 1174 HandleSDNode Handle(N); 1175 1176 X86ISelAddressMode Backup = AM; 1177 if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) && 1178 !MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)) 1179 return false; 1180 AM = Backup; 1181 1182 // Try again after commuting the operands. 1183 if (!MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)&& 1184 !MatchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1)) 1185 return false; 1186 AM = Backup; 1187 1188 // If we couldn't fold both operands into the address at the same time, 1189 // see if we can just put each operand into a register and fold at least 1190 // the add. 1191 if (AM.BaseType == X86ISelAddressMode::RegBase && 1192 !AM.Base_Reg.getNode() && 1193 !AM.IndexReg.getNode()) { 1194 N = Handle.getValue(); 1195 AM.Base_Reg = N.getOperand(0); 1196 AM.IndexReg = N.getOperand(1); 1197 AM.Scale = 1; 1198 return false; 1199 } 1200 N = Handle.getValue(); 1201 break; 1202 } 1203 1204 case ISD::OR: 1205 // Handle "X | C" as "X + C" if X is known to have C bits clear. 1206 if (CurDAG->isBaseWithConstantOffset(N)) { 1207 X86ISelAddressMode Backup = AM; 1208 ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1)); 1209 1210 // Start with the LHS as an addr mode. 1211 if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) && 1212 !FoldOffsetIntoAddress(CN->getSExtValue(), AM)) 1213 return false; 1214 AM = Backup; 1215 } 1216 break; 1217 1218 case ISD::AND: { 1219 // Perform some heroic transforms on an and of a constant-count shift 1220 // with a constant to enable use of the scaled offset field. 1221 1222 // Scale must not be used already. 1223 if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break; 1224 1225 SDValue Shift = N.getOperand(0); 1226 if (Shift.getOpcode() != ISD::SRL && Shift.getOpcode() != ISD::SHL) break; 1227 SDValue X = Shift.getOperand(0); 1228 1229 // We only handle up to 64-bit values here as those are what matter for 1230 // addressing mode optimizations. 1231 if (X.getValueSizeInBits() > 64) break; 1232 1233 if (!isa<ConstantSDNode>(N.getOperand(1))) 1234 break; 1235 uint64_t Mask = N.getConstantOperandVal(1); 1236 1237 // Try to fold the mask and shift into an extract and scale. 1238 if (!FoldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM)) 1239 return false; 1240 1241 // Try to fold the mask and shift directly into the scale. 1242 if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM)) 1243 return false; 1244 1245 // Try to swap the mask and shift to place shifts which can be done as 1246 // a scale on the outside of the mask. 1247 if (!FoldMaskedShiftToScaledMask(*CurDAG, N, Mask, Shift, X, AM)) 1248 return false; 1249 break; 1250 } 1251 } 1252 1253 return MatchAddressBase(N, AM); 1254} 1255 1256/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the 1257/// specified addressing mode without any further recursion. 1258bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) { 1259 // Is the base register already occupied? 1260 if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) { 1261 // If so, check to see if the scale index register is set. 1262 if (AM.IndexReg.getNode() == 0) { 1263 AM.IndexReg = N; 1264 AM.Scale = 1; 1265 return false; 1266 } 1267 1268 // Otherwise, we cannot select it. 1269 return true; 1270 } 1271 1272 // Default, generate it as a register. 1273 AM.BaseType = X86ISelAddressMode::RegBase; 1274 AM.Base_Reg = N; 1275 return false; 1276} 1277 1278/// SelectAddr - returns true if it is able pattern match an addressing mode. 1279/// It returns the operands which make up the maximal addressing mode it can 1280/// match by reference. 1281/// 1282/// Parent is the parent node of the addr operand that is being matched. It 1283/// is always a load, store, atomic node, or null. It is only null when 1284/// checking memory operands for inline asm nodes. 1285bool X86DAGToDAGISel::SelectAddr(SDNode *Parent, SDValue N, SDValue &Base, 1286 SDValue &Scale, SDValue &Index, 1287 SDValue &Disp, SDValue &Segment) { 1288 X86ISelAddressMode AM; 1289 1290 if (Parent && 1291 // This list of opcodes are all the nodes that have an "addr:$ptr" operand 1292 // that are not a MemSDNode, and thus don't have proper addrspace info. 1293 Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme 1294 Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores 1295 Parent->getOpcode() != X86ISD::TLSCALL) { // Fixme 1296 unsigned AddrSpace = 1297 cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace(); 1298 // AddrSpace 256 -> GS, 257 -> FS. 1299 if (AddrSpace == 256) 1300 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16); 1301 if (AddrSpace == 257) 1302 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16); 1303 } 1304 1305 if (MatchAddress(N, AM)) 1306 return false; 1307 1308 EVT VT = N.getValueType(); 1309 if (AM.BaseType == X86ISelAddressMode::RegBase) { 1310 if (!AM.Base_Reg.getNode()) 1311 AM.Base_Reg = CurDAG->getRegister(0, VT); 1312 } 1313 1314 if (!AM.IndexReg.getNode()) 1315 AM.IndexReg = CurDAG->getRegister(0, VT); 1316 1317 getAddressOperands(AM, Base, Scale, Index, Disp, Segment); 1318 return true; 1319} 1320 1321/// SelectScalarSSELoad - Match a scalar SSE load. In particular, we want to 1322/// match a load whose top elements are either undef or zeros. The load flavor 1323/// is derived from the type of N, which is either v4f32 or v2f64. 1324/// 1325/// We also return: 1326/// PatternChainNode: this is the matched node that has a chain input and 1327/// output. 1328bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root, 1329 SDValue N, SDValue &Base, 1330 SDValue &Scale, SDValue &Index, 1331 SDValue &Disp, SDValue &Segment, 1332 SDValue &PatternNodeWithChain) { 1333 if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) { 1334 PatternNodeWithChain = N.getOperand(0); 1335 if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) && 1336 PatternNodeWithChain.hasOneUse() && 1337 IsProfitableToFold(N.getOperand(0), N.getNode(), Root) && 1338 IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) { 1339 LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain); 1340 if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment)) 1341 return false; 1342 return true; 1343 } 1344 } 1345 1346 // Also handle the case where we explicitly require zeros in the top 1347 // elements. This is a vector shuffle from the zero vector. 1348 if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() && 1349 // Check to see if the top elements are all zeros (or bitcast of zeros). 1350 N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR && 1351 N.getOperand(0).getNode()->hasOneUse() && 1352 ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) && 1353 N.getOperand(0).getOperand(0).hasOneUse() && 1354 IsProfitableToFold(N.getOperand(0), N.getNode(), Root) && 1355 IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) { 1356 // Okay, this is a zero extending load. Fold it. 1357 LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0)); 1358 if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment)) 1359 return false; 1360 PatternNodeWithChain = SDValue(LD, 0); 1361 return true; 1362 } 1363 return false; 1364} 1365 1366 1367/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing 1368/// mode it matches can be cost effectively emitted as an LEA instruction. 1369bool X86DAGToDAGISel::SelectLEAAddr(SDValue N, 1370 SDValue &Base, SDValue &Scale, 1371 SDValue &Index, SDValue &Disp, 1372 SDValue &Segment) { 1373 X86ISelAddressMode AM; 1374 1375 // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support 1376 // segments. 1377 SDValue Copy = AM.Segment; 1378 SDValue T = CurDAG->getRegister(0, MVT::i32); 1379 AM.Segment = T; 1380 if (MatchAddress(N, AM)) 1381 return false; 1382 assert (T == AM.Segment); 1383 AM.Segment = Copy; 1384 1385 EVT VT = N.getValueType(); 1386 unsigned Complexity = 0; 1387 if (AM.BaseType == X86ISelAddressMode::RegBase) 1388 if (AM.Base_Reg.getNode()) 1389 Complexity = 1; 1390 else 1391 AM.Base_Reg = CurDAG->getRegister(0, VT); 1392 else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase) 1393 Complexity = 4; 1394 1395 if (AM.IndexReg.getNode()) 1396 Complexity++; 1397 else 1398 AM.IndexReg = CurDAG->getRegister(0, VT); 1399 1400 // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with 1401 // a simple shift. 1402 if (AM.Scale > 1) 1403 Complexity++; 1404 1405 // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA 1406 // to a LEA. This is determined with some expermentation but is by no means 1407 // optimal (especially for code size consideration). LEA is nice because of 1408 // its three-address nature. Tweak the cost function again when we can run 1409 // convertToThreeAddress() at register allocation time. 1410 if (AM.hasSymbolicDisplacement()) { 1411 // For X86-64, we should always use lea to materialize RIP relative 1412 // addresses. 1413 if (Subtarget->is64Bit()) 1414 Complexity = 4; 1415 else 1416 Complexity += 2; 1417 } 1418 1419 if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode())) 1420 Complexity++; 1421 1422 // If it isn't worth using an LEA, reject it. 1423 if (Complexity <= 2) 1424 return false; 1425 1426 getAddressOperands(AM, Base, Scale, Index, Disp, Segment); 1427 return true; 1428} 1429 1430/// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes. 1431bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue N, SDValue &Base, 1432 SDValue &Scale, SDValue &Index, 1433 SDValue &Disp, SDValue &Segment) { 1434 assert(N.getOpcode() == ISD::TargetGlobalTLSAddress); 1435 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 1436 1437 X86ISelAddressMode AM; 1438 AM.GV = GA->getGlobal(); 1439 AM.Disp += GA->getOffset(); 1440 AM.Base_Reg = CurDAG->getRegister(0, N.getValueType()); 1441 AM.SymbolFlags = GA->getTargetFlags(); 1442 1443 if (N.getValueType() == MVT::i32) { 1444 AM.Scale = 1; 1445 AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32); 1446 } else { 1447 AM.IndexReg = CurDAG->getRegister(0, MVT::i64); 1448 } 1449 1450 getAddressOperands(AM, Base, Scale, Index, Disp, Segment); 1451 return true; 1452} 1453 1454 1455bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N, 1456 SDValue &Base, SDValue &Scale, 1457 SDValue &Index, SDValue &Disp, 1458 SDValue &Segment) { 1459 if (!ISD::isNON_EXTLoad(N.getNode()) || 1460 !IsProfitableToFold(N, P, P) || 1461 !IsLegalToFold(N, P, P, OptLevel)) 1462 return false; 1463 1464 return SelectAddr(N.getNode(), 1465 N.getOperand(1), Base, Scale, Index, Disp, Segment); 1466} 1467 1468/// getGlobalBaseReg - Return an SDNode that returns the value of 1469/// the global base register. Output instructions required to 1470/// initialize the global base register, if necessary. 1471/// 1472SDNode *X86DAGToDAGISel::getGlobalBaseReg() { 1473 unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF); 1474 return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode(); 1475} 1476 1477SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) { 1478 SDValue Chain = Node->getOperand(0); 1479 SDValue In1 = Node->getOperand(1); 1480 SDValue In2L = Node->getOperand(2); 1481 SDValue In2H = Node->getOperand(3); 1482 1483 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 1484 if (!SelectAddr(Node, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) 1485 return NULL; 1486 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); 1487 MemOp[0] = cast<MemSDNode>(Node)->getMemOperand(); 1488 const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain}; 1489 SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(), 1490 MVT::i32, MVT::i32, MVT::Other, Ops, 1491 array_lengthof(Ops)); 1492 cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1); 1493 return ResNode; 1494} 1495 1496/// Atomic opcode table 1497/// 1498enum AtomicOpc { 1499 ADD, 1500 SUB, 1501 INC, 1502 DEC, 1503 OR, 1504 AND, 1505 XOR, 1506 AtomicOpcEnd 1507}; 1508 1509enum AtomicSz { 1510 ConstantI8, 1511 I8, 1512 SextConstantI16, 1513 ConstantI16, 1514 I16, 1515 SextConstantI32, 1516 ConstantI32, 1517 I32, 1518 SextConstantI64, 1519 ConstantI64, 1520 I64, 1521 AtomicSzEnd 1522}; 1523 1524static const uint16_t AtomicOpcTbl[AtomicOpcEnd][AtomicSzEnd] = { 1525 { 1526 X86::LOCK_ADD8mi, 1527 X86::LOCK_ADD8mr, 1528 X86::LOCK_ADD16mi8, 1529 X86::LOCK_ADD16mi, 1530 X86::LOCK_ADD16mr, 1531 X86::LOCK_ADD32mi8, 1532 X86::LOCK_ADD32mi, 1533 X86::LOCK_ADD32mr, 1534 X86::LOCK_ADD64mi8, 1535 X86::LOCK_ADD64mi32, 1536 X86::LOCK_ADD64mr, 1537 }, 1538 { 1539 X86::LOCK_SUB8mi, 1540 X86::LOCK_SUB8mr, 1541 X86::LOCK_SUB16mi8, 1542 X86::LOCK_SUB16mi, 1543 X86::LOCK_SUB16mr, 1544 X86::LOCK_SUB32mi8, 1545 X86::LOCK_SUB32mi, 1546 X86::LOCK_SUB32mr, 1547 X86::LOCK_SUB64mi8, 1548 X86::LOCK_SUB64mi32, 1549 X86::LOCK_SUB64mr, 1550 }, 1551 { 1552 0, 1553 X86::LOCK_INC8m, 1554 0, 1555 0, 1556 X86::LOCK_INC16m, 1557 0, 1558 0, 1559 X86::LOCK_INC32m, 1560 0, 1561 0, 1562 X86::LOCK_INC64m, 1563 }, 1564 { 1565 0, 1566 X86::LOCK_DEC8m, 1567 0, 1568 0, 1569 X86::LOCK_DEC16m, 1570 0, 1571 0, 1572 X86::LOCK_DEC32m, 1573 0, 1574 0, 1575 X86::LOCK_DEC64m, 1576 }, 1577 { 1578 X86::LOCK_OR8mi, 1579 X86::LOCK_OR8mr, 1580 X86::LOCK_OR16mi8, 1581 X86::LOCK_OR16mi, 1582 X86::LOCK_OR16mr, 1583 X86::LOCK_OR32mi8, 1584 X86::LOCK_OR32mi, 1585 X86::LOCK_OR32mr, 1586 X86::LOCK_OR64mi8, 1587 X86::LOCK_OR64mi32, 1588 X86::LOCK_OR64mr, 1589 }, 1590 { 1591 X86::LOCK_AND8mi, 1592 X86::LOCK_AND8mr, 1593 X86::LOCK_AND16mi8, 1594 X86::LOCK_AND16mi, 1595 X86::LOCK_AND16mr, 1596 X86::LOCK_AND32mi8, 1597 X86::LOCK_AND32mi, 1598 X86::LOCK_AND32mr, 1599 X86::LOCK_AND64mi8, 1600 X86::LOCK_AND64mi32, 1601 X86::LOCK_AND64mr, 1602 }, 1603 { 1604 X86::LOCK_XOR8mi, 1605 X86::LOCK_XOR8mr, 1606 X86::LOCK_XOR16mi8, 1607 X86::LOCK_XOR16mi, 1608 X86::LOCK_XOR16mr, 1609 X86::LOCK_XOR32mi8, 1610 X86::LOCK_XOR32mi, 1611 X86::LOCK_XOR32mr, 1612 X86::LOCK_XOR64mi8, 1613 X86::LOCK_XOR64mi32, 1614 X86::LOCK_XOR64mr, 1615 } 1616}; 1617 1618// Return the target constant operand for atomic-load-op and do simple 1619// translations, such as from atomic-load-add to lock-sub. The return value is 1620// one of the following 3 cases: 1621// + target-constant, the operand could be supported as a target constant. 1622// + empty, the operand is not needed any more with the new op selected. 1623// + non-empty, otherwise. 1624static SDValue getAtomicLoadArithTargetConstant(SelectionDAG *CurDAG, 1625 DebugLoc dl, 1626 enum AtomicOpc &Op, EVT NVT, 1627 SDValue Val) { 1628 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val)) { 1629 int64_t CNVal = CN->getSExtValue(); 1630 // Quit if not 32-bit imm. 1631 if ((int32_t)CNVal != CNVal) 1632 return Val; 1633 // For atomic-load-add, we could do some optimizations. 1634 if (Op == ADD) { 1635 // Translate to INC/DEC if ADD by 1 or -1. 1636 if ((CNVal == 1) || (CNVal == -1)) { 1637 Op = (CNVal == 1) ? INC : DEC; 1638 // No more constant operand after being translated into INC/DEC. 1639 return SDValue(); 1640 } 1641 // Translate to SUB if ADD by negative value. 1642 if (CNVal < 0) { 1643 Op = SUB; 1644 CNVal = -CNVal; 1645 } 1646 } 1647 return CurDAG->getTargetConstant(CNVal, NVT); 1648 } 1649 1650 // If the value operand is single-used, try to optimize it. 1651 if (Op == ADD && Val.hasOneUse()) { 1652 // Translate (atomic-load-add ptr (sub 0 x)) back to (lock-sub x). 1653 if (Val.getOpcode() == ISD::SUB && X86::isZeroNode(Val.getOperand(0))) { 1654 Op = SUB; 1655 return Val.getOperand(1); 1656 } 1657 // A special case for i16, which needs truncating as, in most cases, it's 1658 // promoted to i32. We will translate 1659 // (atomic-load-add (truncate (sub 0 x))) to (lock-sub (EXTRACT_SUBREG x)) 1660 if (Val.getOpcode() == ISD::TRUNCATE && NVT == MVT::i16 && 1661 Val.getOperand(0).getOpcode() == ISD::SUB && 1662 X86::isZeroNode(Val.getOperand(0).getOperand(0))) { 1663 Op = SUB; 1664 Val = Val.getOperand(0); 1665 return CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl, NVT, 1666 Val.getOperand(1)); 1667 } 1668 } 1669 1670 return Val; 1671} 1672 1673SDNode *X86DAGToDAGISel::SelectAtomicLoadArith(SDNode *Node, EVT NVT) { 1674 if (Node->hasAnyUseOfValue(0)) 1675 return 0; 1676 1677 DebugLoc dl = Node->getDebugLoc(); 1678 1679 // Optimize common patterns for __sync_or_and_fetch and similar arith 1680 // operations where the result is not used. This allows us to use the "lock" 1681 // version of the arithmetic instruction. 1682 SDValue Chain = Node->getOperand(0); 1683 SDValue Ptr = Node->getOperand(1); 1684 SDValue Val = Node->getOperand(2); 1685 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 1686 if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) 1687 return 0; 1688 1689 // Which index into the table. 1690 enum AtomicOpc Op; 1691 switch (Node->getOpcode()) { 1692 default: 1693 return 0; 1694 case ISD::ATOMIC_LOAD_OR: 1695 Op = OR; 1696 break; 1697 case ISD::ATOMIC_LOAD_AND: 1698 Op = AND; 1699 break; 1700 case ISD::ATOMIC_LOAD_XOR: 1701 Op = XOR; 1702 break; 1703 case ISD::ATOMIC_LOAD_ADD: 1704 Op = ADD; 1705 break; 1706 } 1707 1708 Val = getAtomicLoadArithTargetConstant(CurDAG, dl, Op, NVT, Val); 1709 bool isUnOp = !Val.getNode(); 1710 bool isCN = Val.getNode() && (Val.getOpcode() == ISD::TargetConstant); 1711 1712 unsigned Opc = 0; 1713 switch (NVT.getSimpleVT().SimpleTy) { 1714 default: return 0; 1715 case MVT::i8: 1716 if (isCN) 1717 Opc = AtomicOpcTbl[Op][ConstantI8]; 1718 else 1719 Opc = AtomicOpcTbl[Op][I8]; 1720 break; 1721 case MVT::i16: 1722 if (isCN) { 1723 if (immSext8(Val.getNode())) 1724 Opc = AtomicOpcTbl[Op][SextConstantI16]; 1725 else 1726 Opc = AtomicOpcTbl[Op][ConstantI16]; 1727 } else 1728 Opc = AtomicOpcTbl[Op][I16]; 1729 break; 1730 case MVT::i32: 1731 if (isCN) { 1732 if (immSext8(Val.getNode())) 1733 Opc = AtomicOpcTbl[Op][SextConstantI32]; 1734 else 1735 Opc = AtomicOpcTbl[Op][ConstantI32]; 1736 } else 1737 Opc = AtomicOpcTbl[Op][I32]; 1738 break; 1739 case MVT::i64: 1740 Opc = AtomicOpcTbl[Op][I64]; 1741 if (isCN) { 1742 if (immSext8(Val.getNode())) 1743 Opc = AtomicOpcTbl[Op][SextConstantI64]; 1744 else if (i64immSExt32(Val.getNode())) 1745 Opc = AtomicOpcTbl[Op][ConstantI64]; 1746 } 1747 break; 1748 } 1749 1750 assert(Opc != 0 && "Invalid arith lock transform!"); 1751 1752 SDValue Ret; 1753 SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, 1754 dl, NVT), 0); 1755 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); 1756 MemOp[0] = cast<MemSDNode>(Node)->getMemOperand(); 1757 if (isUnOp) { 1758 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain }; 1759 Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 1760 array_lengthof(Ops)), 0); 1761 } else { 1762 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain }; 1763 Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 1764 array_lengthof(Ops)), 0); 1765 } 1766 cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1); 1767 SDValue RetVals[] = { Undef, Ret }; 1768 return CurDAG->getMergeValues(RetVals, 2, dl).getNode(); 1769} 1770 1771/// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has 1772/// any uses which require the SF or OF bits to be accurate. 1773static bool HasNoSignedComparisonUses(SDNode *N) { 1774 // Examine each user of the node. 1775 for (SDNode::use_iterator UI = N->use_begin(), 1776 UE = N->use_end(); UI != UE; ++UI) { 1777 // Only examine CopyToReg uses. 1778 if (UI->getOpcode() != ISD::CopyToReg) 1779 return false; 1780 // Only examine CopyToReg uses that copy to EFLAGS. 1781 if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() != 1782 X86::EFLAGS) 1783 return false; 1784 // Examine each user of the CopyToReg use. 1785 for (SDNode::use_iterator FlagUI = UI->use_begin(), 1786 FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) { 1787 // Only examine the Flag result. 1788 if (FlagUI.getUse().getResNo() != 1) continue; 1789 // Anything unusual: assume conservatively. 1790 if (!FlagUI->isMachineOpcode()) return false; 1791 // Examine the opcode of the user. 1792 switch (FlagUI->getMachineOpcode()) { 1793 // These comparisons don't treat the most significant bit specially. 1794 case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr: 1795 case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr: 1796 case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm: 1797 case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm: 1798 case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4: 1799 case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4: 1800 case X86::CMOVA16rr: case X86::CMOVA16rm: 1801 case X86::CMOVA32rr: case X86::CMOVA32rm: 1802 case X86::CMOVA64rr: case X86::CMOVA64rm: 1803 case X86::CMOVAE16rr: case X86::CMOVAE16rm: 1804 case X86::CMOVAE32rr: case X86::CMOVAE32rm: 1805 case X86::CMOVAE64rr: case X86::CMOVAE64rm: 1806 case X86::CMOVB16rr: case X86::CMOVB16rm: 1807 case X86::CMOVB32rr: case X86::CMOVB32rm: 1808 case X86::CMOVB64rr: case X86::CMOVB64rm: 1809 case X86::CMOVBE16rr: case X86::CMOVBE16rm: 1810 case X86::CMOVBE32rr: case X86::CMOVBE32rm: 1811 case X86::CMOVBE64rr: case X86::CMOVBE64rm: 1812 case X86::CMOVE16rr: case X86::CMOVE16rm: 1813 case X86::CMOVE32rr: case X86::CMOVE32rm: 1814 case X86::CMOVE64rr: case X86::CMOVE64rm: 1815 case X86::CMOVNE16rr: case X86::CMOVNE16rm: 1816 case X86::CMOVNE32rr: case X86::CMOVNE32rm: 1817 case X86::CMOVNE64rr: case X86::CMOVNE64rm: 1818 case X86::CMOVNP16rr: case X86::CMOVNP16rm: 1819 case X86::CMOVNP32rr: case X86::CMOVNP32rm: 1820 case X86::CMOVNP64rr: case X86::CMOVNP64rm: 1821 case X86::CMOVP16rr: case X86::CMOVP16rm: 1822 case X86::CMOVP32rr: case X86::CMOVP32rm: 1823 case X86::CMOVP64rr: case X86::CMOVP64rm: 1824 continue; 1825 // Anything else: assume conservatively. 1826 default: return false; 1827 } 1828 } 1829 } 1830 return true; 1831} 1832 1833/// isLoadIncOrDecStore - Check whether or not the chain ending in StoreNode 1834/// is suitable for doing the {load; increment or decrement; store} to modify 1835/// transformation. 1836static bool isLoadIncOrDecStore(StoreSDNode *StoreNode, unsigned Opc, 1837 SDValue StoredVal, SelectionDAG *CurDAG, 1838 LoadSDNode* &LoadNode, SDValue &InputChain) { 1839 1840 // is the value stored the result of a DEC or INC? 1841 if (!(Opc == X86ISD::DEC || Opc == X86ISD::INC)) return false; 1842 1843 // is the stored value result 0 of the load? 1844 if (StoredVal.getResNo() != 0) return false; 1845 1846 // are there other uses of the loaded value than the inc or dec? 1847 if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false; 1848 1849 // is the store non-extending and non-indexed? 1850 if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal()) 1851 return false; 1852 1853 SDValue Load = StoredVal->getOperand(0); 1854 // Is the stored value a non-extending and non-indexed load? 1855 if (!ISD::isNormalLoad(Load.getNode())) return false; 1856 1857 // Return LoadNode by reference. 1858 LoadNode = cast<LoadSDNode>(Load); 1859 // is the size of the value one that we can handle? (i.e. 64, 32, 16, or 8) 1860 EVT LdVT = LoadNode->getMemoryVT(); 1861 if (LdVT != MVT::i64 && LdVT != MVT::i32 && LdVT != MVT::i16 && 1862 LdVT != MVT::i8) 1863 return false; 1864 1865 // Is store the only read of the loaded value? 1866 if (!Load.hasOneUse()) 1867 return false; 1868 1869 // Is the address of the store the same as the load? 1870 if (LoadNode->getBasePtr() != StoreNode->getBasePtr() || 1871 LoadNode->getOffset() != StoreNode->getOffset()) 1872 return false; 1873 1874 // Check if the chain is produced by the load or is a TokenFactor with 1875 // the load output chain as an operand. Return InputChain by reference. 1876 SDValue Chain = StoreNode->getChain(); 1877 1878 bool ChainCheck = false; 1879 if (Chain == Load.getValue(1)) { 1880 ChainCheck = true; 1881 InputChain = LoadNode->getChain(); 1882 } else if (Chain.getOpcode() == ISD::TokenFactor) { 1883 SmallVector<SDValue, 4> ChainOps; 1884 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) { 1885 SDValue Op = Chain.getOperand(i); 1886 if (Op == Load.getValue(1)) { 1887 ChainCheck = true; 1888 continue; 1889 } 1890 1891 // Make sure using Op as part of the chain would not cause a cycle here. 1892 // In theory, we could check whether the chain node is a predecessor of 1893 // the load. But that can be very expensive. Instead visit the uses and 1894 // make sure they all have smaller node id than the load. 1895 int LoadId = LoadNode->getNodeId(); 1896 for (SDNode::use_iterator UI = Op.getNode()->use_begin(), 1897 UE = UI->use_end(); UI != UE; ++UI) { 1898 if (UI.getUse().getResNo() != 0) 1899 continue; 1900 if (UI->getNodeId() > LoadId) 1901 return false; 1902 } 1903 1904 ChainOps.push_back(Op); 1905 } 1906 1907 if (ChainCheck) 1908 // Make a new TokenFactor with all the other input chains except 1909 // for the load. 1910 InputChain = CurDAG->getNode(ISD::TokenFactor, Chain.getDebugLoc(), 1911 MVT::Other, &ChainOps[0], ChainOps.size()); 1912 } 1913 if (!ChainCheck) 1914 return false; 1915 1916 return true; 1917} 1918 1919/// getFusedLdStOpcode - Get the appropriate X86 opcode for an in memory 1920/// increment or decrement. Opc should be X86ISD::DEC or X86ISD::INC. 1921static unsigned getFusedLdStOpcode(EVT &LdVT, unsigned Opc) { 1922 if (Opc == X86ISD::DEC) { 1923 if (LdVT == MVT::i64) return X86::DEC64m; 1924 if (LdVT == MVT::i32) return X86::DEC32m; 1925 if (LdVT == MVT::i16) return X86::DEC16m; 1926 if (LdVT == MVT::i8) return X86::DEC8m; 1927 } else { 1928 assert(Opc == X86ISD::INC && "unrecognized opcode"); 1929 if (LdVT == MVT::i64) return X86::INC64m; 1930 if (LdVT == MVT::i32) return X86::INC32m; 1931 if (LdVT == MVT::i16) return X86::INC16m; 1932 if (LdVT == MVT::i8) return X86::INC8m; 1933 } 1934 llvm_unreachable("unrecognized size for LdVT"); 1935} 1936 1937/// SelectGather - Customized ISel for GATHER operations. 1938/// 1939SDNode *X86DAGToDAGISel::SelectGather(SDNode *Node, unsigned Opc) { 1940 // Operands of Gather: VSrc, Base, VIdx, VMask, Scale 1941 SDValue Chain = Node->getOperand(0); 1942 SDValue VSrc = Node->getOperand(2); 1943 SDValue Base = Node->getOperand(3); 1944 SDValue VIdx = Node->getOperand(4); 1945 SDValue VMask = Node->getOperand(5); 1946 ConstantSDNode *Scale = dyn_cast<ConstantSDNode>(Node->getOperand(6)); 1947 if (!Scale) 1948 return 0; 1949 1950 SDVTList VTs = CurDAG->getVTList(VSrc.getValueType(), VSrc.getValueType(), 1951 MVT::Other); 1952 1953 // Memory Operands: Base, Scale, Index, Disp, Segment 1954 SDValue Disp = CurDAG->getTargetConstant(0, MVT::i32); 1955 SDValue Segment = CurDAG->getRegister(0, MVT::i32); 1956 const SDValue Ops[] = { VSrc, Base, getI8Imm(Scale->getSExtValue()), VIdx, 1957 Disp, Segment, VMask, Chain}; 1958 SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(), 1959 VTs, Ops, array_lengthof(Ops)); 1960 // Node has 2 outputs: VDst and MVT::Other. 1961 // ResNode has 3 outputs: VDst, VMask_wb, and MVT::Other. 1962 // We replace VDst of Node with VDst of ResNode, and Other of Node with Other 1963 // of ResNode. 1964 ReplaceUses(SDValue(Node, 0), SDValue(ResNode, 0)); 1965 ReplaceUses(SDValue(Node, 1), SDValue(ResNode, 2)); 1966 return ResNode; 1967} 1968 1969SDNode *X86DAGToDAGISel::Select(SDNode *Node) { 1970 EVT NVT = Node->getValueType(0); 1971 unsigned Opc, MOpc; 1972 unsigned Opcode = Node->getOpcode(); 1973 DebugLoc dl = Node->getDebugLoc(); 1974 1975 DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n'); 1976 1977 if (Node->isMachineOpcode()) { 1978 DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << '\n'); 1979 return NULL; // Already selected. 1980 } 1981 1982 switch (Opcode) { 1983 default: break; 1984 case ISD::INTRINSIC_W_CHAIN: { 1985 unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue(); 1986 switch (IntNo) { 1987 default: break; 1988 case Intrinsic::x86_avx2_gather_d_pd: 1989 case Intrinsic::x86_avx2_gather_d_pd_256: 1990 case Intrinsic::x86_avx2_gather_q_pd: 1991 case Intrinsic::x86_avx2_gather_q_pd_256: 1992 case Intrinsic::x86_avx2_gather_d_ps: 1993 case Intrinsic::x86_avx2_gather_d_ps_256: 1994 case Intrinsic::x86_avx2_gather_q_ps: 1995 case Intrinsic::x86_avx2_gather_q_ps_256: 1996 case Intrinsic::x86_avx2_gather_d_q: 1997 case Intrinsic::x86_avx2_gather_d_q_256: 1998 case Intrinsic::x86_avx2_gather_q_q: 1999 case Intrinsic::x86_avx2_gather_q_q_256: 2000 case Intrinsic::x86_avx2_gather_d_d: 2001 case Intrinsic::x86_avx2_gather_d_d_256: 2002 case Intrinsic::x86_avx2_gather_q_d: 2003 case Intrinsic::x86_avx2_gather_q_d_256: { 2004 unsigned Opc; 2005 switch (IntNo) { 2006 default: llvm_unreachable("Impossible intrinsic"); 2007 case Intrinsic::x86_avx2_gather_d_pd: Opc = X86::VGATHERDPDrm; break; 2008 case Intrinsic::x86_avx2_gather_d_pd_256: Opc = X86::VGATHERDPDYrm; break; 2009 case Intrinsic::x86_avx2_gather_q_pd: Opc = X86::VGATHERQPDrm; break; 2010 case Intrinsic::x86_avx2_gather_q_pd_256: Opc = X86::VGATHERQPDYrm; break; 2011 case Intrinsic::x86_avx2_gather_d_ps: Opc = X86::VGATHERDPSrm; break; 2012 case Intrinsic::x86_avx2_gather_d_ps_256: Opc = X86::VGATHERDPSYrm; break; 2013 case Intrinsic::x86_avx2_gather_q_ps: Opc = X86::VGATHERQPSrm; break; 2014 case Intrinsic::x86_avx2_gather_q_ps_256: Opc = X86::VGATHERQPSYrm; break; 2015 case Intrinsic::x86_avx2_gather_d_q: Opc = X86::VPGATHERDQrm; break; 2016 case Intrinsic::x86_avx2_gather_d_q_256: Opc = X86::VPGATHERDQYrm; break; 2017 case Intrinsic::x86_avx2_gather_q_q: Opc = X86::VPGATHERQQrm; break; 2018 case Intrinsic::x86_avx2_gather_q_q_256: Opc = X86::VPGATHERQQYrm; break; 2019 case Intrinsic::x86_avx2_gather_d_d: Opc = X86::VPGATHERDDrm; break; 2020 case Intrinsic::x86_avx2_gather_d_d_256: Opc = X86::VPGATHERDDYrm; break; 2021 case Intrinsic::x86_avx2_gather_q_d: Opc = X86::VPGATHERQDrm; break; 2022 case Intrinsic::x86_avx2_gather_q_d_256: Opc = X86::VPGATHERQDYrm; break; 2023 } 2024 SDNode *RetVal = SelectGather(Node, Opc); 2025 if (RetVal) 2026 // We already called ReplaceUses inside SelectGather. 2027 return NULL; 2028 break; 2029 } 2030 } 2031 break; 2032 } 2033 case X86ISD::GlobalBaseReg: 2034 return getGlobalBaseReg(); 2035 2036 2037 case X86ISD::ATOMOR64_DAG: 2038 case X86ISD::ATOMXOR64_DAG: 2039 case X86ISD::ATOMADD64_DAG: 2040 case X86ISD::ATOMSUB64_DAG: 2041 case X86ISD::ATOMNAND64_DAG: 2042 case X86ISD::ATOMAND64_DAG: 2043 case X86ISD::ATOMMAX64_DAG: 2044 case X86ISD::ATOMMIN64_DAG: 2045 case X86ISD::ATOMUMAX64_DAG: 2046 case X86ISD::ATOMUMIN64_DAG: 2047 case X86ISD::ATOMSWAP64_DAG: { 2048 unsigned Opc; 2049 switch (Opcode) { 2050 default: llvm_unreachable("Impossible opcode"); 2051 case X86ISD::ATOMOR64_DAG: Opc = X86::ATOMOR6432; break; 2052 case X86ISD::ATOMXOR64_DAG: Opc = X86::ATOMXOR6432; break; 2053 case X86ISD::ATOMADD64_DAG: Opc = X86::ATOMADD6432; break; 2054 case X86ISD::ATOMSUB64_DAG: Opc = X86::ATOMSUB6432; break; 2055 case X86ISD::ATOMNAND64_DAG: Opc = X86::ATOMNAND6432; break; 2056 case X86ISD::ATOMAND64_DAG: Opc = X86::ATOMAND6432; break; 2057 case X86ISD::ATOMMAX64_DAG: Opc = X86::ATOMMAX6432; break; 2058 case X86ISD::ATOMMIN64_DAG: Opc = X86::ATOMMIN6432; break; 2059 case X86ISD::ATOMUMAX64_DAG: Opc = X86::ATOMUMAX6432; break; 2060 case X86ISD::ATOMUMIN64_DAG: Opc = X86::ATOMUMIN6432; break; 2061 case X86ISD::ATOMSWAP64_DAG: Opc = X86::ATOMSWAP6432; break; 2062 } 2063 SDNode *RetVal = SelectAtomic64(Node, Opc); 2064 if (RetVal) 2065 return RetVal; 2066 break; 2067 } 2068 2069 case ISD::ATOMIC_LOAD_XOR: 2070 case ISD::ATOMIC_LOAD_AND: 2071 case ISD::ATOMIC_LOAD_OR: 2072 case ISD::ATOMIC_LOAD_ADD: { 2073 SDNode *RetVal = SelectAtomicLoadArith(Node, NVT); 2074 if (RetVal) 2075 return RetVal; 2076 break; 2077 } 2078 case ISD::AND: 2079 case ISD::OR: 2080 case ISD::XOR: { 2081 // For operations of the form (x << C1) op C2, check if we can use a smaller 2082 // encoding for C2 by transforming it into (x op (C2>>C1)) << C1. 2083 SDValue N0 = Node->getOperand(0); 2084 SDValue N1 = Node->getOperand(1); 2085 2086 if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse()) 2087 break; 2088 2089 // i8 is unshrinkable, i16 should be promoted to i32. 2090 if (NVT != MVT::i32 && NVT != MVT::i64) 2091 break; 2092 2093 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1); 2094 ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 2095 if (!Cst || !ShlCst) 2096 break; 2097 2098 int64_t Val = Cst->getSExtValue(); 2099 uint64_t ShlVal = ShlCst->getZExtValue(); 2100 2101 // Make sure that we don't change the operation by removing bits. 2102 // This only matters for OR and XOR, AND is unaffected. 2103 uint64_t RemovedBitsMask = (1ULL << ShlVal) - 1; 2104 if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0) 2105 break; 2106 2107 unsigned ShlOp, Op; 2108 EVT CstVT = NVT; 2109 2110 // Check the minimum bitwidth for the new constant. 2111 // TODO: AND32ri is the same as AND64ri32 with zext imm. 2112 // TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr 2113 // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32. 2114 if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal)) 2115 CstVT = MVT::i8; 2116 else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal)) 2117 CstVT = MVT::i32; 2118 2119 // Bail if there is no smaller encoding. 2120 if (NVT == CstVT) 2121 break; 2122 2123 switch (NVT.getSimpleVT().SimpleTy) { 2124 default: llvm_unreachable("Unsupported VT!"); 2125 case MVT::i32: 2126 assert(CstVT == MVT::i8); 2127 ShlOp = X86::SHL32ri; 2128 2129 switch (Opcode) { 2130 default: llvm_unreachable("Impossible opcode"); 2131 case ISD::AND: Op = X86::AND32ri8; break; 2132 case ISD::OR: Op = X86::OR32ri8; break; 2133 case ISD::XOR: Op = X86::XOR32ri8; break; 2134 } 2135 break; 2136 case MVT::i64: 2137 assert(CstVT == MVT::i8 || CstVT == MVT::i32); 2138 ShlOp = X86::SHL64ri; 2139 2140 switch (Opcode) { 2141 default: llvm_unreachable("Impossible opcode"); 2142 case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break; 2143 case ISD::OR: Op = CstVT==MVT::i8? X86::OR64ri8 : X86::OR64ri32; break; 2144 case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break; 2145 } 2146 break; 2147 } 2148 2149 // Emit the smaller op and the shift. 2150 SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, CstVT); 2151 SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst); 2152 return CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0), 2153 getI8Imm(ShlVal)); 2154 } 2155 case X86ISD::UMUL: { 2156 SDValue N0 = Node->getOperand(0); 2157 SDValue N1 = Node->getOperand(1); 2158 2159 unsigned LoReg; 2160 switch (NVT.getSimpleVT().SimpleTy) { 2161 default: llvm_unreachable("Unsupported VT!"); 2162 case MVT::i8: LoReg = X86::AL; Opc = X86::MUL8r; break; 2163 case MVT::i16: LoReg = X86::AX; Opc = X86::MUL16r; break; 2164 case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break; 2165 case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break; 2166 } 2167 2168 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg, 2169 N0, SDValue()).getValue(1); 2170 2171 SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32); 2172 SDValue Ops[] = {N1, InFlag}; 2173 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops, 2); 2174 2175 ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0)); 2176 ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1)); 2177 ReplaceUses(SDValue(Node, 2), SDValue(CNode, 2)); 2178 return NULL; 2179 } 2180 2181 case ISD::SMUL_LOHI: 2182 case ISD::UMUL_LOHI: { 2183 SDValue N0 = Node->getOperand(0); 2184 SDValue N1 = Node->getOperand(1); 2185 2186 bool isSigned = Opcode == ISD::SMUL_LOHI; 2187 bool hasBMI2 = Subtarget->hasBMI2(); 2188 if (!isSigned) { 2189 switch (NVT.getSimpleVT().SimpleTy) { 2190 default: llvm_unreachable("Unsupported VT!"); 2191 case MVT::i8: Opc = X86::MUL8r; MOpc = X86::MUL8m; break; 2192 case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break; 2193 case MVT::i32: Opc = hasBMI2 ? X86::MULX32rr : X86::MUL32r; 2194 MOpc = hasBMI2 ? X86::MULX32rm : X86::MUL32m; break; 2195 case MVT::i64: Opc = hasBMI2 ? X86::MULX64rr : X86::MUL64r; 2196 MOpc = hasBMI2 ? X86::MULX64rm : X86::MUL64m; break; 2197 } 2198 } else { 2199 switch (NVT.getSimpleVT().SimpleTy) { 2200 default: llvm_unreachable("Unsupported VT!"); 2201 case MVT::i8: Opc = X86::IMUL8r; MOpc = X86::IMUL8m; break; 2202 case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break; 2203 case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break; 2204 case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break; 2205 } 2206 } 2207 2208 unsigned SrcReg, LoReg, HiReg; 2209 switch (Opc) { 2210 default: llvm_unreachable("Unknown MUL opcode!"); 2211 case X86::IMUL8r: 2212 case X86::MUL8r: 2213 SrcReg = LoReg = X86::AL; HiReg = X86::AH; 2214 break; 2215 case X86::IMUL16r: 2216 case X86::MUL16r: 2217 SrcReg = LoReg = X86::AX; HiReg = X86::DX; 2218 break; 2219 case X86::IMUL32r: 2220 case X86::MUL32r: 2221 SrcReg = LoReg = X86::EAX; HiReg = X86::EDX; 2222 break; 2223 case X86::IMUL64r: 2224 case X86::MUL64r: 2225 SrcReg = LoReg = X86::RAX; HiReg = X86::RDX; 2226 break; 2227 case X86::MULX32rr: 2228 SrcReg = X86::EDX; LoReg = HiReg = 0; 2229 break; 2230 case X86::MULX64rr: 2231 SrcReg = X86::RDX; LoReg = HiReg = 0; 2232 break; 2233 } 2234 2235 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 2236 bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); 2237 // Multiply is commmutative. 2238 if (!foldedLoad) { 2239 foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); 2240 if (foldedLoad) 2241 std::swap(N0, N1); 2242 } 2243 2244 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, SrcReg, 2245 N0, SDValue()).getValue(1); 2246 SDValue ResHi, ResLo; 2247 2248 if (foldedLoad) { 2249 SDValue Chain; 2250 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0), 2251 InFlag }; 2252 if (MOpc == X86::MULX32rm || MOpc == X86::MULX64rm) { 2253 SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other, MVT::Glue); 2254 SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops, 2255 array_lengthof(Ops)); 2256 ResHi = SDValue(CNode, 0); 2257 ResLo = SDValue(CNode, 1); 2258 Chain = SDValue(CNode, 2); 2259 InFlag = SDValue(CNode, 3); 2260 } else { 2261 SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue); 2262 SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops, 2263 array_lengthof(Ops)); 2264 Chain = SDValue(CNode, 0); 2265 InFlag = SDValue(CNode, 1); 2266 } 2267 2268 // Update the chain. 2269 ReplaceUses(N1.getValue(1), Chain); 2270 } else { 2271 SDValue Ops[] = { N1, InFlag }; 2272 if (Opc == X86::MULX32rr || Opc == X86::MULX64rr) { 2273 SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Glue); 2274 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops, 2275 array_lengthof(Ops)); 2276 ResHi = SDValue(CNode, 0); 2277 ResLo = SDValue(CNode, 1); 2278 InFlag = SDValue(CNode, 2); 2279 } else { 2280 SDVTList VTs = CurDAG->getVTList(MVT::Glue); 2281 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops, 2282 array_lengthof(Ops)); 2283 InFlag = SDValue(CNode, 0); 2284 } 2285 } 2286 2287 // Prevent use of AH in a REX instruction by referencing AX instead. 2288 if (HiReg == X86::AH && Subtarget->is64Bit() && 2289 !SDValue(Node, 1).use_empty()) { 2290 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, 2291 X86::AX, MVT::i16, InFlag); 2292 InFlag = Result.getValue(2); 2293 // Get the low part if needed. Don't use getCopyFromReg for aliasing 2294 // registers. 2295 if (!SDValue(Node, 0).use_empty()) 2296 ReplaceUses(SDValue(Node, 1), 2297 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result)); 2298 2299 // Shift AX down 8 bits. 2300 Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16, 2301 Result, 2302 CurDAG->getTargetConstant(8, MVT::i8)), 0); 2303 // Then truncate it down to i8. 2304 ReplaceUses(SDValue(Node, 1), 2305 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result)); 2306 } 2307 // Copy the low half of the result, if it is needed. 2308 if (!SDValue(Node, 0).use_empty()) { 2309 if (ResLo.getNode() == 0) { 2310 assert(LoReg && "Register for low half is not defined!"); 2311 ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg, NVT, 2312 InFlag); 2313 InFlag = ResLo.getValue(2); 2314 } 2315 ReplaceUses(SDValue(Node, 0), ResLo); 2316 DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG); dbgs() << '\n'); 2317 } 2318 // Copy the high half of the result, if it is needed. 2319 if (!SDValue(Node, 1).use_empty()) { 2320 if (ResHi.getNode() == 0) { 2321 assert(HiReg && "Register for high half is not defined!"); 2322 ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg, NVT, 2323 InFlag); 2324 InFlag = ResHi.getValue(2); 2325 } 2326 ReplaceUses(SDValue(Node, 1), ResHi); 2327 DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG); dbgs() << '\n'); 2328 } 2329 2330 return NULL; 2331 } 2332 2333 case ISD::SDIVREM: 2334 case ISD::UDIVREM: { 2335 SDValue N0 = Node->getOperand(0); 2336 SDValue N1 = Node->getOperand(1); 2337 2338 bool isSigned = Opcode == ISD::SDIVREM; 2339 if (!isSigned) { 2340 switch (NVT.getSimpleVT().SimpleTy) { 2341 default: llvm_unreachable("Unsupported VT!"); 2342 case MVT::i8: Opc = X86::DIV8r; MOpc = X86::DIV8m; break; 2343 case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break; 2344 case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break; 2345 case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break; 2346 } 2347 } else { 2348 switch (NVT.getSimpleVT().SimpleTy) { 2349 default: llvm_unreachable("Unsupported VT!"); 2350 case MVT::i8: Opc = X86::IDIV8r; MOpc = X86::IDIV8m; break; 2351 case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break; 2352 case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break; 2353 case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break; 2354 } 2355 } 2356 2357 unsigned LoReg, HiReg, ClrReg; 2358 unsigned ClrOpcode, SExtOpcode; 2359 switch (NVT.getSimpleVT().SimpleTy) { 2360 default: llvm_unreachable("Unsupported VT!"); 2361 case MVT::i8: 2362 LoReg = X86::AL; ClrReg = HiReg = X86::AH; 2363 ClrOpcode = 0; 2364 SExtOpcode = X86::CBW; 2365 break; 2366 case MVT::i16: 2367 LoReg = X86::AX; HiReg = X86::DX; 2368 ClrOpcode = X86::MOV16r0; ClrReg = X86::DX; 2369 SExtOpcode = X86::CWD; 2370 break; 2371 case MVT::i32: 2372 LoReg = X86::EAX; ClrReg = HiReg = X86::EDX; 2373 ClrOpcode = X86::MOV32r0; 2374 SExtOpcode = X86::CDQ; 2375 break; 2376 case MVT::i64: 2377 LoReg = X86::RAX; ClrReg = HiReg = X86::RDX; 2378 ClrOpcode = X86::MOV64r0; 2379 SExtOpcode = X86::CQO; 2380 break; 2381 } 2382 2383 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 2384 bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); 2385 bool signBitIsZero = CurDAG->SignBitIsZero(N0); 2386 2387 SDValue InFlag; 2388 if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) { 2389 // Special case for div8, just use a move with zero extension to AX to 2390 // clear the upper 8 bits (AH). 2391 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain; 2392 if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) { 2393 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) }; 2394 Move = 2395 SDValue(CurDAG->getMachineNode(X86::MOVZX32rm8, dl, MVT::i32, 2396 MVT::Other, Ops, 2397 array_lengthof(Ops)), 0); 2398 Chain = Move.getValue(1); 2399 ReplaceUses(N0.getValue(1), Chain); 2400 } else { 2401 Move = 2402 SDValue(CurDAG->getMachineNode(X86::MOVZX32rr8, dl, MVT::i32, N0),0); 2403 Chain = CurDAG->getEntryNode(); 2404 } 2405 Chain = CurDAG->getCopyToReg(Chain, dl, X86::EAX, Move, SDValue()); 2406 InFlag = Chain.getValue(1); 2407 } else { 2408 InFlag = 2409 CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, 2410 LoReg, N0, SDValue()).getValue(1); 2411 if (isSigned && !signBitIsZero) { 2412 // Sign extend the low part into the high part. 2413 InFlag = 2414 SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0); 2415 } else { 2416 // Zero out the high part, effectively zero extending the input. 2417 SDValue ClrNode = 2418 SDValue(CurDAG->getMachineNode(ClrOpcode, dl, NVT), 0); 2419 InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg, 2420 ClrNode, InFlag).getValue(1); 2421 } 2422 } 2423 2424 if (foldedLoad) { 2425 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0), 2426 InFlag }; 2427 SDNode *CNode = 2428 CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops, 2429 array_lengthof(Ops)); 2430 InFlag = SDValue(CNode, 1); 2431 // Update the chain. 2432 ReplaceUses(N1.getValue(1), SDValue(CNode, 0)); 2433 } else { 2434 InFlag = 2435 SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0); 2436 } 2437 2438 // Prevent use of AH in a REX instruction by referencing AX instead. 2439 // Shift it down 8 bits. 2440 if (HiReg == X86::AH && Subtarget->is64Bit() && 2441 !SDValue(Node, 1).use_empty()) { 2442 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, 2443 X86::AX, MVT::i16, InFlag); 2444 InFlag = Result.getValue(2); 2445 2446 // If we also need AL (the quotient), get it by extracting a subreg from 2447 // Result. The fast register allocator does not like multiple CopyFromReg 2448 // nodes using aliasing registers. 2449 if (!SDValue(Node, 0).use_empty()) 2450 ReplaceUses(SDValue(Node, 0), 2451 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result)); 2452 2453 // Shift AX right by 8 bits instead of using AH. 2454 Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16, 2455 Result, 2456 CurDAG->getTargetConstant(8, MVT::i8)), 2457 0); 2458 ReplaceUses(SDValue(Node, 1), 2459 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result)); 2460 } 2461 // Copy the division (low) result, if it is needed. 2462 if (!SDValue(Node, 0).use_empty()) { 2463 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, 2464 LoReg, NVT, InFlag); 2465 InFlag = Result.getValue(2); 2466 ReplaceUses(SDValue(Node, 0), Result); 2467 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n'); 2468 } 2469 // Copy the remainder (high) result, if it is needed. 2470 if (!SDValue(Node, 1).use_empty()) { 2471 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, 2472 HiReg, NVT, InFlag); 2473 InFlag = Result.getValue(2); 2474 ReplaceUses(SDValue(Node, 1), Result); 2475 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n'); 2476 } 2477 return NULL; 2478 } 2479 2480 case X86ISD::CMP: 2481 case X86ISD::SUB: { 2482 // Sometimes a SUB is used to perform comparison. 2483 if (Opcode == X86ISD::SUB && Node->hasAnyUseOfValue(0)) 2484 // This node is not a CMP. 2485 break; 2486 SDValue N0 = Node->getOperand(0); 2487 SDValue N1 = Node->getOperand(1); 2488 2489 // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to 2490 // use a smaller encoding. 2491 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && 2492 HasNoSignedComparisonUses(Node)) 2493 // Look past the truncate if CMP is the only use of it. 2494 N0 = N0.getOperand(0); 2495 if ((N0.getNode()->getOpcode() == ISD::AND || 2496 (N0.getResNo() == 0 && N0.getNode()->getOpcode() == X86ISD::AND)) && 2497 N0.getNode()->hasOneUse() && 2498 N0.getValueType() != MVT::i8 && 2499 X86::isZeroNode(N1)) { 2500 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1)); 2501 if (!C) break; 2502 2503 // For example, convert "testl %eax, $8" to "testb %al, $8" 2504 if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 && 2505 (!(C->getZExtValue() & 0x80) || 2506 HasNoSignedComparisonUses(Node))) { 2507 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8); 2508 SDValue Reg = N0.getNode()->getOperand(0); 2509 2510 // On x86-32, only the ABCD registers have 8-bit subregisters. 2511 if (!Subtarget->is64Bit()) { 2512 const TargetRegisterClass *TRC; 2513 switch (N0.getValueType().getSimpleVT().SimpleTy) { 2514 case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break; 2515 case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break; 2516 default: llvm_unreachable("Unsupported TEST operand type!"); 2517 } 2518 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32); 2519 Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl, 2520 Reg.getValueType(), Reg, RC), 0); 2521 } 2522 2523 // Extract the l-register. 2524 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, 2525 MVT::i8, Reg); 2526 2527 // Emit a testb. 2528 return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32, Subreg, Imm); 2529 } 2530 2531 // For example, "testl %eax, $2048" to "testb %ah, $8". 2532 if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 && 2533 (!(C->getZExtValue() & 0x8000) || 2534 HasNoSignedComparisonUses(Node))) { 2535 // Shift the immediate right by 8 bits. 2536 SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8, 2537 MVT::i8); 2538 SDValue Reg = N0.getNode()->getOperand(0); 2539 2540 // Put the value in an ABCD register. 2541 const TargetRegisterClass *TRC; 2542 switch (N0.getValueType().getSimpleVT().SimpleTy) { 2543 case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break; 2544 case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break; 2545 case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break; 2546 default: llvm_unreachable("Unsupported TEST operand type!"); 2547 } 2548 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32); 2549 Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl, 2550 Reg.getValueType(), Reg, RC), 0); 2551 2552 // Extract the h-register. 2553 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl, 2554 MVT::i8, Reg); 2555 2556 // Emit a testb. The EXTRACT_SUBREG becomes a COPY that can only 2557 // target GR8_NOREX registers, so make sure the register class is 2558 // forced. 2559 return CurDAG->getMachineNode(X86::TEST8ri_NOREX, dl, MVT::i32, 2560 Subreg, ShiftedImm); 2561 } 2562 2563 // For example, "testl %eax, $32776" to "testw %ax, $32776". 2564 if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 && 2565 N0.getValueType() != MVT::i16 && 2566 (!(C->getZExtValue() & 0x8000) || 2567 HasNoSignedComparisonUses(Node))) { 2568 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16); 2569 SDValue Reg = N0.getNode()->getOperand(0); 2570 2571 // Extract the 16-bit subregister. 2572 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl, 2573 MVT::i16, Reg); 2574 2575 // Emit a testw. 2576 return CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32, Subreg, Imm); 2577 } 2578 2579 // For example, "testq %rax, $268468232" to "testl %eax, $268468232". 2580 if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 && 2581 N0.getValueType() == MVT::i64 && 2582 (!(C->getZExtValue() & 0x80000000) || 2583 HasNoSignedComparisonUses(Node))) { 2584 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32); 2585 SDValue Reg = N0.getNode()->getOperand(0); 2586 2587 // Extract the 32-bit subregister. 2588 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl, 2589 MVT::i32, Reg); 2590 2591 // Emit a testl. 2592 return CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32, Subreg, Imm); 2593 } 2594 } 2595 break; 2596 } 2597 case ISD::STORE: { 2598 // Change a chain of {load; incr or dec; store} of the same value into 2599 // a simple increment or decrement through memory of that value, if the 2600 // uses of the modified value and its address are suitable. 2601 // The DEC64m tablegen pattern is currently not able to match the case where 2602 // the EFLAGS on the original DEC are used. (This also applies to 2603 // {INC,DEC}X{64,32,16,8}.) 2604 // We'll need to improve tablegen to allow flags to be transferred from a 2605 // node in the pattern to the result node. probably with a new keyword 2606 // for example, we have this 2607 // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst", 2608 // [(store (add (loadi64 addr:$dst), -1), addr:$dst), 2609 // (implicit EFLAGS)]>; 2610 // but maybe need something like this 2611 // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst", 2612 // [(store (add (loadi64 addr:$dst), -1), addr:$dst), 2613 // (transferrable EFLAGS)]>; 2614 2615 StoreSDNode *StoreNode = cast<StoreSDNode>(Node); 2616 SDValue StoredVal = StoreNode->getOperand(1); 2617 unsigned Opc = StoredVal->getOpcode(); 2618 2619 LoadSDNode *LoadNode = 0; 2620 SDValue InputChain; 2621 if (!isLoadIncOrDecStore(StoreNode, Opc, StoredVal, CurDAG, 2622 LoadNode, InputChain)) 2623 break; 2624 2625 SDValue Base, Scale, Index, Disp, Segment; 2626 if (!SelectAddr(LoadNode, LoadNode->getBasePtr(), 2627 Base, Scale, Index, Disp, Segment)) 2628 break; 2629 2630 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(2); 2631 MemOp[0] = StoreNode->getMemOperand(); 2632 MemOp[1] = LoadNode->getMemOperand(); 2633 const SDValue Ops[] = { Base, Scale, Index, Disp, Segment, InputChain }; 2634 EVT LdVT = LoadNode->getMemoryVT(); 2635 unsigned newOpc = getFusedLdStOpcode(LdVT, Opc); 2636 MachineSDNode *Result = CurDAG->getMachineNode(newOpc, 2637 Node->getDebugLoc(), 2638 MVT::i32, MVT::Other, Ops, 2639 array_lengthof(Ops)); 2640 Result->setMemRefs(MemOp, MemOp + 2); 2641 2642 ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1)); 2643 ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0)); 2644 2645 return Result; 2646 } 2647 2648 // FIXME: Custom handling because TableGen doesn't support multiple implicit 2649 // defs in an instruction pattern 2650 case X86ISD::PCMPESTRI: { 2651 SDValue N0 = Node->getOperand(0); 2652 SDValue N1 = Node->getOperand(1); 2653 SDValue N2 = Node->getOperand(2); 2654 SDValue N3 = Node->getOperand(3); 2655 SDValue N4 = Node->getOperand(4); 2656 2657 // Make sure last argument is a constant 2658 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N4); 2659 if (!Cst) 2660 break; 2661 2662 uint64_t Imm = Cst->getZExtValue(); 2663 2664 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, 2665 X86::EAX, N1, SDValue()).getValue(1); 2666 InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EDX, 2667 N3, InFlag).getValue(1); 2668 2669 SDValue Ops[] = { N0, N2, getI8Imm(Imm), InFlag }; 2670 unsigned Opc = Subtarget->hasAVX() ? X86::VPCMPESTRIrr : 2671 X86::PCMPESTRIrr; 2672 InFlag = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Ops, 2673 array_lengthof(Ops)), 0); 2674 2675 if (!SDValue(Node, 0).use_empty()) { 2676 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, 2677 X86::ECX, NVT, InFlag); 2678 InFlag = Result.getValue(2); 2679 ReplaceUses(SDValue(Node, 0), Result); 2680 } 2681 if (!SDValue(Node, 1).use_empty()) { 2682 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, 2683 X86::EFLAGS, NVT, InFlag); 2684 InFlag = Result.getValue(2); 2685 ReplaceUses(SDValue(Node, 1), Result); 2686 } 2687 2688 return NULL; 2689 } 2690 2691 // FIXME: Custom handling because TableGen doesn't support multiple implicit 2692 // defs in an instruction pattern 2693 case X86ISD::PCMPISTRI: { 2694 SDValue N0 = Node->getOperand(0); 2695 SDValue N1 = Node->getOperand(1); 2696 SDValue N2 = Node->getOperand(2); 2697 2698 // Make sure last argument is a constant 2699 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N2); 2700 if (!Cst) 2701 break; 2702 2703 uint64_t Imm = Cst->getZExtValue(); 2704 2705 SDValue Ops[] = { N0, N1, getI8Imm(Imm) }; 2706 unsigned Opc = Subtarget->hasAVX() ? X86::VPCMPISTRIrr : 2707 X86::PCMPISTRIrr; 2708 SDValue InFlag = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Ops, 2709 array_lengthof(Ops)), 0); 2710 2711 if (!SDValue(Node, 0).use_empty()) { 2712 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, 2713 X86::ECX, NVT, InFlag); 2714 InFlag = Result.getValue(2); 2715 ReplaceUses(SDValue(Node, 0), Result); 2716 } 2717 if (!SDValue(Node, 1).use_empty()) { 2718 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, 2719 X86::EFLAGS, NVT, InFlag); 2720 InFlag = Result.getValue(2); 2721 ReplaceUses(SDValue(Node, 1), Result); 2722 } 2723 2724 return NULL; 2725 } 2726 } 2727 2728 SDNode *ResNode = SelectCode(Node); 2729 2730 DEBUG(dbgs() << "=> "; 2731 if (ResNode == NULL || ResNode == Node) 2732 Node->dump(CurDAG); 2733 else 2734 ResNode->dump(CurDAG); 2735 dbgs() << '\n'); 2736 2737 return ResNode; 2738} 2739 2740bool X86DAGToDAGISel:: 2741SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode, 2742 std::vector<SDValue> &OutOps) { 2743 SDValue Op0, Op1, Op2, Op3, Op4; 2744 switch (ConstraintCode) { 2745 case 'o': // offsetable ?? 2746 case 'v': // not offsetable ?? 2747 default: return true; 2748 case 'm': // memory 2749 if (!SelectAddr(0, Op, Op0, Op1, Op2, Op3, Op4)) 2750 return true; 2751 break; 2752 } 2753 2754 OutOps.push_back(Op0); 2755 OutOps.push_back(Op1); 2756 OutOps.push_back(Op2); 2757 OutOps.push_back(Op3); 2758 OutOps.push_back(Op4); 2759 return false; 2760} 2761 2762/// createX86ISelDag - This pass converts a legalized DAG into a 2763/// X86-specific DAG, ready for instruction scheduling. 2764/// 2765FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM, 2766 CodeGenOpt::Level OptLevel) { 2767 return new X86DAGToDAGISel(TM, OptLevel); 2768} 2769