X86ISelDAGToDAG.cpp revision 7e2c793a2b5c746344652b6579e958ee42fafdcc
1//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a DAG pattern matching instruction selector for X86,
11// converting from a legalized dag to a X86 dag.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86RegisterInfo.h"
20#include "X86Subtarget.h"
21#include "X86TargetMachine.h"
22#include "llvm/Instructions.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/Type.h"
25#include "llvm/CodeGen/FunctionLoweringInfo.h"
26#include "llvm/CodeGen/MachineConstantPool.h"
27#include "llvm/CodeGen/MachineFunction.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/MachineRegisterInfo.h"
31#include "llvm/CodeGen/SelectionDAGISel.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Support/CFG.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/Support/raw_ostream.h"
39#include "llvm/ADT/Statistic.h"
40using namespace llvm;
41
42STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
43
44//===----------------------------------------------------------------------===//
45//                      Pattern Matcher Implementation
46//===----------------------------------------------------------------------===//
47
48namespace {
49  /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
50  /// SDValue's instead of register numbers for the leaves of the matched
51  /// tree.
52  struct X86ISelAddressMode {
53    enum {
54      RegBase,
55      FrameIndexBase
56    } BaseType;
57
58    // This is really a union, discriminated by BaseType!
59    SDValue Base_Reg;
60    int Base_FrameIndex;
61
62    unsigned Scale;
63    SDValue IndexReg;
64    int32_t Disp;
65    SDValue Segment;
66    const GlobalValue *GV;
67    const Constant *CP;
68    const BlockAddress *BlockAddr;
69    const char *ES;
70    int JT;
71    unsigned Align;    // CP alignment.
72    unsigned char SymbolFlags;  // X86II::MO_*
73
74    X86ISelAddressMode()
75      : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
76        Segment(), GV(0), CP(0), BlockAddr(0), ES(0), JT(-1), Align(0),
77        SymbolFlags(X86II::MO_NO_FLAG) {
78    }
79
80    bool hasSymbolicDisplacement() const {
81      return GV != 0 || CP != 0 || ES != 0 || JT != -1 || BlockAddr != 0;
82    }
83
84    bool hasBaseOrIndexReg() const {
85      return IndexReg.getNode() != 0 || Base_Reg.getNode() != 0;
86    }
87
88    /// isRIPRelative - Return true if this addressing mode is already RIP
89    /// relative.
90    bool isRIPRelative() const {
91      if (BaseType != RegBase) return false;
92      if (RegisterSDNode *RegNode =
93            dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
94        return RegNode->getReg() == X86::RIP;
95      return false;
96    }
97
98    void setBaseReg(SDValue Reg) {
99      BaseType = RegBase;
100      Base_Reg = Reg;
101    }
102
103#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
104    void dump() {
105      dbgs() << "X86ISelAddressMode " << this << '\n';
106      dbgs() << "Base_Reg ";
107      if (Base_Reg.getNode() != 0)
108        Base_Reg.getNode()->dump();
109      else
110        dbgs() << "nul";
111      dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n'
112             << " Scale" << Scale << '\n'
113             << "IndexReg ";
114      if (IndexReg.getNode() != 0)
115        IndexReg.getNode()->dump();
116      else
117        dbgs() << "nul";
118      dbgs() << " Disp " << Disp << '\n'
119             << "GV ";
120      if (GV)
121        GV->dump();
122      else
123        dbgs() << "nul";
124      dbgs() << " CP ";
125      if (CP)
126        CP->dump();
127      else
128        dbgs() << "nul";
129      dbgs() << '\n'
130             << "ES ";
131      if (ES)
132        dbgs() << ES;
133      else
134        dbgs() << "nul";
135      dbgs() << " JT" << JT << " Align" << Align << '\n';
136    }
137#endif
138  };
139}
140
141namespace {
142  //===--------------------------------------------------------------------===//
143  /// ISel - X86 specific code to select X86 machine instructions for
144  /// SelectionDAG operations.
145  ///
146  class X86DAGToDAGISel : public SelectionDAGISel {
147    /// X86Lowering - This object fully describes how to lower LLVM code to an
148    /// X86-specific SelectionDAG.
149    const X86TargetLowering &X86Lowering;
150
151    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
152    /// make the right decision when generating code for different targets.
153    const X86Subtarget *Subtarget;
154
155    /// OptForSize - If true, selector should try to optimize for code size
156    /// instead of performance.
157    bool OptForSize;
158
159  public:
160    explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
161      : SelectionDAGISel(tm, OptLevel),
162        X86Lowering(*tm.getTargetLowering()),
163        Subtarget(&tm.getSubtarget<X86Subtarget>()),
164        OptForSize(false) {}
165
166    virtual const char *getPassName() const {
167      return "X86 DAG->DAG Instruction Selection";
168    }
169
170    virtual void EmitFunctionEntryCode();
171
172    virtual bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const;
173
174    virtual void PreprocessISelDAG();
175
176    inline bool immSext8(SDNode *N) const {
177      return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue());
178    }
179
180    // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
181    // sign extended field.
182    inline bool i64immSExt32(SDNode *N) const {
183      uint64_t v = cast<ConstantSDNode>(N)->getZExtValue();
184      return (int64_t)v == (int32_t)v;
185    }
186
187// Include the pieces autogenerated from the target description.
188#include "X86GenDAGISel.inc"
189
190  private:
191    SDNode *Select(SDNode *N);
192    SDNode *SelectGather(SDNode *N, unsigned Opc);
193    SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
194    SDNode *SelectAtomicLoadArith(SDNode *Node, EVT NVT);
195
196    bool FoldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
197    bool MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM);
198    bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
199    bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
200    bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
201                                 unsigned Depth);
202    bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
203    bool SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
204                    SDValue &Scale, SDValue &Index, SDValue &Disp,
205                    SDValue &Segment);
206    bool SelectLEAAddr(SDValue N, SDValue &Base,
207                       SDValue &Scale, SDValue &Index, SDValue &Disp,
208                       SDValue &Segment);
209    bool SelectTLSADDRAddr(SDValue N, SDValue &Base,
210                           SDValue &Scale, SDValue &Index, SDValue &Disp,
211                           SDValue &Segment);
212    bool SelectScalarSSELoad(SDNode *Root, SDValue N,
213                             SDValue &Base, SDValue &Scale,
214                             SDValue &Index, SDValue &Disp,
215                             SDValue &Segment,
216                             SDValue &NodeWithChain);
217
218    bool TryFoldLoad(SDNode *P, SDValue N,
219                     SDValue &Base, SDValue &Scale,
220                     SDValue &Index, SDValue &Disp,
221                     SDValue &Segment);
222
223    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
224    /// inline asm expressions.
225    virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
226                                              char ConstraintCode,
227                                              std::vector<SDValue> &OutOps);
228
229    void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
230
231    inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
232                                   SDValue &Scale, SDValue &Index,
233                                   SDValue &Disp, SDValue &Segment) {
234      Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
235        CurDAG->getTargetFrameIndex(AM.Base_FrameIndex, TLI.getPointerTy()) :
236        AM.Base_Reg;
237      Scale = getI8Imm(AM.Scale);
238      Index = AM.IndexReg;
239      // These are 32-bit even in 64-bit mode since RIP relative offset
240      // is 32-bit.
241      if (AM.GV)
242        Disp = CurDAG->getTargetGlobalAddress(AM.GV, DebugLoc(),
243                                              MVT::i32, AM.Disp,
244                                              AM.SymbolFlags);
245      else if (AM.CP)
246        Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
247                                             AM.Align, AM.Disp, AM.SymbolFlags);
248      else if (AM.ES) {
249        assert(!AM.Disp && "Non-zero displacement is ignored with ES.");
250        Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
251      } else if (AM.JT != -1) {
252        assert(!AM.Disp && "Non-zero displacement is ignored with JT.");
253        Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
254      } else if (AM.BlockAddr)
255        Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp,
256                                             AM.SymbolFlags);
257      else
258        Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
259
260      if (AM.Segment.getNode())
261        Segment = AM.Segment;
262      else
263        Segment = CurDAG->getRegister(0, MVT::i32);
264    }
265
266    /// getI8Imm - Return a target constant with the specified value, of type
267    /// i8.
268    inline SDValue getI8Imm(unsigned Imm) {
269      return CurDAG->getTargetConstant(Imm, MVT::i8);
270    }
271
272    /// getI32Imm - Return a target constant with the specified value, of type
273    /// i32.
274    inline SDValue getI32Imm(unsigned Imm) {
275      return CurDAG->getTargetConstant(Imm, MVT::i32);
276    }
277
278    /// getGlobalBaseReg - Return an SDNode that returns the value of
279    /// the global base register. Output instructions required to
280    /// initialize the global base register, if necessary.
281    ///
282    SDNode *getGlobalBaseReg();
283
284    /// getTargetMachine - Return a reference to the TargetMachine, casted
285    /// to the target-specific type.
286    const X86TargetMachine &getTargetMachine() {
287      return static_cast<const X86TargetMachine &>(TM);
288    }
289
290    /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
291    /// to the target-specific type.
292    const X86InstrInfo *getInstrInfo() {
293      return getTargetMachine().getInstrInfo();
294    }
295  };
296}
297
298
299bool
300X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
301  if (OptLevel == CodeGenOpt::None) return false;
302
303  if (!N.hasOneUse())
304    return false;
305
306  if (N.getOpcode() != ISD::LOAD)
307    return true;
308
309  // If N is a load, do additional profitability checks.
310  if (U == Root) {
311    switch (U->getOpcode()) {
312    default: break;
313    case X86ISD::ADD:
314    case X86ISD::SUB:
315    case X86ISD::AND:
316    case X86ISD::XOR:
317    case X86ISD::OR:
318    case ISD::ADD:
319    case ISD::ADDC:
320    case ISD::ADDE:
321    case ISD::AND:
322    case ISD::OR:
323    case ISD::XOR: {
324      SDValue Op1 = U->getOperand(1);
325
326      // If the other operand is a 8-bit immediate we should fold the immediate
327      // instead. This reduces code size.
328      // e.g.
329      // movl 4(%esp), %eax
330      // addl $4, %eax
331      // vs.
332      // movl $4, %eax
333      // addl 4(%esp), %eax
334      // The former is 2 bytes shorter. In case where the increment is 1, then
335      // the saving can be 4 bytes (by using incl %eax).
336      if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
337        if (Imm->getAPIntValue().isSignedIntN(8))
338          return false;
339
340      // If the other operand is a TLS address, we should fold it instead.
341      // This produces
342      // movl    %gs:0, %eax
343      // leal    i@NTPOFF(%eax), %eax
344      // instead of
345      // movl    $i@NTPOFF, %eax
346      // addl    %gs:0, %eax
347      // if the block also has an access to a second TLS address this will save
348      // a load.
349      // FIXME: This is probably also true for non TLS addresses.
350      if (Op1.getOpcode() == X86ISD::Wrapper) {
351        SDValue Val = Op1.getOperand(0);
352        if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
353          return false;
354      }
355    }
356    }
357  }
358
359  return true;
360}
361
362/// MoveBelowCallOrigChain - Replace the original chain operand of the call with
363/// load's chain operand and move load below the call's chain operand.
364static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
365                                  SDValue Call, SDValue OrigChain) {
366  SmallVector<SDValue, 8> Ops;
367  SDValue Chain = OrigChain.getOperand(0);
368  if (Chain.getNode() == Load.getNode())
369    Ops.push_back(Load.getOperand(0));
370  else {
371    assert(Chain.getOpcode() == ISD::TokenFactor &&
372           "Unexpected chain operand");
373    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
374      if (Chain.getOperand(i).getNode() == Load.getNode())
375        Ops.push_back(Load.getOperand(0));
376      else
377        Ops.push_back(Chain.getOperand(i));
378    SDValue NewChain =
379      CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(),
380                      MVT::Other, &Ops[0], Ops.size());
381    Ops.clear();
382    Ops.push_back(NewChain);
383  }
384  for (unsigned i = 1, e = OrigChain.getNumOperands(); i != e; ++i)
385    Ops.push_back(OrigChain.getOperand(i));
386  CurDAG->UpdateNodeOperands(OrigChain.getNode(), &Ops[0], Ops.size());
387  CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
388                             Load.getOperand(1), Load.getOperand(2));
389  Ops.clear();
390  Ops.push_back(SDValue(Load.getNode(), 1));
391  for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i)
392    Ops.push_back(Call.getOperand(i));
393  CurDAG->UpdateNodeOperands(Call.getNode(), &Ops[0], Ops.size());
394}
395
396/// isCalleeLoad - Return true if call address is a load and it can be
397/// moved below CALLSEQ_START and the chains leading up to the call.
398/// Return the CALLSEQ_START by reference as a second output.
399/// In the case of a tail call, there isn't a callseq node between the call
400/// chain and the load.
401static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
402  if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
403    return false;
404  LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
405  if (!LD ||
406      LD->isVolatile() ||
407      LD->getAddressingMode() != ISD::UNINDEXED ||
408      LD->getExtensionType() != ISD::NON_EXTLOAD)
409    return false;
410
411  // Now let's find the callseq_start.
412  while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
413    if (!Chain.hasOneUse())
414      return false;
415    Chain = Chain.getOperand(0);
416  }
417
418  if (!Chain.getNumOperands())
419    return false;
420  if (Chain.getOperand(0).getNode() == Callee.getNode())
421    return true;
422  if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
423      Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
424      Callee.getValue(1).hasOneUse())
425    return true;
426  return false;
427}
428
429void X86DAGToDAGISel::PreprocessISelDAG() {
430  // OptForSize is used in pattern predicates that isel is matching.
431  OptForSize = MF->getFunction()->getFnAttributes().hasOptimizeForSizeAttr();
432
433  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
434       E = CurDAG->allnodes_end(); I != E; ) {
435    SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.
436
437    if (OptLevel != CodeGenOpt::None &&
438        (N->getOpcode() == X86ISD::CALL ||
439         N->getOpcode() == X86ISD::TC_RETURN)) {
440      /// Also try moving call address load from outside callseq_start to just
441      /// before the call to allow it to be folded.
442      ///
443      ///     [Load chain]
444      ///         ^
445      ///         |
446      ///       [Load]
447      ///       ^    ^
448      ///       |    |
449      ///      /      \--
450      ///     /          |
451      ///[CALLSEQ_START] |
452      ///     ^          |
453      ///     |          |
454      /// [LOAD/C2Reg]   |
455      ///     |          |
456      ///      \        /
457      ///       \      /
458      ///       [CALL]
459      bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
460      SDValue Chain = N->getOperand(0);
461      SDValue Load  = N->getOperand(1);
462      if (!isCalleeLoad(Load, Chain, HasCallSeq))
463        continue;
464      MoveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
465      ++NumLoadMoved;
466      continue;
467    }
468
469    // Lower fpround and fpextend nodes that target the FP stack to be store and
470    // load to the stack.  This is a gross hack.  We would like to simply mark
471    // these as being illegal, but when we do that, legalize produces these when
472    // it expands calls, then expands these in the same legalize pass.  We would
473    // like dag combine to be able to hack on these between the call expansion
474    // and the node legalization.  As such this pass basically does "really
475    // late" legalization of these inline with the X86 isel pass.
476    // FIXME: This should only happen when not compiled with -O0.
477    if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
478      continue;
479
480    EVT SrcVT = N->getOperand(0).getValueType();
481    EVT DstVT = N->getValueType(0);
482
483    // If any of the sources are vectors, no fp stack involved.
484    if (SrcVT.isVector() || DstVT.isVector())
485      continue;
486
487    // If the source and destination are SSE registers, then this is a legal
488    // conversion that should not be lowered.
489    bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
490    bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
491    if (SrcIsSSE && DstIsSSE)
492      continue;
493
494    if (!SrcIsSSE && !DstIsSSE) {
495      // If this is an FPStack extension, it is a noop.
496      if (N->getOpcode() == ISD::FP_EXTEND)
497        continue;
498      // If this is a value-preserving FPStack truncation, it is a noop.
499      if (N->getConstantOperandVal(1))
500        continue;
501    }
502
503    // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
504    // FPStack has extload and truncstore.  SSE can fold direct loads into other
505    // operations.  Based on this, decide what we want to do.
506    EVT MemVT;
507    if (N->getOpcode() == ISD::FP_ROUND)
508      MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'.
509    else
510      MemVT = SrcIsSSE ? SrcVT : DstVT;
511
512    SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
513    DebugLoc dl = N->getDebugLoc();
514
515    // FIXME: optimize the case where the src/dest is a load or store?
516    SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
517                                          N->getOperand(0),
518                                          MemTmp, MachinePointerInfo(), MemVT,
519                                          false, false, 0);
520    SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
521                                        MachinePointerInfo(),
522                                        MemVT, false, false, 0);
523
524    // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
525    // extload we created.  This will cause general havok on the dag because
526    // anything below the conversion could be folded into other existing nodes.
527    // To avoid invalidating 'I', back it up to the convert node.
528    --I;
529    CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
530
531    // Now that we did that, the node is dead.  Increment the iterator to the
532    // next node to process, then delete N.
533    ++I;
534    CurDAG->DeleteNode(N);
535  }
536}
537
538
539/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
540/// the main function.
541void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
542                                             MachineFrameInfo *MFI) {
543  const TargetInstrInfo *TII = TM.getInstrInfo();
544  if (Subtarget->isTargetCygMing()) {
545    unsigned CallOp =
546      Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32;
547    BuildMI(BB, DebugLoc(),
548            TII->get(CallOp)).addExternalSymbol("__main");
549  }
550}
551
552void X86DAGToDAGISel::EmitFunctionEntryCode() {
553  // If this is main, emit special code for main.
554  if (const Function *Fn = MF->getFunction())
555    if (Fn->hasExternalLinkage() && Fn->getName() == "main")
556      EmitSpecialCodeForMain(MF->begin(), MF->getFrameInfo());
557}
558
559static bool isDispSafeForFrameIndex(int64_t Val) {
560  // On 64-bit platforms, we can run into an issue where a frame index
561  // includes a displacement that, when added to the explicit displacement,
562  // will overflow the displacement field. Assuming that the frame index
563  // displacement fits into a 31-bit integer  (which is only slightly more
564  // aggressive than the current fundamental assumption that it fits into
565  // a 32-bit integer), a 31-bit disp should always be safe.
566  return isInt<31>(Val);
567}
568
569bool X86DAGToDAGISel::FoldOffsetIntoAddress(uint64_t Offset,
570                                            X86ISelAddressMode &AM) {
571  int64_t Val = AM.Disp + Offset;
572  CodeModel::Model M = TM.getCodeModel();
573  if (Subtarget->is64Bit()) {
574    if (!X86::isOffsetSuitableForCodeModel(Val, M,
575                                           AM.hasSymbolicDisplacement()))
576      return true;
577    // In addition to the checks required for a register base, check that
578    // we do not try to use an unsafe Disp with a frame index.
579    if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
580        !isDispSafeForFrameIndex(Val))
581      return true;
582  }
583  AM.Disp = Val;
584  return false;
585
586}
587
588bool X86DAGToDAGISel::MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){
589  SDValue Address = N->getOperand(1);
590
591  // load gs:0 -> GS segment register.
592  // load fs:0 -> FS segment register.
593  //
594  // This optimization is valid because the GNU TLS model defines that
595  // gs:0 (or fs:0 on X86-64) contains its own address.
596  // For more information see http://people.redhat.com/drepper/tls.pdf
597  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address))
598    if (C->getSExtValue() == 0 && AM.Segment.getNode() == 0 &&
599        Subtarget->isTargetLinux())
600      switch (N->getPointerInfo().getAddrSpace()) {
601      case 256:
602        AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
603        return false;
604      case 257:
605        AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
606        return false;
607      }
608
609  return true;
610}
611
612/// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
613/// into an addressing mode.  These wrap things that will resolve down into a
614/// symbol reference.  If no match is possible, this returns true, otherwise it
615/// returns false.
616bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
617  // If the addressing mode already has a symbol as the displacement, we can
618  // never match another symbol.
619  if (AM.hasSymbolicDisplacement())
620    return true;
621
622  SDValue N0 = N.getOperand(0);
623  CodeModel::Model M = TM.getCodeModel();
624
625  // Handle X86-64 rip-relative addresses.  We check this before checking direct
626  // folding because RIP is preferable to non-RIP accesses.
627  if (Subtarget->is64Bit() && N.getOpcode() == X86ISD::WrapperRIP &&
628      // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
629      // they cannot be folded into immediate fields.
630      // FIXME: This can be improved for kernel and other models?
631      (M == CodeModel::Small || M == CodeModel::Kernel)) {
632    // Base and index reg must be 0 in order to use %rip as base.
633    if (AM.hasBaseOrIndexReg())
634      return true;
635    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
636      X86ISelAddressMode Backup = AM;
637      AM.GV = G->getGlobal();
638      AM.SymbolFlags = G->getTargetFlags();
639      if (FoldOffsetIntoAddress(G->getOffset(), AM)) {
640        AM = Backup;
641        return true;
642      }
643    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
644      X86ISelAddressMode Backup = AM;
645      AM.CP = CP->getConstVal();
646      AM.Align = CP->getAlignment();
647      AM.SymbolFlags = CP->getTargetFlags();
648      if (FoldOffsetIntoAddress(CP->getOffset(), AM)) {
649        AM = Backup;
650        return true;
651      }
652    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
653      AM.ES = S->getSymbol();
654      AM.SymbolFlags = S->getTargetFlags();
655    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
656      AM.JT = J->getIndex();
657      AM.SymbolFlags = J->getTargetFlags();
658    } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
659      X86ISelAddressMode Backup = AM;
660      AM.BlockAddr = BA->getBlockAddress();
661      AM.SymbolFlags = BA->getTargetFlags();
662      if (FoldOffsetIntoAddress(BA->getOffset(), AM)) {
663        AM = Backup;
664        return true;
665      }
666    } else
667      llvm_unreachable("Unhandled symbol reference node.");
668
669    if (N.getOpcode() == X86ISD::WrapperRIP)
670      AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
671    return false;
672  }
673
674  // Handle the case when globals fit in our immediate field: This is true for
675  // X86-32 always and X86-64 when in -mcmodel=small mode.  In 64-bit
676  // mode, this only applies to a non-RIP-relative computation.
677  if (!Subtarget->is64Bit() ||
678      M == CodeModel::Small || M == CodeModel::Kernel) {
679    assert(N.getOpcode() != X86ISD::WrapperRIP &&
680           "RIP-relative addressing already handled");
681    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
682      AM.GV = G->getGlobal();
683      AM.Disp += G->getOffset();
684      AM.SymbolFlags = G->getTargetFlags();
685    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
686      AM.CP = CP->getConstVal();
687      AM.Align = CP->getAlignment();
688      AM.Disp += CP->getOffset();
689      AM.SymbolFlags = CP->getTargetFlags();
690    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
691      AM.ES = S->getSymbol();
692      AM.SymbolFlags = S->getTargetFlags();
693    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
694      AM.JT = J->getIndex();
695      AM.SymbolFlags = J->getTargetFlags();
696    } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
697      AM.BlockAddr = BA->getBlockAddress();
698      AM.Disp += BA->getOffset();
699      AM.SymbolFlags = BA->getTargetFlags();
700    } else
701      llvm_unreachable("Unhandled symbol reference node.");
702    return false;
703  }
704
705  return true;
706}
707
708/// MatchAddress - Add the specified node to the specified addressing mode,
709/// returning true if it cannot be done.  This just pattern matches for the
710/// addressing mode.
711bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
712  if (MatchAddressRecursively(N, AM, 0))
713    return true;
714
715  // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
716  // a smaller encoding and avoids a scaled-index.
717  if (AM.Scale == 2 &&
718      AM.BaseType == X86ISelAddressMode::RegBase &&
719      AM.Base_Reg.getNode() == 0) {
720    AM.Base_Reg = AM.IndexReg;
721    AM.Scale = 1;
722  }
723
724  // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
725  // because it has a smaller encoding.
726  // TODO: Which other code models can use this?
727  if (TM.getCodeModel() == CodeModel::Small &&
728      Subtarget->is64Bit() &&
729      AM.Scale == 1 &&
730      AM.BaseType == X86ISelAddressMode::RegBase &&
731      AM.Base_Reg.getNode() == 0 &&
732      AM.IndexReg.getNode() == 0 &&
733      AM.SymbolFlags == X86II::MO_NO_FLAG &&
734      AM.hasSymbolicDisplacement())
735    AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
736
737  return false;
738}
739
740// Insert a node into the DAG at least before the Pos node's position. This
741// will reposition the node as needed, and will assign it a node ID that is <=
742// the Pos node's ID. Note that this does *not* preserve the uniqueness of node
743// IDs! The selection DAG must no longer depend on their uniqueness when this
744// is used.
745static void InsertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) {
746  if (N.getNode()->getNodeId() == -1 ||
747      N.getNode()->getNodeId() > Pos.getNode()->getNodeId()) {
748    DAG.RepositionNode(Pos.getNode(), N.getNode());
749    N.getNode()->setNodeId(Pos.getNode()->getNodeId());
750  }
751}
752
753// Transform "(X >> (8-C1)) & C2" to "(X >> 8) & 0xff)" if safe. This
754// allows us to convert the shift and and into an h-register extract and
755// a scaled index. Returns false if the simplification is performed.
756static bool FoldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N,
757                                      uint64_t Mask,
758                                      SDValue Shift, SDValue X,
759                                      X86ISelAddressMode &AM) {
760  if (Shift.getOpcode() != ISD::SRL ||
761      !isa<ConstantSDNode>(Shift.getOperand(1)) ||
762      !Shift.hasOneUse())
763    return true;
764
765  int ScaleLog = 8 - Shift.getConstantOperandVal(1);
766  if (ScaleLog <= 0 || ScaleLog >= 4 ||
767      Mask != (0xffu << ScaleLog))
768    return true;
769
770  EVT VT = N.getValueType();
771  DebugLoc DL = N.getDebugLoc();
772  SDValue Eight = DAG.getConstant(8, MVT::i8);
773  SDValue NewMask = DAG.getConstant(0xff, VT);
774  SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight);
775  SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask);
776  SDValue ShlCount = DAG.getConstant(ScaleLog, MVT::i8);
777  SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount);
778
779  // Insert the new nodes into the topological ordering. We must do this in
780  // a valid topological ordering as nothing is going to go back and re-sort
781  // these nodes. We continually insert before 'N' in sequence as this is
782  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
783  // hierarchy left to express.
784  InsertDAGNode(DAG, N, Eight);
785  InsertDAGNode(DAG, N, Srl);
786  InsertDAGNode(DAG, N, NewMask);
787  InsertDAGNode(DAG, N, And);
788  InsertDAGNode(DAG, N, ShlCount);
789  InsertDAGNode(DAG, N, Shl);
790  DAG.ReplaceAllUsesWith(N, Shl);
791  AM.IndexReg = And;
792  AM.Scale = (1 << ScaleLog);
793  return false;
794}
795
796// Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this
797// allows us to fold the shift into this addressing mode. Returns false if the
798// transform succeeded.
799static bool FoldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N,
800                                        uint64_t Mask,
801                                        SDValue Shift, SDValue X,
802                                        X86ISelAddressMode &AM) {
803  if (Shift.getOpcode() != ISD::SHL ||
804      !isa<ConstantSDNode>(Shift.getOperand(1)))
805    return true;
806
807  // Not likely to be profitable if either the AND or SHIFT node has more
808  // than one use (unless all uses are for address computation). Besides,
809  // isel mechanism requires their node ids to be reused.
810  if (!N.hasOneUse() || !Shift.hasOneUse())
811    return true;
812
813  // Verify that the shift amount is something we can fold.
814  unsigned ShiftAmt = Shift.getConstantOperandVal(1);
815  if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3)
816    return true;
817
818  EVT VT = N.getValueType();
819  DebugLoc DL = N.getDebugLoc();
820  SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, VT);
821  SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask);
822  SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1));
823
824  // Insert the new nodes into the topological ordering. We must do this in
825  // a valid topological ordering as nothing is going to go back and re-sort
826  // these nodes. We continually insert before 'N' in sequence as this is
827  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
828  // hierarchy left to express.
829  InsertDAGNode(DAG, N, NewMask);
830  InsertDAGNode(DAG, N, NewAnd);
831  InsertDAGNode(DAG, N, NewShift);
832  DAG.ReplaceAllUsesWith(N, NewShift);
833
834  AM.Scale = 1 << ShiftAmt;
835  AM.IndexReg = NewAnd;
836  return false;
837}
838
839// Implement some heroics to detect shifts of masked values where the mask can
840// be replaced by extending the shift and undoing that in the addressing mode
841// scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and
842// (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in
843// the addressing mode. This results in code such as:
844//
845//   int f(short *y, int *lookup_table) {
846//     ...
847//     return *y + lookup_table[*y >> 11];
848//   }
849//
850// Turning into:
851//   movzwl (%rdi), %eax
852//   movl %eax, %ecx
853//   shrl $11, %ecx
854//   addl (%rsi,%rcx,4), %eax
855//
856// Instead of:
857//   movzwl (%rdi), %eax
858//   movl %eax, %ecx
859//   shrl $9, %ecx
860//   andl $124, %rcx
861//   addl (%rsi,%rcx), %eax
862//
863// Note that this function assumes the mask is provided as a mask *after* the
864// value is shifted. The input chain may or may not match that, but computing
865// such a mask is trivial.
866static bool FoldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N,
867                                    uint64_t Mask,
868                                    SDValue Shift, SDValue X,
869                                    X86ISelAddressMode &AM) {
870  if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() ||
871      !isa<ConstantSDNode>(Shift.getOperand(1)))
872    return true;
873
874  unsigned ShiftAmt = Shift.getConstantOperandVal(1);
875  unsigned MaskLZ = CountLeadingZeros_64(Mask);
876  unsigned MaskTZ = CountTrailingZeros_64(Mask);
877
878  // The amount of shift we're trying to fit into the addressing mode is taken
879  // from the trailing zeros of the mask.
880  unsigned AMShiftAmt = MaskTZ;
881
882  // There is nothing we can do here unless the mask is removing some bits.
883  // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
884  if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true;
885
886  // We also need to ensure that mask is a continuous run of bits.
887  if (CountTrailingOnes_64(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true;
888
889  // Scale the leading zero count down based on the actual size of the value.
890  // Also scale it down based on the size of the shift.
891  MaskLZ -= (64 - X.getValueSizeInBits()) + ShiftAmt;
892
893  // The final check is to ensure that any masked out high bits of X are
894  // already known to be zero. Otherwise, the mask has a semantic impact
895  // other than masking out a couple of low bits. Unfortunately, because of
896  // the mask, zero extensions will be removed from operands in some cases.
897  // This code works extra hard to look through extensions because we can
898  // replace them with zero extensions cheaply if necessary.
899  bool ReplacingAnyExtend = false;
900  if (X.getOpcode() == ISD::ANY_EXTEND) {
901    unsigned ExtendBits =
902      X.getValueSizeInBits() - X.getOperand(0).getValueSizeInBits();
903    // Assume that we'll replace the any-extend with a zero-extend, and
904    // narrow the search to the extended value.
905    X = X.getOperand(0);
906    MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits;
907    ReplacingAnyExtend = true;
908  }
909  APInt MaskedHighBits = APInt::getHighBitsSet(X.getValueSizeInBits(),
910                                               MaskLZ);
911  APInt KnownZero, KnownOne;
912  DAG.ComputeMaskedBits(X, KnownZero, KnownOne);
913  if (MaskedHighBits != KnownZero) return true;
914
915  // We've identified a pattern that can be transformed into a single shift
916  // and an addressing mode. Make it so.
917  EVT VT = N.getValueType();
918  if (ReplacingAnyExtend) {
919    assert(X.getValueType() != VT);
920    // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND.
921    SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, X.getDebugLoc(), VT, X);
922    InsertDAGNode(DAG, N, NewX);
923    X = NewX;
924  }
925  DebugLoc DL = N.getDebugLoc();
926  SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, MVT::i8);
927  SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
928  SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, MVT::i8);
929  SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt);
930
931  // Insert the new nodes into the topological ordering. We must do this in
932  // a valid topological ordering as nothing is going to go back and re-sort
933  // these nodes. We continually insert before 'N' in sequence as this is
934  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
935  // hierarchy left to express.
936  InsertDAGNode(DAG, N, NewSRLAmt);
937  InsertDAGNode(DAG, N, NewSRL);
938  InsertDAGNode(DAG, N, NewSHLAmt);
939  InsertDAGNode(DAG, N, NewSHL);
940  DAG.ReplaceAllUsesWith(N, NewSHL);
941
942  AM.Scale = 1 << AMShiftAmt;
943  AM.IndexReg = NewSRL;
944  return false;
945}
946
947bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
948                                              unsigned Depth) {
949  DebugLoc dl = N.getDebugLoc();
950  DEBUG({
951      dbgs() << "MatchAddress: ";
952      AM.dump();
953    });
954  // Limit recursion.
955  if (Depth > 5)
956    return MatchAddressBase(N, AM);
957
958  // If this is already a %rip relative address, we can only merge immediates
959  // into it.  Instead of handling this in every case, we handle it here.
960  // RIP relative addressing: %rip + 32-bit displacement!
961  if (AM.isRIPRelative()) {
962    // FIXME: JumpTable and ExternalSymbol address currently don't like
963    // displacements.  It isn't very important, but this should be fixed for
964    // consistency.
965    if (!AM.ES && AM.JT != -1) return true;
966
967    if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N))
968      if (!FoldOffsetIntoAddress(Cst->getSExtValue(), AM))
969        return false;
970    return true;
971  }
972
973  switch (N.getOpcode()) {
974  default: break;
975  case ISD::Constant: {
976    uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
977    if (!FoldOffsetIntoAddress(Val, AM))
978      return false;
979    break;
980  }
981
982  case X86ISD::Wrapper:
983  case X86ISD::WrapperRIP:
984    if (!MatchWrapper(N, AM))
985      return false;
986    break;
987
988  case ISD::LOAD:
989    if (!MatchLoadInAddress(cast<LoadSDNode>(N), AM))
990      return false;
991    break;
992
993  case ISD::FrameIndex:
994    if (AM.BaseType == X86ISelAddressMode::RegBase &&
995        AM.Base_Reg.getNode() == 0 &&
996        (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
997      AM.BaseType = X86ISelAddressMode::FrameIndexBase;
998      AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
999      return false;
1000    }
1001    break;
1002
1003  case ISD::SHL:
1004    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1)
1005      break;
1006
1007    if (ConstantSDNode
1008          *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
1009      unsigned Val = CN->getZExtValue();
1010      // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
1011      // that the base operand remains free for further matching. If
1012      // the base doesn't end up getting used, a post-processing step
1013      // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
1014      if (Val == 1 || Val == 2 || Val == 3) {
1015        AM.Scale = 1 << Val;
1016        SDValue ShVal = N.getNode()->getOperand(0);
1017
1018        // Okay, we know that we have a scale by now.  However, if the scaled
1019        // value is an add of something and a constant, we can fold the
1020        // constant into the disp field here.
1021        if (CurDAG->isBaseWithConstantOffset(ShVal)) {
1022          AM.IndexReg = ShVal.getNode()->getOperand(0);
1023          ConstantSDNode *AddVal =
1024            cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
1025          uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val;
1026          if (!FoldOffsetIntoAddress(Disp, AM))
1027            return false;
1028        }
1029
1030        AM.IndexReg = ShVal;
1031        return false;
1032      }
1033    break;
1034    }
1035
1036  case ISD::SRL: {
1037    // Scale must not be used already.
1038    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
1039
1040    SDValue And = N.getOperand(0);
1041    if (And.getOpcode() != ISD::AND) break;
1042    SDValue X = And.getOperand(0);
1043
1044    // We only handle up to 64-bit values here as those are what matter for
1045    // addressing mode optimizations.
1046    if (X.getValueSizeInBits() > 64) break;
1047
1048    // The mask used for the transform is expected to be post-shift, but we
1049    // found the shift first so just apply the shift to the mask before passing
1050    // it down.
1051    if (!isa<ConstantSDNode>(N.getOperand(1)) ||
1052        !isa<ConstantSDNode>(And.getOperand(1)))
1053      break;
1054    uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1);
1055
1056    // Try to fold the mask and shift into the scale, and return false if we
1057    // succeed.
1058    if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM))
1059      return false;
1060    break;
1061  }
1062
1063  case ISD::SMUL_LOHI:
1064  case ISD::UMUL_LOHI:
1065    // A mul_lohi where we need the low part can be folded as a plain multiply.
1066    if (N.getResNo() != 0) break;
1067    // FALL THROUGH
1068  case ISD::MUL:
1069  case X86ISD::MUL_IMM:
1070    // X*[3,5,9] -> X+X*[2,4,8]
1071    if (AM.BaseType == X86ISelAddressMode::RegBase &&
1072        AM.Base_Reg.getNode() == 0 &&
1073        AM.IndexReg.getNode() == 0) {
1074      if (ConstantSDNode
1075            *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
1076        if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
1077            CN->getZExtValue() == 9) {
1078          AM.Scale = unsigned(CN->getZExtValue())-1;
1079
1080          SDValue MulVal = N.getNode()->getOperand(0);
1081          SDValue Reg;
1082
1083          // Okay, we know that we have a scale by now.  However, if the scaled
1084          // value is an add of something and a constant, we can fold the
1085          // constant into the disp field here.
1086          if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
1087              isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
1088            Reg = MulVal.getNode()->getOperand(0);
1089            ConstantSDNode *AddVal =
1090              cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
1091            uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
1092            if (FoldOffsetIntoAddress(Disp, AM))
1093              Reg = N.getNode()->getOperand(0);
1094          } else {
1095            Reg = N.getNode()->getOperand(0);
1096          }
1097
1098          AM.IndexReg = AM.Base_Reg = Reg;
1099          return false;
1100        }
1101    }
1102    break;
1103
1104  case ISD::SUB: {
1105    // Given A-B, if A can be completely folded into the address and
1106    // the index field with the index field unused, use -B as the index.
1107    // This is a win if a has multiple parts that can be folded into
1108    // the address. Also, this saves a mov if the base register has
1109    // other uses, since it avoids a two-address sub instruction, however
1110    // it costs an additional mov if the index register has other uses.
1111
1112    // Add an artificial use to this node so that we can keep track of
1113    // it if it gets CSE'd with a different node.
1114    HandleSDNode Handle(N);
1115
1116    // Test if the LHS of the sub can be folded.
1117    X86ISelAddressMode Backup = AM;
1118    if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
1119      AM = Backup;
1120      break;
1121    }
1122    // Test if the index field is free for use.
1123    if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
1124      AM = Backup;
1125      break;
1126    }
1127
1128    int Cost = 0;
1129    SDValue RHS = Handle.getValue().getNode()->getOperand(1);
1130    // If the RHS involves a register with multiple uses, this
1131    // transformation incurs an extra mov, due to the neg instruction
1132    // clobbering its operand.
1133    if (!RHS.getNode()->hasOneUse() ||
1134        RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
1135        RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
1136        RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
1137        (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
1138         RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
1139      ++Cost;
1140    // If the base is a register with multiple uses, this
1141    // transformation may save a mov.
1142    if ((AM.BaseType == X86ISelAddressMode::RegBase &&
1143         AM.Base_Reg.getNode() &&
1144         !AM.Base_Reg.getNode()->hasOneUse()) ||
1145        AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1146      --Cost;
1147    // If the folded LHS was interesting, this transformation saves
1148    // address arithmetic.
1149    if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
1150        ((AM.Disp != 0) && (Backup.Disp == 0)) +
1151        (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
1152      --Cost;
1153    // If it doesn't look like it may be an overall win, don't do it.
1154    if (Cost >= 0) {
1155      AM = Backup;
1156      break;
1157    }
1158
1159    // Ok, the transformation is legal and appears profitable. Go for it.
1160    SDValue Zero = CurDAG->getConstant(0, N.getValueType());
1161    SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
1162    AM.IndexReg = Neg;
1163    AM.Scale = 1;
1164
1165    // Insert the new nodes into the topological ordering.
1166    InsertDAGNode(*CurDAG, N, Zero);
1167    InsertDAGNode(*CurDAG, N, Neg);
1168    return false;
1169  }
1170
1171  case ISD::ADD: {
1172    // Add an artificial use to this node so that we can keep track of
1173    // it if it gets CSE'd with a different node.
1174    HandleSDNode Handle(N);
1175
1176    X86ISelAddressMode Backup = AM;
1177    if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1178        !MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
1179      return false;
1180    AM = Backup;
1181
1182    // Try again after commuting the operands.
1183    if (!MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)&&
1184        !MatchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1))
1185      return false;
1186    AM = Backup;
1187
1188    // If we couldn't fold both operands into the address at the same time,
1189    // see if we can just put each operand into a register and fold at least
1190    // the add.
1191    if (AM.BaseType == X86ISelAddressMode::RegBase &&
1192        !AM.Base_Reg.getNode() &&
1193        !AM.IndexReg.getNode()) {
1194      N = Handle.getValue();
1195      AM.Base_Reg = N.getOperand(0);
1196      AM.IndexReg = N.getOperand(1);
1197      AM.Scale = 1;
1198      return false;
1199    }
1200    N = Handle.getValue();
1201    break;
1202  }
1203
1204  case ISD::OR:
1205    // Handle "X | C" as "X + C" if X is known to have C bits clear.
1206    if (CurDAG->isBaseWithConstantOffset(N)) {
1207      X86ISelAddressMode Backup = AM;
1208      ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1));
1209
1210      // Start with the LHS as an addr mode.
1211      if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1212          !FoldOffsetIntoAddress(CN->getSExtValue(), AM))
1213        return false;
1214      AM = Backup;
1215    }
1216    break;
1217
1218  case ISD::AND: {
1219    // Perform some heroic transforms on an and of a constant-count shift
1220    // with a constant to enable use of the scaled offset field.
1221
1222    // Scale must not be used already.
1223    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
1224
1225    SDValue Shift = N.getOperand(0);
1226    if (Shift.getOpcode() != ISD::SRL && Shift.getOpcode() != ISD::SHL) break;
1227    SDValue X = Shift.getOperand(0);
1228
1229    // We only handle up to 64-bit values here as those are what matter for
1230    // addressing mode optimizations.
1231    if (X.getValueSizeInBits() > 64) break;
1232
1233    if (!isa<ConstantSDNode>(N.getOperand(1)))
1234      break;
1235    uint64_t Mask = N.getConstantOperandVal(1);
1236
1237    // Try to fold the mask and shift into an extract and scale.
1238    if (!FoldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM))
1239      return false;
1240
1241    // Try to fold the mask and shift directly into the scale.
1242    if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM))
1243      return false;
1244
1245    // Try to swap the mask and shift to place shifts which can be done as
1246    // a scale on the outside of the mask.
1247    if (!FoldMaskedShiftToScaledMask(*CurDAG, N, Mask, Shift, X, AM))
1248      return false;
1249    break;
1250  }
1251  }
1252
1253  return MatchAddressBase(N, AM);
1254}
1255
1256/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
1257/// specified addressing mode without any further recursion.
1258bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
1259  // Is the base register already occupied?
1260  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
1261    // If so, check to see if the scale index register is set.
1262    if (AM.IndexReg.getNode() == 0) {
1263      AM.IndexReg = N;
1264      AM.Scale = 1;
1265      return false;
1266    }
1267
1268    // Otherwise, we cannot select it.
1269    return true;
1270  }
1271
1272  // Default, generate it as a register.
1273  AM.BaseType = X86ISelAddressMode::RegBase;
1274  AM.Base_Reg = N;
1275  return false;
1276}
1277
1278/// SelectAddr - returns true if it is able pattern match an addressing mode.
1279/// It returns the operands which make up the maximal addressing mode it can
1280/// match by reference.
1281///
1282/// Parent is the parent node of the addr operand that is being matched.  It
1283/// is always a load, store, atomic node, or null.  It is only null when
1284/// checking memory operands for inline asm nodes.
1285bool X86DAGToDAGISel::SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
1286                                 SDValue &Scale, SDValue &Index,
1287                                 SDValue &Disp, SDValue &Segment) {
1288  X86ISelAddressMode AM;
1289
1290  if (Parent &&
1291      // This list of opcodes are all the nodes that have an "addr:$ptr" operand
1292      // that are not a MemSDNode, and thus don't have proper addrspace info.
1293      Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
1294      Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
1295      Parent->getOpcode() != X86ISD::TLSCALL) { // Fixme
1296    unsigned AddrSpace =
1297      cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
1298    // AddrSpace 256 -> GS, 257 -> FS.
1299    if (AddrSpace == 256)
1300      AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1301    if (AddrSpace == 257)
1302      AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1303  }
1304
1305  if (MatchAddress(N, AM))
1306    return false;
1307
1308  EVT VT = N.getValueType();
1309  if (AM.BaseType == X86ISelAddressMode::RegBase) {
1310    if (!AM.Base_Reg.getNode())
1311      AM.Base_Reg = CurDAG->getRegister(0, VT);
1312  }
1313
1314  if (!AM.IndexReg.getNode())
1315    AM.IndexReg = CurDAG->getRegister(0, VT);
1316
1317  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1318  return true;
1319}
1320
1321/// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
1322/// match a load whose top elements are either undef or zeros.  The load flavor
1323/// is derived from the type of N, which is either v4f32 or v2f64.
1324///
1325/// We also return:
1326///   PatternChainNode: this is the matched node that has a chain input and
1327///   output.
1328bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root,
1329                                          SDValue N, SDValue &Base,
1330                                          SDValue &Scale, SDValue &Index,
1331                                          SDValue &Disp, SDValue &Segment,
1332                                          SDValue &PatternNodeWithChain) {
1333  if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1334    PatternNodeWithChain = N.getOperand(0);
1335    if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) &&
1336        PatternNodeWithChain.hasOneUse() &&
1337        IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1338        IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1339      LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
1340      if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1341        return false;
1342      return true;
1343    }
1344  }
1345
1346  // Also handle the case where we explicitly require zeros in the top
1347  // elements.  This is a vector shuffle from the zero vector.
1348  if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1349      // Check to see if the top elements are all zeros (or bitcast of zeros).
1350      N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
1351      N.getOperand(0).getNode()->hasOneUse() &&
1352      ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
1353      N.getOperand(0).getOperand(0).hasOneUse() &&
1354      IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1355      IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1356    // Okay, this is a zero extending load.  Fold it.
1357    LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
1358    if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1359      return false;
1360    PatternNodeWithChain = SDValue(LD, 0);
1361    return true;
1362  }
1363  return false;
1364}
1365
1366
1367/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
1368/// mode it matches can be cost effectively emitted as an LEA instruction.
1369bool X86DAGToDAGISel::SelectLEAAddr(SDValue N,
1370                                    SDValue &Base, SDValue &Scale,
1371                                    SDValue &Index, SDValue &Disp,
1372                                    SDValue &Segment) {
1373  X86ISelAddressMode AM;
1374
1375  // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
1376  // segments.
1377  SDValue Copy = AM.Segment;
1378  SDValue T = CurDAG->getRegister(0, MVT::i32);
1379  AM.Segment = T;
1380  if (MatchAddress(N, AM))
1381    return false;
1382  assert (T == AM.Segment);
1383  AM.Segment = Copy;
1384
1385  EVT VT = N.getValueType();
1386  unsigned Complexity = 0;
1387  if (AM.BaseType == X86ISelAddressMode::RegBase)
1388    if (AM.Base_Reg.getNode())
1389      Complexity = 1;
1390    else
1391      AM.Base_Reg = CurDAG->getRegister(0, VT);
1392  else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1393    Complexity = 4;
1394
1395  if (AM.IndexReg.getNode())
1396    Complexity++;
1397  else
1398    AM.IndexReg = CurDAG->getRegister(0, VT);
1399
1400  // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1401  // a simple shift.
1402  if (AM.Scale > 1)
1403    Complexity++;
1404
1405  // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1406  // to a LEA. This is determined with some expermentation but is by no means
1407  // optimal (especially for code size consideration). LEA is nice because of
1408  // its three-address nature. Tweak the cost function again when we can run
1409  // convertToThreeAddress() at register allocation time.
1410  if (AM.hasSymbolicDisplacement()) {
1411    // For X86-64, we should always use lea to materialize RIP relative
1412    // addresses.
1413    if (Subtarget->is64Bit())
1414      Complexity = 4;
1415    else
1416      Complexity += 2;
1417  }
1418
1419  if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode()))
1420    Complexity++;
1421
1422  // If it isn't worth using an LEA, reject it.
1423  if (Complexity <= 2)
1424    return false;
1425
1426  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1427  return true;
1428}
1429
1430/// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
1431bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue N, SDValue &Base,
1432                                        SDValue &Scale, SDValue &Index,
1433                                        SDValue &Disp, SDValue &Segment) {
1434  assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
1435  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
1436
1437  X86ISelAddressMode AM;
1438  AM.GV = GA->getGlobal();
1439  AM.Disp += GA->getOffset();
1440  AM.Base_Reg = CurDAG->getRegister(0, N.getValueType());
1441  AM.SymbolFlags = GA->getTargetFlags();
1442
1443  if (N.getValueType() == MVT::i32) {
1444    AM.Scale = 1;
1445    AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
1446  } else {
1447    AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
1448  }
1449
1450  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1451  return true;
1452}
1453
1454
1455bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
1456                                  SDValue &Base, SDValue &Scale,
1457                                  SDValue &Index, SDValue &Disp,
1458                                  SDValue &Segment) {
1459  if (!ISD::isNON_EXTLoad(N.getNode()) ||
1460      !IsProfitableToFold(N, P, P) ||
1461      !IsLegalToFold(N, P, P, OptLevel))
1462    return false;
1463
1464  return SelectAddr(N.getNode(),
1465                    N.getOperand(1), Base, Scale, Index, Disp, Segment);
1466}
1467
1468/// getGlobalBaseReg - Return an SDNode that returns the value of
1469/// the global base register. Output instructions required to
1470/// initialize the global base register, if necessary.
1471///
1472SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
1473  unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
1474  return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
1475}
1476
1477SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
1478  SDValue Chain = Node->getOperand(0);
1479  SDValue In1 = Node->getOperand(1);
1480  SDValue In2L = Node->getOperand(2);
1481  SDValue In2H = Node->getOperand(3);
1482
1483  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1484  if (!SelectAddr(Node, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1485    return NULL;
1486  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1487  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1488  const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain};
1489  SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(),
1490                                           MVT::i32, MVT::i32, MVT::Other, Ops,
1491                                           array_lengthof(Ops));
1492  cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
1493  return ResNode;
1494}
1495
1496/// Atomic opcode table
1497///
1498enum AtomicOpc {
1499  ADD,
1500  SUB,
1501  INC,
1502  DEC,
1503  OR,
1504  AND,
1505  XOR,
1506  AtomicOpcEnd
1507};
1508
1509enum AtomicSz {
1510  ConstantI8,
1511  I8,
1512  SextConstantI16,
1513  ConstantI16,
1514  I16,
1515  SextConstantI32,
1516  ConstantI32,
1517  I32,
1518  SextConstantI64,
1519  ConstantI64,
1520  I64,
1521  AtomicSzEnd
1522};
1523
1524static const uint16_t AtomicOpcTbl[AtomicOpcEnd][AtomicSzEnd] = {
1525  {
1526    X86::LOCK_ADD8mi,
1527    X86::LOCK_ADD8mr,
1528    X86::LOCK_ADD16mi8,
1529    X86::LOCK_ADD16mi,
1530    X86::LOCK_ADD16mr,
1531    X86::LOCK_ADD32mi8,
1532    X86::LOCK_ADD32mi,
1533    X86::LOCK_ADD32mr,
1534    X86::LOCK_ADD64mi8,
1535    X86::LOCK_ADD64mi32,
1536    X86::LOCK_ADD64mr,
1537  },
1538  {
1539    X86::LOCK_SUB8mi,
1540    X86::LOCK_SUB8mr,
1541    X86::LOCK_SUB16mi8,
1542    X86::LOCK_SUB16mi,
1543    X86::LOCK_SUB16mr,
1544    X86::LOCK_SUB32mi8,
1545    X86::LOCK_SUB32mi,
1546    X86::LOCK_SUB32mr,
1547    X86::LOCK_SUB64mi8,
1548    X86::LOCK_SUB64mi32,
1549    X86::LOCK_SUB64mr,
1550  },
1551  {
1552    0,
1553    X86::LOCK_INC8m,
1554    0,
1555    0,
1556    X86::LOCK_INC16m,
1557    0,
1558    0,
1559    X86::LOCK_INC32m,
1560    0,
1561    0,
1562    X86::LOCK_INC64m,
1563  },
1564  {
1565    0,
1566    X86::LOCK_DEC8m,
1567    0,
1568    0,
1569    X86::LOCK_DEC16m,
1570    0,
1571    0,
1572    X86::LOCK_DEC32m,
1573    0,
1574    0,
1575    X86::LOCK_DEC64m,
1576  },
1577  {
1578    X86::LOCK_OR8mi,
1579    X86::LOCK_OR8mr,
1580    X86::LOCK_OR16mi8,
1581    X86::LOCK_OR16mi,
1582    X86::LOCK_OR16mr,
1583    X86::LOCK_OR32mi8,
1584    X86::LOCK_OR32mi,
1585    X86::LOCK_OR32mr,
1586    X86::LOCK_OR64mi8,
1587    X86::LOCK_OR64mi32,
1588    X86::LOCK_OR64mr,
1589  },
1590  {
1591    X86::LOCK_AND8mi,
1592    X86::LOCK_AND8mr,
1593    X86::LOCK_AND16mi8,
1594    X86::LOCK_AND16mi,
1595    X86::LOCK_AND16mr,
1596    X86::LOCK_AND32mi8,
1597    X86::LOCK_AND32mi,
1598    X86::LOCK_AND32mr,
1599    X86::LOCK_AND64mi8,
1600    X86::LOCK_AND64mi32,
1601    X86::LOCK_AND64mr,
1602  },
1603  {
1604    X86::LOCK_XOR8mi,
1605    X86::LOCK_XOR8mr,
1606    X86::LOCK_XOR16mi8,
1607    X86::LOCK_XOR16mi,
1608    X86::LOCK_XOR16mr,
1609    X86::LOCK_XOR32mi8,
1610    X86::LOCK_XOR32mi,
1611    X86::LOCK_XOR32mr,
1612    X86::LOCK_XOR64mi8,
1613    X86::LOCK_XOR64mi32,
1614    X86::LOCK_XOR64mr,
1615  }
1616};
1617
1618// Return the target constant operand for atomic-load-op and do simple
1619// translations, such as from atomic-load-add to lock-sub. The return value is
1620// one of the following 3 cases:
1621// + target-constant, the operand could be supported as a target constant.
1622// + empty, the operand is not needed any more with the new op selected.
1623// + non-empty, otherwise.
1624static SDValue getAtomicLoadArithTargetConstant(SelectionDAG *CurDAG,
1625                                                DebugLoc dl,
1626                                                enum AtomicOpc &Op, EVT NVT,
1627                                                SDValue Val) {
1628  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val)) {
1629    int64_t CNVal = CN->getSExtValue();
1630    // Quit if not 32-bit imm.
1631    if ((int32_t)CNVal != CNVal)
1632      return Val;
1633    // For atomic-load-add, we could do some optimizations.
1634    if (Op == ADD) {
1635      // Translate to INC/DEC if ADD by 1 or -1.
1636      if ((CNVal == 1) || (CNVal == -1)) {
1637        Op = (CNVal == 1) ? INC : DEC;
1638        // No more constant operand after being translated into INC/DEC.
1639        return SDValue();
1640      }
1641      // Translate to SUB if ADD by negative value.
1642      if (CNVal < 0) {
1643        Op = SUB;
1644        CNVal = -CNVal;
1645      }
1646    }
1647    return CurDAG->getTargetConstant(CNVal, NVT);
1648  }
1649
1650  // If the value operand is single-used, try to optimize it.
1651  if (Op == ADD && Val.hasOneUse()) {
1652    // Translate (atomic-load-add ptr (sub 0 x)) back to (lock-sub x).
1653    if (Val.getOpcode() == ISD::SUB && X86::isZeroNode(Val.getOperand(0))) {
1654      Op = SUB;
1655      return Val.getOperand(1);
1656    }
1657    // A special case for i16, which needs truncating as, in most cases, it's
1658    // promoted to i32. We will translate
1659    // (atomic-load-add (truncate (sub 0 x))) to (lock-sub (EXTRACT_SUBREG x))
1660    if (Val.getOpcode() == ISD::TRUNCATE && NVT == MVT::i16 &&
1661        Val.getOperand(0).getOpcode() == ISD::SUB &&
1662        X86::isZeroNode(Val.getOperand(0).getOperand(0))) {
1663      Op = SUB;
1664      Val = Val.getOperand(0);
1665      return CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl, NVT,
1666                                            Val.getOperand(1));
1667    }
1668  }
1669
1670  return Val;
1671}
1672
1673SDNode *X86DAGToDAGISel::SelectAtomicLoadArith(SDNode *Node, EVT NVT) {
1674  if (Node->hasAnyUseOfValue(0))
1675    return 0;
1676
1677  DebugLoc dl = Node->getDebugLoc();
1678
1679  // Optimize common patterns for __sync_or_and_fetch and similar arith
1680  // operations where the result is not used. This allows us to use the "lock"
1681  // version of the arithmetic instruction.
1682  SDValue Chain = Node->getOperand(0);
1683  SDValue Ptr = Node->getOperand(1);
1684  SDValue Val = Node->getOperand(2);
1685  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1686  if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1687    return 0;
1688
1689  // Which index into the table.
1690  enum AtomicOpc Op;
1691  switch (Node->getOpcode()) {
1692    default:
1693      return 0;
1694    case ISD::ATOMIC_LOAD_OR:
1695      Op = OR;
1696      break;
1697    case ISD::ATOMIC_LOAD_AND:
1698      Op = AND;
1699      break;
1700    case ISD::ATOMIC_LOAD_XOR:
1701      Op = XOR;
1702      break;
1703    case ISD::ATOMIC_LOAD_ADD:
1704      Op = ADD;
1705      break;
1706  }
1707
1708  Val = getAtomicLoadArithTargetConstant(CurDAG, dl, Op, NVT, Val);
1709  bool isUnOp = !Val.getNode();
1710  bool isCN = Val.getNode() && (Val.getOpcode() == ISD::TargetConstant);
1711
1712  unsigned Opc = 0;
1713  switch (NVT.getSimpleVT().SimpleTy) {
1714    default: return 0;
1715    case MVT::i8:
1716      if (isCN)
1717        Opc = AtomicOpcTbl[Op][ConstantI8];
1718      else
1719        Opc = AtomicOpcTbl[Op][I8];
1720      break;
1721    case MVT::i16:
1722      if (isCN) {
1723        if (immSext8(Val.getNode()))
1724          Opc = AtomicOpcTbl[Op][SextConstantI16];
1725        else
1726          Opc = AtomicOpcTbl[Op][ConstantI16];
1727      } else
1728        Opc = AtomicOpcTbl[Op][I16];
1729      break;
1730    case MVT::i32:
1731      if (isCN) {
1732        if (immSext8(Val.getNode()))
1733          Opc = AtomicOpcTbl[Op][SextConstantI32];
1734        else
1735          Opc = AtomicOpcTbl[Op][ConstantI32];
1736      } else
1737        Opc = AtomicOpcTbl[Op][I32];
1738      break;
1739    case MVT::i64:
1740      Opc = AtomicOpcTbl[Op][I64];
1741      if (isCN) {
1742        if (immSext8(Val.getNode()))
1743          Opc = AtomicOpcTbl[Op][SextConstantI64];
1744        else if (i64immSExt32(Val.getNode()))
1745          Opc = AtomicOpcTbl[Op][ConstantI64];
1746      }
1747      break;
1748  }
1749
1750  assert(Opc != 0 && "Invalid arith lock transform!");
1751
1752  SDValue Ret;
1753  SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1754                                                 dl, NVT), 0);
1755  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1756  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1757  if (isUnOp) {
1758    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain };
1759    Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops,
1760                                         array_lengthof(Ops)), 0);
1761  } else {
1762    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
1763    Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops,
1764                                         array_lengthof(Ops)), 0);
1765  }
1766  cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1767  SDValue RetVals[] = { Undef, Ret };
1768  return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1769}
1770
1771/// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has
1772/// any uses which require the SF or OF bits to be accurate.
1773static bool HasNoSignedComparisonUses(SDNode *N) {
1774  // Examine each user of the node.
1775  for (SDNode::use_iterator UI = N->use_begin(),
1776         UE = N->use_end(); UI != UE; ++UI) {
1777    // Only examine CopyToReg uses.
1778    if (UI->getOpcode() != ISD::CopyToReg)
1779      return false;
1780    // Only examine CopyToReg uses that copy to EFLAGS.
1781    if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
1782          X86::EFLAGS)
1783      return false;
1784    // Examine each user of the CopyToReg use.
1785    for (SDNode::use_iterator FlagUI = UI->use_begin(),
1786           FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
1787      // Only examine the Flag result.
1788      if (FlagUI.getUse().getResNo() != 1) continue;
1789      // Anything unusual: assume conservatively.
1790      if (!FlagUI->isMachineOpcode()) return false;
1791      // Examine the opcode of the user.
1792      switch (FlagUI->getMachineOpcode()) {
1793      // These comparisons don't treat the most significant bit specially.
1794      case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
1795      case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
1796      case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
1797      case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
1798      case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4:
1799      case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4:
1800      case X86::CMOVA16rr: case X86::CMOVA16rm:
1801      case X86::CMOVA32rr: case X86::CMOVA32rm:
1802      case X86::CMOVA64rr: case X86::CMOVA64rm:
1803      case X86::CMOVAE16rr: case X86::CMOVAE16rm:
1804      case X86::CMOVAE32rr: case X86::CMOVAE32rm:
1805      case X86::CMOVAE64rr: case X86::CMOVAE64rm:
1806      case X86::CMOVB16rr: case X86::CMOVB16rm:
1807      case X86::CMOVB32rr: case X86::CMOVB32rm:
1808      case X86::CMOVB64rr: case X86::CMOVB64rm:
1809      case X86::CMOVBE16rr: case X86::CMOVBE16rm:
1810      case X86::CMOVBE32rr: case X86::CMOVBE32rm:
1811      case X86::CMOVBE64rr: case X86::CMOVBE64rm:
1812      case X86::CMOVE16rr: case X86::CMOVE16rm:
1813      case X86::CMOVE32rr: case X86::CMOVE32rm:
1814      case X86::CMOVE64rr: case X86::CMOVE64rm:
1815      case X86::CMOVNE16rr: case X86::CMOVNE16rm:
1816      case X86::CMOVNE32rr: case X86::CMOVNE32rm:
1817      case X86::CMOVNE64rr: case X86::CMOVNE64rm:
1818      case X86::CMOVNP16rr: case X86::CMOVNP16rm:
1819      case X86::CMOVNP32rr: case X86::CMOVNP32rm:
1820      case X86::CMOVNP64rr: case X86::CMOVNP64rm:
1821      case X86::CMOVP16rr: case X86::CMOVP16rm:
1822      case X86::CMOVP32rr: case X86::CMOVP32rm:
1823      case X86::CMOVP64rr: case X86::CMOVP64rm:
1824        continue;
1825      // Anything else: assume conservatively.
1826      default: return false;
1827      }
1828    }
1829  }
1830  return true;
1831}
1832
1833/// isLoadIncOrDecStore - Check whether or not the chain ending in StoreNode
1834/// is suitable for doing the {load; increment or decrement; store} to modify
1835/// transformation.
1836static bool isLoadIncOrDecStore(StoreSDNode *StoreNode, unsigned Opc,
1837                                SDValue StoredVal, SelectionDAG *CurDAG,
1838                                LoadSDNode* &LoadNode, SDValue &InputChain) {
1839
1840  // is the value stored the result of a DEC or INC?
1841  if (!(Opc == X86ISD::DEC || Opc == X86ISD::INC)) return false;
1842
1843  // is the stored value result 0 of the load?
1844  if (StoredVal.getResNo() != 0) return false;
1845
1846  // are there other uses of the loaded value than the inc or dec?
1847  if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false;
1848
1849  // is the store non-extending and non-indexed?
1850  if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
1851    return false;
1852
1853  SDValue Load = StoredVal->getOperand(0);
1854  // Is the stored value a non-extending and non-indexed load?
1855  if (!ISD::isNormalLoad(Load.getNode())) return false;
1856
1857  // Return LoadNode by reference.
1858  LoadNode = cast<LoadSDNode>(Load);
1859  // is the size of the value one that we can handle? (i.e. 64, 32, 16, or 8)
1860  EVT LdVT = LoadNode->getMemoryVT();
1861  if (LdVT != MVT::i64 && LdVT != MVT::i32 && LdVT != MVT::i16 &&
1862      LdVT != MVT::i8)
1863    return false;
1864
1865  // Is store the only read of the loaded value?
1866  if (!Load.hasOneUse())
1867    return false;
1868
1869  // Is the address of the store the same as the load?
1870  if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
1871      LoadNode->getOffset() != StoreNode->getOffset())
1872    return false;
1873
1874  // Check if the chain is produced by the load or is a TokenFactor with
1875  // the load output chain as an operand. Return InputChain by reference.
1876  SDValue Chain = StoreNode->getChain();
1877
1878  bool ChainCheck = false;
1879  if (Chain == Load.getValue(1)) {
1880    ChainCheck = true;
1881    InputChain = LoadNode->getChain();
1882  } else if (Chain.getOpcode() == ISD::TokenFactor) {
1883    SmallVector<SDValue, 4> ChainOps;
1884    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
1885      SDValue Op = Chain.getOperand(i);
1886      if (Op == Load.getValue(1)) {
1887        ChainCheck = true;
1888        continue;
1889      }
1890
1891      // Make sure using Op as part of the chain would not cause a cycle here.
1892      // In theory, we could check whether the chain node is a predecessor of
1893      // the load. But that can be very expensive. Instead visit the uses and
1894      // make sure they all have smaller node id than the load.
1895      int LoadId = LoadNode->getNodeId();
1896      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
1897             UE = UI->use_end(); UI != UE; ++UI) {
1898        if (UI.getUse().getResNo() != 0)
1899          continue;
1900        if (UI->getNodeId() > LoadId)
1901          return false;
1902      }
1903
1904      ChainOps.push_back(Op);
1905    }
1906
1907    if (ChainCheck)
1908      // Make a new TokenFactor with all the other input chains except
1909      // for the load.
1910      InputChain = CurDAG->getNode(ISD::TokenFactor, Chain.getDebugLoc(),
1911                                   MVT::Other, &ChainOps[0], ChainOps.size());
1912  }
1913  if (!ChainCheck)
1914    return false;
1915
1916  return true;
1917}
1918
1919/// getFusedLdStOpcode - Get the appropriate X86 opcode for an in memory
1920/// increment or decrement. Opc should be X86ISD::DEC or X86ISD::INC.
1921static unsigned getFusedLdStOpcode(EVT &LdVT, unsigned Opc) {
1922  if (Opc == X86ISD::DEC) {
1923    if (LdVT == MVT::i64) return X86::DEC64m;
1924    if (LdVT == MVT::i32) return X86::DEC32m;
1925    if (LdVT == MVT::i16) return X86::DEC16m;
1926    if (LdVT == MVT::i8)  return X86::DEC8m;
1927  } else {
1928    assert(Opc == X86ISD::INC && "unrecognized opcode");
1929    if (LdVT == MVT::i64) return X86::INC64m;
1930    if (LdVT == MVT::i32) return X86::INC32m;
1931    if (LdVT == MVT::i16) return X86::INC16m;
1932    if (LdVT == MVT::i8)  return X86::INC8m;
1933  }
1934  llvm_unreachable("unrecognized size for LdVT");
1935}
1936
1937/// SelectGather - Customized ISel for GATHER operations.
1938///
1939SDNode *X86DAGToDAGISel::SelectGather(SDNode *Node, unsigned Opc) {
1940  // Operands of Gather: VSrc, Base, VIdx, VMask, Scale
1941  SDValue Chain = Node->getOperand(0);
1942  SDValue VSrc = Node->getOperand(2);
1943  SDValue Base = Node->getOperand(3);
1944  SDValue VIdx = Node->getOperand(4);
1945  SDValue VMask = Node->getOperand(5);
1946  ConstantSDNode *Scale = dyn_cast<ConstantSDNode>(Node->getOperand(6));
1947  if (!Scale)
1948    return 0;
1949
1950  SDVTList VTs = CurDAG->getVTList(VSrc.getValueType(), VSrc.getValueType(),
1951                                   MVT::Other);
1952
1953  // Memory Operands: Base, Scale, Index, Disp, Segment
1954  SDValue Disp = CurDAG->getTargetConstant(0, MVT::i32);
1955  SDValue Segment = CurDAG->getRegister(0, MVT::i32);
1956  const SDValue Ops[] = { VSrc, Base, getI8Imm(Scale->getSExtValue()), VIdx,
1957                          Disp, Segment, VMask, Chain};
1958  SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(),
1959                                           VTs, Ops, array_lengthof(Ops));
1960  // Node has 2 outputs: VDst and MVT::Other.
1961  // ResNode has 3 outputs: VDst, VMask_wb, and MVT::Other.
1962  // We replace VDst of Node with VDst of ResNode, and Other of Node with Other
1963  // of ResNode.
1964  ReplaceUses(SDValue(Node, 0), SDValue(ResNode, 0));
1965  ReplaceUses(SDValue(Node, 1), SDValue(ResNode, 2));
1966  return ResNode;
1967}
1968
1969SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
1970  EVT NVT = Node->getValueType(0);
1971  unsigned Opc, MOpc;
1972  unsigned Opcode = Node->getOpcode();
1973  DebugLoc dl = Node->getDebugLoc();
1974
1975  DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n');
1976
1977  if (Node->isMachineOpcode()) {
1978    DEBUG(dbgs() << "== ";  Node->dump(CurDAG); dbgs() << '\n');
1979    return NULL;   // Already selected.
1980  }
1981
1982  switch (Opcode) {
1983  default: break;
1984  case ISD::INTRINSIC_W_CHAIN: {
1985    unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
1986    switch (IntNo) {
1987    default: break;
1988    case Intrinsic::x86_avx2_gather_d_pd:
1989    case Intrinsic::x86_avx2_gather_d_pd_256:
1990    case Intrinsic::x86_avx2_gather_q_pd:
1991    case Intrinsic::x86_avx2_gather_q_pd_256:
1992    case Intrinsic::x86_avx2_gather_d_ps:
1993    case Intrinsic::x86_avx2_gather_d_ps_256:
1994    case Intrinsic::x86_avx2_gather_q_ps:
1995    case Intrinsic::x86_avx2_gather_q_ps_256:
1996    case Intrinsic::x86_avx2_gather_d_q:
1997    case Intrinsic::x86_avx2_gather_d_q_256:
1998    case Intrinsic::x86_avx2_gather_q_q:
1999    case Intrinsic::x86_avx2_gather_q_q_256:
2000    case Intrinsic::x86_avx2_gather_d_d:
2001    case Intrinsic::x86_avx2_gather_d_d_256:
2002    case Intrinsic::x86_avx2_gather_q_d:
2003    case Intrinsic::x86_avx2_gather_q_d_256: {
2004      unsigned Opc;
2005      switch (IntNo) {
2006      default: llvm_unreachable("Impossible intrinsic");
2007      case Intrinsic::x86_avx2_gather_d_pd:     Opc = X86::VGATHERDPDrm;  break;
2008      case Intrinsic::x86_avx2_gather_d_pd_256: Opc = X86::VGATHERDPDYrm; break;
2009      case Intrinsic::x86_avx2_gather_q_pd:     Opc = X86::VGATHERQPDrm;  break;
2010      case Intrinsic::x86_avx2_gather_q_pd_256: Opc = X86::VGATHERQPDYrm; break;
2011      case Intrinsic::x86_avx2_gather_d_ps:     Opc = X86::VGATHERDPSrm;  break;
2012      case Intrinsic::x86_avx2_gather_d_ps_256: Opc = X86::VGATHERDPSYrm; break;
2013      case Intrinsic::x86_avx2_gather_q_ps:     Opc = X86::VGATHERQPSrm;  break;
2014      case Intrinsic::x86_avx2_gather_q_ps_256: Opc = X86::VGATHERQPSYrm; break;
2015      case Intrinsic::x86_avx2_gather_d_q:      Opc = X86::VPGATHERDQrm;  break;
2016      case Intrinsic::x86_avx2_gather_d_q_256:  Opc = X86::VPGATHERDQYrm; break;
2017      case Intrinsic::x86_avx2_gather_q_q:      Opc = X86::VPGATHERQQrm;  break;
2018      case Intrinsic::x86_avx2_gather_q_q_256:  Opc = X86::VPGATHERQQYrm; break;
2019      case Intrinsic::x86_avx2_gather_d_d:      Opc = X86::VPGATHERDDrm;  break;
2020      case Intrinsic::x86_avx2_gather_d_d_256:  Opc = X86::VPGATHERDDYrm; break;
2021      case Intrinsic::x86_avx2_gather_q_d:      Opc = X86::VPGATHERQDrm;  break;
2022      case Intrinsic::x86_avx2_gather_q_d_256:  Opc = X86::VPGATHERQDYrm; break;
2023      }
2024      SDNode *RetVal = SelectGather(Node, Opc);
2025      if (RetVal)
2026        // We already called ReplaceUses inside SelectGather.
2027        return NULL;
2028      break;
2029    }
2030    }
2031    break;
2032  }
2033  case X86ISD::GlobalBaseReg:
2034    return getGlobalBaseReg();
2035
2036
2037  case X86ISD::ATOMOR64_DAG:
2038  case X86ISD::ATOMXOR64_DAG:
2039  case X86ISD::ATOMADD64_DAG:
2040  case X86ISD::ATOMSUB64_DAG:
2041  case X86ISD::ATOMNAND64_DAG:
2042  case X86ISD::ATOMAND64_DAG:
2043  case X86ISD::ATOMMAX64_DAG:
2044  case X86ISD::ATOMMIN64_DAG:
2045  case X86ISD::ATOMUMAX64_DAG:
2046  case X86ISD::ATOMUMIN64_DAG:
2047  case X86ISD::ATOMSWAP64_DAG: {
2048    unsigned Opc;
2049    switch (Opcode) {
2050    default: llvm_unreachable("Impossible opcode");
2051    case X86ISD::ATOMOR64_DAG:   Opc = X86::ATOMOR6432;   break;
2052    case X86ISD::ATOMXOR64_DAG:  Opc = X86::ATOMXOR6432;  break;
2053    case X86ISD::ATOMADD64_DAG:  Opc = X86::ATOMADD6432;  break;
2054    case X86ISD::ATOMSUB64_DAG:  Opc = X86::ATOMSUB6432;  break;
2055    case X86ISD::ATOMNAND64_DAG: Opc = X86::ATOMNAND6432; break;
2056    case X86ISD::ATOMAND64_DAG:  Opc = X86::ATOMAND6432;  break;
2057    case X86ISD::ATOMMAX64_DAG:  Opc = X86::ATOMMAX6432;  break;
2058    case X86ISD::ATOMMIN64_DAG:  Opc = X86::ATOMMIN6432;  break;
2059    case X86ISD::ATOMUMAX64_DAG: Opc = X86::ATOMUMAX6432; break;
2060    case X86ISD::ATOMUMIN64_DAG: Opc = X86::ATOMUMIN6432; break;
2061    case X86ISD::ATOMSWAP64_DAG: Opc = X86::ATOMSWAP6432; break;
2062    }
2063    SDNode *RetVal = SelectAtomic64(Node, Opc);
2064    if (RetVal)
2065      return RetVal;
2066    break;
2067  }
2068
2069  case ISD::ATOMIC_LOAD_XOR:
2070  case ISD::ATOMIC_LOAD_AND:
2071  case ISD::ATOMIC_LOAD_OR:
2072  case ISD::ATOMIC_LOAD_ADD: {
2073    SDNode *RetVal = SelectAtomicLoadArith(Node, NVT);
2074    if (RetVal)
2075      return RetVal;
2076    break;
2077  }
2078  case ISD::AND:
2079  case ISD::OR:
2080  case ISD::XOR: {
2081    // For operations of the form (x << C1) op C2, check if we can use a smaller
2082    // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
2083    SDValue N0 = Node->getOperand(0);
2084    SDValue N1 = Node->getOperand(1);
2085
2086    if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse())
2087      break;
2088
2089    // i8 is unshrinkable, i16 should be promoted to i32.
2090    if (NVT != MVT::i32 && NVT != MVT::i64)
2091      break;
2092
2093    ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
2094    ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
2095    if (!Cst || !ShlCst)
2096      break;
2097
2098    int64_t Val = Cst->getSExtValue();
2099    uint64_t ShlVal = ShlCst->getZExtValue();
2100
2101    // Make sure that we don't change the operation by removing bits.
2102    // This only matters for OR and XOR, AND is unaffected.
2103    uint64_t RemovedBitsMask = (1ULL << ShlVal) - 1;
2104    if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0)
2105      break;
2106
2107    unsigned ShlOp, Op;
2108    EVT CstVT = NVT;
2109
2110    // Check the minimum bitwidth for the new constant.
2111    // TODO: AND32ri is the same as AND64ri32 with zext imm.
2112    // TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr
2113    // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
2114    if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal))
2115      CstVT = MVT::i8;
2116    else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal))
2117      CstVT = MVT::i32;
2118
2119    // Bail if there is no smaller encoding.
2120    if (NVT == CstVT)
2121      break;
2122
2123    switch (NVT.getSimpleVT().SimpleTy) {
2124    default: llvm_unreachable("Unsupported VT!");
2125    case MVT::i32:
2126      assert(CstVT == MVT::i8);
2127      ShlOp = X86::SHL32ri;
2128
2129      switch (Opcode) {
2130      default: llvm_unreachable("Impossible opcode");
2131      case ISD::AND: Op = X86::AND32ri8; break;
2132      case ISD::OR:  Op =  X86::OR32ri8; break;
2133      case ISD::XOR: Op = X86::XOR32ri8; break;
2134      }
2135      break;
2136    case MVT::i64:
2137      assert(CstVT == MVT::i8 || CstVT == MVT::i32);
2138      ShlOp = X86::SHL64ri;
2139
2140      switch (Opcode) {
2141      default: llvm_unreachable("Impossible opcode");
2142      case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break;
2143      case ISD::OR:  Op = CstVT==MVT::i8?  X86::OR64ri8 :  X86::OR64ri32; break;
2144      case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break;
2145      }
2146      break;
2147    }
2148
2149    // Emit the smaller op and the shift.
2150    SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, CstVT);
2151    SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst);
2152    return CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0),
2153                                getI8Imm(ShlVal));
2154  }
2155  case X86ISD::UMUL: {
2156    SDValue N0 = Node->getOperand(0);
2157    SDValue N1 = Node->getOperand(1);
2158
2159    unsigned LoReg;
2160    switch (NVT.getSimpleVT().SimpleTy) {
2161    default: llvm_unreachable("Unsupported VT!");
2162    case MVT::i8:  LoReg = X86::AL;  Opc = X86::MUL8r; break;
2163    case MVT::i16: LoReg = X86::AX;  Opc = X86::MUL16r; break;
2164    case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break;
2165    case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break;
2166    }
2167
2168    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
2169                                          N0, SDValue()).getValue(1);
2170
2171    SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
2172    SDValue Ops[] = {N1, InFlag};
2173    SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops, 2);
2174
2175    ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
2176    ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1));
2177    ReplaceUses(SDValue(Node, 2), SDValue(CNode, 2));
2178    return NULL;
2179  }
2180
2181  case ISD::SMUL_LOHI:
2182  case ISD::UMUL_LOHI: {
2183    SDValue N0 = Node->getOperand(0);
2184    SDValue N1 = Node->getOperand(1);
2185
2186    bool isSigned = Opcode == ISD::SMUL_LOHI;
2187    bool hasBMI2 = Subtarget->hasBMI2();
2188    if (!isSigned) {
2189      switch (NVT.getSimpleVT().SimpleTy) {
2190      default: llvm_unreachable("Unsupported VT!");
2191      case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
2192      case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
2193      case MVT::i32: Opc = hasBMI2 ? X86::MULX32rr : X86::MUL32r;
2194                     MOpc = hasBMI2 ? X86::MULX32rm : X86::MUL32m; break;
2195      case MVT::i64: Opc = hasBMI2 ? X86::MULX64rr : X86::MUL64r;
2196                     MOpc = hasBMI2 ? X86::MULX64rm : X86::MUL64m; break;
2197      }
2198    } else {
2199      switch (NVT.getSimpleVT().SimpleTy) {
2200      default: llvm_unreachable("Unsupported VT!");
2201      case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
2202      case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
2203      case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
2204      case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
2205      }
2206    }
2207
2208    unsigned SrcReg, LoReg, HiReg;
2209    switch (Opc) {
2210    default: llvm_unreachable("Unknown MUL opcode!");
2211    case X86::IMUL8r:
2212    case X86::MUL8r:
2213      SrcReg = LoReg = X86::AL; HiReg = X86::AH;
2214      break;
2215    case X86::IMUL16r:
2216    case X86::MUL16r:
2217      SrcReg = LoReg = X86::AX; HiReg = X86::DX;
2218      break;
2219    case X86::IMUL32r:
2220    case X86::MUL32r:
2221      SrcReg = LoReg = X86::EAX; HiReg = X86::EDX;
2222      break;
2223    case X86::IMUL64r:
2224    case X86::MUL64r:
2225      SrcReg = LoReg = X86::RAX; HiReg = X86::RDX;
2226      break;
2227    case X86::MULX32rr:
2228      SrcReg = X86::EDX; LoReg = HiReg = 0;
2229      break;
2230    case X86::MULX64rr:
2231      SrcReg = X86::RDX; LoReg = HiReg = 0;
2232      break;
2233    }
2234
2235    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
2236    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2237    // Multiply is commmutative.
2238    if (!foldedLoad) {
2239      foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2240      if (foldedLoad)
2241        std::swap(N0, N1);
2242    }
2243
2244    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, SrcReg,
2245                                          N0, SDValue()).getValue(1);
2246    SDValue ResHi, ResLo;
2247
2248    if (foldedLoad) {
2249      SDValue Chain;
2250      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
2251                        InFlag };
2252      if (MOpc == X86::MULX32rm || MOpc == X86::MULX64rm) {
2253        SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other, MVT::Glue);
2254        SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops,
2255                                               array_lengthof(Ops));
2256        ResHi = SDValue(CNode, 0);
2257        ResLo = SDValue(CNode, 1);
2258        Chain = SDValue(CNode, 2);
2259        InFlag = SDValue(CNode, 3);
2260      } else {
2261        SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
2262        SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops,
2263                                               array_lengthof(Ops));
2264        Chain = SDValue(CNode, 0);
2265        InFlag = SDValue(CNode, 1);
2266      }
2267
2268      // Update the chain.
2269      ReplaceUses(N1.getValue(1), Chain);
2270    } else {
2271      SDValue Ops[] = { N1, InFlag };
2272      if (Opc == X86::MULX32rr || Opc == X86::MULX64rr) {
2273        SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Glue);
2274        SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops,
2275                                               array_lengthof(Ops));
2276        ResHi = SDValue(CNode, 0);
2277        ResLo = SDValue(CNode, 1);
2278        InFlag = SDValue(CNode, 2);
2279      } else {
2280        SDVTList VTs = CurDAG->getVTList(MVT::Glue);
2281        SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops,
2282                                               array_lengthof(Ops));
2283        InFlag = SDValue(CNode, 0);
2284      }
2285    }
2286
2287    // Prevent use of AH in a REX instruction by referencing AX instead.
2288    if (HiReg == X86::AH && Subtarget->is64Bit() &&
2289        !SDValue(Node, 1).use_empty()) {
2290      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2291                                              X86::AX, MVT::i16, InFlag);
2292      InFlag = Result.getValue(2);
2293      // Get the low part if needed. Don't use getCopyFromReg for aliasing
2294      // registers.
2295      if (!SDValue(Node, 0).use_empty())
2296        ReplaceUses(SDValue(Node, 1),
2297          CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2298
2299      // Shift AX down 8 bits.
2300      Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
2301                                              Result,
2302                                     CurDAG->getTargetConstant(8, MVT::i8)), 0);
2303      // Then truncate it down to i8.
2304      ReplaceUses(SDValue(Node, 1),
2305        CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2306    }
2307    // Copy the low half of the result, if it is needed.
2308    if (!SDValue(Node, 0).use_empty()) {
2309      if (ResLo.getNode() == 0) {
2310        assert(LoReg && "Register for low half is not defined!");
2311        ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg, NVT,
2312                                       InFlag);
2313        InFlag = ResLo.getValue(2);
2314      }
2315      ReplaceUses(SDValue(Node, 0), ResLo);
2316      DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG); dbgs() << '\n');
2317    }
2318    // Copy the high half of the result, if it is needed.
2319    if (!SDValue(Node, 1).use_empty()) {
2320      if (ResHi.getNode() == 0) {
2321        assert(HiReg && "Register for high half is not defined!");
2322        ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg, NVT,
2323                                       InFlag);
2324        InFlag = ResHi.getValue(2);
2325      }
2326      ReplaceUses(SDValue(Node, 1), ResHi);
2327      DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG); dbgs() << '\n');
2328    }
2329
2330    return NULL;
2331  }
2332
2333  case ISD::SDIVREM:
2334  case ISD::UDIVREM: {
2335    SDValue N0 = Node->getOperand(0);
2336    SDValue N1 = Node->getOperand(1);
2337
2338    bool isSigned = Opcode == ISD::SDIVREM;
2339    if (!isSigned) {
2340      switch (NVT.getSimpleVT().SimpleTy) {
2341      default: llvm_unreachable("Unsupported VT!");
2342      case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
2343      case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
2344      case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
2345      case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
2346      }
2347    } else {
2348      switch (NVT.getSimpleVT().SimpleTy) {
2349      default: llvm_unreachable("Unsupported VT!");
2350      case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
2351      case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
2352      case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
2353      case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
2354      }
2355    }
2356
2357    unsigned LoReg, HiReg, ClrReg;
2358    unsigned ClrOpcode, SExtOpcode;
2359    switch (NVT.getSimpleVT().SimpleTy) {
2360    default: llvm_unreachable("Unsupported VT!");
2361    case MVT::i8:
2362      LoReg = X86::AL;  ClrReg = HiReg = X86::AH;
2363      ClrOpcode  = 0;
2364      SExtOpcode = X86::CBW;
2365      break;
2366    case MVT::i16:
2367      LoReg = X86::AX;  HiReg = X86::DX;
2368      ClrOpcode  = X86::MOV16r0; ClrReg = X86::DX;
2369      SExtOpcode = X86::CWD;
2370      break;
2371    case MVT::i32:
2372      LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
2373      ClrOpcode  = X86::MOV32r0;
2374      SExtOpcode = X86::CDQ;
2375      break;
2376    case MVT::i64:
2377      LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
2378      ClrOpcode  = X86::MOV64r0;
2379      SExtOpcode = X86::CQO;
2380      break;
2381    }
2382
2383    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
2384    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2385    bool signBitIsZero = CurDAG->SignBitIsZero(N0);
2386
2387    SDValue InFlag;
2388    if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
2389      // Special case for div8, just use a move with zero extension to AX to
2390      // clear the upper 8 bits (AH).
2391      SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
2392      if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
2393        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
2394        Move =
2395          SDValue(CurDAG->getMachineNode(X86::MOVZX32rm8, dl, MVT::i32,
2396                                         MVT::Other, Ops,
2397                                         array_lengthof(Ops)), 0);
2398        Chain = Move.getValue(1);
2399        ReplaceUses(N0.getValue(1), Chain);
2400      } else {
2401        Move =
2402          SDValue(CurDAG->getMachineNode(X86::MOVZX32rr8, dl, MVT::i32, N0),0);
2403        Chain = CurDAG->getEntryNode();
2404      }
2405      Chain  = CurDAG->getCopyToReg(Chain, dl, X86::EAX, Move, SDValue());
2406      InFlag = Chain.getValue(1);
2407    } else {
2408      InFlag =
2409        CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
2410                             LoReg, N0, SDValue()).getValue(1);
2411      if (isSigned && !signBitIsZero) {
2412        // Sign extend the low part into the high part.
2413        InFlag =
2414          SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
2415      } else {
2416        // Zero out the high part, effectively zero extending the input.
2417        SDValue ClrNode =
2418          SDValue(CurDAG->getMachineNode(ClrOpcode, dl, NVT), 0);
2419        InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
2420                                      ClrNode, InFlag).getValue(1);
2421      }
2422    }
2423
2424    if (foldedLoad) {
2425      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
2426                        InFlag };
2427      SDNode *CNode =
2428        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops,
2429                               array_lengthof(Ops));
2430      InFlag = SDValue(CNode, 1);
2431      // Update the chain.
2432      ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
2433    } else {
2434      InFlag =
2435        SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0);
2436    }
2437
2438    // Prevent use of AH in a REX instruction by referencing AX instead.
2439    // Shift it down 8 bits.
2440    if (HiReg == X86::AH && Subtarget->is64Bit() &&
2441        !SDValue(Node, 1).use_empty()) {
2442      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2443                                              X86::AX, MVT::i16, InFlag);
2444      InFlag = Result.getValue(2);
2445
2446      // If we also need AL (the quotient), get it by extracting a subreg from
2447      // Result. The fast register allocator does not like multiple CopyFromReg
2448      // nodes using aliasing registers.
2449      if (!SDValue(Node, 0).use_empty())
2450        ReplaceUses(SDValue(Node, 0),
2451          CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2452
2453      // Shift AX right by 8 bits instead of using AH.
2454      Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
2455                                         Result,
2456                                         CurDAG->getTargetConstant(8, MVT::i8)),
2457                       0);
2458      ReplaceUses(SDValue(Node, 1),
2459        CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2460    }
2461    // Copy the division (low) result, if it is needed.
2462    if (!SDValue(Node, 0).use_empty()) {
2463      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2464                                                LoReg, NVT, InFlag);
2465      InFlag = Result.getValue(2);
2466      ReplaceUses(SDValue(Node, 0), Result);
2467      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2468    }
2469    // Copy the remainder (high) result, if it is needed.
2470    if (!SDValue(Node, 1).use_empty()) {
2471      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2472                                              HiReg, NVT, InFlag);
2473      InFlag = Result.getValue(2);
2474      ReplaceUses(SDValue(Node, 1), Result);
2475      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2476    }
2477    return NULL;
2478  }
2479
2480  case X86ISD::CMP:
2481  case X86ISD::SUB: {
2482    // Sometimes a SUB is used to perform comparison.
2483    if (Opcode == X86ISD::SUB && Node->hasAnyUseOfValue(0))
2484      // This node is not a CMP.
2485      break;
2486    SDValue N0 = Node->getOperand(0);
2487    SDValue N1 = Node->getOperand(1);
2488
2489    // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
2490    // use a smaller encoding.
2491    if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
2492        HasNoSignedComparisonUses(Node))
2493      // Look past the truncate if CMP is the only use of it.
2494      N0 = N0.getOperand(0);
2495    if ((N0.getNode()->getOpcode() == ISD::AND ||
2496         (N0.getResNo() == 0 && N0.getNode()->getOpcode() == X86ISD::AND)) &&
2497        N0.getNode()->hasOneUse() &&
2498        N0.getValueType() != MVT::i8 &&
2499        X86::isZeroNode(N1)) {
2500      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
2501      if (!C) break;
2502
2503      // For example, convert "testl %eax, $8" to "testb %al, $8"
2504      if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
2505          (!(C->getZExtValue() & 0x80) ||
2506           HasNoSignedComparisonUses(Node))) {
2507        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8);
2508        SDValue Reg = N0.getNode()->getOperand(0);
2509
2510        // On x86-32, only the ABCD registers have 8-bit subregisters.
2511        if (!Subtarget->is64Bit()) {
2512          const TargetRegisterClass *TRC;
2513          switch (N0.getValueType().getSimpleVT().SimpleTy) {
2514          case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2515          case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2516          default: llvm_unreachable("Unsupported TEST operand type!");
2517          }
2518          SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2519          Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2520                                               Reg.getValueType(), Reg, RC), 0);
2521        }
2522
2523        // Extract the l-register.
2524        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl,
2525                                                        MVT::i8, Reg);
2526
2527        // Emit a testb.
2528        return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32, Subreg, Imm);
2529      }
2530
2531      // For example, "testl %eax, $2048" to "testb %ah, $8".
2532      if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 &&
2533          (!(C->getZExtValue() & 0x8000) ||
2534           HasNoSignedComparisonUses(Node))) {
2535        // Shift the immediate right by 8 bits.
2536        SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
2537                                                       MVT::i8);
2538        SDValue Reg = N0.getNode()->getOperand(0);
2539
2540        // Put the value in an ABCD register.
2541        const TargetRegisterClass *TRC;
2542        switch (N0.getValueType().getSimpleVT().SimpleTy) {
2543        case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
2544        case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2545        case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2546        default: llvm_unreachable("Unsupported TEST operand type!");
2547        }
2548        SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2549        Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2550                                             Reg.getValueType(), Reg, RC), 0);
2551
2552        // Extract the h-register.
2553        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl,
2554                                                        MVT::i8, Reg);
2555
2556        // Emit a testb.  The EXTRACT_SUBREG becomes a COPY that can only
2557        // target GR8_NOREX registers, so make sure the register class is
2558        // forced.
2559        return CurDAG->getMachineNode(X86::TEST8ri_NOREX, dl, MVT::i32,
2560                                      Subreg, ShiftedImm);
2561      }
2562
2563      // For example, "testl %eax, $32776" to "testw %ax, $32776".
2564      if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
2565          N0.getValueType() != MVT::i16 &&
2566          (!(C->getZExtValue() & 0x8000) ||
2567           HasNoSignedComparisonUses(Node))) {
2568        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16);
2569        SDValue Reg = N0.getNode()->getOperand(0);
2570
2571        // Extract the 16-bit subregister.
2572        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl,
2573                                                        MVT::i16, Reg);
2574
2575        // Emit a testw.
2576        return CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32, Subreg, Imm);
2577      }
2578
2579      // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
2580      if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
2581          N0.getValueType() == MVT::i64 &&
2582          (!(C->getZExtValue() & 0x80000000) ||
2583           HasNoSignedComparisonUses(Node))) {
2584        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
2585        SDValue Reg = N0.getNode()->getOperand(0);
2586
2587        // Extract the 32-bit subregister.
2588        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl,
2589                                                        MVT::i32, Reg);
2590
2591        // Emit a testl.
2592        return CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32, Subreg, Imm);
2593      }
2594    }
2595    break;
2596  }
2597  case ISD::STORE: {
2598    // Change a chain of {load; incr or dec; store} of the same value into
2599    // a simple increment or decrement through memory of that value, if the
2600    // uses of the modified value and its address are suitable.
2601    // The DEC64m tablegen pattern is currently not able to match the case where
2602    // the EFLAGS on the original DEC are used. (This also applies to
2603    // {INC,DEC}X{64,32,16,8}.)
2604    // We'll need to improve tablegen to allow flags to be transferred from a
2605    // node in the pattern to the result node.  probably with a new keyword
2606    // for example, we have this
2607    // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2608    //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2609    //   (implicit EFLAGS)]>;
2610    // but maybe need something like this
2611    // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2612    //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2613    //   (transferrable EFLAGS)]>;
2614
2615    StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
2616    SDValue StoredVal = StoreNode->getOperand(1);
2617    unsigned Opc = StoredVal->getOpcode();
2618
2619    LoadSDNode *LoadNode = 0;
2620    SDValue InputChain;
2621    if (!isLoadIncOrDecStore(StoreNode, Opc, StoredVal, CurDAG,
2622                             LoadNode, InputChain))
2623      break;
2624
2625    SDValue Base, Scale, Index, Disp, Segment;
2626    if (!SelectAddr(LoadNode, LoadNode->getBasePtr(),
2627                    Base, Scale, Index, Disp, Segment))
2628      break;
2629
2630    MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(2);
2631    MemOp[0] = StoreNode->getMemOperand();
2632    MemOp[1] = LoadNode->getMemOperand();
2633    const SDValue Ops[] = { Base, Scale, Index, Disp, Segment, InputChain };
2634    EVT LdVT = LoadNode->getMemoryVT();
2635    unsigned newOpc = getFusedLdStOpcode(LdVT, Opc);
2636    MachineSDNode *Result = CurDAG->getMachineNode(newOpc,
2637                                                   Node->getDebugLoc(),
2638                                                   MVT::i32, MVT::Other, Ops,
2639                                                   array_lengthof(Ops));
2640    Result->setMemRefs(MemOp, MemOp + 2);
2641
2642    ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
2643    ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
2644
2645    return Result;
2646  }
2647
2648  // FIXME: Custom handling because TableGen doesn't support multiple implicit
2649  // defs in an instruction pattern
2650  case X86ISD::PCMPESTRI: {
2651    SDValue N0 = Node->getOperand(0);
2652    SDValue N1 = Node->getOperand(1);
2653    SDValue N2 = Node->getOperand(2);
2654    SDValue N3 = Node->getOperand(3);
2655    SDValue N4 = Node->getOperand(4);
2656
2657    // Make sure last argument is a constant
2658    ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N4);
2659    if (!Cst)
2660      break;
2661
2662    uint64_t Imm = Cst->getZExtValue();
2663
2664    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
2665                                          X86::EAX, N1, SDValue()).getValue(1);
2666    InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EDX,
2667                                  N3, InFlag).getValue(1);
2668
2669    SDValue Ops[] = { N0, N2, getI8Imm(Imm), InFlag };
2670    unsigned Opc = Subtarget->hasAVX() ? X86::VPCMPESTRIrr :
2671                                         X86::PCMPESTRIrr;
2672    InFlag = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Ops,
2673                                            array_lengthof(Ops)), 0);
2674
2675    if (!SDValue(Node, 0).use_empty()) {
2676      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2677                                              X86::ECX, NVT, InFlag);
2678      InFlag = Result.getValue(2);
2679      ReplaceUses(SDValue(Node, 0), Result);
2680    }
2681    if (!SDValue(Node, 1).use_empty()) {
2682      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2683                                              X86::EFLAGS, NVT, InFlag);
2684      InFlag = Result.getValue(2);
2685      ReplaceUses(SDValue(Node, 1), Result);
2686    }
2687
2688    return NULL;
2689  }
2690
2691  // FIXME: Custom handling because TableGen doesn't support multiple implicit
2692  // defs in an instruction pattern
2693  case X86ISD::PCMPISTRI: {
2694    SDValue N0 = Node->getOperand(0);
2695    SDValue N1 = Node->getOperand(1);
2696    SDValue N2 = Node->getOperand(2);
2697
2698    // Make sure last argument is a constant
2699    ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N2);
2700    if (!Cst)
2701      break;
2702
2703    uint64_t Imm = Cst->getZExtValue();
2704
2705    SDValue Ops[] = { N0, N1, getI8Imm(Imm) };
2706    unsigned Opc = Subtarget->hasAVX() ? X86::VPCMPISTRIrr :
2707                                         X86::PCMPISTRIrr;
2708    SDValue InFlag = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Ops,
2709                                                    array_lengthof(Ops)), 0);
2710
2711    if (!SDValue(Node, 0).use_empty()) {
2712      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2713                                              X86::ECX, NVT, InFlag);
2714      InFlag = Result.getValue(2);
2715      ReplaceUses(SDValue(Node, 0), Result);
2716    }
2717    if (!SDValue(Node, 1).use_empty()) {
2718      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2719                                              X86::EFLAGS, NVT, InFlag);
2720      InFlag = Result.getValue(2);
2721      ReplaceUses(SDValue(Node, 1), Result);
2722    }
2723
2724    return NULL;
2725  }
2726  }
2727
2728  SDNode *ResNode = SelectCode(Node);
2729
2730  DEBUG(dbgs() << "=> ";
2731        if (ResNode == NULL || ResNode == Node)
2732          Node->dump(CurDAG);
2733        else
2734          ResNode->dump(CurDAG);
2735        dbgs() << '\n');
2736
2737  return ResNode;
2738}
2739
2740bool X86DAGToDAGISel::
2741SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
2742                             std::vector<SDValue> &OutOps) {
2743  SDValue Op0, Op1, Op2, Op3, Op4;
2744  switch (ConstraintCode) {
2745  case 'o':   // offsetable        ??
2746  case 'v':   // not offsetable    ??
2747  default: return true;
2748  case 'm':   // memory
2749    if (!SelectAddr(0, Op, Op0, Op1, Op2, Op3, Op4))
2750      return true;
2751    break;
2752  }
2753
2754  OutOps.push_back(Op0);
2755  OutOps.push_back(Op1);
2756  OutOps.push_back(Op2);
2757  OutOps.push_back(Op3);
2758  OutOps.push_back(Op4);
2759  return false;
2760}
2761
2762/// createX86ISelDag - This pass converts a legalized DAG into a
2763/// X86-specific DAG, ready for instruction scheduling.
2764///
2765FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
2766                                     CodeGenOpt::Level OptLevel) {
2767  return new X86DAGToDAGISel(TM, OptLevel);
2768}
2769