X86ISelDAGToDAG.cpp revision 884c70c912b699a4d14d05dcac1ac4f2d47c0f9a
1//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file defines a DAG pattern matching instruction selector for X86, 11// converting from a legalized dag to a X86 dag. 12// 13//===----------------------------------------------------------------------===// 14 15#define DEBUG_TYPE "x86-isel" 16#include "X86.h" 17#include "X86InstrBuilder.h" 18#include "X86ISelLowering.h" 19#include "X86MachineFunctionInfo.h" 20#include "X86RegisterInfo.h" 21#include "X86Subtarget.h" 22#include "X86TargetMachine.h" 23#include "llvm/GlobalValue.h" 24#include "llvm/Instructions.h" 25#include "llvm/Intrinsics.h" 26#include "llvm/Support/CFG.h" 27#include "llvm/Type.h" 28#include "llvm/CodeGen/MachineConstantPool.h" 29#include "llvm/CodeGen/MachineFunction.h" 30#include "llvm/CodeGen/MachineFrameInfo.h" 31#include "llvm/CodeGen/MachineInstrBuilder.h" 32#include "llvm/CodeGen/MachineRegisterInfo.h" 33#include "llvm/CodeGen/SelectionDAGISel.h" 34#include "llvm/Target/TargetMachine.h" 35#include "llvm/Target/TargetOptions.h" 36#include "llvm/Support/Compiler.h" 37#include "llvm/Support/Debug.h" 38#include "llvm/Support/MathExtras.h" 39#include "llvm/Support/Streams.h" 40#include "llvm/ADT/SmallPtrSet.h" 41#include "llvm/ADT/Statistic.h" 42using namespace llvm; 43 44STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor"); 45 46//===----------------------------------------------------------------------===// 47// Pattern Matcher Implementation 48//===----------------------------------------------------------------------===// 49 50namespace { 51 /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses 52 /// SDValue's instead of register numbers for the leaves of the matched 53 /// tree. 54 struct X86ISelAddressMode { 55 enum { 56 RegBase, 57 FrameIndexBase 58 } BaseType; 59 60 struct { // This is really a union, discriminated by BaseType! 61 SDValue Reg; 62 int FrameIndex; 63 } Base; 64 65 bool isRIPRel; // RIP as base? 66 unsigned Scale; 67 SDValue IndexReg; 68 int32_t Disp; 69 GlobalValue *GV; 70 Constant *CP; 71 const char *ES; 72 int JT; 73 unsigned Align; // CP alignment. 74 75 X86ISelAddressMode() 76 : BaseType(RegBase), isRIPRel(false), Scale(1), IndexReg(), Disp(0), 77 GV(0), CP(0), ES(0), JT(-1), Align(0) { 78 } 79 void dump() { 80 cerr << "X86ISelAddressMode " << this << "\n"; 81 cerr << "Base.Reg "; 82 if (Base.Reg.getNode() != 0) Base.Reg.getNode()->dump(); 83 else cerr << "nul"; 84 cerr << " Base.FrameIndex " << Base.FrameIndex << "\n"; 85 cerr << "isRIPRel " << isRIPRel << " Scale" << Scale << "\n"; 86 cerr << "IndexReg "; 87 if (IndexReg.getNode() != 0) IndexReg.getNode()->dump(); 88 else cerr << "nul"; 89 cerr << " Disp " << Disp << "\n"; 90 cerr << "GV "; if (GV) GV->dump(); 91 else cerr << "nul"; 92 cerr << " CP "; if (CP) CP->dump(); 93 else cerr << "nul"; 94 cerr << "\n"; 95 cerr << "ES "; if (ES) cerr << ES; else cerr << "nul"; 96 cerr << " JT" << JT << " Align" << Align << "\n"; 97 } 98 }; 99} 100 101namespace { 102 //===--------------------------------------------------------------------===// 103 /// ISel - X86 specific code to select X86 machine instructions for 104 /// SelectionDAG operations. 105 /// 106 class VISIBILITY_HIDDEN X86DAGToDAGISel : public SelectionDAGISel { 107 /// TM - Keep a reference to X86TargetMachine. 108 /// 109 X86TargetMachine &TM; 110 111 /// X86Lowering - This object fully describes how to lower LLVM code to an 112 /// X86-specific SelectionDAG. 113 X86TargetLowering &X86Lowering; 114 115 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can 116 /// make the right decision when generating code for different targets. 117 const X86Subtarget *Subtarget; 118 119 /// CurBB - Current BB being isel'd. 120 /// 121 MachineBasicBlock *CurBB; 122 123 /// OptForSize - If true, selector should try to optimize for code size 124 /// instead of performance. 125 bool OptForSize; 126 127 public: 128 X86DAGToDAGISel(X86TargetMachine &tm, bool fast) 129 : SelectionDAGISel(*tm.getTargetLowering(), fast), 130 TM(tm), X86Lowering(*TM.getTargetLowering()), 131 Subtarget(&TM.getSubtarget<X86Subtarget>()), 132 OptForSize(false) {} 133 134 virtual const char *getPassName() const { 135 return "X86 DAG->DAG Instruction Selection"; 136 } 137 138 /// InstructionSelect - This callback is invoked by 139 /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. 140 virtual void InstructionSelect(); 141 142 virtual void EmitFunctionEntryCode(Function &Fn, MachineFunction &MF); 143 144 virtual 145 bool IsLegalAndProfitableToFold(SDNode *N, SDNode *U, SDNode *Root) const; 146 147// Include the pieces autogenerated from the target description. 148#include "X86GenDAGISel.inc" 149 150 private: 151 SDNode *Select(SDValue N); 152 SDNode *SelectAtomic64(SDNode *Node, unsigned Opc); 153 154 bool MatchAddress(SDValue N, X86ISelAddressMode &AM, 155 bool isRoot = true, unsigned Depth = 0); 156 bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM, 157 bool isRoot, unsigned Depth); 158 bool SelectAddr(SDValue Op, SDValue N, SDValue &Base, 159 SDValue &Scale, SDValue &Index, SDValue &Disp); 160 bool SelectLEAAddr(SDValue Op, SDValue N, SDValue &Base, 161 SDValue &Scale, SDValue &Index, SDValue &Disp); 162 bool SelectScalarSSELoad(SDValue Op, SDValue Pred, 163 SDValue N, SDValue &Base, SDValue &Scale, 164 SDValue &Index, SDValue &Disp, 165 SDValue &InChain, SDValue &OutChain); 166 bool TryFoldLoad(SDValue P, SDValue N, 167 SDValue &Base, SDValue &Scale, 168 SDValue &Index, SDValue &Disp); 169 void PreprocessForRMW(); 170 void PreprocessForFPConvert(); 171 172 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for 173 /// inline asm expressions. 174 virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op, 175 char ConstraintCode, 176 std::vector<SDValue> &OutOps); 177 178 void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI); 179 180 inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base, 181 SDValue &Scale, SDValue &Index, 182 SDValue &Disp) { 183 Base = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ? 184 CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, TLI.getPointerTy()) : 185 AM.Base.Reg; 186 Scale = getI8Imm(AM.Scale); 187 Index = AM.IndexReg; 188 // These are 32-bit even in 64-bit mode since RIP relative offset 189 // is 32-bit. 190 if (AM.GV) 191 Disp = CurDAG->getTargetGlobalAddress(AM.GV, MVT::i32, AM.Disp); 192 else if (AM.CP) 193 Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32, 194 AM.Align, AM.Disp); 195 else if (AM.ES) 196 Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32); 197 else if (AM.JT != -1) 198 Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32); 199 else 200 Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32); 201 } 202 203 /// getI8Imm - Return a target constant with the specified value, of type 204 /// i8. 205 inline SDValue getI8Imm(unsigned Imm) { 206 return CurDAG->getTargetConstant(Imm, MVT::i8); 207 } 208 209 /// getI16Imm - Return a target constant with the specified value, of type 210 /// i16. 211 inline SDValue getI16Imm(unsigned Imm) { 212 return CurDAG->getTargetConstant(Imm, MVT::i16); 213 } 214 215 /// getI32Imm - Return a target constant with the specified value, of type 216 /// i32. 217 inline SDValue getI32Imm(unsigned Imm) { 218 return CurDAG->getTargetConstant(Imm, MVT::i32); 219 } 220 221 /// getGlobalBaseReg - Return an SDNode that returns the value of 222 /// the global base register. Output instructions required to 223 /// initialize the global base register, if necessary. 224 /// 225 SDNode *getGlobalBaseReg(); 226 227 /// getTruncateTo8Bit - return an SDNode that implements a subreg based 228 /// truncate of the specified operand to i8. This can be done with tablegen, 229 /// except that this code uses MVT::Flag in a tricky way that happens to 230 /// improve scheduling in some cases. 231 SDNode *getTruncateTo8Bit(SDValue N0); 232 233#ifndef NDEBUG 234 unsigned Indent; 235#endif 236 }; 237} 238 239/// findFlagUse - Return use of MVT::Flag value produced by the specified 240/// SDNode. 241/// 242static SDNode *findFlagUse(SDNode *N) { 243 unsigned FlagResNo = N->getNumValues()-1; 244 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 245 SDNode *User = *I; 246 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 247 SDValue Op = User->getOperand(i); 248 if (Op.getNode() == N && Op.getResNo() == FlagResNo) 249 return User; 250 } 251 } 252 return NULL; 253} 254 255/// findNonImmUse - Return true by reference in "found" if "Use" is an 256/// non-immediate use of "Def". This function recursively traversing 257/// up the operand chain ignoring certain nodes. 258static void findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse, 259 SDNode *Root, bool &found, 260 SmallPtrSet<SDNode*, 16> &Visited) { 261 if (found || 262 Use->getNodeId() < Def->getNodeId() || 263 !Visited.insert(Use)) 264 return; 265 266 for (unsigned i = 0, e = Use->getNumOperands(); !found && i != e; ++i) { 267 SDNode *N = Use->getOperand(i).getNode(); 268 if (N == Def) { 269 if (Use == ImmedUse || Use == Root) 270 continue; // We are not looking for immediate use. 271 assert(N != Root); 272 found = true; 273 break; 274 } 275 276 // Traverse up the operand chain. 277 findNonImmUse(N, Def, ImmedUse, Root, found, Visited); 278 } 279} 280 281/// isNonImmUse - Start searching from Root up the DAG to check is Def can 282/// be reached. Return true if that's the case. However, ignore direct uses 283/// by ImmedUse (which would be U in the example illustrated in 284/// IsLegalAndProfitableToFold) and by Root (which can happen in the store 285/// case). 286/// FIXME: to be really generic, we should allow direct use by any node 287/// that is being folded. But realisticly since we only fold loads which 288/// have one non-chain use, we only need to watch out for load/op/store 289/// and load/op/cmp case where the root (store / cmp) may reach the load via 290/// its chain operand. 291static inline bool isNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse) { 292 SmallPtrSet<SDNode*, 16> Visited; 293 bool found = false; 294 findNonImmUse(Root, Def, ImmedUse, Root, found, Visited); 295 return found; 296} 297 298 299bool X86DAGToDAGISel::IsLegalAndProfitableToFold(SDNode *N, SDNode *U, 300 SDNode *Root) const { 301 if (Fast) return false; 302 303 if (U == Root) 304 switch (U->getOpcode()) { 305 default: break; 306 case ISD::ADD: 307 case ISD::ADDC: 308 case ISD::ADDE: 309 case ISD::AND: 310 case ISD::OR: 311 case ISD::XOR: { 312 // If the other operand is a 8-bit immediate we should fold the immediate 313 // instead. This reduces code size. 314 // e.g. 315 // movl 4(%esp), %eax 316 // addl $4, %eax 317 // vs. 318 // movl $4, %eax 319 // addl 4(%esp), %eax 320 // The former is 2 bytes shorter. In case where the increment is 1, then 321 // the saving can be 4 bytes (by using incl %eax). 322 ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(U->getOperand(1)); 323 if (Imm) { 324 if (U->getValueType(0) == MVT::i64) { 325 if ((int32_t)Imm->getZExtValue() == (int64_t)Imm->getZExtValue()) 326 return false; 327 } else { 328 if ((int8_t)Imm->getZExtValue() == (int64_t)Imm->getZExtValue()) 329 return false; 330 } 331 } 332 } 333 } 334 335 // If Root use can somehow reach N through a path that that doesn't contain 336 // U then folding N would create a cycle. e.g. In the following 337 // diagram, Root can reach N through X. If N is folded into into Root, then 338 // X is both a predecessor and a successor of U. 339 // 340 // [N*] // 341 // ^ ^ // 342 // / \ // 343 // [U*] [X]? // 344 // ^ ^ // 345 // \ / // 346 // \ / // 347 // [Root*] // 348 // 349 // * indicates nodes to be folded together. 350 // 351 // If Root produces a flag, then it gets (even more) interesting. Since it 352 // will be "glued" together with its flag use in the scheduler, we need to 353 // check if it might reach N. 354 // 355 // [N*] // 356 // ^ ^ // 357 // / \ // 358 // [U*] [X]? // 359 // ^ ^ // 360 // \ \ // 361 // \ | // 362 // [Root*] | // 363 // ^ | // 364 // f | // 365 // | / // 366 // [Y] / // 367 // ^ / // 368 // f / // 369 // | / // 370 // [FU] // 371 // 372 // If FU (flag use) indirectly reaches N (the load), and Root folds N 373 // (call it Fold), then X is a predecessor of FU and a successor of 374 // Fold. But since Fold and FU are flagged together, this will create 375 // a cycle in the scheduling graph. 376 377 MVT VT = Root->getValueType(Root->getNumValues()-1); 378 while (VT == MVT::Flag) { 379 SDNode *FU = findFlagUse(Root); 380 if (FU == NULL) 381 break; 382 Root = FU; 383 VT = Root->getValueType(Root->getNumValues()-1); 384 } 385 386 return !isNonImmUse(Root, N, U); 387} 388 389/// MoveBelowTokenFactor - Replace TokenFactor operand with load's chain operand 390/// and move load below the TokenFactor. Replace store's chain operand with 391/// load's chain result. 392static void MoveBelowTokenFactor(SelectionDAG *CurDAG, SDValue Load, 393 SDValue Store, SDValue TF) { 394 SmallVector<SDValue, 4> Ops; 395 for (unsigned i = 0, e = TF.getNode()->getNumOperands(); i != e; ++i) 396 if (Load.getNode() == TF.getOperand(i).getNode()) 397 Ops.push_back(Load.getOperand(0)); 398 else 399 Ops.push_back(TF.getOperand(i)); 400 CurDAG->UpdateNodeOperands(TF, &Ops[0], Ops.size()); 401 CurDAG->UpdateNodeOperands(Load, TF, Load.getOperand(1), Load.getOperand(2)); 402 CurDAG->UpdateNodeOperands(Store, Load.getValue(1), Store.getOperand(1), 403 Store.getOperand(2), Store.getOperand(3)); 404} 405 406/// isRMWLoad - Return true if N is a load that's part of RMW sub-DAG. 407/// 408static bool isRMWLoad(SDValue N, SDValue Chain, SDValue Address, 409 SDValue &Load) { 410 if (N.getOpcode() == ISD::BIT_CONVERT) 411 N = N.getOperand(0); 412 413 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 414 if (!LD || LD->isVolatile()) 415 return false; 416 if (LD->getAddressingMode() != ISD::UNINDEXED) 417 return false; 418 419 ISD::LoadExtType ExtType = LD->getExtensionType(); 420 if (ExtType != ISD::NON_EXTLOAD && ExtType != ISD::EXTLOAD) 421 return false; 422 423 if (N.hasOneUse() && 424 N.getOperand(1) == Address && 425 N.getNode()->isOperandOf(Chain.getNode())) { 426 Load = N; 427 return true; 428 } 429 return false; 430} 431 432/// MoveBelowCallSeqStart - Replace CALLSEQ_START operand with load's chain 433/// operand and move load below the call's chain operand. 434static void MoveBelowCallSeqStart(SelectionDAG *CurDAG, SDValue Load, 435 SDValue Call, SDValue Chain) { 436 SmallVector<SDValue, 8> Ops; 437 for (unsigned i = 0, e = Chain.getNode()->getNumOperands(); i != e; ++i) 438 if (Load.getNode() == Chain.getOperand(i).getNode()) 439 Ops.push_back(Load.getOperand(0)); 440 else 441 Ops.push_back(Chain.getOperand(i)); 442 CurDAG->UpdateNodeOperands(Chain, &Ops[0], Ops.size()); 443 CurDAG->UpdateNodeOperands(Load, Call.getOperand(0), 444 Load.getOperand(1), Load.getOperand(2)); 445 Ops.clear(); 446 Ops.push_back(SDValue(Load.getNode(), 1)); 447 for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i) 448 Ops.push_back(Call.getOperand(i)); 449 CurDAG->UpdateNodeOperands(Call, &Ops[0], Ops.size()); 450} 451 452/// isCalleeLoad - Return true if call address is a load and it can be 453/// moved below CALLSEQ_START and the chains leading up to the call. 454/// Return the CALLSEQ_START by reference as a second output. 455static bool isCalleeLoad(SDValue Callee, SDValue &Chain) { 456 if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse()) 457 return false; 458 LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode()); 459 if (!LD || 460 LD->isVolatile() || 461 LD->getAddressingMode() != ISD::UNINDEXED || 462 LD->getExtensionType() != ISD::NON_EXTLOAD) 463 return false; 464 465 // Now let's find the callseq_start. 466 while (Chain.getOpcode() != ISD::CALLSEQ_START) { 467 if (!Chain.hasOneUse()) 468 return false; 469 Chain = Chain.getOperand(0); 470 } 471 return Chain.getOperand(0).getNode() == Callee.getNode(); 472} 473 474 475/// PreprocessForRMW - Preprocess the DAG to make instruction selection better. 476/// This is only run if not in -fast mode (aka -O0). 477/// This allows the instruction selector to pick more read-modify-write 478/// instructions. This is a common case: 479/// 480/// [Load chain] 481/// ^ 482/// | 483/// [Load] 484/// ^ ^ 485/// | | 486/// / \- 487/// / | 488/// [TokenFactor] [Op] 489/// ^ ^ 490/// | | 491/// \ / 492/// \ / 493/// [Store] 494/// 495/// The fact the store's chain operand != load's chain will prevent the 496/// (store (op (load))) instruction from being selected. We can transform it to: 497/// 498/// [Load chain] 499/// ^ 500/// | 501/// [TokenFactor] 502/// ^ 503/// | 504/// [Load] 505/// ^ ^ 506/// | | 507/// | \- 508/// | | 509/// | [Op] 510/// | ^ 511/// | | 512/// \ / 513/// \ / 514/// [Store] 515void X86DAGToDAGISel::PreprocessForRMW() { 516 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(), 517 E = CurDAG->allnodes_end(); I != E; ++I) { 518 if (I->getOpcode() == X86ISD::CALL) { 519 /// Also try moving call address load from outside callseq_start to just 520 /// before the call to allow it to be folded. 521 /// 522 /// [Load chain] 523 /// ^ 524 /// | 525 /// [Load] 526 /// ^ ^ 527 /// | | 528 /// / \-- 529 /// / | 530 ///[CALLSEQ_START] | 531 /// ^ | 532 /// | | 533 /// [LOAD/C2Reg] | 534 /// | | 535 /// \ / 536 /// \ / 537 /// [CALL] 538 SDValue Chain = I->getOperand(0); 539 SDValue Load = I->getOperand(1); 540 if (!isCalleeLoad(Load, Chain)) 541 continue; 542 MoveBelowCallSeqStart(CurDAG, Load, SDValue(I, 0), Chain); 543 ++NumLoadMoved; 544 continue; 545 } 546 547 if (!ISD::isNON_TRUNCStore(I)) 548 continue; 549 SDValue Chain = I->getOperand(0); 550 551 if (Chain.getNode()->getOpcode() != ISD::TokenFactor) 552 continue; 553 554 SDValue N1 = I->getOperand(1); 555 SDValue N2 = I->getOperand(2); 556 if ((N1.getValueType().isFloatingPoint() && 557 !N1.getValueType().isVector()) || 558 !N1.hasOneUse()) 559 continue; 560 561 bool RModW = false; 562 SDValue Load; 563 unsigned Opcode = N1.getNode()->getOpcode(); 564 switch (Opcode) { 565 case ISD::ADD: 566 case ISD::MUL: 567 case ISD::AND: 568 case ISD::OR: 569 case ISD::XOR: 570 case ISD::ADDC: 571 case ISD::ADDE: 572 case ISD::VECTOR_SHUFFLE: { 573 SDValue N10 = N1.getOperand(0); 574 SDValue N11 = N1.getOperand(1); 575 RModW = isRMWLoad(N10, Chain, N2, Load); 576 if (!RModW) 577 RModW = isRMWLoad(N11, Chain, N2, Load); 578 break; 579 } 580 case ISD::SUB: 581 case ISD::SHL: 582 case ISD::SRA: 583 case ISD::SRL: 584 case ISD::ROTL: 585 case ISD::ROTR: 586 case ISD::SUBC: 587 case ISD::SUBE: 588 case X86ISD::SHLD: 589 case X86ISD::SHRD: { 590 SDValue N10 = N1.getOperand(0); 591 RModW = isRMWLoad(N10, Chain, N2, Load); 592 break; 593 } 594 } 595 596 if (RModW) { 597 MoveBelowTokenFactor(CurDAG, Load, SDValue(I, 0), Chain); 598 ++NumLoadMoved; 599 } 600 } 601} 602 603 604/// PreprocessForFPConvert - Walk over the dag lowering fpround and fpextend 605/// nodes that target the FP stack to be store and load to the stack. This is a 606/// gross hack. We would like to simply mark these as being illegal, but when 607/// we do that, legalize produces these when it expands calls, then expands 608/// these in the same legalize pass. We would like dag combine to be able to 609/// hack on these between the call expansion and the node legalization. As such 610/// this pass basically does "really late" legalization of these inline with the 611/// X86 isel pass. 612void X86DAGToDAGISel::PreprocessForFPConvert() { 613 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(), 614 E = CurDAG->allnodes_end(); I != E; ) { 615 SDNode *N = I++; // Preincrement iterator to avoid invalidation issues. 616 if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND) 617 continue; 618 619 // If the source and destination are SSE registers, then this is a legal 620 // conversion that should not be lowered. 621 MVT SrcVT = N->getOperand(0).getValueType(); 622 MVT DstVT = N->getValueType(0); 623 bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT); 624 bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT); 625 if (SrcIsSSE && DstIsSSE) 626 continue; 627 628 if (!SrcIsSSE && !DstIsSSE) { 629 // If this is an FPStack extension, it is a noop. 630 if (N->getOpcode() == ISD::FP_EXTEND) 631 continue; 632 // If this is a value-preserving FPStack truncation, it is a noop. 633 if (N->getConstantOperandVal(1)) 634 continue; 635 } 636 637 // Here we could have an FP stack truncation or an FPStack <-> SSE convert. 638 // FPStack has extload and truncstore. SSE can fold direct loads into other 639 // operations. Based on this, decide what we want to do. 640 MVT MemVT; 641 if (N->getOpcode() == ISD::FP_ROUND) 642 MemVT = DstVT; // FP_ROUND must use DstVT, we can't do a 'trunc load'. 643 else 644 MemVT = SrcIsSSE ? SrcVT : DstVT; 645 646 SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT); 647 648 // FIXME: optimize the case where the src/dest is a load or store? 649 SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), 650 N->getOperand(0), 651 MemTmp, NULL, 0, MemVT); 652 SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, DstVT, Store, MemTmp, 653 NULL, 0, MemVT); 654 655 // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the 656 // extload we created. This will cause general havok on the dag because 657 // anything below the conversion could be folded into other existing nodes. 658 // To avoid invalidating 'I', back it up to the convert node. 659 --I; 660 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); 661 662 // Now that we did that, the node is dead. Increment the iterator to the 663 // next node to process, then delete N. 664 ++I; 665 CurDAG->DeleteNode(N); 666 } 667} 668 669/// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel 670/// when it has created a SelectionDAG for us to codegen. 671void X86DAGToDAGISel::InstructionSelect() { 672 CurBB = BB; // BB can change as result of isel. 673 const Function *F = CurDAG->getMachineFunction().getFunction(); 674 OptForSize = F->hasFnAttr(Attribute::OptimizeForSize); 675 676 DEBUG(BB->dump()); 677 if (!Fast) 678 PreprocessForRMW(); 679 680 // FIXME: This should only happen when not -fast. 681 PreprocessForFPConvert(); 682 683 // Codegen the basic block. 684#ifndef NDEBUG 685 DOUT << "===== Instruction selection begins:\n"; 686 Indent = 0; 687#endif 688 SelectRoot(*CurDAG); 689#ifndef NDEBUG 690 DOUT << "===== Instruction selection ends:\n"; 691#endif 692 693 CurDAG->RemoveDeadNodes(); 694} 695 696/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in 697/// the main function. 698void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB, 699 MachineFrameInfo *MFI) { 700 const TargetInstrInfo *TII = TM.getInstrInfo(); 701 if (Subtarget->isTargetCygMing()) 702 BuildMI(BB, TII->get(X86::CALLpcrel32)).addExternalSymbol("__main"); 703} 704 705void X86DAGToDAGISel::EmitFunctionEntryCode(Function &Fn, MachineFunction &MF) { 706 // If this is main, emit special code for main. 707 MachineBasicBlock *BB = MF.begin(); 708 if (Fn.hasExternalLinkage() && Fn.getName() == "main") 709 EmitSpecialCodeForMain(BB, MF.getFrameInfo()); 710} 711 712/// MatchAddress - Add the specified node to the specified addressing mode, 713/// returning true if it cannot be done. This just pattern matches for the 714/// addressing mode. 715bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM, 716 bool isRoot, unsigned Depth) { 717 bool is64Bit = Subtarget->is64Bit(); 718 DOUT << "MatchAddress: "; DEBUG(AM.dump()); 719 // Limit recursion. 720 if (Depth > 5) 721 return MatchAddressBase(N, AM, isRoot, Depth); 722 723 // RIP relative addressing: %rip + 32-bit displacement! 724 if (AM.isRIPRel) { 725 if (!AM.ES && AM.JT != -1 && N.getOpcode() == ISD::Constant) { 726 uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue(); 727 if (!is64Bit || isInt32(AM.Disp + Val)) { 728 AM.Disp += Val; 729 return false; 730 } 731 } 732 return true; 733 } 734 735 switch (N.getOpcode()) { 736 default: break; 737 case ISD::Constant: { 738 uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue(); 739 if (!is64Bit || isInt32(AM.Disp + Val)) { 740 AM.Disp += Val; 741 return false; 742 } 743 break; 744 } 745 746 case X86ISD::Wrapper: { 747 DOUT << "Wrapper: 64bit " << is64Bit; 748 DOUT << " AM "; DEBUG(AM.dump()); DOUT << "\n"; 749 // Under X86-64 non-small code model, GV (and friends) are 64-bits. 750 // Also, base and index reg must be 0 in order to use rip as base. 751 if (is64Bit && (TM.getCodeModel() != CodeModel::Small || 752 AM.Base.Reg.getNode() || AM.IndexReg.getNode())) 753 break; 754 if (AM.GV != 0 || AM.CP != 0 || AM.ES != 0 || AM.JT != -1) 755 break; 756 // If value is available in a register both base and index components have 757 // been picked, we can't fit the result available in the register in the 758 // addressing mode. Duplicate GlobalAddress or ConstantPool as displacement. 759 { 760 SDValue N0 = N.getOperand(0); 761 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) { 762 uint64_t Offset = G->getOffset(); 763 if (!is64Bit || isInt32(AM.Disp + Offset)) { 764 GlobalValue *GV = G->getGlobal(); 765 AM.GV = GV; 766 AM.Disp += Offset; 767 AM.isRIPRel = TM.symbolicAddressesAreRIPRel(); 768 return false; 769 } 770 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) { 771 uint64_t Offset = CP->getOffset(); 772 if (!is64Bit || isInt32(AM.Disp + Offset)) { 773 AM.CP = CP->getConstVal(); 774 AM.Align = CP->getAlignment(); 775 AM.Disp += Offset; 776 AM.isRIPRel = TM.symbolicAddressesAreRIPRel(); 777 return false; 778 } 779 } else if (ExternalSymbolSDNode *S =dyn_cast<ExternalSymbolSDNode>(N0)) { 780 AM.ES = S->getSymbol(); 781 AM.isRIPRel = TM.symbolicAddressesAreRIPRel(); 782 return false; 783 } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) { 784 AM.JT = J->getIndex(); 785 AM.isRIPRel = TM.symbolicAddressesAreRIPRel(); 786 return false; 787 } 788 } 789 break; 790 } 791 792 case ISD::FrameIndex: 793 if (AM.BaseType == X86ISelAddressMode::RegBase 794 && AM.Base.Reg.getNode() == 0) { 795 AM.BaseType = X86ISelAddressMode::FrameIndexBase; 796 AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex(); 797 return false; 798 } 799 break; 800 801 case ISD::SHL: 802 if (AM.IndexReg.getNode() != 0 || AM.Scale != 1 || AM.isRIPRel) 803 break; 804 805 if (ConstantSDNode 806 *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) { 807 unsigned Val = CN->getZExtValue(); 808 if (Val == 1 || Val == 2 || Val == 3) { 809 AM.Scale = 1 << Val; 810 SDValue ShVal = N.getNode()->getOperand(0); 811 812 // Okay, we know that we have a scale by now. However, if the scaled 813 // value is an add of something and a constant, we can fold the 814 // constant into the disp field here. 815 if (ShVal.getNode()->getOpcode() == ISD::ADD && ShVal.hasOneUse() && 816 isa<ConstantSDNode>(ShVal.getNode()->getOperand(1))) { 817 AM.IndexReg = ShVal.getNode()->getOperand(0); 818 ConstantSDNode *AddVal = 819 cast<ConstantSDNode>(ShVal.getNode()->getOperand(1)); 820 uint64_t Disp = AM.Disp + (AddVal->getZExtValue() << Val); 821 if (!is64Bit || isInt32(Disp)) 822 AM.Disp = Disp; 823 else 824 AM.IndexReg = ShVal; 825 } else { 826 AM.IndexReg = ShVal; 827 } 828 return false; 829 } 830 break; 831 } 832 833 case ISD::SMUL_LOHI: 834 case ISD::UMUL_LOHI: 835 // A mul_lohi where we need the low part can be folded as a plain multiply. 836 if (N.getResNo() != 0) break; 837 // FALL THROUGH 838 case ISD::MUL: 839 // X*[3,5,9] -> X+X*[2,4,8] 840 if (AM.BaseType == X86ISelAddressMode::RegBase && 841 AM.Base.Reg.getNode() == 0 && 842 AM.IndexReg.getNode() == 0 && 843 !AM.isRIPRel) { 844 if (ConstantSDNode 845 *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) 846 if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 || 847 CN->getZExtValue() == 9) { 848 AM.Scale = unsigned(CN->getZExtValue())-1; 849 850 SDValue MulVal = N.getNode()->getOperand(0); 851 SDValue Reg; 852 853 // Okay, we know that we have a scale by now. However, if the scaled 854 // value is an add of something and a constant, we can fold the 855 // constant into the disp field here. 856 if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() && 857 isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) { 858 Reg = MulVal.getNode()->getOperand(0); 859 ConstantSDNode *AddVal = 860 cast<ConstantSDNode>(MulVal.getNode()->getOperand(1)); 861 uint64_t Disp = AM.Disp + AddVal->getZExtValue() * 862 CN->getZExtValue(); 863 if (!is64Bit || isInt32(Disp)) 864 AM.Disp = Disp; 865 else 866 Reg = N.getNode()->getOperand(0); 867 } else { 868 Reg = N.getNode()->getOperand(0); 869 } 870 871 AM.IndexReg = AM.Base.Reg = Reg; 872 return false; 873 } 874 } 875 break; 876 877 case ISD::ADD: 878 { 879 X86ISelAddressMode Backup = AM; 880 if (!MatchAddress(N.getNode()->getOperand(0), AM, false, Depth+1) && 881 !MatchAddress(N.getNode()->getOperand(1), AM, false, Depth+1)) 882 return false; 883 AM = Backup; 884 if (!MatchAddress(N.getNode()->getOperand(1), AM, false, Depth+1) && 885 !MatchAddress(N.getNode()->getOperand(0), AM, false, Depth+1)) 886 return false; 887 AM = Backup; 888 } 889 break; 890 891 case ISD::OR: 892 // Handle "X | C" as "X + C" iff X is known to have C bits clear. 893 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) { 894 X86ISelAddressMode Backup = AM; 895 uint64_t Offset = CN->getSExtValue(); 896 // Start with the LHS as an addr mode. 897 if (!MatchAddress(N.getOperand(0), AM, false) && 898 // Address could not have picked a GV address for the displacement. 899 AM.GV == NULL && 900 // On x86-64, the resultant disp must fit in 32-bits. 901 (!is64Bit || isInt32(AM.Disp + Offset)) && 902 // Check to see if the LHS & C is zero. 903 CurDAG->MaskedValueIsZero(N.getOperand(0), CN->getAPIntValue())) { 904 AM.Disp += Offset; 905 return false; 906 } 907 AM = Backup; 908 } 909 break; 910 911 case ISD::AND: { 912 // Handle "(x << C1) & C2" as "(X & (C2>>C1)) << C1" if safe and if this 913 // allows us to fold the shift into this addressing mode. 914 SDValue Shift = N.getOperand(0); 915 if (Shift.getOpcode() != ISD::SHL) break; 916 917 // Scale must not be used already. 918 if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break; 919 920 // Not when RIP is used as the base. 921 if (AM.isRIPRel) break; 922 923 ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N.getOperand(1)); 924 ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Shift.getOperand(1)); 925 if (!C1 || !C2) break; 926 927 // Not likely to be profitable if either the AND or SHIFT node has more 928 // than one use (unless all uses are for address computation). Besides, 929 // isel mechanism requires their node ids to be reused. 930 if (!N.hasOneUse() || !Shift.hasOneUse()) 931 break; 932 933 // Verify that the shift amount is something we can fold. 934 unsigned ShiftCst = C1->getZExtValue(); 935 if (ShiftCst != 1 && ShiftCst != 2 && ShiftCst != 3) 936 break; 937 938 // Get the new AND mask, this folds to a constant. 939 SDValue X = Shift.getOperand(0); 940 SDValue NewANDMask = CurDAG->getNode(ISD::SRL, N.getValueType(), 941 SDValue(C2, 0), SDValue(C1, 0)); 942 SDValue NewAND = CurDAG->getNode(ISD::AND, N.getValueType(), X, NewANDMask); 943 SDValue NewSHIFT = CurDAG->getNode(ISD::SHL, N.getValueType(), 944 NewAND, SDValue(C1, 0)); 945 946 // Insert the new nodes into the topological ordering. 947 if (C1->getNodeId() > X.getNode()->getNodeId()) { 948 CurDAG->RepositionNode(X.getNode(), C1); 949 C1->setNodeId(X.getNode()->getNodeId()); 950 } 951 if (NewANDMask.getNode()->getNodeId() == -1 || 952 NewANDMask.getNode()->getNodeId() > X.getNode()->getNodeId()) { 953 CurDAG->RepositionNode(X.getNode(), NewANDMask.getNode()); 954 NewANDMask.getNode()->setNodeId(X.getNode()->getNodeId()); 955 } 956 if (NewAND.getNode()->getNodeId() == -1 || 957 NewAND.getNode()->getNodeId() > Shift.getNode()->getNodeId()) { 958 CurDAG->RepositionNode(Shift.getNode(), NewAND.getNode()); 959 NewAND.getNode()->setNodeId(Shift.getNode()->getNodeId()); 960 } 961 if (NewSHIFT.getNode()->getNodeId() == -1 || 962 NewSHIFT.getNode()->getNodeId() > N.getNode()->getNodeId()) { 963 CurDAG->RepositionNode(N.getNode(), NewSHIFT.getNode()); 964 NewSHIFT.getNode()->setNodeId(N.getNode()->getNodeId()); 965 } 966 967 CurDAG->ReplaceAllUsesWith(N, NewSHIFT); 968 969 AM.Scale = 1 << ShiftCst; 970 AM.IndexReg = NewAND; 971 return false; 972 } 973 } 974 975 return MatchAddressBase(N, AM, isRoot, Depth); 976} 977 978/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the 979/// specified addressing mode without any further recursion. 980bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM, 981 bool isRoot, unsigned Depth) { 982 // Is the base register already occupied? 983 if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.getNode()) { 984 // If so, check to see if the scale index register is set. 985 if (AM.IndexReg.getNode() == 0 && !AM.isRIPRel) { 986 AM.IndexReg = N; 987 AM.Scale = 1; 988 return false; 989 } 990 991 // Otherwise, we cannot select it. 992 return true; 993 } 994 995 // Default, generate it as a register. 996 AM.BaseType = X86ISelAddressMode::RegBase; 997 AM.Base.Reg = N; 998 return false; 999} 1000 1001/// SelectAddr - returns true if it is able pattern match an addressing mode. 1002/// It returns the operands which make up the maximal addressing mode it can 1003/// match by reference. 1004bool X86DAGToDAGISel::SelectAddr(SDValue Op, SDValue N, SDValue &Base, 1005 SDValue &Scale, SDValue &Index, 1006 SDValue &Disp) { 1007 X86ISelAddressMode AM; 1008 if (MatchAddress(N, AM)) 1009 return false; 1010 1011 MVT VT = N.getValueType(); 1012 if (AM.BaseType == X86ISelAddressMode::RegBase) { 1013 if (!AM.Base.Reg.getNode()) 1014 AM.Base.Reg = CurDAG->getRegister(0, VT); 1015 } 1016 1017 if (!AM.IndexReg.getNode()) 1018 AM.IndexReg = CurDAG->getRegister(0, VT); 1019 1020 getAddressOperands(AM, Base, Scale, Index, Disp); 1021 return true; 1022} 1023 1024/// SelectScalarSSELoad - Match a scalar SSE load. In particular, we want to 1025/// match a load whose top elements are either undef or zeros. The load flavor 1026/// is derived from the type of N, which is either v4f32 or v2f64. 1027bool X86DAGToDAGISel::SelectScalarSSELoad(SDValue Op, SDValue Pred, 1028 SDValue N, SDValue &Base, 1029 SDValue &Scale, SDValue &Index, 1030 SDValue &Disp, SDValue &InChain, 1031 SDValue &OutChain) { 1032 if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) { 1033 InChain = N.getOperand(0).getValue(1); 1034 if (ISD::isNON_EXTLoad(InChain.getNode()) && 1035 InChain.getValue(0).hasOneUse() && 1036 N.hasOneUse() && 1037 IsLegalAndProfitableToFold(N.getNode(), Pred.getNode(), Op.getNode())) { 1038 LoadSDNode *LD = cast<LoadSDNode>(InChain); 1039 if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp)) 1040 return false; 1041 OutChain = LD->getChain(); 1042 return true; 1043 } 1044 } 1045 1046 // Also handle the case where we explicitly require zeros in the top 1047 // elements. This is a vector shuffle from the zero vector. 1048 if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() && 1049 // Check to see if the top elements are all zeros (or bitcast of zeros). 1050 N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR && 1051 N.getOperand(0).getNode()->hasOneUse() && 1052 ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) && 1053 N.getOperand(0).getOperand(0).hasOneUse()) { 1054 // Okay, this is a zero extending load. Fold it. 1055 LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0)); 1056 if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp)) 1057 return false; 1058 OutChain = LD->getChain(); 1059 InChain = SDValue(LD, 1); 1060 return true; 1061 } 1062 return false; 1063} 1064 1065 1066/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing 1067/// mode it matches can be cost effectively emitted as an LEA instruction. 1068bool X86DAGToDAGISel::SelectLEAAddr(SDValue Op, SDValue N, 1069 SDValue &Base, SDValue &Scale, 1070 SDValue &Index, SDValue &Disp) { 1071 X86ISelAddressMode AM; 1072 if (MatchAddress(N, AM)) 1073 return false; 1074 1075 MVT VT = N.getValueType(); 1076 unsigned Complexity = 0; 1077 if (AM.BaseType == X86ISelAddressMode::RegBase) 1078 if (AM.Base.Reg.getNode()) 1079 Complexity = 1; 1080 else 1081 AM.Base.Reg = CurDAG->getRegister(0, VT); 1082 else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase) 1083 Complexity = 4; 1084 1085 if (AM.IndexReg.getNode()) 1086 Complexity++; 1087 else 1088 AM.IndexReg = CurDAG->getRegister(0, VT); 1089 1090 // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with 1091 // a simple shift. 1092 if (AM.Scale > 1) 1093 Complexity++; 1094 1095 // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA 1096 // to a LEA. This is determined with some expermentation but is by no means 1097 // optimal (especially for code size consideration). LEA is nice because of 1098 // its three-address nature. Tweak the cost function again when we can run 1099 // convertToThreeAddress() at register allocation time. 1100 if (AM.GV || AM.CP || AM.ES || AM.JT != -1) { 1101 // For X86-64, we should always use lea to materialize RIP relative 1102 // addresses. 1103 if (Subtarget->is64Bit()) 1104 Complexity = 4; 1105 else 1106 Complexity += 2; 1107 } 1108 1109 if (AM.Disp && (AM.Base.Reg.getNode() || AM.IndexReg.getNode())) 1110 Complexity++; 1111 1112 if (Complexity > 2) { 1113 getAddressOperands(AM, Base, Scale, Index, Disp); 1114 return true; 1115 } 1116 return false; 1117} 1118 1119bool X86DAGToDAGISel::TryFoldLoad(SDValue P, SDValue N, 1120 SDValue &Base, SDValue &Scale, 1121 SDValue &Index, SDValue &Disp) { 1122 if (ISD::isNON_EXTLoad(N.getNode()) && 1123 N.hasOneUse() && 1124 IsLegalAndProfitableToFold(N.getNode(), P.getNode(), P.getNode())) 1125 return SelectAddr(P, N.getOperand(1), Base, Scale, Index, Disp); 1126 return false; 1127} 1128 1129/// getGlobalBaseReg - Return an SDNode that returns the value of 1130/// the global base register. Output instructions required to 1131/// initialize the global base register, if necessary. 1132/// 1133SDNode *X86DAGToDAGISel::getGlobalBaseReg() { 1134 MachineFunction *MF = CurBB->getParent(); 1135 unsigned GlobalBaseReg = TM.getInstrInfo()->getGlobalBaseReg(MF); 1136 return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode(); 1137} 1138 1139static SDNode *FindCallStartFromCall(SDNode *Node) { 1140 if (Node->getOpcode() == ISD::CALLSEQ_START) return Node; 1141 assert(Node->getOperand(0).getValueType() == MVT::Other && 1142 "Node doesn't have a token chain argument!"); 1143 return FindCallStartFromCall(Node->getOperand(0).getNode()); 1144} 1145 1146/// getTruncateTo8Bit - return an SDNode that implements a subreg based 1147/// truncate of the specified operand to i8. This can be done with tablegen, 1148/// except that this code uses MVT::Flag in a tricky way that happens to 1149/// improve scheduling in some cases. 1150SDNode *X86DAGToDAGISel::getTruncateTo8Bit(SDValue N0) { 1151 assert(!Subtarget->is64Bit() && 1152 "getTruncateTo8Bit is only needed on x86-32!"); 1153 SDValue SRIdx = CurDAG->getTargetConstant(1, MVT::i32); // SubRegSet 1 1154 1155 // Ensure that the source register has an 8-bit subreg on 32-bit targets 1156 unsigned Opc; 1157 MVT N0VT = N0.getValueType(); 1158 switch (N0VT.getSimpleVT()) { 1159 default: assert(0 && "Unknown truncate!"); 1160 case MVT::i16: 1161 Opc = X86::MOV16to16_; 1162 break; 1163 case MVT::i32: 1164 Opc = X86::MOV32to32_; 1165 break; 1166 } 1167 1168 // The use of MVT::Flag here is not strictly accurate, but it helps 1169 // scheduling in some cases. 1170 N0 = SDValue(CurDAG->getTargetNode(Opc, N0VT, MVT::Flag, N0), 0); 1171 return CurDAG->getTargetNode(X86::EXTRACT_SUBREG, 1172 MVT::i8, N0, SRIdx, N0.getValue(1)); 1173} 1174 1175SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) { 1176 SDValue Chain = Node->getOperand(0); 1177 SDValue In1 = Node->getOperand(1); 1178 SDValue In2L = Node->getOperand(2); 1179 SDValue In2H = Node->getOperand(3); 1180 SDValue Tmp0, Tmp1, Tmp2, Tmp3; 1181 if (!SelectAddr(In1, In1, Tmp0, Tmp1, Tmp2, Tmp3)) 1182 return NULL; 1183 SDValue LSI = Node->getOperand(4); // MemOperand 1184 const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, In2L, In2H, LSI, Chain }; 1185 return CurDAG->getTargetNode(Opc, MVT::i32, MVT::i32, MVT::Other, Ops, 8); 1186} 1187 1188SDNode *X86DAGToDAGISel::Select(SDValue N) { 1189 SDNode *Node = N.getNode(); 1190 MVT NVT = Node->getValueType(0); 1191 unsigned Opc, MOpc; 1192 unsigned Opcode = Node->getOpcode(); 1193 1194#ifndef NDEBUG 1195 DOUT << std::string(Indent, ' ') << "Selecting: "; 1196 DEBUG(Node->dump(CurDAG)); 1197 DOUT << "\n"; 1198 Indent += 2; 1199#endif 1200 1201 if (Node->isMachineOpcode()) { 1202#ifndef NDEBUG 1203 DOUT << std::string(Indent-2, ' ') << "== "; 1204 DEBUG(Node->dump(CurDAG)); 1205 DOUT << "\n"; 1206 Indent -= 2; 1207#endif 1208 return NULL; // Already selected. 1209 } 1210 1211 switch (Opcode) { 1212 default: break; 1213 case X86ISD::GlobalBaseReg: 1214 return getGlobalBaseReg(); 1215 1216 case X86ISD::ATOMOR64_DAG: 1217 return SelectAtomic64(Node, X86::ATOMOR6432); 1218 case X86ISD::ATOMXOR64_DAG: 1219 return SelectAtomic64(Node, X86::ATOMXOR6432); 1220 case X86ISD::ATOMADD64_DAG: 1221 return SelectAtomic64(Node, X86::ATOMADD6432); 1222 case X86ISD::ATOMSUB64_DAG: 1223 return SelectAtomic64(Node, X86::ATOMSUB6432); 1224 case X86ISD::ATOMNAND64_DAG: 1225 return SelectAtomic64(Node, X86::ATOMNAND6432); 1226 case X86ISD::ATOMAND64_DAG: 1227 return SelectAtomic64(Node, X86::ATOMAND6432); 1228 case X86ISD::ATOMSWAP64_DAG: 1229 return SelectAtomic64(Node, X86::ATOMSWAP6432); 1230 1231 case ISD::SMUL_LOHI: 1232 case ISD::UMUL_LOHI: { 1233 SDValue N0 = Node->getOperand(0); 1234 SDValue N1 = Node->getOperand(1); 1235 1236 bool isSigned = Opcode == ISD::SMUL_LOHI; 1237 if (!isSigned) 1238 switch (NVT.getSimpleVT()) { 1239 default: assert(0 && "Unsupported VT!"); 1240 case MVT::i8: Opc = X86::MUL8r; MOpc = X86::MUL8m; break; 1241 case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break; 1242 case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break; 1243 case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break; 1244 } 1245 else 1246 switch (NVT.getSimpleVT()) { 1247 default: assert(0 && "Unsupported VT!"); 1248 case MVT::i8: Opc = X86::IMUL8r; MOpc = X86::IMUL8m; break; 1249 case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break; 1250 case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break; 1251 case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break; 1252 } 1253 1254 unsigned LoReg, HiReg; 1255 switch (NVT.getSimpleVT()) { 1256 default: assert(0 && "Unsupported VT!"); 1257 case MVT::i8: LoReg = X86::AL; HiReg = X86::AH; break; 1258 case MVT::i16: LoReg = X86::AX; HiReg = X86::DX; break; 1259 case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break; 1260 case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break; 1261 } 1262 1263 SDValue Tmp0, Tmp1, Tmp2, Tmp3; 1264 bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3); 1265 // multiplty is commmutative 1266 if (!foldedLoad) { 1267 foldedLoad = TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3); 1268 if (foldedLoad) 1269 std::swap(N0, N1); 1270 } 1271 1272 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), LoReg, 1273 N0, SDValue()).getValue(1); 1274 1275 if (foldedLoad) { 1276 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, N1.getOperand(0), InFlag }; 1277 SDNode *CNode = 1278 CurDAG->getTargetNode(MOpc, MVT::Other, MVT::Flag, Ops, 6); 1279 InFlag = SDValue(CNode, 1); 1280 // Update the chain. 1281 ReplaceUses(N1.getValue(1), SDValue(CNode, 0)); 1282 } else { 1283 InFlag = 1284 SDValue(CurDAG->getTargetNode(Opc, MVT::Flag, N1, InFlag), 0); 1285 } 1286 1287 // Copy the low half of the result, if it is needed. 1288 if (!N.getValue(0).use_empty()) { 1289 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), 1290 LoReg, NVT, InFlag); 1291 InFlag = Result.getValue(2); 1292 ReplaceUses(N.getValue(0), Result); 1293#ifndef NDEBUG 1294 DOUT << std::string(Indent-2, ' ') << "=> "; 1295 DEBUG(Result.getNode()->dump(CurDAG)); 1296 DOUT << "\n"; 1297#endif 1298 } 1299 // Copy the high half of the result, if it is needed. 1300 if (!N.getValue(1).use_empty()) { 1301 SDValue Result; 1302 if (HiReg == X86::AH && Subtarget->is64Bit()) { 1303 // Prevent use of AH in a REX instruction by referencing AX instead. 1304 // Shift it down 8 bits. 1305 Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), 1306 X86::AX, MVT::i16, InFlag); 1307 InFlag = Result.getValue(2); 1308 Result = SDValue(CurDAG->getTargetNode(X86::SHR16ri, MVT::i16, Result, 1309 CurDAG->getTargetConstant(8, MVT::i8)), 0); 1310 // Then truncate it down to i8. 1311 SDValue SRIdx = CurDAG->getTargetConstant(1, MVT::i32); // SubRegSet 1 1312 Result = SDValue(CurDAG->getTargetNode(X86::EXTRACT_SUBREG, 1313 MVT::i8, Result, SRIdx), 0); 1314 } else { 1315 Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), 1316 HiReg, NVT, InFlag); 1317 InFlag = Result.getValue(2); 1318 } 1319 ReplaceUses(N.getValue(1), Result); 1320#ifndef NDEBUG 1321 DOUT << std::string(Indent-2, ' ') << "=> "; 1322 DEBUG(Result.getNode()->dump(CurDAG)); 1323 DOUT << "\n"; 1324#endif 1325 } 1326 1327#ifndef NDEBUG 1328 Indent -= 2; 1329#endif 1330 1331 return NULL; 1332 } 1333 1334 case ISD::SDIVREM: 1335 case ISD::UDIVREM: { 1336 SDValue N0 = Node->getOperand(0); 1337 SDValue N1 = Node->getOperand(1); 1338 1339 bool isSigned = Opcode == ISD::SDIVREM; 1340 if (!isSigned) 1341 switch (NVT.getSimpleVT()) { 1342 default: assert(0 && "Unsupported VT!"); 1343 case MVT::i8: Opc = X86::DIV8r; MOpc = X86::DIV8m; break; 1344 case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break; 1345 case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break; 1346 case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break; 1347 } 1348 else 1349 switch (NVT.getSimpleVT()) { 1350 default: assert(0 && "Unsupported VT!"); 1351 case MVT::i8: Opc = X86::IDIV8r; MOpc = X86::IDIV8m; break; 1352 case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break; 1353 case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break; 1354 case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break; 1355 } 1356 1357 unsigned LoReg, HiReg; 1358 unsigned ClrOpcode, SExtOpcode; 1359 switch (NVT.getSimpleVT()) { 1360 default: assert(0 && "Unsupported VT!"); 1361 case MVT::i8: 1362 LoReg = X86::AL; HiReg = X86::AH; 1363 ClrOpcode = 0; 1364 SExtOpcode = X86::CBW; 1365 break; 1366 case MVT::i16: 1367 LoReg = X86::AX; HiReg = X86::DX; 1368 ClrOpcode = X86::MOV16r0; 1369 SExtOpcode = X86::CWD; 1370 break; 1371 case MVT::i32: 1372 LoReg = X86::EAX; HiReg = X86::EDX; 1373 ClrOpcode = X86::MOV32r0; 1374 SExtOpcode = X86::CDQ; 1375 break; 1376 case MVT::i64: 1377 LoReg = X86::RAX; HiReg = X86::RDX; 1378 ClrOpcode = X86::MOV64r0; 1379 SExtOpcode = X86::CQO; 1380 break; 1381 } 1382 1383 SDValue Tmp0, Tmp1, Tmp2, Tmp3; 1384 bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3); 1385 1386 SDValue InFlag; 1387 if (NVT == MVT::i8 && !isSigned) { 1388 // Special case for div8, just use a move with zero extension to AX to 1389 // clear the upper 8 bits (AH). 1390 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Move, Chain; 1391 if (TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3)) { 1392 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, N0.getOperand(0) }; 1393 Move = 1394 SDValue(CurDAG->getTargetNode(X86::MOVZX16rm8, MVT::i16, MVT::Other, 1395 Ops, 5), 0); 1396 Chain = Move.getValue(1); 1397 ReplaceUses(N0.getValue(1), Chain); 1398 } else { 1399 Move = 1400 SDValue(CurDAG->getTargetNode(X86::MOVZX16rr8, MVT::i16, N0), 0); 1401 Chain = CurDAG->getEntryNode(); 1402 } 1403 Chain = CurDAG->getCopyToReg(Chain, X86::AX, Move, SDValue()); 1404 InFlag = Chain.getValue(1); 1405 } else { 1406 InFlag = 1407 CurDAG->getCopyToReg(CurDAG->getEntryNode(), 1408 LoReg, N0, SDValue()).getValue(1); 1409 if (isSigned) { 1410 // Sign extend the low part into the high part. 1411 InFlag = 1412 SDValue(CurDAG->getTargetNode(SExtOpcode, MVT::Flag, InFlag), 0); 1413 } else { 1414 // Zero out the high part, effectively zero extending the input. 1415 SDValue ClrNode = SDValue(CurDAG->getTargetNode(ClrOpcode, NVT), 0); 1416 InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), HiReg, 1417 ClrNode, InFlag).getValue(1); 1418 } 1419 } 1420 1421 if (foldedLoad) { 1422 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, N1.getOperand(0), InFlag }; 1423 SDNode *CNode = 1424 CurDAG->getTargetNode(MOpc, MVT::Other, MVT::Flag, Ops, 6); 1425 InFlag = SDValue(CNode, 1); 1426 // Update the chain. 1427 ReplaceUses(N1.getValue(1), SDValue(CNode, 0)); 1428 } else { 1429 InFlag = 1430 SDValue(CurDAG->getTargetNode(Opc, MVT::Flag, N1, InFlag), 0); 1431 } 1432 1433 // Copy the division (low) result, if it is needed. 1434 if (!N.getValue(0).use_empty()) { 1435 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), 1436 LoReg, NVT, InFlag); 1437 InFlag = Result.getValue(2); 1438 ReplaceUses(N.getValue(0), Result); 1439#ifndef NDEBUG 1440 DOUT << std::string(Indent-2, ' ') << "=> "; 1441 DEBUG(Result.getNode()->dump(CurDAG)); 1442 DOUT << "\n"; 1443#endif 1444 } 1445 // Copy the remainder (high) result, if it is needed. 1446 if (!N.getValue(1).use_empty()) { 1447 SDValue Result; 1448 if (HiReg == X86::AH && Subtarget->is64Bit()) { 1449 // Prevent use of AH in a REX instruction by referencing AX instead. 1450 // Shift it down 8 bits. 1451 Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), 1452 X86::AX, MVT::i16, InFlag); 1453 InFlag = Result.getValue(2); 1454 Result = SDValue(CurDAG->getTargetNode(X86::SHR16ri, MVT::i16, Result, 1455 CurDAG->getTargetConstant(8, MVT::i8)), 0); 1456 // Then truncate it down to i8. 1457 SDValue SRIdx = CurDAG->getTargetConstant(1, MVT::i32); // SubRegSet 1 1458 Result = SDValue(CurDAG->getTargetNode(X86::EXTRACT_SUBREG, 1459 MVT::i8, Result, SRIdx), 0); 1460 } else { 1461 Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), 1462 HiReg, NVT, InFlag); 1463 InFlag = Result.getValue(2); 1464 } 1465 ReplaceUses(N.getValue(1), Result); 1466#ifndef NDEBUG 1467 DOUT << std::string(Indent-2, ' ') << "=> "; 1468 DEBUG(Result.getNode()->dump(CurDAG)); 1469 DOUT << "\n"; 1470#endif 1471 } 1472 1473#ifndef NDEBUG 1474 Indent -= 2; 1475#endif 1476 1477 return NULL; 1478 } 1479 1480 case ISD::SIGN_EXTEND_INREG: { 1481 MVT SVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 1482 if (SVT == MVT::i8 && !Subtarget->is64Bit()) { 1483 SDValue N0 = Node->getOperand(0); 1484 1485 SDValue TruncOp = SDValue(getTruncateTo8Bit(N0), 0); 1486 unsigned Opc = 0; 1487 switch (NVT.getSimpleVT()) { 1488 default: assert(0 && "Unknown sign_extend_inreg!"); 1489 case MVT::i16: 1490 Opc = X86::MOVSX16rr8; 1491 break; 1492 case MVT::i32: 1493 Opc = X86::MOVSX32rr8; 1494 break; 1495 } 1496 1497 SDNode *ResNode = CurDAG->getTargetNode(Opc, NVT, TruncOp); 1498 1499#ifndef NDEBUG 1500 DOUT << std::string(Indent-2, ' ') << "=> "; 1501 DEBUG(TruncOp.getNode()->dump(CurDAG)); 1502 DOUT << "\n"; 1503 DOUT << std::string(Indent-2, ' ') << "=> "; 1504 DEBUG(ResNode->dump(CurDAG)); 1505 DOUT << "\n"; 1506 Indent -= 2; 1507#endif 1508 return ResNode; 1509 } 1510 break; 1511 } 1512 1513 case ISD::TRUNCATE: { 1514 if (NVT == MVT::i8 && !Subtarget->is64Bit()) { 1515 SDValue Input = Node->getOperand(0); 1516 SDNode *ResNode = getTruncateTo8Bit(Input); 1517 1518#ifndef NDEBUG 1519 DOUT << std::string(Indent-2, ' ') << "=> "; 1520 DEBUG(ResNode->dump(CurDAG)); 1521 DOUT << "\n"; 1522 Indent -= 2; 1523#endif 1524 return ResNode; 1525 } 1526 break; 1527 } 1528 1529 case ISD::DECLARE: { 1530 // Handle DECLARE nodes here because the second operand may have been 1531 // wrapped in X86ISD::Wrapper. 1532 SDValue Chain = Node->getOperand(0); 1533 SDValue N1 = Node->getOperand(1); 1534 SDValue N2 = Node->getOperand(2); 1535 if (!isa<FrameIndexSDNode>(N1)) 1536 break; 1537 int FI = cast<FrameIndexSDNode>(N1)->getIndex(); 1538 if (N2.getOpcode() == ISD::ADD && 1539 N2.getOperand(0).getOpcode() == X86ISD::GlobalBaseReg) 1540 N2 = N2.getOperand(1); 1541 if (N2.getOpcode() == X86ISD::Wrapper && 1542 isa<GlobalAddressSDNode>(N2.getOperand(0))) { 1543 GlobalValue *GV = 1544 cast<GlobalAddressSDNode>(N2.getOperand(0))->getGlobal(); 1545 SDValue Tmp1 = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); 1546 SDValue Tmp2 = CurDAG->getTargetGlobalAddress(GV, TLI.getPointerTy()); 1547 SDValue Ops[] = { Tmp1, Tmp2, Chain }; 1548 return CurDAG->getTargetNode(TargetInstrInfo::DECLARE, 1549 MVT::Other, Ops, 3); 1550 } 1551 break; 1552 } 1553 } 1554 1555 SDNode *ResNode = SelectCode(N); 1556 1557#ifndef NDEBUG 1558 DOUT << std::string(Indent-2, ' ') << "=> "; 1559 if (ResNode == NULL || ResNode == N.getNode()) 1560 DEBUG(N.getNode()->dump(CurDAG)); 1561 else 1562 DEBUG(ResNode->dump(CurDAG)); 1563 DOUT << "\n"; 1564 Indent -= 2; 1565#endif 1566 1567 return ResNode; 1568} 1569 1570bool X86DAGToDAGISel:: 1571SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode, 1572 std::vector<SDValue> &OutOps) { 1573 SDValue Op0, Op1, Op2, Op3; 1574 switch (ConstraintCode) { 1575 case 'o': // offsetable ?? 1576 case 'v': // not offsetable ?? 1577 default: return true; 1578 case 'm': // memory 1579 if (!SelectAddr(Op, Op, Op0, Op1, Op2, Op3)) 1580 return true; 1581 break; 1582 } 1583 1584 OutOps.push_back(Op0); 1585 OutOps.push_back(Op1); 1586 OutOps.push_back(Op2); 1587 OutOps.push_back(Op3); 1588 return false; 1589} 1590 1591/// createX86ISelDag - This pass converts a legalized DAG into a 1592/// X86-specific DAG, ready for instruction scheduling. 1593/// 1594FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM, bool Fast) { 1595 return new X86DAGToDAGISel(TM, Fast); 1596} 1597