X86ISelDAGToDAG.cpp revision 884c70c912b699a4d14d05dcac1ac4f2d47c0f9a
1//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a DAG pattern matching instruction selector for X86,
11// converting from a legalized dag to a X86 dag.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86MachineFunctionInfo.h"
20#include "X86RegisterInfo.h"
21#include "X86Subtarget.h"
22#include "X86TargetMachine.h"
23#include "llvm/GlobalValue.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/Support/CFG.h"
27#include "llvm/Type.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/CodeGen/SelectionDAGISel.h"
34#include "llvm/Target/TargetMachine.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/Support/Compiler.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/MathExtras.h"
39#include "llvm/Support/Streams.h"
40#include "llvm/ADT/SmallPtrSet.h"
41#include "llvm/ADT/Statistic.h"
42using namespace llvm;
43
44STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
45
46//===----------------------------------------------------------------------===//
47//                      Pattern Matcher Implementation
48//===----------------------------------------------------------------------===//
49
50namespace {
51  /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
52  /// SDValue's instead of register numbers for the leaves of the matched
53  /// tree.
54  struct X86ISelAddressMode {
55    enum {
56      RegBase,
57      FrameIndexBase
58    } BaseType;
59
60    struct {            // This is really a union, discriminated by BaseType!
61      SDValue Reg;
62      int FrameIndex;
63    } Base;
64
65    bool isRIPRel;     // RIP as base?
66    unsigned Scale;
67    SDValue IndexReg;
68    int32_t Disp;
69    GlobalValue *GV;
70    Constant *CP;
71    const char *ES;
72    int JT;
73    unsigned Align;    // CP alignment.
74
75    X86ISelAddressMode()
76      : BaseType(RegBase), isRIPRel(false), Scale(1), IndexReg(), Disp(0),
77        GV(0), CP(0), ES(0), JT(-1), Align(0) {
78    }
79    void dump() {
80      cerr << "X86ISelAddressMode " << this << "\n";
81      cerr << "Base.Reg ";
82              if (Base.Reg.getNode() != 0) Base.Reg.getNode()->dump();
83              else cerr << "nul";
84      cerr << " Base.FrameIndex " << Base.FrameIndex << "\n";
85      cerr << "isRIPRel " << isRIPRel << " Scale" << Scale << "\n";
86      cerr << "IndexReg ";
87              if (IndexReg.getNode() != 0) IndexReg.getNode()->dump();
88              else cerr << "nul";
89      cerr << " Disp " << Disp << "\n";
90      cerr << "GV "; if (GV) GV->dump();
91                     else cerr << "nul";
92      cerr << " CP "; if (CP) CP->dump();
93                     else cerr << "nul";
94      cerr << "\n";
95      cerr << "ES "; if (ES) cerr << ES; else cerr << "nul";
96      cerr  << " JT" << JT << " Align" << Align << "\n";
97    }
98  };
99}
100
101namespace {
102  //===--------------------------------------------------------------------===//
103  /// ISel - X86 specific code to select X86 machine instructions for
104  /// SelectionDAG operations.
105  ///
106  class VISIBILITY_HIDDEN X86DAGToDAGISel : public SelectionDAGISel {
107    /// TM - Keep a reference to X86TargetMachine.
108    ///
109    X86TargetMachine &TM;
110
111    /// X86Lowering - This object fully describes how to lower LLVM code to an
112    /// X86-specific SelectionDAG.
113    X86TargetLowering &X86Lowering;
114
115    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
116    /// make the right decision when generating code for different targets.
117    const X86Subtarget *Subtarget;
118
119    /// CurBB - Current BB being isel'd.
120    ///
121    MachineBasicBlock *CurBB;
122
123    /// OptForSize - If true, selector should try to optimize for code size
124    /// instead of performance.
125    bool OptForSize;
126
127  public:
128    X86DAGToDAGISel(X86TargetMachine &tm, bool fast)
129      : SelectionDAGISel(*tm.getTargetLowering(), fast),
130        TM(tm), X86Lowering(*TM.getTargetLowering()),
131        Subtarget(&TM.getSubtarget<X86Subtarget>()),
132        OptForSize(false) {}
133
134    virtual const char *getPassName() const {
135      return "X86 DAG->DAG Instruction Selection";
136    }
137
138    /// InstructionSelect - This callback is invoked by
139    /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
140    virtual void InstructionSelect();
141
142    virtual void EmitFunctionEntryCode(Function &Fn, MachineFunction &MF);
143
144    virtual
145      bool IsLegalAndProfitableToFold(SDNode *N, SDNode *U, SDNode *Root) const;
146
147// Include the pieces autogenerated from the target description.
148#include "X86GenDAGISel.inc"
149
150  private:
151    SDNode *Select(SDValue N);
152    SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
153
154    bool MatchAddress(SDValue N, X86ISelAddressMode &AM,
155                      bool isRoot = true, unsigned Depth = 0);
156    bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM,
157                          bool isRoot, unsigned Depth);
158    bool SelectAddr(SDValue Op, SDValue N, SDValue &Base,
159                    SDValue &Scale, SDValue &Index, SDValue &Disp);
160    bool SelectLEAAddr(SDValue Op, SDValue N, SDValue &Base,
161                       SDValue &Scale, SDValue &Index, SDValue &Disp);
162    bool SelectScalarSSELoad(SDValue Op, SDValue Pred,
163                             SDValue N, SDValue &Base, SDValue &Scale,
164                             SDValue &Index, SDValue &Disp,
165                             SDValue &InChain, SDValue &OutChain);
166    bool TryFoldLoad(SDValue P, SDValue N,
167                     SDValue &Base, SDValue &Scale,
168                     SDValue &Index, SDValue &Disp);
169    void PreprocessForRMW();
170    void PreprocessForFPConvert();
171
172    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
173    /// inline asm expressions.
174    virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
175                                              char ConstraintCode,
176                                              std::vector<SDValue> &OutOps);
177
178    void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
179
180    inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
181                                   SDValue &Scale, SDValue &Index,
182                                   SDValue &Disp) {
183      Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
184        CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, TLI.getPointerTy()) :
185        AM.Base.Reg;
186      Scale = getI8Imm(AM.Scale);
187      Index = AM.IndexReg;
188      // These are 32-bit even in 64-bit mode since RIP relative offset
189      // is 32-bit.
190      if (AM.GV)
191        Disp = CurDAG->getTargetGlobalAddress(AM.GV, MVT::i32, AM.Disp);
192      else if (AM.CP)
193        Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
194                                             AM.Align, AM.Disp);
195      else if (AM.ES)
196        Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32);
197      else if (AM.JT != -1)
198        Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32);
199      else
200        Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
201    }
202
203    /// getI8Imm - Return a target constant with the specified value, of type
204    /// i8.
205    inline SDValue getI8Imm(unsigned Imm) {
206      return CurDAG->getTargetConstant(Imm, MVT::i8);
207    }
208
209    /// getI16Imm - Return a target constant with the specified value, of type
210    /// i16.
211    inline SDValue getI16Imm(unsigned Imm) {
212      return CurDAG->getTargetConstant(Imm, MVT::i16);
213    }
214
215    /// getI32Imm - Return a target constant with the specified value, of type
216    /// i32.
217    inline SDValue getI32Imm(unsigned Imm) {
218      return CurDAG->getTargetConstant(Imm, MVT::i32);
219    }
220
221    /// getGlobalBaseReg - Return an SDNode that returns the value of
222    /// the global base register. Output instructions required to
223    /// initialize the global base register, if necessary.
224    ///
225    SDNode *getGlobalBaseReg();
226
227    /// getTruncateTo8Bit - return an SDNode that implements a subreg based
228    /// truncate of the specified operand to i8. This can be done with tablegen,
229    /// except that this code uses MVT::Flag in a tricky way that happens to
230    /// improve scheduling in some cases.
231    SDNode *getTruncateTo8Bit(SDValue N0);
232
233#ifndef NDEBUG
234    unsigned Indent;
235#endif
236  };
237}
238
239/// findFlagUse - Return use of MVT::Flag value produced by the specified
240/// SDNode.
241///
242static SDNode *findFlagUse(SDNode *N) {
243  unsigned FlagResNo = N->getNumValues()-1;
244  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
245    SDNode *User = *I;
246    for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
247      SDValue Op = User->getOperand(i);
248      if (Op.getNode() == N && Op.getResNo() == FlagResNo)
249        return User;
250    }
251  }
252  return NULL;
253}
254
255/// findNonImmUse - Return true by reference in "found" if "Use" is an
256/// non-immediate use of "Def". This function recursively traversing
257/// up the operand chain ignoring certain nodes.
258static void findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
259                          SDNode *Root, bool &found,
260                          SmallPtrSet<SDNode*, 16> &Visited) {
261  if (found ||
262      Use->getNodeId() < Def->getNodeId() ||
263      !Visited.insert(Use))
264    return;
265
266  for (unsigned i = 0, e = Use->getNumOperands(); !found && i != e; ++i) {
267    SDNode *N = Use->getOperand(i).getNode();
268    if (N == Def) {
269      if (Use == ImmedUse || Use == Root)
270        continue;  // We are not looking for immediate use.
271      assert(N != Root);
272      found = true;
273      break;
274    }
275
276    // Traverse up the operand chain.
277    findNonImmUse(N, Def, ImmedUse, Root, found, Visited);
278  }
279}
280
281/// isNonImmUse - Start searching from Root up the DAG to check is Def can
282/// be reached. Return true if that's the case. However, ignore direct uses
283/// by ImmedUse (which would be U in the example illustrated in
284/// IsLegalAndProfitableToFold) and by Root (which can happen in the store
285/// case).
286/// FIXME: to be really generic, we should allow direct use by any node
287/// that is being folded. But realisticly since we only fold loads which
288/// have one non-chain use, we only need to watch out for load/op/store
289/// and load/op/cmp case where the root (store / cmp) may reach the load via
290/// its chain operand.
291static inline bool isNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse) {
292  SmallPtrSet<SDNode*, 16> Visited;
293  bool found = false;
294  findNonImmUse(Root, Def, ImmedUse, Root, found, Visited);
295  return found;
296}
297
298
299bool X86DAGToDAGISel::IsLegalAndProfitableToFold(SDNode *N, SDNode *U,
300                                                 SDNode *Root) const {
301  if (Fast) return false;
302
303  if (U == Root)
304    switch (U->getOpcode()) {
305    default: break;
306    case ISD::ADD:
307    case ISD::ADDC:
308    case ISD::ADDE:
309    case ISD::AND:
310    case ISD::OR:
311    case ISD::XOR: {
312      // If the other operand is a 8-bit immediate we should fold the immediate
313      // instead. This reduces code size.
314      // e.g.
315      // movl 4(%esp), %eax
316      // addl $4, %eax
317      // vs.
318      // movl $4, %eax
319      // addl 4(%esp), %eax
320      // The former is 2 bytes shorter. In case where the increment is 1, then
321      // the saving can be 4 bytes (by using incl %eax).
322      ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(U->getOperand(1));
323      if (Imm) {
324        if (U->getValueType(0) == MVT::i64) {
325          if ((int32_t)Imm->getZExtValue() == (int64_t)Imm->getZExtValue())
326            return false;
327        } else {
328          if ((int8_t)Imm->getZExtValue() == (int64_t)Imm->getZExtValue())
329            return false;
330        }
331      }
332    }
333    }
334
335  // If Root use can somehow reach N through a path that that doesn't contain
336  // U then folding N would create a cycle. e.g. In the following
337  // diagram, Root can reach N through X. If N is folded into into Root, then
338  // X is both a predecessor and a successor of U.
339  //
340  //          [N*]           //
341  //         ^   ^           //
342  //        /     \          //
343  //      [U*]    [X]?       //
344  //        ^     ^          //
345  //         \   /           //
346  //          \ /            //
347  //         [Root*]         //
348  //
349  // * indicates nodes to be folded together.
350  //
351  // If Root produces a flag, then it gets (even more) interesting. Since it
352  // will be "glued" together with its flag use in the scheduler, we need to
353  // check if it might reach N.
354  //
355  //          [N*]           //
356  //         ^   ^           //
357  //        /     \          //
358  //      [U*]    [X]?       //
359  //        ^       ^        //
360  //         \       \       //
361  //          \      |       //
362  //         [Root*] |       //
363  //          ^      |       //
364  //          f      |       //
365  //          |      /       //
366  //         [Y]    /        //
367  //           ^   /         //
368  //           f  /          //
369  //           | /           //
370  //          [FU]           //
371  //
372  // If FU (flag use) indirectly reaches N (the load), and Root folds N
373  // (call it Fold), then X is a predecessor of FU and a successor of
374  // Fold. But since Fold and FU are flagged together, this will create
375  // a cycle in the scheduling graph.
376
377  MVT VT = Root->getValueType(Root->getNumValues()-1);
378  while (VT == MVT::Flag) {
379    SDNode *FU = findFlagUse(Root);
380    if (FU == NULL)
381      break;
382    Root = FU;
383    VT = Root->getValueType(Root->getNumValues()-1);
384  }
385
386  return !isNonImmUse(Root, N, U);
387}
388
389/// MoveBelowTokenFactor - Replace TokenFactor operand with load's chain operand
390/// and move load below the TokenFactor. Replace store's chain operand with
391/// load's chain result.
392static void MoveBelowTokenFactor(SelectionDAG *CurDAG, SDValue Load,
393                                 SDValue Store, SDValue TF) {
394  SmallVector<SDValue, 4> Ops;
395  for (unsigned i = 0, e = TF.getNode()->getNumOperands(); i != e; ++i)
396    if (Load.getNode() == TF.getOperand(i).getNode())
397      Ops.push_back(Load.getOperand(0));
398    else
399      Ops.push_back(TF.getOperand(i));
400  CurDAG->UpdateNodeOperands(TF, &Ops[0], Ops.size());
401  CurDAG->UpdateNodeOperands(Load, TF, Load.getOperand(1), Load.getOperand(2));
402  CurDAG->UpdateNodeOperands(Store, Load.getValue(1), Store.getOperand(1),
403                             Store.getOperand(2), Store.getOperand(3));
404}
405
406/// isRMWLoad - Return true if N is a load that's part of RMW sub-DAG.
407///
408static bool isRMWLoad(SDValue N, SDValue Chain, SDValue Address,
409                      SDValue &Load) {
410  if (N.getOpcode() == ISD::BIT_CONVERT)
411    N = N.getOperand(0);
412
413  LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
414  if (!LD || LD->isVolatile())
415    return false;
416  if (LD->getAddressingMode() != ISD::UNINDEXED)
417    return false;
418
419  ISD::LoadExtType ExtType = LD->getExtensionType();
420  if (ExtType != ISD::NON_EXTLOAD && ExtType != ISD::EXTLOAD)
421    return false;
422
423  if (N.hasOneUse() &&
424      N.getOperand(1) == Address &&
425      N.getNode()->isOperandOf(Chain.getNode())) {
426    Load = N;
427    return true;
428  }
429  return false;
430}
431
432/// MoveBelowCallSeqStart - Replace CALLSEQ_START operand with load's chain
433/// operand and move load below the call's chain operand.
434static void MoveBelowCallSeqStart(SelectionDAG *CurDAG, SDValue Load,
435                           SDValue Call, SDValue Chain) {
436  SmallVector<SDValue, 8> Ops;
437  for (unsigned i = 0, e = Chain.getNode()->getNumOperands(); i != e; ++i)
438    if (Load.getNode() == Chain.getOperand(i).getNode())
439      Ops.push_back(Load.getOperand(0));
440    else
441      Ops.push_back(Chain.getOperand(i));
442  CurDAG->UpdateNodeOperands(Chain, &Ops[0], Ops.size());
443  CurDAG->UpdateNodeOperands(Load, Call.getOperand(0),
444                             Load.getOperand(1), Load.getOperand(2));
445  Ops.clear();
446  Ops.push_back(SDValue(Load.getNode(), 1));
447  for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i)
448    Ops.push_back(Call.getOperand(i));
449  CurDAG->UpdateNodeOperands(Call, &Ops[0], Ops.size());
450}
451
452/// isCalleeLoad - Return true if call address is a load and it can be
453/// moved below CALLSEQ_START and the chains leading up to the call.
454/// Return the CALLSEQ_START by reference as a second output.
455static bool isCalleeLoad(SDValue Callee, SDValue &Chain) {
456  if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
457    return false;
458  LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
459  if (!LD ||
460      LD->isVolatile() ||
461      LD->getAddressingMode() != ISD::UNINDEXED ||
462      LD->getExtensionType() != ISD::NON_EXTLOAD)
463    return false;
464
465  // Now let's find the callseq_start.
466  while (Chain.getOpcode() != ISD::CALLSEQ_START) {
467    if (!Chain.hasOneUse())
468      return false;
469    Chain = Chain.getOperand(0);
470  }
471  return Chain.getOperand(0).getNode() == Callee.getNode();
472}
473
474
475/// PreprocessForRMW - Preprocess the DAG to make instruction selection better.
476/// This is only run if not in -fast mode (aka -O0).
477/// This allows the instruction selector to pick more read-modify-write
478/// instructions. This is a common case:
479///
480///     [Load chain]
481///         ^
482///         |
483///       [Load]
484///       ^    ^
485///       |    |
486///      /      \-
487///     /         |
488/// [TokenFactor] [Op]
489///     ^          ^
490///     |          |
491///      \        /
492///       \      /
493///       [Store]
494///
495/// The fact the store's chain operand != load's chain will prevent the
496/// (store (op (load))) instruction from being selected. We can transform it to:
497///
498///     [Load chain]
499///         ^
500///         |
501///    [TokenFactor]
502///         ^
503///         |
504///       [Load]
505///       ^    ^
506///       |    |
507///       |     \-
508///       |       |
509///       |     [Op]
510///       |       ^
511///       |       |
512///       \      /
513///        \    /
514///       [Store]
515void X86DAGToDAGISel::PreprocessForRMW() {
516  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
517         E = CurDAG->allnodes_end(); I != E; ++I) {
518    if (I->getOpcode() == X86ISD::CALL) {
519      /// Also try moving call address load from outside callseq_start to just
520      /// before the call to allow it to be folded.
521      ///
522      ///     [Load chain]
523      ///         ^
524      ///         |
525      ///       [Load]
526      ///       ^    ^
527      ///       |    |
528      ///      /      \--
529      ///     /          |
530      ///[CALLSEQ_START] |
531      ///     ^          |
532      ///     |          |
533      /// [LOAD/C2Reg]   |
534      ///     |          |
535      ///      \        /
536      ///       \      /
537      ///       [CALL]
538      SDValue Chain = I->getOperand(0);
539      SDValue Load  = I->getOperand(1);
540      if (!isCalleeLoad(Load, Chain))
541        continue;
542      MoveBelowCallSeqStart(CurDAG, Load, SDValue(I, 0), Chain);
543      ++NumLoadMoved;
544      continue;
545    }
546
547    if (!ISD::isNON_TRUNCStore(I))
548      continue;
549    SDValue Chain = I->getOperand(0);
550
551    if (Chain.getNode()->getOpcode() != ISD::TokenFactor)
552      continue;
553
554    SDValue N1 = I->getOperand(1);
555    SDValue N2 = I->getOperand(2);
556    if ((N1.getValueType().isFloatingPoint() &&
557         !N1.getValueType().isVector()) ||
558        !N1.hasOneUse())
559      continue;
560
561    bool RModW = false;
562    SDValue Load;
563    unsigned Opcode = N1.getNode()->getOpcode();
564    switch (Opcode) {
565    case ISD::ADD:
566    case ISD::MUL:
567    case ISD::AND:
568    case ISD::OR:
569    case ISD::XOR:
570    case ISD::ADDC:
571    case ISD::ADDE:
572    case ISD::VECTOR_SHUFFLE: {
573      SDValue N10 = N1.getOperand(0);
574      SDValue N11 = N1.getOperand(1);
575      RModW = isRMWLoad(N10, Chain, N2, Load);
576      if (!RModW)
577        RModW = isRMWLoad(N11, Chain, N2, Load);
578      break;
579    }
580    case ISD::SUB:
581    case ISD::SHL:
582    case ISD::SRA:
583    case ISD::SRL:
584    case ISD::ROTL:
585    case ISD::ROTR:
586    case ISD::SUBC:
587    case ISD::SUBE:
588    case X86ISD::SHLD:
589    case X86ISD::SHRD: {
590      SDValue N10 = N1.getOperand(0);
591      RModW = isRMWLoad(N10, Chain, N2, Load);
592      break;
593    }
594    }
595
596    if (RModW) {
597      MoveBelowTokenFactor(CurDAG, Load, SDValue(I, 0), Chain);
598      ++NumLoadMoved;
599    }
600  }
601}
602
603
604/// PreprocessForFPConvert - Walk over the dag lowering fpround and fpextend
605/// nodes that target the FP stack to be store and load to the stack.  This is a
606/// gross hack.  We would like to simply mark these as being illegal, but when
607/// we do that, legalize produces these when it expands calls, then expands
608/// these in the same legalize pass.  We would like dag combine to be able to
609/// hack on these between the call expansion and the node legalization.  As such
610/// this pass basically does "really late" legalization of these inline with the
611/// X86 isel pass.
612void X86DAGToDAGISel::PreprocessForFPConvert() {
613  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
614       E = CurDAG->allnodes_end(); I != E; ) {
615    SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.
616    if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
617      continue;
618
619    // If the source and destination are SSE registers, then this is a legal
620    // conversion that should not be lowered.
621    MVT SrcVT = N->getOperand(0).getValueType();
622    MVT DstVT = N->getValueType(0);
623    bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
624    bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
625    if (SrcIsSSE && DstIsSSE)
626      continue;
627
628    if (!SrcIsSSE && !DstIsSSE) {
629      // If this is an FPStack extension, it is a noop.
630      if (N->getOpcode() == ISD::FP_EXTEND)
631        continue;
632      // If this is a value-preserving FPStack truncation, it is a noop.
633      if (N->getConstantOperandVal(1))
634        continue;
635    }
636
637    // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
638    // FPStack has extload and truncstore.  SSE can fold direct loads into other
639    // operations.  Based on this, decide what we want to do.
640    MVT MemVT;
641    if (N->getOpcode() == ISD::FP_ROUND)
642      MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'.
643    else
644      MemVT = SrcIsSSE ? SrcVT : DstVT;
645
646    SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
647
648    // FIXME: optimize the case where the src/dest is a load or store?
649    SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(),
650                                          N->getOperand(0),
651                                          MemTmp, NULL, 0, MemVT);
652    SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, DstVT, Store, MemTmp,
653                                        NULL, 0, MemVT);
654
655    // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
656    // extload we created.  This will cause general havok on the dag because
657    // anything below the conversion could be folded into other existing nodes.
658    // To avoid invalidating 'I', back it up to the convert node.
659    --I;
660    CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
661
662    // Now that we did that, the node is dead.  Increment the iterator to the
663    // next node to process, then delete N.
664    ++I;
665    CurDAG->DeleteNode(N);
666  }
667}
668
669/// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel
670/// when it has created a SelectionDAG for us to codegen.
671void X86DAGToDAGISel::InstructionSelect() {
672  CurBB = BB;  // BB can change as result of isel.
673  const Function *F = CurDAG->getMachineFunction().getFunction();
674  OptForSize = F->hasFnAttr(Attribute::OptimizeForSize);
675
676  DEBUG(BB->dump());
677  if (!Fast)
678    PreprocessForRMW();
679
680  // FIXME: This should only happen when not -fast.
681  PreprocessForFPConvert();
682
683  // Codegen the basic block.
684#ifndef NDEBUG
685  DOUT << "===== Instruction selection begins:\n";
686  Indent = 0;
687#endif
688  SelectRoot(*CurDAG);
689#ifndef NDEBUG
690  DOUT << "===== Instruction selection ends:\n";
691#endif
692
693  CurDAG->RemoveDeadNodes();
694}
695
696/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
697/// the main function.
698void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
699                                             MachineFrameInfo *MFI) {
700  const TargetInstrInfo *TII = TM.getInstrInfo();
701  if (Subtarget->isTargetCygMing())
702    BuildMI(BB, TII->get(X86::CALLpcrel32)).addExternalSymbol("__main");
703}
704
705void X86DAGToDAGISel::EmitFunctionEntryCode(Function &Fn, MachineFunction &MF) {
706  // If this is main, emit special code for main.
707  MachineBasicBlock *BB = MF.begin();
708  if (Fn.hasExternalLinkage() && Fn.getName() == "main")
709    EmitSpecialCodeForMain(BB, MF.getFrameInfo());
710}
711
712/// MatchAddress - Add the specified node to the specified addressing mode,
713/// returning true if it cannot be done.  This just pattern matches for the
714/// addressing mode.
715bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM,
716                                   bool isRoot, unsigned Depth) {
717  bool is64Bit = Subtarget->is64Bit();
718  DOUT << "MatchAddress: "; DEBUG(AM.dump());
719  // Limit recursion.
720  if (Depth > 5)
721    return MatchAddressBase(N, AM, isRoot, Depth);
722
723  // RIP relative addressing: %rip + 32-bit displacement!
724  if (AM.isRIPRel) {
725    if (!AM.ES && AM.JT != -1 && N.getOpcode() == ISD::Constant) {
726      uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
727      if (!is64Bit || isInt32(AM.Disp + Val)) {
728        AM.Disp += Val;
729        return false;
730      }
731    }
732    return true;
733  }
734
735  switch (N.getOpcode()) {
736  default: break;
737  case ISD::Constant: {
738    uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
739    if (!is64Bit || isInt32(AM.Disp + Val)) {
740      AM.Disp += Val;
741      return false;
742    }
743    break;
744  }
745
746  case X86ISD::Wrapper: {
747    DOUT << "Wrapper: 64bit " << is64Bit;
748    DOUT << " AM "; DEBUG(AM.dump()); DOUT << "\n";
749    // Under X86-64 non-small code model, GV (and friends) are 64-bits.
750    // Also, base and index reg must be 0 in order to use rip as base.
751    if (is64Bit && (TM.getCodeModel() != CodeModel::Small ||
752                    AM.Base.Reg.getNode() || AM.IndexReg.getNode()))
753      break;
754    if (AM.GV != 0 || AM.CP != 0 || AM.ES != 0 || AM.JT != -1)
755      break;
756    // If value is available in a register both base and index components have
757    // been picked, we can't fit the result available in the register in the
758    // addressing mode. Duplicate GlobalAddress or ConstantPool as displacement.
759    {
760      SDValue N0 = N.getOperand(0);
761      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
762        uint64_t Offset = G->getOffset();
763        if (!is64Bit || isInt32(AM.Disp + Offset)) {
764          GlobalValue *GV = G->getGlobal();
765          AM.GV = GV;
766          AM.Disp += Offset;
767          AM.isRIPRel = TM.symbolicAddressesAreRIPRel();
768          return false;
769        }
770      } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
771        uint64_t Offset = CP->getOffset();
772        if (!is64Bit || isInt32(AM.Disp + Offset)) {
773          AM.CP = CP->getConstVal();
774          AM.Align = CP->getAlignment();
775          AM.Disp += Offset;
776          AM.isRIPRel = TM.symbolicAddressesAreRIPRel();
777          return false;
778        }
779      } else if (ExternalSymbolSDNode *S =dyn_cast<ExternalSymbolSDNode>(N0)) {
780        AM.ES = S->getSymbol();
781        AM.isRIPRel = TM.symbolicAddressesAreRIPRel();
782        return false;
783      } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
784        AM.JT = J->getIndex();
785        AM.isRIPRel = TM.symbolicAddressesAreRIPRel();
786        return false;
787      }
788    }
789    break;
790  }
791
792  case ISD::FrameIndex:
793    if (AM.BaseType == X86ISelAddressMode::RegBase
794        && AM.Base.Reg.getNode() == 0) {
795      AM.BaseType = X86ISelAddressMode::FrameIndexBase;
796      AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
797      return false;
798    }
799    break;
800
801  case ISD::SHL:
802    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1 || AM.isRIPRel)
803      break;
804
805    if (ConstantSDNode
806          *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
807      unsigned Val = CN->getZExtValue();
808      if (Val == 1 || Val == 2 || Val == 3) {
809        AM.Scale = 1 << Val;
810        SDValue ShVal = N.getNode()->getOperand(0);
811
812        // Okay, we know that we have a scale by now.  However, if the scaled
813        // value is an add of something and a constant, we can fold the
814        // constant into the disp field here.
815        if (ShVal.getNode()->getOpcode() == ISD::ADD && ShVal.hasOneUse() &&
816            isa<ConstantSDNode>(ShVal.getNode()->getOperand(1))) {
817          AM.IndexReg = ShVal.getNode()->getOperand(0);
818          ConstantSDNode *AddVal =
819            cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
820          uint64_t Disp = AM.Disp + (AddVal->getZExtValue() << Val);
821          if (!is64Bit || isInt32(Disp))
822            AM.Disp = Disp;
823          else
824            AM.IndexReg = ShVal;
825        } else {
826          AM.IndexReg = ShVal;
827        }
828        return false;
829      }
830    break;
831    }
832
833  case ISD::SMUL_LOHI:
834  case ISD::UMUL_LOHI:
835    // A mul_lohi where we need the low part can be folded as a plain multiply.
836    if (N.getResNo() != 0) break;
837    // FALL THROUGH
838  case ISD::MUL:
839    // X*[3,5,9] -> X+X*[2,4,8]
840    if (AM.BaseType == X86ISelAddressMode::RegBase &&
841        AM.Base.Reg.getNode() == 0 &&
842        AM.IndexReg.getNode() == 0 &&
843        !AM.isRIPRel) {
844      if (ConstantSDNode
845            *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
846        if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
847            CN->getZExtValue() == 9) {
848          AM.Scale = unsigned(CN->getZExtValue())-1;
849
850          SDValue MulVal = N.getNode()->getOperand(0);
851          SDValue Reg;
852
853          // Okay, we know that we have a scale by now.  However, if the scaled
854          // value is an add of something and a constant, we can fold the
855          // constant into the disp field here.
856          if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
857              isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
858            Reg = MulVal.getNode()->getOperand(0);
859            ConstantSDNode *AddVal =
860              cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
861            uint64_t Disp = AM.Disp + AddVal->getZExtValue() *
862                                      CN->getZExtValue();
863            if (!is64Bit || isInt32(Disp))
864              AM.Disp = Disp;
865            else
866              Reg = N.getNode()->getOperand(0);
867          } else {
868            Reg = N.getNode()->getOperand(0);
869          }
870
871          AM.IndexReg = AM.Base.Reg = Reg;
872          return false;
873        }
874    }
875    break;
876
877  case ISD::ADD:
878    {
879      X86ISelAddressMode Backup = AM;
880      if (!MatchAddress(N.getNode()->getOperand(0), AM, false, Depth+1) &&
881          !MatchAddress(N.getNode()->getOperand(1), AM, false, Depth+1))
882        return false;
883      AM = Backup;
884      if (!MatchAddress(N.getNode()->getOperand(1), AM, false, Depth+1) &&
885          !MatchAddress(N.getNode()->getOperand(0), AM, false, Depth+1))
886        return false;
887      AM = Backup;
888    }
889    break;
890
891  case ISD::OR:
892    // Handle "X | C" as "X + C" iff X is known to have C bits clear.
893    if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
894      X86ISelAddressMode Backup = AM;
895      uint64_t Offset = CN->getSExtValue();
896      // Start with the LHS as an addr mode.
897      if (!MatchAddress(N.getOperand(0), AM, false) &&
898          // Address could not have picked a GV address for the displacement.
899          AM.GV == NULL &&
900          // On x86-64, the resultant disp must fit in 32-bits.
901          (!is64Bit || isInt32(AM.Disp + Offset)) &&
902          // Check to see if the LHS & C is zero.
903          CurDAG->MaskedValueIsZero(N.getOperand(0), CN->getAPIntValue())) {
904        AM.Disp += Offset;
905        return false;
906      }
907      AM = Backup;
908    }
909    break;
910
911  case ISD::AND: {
912    // Handle "(x << C1) & C2" as "(X & (C2>>C1)) << C1" if safe and if this
913    // allows us to fold the shift into this addressing mode.
914    SDValue Shift = N.getOperand(0);
915    if (Shift.getOpcode() != ISD::SHL) break;
916
917    // Scale must not be used already.
918    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
919
920    // Not when RIP is used as the base.
921    if (AM.isRIPRel) break;
922
923    ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N.getOperand(1));
924    ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
925    if (!C1 || !C2) break;
926
927    // Not likely to be profitable if either the AND or SHIFT node has more
928    // than one use (unless all uses are for address computation). Besides,
929    // isel mechanism requires their node ids to be reused.
930    if (!N.hasOneUse() || !Shift.hasOneUse())
931      break;
932
933    // Verify that the shift amount is something we can fold.
934    unsigned ShiftCst = C1->getZExtValue();
935    if (ShiftCst != 1 && ShiftCst != 2 && ShiftCst != 3)
936      break;
937
938    // Get the new AND mask, this folds to a constant.
939    SDValue X = Shift.getOperand(0);
940    SDValue NewANDMask = CurDAG->getNode(ISD::SRL, N.getValueType(),
941                                         SDValue(C2, 0), SDValue(C1, 0));
942    SDValue NewAND = CurDAG->getNode(ISD::AND, N.getValueType(), X, NewANDMask);
943    SDValue NewSHIFT = CurDAG->getNode(ISD::SHL, N.getValueType(),
944                                       NewAND, SDValue(C1, 0));
945
946    // Insert the new nodes into the topological ordering.
947    if (C1->getNodeId() > X.getNode()->getNodeId()) {
948      CurDAG->RepositionNode(X.getNode(), C1);
949      C1->setNodeId(X.getNode()->getNodeId());
950    }
951    if (NewANDMask.getNode()->getNodeId() == -1 ||
952        NewANDMask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
953      CurDAG->RepositionNode(X.getNode(), NewANDMask.getNode());
954      NewANDMask.getNode()->setNodeId(X.getNode()->getNodeId());
955    }
956    if (NewAND.getNode()->getNodeId() == -1 ||
957        NewAND.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
958      CurDAG->RepositionNode(Shift.getNode(), NewAND.getNode());
959      NewAND.getNode()->setNodeId(Shift.getNode()->getNodeId());
960    }
961    if (NewSHIFT.getNode()->getNodeId() == -1 ||
962        NewSHIFT.getNode()->getNodeId() > N.getNode()->getNodeId()) {
963      CurDAG->RepositionNode(N.getNode(), NewSHIFT.getNode());
964      NewSHIFT.getNode()->setNodeId(N.getNode()->getNodeId());
965    }
966
967    CurDAG->ReplaceAllUsesWith(N, NewSHIFT);
968
969    AM.Scale = 1 << ShiftCst;
970    AM.IndexReg = NewAND;
971    return false;
972  }
973  }
974
975  return MatchAddressBase(N, AM, isRoot, Depth);
976}
977
978/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
979/// specified addressing mode without any further recursion.
980bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM,
981                                       bool isRoot, unsigned Depth) {
982  // Is the base register already occupied?
983  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.getNode()) {
984    // If so, check to see if the scale index register is set.
985    if (AM.IndexReg.getNode() == 0 && !AM.isRIPRel) {
986      AM.IndexReg = N;
987      AM.Scale = 1;
988      return false;
989    }
990
991    // Otherwise, we cannot select it.
992    return true;
993  }
994
995  // Default, generate it as a register.
996  AM.BaseType = X86ISelAddressMode::RegBase;
997  AM.Base.Reg = N;
998  return false;
999}
1000
1001/// SelectAddr - returns true if it is able pattern match an addressing mode.
1002/// It returns the operands which make up the maximal addressing mode it can
1003/// match by reference.
1004bool X86DAGToDAGISel::SelectAddr(SDValue Op, SDValue N, SDValue &Base,
1005                                 SDValue &Scale, SDValue &Index,
1006                                 SDValue &Disp) {
1007  X86ISelAddressMode AM;
1008  if (MatchAddress(N, AM))
1009    return false;
1010
1011  MVT VT = N.getValueType();
1012  if (AM.BaseType == X86ISelAddressMode::RegBase) {
1013    if (!AM.Base.Reg.getNode())
1014      AM.Base.Reg = CurDAG->getRegister(0, VT);
1015  }
1016
1017  if (!AM.IndexReg.getNode())
1018    AM.IndexReg = CurDAG->getRegister(0, VT);
1019
1020  getAddressOperands(AM, Base, Scale, Index, Disp);
1021  return true;
1022}
1023
1024/// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
1025/// match a load whose top elements are either undef or zeros.  The load flavor
1026/// is derived from the type of N, which is either v4f32 or v2f64.
1027bool X86DAGToDAGISel::SelectScalarSSELoad(SDValue Op, SDValue Pred,
1028                                          SDValue N, SDValue &Base,
1029                                          SDValue &Scale, SDValue &Index,
1030                                          SDValue &Disp, SDValue &InChain,
1031                                          SDValue &OutChain) {
1032  if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1033    InChain = N.getOperand(0).getValue(1);
1034    if (ISD::isNON_EXTLoad(InChain.getNode()) &&
1035        InChain.getValue(0).hasOneUse() &&
1036        N.hasOneUse() &&
1037        IsLegalAndProfitableToFold(N.getNode(), Pred.getNode(), Op.getNode())) {
1038      LoadSDNode *LD = cast<LoadSDNode>(InChain);
1039      if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp))
1040        return false;
1041      OutChain = LD->getChain();
1042      return true;
1043    }
1044  }
1045
1046  // Also handle the case where we explicitly require zeros in the top
1047  // elements.  This is a vector shuffle from the zero vector.
1048  if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1049      // Check to see if the top elements are all zeros (or bitcast of zeros).
1050      N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
1051      N.getOperand(0).getNode()->hasOneUse() &&
1052      ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
1053      N.getOperand(0).getOperand(0).hasOneUse()) {
1054    // Okay, this is a zero extending load.  Fold it.
1055    LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
1056    if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp))
1057      return false;
1058    OutChain = LD->getChain();
1059    InChain = SDValue(LD, 1);
1060    return true;
1061  }
1062  return false;
1063}
1064
1065
1066/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
1067/// mode it matches can be cost effectively emitted as an LEA instruction.
1068bool X86DAGToDAGISel::SelectLEAAddr(SDValue Op, SDValue N,
1069                                    SDValue &Base, SDValue &Scale,
1070                                    SDValue &Index, SDValue &Disp) {
1071  X86ISelAddressMode AM;
1072  if (MatchAddress(N, AM))
1073    return false;
1074
1075  MVT VT = N.getValueType();
1076  unsigned Complexity = 0;
1077  if (AM.BaseType == X86ISelAddressMode::RegBase)
1078    if (AM.Base.Reg.getNode())
1079      Complexity = 1;
1080    else
1081      AM.Base.Reg = CurDAG->getRegister(0, VT);
1082  else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1083    Complexity = 4;
1084
1085  if (AM.IndexReg.getNode())
1086    Complexity++;
1087  else
1088    AM.IndexReg = CurDAG->getRegister(0, VT);
1089
1090  // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1091  // a simple shift.
1092  if (AM.Scale > 1)
1093    Complexity++;
1094
1095  // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1096  // to a LEA. This is determined with some expermentation but is by no means
1097  // optimal (especially for code size consideration). LEA is nice because of
1098  // its three-address nature. Tweak the cost function again when we can run
1099  // convertToThreeAddress() at register allocation time.
1100  if (AM.GV || AM.CP || AM.ES || AM.JT != -1) {
1101    // For X86-64, we should always use lea to materialize RIP relative
1102    // addresses.
1103    if (Subtarget->is64Bit())
1104      Complexity = 4;
1105    else
1106      Complexity += 2;
1107  }
1108
1109  if (AM.Disp && (AM.Base.Reg.getNode() || AM.IndexReg.getNode()))
1110    Complexity++;
1111
1112  if (Complexity > 2) {
1113    getAddressOperands(AM, Base, Scale, Index, Disp);
1114    return true;
1115  }
1116  return false;
1117}
1118
1119bool X86DAGToDAGISel::TryFoldLoad(SDValue P, SDValue N,
1120                                  SDValue &Base, SDValue &Scale,
1121                                  SDValue &Index, SDValue &Disp) {
1122  if (ISD::isNON_EXTLoad(N.getNode()) &&
1123      N.hasOneUse() &&
1124      IsLegalAndProfitableToFold(N.getNode(), P.getNode(), P.getNode()))
1125    return SelectAddr(P, N.getOperand(1), Base, Scale, Index, Disp);
1126  return false;
1127}
1128
1129/// getGlobalBaseReg - Return an SDNode that returns the value of
1130/// the global base register. Output instructions required to
1131/// initialize the global base register, if necessary.
1132///
1133SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
1134  MachineFunction *MF = CurBB->getParent();
1135  unsigned GlobalBaseReg = TM.getInstrInfo()->getGlobalBaseReg(MF);
1136  return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
1137}
1138
1139static SDNode *FindCallStartFromCall(SDNode *Node) {
1140  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
1141    assert(Node->getOperand(0).getValueType() == MVT::Other &&
1142         "Node doesn't have a token chain argument!");
1143  return FindCallStartFromCall(Node->getOperand(0).getNode());
1144}
1145
1146/// getTruncateTo8Bit - return an SDNode that implements a subreg based
1147/// truncate of the specified operand to i8. This can be done with tablegen,
1148/// except that this code uses MVT::Flag in a tricky way that happens to
1149/// improve scheduling in some cases.
1150SDNode *X86DAGToDAGISel::getTruncateTo8Bit(SDValue N0) {
1151  assert(!Subtarget->is64Bit() &&
1152         "getTruncateTo8Bit is only needed on x86-32!");
1153  SDValue SRIdx = CurDAG->getTargetConstant(1, MVT::i32); // SubRegSet 1
1154
1155  // Ensure that the source register has an 8-bit subreg on 32-bit targets
1156  unsigned Opc;
1157  MVT N0VT = N0.getValueType();
1158  switch (N0VT.getSimpleVT()) {
1159  default: assert(0 && "Unknown truncate!");
1160  case MVT::i16:
1161    Opc = X86::MOV16to16_;
1162    break;
1163  case MVT::i32:
1164    Opc = X86::MOV32to32_;
1165    break;
1166  }
1167
1168  // The use of MVT::Flag here is not strictly accurate, but it helps
1169  // scheduling in some cases.
1170  N0 = SDValue(CurDAG->getTargetNode(Opc, N0VT, MVT::Flag, N0), 0);
1171  return CurDAG->getTargetNode(X86::EXTRACT_SUBREG,
1172                               MVT::i8, N0, SRIdx, N0.getValue(1));
1173}
1174
1175SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
1176  SDValue Chain = Node->getOperand(0);
1177  SDValue In1 = Node->getOperand(1);
1178  SDValue In2L = Node->getOperand(2);
1179  SDValue In2H = Node->getOperand(3);
1180  SDValue Tmp0, Tmp1, Tmp2, Tmp3;
1181  if (!SelectAddr(In1, In1, Tmp0, Tmp1, Tmp2, Tmp3))
1182    return NULL;
1183  SDValue LSI = Node->getOperand(4);    // MemOperand
1184  const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, In2L, In2H, LSI, Chain };
1185  return CurDAG->getTargetNode(Opc, MVT::i32, MVT::i32, MVT::Other, Ops, 8);
1186}
1187
1188SDNode *X86DAGToDAGISel::Select(SDValue N) {
1189  SDNode *Node = N.getNode();
1190  MVT NVT = Node->getValueType(0);
1191  unsigned Opc, MOpc;
1192  unsigned Opcode = Node->getOpcode();
1193
1194#ifndef NDEBUG
1195  DOUT << std::string(Indent, ' ') << "Selecting: ";
1196  DEBUG(Node->dump(CurDAG));
1197  DOUT << "\n";
1198  Indent += 2;
1199#endif
1200
1201  if (Node->isMachineOpcode()) {
1202#ifndef NDEBUG
1203    DOUT << std::string(Indent-2, ' ') << "== ";
1204    DEBUG(Node->dump(CurDAG));
1205    DOUT << "\n";
1206    Indent -= 2;
1207#endif
1208    return NULL;   // Already selected.
1209  }
1210
1211  switch (Opcode) {
1212    default: break;
1213    case X86ISD::GlobalBaseReg:
1214      return getGlobalBaseReg();
1215
1216    case X86ISD::ATOMOR64_DAG:
1217      return SelectAtomic64(Node, X86::ATOMOR6432);
1218    case X86ISD::ATOMXOR64_DAG:
1219      return SelectAtomic64(Node, X86::ATOMXOR6432);
1220    case X86ISD::ATOMADD64_DAG:
1221      return SelectAtomic64(Node, X86::ATOMADD6432);
1222    case X86ISD::ATOMSUB64_DAG:
1223      return SelectAtomic64(Node, X86::ATOMSUB6432);
1224    case X86ISD::ATOMNAND64_DAG:
1225      return SelectAtomic64(Node, X86::ATOMNAND6432);
1226    case X86ISD::ATOMAND64_DAG:
1227      return SelectAtomic64(Node, X86::ATOMAND6432);
1228    case X86ISD::ATOMSWAP64_DAG:
1229      return SelectAtomic64(Node, X86::ATOMSWAP6432);
1230
1231    case ISD::SMUL_LOHI:
1232    case ISD::UMUL_LOHI: {
1233      SDValue N0 = Node->getOperand(0);
1234      SDValue N1 = Node->getOperand(1);
1235
1236      bool isSigned = Opcode == ISD::SMUL_LOHI;
1237      if (!isSigned)
1238        switch (NVT.getSimpleVT()) {
1239        default: assert(0 && "Unsupported VT!");
1240        case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
1241        case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
1242        case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
1243        case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
1244        }
1245      else
1246        switch (NVT.getSimpleVT()) {
1247        default: assert(0 && "Unsupported VT!");
1248        case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
1249        case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
1250        case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
1251        case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
1252        }
1253
1254      unsigned LoReg, HiReg;
1255      switch (NVT.getSimpleVT()) {
1256      default: assert(0 && "Unsupported VT!");
1257      case MVT::i8:  LoReg = X86::AL;  HiReg = X86::AH;  break;
1258      case MVT::i16: LoReg = X86::AX;  HiReg = X86::DX;  break;
1259      case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
1260      case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break;
1261      }
1262
1263      SDValue Tmp0, Tmp1, Tmp2, Tmp3;
1264      bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3);
1265      // multiplty is commmutative
1266      if (!foldedLoad) {
1267        foldedLoad = TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3);
1268        if (foldedLoad)
1269          std::swap(N0, N1);
1270      }
1271
1272      SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), LoReg,
1273                                              N0, SDValue()).getValue(1);
1274
1275      if (foldedLoad) {
1276        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, N1.getOperand(0), InFlag };
1277        SDNode *CNode =
1278          CurDAG->getTargetNode(MOpc, MVT::Other, MVT::Flag, Ops, 6);
1279        InFlag = SDValue(CNode, 1);
1280        // Update the chain.
1281        ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1282      } else {
1283        InFlag =
1284          SDValue(CurDAG->getTargetNode(Opc, MVT::Flag, N1, InFlag), 0);
1285      }
1286
1287      // Copy the low half of the result, if it is needed.
1288      if (!N.getValue(0).use_empty()) {
1289        SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
1290                                                  LoReg, NVT, InFlag);
1291        InFlag = Result.getValue(2);
1292        ReplaceUses(N.getValue(0), Result);
1293#ifndef NDEBUG
1294        DOUT << std::string(Indent-2, ' ') << "=> ";
1295        DEBUG(Result.getNode()->dump(CurDAG));
1296        DOUT << "\n";
1297#endif
1298      }
1299      // Copy the high half of the result, if it is needed.
1300      if (!N.getValue(1).use_empty()) {
1301        SDValue Result;
1302        if (HiReg == X86::AH && Subtarget->is64Bit()) {
1303          // Prevent use of AH in a REX instruction by referencing AX instead.
1304          // Shift it down 8 bits.
1305          Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
1306                                          X86::AX, MVT::i16, InFlag);
1307          InFlag = Result.getValue(2);
1308          Result = SDValue(CurDAG->getTargetNode(X86::SHR16ri, MVT::i16, Result,
1309                                     CurDAG->getTargetConstant(8, MVT::i8)), 0);
1310          // Then truncate it down to i8.
1311          SDValue SRIdx = CurDAG->getTargetConstant(1, MVT::i32); // SubRegSet 1
1312          Result = SDValue(CurDAG->getTargetNode(X86::EXTRACT_SUBREG,
1313                                                   MVT::i8, Result, SRIdx), 0);
1314        } else {
1315          Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
1316                                          HiReg, NVT, InFlag);
1317          InFlag = Result.getValue(2);
1318        }
1319        ReplaceUses(N.getValue(1), Result);
1320#ifndef NDEBUG
1321        DOUT << std::string(Indent-2, ' ') << "=> ";
1322        DEBUG(Result.getNode()->dump(CurDAG));
1323        DOUT << "\n";
1324#endif
1325      }
1326
1327#ifndef NDEBUG
1328      Indent -= 2;
1329#endif
1330
1331      return NULL;
1332    }
1333
1334    case ISD::SDIVREM:
1335    case ISD::UDIVREM: {
1336      SDValue N0 = Node->getOperand(0);
1337      SDValue N1 = Node->getOperand(1);
1338
1339      bool isSigned = Opcode == ISD::SDIVREM;
1340      if (!isSigned)
1341        switch (NVT.getSimpleVT()) {
1342        default: assert(0 && "Unsupported VT!");
1343        case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
1344        case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
1345        case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
1346        case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
1347        }
1348      else
1349        switch (NVT.getSimpleVT()) {
1350        default: assert(0 && "Unsupported VT!");
1351        case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
1352        case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
1353        case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
1354        case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
1355        }
1356
1357      unsigned LoReg, HiReg;
1358      unsigned ClrOpcode, SExtOpcode;
1359      switch (NVT.getSimpleVT()) {
1360      default: assert(0 && "Unsupported VT!");
1361      case MVT::i8:
1362        LoReg = X86::AL;  HiReg = X86::AH;
1363        ClrOpcode  = 0;
1364        SExtOpcode = X86::CBW;
1365        break;
1366      case MVT::i16:
1367        LoReg = X86::AX;  HiReg = X86::DX;
1368        ClrOpcode  = X86::MOV16r0;
1369        SExtOpcode = X86::CWD;
1370        break;
1371      case MVT::i32:
1372        LoReg = X86::EAX; HiReg = X86::EDX;
1373        ClrOpcode  = X86::MOV32r0;
1374        SExtOpcode = X86::CDQ;
1375        break;
1376      case MVT::i64:
1377        LoReg = X86::RAX; HiReg = X86::RDX;
1378        ClrOpcode  = X86::MOV64r0;
1379        SExtOpcode = X86::CQO;
1380        break;
1381      }
1382
1383      SDValue Tmp0, Tmp1, Tmp2, Tmp3;
1384      bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3);
1385
1386      SDValue InFlag;
1387      if (NVT == MVT::i8 && !isSigned) {
1388        // Special case for div8, just use a move with zero extension to AX to
1389        // clear the upper 8 bits (AH).
1390        SDValue Tmp0, Tmp1, Tmp2, Tmp3, Move, Chain;
1391        if (TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3)) {
1392          SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, N0.getOperand(0) };
1393          Move =
1394            SDValue(CurDAG->getTargetNode(X86::MOVZX16rm8, MVT::i16, MVT::Other,
1395                                            Ops, 5), 0);
1396          Chain = Move.getValue(1);
1397          ReplaceUses(N0.getValue(1), Chain);
1398        } else {
1399          Move =
1400            SDValue(CurDAG->getTargetNode(X86::MOVZX16rr8, MVT::i16, N0), 0);
1401          Chain = CurDAG->getEntryNode();
1402        }
1403        Chain  = CurDAG->getCopyToReg(Chain, X86::AX, Move, SDValue());
1404        InFlag = Chain.getValue(1);
1405      } else {
1406        InFlag =
1407          CurDAG->getCopyToReg(CurDAG->getEntryNode(),
1408                               LoReg, N0, SDValue()).getValue(1);
1409        if (isSigned) {
1410          // Sign extend the low part into the high part.
1411          InFlag =
1412            SDValue(CurDAG->getTargetNode(SExtOpcode, MVT::Flag, InFlag), 0);
1413        } else {
1414          // Zero out the high part, effectively zero extending the input.
1415          SDValue ClrNode = SDValue(CurDAG->getTargetNode(ClrOpcode, NVT), 0);
1416          InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), HiReg,
1417                                        ClrNode, InFlag).getValue(1);
1418        }
1419      }
1420
1421      if (foldedLoad) {
1422        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, N1.getOperand(0), InFlag };
1423        SDNode *CNode =
1424          CurDAG->getTargetNode(MOpc, MVT::Other, MVT::Flag, Ops, 6);
1425        InFlag = SDValue(CNode, 1);
1426        // Update the chain.
1427        ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1428      } else {
1429        InFlag =
1430          SDValue(CurDAG->getTargetNode(Opc, MVT::Flag, N1, InFlag), 0);
1431      }
1432
1433      // Copy the division (low) result, if it is needed.
1434      if (!N.getValue(0).use_empty()) {
1435        SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
1436                                                  LoReg, NVT, InFlag);
1437        InFlag = Result.getValue(2);
1438        ReplaceUses(N.getValue(0), Result);
1439#ifndef NDEBUG
1440        DOUT << std::string(Indent-2, ' ') << "=> ";
1441        DEBUG(Result.getNode()->dump(CurDAG));
1442        DOUT << "\n";
1443#endif
1444      }
1445      // Copy the remainder (high) result, if it is needed.
1446      if (!N.getValue(1).use_empty()) {
1447        SDValue Result;
1448        if (HiReg == X86::AH && Subtarget->is64Bit()) {
1449          // Prevent use of AH in a REX instruction by referencing AX instead.
1450          // Shift it down 8 bits.
1451          Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
1452                                          X86::AX, MVT::i16, InFlag);
1453          InFlag = Result.getValue(2);
1454          Result = SDValue(CurDAG->getTargetNode(X86::SHR16ri, MVT::i16, Result,
1455                                     CurDAG->getTargetConstant(8, MVT::i8)), 0);
1456          // Then truncate it down to i8.
1457          SDValue SRIdx = CurDAG->getTargetConstant(1, MVT::i32); // SubRegSet 1
1458          Result = SDValue(CurDAG->getTargetNode(X86::EXTRACT_SUBREG,
1459                                                   MVT::i8, Result, SRIdx), 0);
1460        } else {
1461          Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
1462                                          HiReg, NVT, InFlag);
1463          InFlag = Result.getValue(2);
1464        }
1465        ReplaceUses(N.getValue(1), Result);
1466#ifndef NDEBUG
1467        DOUT << std::string(Indent-2, ' ') << "=> ";
1468        DEBUG(Result.getNode()->dump(CurDAG));
1469        DOUT << "\n";
1470#endif
1471      }
1472
1473#ifndef NDEBUG
1474      Indent -= 2;
1475#endif
1476
1477      return NULL;
1478    }
1479
1480    case ISD::SIGN_EXTEND_INREG: {
1481      MVT SVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
1482      if (SVT == MVT::i8 && !Subtarget->is64Bit()) {
1483        SDValue N0 = Node->getOperand(0);
1484
1485        SDValue TruncOp = SDValue(getTruncateTo8Bit(N0), 0);
1486        unsigned Opc = 0;
1487        switch (NVT.getSimpleVT()) {
1488        default: assert(0 && "Unknown sign_extend_inreg!");
1489        case MVT::i16:
1490          Opc = X86::MOVSX16rr8;
1491          break;
1492        case MVT::i32:
1493          Opc = X86::MOVSX32rr8;
1494          break;
1495        }
1496
1497        SDNode *ResNode = CurDAG->getTargetNode(Opc, NVT, TruncOp);
1498
1499#ifndef NDEBUG
1500        DOUT << std::string(Indent-2, ' ') << "=> ";
1501        DEBUG(TruncOp.getNode()->dump(CurDAG));
1502        DOUT << "\n";
1503        DOUT << std::string(Indent-2, ' ') << "=> ";
1504        DEBUG(ResNode->dump(CurDAG));
1505        DOUT << "\n";
1506        Indent -= 2;
1507#endif
1508        return ResNode;
1509      }
1510      break;
1511    }
1512
1513    case ISD::TRUNCATE: {
1514      if (NVT == MVT::i8 && !Subtarget->is64Bit()) {
1515        SDValue Input = Node->getOperand(0);
1516        SDNode *ResNode = getTruncateTo8Bit(Input);
1517
1518#ifndef NDEBUG
1519        DOUT << std::string(Indent-2, ' ') << "=> ";
1520        DEBUG(ResNode->dump(CurDAG));
1521        DOUT << "\n";
1522        Indent -= 2;
1523#endif
1524        return ResNode;
1525      }
1526      break;
1527    }
1528
1529    case ISD::DECLARE: {
1530      // Handle DECLARE nodes here because the second operand may have been
1531      // wrapped in X86ISD::Wrapper.
1532      SDValue Chain = Node->getOperand(0);
1533      SDValue N1 = Node->getOperand(1);
1534      SDValue N2 = Node->getOperand(2);
1535      if (!isa<FrameIndexSDNode>(N1))
1536        break;
1537      int FI = cast<FrameIndexSDNode>(N1)->getIndex();
1538      if (N2.getOpcode() == ISD::ADD &&
1539          N2.getOperand(0).getOpcode() == X86ISD::GlobalBaseReg)
1540        N2 = N2.getOperand(1);
1541      if (N2.getOpcode() == X86ISD::Wrapper &&
1542          isa<GlobalAddressSDNode>(N2.getOperand(0))) {
1543        GlobalValue *GV =
1544          cast<GlobalAddressSDNode>(N2.getOperand(0))->getGlobal();
1545        SDValue Tmp1 = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
1546        SDValue Tmp2 = CurDAG->getTargetGlobalAddress(GV, TLI.getPointerTy());
1547        SDValue Ops[] = { Tmp1, Tmp2, Chain };
1548        return CurDAG->getTargetNode(TargetInstrInfo::DECLARE,
1549                                     MVT::Other, Ops, 3);
1550      }
1551      break;
1552    }
1553  }
1554
1555  SDNode *ResNode = SelectCode(N);
1556
1557#ifndef NDEBUG
1558  DOUT << std::string(Indent-2, ' ') << "=> ";
1559  if (ResNode == NULL || ResNode == N.getNode())
1560    DEBUG(N.getNode()->dump(CurDAG));
1561  else
1562    DEBUG(ResNode->dump(CurDAG));
1563  DOUT << "\n";
1564  Indent -= 2;
1565#endif
1566
1567  return ResNode;
1568}
1569
1570bool X86DAGToDAGISel::
1571SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
1572                             std::vector<SDValue> &OutOps) {
1573  SDValue Op0, Op1, Op2, Op3;
1574  switch (ConstraintCode) {
1575  case 'o':   // offsetable        ??
1576  case 'v':   // not offsetable    ??
1577  default: return true;
1578  case 'm':   // memory
1579    if (!SelectAddr(Op, Op, Op0, Op1, Op2, Op3))
1580      return true;
1581    break;
1582  }
1583
1584  OutOps.push_back(Op0);
1585  OutOps.push_back(Op1);
1586  OutOps.push_back(Op2);
1587  OutOps.push_back(Op3);
1588  return false;
1589}
1590
1591/// createX86ISelDag - This pass converts a legalized DAG into a
1592/// X86-specific DAG, ready for instruction scheduling.
1593///
1594FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM, bool Fast) {
1595  return new X86DAGToDAGISel(TM, Fast);
1596}
1597