X86ISelDAGToDAG.cpp revision 92cb0af6754b0d20b9eda4b459a5a27578bfd9ae
1//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the Evan Cheng and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a DAG pattern matching instruction selector for X86,
11// converting from a legalized dag to a X86 dag.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86RegisterInfo.h"
17#include "X86Subtarget.h"
18#include "X86ISelLowering.h"
19#include "llvm/GlobalValue.h"
20#include "llvm/Instructions.h"
21#include "llvm/Support/CFG.h"
22#include "llvm/CodeGen/MachineConstantPool.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/SSARegMap.h"
27#include "llvm/CodeGen/SelectionDAGISel.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/ADT/Statistic.h"
31using namespace llvm;
32
33//===----------------------------------------------------------------------===//
34//                      Pattern Matcher Implementation
35//===----------------------------------------------------------------------===//
36
37namespace {
38  /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
39  /// SDOperand's instead of register numbers for the leaves of the matched
40  /// tree.
41  struct X86ISelAddressMode {
42    enum {
43      RegBase,
44      FrameIndexBase,
45      ConstantPoolBase
46    } BaseType;
47
48    struct {            // This is really a union, discriminated by BaseType!
49      SDOperand Reg;
50      int FrameIndex;
51    } Base;
52
53    unsigned Scale;
54    SDOperand IndexReg;
55    unsigned Disp;
56    GlobalValue *GV;
57
58    X86ISelAddressMode()
59      : BaseType(RegBase), Scale(1), IndexReg(), Disp(0), GV(0) {
60    }
61  };
62}
63
64namespace {
65  Statistic<>
66  NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added");
67
68  //===--------------------------------------------------------------------===//
69  /// ISel - X86 specific code to select X86 machine instructions for
70  /// SelectionDAG operations.
71  ///
72  class X86DAGToDAGISel : public SelectionDAGISel {
73    /// ContainsFPCode - Every instruction we select that uses or defines a FP
74    /// register should set this to true.
75    bool ContainsFPCode;
76
77    /// X86Lowering - This object fully describes how to lower LLVM code to an
78    /// X86-specific SelectionDAG.
79    X86TargetLowering X86Lowering;
80
81    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
82    /// make the right decision when generating code for different targets.
83    const X86Subtarget *Subtarget;
84  public:
85    X86DAGToDAGISel(TargetMachine &TM)
86      : SelectionDAGISel(X86Lowering), X86Lowering(TM) {
87      Subtarget = &TM.getSubtarget<X86Subtarget>();
88    }
89
90    virtual const char *getPassName() const {
91      return "X86 DAG->DAG Instruction Selection";
92    }
93
94    /// InstructionSelectBasicBlock - This callback is invoked by
95    /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
96    virtual void InstructionSelectBasicBlock(SelectionDAG &DAG);
97
98// Include the pieces autogenerated from the target description.
99#include "X86GenDAGISel.inc"
100
101  private:
102    SDOperand Select(SDOperand N);
103
104    bool MatchAddress(SDOperand N, X86ISelAddressMode &AM);
105    bool SelectAddr(SDOperand N, SDOperand &Base, SDOperand &Scale,
106                    SDOperand &Index, SDOperand &Disp);
107    bool SelectLEAAddr(SDOperand N, SDOperand &Base, SDOperand &Scale,
108                       SDOperand &Index, SDOperand &Disp);
109    bool TryFoldLoad(SDOperand N, SDOperand &Base, SDOperand &Scale,
110                     SDOperand &Index, SDOperand &Disp);
111
112    inline void getAddressOperands(X86ISelAddressMode &AM, SDOperand &Base,
113                                   SDOperand &Scale, SDOperand &Index,
114                                   SDOperand &Disp) {
115      Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
116        CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, MVT::i32) : AM.Base.Reg;
117      Scale = getI8Imm(AM.Scale);
118      Index = AM.IndexReg;
119      Disp  = AM.GV ? CurDAG->getTargetGlobalAddress(AM.GV, MVT::i32, AM.Disp)
120        : getI32Imm(AM.Disp);
121    }
122
123    /// getI8Imm - Return a target constant with the specified value, of type
124    /// i8.
125    inline SDOperand getI8Imm(unsigned Imm) {
126      return CurDAG->getTargetConstant(Imm, MVT::i8);
127    }
128
129    /// getI16Imm - Return a target constant with the specified value, of type
130    /// i16.
131    inline SDOperand getI16Imm(unsigned Imm) {
132      return CurDAG->getTargetConstant(Imm, MVT::i16);
133    }
134
135    /// getI32Imm - Return a target constant with the specified value, of type
136    /// i32.
137    inline SDOperand getI32Imm(unsigned Imm) {
138      return CurDAG->getTargetConstant(Imm, MVT::i32);
139    }
140  };
141}
142
143/// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel
144/// when it has created a SelectionDAG for us to codegen.
145void X86DAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) {
146  DEBUG(BB->dump());
147  MachineFunction::iterator FirstMBB = BB;
148
149  // Codegen the basic block.
150  DAG.setRoot(Select(DAG.getRoot()));
151  CodeGenMap.clear();
152  DAG.RemoveDeadNodes();
153
154  // Emit machine code to BB.
155  ScheduleAndEmitDAG(DAG);
156
157  // If we are emitting FP stack code, scan the basic block to determine if this
158  // block defines any FP values.  If so, put an FP_REG_KILL instruction before
159  // the terminator of the block.
160  if (X86Vector < SSE2) {
161    // Note that FP stack instructions *are* used in SSE code when returning
162    // values, but these are not live out of the basic block, so we don't need
163    // an FP_REG_KILL in this case either.
164    bool ContainsFPCode = false;
165
166    // Scan all of the machine instructions in these MBBs, checking for FP
167    // stores.
168    MachineFunction::iterator MBBI = FirstMBB;
169    do {
170      for (MachineBasicBlock::iterator I = MBBI->begin(), E = MBBI->end();
171           !ContainsFPCode && I != E; ++I) {
172        for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) {
173          if (I->getOperand(op).isRegister() && I->getOperand(op).isDef() &&
174              MRegisterInfo::isVirtualRegister(I->getOperand(op).getReg()) &&
175              RegMap->getRegClass(I->getOperand(0).getReg()) ==
176                X86::RFPRegisterClass) {
177            ContainsFPCode = true;
178            break;
179          }
180        }
181      }
182    } while (!ContainsFPCode && &*(MBBI++) != BB);
183
184    // Check PHI nodes in successor blocks.  These PHI's will be lowered to have
185    // a copy of the input value in this block.
186    if (!ContainsFPCode) {
187      // Final check, check LLVM BB's that are successors to the LLVM BB
188      // corresponding to BB for FP PHI nodes.
189      const BasicBlock *LLVMBB = BB->getBasicBlock();
190      const PHINode *PN;
191      for (succ_const_iterator SI = succ_begin(LLVMBB), E = succ_end(LLVMBB);
192           !ContainsFPCode && SI != E; ++SI) {
193        for (BasicBlock::const_iterator II = SI->begin();
194             (PN = dyn_cast<PHINode>(II)); ++II) {
195          if (PN->getType()->isFloatingPoint()) {
196            ContainsFPCode = true;
197            break;
198          }
199        }
200      }
201    }
202
203    // Finally, if we found any FP code, emit the FP_REG_KILL instruction.
204    if (ContainsFPCode) {
205      BuildMI(*BB, BB->getFirstTerminator(), X86::FP_REG_KILL, 0);
206      ++NumFPKill;
207    }
208  }
209}
210
211/// FIXME: copied from X86ISelPattern.cpp
212/// MatchAddress - Add the specified node to the specified addressing mode,
213/// returning true if it cannot be done.  This just pattern matches for the
214/// addressing mode
215bool X86DAGToDAGISel::MatchAddress(SDOperand N, X86ISelAddressMode &AM) {
216  switch (N.getOpcode()) {
217  default: break;
218  case ISD::FrameIndex:
219    if (AM.BaseType == X86ISelAddressMode::RegBase && AM.Base.Reg.Val == 0) {
220      AM.BaseType = X86ISelAddressMode::FrameIndexBase;
221      AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
222      return false;
223    }
224    break;
225
226  case ISD::ConstantPool:
227    if (AM.BaseType == X86ISelAddressMode::RegBase && AM.Base.Reg.Val == 0) {
228      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N)) {
229        AM.BaseType = X86ISelAddressMode::ConstantPoolBase;
230        AM.Base.Reg = CurDAG->getTargetConstantPool(CP->get(), MVT::i32);
231        return false;
232      }
233    }
234    break;
235
236  case ISD::GlobalAddress:
237  case ISD::TargetGlobalAddress:
238    if (AM.GV == 0) {
239      AM.GV = cast<GlobalAddressSDNode>(N)->getGlobal();
240      return false;
241    }
242    break;
243
244  case ISD::Constant:
245    AM.Disp += cast<ConstantSDNode>(N)->getValue();
246    return false;
247
248  case ISD::SHL:
249    if (AM.IndexReg.Val == 0 && AM.Scale == 1)
250      if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.Val->getOperand(1))) {
251        unsigned Val = CN->getValue();
252        if (Val == 1 || Val == 2 || Val == 3) {
253          AM.Scale = 1 << Val;
254          SDOperand ShVal = N.Val->getOperand(0);
255
256          // Okay, we know that we have a scale by now.  However, if the scaled
257          // value is an add of something and a constant, we can fold the
258          // constant into the disp field here.
259          if (ShVal.Val->getOpcode() == ISD::ADD && ShVal.hasOneUse() &&
260              isa<ConstantSDNode>(ShVal.Val->getOperand(1))) {
261            AM.IndexReg = ShVal.Val->getOperand(0);
262            ConstantSDNode *AddVal =
263              cast<ConstantSDNode>(ShVal.Val->getOperand(1));
264            AM.Disp += AddVal->getValue() << Val;
265          } else {
266            AM.IndexReg = ShVal;
267          }
268          return false;
269        }
270      }
271    break;
272
273  case ISD::MUL:
274    // X*[3,5,9] -> X+X*[2,4,8]
275    if (AM.IndexReg.Val == 0 && AM.BaseType == X86ISelAddressMode::RegBase &&
276        AM.Base.Reg.Val == 0)
277      if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.Val->getOperand(1)))
278        if (CN->getValue() == 3 || CN->getValue() == 5 || CN->getValue() == 9) {
279          AM.Scale = unsigned(CN->getValue())-1;
280
281          SDOperand MulVal = N.Val->getOperand(0);
282          SDOperand Reg;
283
284          // Okay, we know that we have a scale by now.  However, if the scaled
285          // value is an add of something and a constant, we can fold the
286          // constant into the disp field here.
287          if (MulVal.Val->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
288              isa<ConstantSDNode>(MulVal.Val->getOperand(1))) {
289            Reg = MulVal.Val->getOperand(0);
290            ConstantSDNode *AddVal =
291              cast<ConstantSDNode>(MulVal.Val->getOperand(1));
292            AM.Disp += AddVal->getValue() * CN->getValue();
293          } else {
294            Reg = N.Val->getOperand(0);
295          }
296
297          AM.IndexReg = AM.Base.Reg = Reg;
298          return false;
299        }
300    break;
301
302  case ISD::ADD: {
303    X86ISelAddressMode Backup = AM;
304    if (!MatchAddress(N.Val->getOperand(0), AM) &&
305        !MatchAddress(N.Val->getOperand(1), AM))
306      return false;
307    AM = Backup;
308    if (!MatchAddress(N.Val->getOperand(1), AM) &&
309        !MatchAddress(N.Val->getOperand(0), AM))
310      return false;
311    AM = Backup;
312    break;
313  }
314  }
315
316  // Is the base register already occupied?
317  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.Val) {
318    // If so, check to see if the scale index register is set.
319    if (AM.IndexReg.Val == 0) {
320      AM.IndexReg = N;
321      AM.Scale = 1;
322      return false;
323    }
324
325    // Otherwise, we cannot select it.
326    return true;
327  }
328
329  // Default, generate it as a register.
330  AM.BaseType = X86ISelAddressMode::RegBase;
331  AM.Base.Reg = N;
332  return false;
333}
334
335/// SelectAddr - returns true if it is able pattern match an addressing mode.
336/// It returns the operands which make up the maximal addressing mode it can
337/// match by reference.
338bool X86DAGToDAGISel::SelectAddr(SDOperand N, SDOperand &Base, SDOperand &Scale,
339                                 SDOperand &Index, SDOperand &Disp) {
340  X86ISelAddressMode AM;
341  if (!MatchAddress(N, AM)) {
342    if (AM.BaseType == X86ISelAddressMode::RegBase) {
343      if (AM.Base.Reg.Val)
344        AM.Base.Reg = Select(AM.Base.Reg);
345      else
346        AM.Base.Reg = CurDAG->getRegister(0, MVT::i32);
347    }
348    if (AM.IndexReg.Val)
349      AM.IndexReg = Select(AM.IndexReg);
350    else
351      AM.IndexReg = CurDAG->getRegister(0, MVT::i32);
352
353    getAddressOperands(AM, Base, Scale, Index, Disp);
354    return true;
355  }
356  return false;
357}
358
359bool X86DAGToDAGISel::TryFoldLoad(SDOperand N, SDOperand &Base,
360                                  SDOperand &Scale, SDOperand &Index,
361                                  SDOperand &Disp) {
362  if (N.getOpcode() == ISD::LOAD && N.hasOneUse() &&
363      CodeGenMap.count(N.getValue(1)) == 0)
364    return SelectAddr(N.getOperand(1), Base, Scale, Index, Disp);
365  return false;
366}
367
368static bool isRegister0(SDOperand Op) {
369  if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op))
370    return (R->getReg() == 0);
371  return false;
372}
373
374/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
375/// mode it matches can be cost effectively emitted as an LEA instruction.
376/// For X86, it always is unless it's just a (Reg + const).
377bool X86DAGToDAGISel::SelectLEAAddr(SDOperand N, SDOperand &Base,
378                                    SDOperand &Scale,
379                                    SDOperand &Index, SDOperand &Disp) {
380  X86ISelAddressMode AM;
381  if (!MatchAddress(N, AM)) {
382    bool SelectBase  = false;
383    bool SelectIndex = false;
384    bool Check       = false;
385    if (AM.BaseType == X86ISelAddressMode::RegBase) {
386      if (AM.Base.Reg.Val) {
387        Check      = true;
388        SelectBase = true;
389      } else {
390        AM.Base.Reg = CurDAG->getRegister(0, MVT::i32);
391      }
392    }
393
394    if (AM.IndexReg.Val) {
395      SelectIndex = true;
396    } else {
397      AM.IndexReg = CurDAG->getRegister(0, MVT::i32);
398    }
399
400    if (Check) {
401      unsigned Complexity = 0;
402      if (AM.Scale > 1)
403        Complexity++;
404      if (SelectIndex)
405        Complexity++;
406      if (AM.GV)
407        Complexity++;
408      else if (AM.Disp > 1)
409        Complexity++;
410      if (Complexity <= 1)
411        return false;
412    }
413
414    if (SelectBase)
415      AM.Base.Reg = Select(AM.Base.Reg);
416    if (SelectIndex)
417      AM.IndexReg = Select(AM.IndexReg);
418
419    getAddressOperands(AM, Base, Scale, Index, Disp);
420    return true;
421  }
422  return false;
423}
424
425SDOperand X86DAGToDAGISel::Select(SDOperand N) {
426  SDNode *Node = N.Val;
427  MVT::ValueType NVT = Node->getValueType(0);
428  unsigned Opc, MOpc;
429  unsigned Opcode = Node->getOpcode();
430
431  if (Opcode >= ISD::BUILTIN_OP_END && Opcode < X86ISD::FIRST_NUMBER)
432    return N;   // Already selected.
433
434  switch (Opcode) {
435    default: break;
436    case ISD::MULHU:
437    case ISD::MULHS: {
438      if (Opcode == ISD::MULHU)
439        switch (NVT) {
440        default: assert(0 && "Unsupported VT!");
441        case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
442        case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
443        case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
444        }
445      else
446        switch (NVT) {
447        default: assert(0 && "Unsupported VT!");
448        case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
449        case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
450        case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
451        }
452
453      unsigned LoReg, HiReg;
454      switch (NVT) {
455      default: assert(0 && "Unsupported VT!");
456      case MVT::i8:  LoReg = X86::AL;  HiReg = X86::AH;  break;
457      case MVT::i16: LoReg = X86::AX;  HiReg = X86::DX;  break;
458      case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
459      }
460
461      SDOperand N0 = Node->getOperand(0);
462      SDOperand N1 = Node->getOperand(1);
463
464      bool foldedLoad = false;
465      SDOperand Tmp0, Tmp1, Tmp2, Tmp3;
466      foldedLoad = TryFoldLoad(N1, Tmp0, Tmp1, Tmp2, Tmp3);
467      // MULHU and MULHS are commmutative
468      if (!foldedLoad) {
469        foldedLoad = TryFoldLoad(N0, Tmp0, Tmp1, Tmp2, Tmp3);
470        if (foldedLoad) {
471          N0 = Node->getOperand(1);
472          N1 = Node->getOperand(0);
473        }
474      }
475
476      SDOperand Chain = foldedLoad ? Select(N1.getOperand(0))
477                                   : CurDAG->getEntryNode();
478
479      SDOperand InFlag;
480      Chain  = CurDAG->getCopyToReg(Chain, CurDAG->getRegister(LoReg, NVT),
481                                    Select(N0), InFlag);
482      InFlag = Chain.getValue(1);
483
484      if (foldedLoad) {
485        Chain  = CurDAG->getTargetNode(MOpc, MVT::Other, MVT::Flag, Tmp0, Tmp1,
486                                       Tmp2, Tmp3, Chain, InFlag);
487        InFlag = Chain.getValue(1);
488      } else {
489        InFlag = CurDAG->getTargetNode(Opc, MVT::Flag, Select(N1), InFlag);
490      }
491
492      SDOperand Result = CurDAG->getCopyFromReg(Chain, HiReg, NVT, InFlag);
493      CodeGenMap[N.getValue(0)] = Result;
494      if (foldedLoad)
495        CodeGenMap[N1.getValue(1)] = Result.getValue(1);
496      return Result;
497    }
498
499    case ISD::SDIV:
500    case ISD::UDIV:
501    case ISD::SREM:
502    case ISD::UREM: {
503      bool isSigned = Opcode == ISD::SDIV || Opcode == ISD::SREM;
504      bool isDiv    = Opcode == ISD::SDIV || Opcode == ISD::UDIV;
505      if (!isSigned)
506        switch (NVT) {
507        default: assert(0 && "Unsupported VT!");
508        case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
509        case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
510        case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
511        }
512      else
513        switch (NVT) {
514        default: assert(0 && "Unsupported VT!");
515        case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
516        case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
517        case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
518        }
519
520      unsigned LoReg, HiReg;
521      unsigned ClrOpcode, SExtOpcode;
522      switch (NVT) {
523      default: assert(0 && "Unsupported VT!");
524      case MVT::i8:
525        LoReg = X86::AL;  HiReg = X86::AH;
526        ClrOpcode  = X86::MOV8ri;
527        SExtOpcode = X86::CBW;
528        break;
529      case MVT::i16:
530        LoReg = X86::AX;  HiReg = X86::DX;
531        ClrOpcode  = X86::MOV16ri;
532        SExtOpcode = X86::CWD;
533        break;
534      case MVT::i32:
535        LoReg = X86::EAX; HiReg = X86::EDX;
536        ClrOpcode  = X86::MOV32ri;
537        SExtOpcode = X86::CDQ;
538        break;
539      }
540
541      SDOperand N0 = Node->getOperand(0);
542      SDOperand N1 = Node->getOperand(1);
543
544      bool foldedLoad = false;
545      SDOperand Tmp0, Tmp1, Tmp2, Tmp3;
546      foldedLoad = TryFoldLoad(N1, Tmp0, Tmp1, Tmp2, Tmp3);
547      SDOperand Chain = foldedLoad ? Select(N1.getOperand(0))
548                                   : CurDAG->getEntryNode();
549
550      SDOperand InFlag;
551      Chain  = CurDAG->getCopyToReg(Chain, CurDAG->getRegister(LoReg, NVT),
552                                    Select(N0), InFlag);
553      InFlag = Chain.getValue(1);
554
555      if (isSigned) {
556        // Sign extend the low part into the high part.
557        InFlag = CurDAG->getTargetNode(SExtOpcode, MVT::Flag, InFlag);
558      } else {
559        // Zero out the high part, effectively zero extending the input.
560        SDOperand ClrNode =
561          CurDAG->getTargetNode(ClrOpcode, NVT,
562                                CurDAG->getTargetConstant(0, NVT));
563        Chain  = CurDAG->getCopyToReg(Chain, CurDAG->getRegister(HiReg, NVT),
564                                      ClrNode, InFlag);
565        InFlag = Chain.getValue(1);
566      }
567
568      if (foldedLoad) {
569        Chain  = CurDAG->getTargetNode(MOpc, MVT::Other, MVT::Flag, Tmp0, Tmp1,
570                                       Tmp2, Tmp3, Chain, InFlag);
571        InFlag = Chain.getValue(1);
572      } else {
573        InFlag = CurDAG->getTargetNode(Opc, MVT::Flag, Select(N1), InFlag);
574      }
575
576      SDOperand Result = CurDAG->getCopyFromReg(Chain, isDiv ? LoReg : HiReg,
577                                                NVT, InFlag);
578      CodeGenMap[N.getValue(0)] = Result;
579      if (foldedLoad)
580        CodeGenMap[N1.getValue(1)] = Result.getValue(1);
581      return Result;
582    }
583
584    case ISD::TRUNCATE: {
585      unsigned Reg;
586      MVT::ValueType VT;
587      switch (Node->getOperand(0).getValueType()) {
588        default: assert(0 && "Unknown truncate!");
589        case MVT::i16: Reg = X86::AX;  Opc = X86::MOV16rr; VT = MVT::i16; break;
590        case MVT::i32: Reg = X86::EAX; Opc = X86::MOV32rr; VT = MVT::i32; break;
591      }
592      SDOperand Tmp0 = Select(Node->getOperand(0));
593      SDOperand Tmp1 = CurDAG->getTargetNode(Opc, VT, Tmp0);
594      SDOperand InFlag = SDOperand(0,0);
595      SDOperand Result = CurDAG->getCopyToReg(CurDAG->getEntryNode(),
596                                              Reg, Tmp1, InFlag).getValue(1);
597      SDOperand Chain = Result.getValue(0);
598      InFlag = Result.getValue(1);
599
600      switch (NVT) {
601        default: assert(0 && "Unknown truncate!");
602        case MVT::i8:  Reg = X86::AL;  Opc = X86::MOV8rr;  VT = MVT::i8;  break;
603        case MVT::i16: Reg = X86::AX;  Opc = X86::MOV16rr; VT = MVT::i16; break;
604      }
605
606      Result = CurDAG->getCopyFromReg(Chain,
607                                      Reg, VT, InFlag);
608      if (N.Val->hasOneUse())
609        return CurDAG->SelectNodeTo(N.Val, Opc, VT, Result);
610      else
611        return CodeGenMap[N] = CurDAG->getTargetNode(Opc, VT, Result);
612      break;
613    }
614
615    case X86ISD::FP_TO_INT16_IN_MEM:
616    case X86ISD::FP_TO_INT32_IN_MEM:
617    case X86ISD::FP_TO_INT64_IN_MEM: {
618      assert(N.getOperand(1).getValueType() == MVT::f64);
619
620      // Change the floating point control register to use "round towards zero"
621      // mode when truncating to an integer value.
622      MachineFunction &MF = CurDAG->getMachineFunction();
623      int CWFI = MF.getFrameInfo()->CreateStackObject(2, 2);
624      SDOperand CWSlot = CurDAG->getFrameIndex(CWFI, MVT::i32);
625      SDOperand Base, Scale, Index, Disp;
626      (void)SelectAddr(CWSlot, Base, Scale, Index, Disp);
627      SDOperand Chain = N.getOperand(0);
628
629      // Save the control word.
630      Chain = CurDAG->getTargetNode(X86::FNSTCW16m, MVT::Other,
631                                    Base, Scale, Index, Disp, Chain);
632
633      // Load the old value of the high byte of the control word.
634      SDOperand OldCW =
635        CurDAG->getTargetNode(X86::MOV16rm, MVT::i16, MVT::Other,
636                              Base, Scale, Index, Disp, Chain);
637      Chain = OldCW.getValue(1);
638
639      // Set the high part to be round to zero...
640      Chain = CurDAG->getTargetNode(X86::MOV16mi, MVT::Other,
641                                    Base, Scale, Index, Disp,
642                                    CurDAG->getConstant(0xC7F, MVT::i16),
643                                    Chain);
644
645      // Reload the modified control word now...
646      Chain = CurDAG->getTargetNode(X86::FLDCW16m, MVT::Other,
647                                    Base, Scale, Index, Disp, Chain);
648
649      // Restore the memory image of control word to original value
650      Chain = CurDAG->getTargetNode(X86::MOV16mr, MVT::Other,
651                                    Base, Scale, Index, Disp, OldCW, Chain);
652
653      switch (Opcode) {
654      case X86ISD::FP_TO_INT16_IN_MEM: Opc = X86::FpIST16m; break;
655      case X86ISD::FP_TO_INT32_IN_MEM: Opc = X86::FpIST32m; break;
656      case X86ISD::FP_TO_INT64_IN_MEM: Opc = X86::FpIST64m; break;
657      }
658
659      SDOperand N1 = Select(N.getOperand(1));
660      SDOperand Base2, Scale2, Index2, Disp2;
661      (void)SelectAddr(N.getOperand(2), Base2, Scale2, Index2, Disp2);
662      Chain = CurDAG->getTargetNode(Opc, MVT::Other,
663                                    Base2, Scale2, Index2, Disp2, N1, Chain);
664
665      // Reload the modified control word now...
666      CodeGenMap[N] =
667        Chain = CurDAG->getTargetNode(X86::FLDCW16m, MVT::Other,
668                                      Base, Scale, Index, Disp, Chain);
669      return Chain;
670    }
671  }
672
673  return SelectCode(N);
674}
675
676/// createX86ISelDag - This pass converts a legalized DAG into a
677/// X86-specific DAG, ready for instruction scheduling.
678///
679FunctionPass *llvm::createX86ISelDag(TargetMachine &TM) {
680  return new X86DAGToDAGISel(TM);
681}
682