1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86ISelLowering.h"
16#include "Utils/X86ShuffleDecode.h"
17#include "X86CallingConv.h"
18#include "X86FrameLowering.h"
19#include "X86InstrBuilder.h"
20#include "X86MachineFunctionInfo.h"
21#include "X86TargetMachine.h"
22#include "X86TargetObjectFile.h"
23#include "llvm/ADT/SmallBitVector.h"
24#include "llvm/ADT/SmallSet.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/ADT/StringExtras.h"
27#include "llvm/ADT/StringSwitch.h"
28#include "llvm/Analysis/EHPersonalities.h"
29#include "llvm/CodeGen/IntrinsicLowering.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineJumpTableInfo.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/WinEHFuncInfo.h"
37#include "llvm/IR/CallSite.h"
38#include "llvm/IR/CallingConv.h"
39#include "llvm/IR/Constants.h"
40#include "llvm/IR/DerivedTypes.h"
41#include "llvm/IR/Function.h"
42#include "llvm/IR/GlobalAlias.h"
43#include "llvm/IR/GlobalVariable.h"
44#include "llvm/IR/Instructions.h"
45#include "llvm/IR/Intrinsics.h"
46#include "llvm/MC/MCAsmInfo.h"
47#include "llvm/MC/MCContext.h"
48#include "llvm/MC/MCExpr.h"
49#include "llvm/MC/MCSymbol.h"
50#include "llvm/Support/CommandLine.h"
51#include "llvm/Support/Debug.h"
52#include "llvm/Support/ErrorHandling.h"
53#include "llvm/Support/MathExtras.h"
54#include "llvm/Target/TargetOptions.h"
55#include "X86IntrinsicsInfo.h"
56#include <bitset>
57#include <numeric>
58#include <cctype>
59using namespace llvm;
60
61#define DEBUG_TYPE "x86-isel"
62
63STATISTIC(NumTailCalls, "Number of tail calls");
64
65static cl::opt<bool> ExperimentalVectorWideningLegalization(
66    "x86-experimental-vector-widening-legalization", cl::init(false),
67    cl::desc("Enable an experimental vector type legalization through widening "
68             "rather than promotion."),
69    cl::Hidden);
70
71X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
72                                     const X86Subtarget &STI)
73    : TargetLowering(TM), Subtarget(&STI) {
74  X86ScalarSSEf64 = Subtarget->hasSSE2();
75  X86ScalarSSEf32 = Subtarget->hasSSE1();
76  MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize());
77
78  // Set up the TargetLowering object.
79
80  // X86 is weird. It always uses i8 for shift amounts and setcc results.
81  setBooleanContents(ZeroOrOneBooleanContent);
82  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
83  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
84
85  // For 64-bit, since we have so many registers, use the ILP scheduler.
86  // For 32-bit, use the register pressure specific scheduling.
87  // For Atom, always use ILP scheduling.
88  if (Subtarget->isAtom())
89    setSchedulingPreference(Sched::ILP);
90  else if (Subtarget->is64Bit())
91    setSchedulingPreference(Sched::ILP);
92  else
93    setSchedulingPreference(Sched::RegPressure);
94  const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
95  setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister());
96
97  // Bypass expensive divides on Atom when compiling with O2.
98  if (TM.getOptLevel() >= CodeGenOpt::Default) {
99    if (Subtarget->hasSlowDivide32())
100      addBypassSlowDiv(32, 8);
101    if (Subtarget->hasSlowDivide64() && Subtarget->is64Bit())
102      addBypassSlowDiv(64, 16);
103  }
104
105  if (Subtarget->isTargetKnownWindowsMSVC()) {
106    // Setup Windows compiler runtime calls.
107    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
108    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
109    setLibcallName(RTLIB::SREM_I64, "_allrem");
110    setLibcallName(RTLIB::UREM_I64, "_aullrem");
111    setLibcallName(RTLIB::MUL_I64, "_allmul");
112    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
113    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
114    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
115    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
116    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
117  }
118
119  if (Subtarget->isTargetDarwin()) {
120    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
121    setUseUnderscoreSetJmp(false);
122    setUseUnderscoreLongJmp(false);
123  } else if (Subtarget->isTargetWindowsGNU()) {
124    // MS runtime is weird: it exports _setjmp, but longjmp!
125    setUseUnderscoreSetJmp(true);
126    setUseUnderscoreLongJmp(false);
127  } else {
128    setUseUnderscoreSetJmp(true);
129    setUseUnderscoreLongJmp(true);
130  }
131
132  // Set up the register classes.
133  addRegisterClass(MVT::i8, &X86::GR8RegClass);
134  addRegisterClass(MVT::i16, &X86::GR16RegClass);
135  addRegisterClass(MVT::i32, &X86::GR32RegClass);
136  if (Subtarget->is64Bit())
137    addRegisterClass(MVT::i64, &X86::GR64RegClass);
138
139  for (MVT VT : MVT::integer_valuetypes())
140    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
141
142  // We don't accept any truncstore of integer registers.
143  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
144  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
145  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
146  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
147  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
148  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
149
150  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
151
152  // SETOEQ and SETUNE require checking two conditions.
153  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
154  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
155  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
156  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
157  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
158  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
159
160  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
161  // operation.
162  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
163  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
164  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
165
166  if (Subtarget->is64Bit()) {
167    if (!Subtarget->useSoftFloat() && Subtarget->hasAVX512())
168      // f32/f64 are legal, f80 is custom.
169      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Custom);
170    else
171      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
172    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
173  } else if (!Subtarget->useSoftFloat()) {
174    // We have an algorithm for SSE2->double, and we turn this into a
175    // 64-bit FILD followed by conditional FADD for other targets.
176    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
177    // We have an algorithm for SSE2, and we turn this into a 64-bit
178    // FILD or VCVTUSI2SS/SD for other targets.
179    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
180  }
181
182  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
183  // this operation.
184  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
185  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
186
187  if (!Subtarget->useSoftFloat()) {
188    // SSE has no i16 to fp conversion, only i32
189    if (X86ScalarSSEf32) {
190      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
191      // f32 and f64 cases are Legal, f80 case is not
192      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
193    } else {
194      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
195      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
196    }
197  } else {
198    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
199    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
200  }
201
202  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
203  // this operation.
204  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
205  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
206
207  if (!Subtarget->useSoftFloat()) {
208    // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
209    // are Legal, f80 is custom lowered.
210    setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
211    setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
212
213    if (X86ScalarSSEf32) {
214      setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
215      // f32 and f64 cases are Legal, f80 case is not
216      setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
217    } else {
218      setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
219      setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
220    }
221  } else {
222    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
223    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Expand);
224    setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Expand);
225  }
226
227  // Handle FP_TO_UINT by promoting the destination to a larger signed
228  // conversion.
229  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
230  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
231  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
232
233  if (Subtarget->is64Bit()) {
234    if (!Subtarget->useSoftFloat() && Subtarget->hasAVX512()) {
235      // FP_TO_UINT-i32/i64 is legal for f32/f64, but custom for f80.
236      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
237      setOperationAction(ISD::FP_TO_UINT   , MVT::i64  , Custom);
238    } else {
239      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
240      setOperationAction(ISD::FP_TO_UINT   , MVT::i64  , Expand);
241    }
242  } else if (!Subtarget->useSoftFloat()) {
243    // Since AVX is a superset of SSE3, only check for SSE here.
244    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
245      // Expand FP_TO_UINT into a select.
246      // FIXME: We would like to use a Custom expander here eventually to do
247      // the optimal thing for SSE vs. the default expansion in the legalizer.
248      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
249    else
250      // With AVX512 we can use vcvts[ds]2usi for f32/f64->i32, f80 is custom.
251      // With SSE3 we can use fisttpll to convert to a signed i64; without
252      // SSE, we're stuck with a fistpll.
253      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
254
255    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
256  }
257
258  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
259  if (!X86ScalarSSEf64) {
260    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
261    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
262    if (Subtarget->is64Bit()) {
263      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
264      // Without SSE, i64->f64 goes through memory.
265      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
266    }
267  }
268
269  // Scalar integer divide and remainder are lowered to use operations that
270  // produce two results, to match the available instructions. This exposes
271  // the two-result form to trivial CSE, which is able to combine x/y and x%y
272  // into a single instruction.
273  //
274  // Scalar integer multiply-high is also lowered to use two-result
275  // operations, to match the available instructions. However, plain multiply
276  // (low) operations are left as Legal, as there are single-result
277  // instructions for this in x86. Using the two-result multiply instructions
278  // when both high and low results are needed must be arranged by dagcombine.
279  for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) {
280    setOperationAction(ISD::MULHS, VT, Expand);
281    setOperationAction(ISD::MULHU, VT, Expand);
282    setOperationAction(ISD::SDIV, VT, Expand);
283    setOperationAction(ISD::UDIV, VT, Expand);
284    setOperationAction(ISD::SREM, VT, Expand);
285    setOperationAction(ISD::UREM, VT, Expand);
286
287    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
288    setOperationAction(ISD::ADDC, VT, Custom);
289    setOperationAction(ISD::ADDE, VT, Custom);
290    setOperationAction(ISD::SUBC, VT, Custom);
291    setOperationAction(ISD::SUBE, VT, Custom);
292  }
293
294  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
295  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
296  setOperationAction(ISD::BR_CC            , MVT::f32,   Expand);
297  setOperationAction(ISD::BR_CC            , MVT::f64,   Expand);
298  setOperationAction(ISD::BR_CC            , MVT::f80,   Expand);
299  setOperationAction(ISD::BR_CC            , MVT::f128,  Expand);
300  setOperationAction(ISD::BR_CC            , MVT::i8,    Expand);
301  setOperationAction(ISD::BR_CC            , MVT::i16,   Expand);
302  setOperationAction(ISD::BR_CC            , MVT::i32,   Expand);
303  setOperationAction(ISD::BR_CC            , MVT::i64,   Expand);
304  setOperationAction(ISD::SELECT_CC        , MVT::f32,   Expand);
305  setOperationAction(ISD::SELECT_CC        , MVT::f64,   Expand);
306  setOperationAction(ISD::SELECT_CC        , MVT::f80,   Expand);
307  setOperationAction(ISD::SELECT_CC        , MVT::f128,  Expand);
308  setOperationAction(ISD::SELECT_CC        , MVT::i8,    Expand);
309  setOperationAction(ISD::SELECT_CC        , MVT::i16,   Expand);
310  setOperationAction(ISD::SELECT_CC        , MVT::i32,   Expand);
311  setOperationAction(ISD::SELECT_CC        , MVT::i64,   Expand);
312  if (Subtarget->is64Bit())
313    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
314  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
315  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
316  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
317  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
318
319  if (Subtarget->is32Bit() && Subtarget->isTargetKnownWindowsMSVC()) {
320    // On 32 bit MSVC, `fmodf(f32)` is not defined - only `fmod(f64)`
321    // is. We should promote the value to 64-bits to solve this.
322    // This is what the CRT headers do - `fmodf` is an inline header
323    // function casting to f64 and calling `fmod`.
324    setOperationAction(ISD::FREM           , MVT::f32  , Promote);
325  } else {
326    setOperationAction(ISD::FREM           , MVT::f32  , Expand);
327  }
328
329  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
330  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
331  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
332
333  // Promote the i8 variants and force them on up to i32 which has a shorter
334  // encoding.
335  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
336  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
337  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
338  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
339  if (Subtarget->hasBMI()) {
340    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
341    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
342    if (Subtarget->is64Bit())
343      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
344  } else {
345    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
346    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
347    if (Subtarget->is64Bit())
348      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
349  }
350
351  if (Subtarget->hasLZCNT()) {
352    // When promoting the i8 variants, force them to i32 for a shorter
353    // encoding.
354    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
355    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
356    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
357    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
358    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
359    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
360    if (Subtarget->is64Bit())
361      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
362  } else {
363    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
364    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
365    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
366    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
367    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
368    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
369    if (Subtarget->is64Bit()) {
370      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
371      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
372    }
373  }
374
375  // Special handling for half-precision floating point conversions.
376  // If we don't have F16C support, then lower half float conversions
377  // into library calls.
378  if (Subtarget->useSoftFloat() || !Subtarget->hasF16C()) {
379    setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
380    setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
381  }
382
383  // There's never any support for operations beyond MVT::f32.
384  setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
385  setOperationAction(ISD::FP16_TO_FP, MVT::f80, Expand);
386  setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
387  setOperationAction(ISD::FP_TO_FP16, MVT::f80, Expand);
388
389  setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
390  setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
391  setLoadExtAction(ISD::EXTLOAD, MVT::f80, MVT::f16, Expand);
392  setTruncStoreAction(MVT::f32, MVT::f16, Expand);
393  setTruncStoreAction(MVT::f64, MVT::f16, Expand);
394  setTruncStoreAction(MVT::f80, MVT::f16, Expand);
395
396  if (Subtarget->hasPOPCNT()) {
397    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
398  } else {
399    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
400    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
401    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
402    if (Subtarget->is64Bit())
403      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
404  }
405
406  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
407
408  if (!Subtarget->hasMOVBE())
409    setOperationAction(ISD::BSWAP          , MVT::i16  , Expand);
410
411  // These should be promoted to a larger select which is supported.
412  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
413  // X86 wants to expand cmov itself.
414  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
415  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
416  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
417  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
418  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
419  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
420  setOperationAction(ISD::SELECT          , MVT::f128 , Custom);
421  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
422  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
423  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
424  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
425  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
426  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
427  setOperationAction(ISD::SETCC           , MVT::f128 , Custom);
428  setOperationAction(ISD::SETCCE          , MVT::i8   , Custom);
429  setOperationAction(ISD::SETCCE          , MVT::i16  , Custom);
430  setOperationAction(ISD::SETCCE          , MVT::i32  , Custom);
431  if (Subtarget->is64Bit()) {
432    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
433    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
434    setOperationAction(ISD::SETCCE        , MVT::i64  , Custom);
435  }
436  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
437  // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
438  // SjLj exception handling but a light-weight setjmp/longjmp replacement to
439  // support continuation, user-level threading, and etc.. As a result, no
440  // other SjLj exception interfaces are implemented and please don't build
441  // your own exception handling based on them.
442  // LLVM/Clang supports zero-cost DWARF exception handling.
443  setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
444  setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
445
446  // Darwin ABI issue.
447  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
448  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
449  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
450  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
451  if (Subtarget->is64Bit())
452    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
453  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
454  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
455  if (Subtarget->is64Bit()) {
456    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
457    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
458    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
459    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
460    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
461  }
462  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
463  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
464  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
465  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
466  if (Subtarget->is64Bit()) {
467    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
468    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
469    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
470  }
471
472  if (Subtarget->hasSSE1())
473    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
474
475  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
476
477  // Expand certain atomics
478  for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) {
479    setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Custom);
480    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
481    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
482  }
483
484  if (Subtarget->hasCmpxchg16b()) {
485    setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
486  }
487
488  // FIXME - use subtarget debug flags
489  if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetELF() &&
490      !Subtarget->isTargetCygMing() && !Subtarget->isTargetWin64()) {
491    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
492  }
493
494  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
495  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
496
497  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
498  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
499
500  setOperationAction(ISD::TRAP, MVT::Other, Legal);
501  setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
502
503  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
504  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
505  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
506  if (Subtarget->is64Bit()) {
507    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
508    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
509  } else {
510    // TargetInfo::CharPtrBuiltinVaList
511    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
512    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
513  }
514
515  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
516  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
517
518  setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
519
520  // GC_TRANSITION_START and GC_TRANSITION_END need custom lowering.
521  setOperationAction(ISD::GC_TRANSITION_START, MVT::Other, Custom);
522  setOperationAction(ISD::GC_TRANSITION_END, MVT::Other, Custom);
523
524  if (!Subtarget->useSoftFloat() && X86ScalarSSEf64) {
525    // f32 and f64 use SSE.
526    // Set up the FP register classes.
527    addRegisterClass(MVT::f32, &X86::FR32RegClass);
528    addRegisterClass(MVT::f64, &X86::FR64RegClass);
529
530    // Use ANDPD to simulate FABS.
531    setOperationAction(ISD::FABS , MVT::f64, Custom);
532    setOperationAction(ISD::FABS , MVT::f32, Custom);
533
534    // Use XORP to simulate FNEG.
535    setOperationAction(ISD::FNEG , MVT::f64, Custom);
536    setOperationAction(ISD::FNEG , MVT::f32, Custom);
537
538    // Use ANDPD and ORPD to simulate FCOPYSIGN.
539    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
540    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
541
542    // Lower this to FGETSIGNx86 plus an AND.
543    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
544    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
545
546    // We don't support sin/cos/fmod
547    setOperationAction(ISD::FSIN   , MVT::f64, Expand);
548    setOperationAction(ISD::FCOS   , MVT::f64, Expand);
549    setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
550    setOperationAction(ISD::FSIN   , MVT::f32, Expand);
551    setOperationAction(ISD::FCOS   , MVT::f32, Expand);
552    setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
553
554    // Expand FP immediates into loads from the stack, except for the special
555    // cases we handle.
556    addLegalFPImmediate(APFloat(+0.0)); // xorpd
557    addLegalFPImmediate(APFloat(+0.0f)); // xorps
558  } else if (!Subtarget->useSoftFloat() && X86ScalarSSEf32) {
559    // Use SSE for f32, x87 for f64.
560    // Set up the FP register classes.
561    addRegisterClass(MVT::f32, &X86::FR32RegClass);
562    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
563
564    // Use ANDPS to simulate FABS.
565    setOperationAction(ISD::FABS , MVT::f32, Custom);
566
567    // Use XORP to simulate FNEG.
568    setOperationAction(ISD::FNEG , MVT::f32, Custom);
569
570    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
571
572    // Use ANDPS and ORPS to simulate FCOPYSIGN.
573    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
574    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
575
576    // We don't support sin/cos/fmod
577    setOperationAction(ISD::FSIN   , MVT::f32, Expand);
578    setOperationAction(ISD::FCOS   , MVT::f32, Expand);
579    setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
580
581    // Special cases we handle for FP constants.
582    addLegalFPImmediate(APFloat(+0.0f)); // xorps
583    addLegalFPImmediate(APFloat(+0.0)); // FLD0
584    addLegalFPImmediate(APFloat(+1.0)); // FLD1
585    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
586    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
587
588    if (!TM.Options.UnsafeFPMath) {
589      setOperationAction(ISD::FSIN   , MVT::f64, Expand);
590      setOperationAction(ISD::FCOS   , MVT::f64, Expand);
591      setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
592    }
593  } else if (!Subtarget->useSoftFloat()) {
594    // f32 and f64 in x87.
595    // Set up the FP register classes.
596    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
597    addRegisterClass(MVT::f32, &X86::RFP32RegClass);
598
599    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
600    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
601    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
602    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
603
604    if (!TM.Options.UnsafeFPMath) {
605      setOperationAction(ISD::FSIN   , MVT::f64, Expand);
606      setOperationAction(ISD::FSIN   , MVT::f32, Expand);
607      setOperationAction(ISD::FCOS   , MVT::f64, Expand);
608      setOperationAction(ISD::FCOS   , MVT::f32, Expand);
609      setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
610      setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
611    }
612    addLegalFPImmediate(APFloat(+0.0)); // FLD0
613    addLegalFPImmediate(APFloat(+1.0)); // FLD1
614    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
615    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
616    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
617    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
618    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
619    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
620  }
621
622  // We don't support FMA.
623  setOperationAction(ISD::FMA, MVT::f64, Expand);
624  setOperationAction(ISD::FMA, MVT::f32, Expand);
625
626  // Long double always uses X87, except f128 in MMX.
627  if (!Subtarget->useSoftFloat()) {
628    if (Subtarget->is64Bit() && Subtarget->hasMMX()) {
629      addRegisterClass(MVT::f128, &X86::FR128RegClass);
630      ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
631      setOperationAction(ISD::FABS , MVT::f128, Custom);
632      setOperationAction(ISD::FNEG , MVT::f128, Custom);
633      setOperationAction(ISD::FCOPYSIGN, MVT::f128, Custom);
634    }
635
636    addRegisterClass(MVT::f80, &X86::RFP80RegClass);
637    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
638    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
639    {
640      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
641      addLegalFPImmediate(TmpFlt);  // FLD0
642      TmpFlt.changeSign();
643      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
644
645      bool ignored;
646      APFloat TmpFlt2(+1.0);
647      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
648                      &ignored);
649      addLegalFPImmediate(TmpFlt2);  // FLD1
650      TmpFlt2.changeSign();
651      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
652    }
653
654    if (!TM.Options.UnsafeFPMath) {
655      setOperationAction(ISD::FSIN   , MVT::f80, Expand);
656      setOperationAction(ISD::FCOS   , MVT::f80, Expand);
657      setOperationAction(ISD::FSINCOS, MVT::f80, Expand);
658    }
659
660    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
661    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
662    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
663    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
664    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
665    setOperationAction(ISD::FMA, MVT::f80, Expand);
666  }
667
668  // Always use a library call for pow.
669  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
670  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
671  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
672
673  setOperationAction(ISD::FLOG, MVT::f80, Expand);
674  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
675  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
676  setOperationAction(ISD::FEXP, MVT::f80, Expand);
677  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
678  setOperationAction(ISD::FMINNUM, MVT::f80, Expand);
679  setOperationAction(ISD::FMAXNUM, MVT::f80, Expand);
680
681  // First set operation action for all vector types to either promote
682  // (for widening) or expand (for scalarization). Then we will selectively
683  // turn on ones that can be effectively codegen'd.
684  for (MVT VT : MVT::vector_valuetypes()) {
685    setOperationAction(ISD::ADD , VT, Expand);
686    setOperationAction(ISD::SUB , VT, Expand);
687    setOperationAction(ISD::FADD, VT, Expand);
688    setOperationAction(ISD::FNEG, VT, Expand);
689    setOperationAction(ISD::FSUB, VT, Expand);
690    setOperationAction(ISD::MUL , VT, Expand);
691    setOperationAction(ISD::FMUL, VT, Expand);
692    setOperationAction(ISD::SDIV, VT, Expand);
693    setOperationAction(ISD::UDIV, VT, Expand);
694    setOperationAction(ISD::FDIV, VT, Expand);
695    setOperationAction(ISD::SREM, VT, Expand);
696    setOperationAction(ISD::UREM, VT, Expand);
697    setOperationAction(ISD::LOAD, VT, Expand);
698    setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
699    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT,Expand);
700    setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
701    setOperationAction(ISD::EXTRACT_SUBVECTOR, VT,Expand);
702    setOperationAction(ISD::INSERT_SUBVECTOR, VT,Expand);
703    setOperationAction(ISD::FABS, VT, Expand);
704    setOperationAction(ISD::FSIN, VT, Expand);
705    setOperationAction(ISD::FSINCOS, VT, Expand);
706    setOperationAction(ISD::FCOS, VT, Expand);
707    setOperationAction(ISD::FSINCOS, VT, Expand);
708    setOperationAction(ISD::FREM, VT, Expand);
709    setOperationAction(ISD::FMA,  VT, Expand);
710    setOperationAction(ISD::FPOWI, VT, Expand);
711    setOperationAction(ISD::FSQRT, VT, Expand);
712    setOperationAction(ISD::FCOPYSIGN, VT, Expand);
713    setOperationAction(ISD::FFLOOR, VT, Expand);
714    setOperationAction(ISD::FCEIL, VT, Expand);
715    setOperationAction(ISD::FTRUNC, VT, Expand);
716    setOperationAction(ISD::FRINT, VT, Expand);
717    setOperationAction(ISD::FNEARBYINT, VT, Expand);
718    setOperationAction(ISD::SMUL_LOHI, VT, Expand);
719    setOperationAction(ISD::MULHS, VT, Expand);
720    setOperationAction(ISD::UMUL_LOHI, VT, Expand);
721    setOperationAction(ISD::MULHU, VT, Expand);
722    setOperationAction(ISD::SDIVREM, VT, Expand);
723    setOperationAction(ISD::UDIVREM, VT, Expand);
724    setOperationAction(ISD::FPOW, VT, Expand);
725    setOperationAction(ISD::CTPOP, VT, Expand);
726    setOperationAction(ISD::CTTZ, VT, Expand);
727    setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
728    setOperationAction(ISD::CTLZ, VT, Expand);
729    setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
730    setOperationAction(ISD::SHL, VT, Expand);
731    setOperationAction(ISD::SRA, VT, Expand);
732    setOperationAction(ISD::SRL, VT, Expand);
733    setOperationAction(ISD::ROTL, VT, Expand);
734    setOperationAction(ISD::ROTR, VT, Expand);
735    setOperationAction(ISD::BSWAP, VT, Expand);
736    setOperationAction(ISD::SETCC, VT, Expand);
737    setOperationAction(ISD::FLOG, VT, Expand);
738    setOperationAction(ISD::FLOG2, VT, Expand);
739    setOperationAction(ISD::FLOG10, VT, Expand);
740    setOperationAction(ISD::FEXP, VT, Expand);
741    setOperationAction(ISD::FEXP2, VT, Expand);
742    setOperationAction(ISD::FP_TO_UINT, VT, Expand);
743    setOperationAction(ISD::FP_TO_SINT, VT, Expand);
744    setOperationAction(ISD::UINT_TO_FP, VT, Expand);
745    setOperationAction(ISD::SINT_TO_FP, VT, Expand);
746    setOperationAction(ISD::SIGN_EXTEND_INREG, VT,Expand);
747    setOperationAction(ISD::TRUNCATE, VT, Expand);
748    setOperationAction(ISD::SIGN_EXTEND, VT, Expand);
749    setOperationAction(ISD::ZERO_EXTEND, VT, Expand);
750    setOperationAction(ISD::ANY_EXTEND, VT, Expand);
751    setOperationAction(ISD::VSELECT, VT, Expand);
752    setOperationAction(ISD::SELECT_CC, VT, Expand);
753    for (MVT InnerVT : MVT::vector_valuetypes()) {
754      setTruncStoreAction(InnerVT, VT, Expand);
755
756      setLoadExtAction(ISD::SEXTLOAD, InnerVT, VT, Expand);
757      setLoadExtAction(ISD::ZEXTLOAD, InnerVT, VT, Expand);
758
759      // N.b. ISD::EXTLOAD legality is basically ignored except for i1-like
760      // types, we have to deal with them whether we ask for Expansion or not.
761      // Setting Expand causes its own optimisation problems though, so leave
762      // them legal.
763      if (VT.getVectorElementType() == MVT::i1)
764        setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand);
765
766      // EXTLOAD for MVT::f16 vectors is not legal because f16 vectors are
767      // split/scalarized right now.
768      if (VT.getVectorElementType() == MVT::f16)
769        setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand);
770    }
771  }
772
773  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
774  // with -msoft-float, disable use of MMX as well.
775  if (!Subtarget->useSoftFloat() && Subtarget->hasMMX()) {
776    addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
777    // No operations on x86mmx supported, everything uses intrinsics.
778  }
779
780  // MMX-sized vectors (other than x86mmx) are expected to be expanded
781  // into smaller operations.
782  for (MVT MMXTy : {MVT::v8i8, MVT::v4i16, MVT::v2i32, MVT::v1i64}) {
783    setOperationAction(ISD::MULHS,              MMXTy,      Expand);
784    setOperationAction(ISD::AND,                MMXTy,      Expand);
785    setOperationAction(ISD::OR,                 MMXTy,      Expand);
786    setOperationAction(ISD::XOR,                MMXTy,      Expand);
787    setOperationAction(ISD::SCALAR_TO_VECTOR,   MMXTy,      Expand);
788    setOperationAction(ISD::SELECT,             MMXTy,      Expand);
789    setOperationAction(ISD::BITCAST,            MMXTy,      Expand);
790  }
791  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
792
793  if (!Subtarget->useSoftFloat() && Subtarget->hasSSE1()) {
794    addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
795
796    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
797    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
798    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
799    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
800    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
801    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
802    setOperationAction(ISD::FABS,               MVT::v4f32, Custom);
803    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
804    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
805    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
806    setOperationAction(ISD::VSELECT,            MVT::v4f32, Custom);
807    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
808    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
809    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i32, Custom);
810  }
811
812  if (!Subtarget->useSoftFloat() && Subtarget->hasSSE2()) {
813    addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
814
815    // FIXME: Unfortunately, -soft-float and -no-implicit-float mean XMM
816    // registers cannot be used even for integer operations.
817    addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
818    addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
819    addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
820    addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
821
822    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
823    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
824    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
825    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
826    setOperationAction(ISD::MUL,                MVT::v16i8, Custom);
827    setOperationAction(ISD::MUL,                MVT::v4i32, Custom);
828    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
829    setOperationAction(ISD::UMUL_LOHI,          MVT::v4i32, Custom);
830    setOperationAction(ISD::SMUL_LOHI,          MVT::v4i32, Custom);
831    setOperationAction(ISD::MULHU,              MVT::v8i16, Legal);
832    setOperationAction(ISD::MULHS,              MVT::v8i16, Legal);
833    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
834    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
835    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
836    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
837    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
838    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
839    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
840    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
841    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
842    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
843    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
844    setOperationAction(ISD::FABS,               MVT::v2f64, Custom);
845
846    setOperationAction(ISD::SMAX,               MVT::v8i16, Legal);
847    setOperationAction(ISD::UMAX,               MVT::v16i8, Legal);
848    setOperationAction(ISD::SMIN,               MVT::v8i16, Legal);
849    setOperationAction(ISD::UMIN,               MVT::v16i8, Legal);
850
851    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
852    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
853    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
854    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
855
856    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
857    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
858    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
859    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
860    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
861
862    setOperationAction(ISD::CTPOP,              MVT::v16i8, Custom);
863    setOperationAction(ISD::CTPOP,              MVT::v8i16, Custom);
864    setOperationAction(ISD::CTPOP,              MVT::v4i32, Custom);
865    setOperationAction(ISD::CTPOP,              MVT::v2i64, Custom);
866
867    setOperationAction(ISD::CTTZ,               MVT::v16i8, Custom);
868    setOperationAction(ISD::CTTZ,               MVT::v8i16, Custom);
869    setOperationAction(ISD::CTTZ,               MVT::v4i32, Custom);
870    // ISD::CTTZ v2i64 - scalarization is faster.
871    setOperationAction(ISD::CTTZ_ZERO_UNDEF,    MVT::v16i8, Custom);
872    setOperationAction(ISD::CTTZ_ZERO_UNDEF,    MVT::v8i16, Custom);
873    setOperationAction(ISD::CTTZ_ZERO_UNDEF,    MVT::v4i32, Custom);
874    // ISD::CTTZ_ZERO_UNDEF v2i64 - scalarization is faster.
875
876    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
877    for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
878      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
879      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
880      setOperationAction(ISD::VSELECT,            VT, Custom);
881      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
882    }
883
884    // We support custom legalizing of sext and anyext loads for specific
885    // memory vector types which we can load as a scalar (or sequence of
886    // scalars) and extend in-register to a legal 128-bit vector type. For sext
887    // loads these must work with a single scalar load.
888    for (MVT VT : MVT::integer_vector_valuetypes()) {
889      setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Custom);
890      setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Custom);
891      setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v8i8, Custom);
892      setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Custom);
893      setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Custom);
894      setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i32, Custom);
895      setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Custom);
896      setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Custom);
897      setLoadExtAction(ISD::EXTLOAD, VT, MVT::v8i8, Custom);
898    }
899
900    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
901    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
902    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
903    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
904    setOperationAction(ISD::VSELECT,            MVT::v2f64, Custom);
905    setOperationAction(ISD::VSELECT,            MVT::v2i64, Custom);
906    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
907    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
908
909    if (Subtarget->is64Bit()) {
910      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
911      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
912    }
913
914    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
915    for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
916      setOperationAction(ISD::AND,    VT, Promote);
917      AddPromotedToType (ISD::AND,    VT, MVT::v2i64);
918      setOperationAction(ISD::OR,     VT, Promote);
919      AddPromotedToType (ISD::OR,     VT, MVT::v2i64);
920      setOperationAction(ISD::XOR,    VT, Promote);
921      AddPromotedToType (ISD::XOR,    VT, MVT::v2i64);
922      setOperationAction(ISD::LOAD,   VT, Promote);
923      AddPromotedToType (ISD::LOAD,   VT, MVT::v2i64);
924      setOperationAction(ISD::SELECT, VT, Promote);
925      AddPromotedToType (ISD::SELECT, VT, MVT::v2i64);
926    }
927
928    // Custom lower v2i64 and v2f64 selects.
929    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
930    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
931    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
932    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
933
934    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
935    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
936
937    setOperationAction(ISD::SINT_TO_FP,         MVT::v2i32, Custom);
938
939    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i8,  Custom);
940    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i16, Custom);
941    // As there is no 64-bit GPR available, we need build a special custom
942    // sequence to convert from v2i32 to v2f32.
943    if (!Subtarget->is64Bit())
944      setOperationAction(ISD::UINT_TO_FP,       MVT::v2f32, Custom);
945
946    setOperationAction(ISD::FP_EXTEND,          MVT::v2f32, Custom);
947    setOperationAction(ISD::FP_ROUND,           MVT::v2f32, Custom);
948
949    for (MVT VT : MVT::fp_vector_valuetypes())
950      setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2f32, Legal);
951
952    setOperationAction(ISD::BITCAST,            MVT::v2i32, Custom);
953    setOperationAction(ISD::BITCAST,            MVT::v4i16, Custom);
954    setOperationAction(ISD::BITCAST,            MVT::v8i8,  Custom);
955  }
956
957  if (!Subtarget->useSoftFloat() && Subtarget->hasSSE41()) {
958    for (MVT RoundedTy : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
959      setOperationAction(ISD::FFLOOR,           RoundedTy,  Legal);
960      setOperationAction(ISD::FCEIL,            RoundedTy,  Legal);
961      setOperationAction(ISD::FTRUNC,           RoundedTy,  Legal);
962      setOperationAction(ISD::FRINT,            RoundedTy,  Legal);
963      setOperationAction(ISD::FNEARBYINT,       RoundedTy,  Legal);
964    }
965
966    setOperationAction(ISD::SMAX,               MVT::v16i8, Legal);
967    setOperationAction(ISD::SMAX,               MVT::v4i32, Legal);
968    setOperationAction(ISD::UMAX,               MVT::v8i16, Legal);
969    setOperationAction(ISD::UMAX,               MVT::v4i32, Legal);
970    setOperationAction(ISD::SMIN,               MVT::v16i8, Legal);
971    setOperationAction(ISD::SMIN,               MVT::v4i32, Legal);
972    setOperationAction(ISD::UMIN,               MVT::v8i16, Legal);
973    setOperationAction(ISD::UMIN,               MVT::v4i32, Legal);
974
975    // FIXME: Do we need to handle scalar-to-vector here?
976    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
977
978    // We directly match byte blends in the backend as they match the VSELECT
979    // condition form.
980    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
981
982    // SSE41 brings specific instructions for doing vector sign extend even in
983    // cases where we don't have SRA.
984    for (MVT VT : MVT::integer_vector_valuetypes()) {
985      setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Custom);
986      setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Custom);
987      setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i32, Custom);
988    }
989
990    // SSE41 also has vector sign/zero extending loads, PMOV[SZ]X
991    setLoadExtAction(ISD::SEXTLOAD, MVT::v8i16, MVT::v8i8,  Legal);
992    setLoadExtAction(ISD::SEXTLOAD, MVT::v4i32, MVT::v4i8,  Legal);
993    setLoadExtAction(ISD::SEXTLOAD, MVT::v2i64, MVT::v2i8,  Legal);
994    setLoadExtAction(ISD::SEXTLOAD, MVT::v4i32, MVT::v4i16, Legal);
995    setLoadExtAction(ISD::SEXTLOAD, MVT::v2i64, MVT::v2i16, Legal);
996    setLoadExtAction(ISD::SEXTLOAD, MVT::v2i64, MVT::v2i32, Legal);
997
998    setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i16, MVT::v8i8,  Legal);
999    setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i32, MVT::v4i8,  Legal);
1000    setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i64, MVT::v2i8,  Legal);
1001    setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i32, MVT::v4i16, Legal);
1002    setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i64, MVT::v2i16, Legal);
1003    setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i64, MVT::v2i32, Legal);
1004
1005    // i8 and i16 vectors are custom because the source register and source
1006    // source memory operand types are not the same width.  f32 vectors are
1007    // custom since the immediate controlling the insert encodes additional
1008    // information.
1009    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
1010    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
1011    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
1012    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
1013
1014    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
1015    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
1016    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
1017    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
1018
1019    // FIXME: these should be Legal, but that's only for the case where
1020    // the index is constant.  For now custom expand to deal with that.
1021    if (Subtarget->is64Bit()) {
1022      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
1023      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
1024    }
1025  }
1026
1027  if (Subtarget->hasSSE2()) {
1028    setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v2i64, Custom);
1029    setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v4i32, Custom);
1030    setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v8i16, Custom);
1031
1032    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
1033    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
1034
1035    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
1036    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
1037
1038    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
1039    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
1040
1041    // In the customized shift lowering, the legal cases in AVX2 will be
1042    // recognized.
1043    setOperationAction(ISD::SRL,               MVT::v2i64, Custom);
1044    setOperationAction(ISD::SRL,               MVT::v4i32, Custom);
1045
1046    setOperationAction(ISD::SHL,               MVT::v2i64, Custom);
1047    setOperationAction(ISD::SHL,               MVT::v4i32, Custom);
1048
1049    setOperationAction(ISD::SRA,               MVT::v2i64, Custom);
1050    setOperationAction(ISD::SRA,               MVT::v4i32, Custom);
1051  }
1052
1053  if (Subtarget->hasXOP()) {
1054    setOperationAction(ISD::ROTL,              MVT::v16i8, Custom);
1055    setOperationAction(ISD::ROTL,              MVT::v8i16, Custom);
1056    setOperationAction(ISD::ROTL,              MVT::v4i32, Custom);
1057    setOperationAction(ISD::ROTL,              MVT::v2i64, Custom);
1058    setOperationAction(ISD::ROTL,              MVT::v32i8, Custom);
1059    setOperationAction(ISD::ROTL,              MVT::v16i16, Custom);
1060    setOperationAction(ISD::ROTL,              MVT::v8i32, Custom);
1061    setOperationAction(ISD::ROTL,              MVT::v4i64, Custom);
1062  }
1063
1064  if (!Subtarget->useSoftFloat() && Subtarget->hasFp256()) {
1065    addRegisterClass(MVT::v32i8,  &X86::VR256RegClass);
1066    addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
1067    addRegisterClass(MVT::v8i32,  &X86::VR256RegClass);
1068    addRegisterClass(MVT::v8f32,  &X86::VR256RegClass);
1069    addRegisterClass(MVT::v4i64,  &X86::VR256RegClass);
1070    addRegisterClass(MVT::v4f64,  &X86::VR256RegClass);
1071
1072    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1073    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1074    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1075
1076    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1077    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1078    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1079    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1080    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1081    setOperationAction(ISD::FFLOOR,             MVT::v8f32, Legal);
1082    setOperationAction(ISD::FCEIL,              MVT::v8f32, Legal);
1083    setOperationAction(ISD::FTRUNC,             MVT::v8f32, Legal);
1084    setOperationAction(ISD::FRINT,              MVT::v8f32, Legal);
1085    setOperationAction(ISD::FNEARBYINT,         MVT::v8f32, Legal);
1086    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1087    setOperationAction(ISD::FABS,               MVT::v8f32, Custom);
1088
1089    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1090    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1091    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1092    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1093    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1094    setOperationAction(ISD::FFLOOR,             MVT::v4f64, Legal);
1095    setOperationAction(ISD::FCEIL,              MVT::v4f64, Legal);
1096    setOperationAction(ISD::FTRUNC,             MVT::v4f64, Legal);
1097    setOperationAction(ISD::FRINT,              MVT::v4f64, Legal);
1098    setOperationAction(ISD::FNEARBYINT,         MVT::v4f64, Legal);
1099    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1100    setOperationAction(ISD::FABS,               MVT::v4f64, Custom);
1101
1102    // (fp_to_int:v8i16 (v8f32 ..)) requires the result type to be promoted
1103    // even though v8i16 is a legal type.
1104    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i16, Promote);
1105    setOperationAction(ISD::FP_TO_UINT,         MVT::v8i16, Promote);
1106    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1107
1108    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i16, Promote);
1109    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1110    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1111
1112    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i8,  Custom);
1113    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i16, Custom);
1114
1115    for (MVT VT : MVT::fp_vector_valuetypes())
1116      setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4f32, Legal);
1117
1118    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1119    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1120
1121    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1122    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1123
1124    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1125    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1126
1127    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1128    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1129    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1130    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1131
1132    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1133    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1134    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1135
1136    setOperationAction(ISD::SIGN_EXTEND,       MVT::v4i64, Custom);
1137    setOperationAction(ISD::SIGN_EXTEND,       MVT::v8i32, Custom);
1138    setOperationAction(ISD::SIGN_EXTEND,       MVT::v16i16, Custom);
1139    setOperationAction(ISD::ZERO_EXTEND,       MVT::v4i64, Custom);
1140    setOperationAction(ISD::ZERO_EXTEND,       MVT::v8i32, Custom);
1141    setOperationAction(ISD::ZERO_EXTEND,       MVT::v16i16, Custom);
1142    setOperationAction(ISD::ANY_EXTEND,        MVT::v4i64, Custom);
1143    setOperationAction(ISD::ANY_EXTEND,        MVT::v8i32, Custom);
1144    setOperationAction(ISD::ANY_EXTEND,        MVT::v16i16, Custom);
1145    setOperationAction(ISD::TRUNCATE,          MVT::v16i8, Custom);
1146    setOperationAction(ISD::TRUNCATE,          MVT::v8i16, Custom);
1147    setOperationAction(ISD::TRUNCATE,          MVT::v4i32, Custom);
1148
1149    setOperationAction(ISD::CTPOP,             MVT::v32i8, Custom);
1150    setOperationAction(ISD::CTPOP,             MVT::v16i16, Custom);
1151    setOperationAction(ISD::CTPOP,             MVT::v8i32, Custom);
1152    setOperationAction(ISD::CTPOP,             MVT::v4i64, Custom);
1153
1154    setOperationAction(ISD::CTTZ,              MVT::v32i8, Custom);
1155    setOperationAction(ISD::CTTZ,              MVT::v16i16, Custom);
1156    setOperationAction(ISD::CTTZ,              MVT::v8i32, Custom);
1157    setOperationAction(ISD::CTTZ,              MVT::v4i64, Custom);
1158    setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::v32i8, Custom);
1159    setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::v16i16, Custom);
1160    setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::v8i32, Custom);
1161    setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::v4i64, Custom);
1162
1163    if (Subtarget->hasAnyFMA()) {
1164      setOperationAction(ISD::FMA,             MVT::v8f32, Legal);
1165      setOperationAction(ISD::FMA,             MVT::v4f64, Legal);
1166      setOperationAction(ISD::FMA,             MVT::v4f32, Legal);
1167      setOperationAction(ISD::FMA,             MVT::v2f64, Legal);
1168      setOperationAction(ISD::FMA,             MVT::f32, Legal);
1169      setOperationAction(ISD::FMA,             MVT::f64, Legal);
1170    }
1171
1172    if (Subtarget->hasInt256()) {
1173      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1174      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1175      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1176      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1177
1178      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1179      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1180      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1181      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1182
1183      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1184      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1185      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1186      setOperationAction(ISD::MUL,             MVT::v32i8, Custom);
1187
1188      setOperationAction(ISD::UMUL_LOHI,       MVT::v8i32, Custom);
1189      setOperationAction(ISD::SMUL_LOHI,       MVT::v8i32, Custom);
1190      setOperationAction(ISD::MULHU,           MVT::v16i16, Legal);
1191      setOperationAction(ISD::MULHS,           MVT::v16i16, Legal);
1192
1193      setOperationAction(ISD::SMAX,            MVT::v32i8,  Legal);
1194      setOperationAction(ISD::SMAX,            MVT::v16i16, Legal);
1195      setOperationAction(ISD::SMAX,            MVT::v8i32,  Legal);
1196      setOperationAction(ISD::UMAX,            MVT::v32i8,  Legal);
1197      setOperationAction(ISD::UMAX,            MVT::v16i16, Legal);
1198      setOperationAction(ISD::UMAX,            MVT::v8i32,  Legal);
1199      setOperationAction(ISD::SMIN,            MVT::v32i8,  Legal);
1200      setOperationAction(ISD::SMIN,            MVT::v16i16, Legal);
1201      setOperationAction(ISD::SMIN,            MVT::v8i32,  Legal);
1202      setOperationAction(ISD::UMIN,            MVT::v32i8,  Legal);
1203      setOperationAction(ISD::UMIN,            MVT::v16i16, Legal);
1204      setOperationAction(ISD::UMIN,            MVT::v8i32,  Legal);
1205
1206      // The custom lowering for UINT_TO_FP for v8i32 becomes interesting
1207      // when we have a 256bit-wide blend with immediate.
1208      setOperationAction(ISD::UINT_TO_FP, MVT::v8i32, Custom);
1209
1210      // AVX2 also has wider vector sign/zero extending loads, VPMOV[SZ]X
1211      setLoadExtAction(ISD::SEXTLOAD, MVT::v16i16, MVT::v16i8, Legal);
1212      setLoadExtAction(ISD::SEXTLOAD, MVT::v8i32,  MVT::v8i8,  Legal);
1213      setLoadExtAction(ISD::SEXTLOAD, MVT::v4i64,  MVT::v4i8,  Legal);
1214      setLoadExtAction(ISD::SEXTLOAD, MVT::v8i32,  MVT::v8i16, Legal);
1215      setLoadExtAction(ISD::SEXTLOAD, MVT::v4i64,  MVT::v4i16, Legal);
1216      setLoadExtAction(ISD::SEXTLOAD, MVT::v4i64,  MVT::v4i32, Legal);
1217
1218      setLoadExtAction(ISD::ZEXTLOAD, MVT::v16i16, MVT::v16i8, Legal);
1219      setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i32,  MVT::v8i8,  Legal);
1220      setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i64,  MVT::v4i8,  Legal);
1221      setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i32,  MVT::v8i16, Legal);
1222      setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i64,  MVT::v4i16, Legal);
1223      setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i64,  MVT::v4i32, Legal);
1224    } else {
1225      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1226      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1227      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1228      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1229
1230      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1231      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1232      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1233      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1234
1235      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1236      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1237      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1238      setOperationAction(ISD::MUL,             MVT::v32i8, Custom);
1239
1240      setOperationAction(ISD::SMAX,            MVT::v32i8,  Custom);
1241      setOperationAction(ISD::SMAX,            MVT::v16i16, Custom);
1242      setOperationAction(ISD::SMAX,            MVT::v8i32,  Custom);
1243      setOperationAction(ISD::UMAX,            MVT::v32i8,  Custom);
1244      setOperationAction(ISD::UMAX,            MVT::v16i16, Custom);
1245      setOperationAction(ISD::UMAX,            MVT::v8i32,  Custom);
1246      setOperationAction(ISD::SMIN,            MVT::v32i8,  Custom);
1247      setOperationAction(ISD::SMIN,            MVT::v16i16, Custom);
1248      setOperationAction(ISD::SMIN,            MVT::v8i32,  Custom);
1249      setOperationAction(ISD::UMIN,            MVT::v32i8,  Custom);
1250      setOperationAction(ISD::UMIN,            MVT::v16i16, Custom);
1251      setOperationAction(ISD::UMIN,            MVT::v8i32,  Custom);
1252    }
1253
1254    // In the customized shift lowering, the legal cases in AVX2 will be
1255    // recognized.
1256    setOperationAction(ISD::SRL,               MVT::v4i64, Custom);
1257    setOperationAction(ISD::SRL,               MVT::v8i32, Custom);
1258
1259    setOperationAction(ISD::SHL,               MVT::v4i64, Custom);
1260    setOperationAction(ISD::SHL,               MVT::v8i32, Custom);
1261
1262    setOperationAction(ISD::SRA,               MVT::v4i64, Custom);
1263    setOperationAction(ISD::SRA,               MVT::v8i32, Custom);
1264
1265    // Custom lower several nodes for 256-bit types.
1266    for (MVT VT : MVT::vector_valuetypes()) {
1267      if (VT.getScalarSizeInBits() >= 32) {
1268        setOperationAction(ISD::MLOAD,  VT, Legal);
1269        setOperationAction(ISD::MSTORE, VT, Legal);
1270      }
1271      // Extract subvector is special because the value type
1272      // (result) is 128-bit but the source is 256-bit wide.
1273      if (VT.is128BitVector()) {
1274        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1275      }
1276      // Do not attempt to custom lower other non-256-bit vectors
1277      if (!VT.is256BitVector())
1278        continue;
1279
1280      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
1281      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
1282      setOperationAction(ISD::VSELECT,            VT, Custom);
1283      setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
1284      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
1285      setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom);
1286      setOperationAction(ISD::INSERT_SUBVECTOR,   VT, Custom);
1287      setOperationAction(ISD::CONCAT_VECTORS,     VT, Custom);
1288    }
1289
1290    if (Subtarget->hasInt256())
1291      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1292
1293    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1294    for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32 }) {
1295      setOperationAction(ISD::AND,    VT, Promote);
1296      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
1297      setOperationAction(ISD::OR,     VT, Promote);
1298      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
1299      setOperationAction(ISD::XOR,    VT, Promote);
1300      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
1301      setOperationAction(ISD::LOAD,   VT, Promote);
1302      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
1303      setOperationAction(ISD::SELECT, VT, Promote);
1304      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
1305    }
1306  }
1307
1308  if (!Subtarget->useSoftFloat() && Subtarget->hasAVX512()) {
1309    addRegisterClass(MVT::v16i32, &X86::VR512RegClass);
1310    addRegisterClass(MVT::v16f32, &X86::VR512RegClass);
1311    addRegisterClass(MVT::v8i64,  &X86::VR512RegClass);
1312    addRegisterClass(MVT::v8f64,  &X86::VR512RegClass);
1313
1314    addRegisterClass(MVT::i1,     &X86::VK1RegClass);
1315    addRegisterClass(MVT::v8i1,   &X86::VK8RegClass);
1316    addRegisterClass(MVT::v16i1,  &X86::VK16RegClass);
1317
1318    for (MVT VT : MVT::fp_vector_valuetypes())
1319      setLoadExtAction(ISD::EXTLOAD, VT, MVT::v8f32, Legal);
1320
1321    setLoadExtAction(ISD::ZEXTLOAD, MVT::v16i32, MVT::v16i8, Legal);
1322    setLoadExtAction(ISD::SEXTLOAD, MVT::v16i32, MVT::v16i8, Legal);
1323    setLoadExtAction(ISD::ZEXTLOAD, MVT::v16i32, MVT::v16i16, Legal);
1324    setLoadExtAction(ISD::SEXTLOAD, MVT::v16i32, MVT::v16i16, Legal);
1325    setLoadExtAction(ISD::ZEXTLOAD, MVT::v32i16, MVT::v32i8, Legal);
1326    setLoadExtAction(ISD::SEXTLOAD, MVT::v32i16, MVT::v32i8, Legal);
1327    setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i64,  MVT::v8i8,  Legal);
1328    setLoadExtAction(ISD::SEXTLOAD, MVT::v8i64,  MVT::v8i8,  Legal);
1329    setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i64,  MVT::v8i16,  Legal);
1330    setLoadExtAction(ISD::SEXTLOAD, MVT::v8i64,  MVT::v8i16,  Legal);
1331    setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i64,  MVT::v8i32,  Legal);
1332    setLoadExtAction(ISD::SEXTLOAD, MVT::v8i64,  MVT::v8i32,  Legal);
1333
1334    setOperationAction(ISD::BR_CC,              MVT::i1,    Expand);
1335    setOperationAction(ISD::SETCC,              MVT::i1,    Custom);
1336    setOperationAction(ISD::SELECT_CC,          MVT::i1,    Expand);
1337    setOperationAction(ISD::XOR,                MVT::i1,    Legal);
1338    setOperationAction(ISD::OR,                 MVT::i1,    Legal);
1339    setOperationAction(ISD::AND,                MVT::i1,    Legal);
1340    setOperationAction(ISD::SUB,                MVT::i1,    Custom);
1341    setOperationAction(ISD::ADD,                MVT::i1,    Custom);
1342    setOperationAction(ISD::MUL,                MVT::i1,    Custom);
1343    setOperationAction(ISD::LOAD,               MVT::v16f32, Legal);
1344    setOperationAction(ISD::LOAD,               MVT::v8f64, Legal);
1345    setOperationAction(ISD::LOAD,               MVT::v8i64, Legal);
1346    setOperationAction(ISD::LOAD,               MVT::v16i32, Legal);
1347    setOperationAction(ISD::LOAD,               MVT::v16i1, Legal);
1348
1349    setOperationAction(ISD::FADD,               MVT::v16f32, Legal);
1350    setOperationAction(ISD::FSUB,               MVT::v16f32, Legal);
1351    setOperationAction(ISD::FMUL,               MVT::v16f32, Legal);
1352    setOperationAction(ISD::FDIV,               MVT::v16f32, Legal);
1353    setOperationAction(ISD::FSQRT,              MVT::v16f32, Legal);
1354    setOperationAction(ISD::FNEG,               MVT::v16f32, Custom);
1355    setOperationAction(ISD::FABS,               MVT::v16f32, Custom);
1356
1357    setOperationAction(ISD::FADD,               MVT::v8f64, Legal);
1358    setOperationAction(ISD::FSUB,               MVT::v8f64, Legal);
1359    setOperationAction(ISD::FMUL,               MVT::v8f64, Legal);
1360    setOperationAction(ISD::FDIV,               MVT::v8f64, Legal);
1361    setOperationAction(ISD::FSQRT,              MVT::v8f64, Legal);
1362    setOperationAction(ISD::FNEG,               MVT::v8f64, Custom);
1363    setOperationAction(ISD::FABS,               MVT::v8f64, Custom);
1364    setOperationAction(ISD::FMA,                MVT::v8f64, Legal);
1365    setOperationAction(ISD::FMA,                MVT::v16f32, Legal);
1366
1367    setOperationAction(ISD::FP_TO_SINT,         MVT::v16i32, Legal);
1368    setOperationAction(ISD::FP_TO_UINT,         MVT::v16i32, Legal);
1369    setOperationAction(ISD::FP_TO_UINT,         MVT::v8i32, Legal);
1370    setOperationAction(ISD::FP_TO_UINT,         MVT::v4i32, Legal);
1371    setOperationAction(ISD::SINT_TO_FP,         MVT::v16i32, Legal);
1372    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i1,   Custom);
1373    setOperationAction(ISD::SINT_TO_FP,         MVT::v16i1,  Custom);
1374    setOperationAction(ISD::SINT_TO_FP,         MVT::v16i8,  Promote);
1375    setOperationAction(ISD::SINT_TO_FP,         MVT::v16i16, Promote);
1376    setOperationAction(ISD::UINT_TO_FP,         MVT::v16i32, Legal);
1377    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i32, Legal);
1378    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i32, Legal);
1379    setOperationAction(ISD::UINT_TO_FP,         MVT::v16i8, Custom);
1380    setOperationAction(ISD::UINT_TO_FP,         MVT::v16i16, Custom);
1381    setOperationAction(ISD::FP_ROUND,           MVT::v8f32, Legal);
1382    setOperationAction(ISD::FP_EXTEND,          MVT::v8f32, Legal);
1383
1384    setTruncStoreAction(MVT::v8i64,   MVT::v8i8,   Legal);
1385    setTruncStoreAction(MVT::v8i64,   MVT::v8i16,  Legal);
1386    setTruncStoreAction(MVT::v8i64,   MVT::v8i32,  Legal);
1387    setTruncStoreAction(MVT::v16i32,  MVT::v16i8,  Legal);
1388    setTruncStoreAction(MVT::v16i32,  MVT::v16i16, Legal);
1389    if (Subtarget->hasVLX()){
1390      setTruncStoreAction(MVT::v4i64, MVT::v4i8,  Legal);
1391      setTruncStoreAction(MVT::v4i64, MVT::v4i16, Legal);
1392      setTruncStoreAction(MVT::v4i64, MVT::v4i32, Legal);
1393      setTruncStoreAction(MVT::v8i32, MVT::v8i8,  Legal);
1394      setTruncStoreAction(MVT::v8i32, MVT::v8i16, Legal);
1395
1396      setTruncStoreAction(MVT::v2i64, MVT::v2i8,  Legal);
1397      setTruncStoreAction(MVT::v2i64, MVT::v2i16, Legal);
1398      setTruncStoreAction(MVT::v2i64, MVT::v2i32, Legal);
1399      setTruncStoreAction(MVT::v4i32, MVT::v4i8,  Legal);
1400      setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal);
1401    } else {
1402      setOperationAction(ISD::MLOAD,    MVT::v8i32, Custom);
1403      setOperationAction(ISD::MLOAD,    MVT::v8f32, Custom);
1404      setOperationAction(ISD::MSTORE,   MVT::v8i32, Custom);
1405      setOperationAction(ISD::MSTORE,   MVT::v8f32, Custom);
1406    }
1407    setOperationAction(ISD::TRUNCATE,           MVT::i1, Custom);
1408    setOperationAction(ISD::TRUNCATE,           MVT::v16i8, Custom);
1409    setOperationAction(ISD::TRUNCATE,           MVT::v8i32, Custom);
1410    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i1,  Custom);
1411    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v16i1, Custom);
1412    if (Subtarget->hasDQI()) {
1413      setOperationAction(ISD::TRUNCATE,         MVT::v2i1, Custom);
1414      setOperationAction(ISD::TRUNCATE,         MVT::v4i1, Custom);
1415
1416      setOperationAction(ISD::SINT_TO_FP,       MVT::v8i64, Legal);
1417      setOperationAction(ISD::UINT_TO_FP,       MVT::v8i64, Legal);
1418      setOperationAction(ISD::FP_TO_SINT,       MVT::v8i64, Legal);
1419      setOperationAction(ISD::FP_TO_UINT,       MVT::v8i64, Legal);
1420      if (Subtarget->hasVLX()) {
1421        setOperationAction(ISD::SINT_TO_FP,    MVT::v4i64, Legal);
1422        setOperationAction(ISD::SINT_TO_FP,    MVT::v2i64, Legal);
1423        setOperationAction(ISD::UINT_TO_FP,    MVT::v4i64, Legal);
1424        setOperationAction(ISD::UINT_TO_FP,    MVT::v2i64, Legal);
1425        setOperationAction(ISD::FP_TO_SINT,    MVT::v4i64, Legal);
1426        setOperationAction(ISD::FP_TO_SINT,    MVT::v2i64, Legal);
1427        setOperationAction(ISD::FP_TO_UINT,    MVT::v4i64, Legal);
1428        setOperationAction(ISD::FP_TO_UINT,    MVT::v2i64, Legal);
1429      }
1430    }
1431    if (Subtarget->hasVLX()) {
1432      setOperationAction(ISD::SINT_TO_FP,       MVT::v8i32, Legal);
1433      setOperationAction(ISD::UINT_TO_FP,       MVT::v8i32, Legal);
1434      setOperationAction(ISD::FP_TO_SINT,       MVT::v8i32, Legal);
1435      setOperationAction(ISD::FP_TO_UINT,       MVT::v8i32, Legal);
1436      setOperationAction(ISD::SINT_TO_FP,       MVT::v4i32, Legal);
1437      setOperationAction(ISD::UINT_TO_FP,       MVT::v4i32, Legal);
1438      setOperationAction(ISD::FP_TO_SINT,       MVT::v4i32, Legal);
1439      setOperationAction(ISD::FP_TO_UINT,       MVT::v4i32, Legal);
1440    }
1441    setOperationAction(ISD::TRUNCATE,           MVT::v8i1, Custom);
1442    setOperationAction(ISD::TRUNCATE,           MVT::v16i1, Custom);
1443    setOperationAction(ISD::TRUNCATE,           MVT::v16i16, Custom);
1444    setOperationAction(ISD::ZERO_EXTEND,        MVT::v16i32, Custom);
1445    setOperationAction(ISD::ZERO_EXTEND,        MVT::v8i64, Custom);
1446    setOperationAction(ISD::ANY_EXTEND,         MVT::v16i32, Custom);
1447    setOperationAction(ISD::ANY_EXTEND,         MVT::v8i64, Custom);
1448    setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i32, Custom);
1449    setOperationAction(ISD::SIGN_EXTEND,        MVT::v8i64, Custom);
1450    setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i8, Custom);
1451    setOperationAction(ISD::SIGN_EXTEND,        MVT::v8i16, Custom);
1452    setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i16, Custom);
1453    if (Subtarget->hasDQI()) {
1454      setOperationAction(ISD::SIGN_EXTEND,        MVT::v4i32, Custom);
1455      setOperationAction(ISD::SIGN_EXTEND,        MVT::v2i64, Custom);
1456    }
1457    setOperationAction(ISD::FFLOOR,             MVT::v16f32, Legal);
1458    setOperationAction(ISD::FFLOOR,             MVT::v8f64, Legal);
1459    setOperationAction(ISD::FCEIL,              MVT::v16f32, Legal);
1460    setOperationAction(ISD::FCEIL,              MVT::v8f64, Legal);
1461    setOperationAction(ISD::FTRUNC,             MVT::v16f32, Legal);
1462    setOperationAction(ISD::FTRUNC,             MVT::v8f64, Legal);
1463    setOperationAction(ISD::FRINT,              MVT::v16f32, Legal);
1464    setOperationAction(ISD::FRINT,              MVT::v8f64, Legal);
1465    setOperationAction(ISD::FNEARBYINT,         MVT::v16f32, Legal);
1466    setOperationAction(ISD::FNEARBYINT,         MVT::v8f64, Legal);
1467
1468    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f64,  Custom);
1469    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i64,  Custom);
1470    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16f32,  Custom);
1471    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i32,  Custom);
1472    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i1,   Custom);
1473
1474    setOperationAction(ISD::SETCC,              MVT::v16i1, Custom);
1475    setOperationAction(ISD::SETCC,              MVT::v8i1, Custom);
1476
1477    setOperationAction(ISD::MUL,              MVT::v8i64, Custom);
1478
1479    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i1,  Custom);
1480    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i1, Custom);
1481    setOperationAction(ISD::INSERT_SUBVECTOR,   MVT::v16i1, Custom);
1482    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i1, Custom);
1483    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i1, Custom);
1484    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i1, Custom);
1485    setOperationAction(ISD::BUILD_VECTOR,       MVT::v16i1, Custom);
1486    setOperationAction(ISD::SELECT,             MVT::v8f64, Custom);
1487    setOperationAction(ISD::SELECT,             MVT::v8i64, Custom);
1488    setOperationAction(ISD::SELECT,             MVT::v16f32, Custom);
1489    setOperationAction(ISD::SELECT,             MVT::v16i1, Custom);
1490    setOperationAction(ISD::SELECT,             MVT::v8i1,  Custom);
1491
1492    setOperationAction(ISD::SMAX,               MVT::v16i32, Legal);
1493    setOperationAction(ISD::SMAX,               MVT::v8i64, Legal);
1494    setOperationAction(ISD::UMAX,               MVT::v16i32, Legal);
1495    setOperationAction(ISD::UMAX,               MVT::v8i64, Legal);
1496    setOperationAction(ISD::SMIN,               MVT::v16i32, Legal);
1497    setOperationAction(ISD::SMIN,               MVT::v8i64, Legal);
1498    setOperationAction(ISD::UMIN,               MVT::v16i32, Legal);
1499    setOperationAction(ISD::UMIN,               MVT::v8i64, Legal);
1500
1501    setOperationAction(ISD::ADD,                MVT::v8i64, Legal);
1502    setOperationAction(ISD::ADD,                MVT::v16i32, Legal);
1503
1504    setOperationAction(ISD::SUB,                MVT::v8i64, Legal);
1505    setOperationAction(ISD::SUB,                MVT::v16i32, Legal);
1506
1507    setOperationAction(ISD::MUL,                MVT::v16i32, Legal);
1508
1509    setOperationAction(ISD::SRL,                MVT::v8i64, Custom);
1510    setOperationAction(ISD::SRL,                MVT::v16i32, Custom);
1511
1512    setOperationAction(ISD::SHL,                MVT::v8i64, Custom);
1513    setOperationAction(ISD::SHL,                MVT::v16i32, Custom);
1514
1515    setOperationAction(ISD::SRA,                MVT::v8i64, Custom);
1516    setOperationAction(ISD::SRA,                MVT::v16i32, Custom);
1517
1518    setOperationAction(ISD::AND,                MVT::v8i64, Legal);
1519    setOperationAction(ISD::OR,                 MVT::v8i64, Legal);
1520    setOperationAction(ISD::XOR,                MVT::v8i64, Legal);
1521    setOperationAction(ISD::AND,                MVT::v16i32, Legal);
1522    setOperationAction(ISD::OR,                 MVT::v16i32, Legal);
1523    setOperationAction(ISD::XOR,                MVT::v16i32, Legal);
1524
1525    if (Subtarget->hasCDI()) {
1526      setOperationAction(ISD::CTLZ,             MVT::v8i64,  Legal);
1527      setOperationAction(ISD::CTLZ,             MVT::v16i32, Legal);
1528      setOperationAction(ISD::CTLZ_ZERO_UNDEF,  MVT::v8i64,  Legal);
1529      setOperationAction(ISD::CTLZ_ZERO_UNDEF,  MVT::v16i32, Legal);
1530
1531      setOperationAction(ISD::CTLZ,             MVT::v8i16,  Custom);
1532      setOperationAction(ISD::CTLZ,             MVT::v16i8,  Custom);
1533      setOperationAction(ISD::CTLZ,             MVT::v16i16, Custom);
1534      setOperationAction(ISD::CTLZ,             MVT::v32i8,  Custom);
1535      setOperationAction(ISD::CTLZ_ZERO_UNDEF,  MVT::v8i16,  Custom);
1536      setOperationAction(ISD::CTLZ_ZERO_UNDEF,  MVT::v16i8,  Custom);
1537      setOperationAction(ISD::CTLZ_ZERO_UNDEF,  MVT::v16i16, Custom);
1538      setOperationAction(ISD::CTLZ_ZERO_UNDEF,  MVT::v32i8,  Custom);
1539
1540      setOperationAction(ISD::CTTZ_ZERO_UNDEF,  MVT::v8i64,  Custom);
1541      setOperationAction(ISD::CTTZ_ZERO_UNDEF,  MVT::v16i32, Custom);
1542
1543      if (Subtarget->hasVLX()) {
1544        setOperationAction(ISD::CTLZ,             MVT::v4i64, Legal);
1545        setOperationAction(ISD::CTLZ,             MVT::v8i32, Legal);
1546        setOperationAction(ISD::CTLZ,             MVT::v2i64, Legal);
1547        setOperationAction(ISD::CTLZ,             MVT::v4i32, Legal);
1548        setOperationAction(ISD::CTLZ_ZERO_UNDEF,  MVT::v4i64, Legal);
1549        setOperationAction(ISD::CTLZ_ZERO_UNDEF,  MVT::v8i32, Legal);
1550        setOperationAction(ISD::CTLZ_ZERO_UNDEF,  MVT::v2i64, Legal);
1551        setOperationAction(ISD::CTLZ_ZERO_UNDEF,  MVT::v4i32, Legal);
1552
1553        setOperationAction(ISD::CTTZ_ZERO_UNDEF,  MVT::v4i64, Custom);
1554        setOperationAction(ISD::CTTZ_ZERO_UNDEF,  MVT::v8i32, Custom);
1555        setOperationAction(ISD::CTTZ_ZERO_UNDEF,  MVT::v2i64, Custom);
1556        setOperationAction(ISD::CTTZ_ZERO_UNDEF,  MVT::v4i32, Custom);
1557      } else {
1558        setOperationAction(ISD::CTLZ,             MVT::v4i64, Custom);
1559        setOperationAction(ISD::CTLZ,             MVT::v8i32, Custom);
1560        setOperationAction(ISD::CTLZ,             MVT::v2i64, Custom);
1561        setOperationAction(ISD::CTLZ,             MVT::v4i32, Custom);
1562        setOperationAction(ISD::CTLZ_ZERO_UNDEF,  MVT::v4i64, Custom);
1563        setOperationAction(ISD::CTLZ_ZERO_UNDEF,  MVT::v8i32, Custom);
1564        setOperationAction(ISD::CTLZ_ZERO_UNDEF,  MVT::v2i64, Custom);
1565        setOperationAction(ISD::CTLZ_ZERO_UNDEF,  MVT::v4i32, Custom);
1566      }
1567    } // Subtarget->hasCDI()
1568
1569    if (Subtarget->hasDQI()) {
1570      setOperationAction(ISD::MUL,             MVT::v2i64, Legal);
1571      setOperationAction(ISD::MUL,             MVT::v4i64, Legal);
1572      setOperationAction(ISD::MUL,             MVT::v8i64, Legal);
1573    }
1574    // Custom lower several nodes.
1575    for (MVT VT : MVT::vector_valuetypes()) {
1576      unsigned EltSize = VT.getVectorElementType().getSizeInBits();
1577      if (EltSize == 1) {
1578        setOperationAction(ISD::AND, VT, Legal);
1579        setOperationAction(ISD::OR,  VT, Legal);
1580        setOperationAction(ISD::XOR,  VT, Legal);
1581      }
1582      if ((VT.is128BitVector() || VT.is256BitVector()) && EltSize >= 32) {
1583        setOperationAction(ISD::MGATHER,  VT, Custom);
1584        setOperationAction(ISD::MSCATTER, VT, Custom);
1585      }
1586      // Extract subvector is special because the value type
1587      // (result) is 256/128-bit but the source is 512-bit wide.
1588      if (VT.is128BitVector() || VT.is256BitVector()) {
1589        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1590      }
1591      if (VT.getVectorElementType() == MVT::i1)
1592        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
1593
1594      // Do not attempt to custom lower other non-512-bit vectors
1595      if (!VT.is512BitVector())
1596        continue;
1597
1598      if (EltSize >= 32) {
1599        setOperationAction(ISD::VECTOR_SHUFFLE,      VT, Custom);
1600        setOperationAction(ISD::INSERT_VECTOR_ELT,   VT, Custom);
1601        setOperationAction(ISD::BUILD_VECTOR,        VT, Custom);
1602        setOperationAction(ISD::VSELECT,             VT, Legal);
1603        setOperationAction(ISD::EXTRACT_VECTOR_ELT,  VT, Custom);
1604        setOperationAction(ISD::SCALAR_TO_VECTOR,    VT, Custom);
1605        setOperationAction(ISD::INSERT_SUBVECTOR,    VT, Custom);
1606        setOperationAction(ISD::MLOAD,               VT, Legal);
1607        setOperationAction(ISD::MSTORE,              VT, Legal);
1608        setOperationAction(ISD::MGATHER,  VT, Legal);
1609        setOperationAction(ISD::MSCATTER, VT, Custom);
1610      }
1611    }
1612    for (auto VT : { MVT::v64i8, MVT::v32i16, MVT::v16i32 }) {
1613      setOperationAction(ISD::SELECT, VT, Promote);
1614      AddPromotedToType (ISD::SELECT, VT, MVT::v8i64);
1615    }
1616  }// has  AVX-512
1617
1618  if (!Subtarget->useSoftFloat() && Subtarget->hasBWI()) {
1619    addRegisterClass(MVT::v32i16, &X86::VR512RegClass);
1620    addRegisterClass(MVT::v64i8,  &X86::VR512RegClass);
1621
1622    addRegisterClass(MVT::v32i1,  &X86::VK32RegClass);
1623    addRegisterClass(MVT::v64i1,  &X86::VK64RegClass);
1624
1625    setOperationAction(ISD::LOAD,               MVT::v32i16, Legal);
1626    setOperationAction(ISD::LOAD,               MVT::v64i8, Legal);
1627    setOperationAction(ISD::SETCC,              MVT::v32i1, Custom);
1628    setOperationAction(ISD::SETCC,              MVT::v64i1, Custom);
1629    setOperationAction(ISD::ADD,                MVT::v32i16, Legal);
1630    setOperationAction(ISD::ADD,                MVT::v64i8, Legal);
1631    setOperationAction(ISD::SUB,                MVT::v32i16, Legal);
1632    setOperationAction(ISD::SUB,                MVT::v64i8, Legal);
1633    setOperationAction(ISD::MUL,                MVT::v32i16, Legal);
1634    setOperationAction(ISD::MULHS,              MVT::v32i16, Legal);
1635    setOperationAction(ISD::MULHU,              MVT::v32i16, Legal);
1636    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i1, Custom);
1637    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v64i1, Custom);
1638    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i16, Custom);
1639    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v64i8, Custom);
1640    setOperationAction(ISD::INSERT_SUBVECTOR,   MVT::v32i1, Custom);
1641    setOperationAction(ISD::INSERT_SUBVECTOR,   MVT::v64i1, Custom);
1642    setOperationAction(ISD::INSERT_SUBVECTOR,   MVT::v32i16, Custom);
1643    setOperationAction(ISD::INSERT_SUBVECTOR,   MVT::v64i8, Custom);
1644    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v32i16, Custom);
1645    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v64i8, Custom);
1646    setOperationAction(ISD::SELECT,             MVT::v32i1, Custom);
1647    setOperationAction(ISD::SELECT,             MVT::v64i1, Custom);
1648    setOperationAction(ISD::SIGN_EXTEND,        MVT::v32i8, Custom);
1649    setOperationAction(ISD::ZERO_EXTEND,        MVT::v32i8, Custom);
1650    setOperationAction(ISD::SIGN_EXTEND,        MVT::v32i16, Custom);
1651    setOperationAction(ISD::ZERO_EXTEND,        MVT::v32i16, Custom);
1652    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v32i16, Custom);
1653    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v64i8, Custom);
1654    setOperationAction(ISD::SIGN_EXTEND,        MVT::v64i8, Custom);
1655    setOperationAction(ISD::ZERO_EXTEND,        MVT::v64i8, Custom);
1656    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v32i1, Custom);
1657    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v64i1, Custom);
1658    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v32i16, Custom);
1659    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v64i8, Custom);
1660    setOperationAction(ISD::VSELECT,            MVT::v32i16, Legal);
1661    setOperationAction(ISD::VSELECT,            MVT::v64i8, Legal);
1662    setOperationAction(ISD::TRUNCATE,           MVT::v32i1, Custom);
1663    setOperationAction(ISD::TRUNCATE,           MVT::v64i1, Custom);
1664    setOperationAction(ISD::TRUNCATE,           MVT::v32i8, Custom);
1665    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v32i1, Custom);
1666    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v64i1, Custom);
1667
1668    setOperationAction(ISD::SMAX,               MVT::v64i8, Legal);
1669    setOperationAction(ISD::SMAX,               MVT::v32i16, Legal);
1670    setOperationAction(ISD::UMAX,               MVT::v64i8, Legal);
1671    setOperationAction(ISD::UMAX,               MVT::v32i16, Legal);
1672    setOperationAction(ISD::SMIN,               MVT::v64i8, Legal);
1673    setOperationAction(ISD::SMIN,               MVT::v32i16, Legal);
1674    setOperationAction(ISD::UMIN,               MVT::v64i8, Legal);
1675    setOperationAction(ISD::UMIN,               MVT::v32i16, Legal);
1676
1677    setTruncStoreAction(MVT::v32i16,  MVT::v32i8, Legal);
1678    setTruncStoreAction(MVT::v16i16,  MVT::v16i8, Legal);
1679    if (Subtarget->hasVLX())
1680      setTruncStoreAction(MVT::v8i16,   MVT::v8i8,  Legal);
1681
1682    if (Subtarget->hasCDI()) {
1683      setOperationAction(ISD::CTLZ,            MVT::v32i16, Custom);
1684      setOperationAction(ISD::CTLZ,            MVT::v64i8,  Custom);
1685      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v32i16, Custom);
1686      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v64i8,  Custom);
1687    }
1688
1689    for (auto VT : { MVT::v64i8, MVT::v32i16 }) {
1690      setOperationAction(ISD::BUILD_VECTOR,        VT, Custom);
1691      setOperationAction(ISD::VSELECT,             VT, Legal);
1692
1693      setOperationAction(ISD::AND,    VT, Promote);
1694      AddPromotedToType (ISD::AND,    VT, MVT::v8i64);
1695      setOperationAction(ISD::OR,     VT, Promote);
1696      AddPromotedToType (ISD::OR,     VT, MVT::v8i64);
1697      setOperationAction(ISD::XOR,    VT, Promote);
1698      AddPromotedToType (ISD::XOR,    VT, MVT::v8i64);
1699    }
1700  }
1701
1702  if (!Subtarget->useSoftFloat() && Subtarget->hasVLX()) {
1703    addRegisterClass(MVT::v4i1,   &X86::VK4RegClass);
1704    addRegisterClass(MVT::v2i1,   &X86::VK2RegClass);
1705
1706    setOperationAction(ISD::SETCC,              MVT::v4i1, Custom);
1707    setOperationAction(ISD::SETCC,              MVT::v2i1, Custom);
1708    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i1, Custom);
1709    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i1, Custom);
1710    setOperationAction(ISD::INSERT_SUBVECTOR,   MVT::v8i1, Custom);
1711    setOperationAction(ISD::INSERT_SUBVECTOR,   MVT::v4i1, Custom);
1712    setOperationAction(ISD::SELECT,             MVT::v4i1, Custom);
1713    setOperationAction(ISD::SELECT,             MVT::v2i1, Custom);
1714    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i1, Custom);
1715    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i1, Custom);
1716    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i1, Custom);
1717    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i1, Custom);
1718
1719    setOperationAction(ISD::AND,                MVT::v8i32, Legal);
1720    setOperationAction(ISD::OR,                 MVT::v8i32, Legal);
1721    setOperationAction(ISD::XOR,                MVT::v8i32, Legal);
1722    setOperationAction(ISD::AND,                MVT::v4i32, Legal);
1723    setOperationAction(ISD::OR,                 MVT::v4i32, Legal);
1724    setOperationAction(ISD::XOR,                MVT::v4i32, Legal);
1725    setOperationAction(ISD::SRA,                MVT::v2i64, Custom);
1726    setOperationAction(ISD::SRA,                MVT::v4i64, Custom);
1727
1728    setOperationAction(ISD::SMAX,               MVT::v2i64, Legal);
1729    setOperationAction(ISD::SMAX,               MVT::v4i64, Legal);
1730    setOperationAction(ISD::UMAX,               MVT::v2i64, Legal);
1731    setOperationAction(ISD::UMAX,               MVT::v4i64, Legal);
1732    setOperationAction(ISD::SMIN,               MVT::v2i64, Legal);
1733    setOperationAction(ISD::SMIN,               MVT::v4i64, Legal);
1734    setOperationAction(ISD::UMIN,               MVT::v2i64, Legal);
1735    setOperationAction(ISD::UMIN,               MVT::v4i64, Legal);
1736  }
1737
1738  // We want to custom lower some of our intrinsics.
1739  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1740  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
1741  setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
1742  if (!Subtarget->is64Bit()) {
1743    setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
1744    setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
1745  }
1746
1747  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1748  // handle type legalization for these operations here.
1749  //
1750  // FIXME: We really should do custom legalization for addition and
1751  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1752  // than generic legalization for 64-bit multiplication-with-overflow, though.
1753  for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) {
1754    if (VT == MVT::i64 && !Subtarget->is64Bit())
1755      continue;
1756    // Add/Sub/Mul with overflow operations are custom lowered.
1757    setOperationAction(ISD::SADDO, VT, Custom);
1758    setOperationAction(ISD::UADDO, VT, Custom);
1759    setOperationAction(ISD::SSUBO, VT, Custom);
1760    setOperationAction(ISD::USUBO, VT, Custom);
1761    setOperationAction(ISD::SMULO, VT, Custom);
1762    setOperationAction(ISD::UMULO, VT, Custom);
1763  }
1764
1765  if (!Subtarget->is64Bit()) {
1766    // These libcalls are not available in 32-bit.
1767    setLibcallName(RTLIB::SHL_I128, nullptr);
1768    setLibcallName(RTLIB::SRL_I128, nullptr);
1769    setLibcallName(RTLIB::SRA_I128, nullptr);
1770  }
1771
1772  // Combine sin / cos into one node or libcall if possible.
1773  if (Subtarget->hasSinCos()) {
1774    setLibcallName(RTLIB::SINCOS_F32, "sincosf");
1775    setLibcallName(RTLIB::SINCOS_F64, "sincos");
1776    if (Subtarget->isTargetDarwin()) {
1777      // For MacOSX, we don't want the normal expansion of a libcall to sincos.
1778      // We want to issue a libcall to __sincos_stret to avoid memory traffic.
1779      setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
1780      setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
1781    }
1782  }
1783
1784  if (Subtarget->isTargetWin64()) {
1785    setOperationAction(ISD::SDIV, MVT::i128, Custom);
1786    setOperationAction(ISD::UDIV, MVT::i128, Custom);
1787    setOperationAction(ISD::SREM, MVT::i128, Custom);
1788    setOperationAction(ISD::UREM, MVT::i128, Custom);
1789    setOperationAction(ISD::SDIVREM, MVT::i128, Custom);
1790    setOperationAction(ISD::UDIVREM, MVT::i128, Custom);
1791  }
1792
1793  // We have target-specific dag combine patterns for the following nodes:
1794  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1795  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1796  setTargetDAGCombine(ISD::BITCAST);
1797  setTargetDAGCombine(ISD::VSELECT);
1798  setTargetDAGCombine(ISD::SELECT);
1799  setTargetDAGCombine(ISD::SHL);
1800  setTargetDAGCombine(ISD::SRA);
1801  setTargetDAGCombine(ISD::SRL);
1802  setTargetDAGCombine(ISD::OR);
1803  setTargetDAGCombine(ISD::AND);
1804  setTargetDAGCombine(ISD::ADD);
1805  setTargetDAGCombine(ISD::FADD);
1806  setTargetDAGCombine(ISD::FSUB);
1807  setTargetDAGCombine(ISD::FNEG);
1808  setTargetDAGCombine(ISD::FMA);
1809  setTargetDAGCombine(ISD::FMAXNUM);
1810  setTargetDAGCombine(ISD::SUB);
1811  setTargetDAGCombine(ISD::LOAD);
1812  setTargetDAGCombine(ISD::MLOAD);
1813  setTargetDAGCombine(ISD::STORE);
1814  setTargetDAGCombine(ISD::MSTORE);
1815  setTargetDAGCombine(ISD::TRUNCATE);
1816  setTargetDAGCombine(ISD::ZERO_EXTEND);
1817  setTargetDAGCombine(ISD::ANY_EXTEND);
1818  setTargetDAGCombine(ISD::SIGN_EXTEND);
1819  setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
1820  setTargetDAGCombine(ISD::SINT_TO_FP);
1821  setTargetDAGCombine(ISD::UINT_TO_FP);
1822  setTargetDAGCombine(ISD::SETCC);
1823  setTargetDAGCombine(ISD::BUILD_VECTOR);
1824  setTargetDAGCombine(ISD::MUL);
1825  setTargetDAGCombine(ISD::XOR);
1826  setTargetDAGCombine(ISD::MSCATTER);
1827  setTargetDAGCombine(ISD::MGATHER);
1828
1829  computeRegisterProperties(Subtarget->getRegisterInfo());
1830
1831  MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1832  MaxStoresPerMemsetOptSize = 8;
1833  MaxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1834  MaxStoresPerMemcpyOptSize = 4;
1835  MaxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1836  MaxStoresPerMemmoveOptSize = 4;
1837  setPrefLoopAlignment(4); // 2^4 bytes.
1838
1839  // A predictable cmov does not hurt on an in-order CPU.
1840  // FIXME: Use a CPU attribute to trigger this, not a CPU model.
1841  PredictableSelectIsExpensive = !Subtarget->isAtom();
1842  EnableExtLdPromotion = true;
1843  setPrefFunctionAlignment(4); // 2^4 bytes.
1844
1845  verifyIntrinsicTables();
1846}
1847
1848// This has so far only been implemented for 64-bit MachO.
1849bool X86TargetLowering::useLoadStackGuardNode() const {
1850  return Subtarget->isTargetMachO() && Subtarget->is64Bit();
1851}
1852
1853TargetLoweringBase::LegalizeTypeAction
1854X86TargetLowering::getPreferredVectorAction(EVT VT) const {
1855  if (ExperimentalVectorWideningLegalization &&
1856      VT.getVectorNumElements() != 1 &&
1857      VT.getVectorElementType().getSimpleVT() != MVT::i1)
1858    return TypeWidenVector;
1859
1860  return TargetLoweringBase::getPreferredVectorAction(VT);
1861}
1862
1863EVT X86TargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1864                                          EVT VT) const {
1865  if (!VT.isVector())
1866    return Subtarget->hasAVX512() ? MVT::i1: MVT::i8;
1867
1868  if (VT.isSimple()) {
1869    MVT VVT = VT.getSimpleVT();
1870    const unsigned NumElts = VVT.getVectorNumElements();
1871    const MVT EltVT = VVT.getVectorElementType();
1872    if (VVT.is512BitVector()) {
1873      if (Subtarget->hasAVX512())
1874        if (EltVT == MVT::i32 || EltVT == MVT::i64 ||
1875            EltVT == MVT::f32 || EltVT == MVT::f64)
1876          switch(NumElts) {
1877          case  8: return MVT::v8i1;
1878          case 16: return MVT::v16i1;
1879        }
1880      if (Subtarget->hasBWI())
1881        if (EltVT == MVT::i8 || EltVT == MVT::i16)
1882          switch(NumElts) {
1883          case 32: return MVT::v32i1;
1884          case 64: return MVT::v64i1;
1885        }
1886    }
1887
1888    if (VVT.is256BitVector() || VVT.is128BitVector()) {
1889      if (Subtarget->hasVLX())
1890        if (EltVT == MVT::i32 || EltVT == MVT::i64 ||
1891            EltVT == MVT::f32 || EltVT == MVT::f64)
1892          switch(NumElts) {
1893          case 2: return MVT::v2i1;
1894          case 4: return MVT::v4i1;
1895          case 8: return MVT::v8i1;
1896        }
1897      if (Subtarget->hasBWI() && Subtarget->hasVLX())
1898        if (EltVT == MVT::i8 || EltVT == MVT::i16)
1899          switch(NumElts) {
1900          case  8: return MVT::v8i1;
1901          case 16: return MVT::v16i1;
1902          case 32: return MVT::v32i1;
1903        }
1904    }
1905  }
1906
1907  return VT.changeVectorElementTypeToInteger();
1908}
1909
1910/// Helper for getByValTypeAlignment to determine
1911/// the desired ByVal argument alignment.
1912static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1913  if (MaxAlign == 16)
1914    return;
1915  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1916    if (VTy->getBitWidth() == 128)
1917      MaxAlign = 16;
1918  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1919    unsigned EltAlign = 0;
1920    getMaxByValAlign(ATy->getElementType(), EltAlign);
1921    if (EltAlign > MaxAlign)
1922      MaxAlign = EltAlign;
1923  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1924    for (auto *EltTy : STy->elements()) {
1925      unsigned EltAlign = 0;
1926      getMaxByValAlign(EltTy, EltAlign);
1927      if (EltAlign > MaxAlign)
1928        MaxAlign = EltAlign;
1929      if (MaxAlign == 16)
1930        break;
1931    }
1932  }
1933}
1934
1935/// Return the desired alignment for ByVal aggregate
1936/// function arguments in the caller parameter area. For X86, aggregates
1937/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1938/// are at 4-byte boundaries.
1939unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty,
1940                                                  const DataLayout &DL) const {
1941  if (Subtarget->is64Bit()) {
1942    // Max of 8 and alignment of type.
1943    unsigned TyAlign = DL.getABITypeAlignment(Ty);
1944    if (TyAlign > 8)
1945      return TyAlign;
1946    return 8;
1947  }
1948
1949  unsigned Align = 4;
1950  if (Subtarget->hasSSE1())
1951    getMaxByValAlign(Ty, Align);
1952  return Align;
1953}
1954
1955/// Returns the target specific optimal type for load
1956/// and store operations as a result of memset, memcpy, and memmove
1957/// lowering. If DstAlign is zero that means it's safe to destination
1958/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1959/// means there isn't a need to check it against alignment requirement,
1960/// probably because the source does not need to be loaded. If 'IsMemset' is
1961/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
1962/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
1963/// source is constant so it does not need to be loaded.
1964/// It returns EVT::Other if the type should be determined using generic
1965/// target-independent logic.
1966EVT
1967X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1968                                       unsigned DstAlign, unsigned SrcAlign,
1969                                       bool IsMemset, bool ZeroMemset,
1970                                       bool MemcpyStrSrc,
1971                                       MachineFunction &MF) const {
1972  const Function *F = MF.getFunction();
1973  if ((!IsMemset || ZeroMemset) &&
1974      !F->hasFnAttribute(Attribute::NoImplicitFloat)) {
1975    if (Size >= 16 &&
1976        (!Subtarget->isUnalignedMem16Slow() ||
1977         ((DstAlign == 0 || DstAlign >= 16) &&
1978          (SrcAlign == 0 || SrcAlign >= 16)))) {
1979      if (Size >= 32) {
1980        // FIXME: Check if unaligned 32-byte accesses are slow.
1981        if (Subtarget->hasInt256())
1982          return MVT::v8i32;
1983        if (Subtarget->hasFp256())
1984          return MVT::v8f32;
1985      }
1986      if (Subtarget->hasSSE2())
1987        return MVT::v4i32;
1988      if (Subtarget->hasSSE1())
1989        return MVT::v4f32;
1990    } else if (!MemcpyStrSrc && Size >= 8 &&
1991               !Subtarget->is64Bit() &&
1992               Subtarget->hasSSE2()) {
1993      // Do not use f64 to lower memcpy if source is string constant. It's
1994      // better to use i32 to avoid the loads.
1995      return MVT::f64;
1996    }
1997  }
1998  // This is a compromise. If we reach here, unaligned accesses may be slow on
1999  // this target. However, creating smaller, aligned accesses could be even
2000  // slower and would certainly be a lot more code.
2001  if (Subtarget->is64Bit() && Size >= 8)
2002    return MVT::i64;
2003  return MVT::i32;
2004}
2005
2006bool X86TargetLowering::isSafeMemOpType(MVT VT) const {
2007  if (VT == MVT::f32)
2008    return X86ScalarSSEf32;
2009  else if (VT == MVT::f64)
2010    return X86ScalarSSEf64;
2011  return true;
2012}
2013
2014bool
2015X86TargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
2016                                                  unsigned,
2017                                                  unsigned,
2018                                                  bool *Fast) const {
2019  if (Fast) {
2020    switch (VT.getSizeInBits()) {
2021    default:
2022      // 8-byte and under are always assumed to be fast.
2023      *Fast = true;
2024      break;
2025    case 128:
2026      *Fast = !Subtarget->isUnalignedMem16Slow();
2027      break;
2028    case 256:
2029      *Fast = !Subtarget->isUnalignedMem32Slow();
2030      break;
2031    // TODO: What about AVX-512 (512-bit) accesses?
2032    }
2033  }
2034  // Misaligned accesses of any size are always allowed.
2035  return true;
2036}
2037
2038/// Return the entry encoding for a jump table in the
2039/// current function.  The returned value is a member of the
2040/// MachineJumpTableInfo::JTEntryKind enum.
2041unsigned X86TargetLowering::getJumpTableEncoding() const {
2042  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
2043  // symbol.
2044  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2045      Subtarget->isPICStyleGOT())
2046    return MachineJumpTableInfo::EK_Custom32;
2047
2048  // Otherwise, use the normal jump table encoding heuristics.
2049  return TargetLowering::getJumpTableEncoding();
2050}
2051
2052bool X86TargetLowering::useSoftFloat() const {
2053  return Subtarget->useSoftFloat();
2054}
2055
2056const MCExpr *
2057X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
2058                                             const MachineBasicBlock *MBB,
2059                                             unsigned uid,MCContext &Ctx) const{
2060  assert(MBB->getParent()->getTarget().getRelocationModel() == Reloc::PIC_ &&
2061         Subtarget->isPICStyleGOT());
2062  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
2063  // entries.
2064  return MCSymbolRefExpr::create(MBB->getSymbol(),
2065                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
2066}
2067
2068/// Returns relocation base for the given PIC jumptable.
2069SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
2070                                                    SelectionDAG &DAG) const {
2071  if (!Subtarget->is64Bit())
2072    // This doesn't have SDLoc associated with it, but is not really the
2073    // same as a Register.
2074    return DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(),
2075                       getPointerTy(DAG.getDataLayout()));
2076  return Table;
2077}
2078
2079/// This returns the relocation base for the given PIC jumptable,
2080/// the same as getPICJumpTableRelocBase, but as an MCExpr.
2081const MCExpr *X86TargetLowering::
2082getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
2083                             MCContext &Ctx) const {
2084  // X86-64 uses RIP relative addressing based on the jump table label.
2085  if (Subtarget->isPICStyleRIPRel())
2086    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2087
2088  // Otherwise, the reference is relative to the PIC base.
2089  return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
2090}
2091
2092std::pair<const TargetRegisterClass *, uint8_t>
2093X86TargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
2094                                           MVT VT) const {
2095  const TargetRegisterClass *RRC = nullptr;
2096  uint8_t Cost = 1;
2097  switch (VT.SimpleTy) {
2098  default:
2099    return TargetLowering::findRepresentativeClass(TRI, VT);
2100  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
2101    RRC = Subtarget->is64Bit() ? &X86::GR64RegClass : &X86::GR32RegClass;
2102    break;
2103  case MVT::x86mmx:
2104    RRC = &X86::VR64RegClass;
2105    break;
2106  case MVT::f32: case MVT::f64:
2107  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
2108  case MVT::v4f32: case MVT::v2f64:
2109  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
2110  case MVT::v4f64:
2111    RRC = &X86::VR128RegClass;
2112    break;
2113  }
2114  return std::make_pair(RRC, Cost);
2115}
2116
2117bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
2118                                               unsigned &Offset) const {
2119  if (!Subtarget->isTargetLinux())
2120    return false;
2121
2122  if (Subtarget->is64Bit()) {
2123    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
2124    Offset = 0x28;
2125    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
2126      AddressSpace = 256;
2127    else
2128      AddressSpace = 257;
2129  } else {
2130    // %gs:0x14 on i386
2131    Offset = 0x14;
2132    AddressSpace = 256;
2133  }
2134  return true;
2135}
2136
2137Value *X86TargetLowering::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
2138  if (!Subtarget->isTargetAndroid())
2139    return TargetLowering::getSafeStackPointerLocation(IRB);
2140
2141  // Android provides a fixed TLS slot for the SafeStack pointer. See the
2142  // definition of TLS_SLOT_SAFESTACK in
2143  // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
2144  unsigned AddressSpace, Offset;
2145  if (Subtarget->is64Bit()) {
2146    // %fs:0x48, unless we're using a Kernel code model, in which case it's %gs:
2147    Offset = 0x48;
2148    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
2149      AddressSpace = 256;
2150    else
2151      AddressSpace = 257;
2152  } else {
2153    // %gs:0x24 on i386
2154    Offset = 0x24;
2155    AddressSpace = 256;
2156  }
2157
2158  return ConstantExpr::getIntToPtr(
2159      ConstantInt::get(Type::getInt32Ty(IRB.getContext()), Offset),
2160      Type::getInt8PtrTy(IRB.getContext())->getPointerTo(AddressSpace));
2161}
2162
2163bool X86TargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
2164                                            unsigned DestAS) const {
2165  assert(SrcAS != DestAS && "Expected different address spaces!");
2166
2167  return SrcAS < 256 && DestAS < 256;
2168}
2169
2170//===----------------------------------------------------------------------===//
2171//               Return Value Calling Convention Implementation
2172//===----------------------------------------------------------------------===//
2173
2174#include "X86GenCallingConv.inc"
2175
2176bool X86TargetLowering::CanLowerReturn(
2177    CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
2178    const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
2179  SmallVector<CCValAssign, 16> RVLocs;
2180  CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
2181  return CCInfo.CheckReturn(Outs, RetCC_X86);
2182}
2183
2184const MCPhysReg *X86TargetLowering::getScratchRegisters(CallingConv::ID) const {
2185  static const MCPhysReg ScratchRegs[] = { X86::R11, 0 };
2186  return ScratchRegs;
2187}
2188
2189SDValue
2190X86TargetLowering::LowerReturn(SDValue Chain,
2191                               CallingConv::ID CallConv, bool isVarArg,
2192                               const SmallVectorImpl<ISD::OutputArg> &Outs,
2193                               const SmallVectorImpl<SDValue> &OutVals,
2194                               SDLoc dl, SelectionDAG &DAG) const {
2195  MachineFunction &MF = DAG.getMachineFunction();
2196  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2197
2198  if (CallConv == CallingConv::X86_INTR && !Outs.empty())
2199    report_fatal_error("X86 interrupts may not return any value");
2200
2201  SmallVector<CCValAssign, 16> RVLocs;
2202  CCState CCInfo(CallConv, isVarArg, MF, RVLocs, *DAG.getContext());
2203  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
2204
2205  SDValue Flag;
2206  SmallVector<SDValue, 6> RetOps;
2207  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2208  // Operand #1 = Bytes To Pop
2209  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(), dl,
2210                   MVT::i16));
2211
2212  // Copy the result values into the output registers.
2213  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2214    CCValAssign &VA = RVLocs[i];
2215    assert(VA.isRegLoc() && "Can only return in registers!");
2216    SDValue ValToCopy = OutVals[i];
2217    EVT ValVT = ValToCopy.getValueType();
2218
2219    // Promote values to the appropriate types.
2220    if (VA.getLocInfo() == CCValAssign::SExt)
2221      ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
2222    else if (VA.getLocInfo() == CCValAssign::ZExt)
2223      ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
2224    else if (VA.getLocInfo() == CCValAssign::AExt) {
2225      if (ValVT.isVector() && ValVT.getVectorElementType() == MVT::i1)
2226        ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
2227      else
2228        ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
2229    }
2230    else if (VA.getLocInfo() == CCValAssign::BCvt)
2231      ValToCopy = DAG.getBitcast(VA.getLocVT(), ValToCopy);
2232
2233    assert(VA.getLocInfo() != CCValAssign::FPExt &&
2234           "Unexpected FP-extend for return value.");
2235
2236    // If this is x86-64, and we disabled SSE, we can't return FP values,
2237    // or SSE or MMX vectors.
2238    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
2239         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
2240          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
2241      report_fatal_error("SSE register return with SSE disabled");
2242    }
2243    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
2244    // llvm-gcc has never done it right and no one has noticed, so this
2245    // should be OK for now.
2246    if (ValVT == MVT::f64 &&
2247        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
2248      report_fatal_error("SSE2 register return with SSE2 disabled");
2249
2250    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
2251    // the RET instruction and handled by the FP Stackifier.
2252    if (VA.getLocReg() == X86::FP0 ||
2253        VA.getLocReg() == X86::FP1) {
2254      // If this is a copy from an xmm register to ST(0), use an FPExtend to
2255      // change the value to the FP stack register class.
2256      if (isScalarFPTypeInSSEReg(VA.getValVT()))
2257        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
2258      RetOps.push_back(ValToCopy);
2259      // Don't emit a copytoreg.
2260      continue;
2261    }
2262
2263    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
2264    // which is returned in RAX / RDX.
2265    if (Subtarget->is64Bit()) {
2266      if (ValVT == MVT::x86mmx) {
2267        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
2268          ValToCopy = DAG.getBitcast(MVT::i64, ValToCopy);
2269          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
2270                                  ValToCopy);
2271          // If we don't have SSE2 available, convert to v4f32 so the generated
2272          // register is legal.
2273          if (!Subtarget->hasSSE2())
2274            ValToCopy = DAG.getBitcast(MVT::v4f32, ValToCopy);
2275        }
2276      }
2277    }
2278
2279    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
2280    Flag = Chain.getValue(1);
2281    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2282  }
2283
2284  // All x86 ABIs require that for returning structs by value we copy
2285  // the sret argument into %rax/%eax (depending on ABI) for the return.
2286  // We saved the argument into a virtual register in the entry block,
2287  // so now we copy the value out and into %rax/%eax.
2288  //
2289  // Checking Function.hasStructRetAttr() here is insufficient because the IR
2290  // may not have an explicit sret argument. If FuncInfo.CanLowerReturn is
2291  // false, then an sret argument may be implicitly inserted in the SelDAG. In
2292  // either case FuncInfo->setSRetReturnReg() will have been called.
2293  if (unsigned SRetReg = FuncInfo->getSRetReturnReg()) {
2294    SDValue Val = DAG.getCopyFromReg(Chain, dl, SRetReg,
2295                                     getPointerTy(MF.getDataLayout()));
2296
2297    unsigned RetValReg
2298        = (Subtarget->is64Bit() && !Subtarget->isTarget64BitILP32()) ?
2299          X86::RAX : X86::EAX;
2300    Chain = DAG.getCopyToReg(Chain, dl, RetValReg, Val, Flag);
2301    Flag = Chain.getValue(1);
2302
2303    // RAX/EAX now acts like a return value.
2304    RetOps.push_back(
2305        DAG.getRegister(RetValReg, getPointerTy(DAG.getDataLayout())));
2306  }
2307
2308  RetOps[0] = Chain;  // Update chain.
2309
2310  // Add the flag if we have it.
2311  if (Flag.getNode())
2312    RetOps.push_back(Flag);
2313
2314  X86ISD::NodeType opcode = X86ISD::RET_FLAG;
2315  if (CallConv == CallingConv::X86_INTR)
2316    opcode = X86ISD::IRET;
2317  return DAG.getNode(opcode, dl, MVT::Other, RetOps);
2318}
2319
2320bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
2321  if (N->getNumValues() != 1)
2322    return false;
2323  if (!N->hasNUsesOfValue(1, 0))
2324    return false;
2325
2326  SDValue TCChain = Chain;
2327  SDNode *Copy = *N->use_begin();
2328  if (Copy->getOpcode() == ISD::CopyToReg) {
2329    // If the copy has a glue operand, we conservatively assume it isn't safe to
2330    // perform a tail call.
2331    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2332      return false;
2333    TCChain = Copy->getOperand(0);
2334  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
2335    return false;
2336
2337  bool HasRet = false;
2338  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
2339       UI != UE; ++UI) {
2340    if (UI->getOpcode() != X86ISD::RET_FLAG)
2341      return false;
2342    // If we are returning more than one value, we can definitely
2343    // not make a tail call see PR19530
2344    if (UI->getNumOperands() > 4)
2345      return false;
2346    if (UI->getNumOperands() == 4 &&
2347        UI->getOperand(UI->getNumOperands()-1).getValueType() != MVT::Glue)
2348      return false;
2349    HasRet = true;
2350  }
2351
2352  if (!HasRet)
2353    return false;
2354
2355  Chain = TCChain;
2356  return true;
2357}
2358
2359EVT
2360X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
2361                                            ISD::NodeType ExtendKind) const {
2362  MVT ReturnMVT;
2363  // TODO: Is this also valid on 32-bit?
2364  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
2365    ReturnMVT = MVT::i8;
2366  else
2367    ReturnMVT = MVT::i32;
2368
2369  EVT MinVT = getRegisterType(Context, ReturnMVT);
2370  return VT.bitsLT(MinVT) ? MinVT : VT;
2371}
2372
2373/// Lower the result values of a call into the
2374/// appropriate copies out of appropriate physical registers.
2375///
2376SDValue
2377X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2378                                   CallingConv::ID CallConv, bool isVarArg,
2379                                   const SmallVectorImpl<ISD::InputArg> &Ins,
2380                                   SDLoc dl, SelectionDAG &DAG,
2381                                   SmallVectorImpl<SDValue> &InVals) const {
2382
2383  // Assign locations to each value returned by this call.
2384  SmallVector<CCValAssign, 16> RVLocs;
2385  bool Is64Bit = Subtarget->is64Bit();
2386  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2387                 *DAG.getContext());
2388  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2389
2390  // Copy all of the result registers out of their specified physreg.
2391  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2392    CCValAssign &VA = RVLocs[i];
2393    EVT CopyVT = VA.getLocVT();
2394
2395    // If this is x86-64, and we disabled SSE, we can't return FP values
2396    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64 || CopyVT == MVT::f128) &&
2397        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
2398      report_fatal_error("SSE register return with SSE disabled");
2399    }
2400
2401    // If we prefer to use the value in xmm registers, copy it out as f80 and
2402    // use a truncate to move it from fp stack reg to xmm reg.
2403    bool RoundAfterCopy = false;
2404    if ((VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) &&
2405        isScalarFPTypeInSSEReg(VA.getValVT())) {
2406      CopyVT = MVT::f80;
2407      RoundAfterCopy = (CopyVT != VA.getLocVT());
2408    }
2409
2410    Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
2411                               CopyVT, InFlag).getValue(1);
2412    SDValue Val = Chain.getValue(0);
2413
2414    if (RoundAfterCopy)
2415      Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
2416                        // This truncation won't change the value.
2417                        DAG.getIntPtrConstant(1, dl));
2418
2419    if (VA.isExtInLoc() && VA.getValVT().getScalarType() == MVT::i1)
2420      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
2421
2422    InFlag = Chain.getValue(2);
2423    InVals.push_back(Val);
2424  }
2425
2426  return Chain;
2427}
2428
2429//===----------------------------------------------------------------------===//
2430//                C & StdCall & Fast Calling Convention implementation
2431//===----------------------------------------------------------------------===//
2432//  StdCall calling convention seems to be standard for many Windows' API
2433//  routines and around. It differs from C calling convention just a little:
2434//  callee should clean up the stack, not caller. Symbols should be also
2435//  decorated in some fancy way :) It doesn't support any vector arguments.
2436//  For info on fast calling convention see Fast Calling Convention (tail call)
2437//  implementation LowerX86_32FastCCCallTo.
2438
2439/// CallIsStructReturn - Determines whether a call uses struct return
2440/// semantics.
2441enum StructReturnType {
2442  NotStructReturn,
2443  RegStructReturn,
2444  StackStructReturn
2445};
2446static StructReturnType
2447callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
2448  if (Outs.empty())
2449    return NotStructReturn;
2450
2451  const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
2452  if (!Flags.isSRet())
2453    return NotStructReturn;
2454  if (Flags.isInReg())
2455    return RegStructReturn;
2456  return StackStructReturn;
2457}
2458
2459/// Determines whether a function uses struct return semantics.
2460static StructReturnType
2461argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
2462  if (Ins.empty())
2463    return NotStructReturn;
2464
2465  const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
2466  if (!Flags.isSRet())
2467    return NotStructReturn;
2468  if (Flags.isInReg())
2469    return RegStructReturn;
2470  return StackStructReturn;
2471}
2472
2473/// Make a copy of an aggregate at address specified by "Src" to address
2474/// "Dst" with size and alignment information specified by the specific
2475/// parameter attribute. The copy will be passed as a byval function parameter.
2476static SDValue
2477CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2478                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2479                          SDLoc dl) {
2480  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
2481
2482  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2483                       /*isVolatile*/false, /*AlwaysInline=*/true,
2484                       /*isTailCall*/false,
2485                       MachinePointerInfo(), MachinePointerInfo());
2486}
2487
2488/// Return true if the calling convention is one that we can guarantee TCO for.
2489static bool canGuaranteeTCO(CallingConv::ID CC) {
2490  return (CC == CallingConv::Fast || CC == CallingConv::GHC ||
2491          CC == CallingConv::HiPE || CC == CallingConv::HHVM);
2492}
2493
2494/// Return true if we might ever do TCO for calls with this calling convention.
2495static bool mayTailCallThisCC(CallingConv::ID CC) {
2496  switch (CC) {
2497  // C calling conventions:
2498  case CallingConv::C:
2499  case CallingConv::X86_64_Win64:
2500  case CallingConv::X86_64_SysV:
2501  // Callee pop conventions:
2502  case CallingConv::X86_ThisCall:
2503  case CallingConv::X86_StdCall:
2504  case CallingConv::X86_VectorCall:
2505  case CallingConv::X86_FastCall:
2506    return true;
2507  default:
2508    return canGuaranteeTCO(CC);
2509  }
2510}
2511
2512/// Return true if the function is being made into a tailcall target by
2513/// changing its ABI.
2514static bool shouldGuaranteeTCO(CallingConv::ID CC, bool GuaranteedTailCallOpt) {
2515  return GuaranteedTailCallOpt && canGuaranteeTCO(CC);
2516}
2517
2518bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
2519  auto Attr =
2520      CI->getParent()->getParent()->getFnAttribute("disable-tail-calls");
2521  if (!CI->isTailCall() || Attr.getValueAsString() == "true")
2522    return false;
2523
2524  CallSite CS(CI);
2525  CallingConv::ID CalleeCC = CS.getCallingConv();
2526  if (!mayTailCallThisCC(CalleeCC))
2527    return false;
2528
2529  return true;
2530}
2531
2532SDValue
2533X86TargetLowering::LowerMemArgument(SDValue Chain,
2534                                    CallingConv::ID CallConv,
2535                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2536                                    SDLoc dl, SelectionDAG &DAG,
2537                                    const CCValAssign &VA,
2538                                    MachineFrameInfo *MFI,
2539                                    unsigned i) const {
2540  // Create the nodes corresponding to a load from this parameter slot.
2541  ISD::ArgFlagsTy Flags = Ins[i].Flags;
2542  bool AlwaysUseMutable = shouldGuaranteeTCO(
2543      CallConv, DAG.getTarget().Options.GuaranteedTailCallOpt);
2544  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
2545  EVT ValVT;
2546
2547  // If value is passed by pointer we have address passed instead of the value
2548  // itself.
2549  bool ExtendedInMem = VA.isExtInLoc() &&
2550    VA.getValVT().getScalarType() == MVT::i1;
2551
2552  if (VA.getLocInfo() == CCValAssign::Indirect || ExtendedInMem)
2553    ValVT = VA.getLocVT();
2554  else
2555    ValVT = VA.getValVT();
2556
2557  // Calculate SP offset of interrupt parameter, re-arrange the slot normally
2558  // taken by a return address.
2559  int Offset = 0;
2560  if (CallConv == CallingConv::X86_INTR) {
2561    const X86Subtarget& Subtarget =
2562        static_cast<const X86Subtarget&>(DAG.getSubtarget());
2563    // X86 interrupts may take one or two arguments.
2564    // On the stack there will be no return address as in regular call.
2565    // Offset of last argument need to be set to -4/-8 bytes.
2566    // Where offset of the first argument out of two, should be set to 0 bytes.
2567    Offset = (Subtarget.is64Bit() ? 8 : 4) * ((i + 1) % Ins.size() - 1);
2568  }
2569
2570  // FIXME: For now, all byval parameter objects are marked mutable. This can be
2571  // changed with more analysis.
2572  // In case of tail call optimization mark all arguments mutable. Since they
2573  // could be overwritten by lowering of arguments in case of a tail call.
2574  if (Flags.isByVal()) {
2575    unsigned Bytes = Flags.getByValSize();
2576    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
2577    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
2578    // Adjust SP offset of interrupt parameter.
2579    if (CallConv == CallingConv::X86_INTR) {
2580      MFI->setObjectOffset(FI, Offset);
2581    }
2582    return DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
2583  } else {
2584    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
2585                                    VA.getLocMemOffset(), isImmutable);
2586    // Adjust SP offset of interrupt parameter.
2587    if (CallConv == CallingConv::X86_INTR) {
2588      MFI->setObjectOffset(FI, Offset);
2589    }
2590
2591    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
2592    SDValue Val = DAG.getLoad(
2593        ValVT, dl, Chain, FIN,
2594        MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false,
2595        false, false, 0);
2596    return ExtendedInMem ?
2597      DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val) : Val;
2598  }
2599}
2600
2601// FIXME: Get this from tablegen.
2602static ArrayRef<MCPhysReg> get64BitArgumentGPRs(CallingConv::ID CallConv,
2603                                                const X86Subtarget *Subtarget) {
2604  assert(Subtarget->is64Bit());
2605
2606  if (Subtarget->isCallingConvWin64(CallConv)) {
2607    static const MCPhysReg GPR64ArgRegsWin64[] = {
2608      X86::RCX, X86::RDX, X86::R8,  X86::R9
2609    };
2610    return makeArrayRef(std::begin(GPR64ArgRegsWin64), std::end(GPR64ArgRegsWin64));
2611  }
2612
2613  static const MCPhysReg GPR64ArgRegs64Bit[] = {
2614    X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
2615  };
2616  return makeArrayRef(std::begin(GPR64ArgRegs64Bit), std::end(GPR64ArgRegs64Bit));
2617}
2618
2619// FIXME: Get this from tablegen.
2620static ArrayRef<MCPhysReg> get64BitArgumentXMMs(MachineFunction &MF,
2621                                                CallingConv::ID CallConv,
2622                                                const X86Subtarget *Subtarget) {
2623  assert(Subtarget->is64Bit());
2624  if (Subtarget->isCallingConvWin64(CallConv)) {
2625    // The XMM registers which might contain var arg parameters are shadowed
2626    // in their paired GPR.  So we only need to save the GPR to their home
2627    // slots.
2628    // TODO: __vectorcall will change this.
2629    return None;
2630  }
2631
2632  const Function *Fn = MF.getFunction();
2633  bool NoImplicitFloatOps = Fn->hasFnAttribute(Attribute::NoImplicitFloat);
2634  bool isSoftFloat = Subtarget->useSoftFloat();
2635  assert(!(isSoftFloat && NoImplicitFloatOps) &&
2636         "SSE register cannot be used when SSE is disabled!");
2637  if (isSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
2638    // Kernel mode asks for SSE to be disabled, so there are no XMM argument
2639    // registers.
2640    return None;
2641
2642  static const MCPhysReg XMMArgRegs64Bit[] = {
2643    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2644    X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2645  };
2646  return makeArrayRef(std::begin(XMMArgRegs64Bit), std::end(XMMArgRegs64Bit));
2647}
2648
2649SDValue X86TargetLowering::LowerFormalArguments(
2650    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2651    const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc dl, SelectionDAG &DAG,
2652    SmallVectorImpl<SDValue> &InVals) const {
2653  MachineFunction &MF = DAG.getMachineFunction();
2654  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2655  const TargetFrameLowering &TFI = *Subtarget->getFrameLowering();
2656
2657  const Function* Fn = MF.getFunction();
2658  if (Fn->hasExternalLinkage() &&
2659      Subtarget->isTargetCygMing() &&
2660      Fn->getName() == "main")
2661    FuncInfo->setForceFramePointer(true);
2662
2663  MachineFrameInfo *MFI = MF.getFrameInfo();
2664  bool Is64Bit = Subtarget->is64Bit();
2665  bool IsWin64 = Subtarget->isCallingConvWin64(CallConv);
2666
2667  assert(!(isVarArg && canGuaranteeTCO(CallConv)) &&
2668         "Var args not supported with calling convention fastcc, ghc or hipe");
2669
2670  if (CallConv == CallingConv::X86_INTR) {
2671    bool isLegal = Ins.size() == 1 ||
2672                   (Ins.size() == 2 && ((Is64Bit && Ins[1].VT == MVT::i64) ||
2673                                        (!Is64Bit && Ins[1].VT == MVT::i32)));
2674    if (!isLegal)
2675      report_fatal_error("X86 interrupts may take one or two arguments");
2676  }
2677
2678  // Assign locations to all of the incoming arguments.
2679  SmallVector<CCValAssign, 16> ArgLocs;
2680  CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
2681
2682  // Allocate shadow area for Win64
2683  if (IsWin64)
2684    CCInfo.AllocateStack(32, 8);
2685
2686  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
2687
2688  unsigned LastVal = ~0U;
2689  SDValue ArgValue;
2690  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2691    CCValAssign &VA = ArgLocs[i];
2692    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
2693    // places.
2694    assert(VA.getValNo() != LastVal &&
2695           "Don't support value assigned to multiple locs yet");
2696    (void)LastVal;
2697    LastVal = VA.getValNo();
2698
2699    if (VA.isRegLoc()) {
2700      EVT RegVT = VA.getLocVT();
2701      const TargetRegisterClass *RC;
2702      if (RegVT == MVT::i32)
2703        RC = &X86::GR32RegClass;
2704      else if (Is64Bit && RegVT == MVT::i64)
2705        RC = &X86::GR64RegClass;
2706      else if (RegVT == MVT::f32)
2707        RC = &X86::FR32RegClass;
2708      else if (RegVT == MVT::f64)
2709        RC = &X86::FR64RegClass;
2710      else if (RegVT == MVT::f128)
2711        RC = &X86::FR128RegClass;
2712      else if (RegVT.is512BitVector())
2713        RC = &X86::VR512RegClass;
2714      else if (RegVT.is256BitVector())
2715        RC = &X86::VR256RegClass;
2716      else if (RegVT.is128BitVector())
2717        RC = &X86::VR128RegClass;
2718      else if (RegVT == MVT::x86mmx)
2719        RC = &X86::VR64RegClass;
2720      else if (RegVT == MVT::i1)
2721        RC = &X86::VK1RegClass;
2722      else if (RegVT == MVT::v8i1)
2723        RC = &X86::VK8RegClass;
2724      else if (RegVT == MVT::v16i1)
2725        RC = &X86::VK16RegClass;
2726      else if (RegVT == MVT::v32i1)
2727        RC = &X86::VK32RegClass;
2728      else if (RegVT == MVT::v64i1)
2729        RC = &X86::VK64RegClass;
2730      else
2731        llvm_unreachable("Unknown argument type!");
2732
2733      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2734      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2735
2736      // If this is an 8 or 16-bit value, it is really passed promoted to 32
2737      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
2738      // right size.
2739      if (VA.getLocInfo() == CCValAssign::SExt)
2740        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2741                               DAG.getValueType(VA.getValVT()));
2742      else if (VA.getLocInfo() == CCValAssign::ZExt)
2743        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2744                               DAG.getValueType(VA.getValVT()));
2745      else if (VA.getLocInfo() == CCValAssign::BCvt)
2746        ArgValue = DAG.getBitcast(VA.getValVT(), ArgValue);
2747
2748      if (VA.isExtInLoc()) {
2749        // Handle MMX values passed in XMM regs.
2750        if (RegVT.isVector() && VA.getValVT().getScalarType() != MVT::i1)
2751          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), ArgValue);
2752        else
2753          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2754      }
2755    } else {
2756      assert(VA.isMemLoc());
2757      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
2758    }
2759
2760    // If value is passed via pointer - do a load.
2761    if (VA.getLocInfo() == CCValAssign::Indirect)
2762      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
2763                             MachinePointerInfo(), false, false, false, 0);
2764
2765    InVals.push_back(ArgValue);
2766  }
2767
2768  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2769    // All x86 ABIs require that for returning structs by value we copy the
2770    // sret argument into %rax/%eax (depending on ABI) for the return. Save
2771    // the argument into a virtual register so that we can access it from the
2772    // return points.
2773    if (Ins[i].Flags.isSRet()) {
2774      unsigned Reg = FuncInfo->getSRetReturnReg();
2775      if (!Reg) {
2776        MVT PtrTy = getPointerTy(DAG.getDataLayout());
2777        Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy));
2778        FuncInfo->setSRetReturnReg(Reg);
2779      }
2780      SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[i]);
2781      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
2782      break;
2783    }
2784  }
2785
2786  unsigned StackSize = CCInfo.getNextStackOffset();
2787  // Align stack specially for tail calls.
2788  if (shouldGuaranteeTCO(CallConv,
2789                         MF.getTarget().Options.GuaranteedTailCallOpt))
2790    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
2791
2792  // If the function takes variable number of arguments, make a frame index for
2793  // the start of the first vararg value... for expansion of llvm.va_start. We
2794  // can skip this if there are no va_start calls.
2795  if (MFI->hasVAStart() &&
2796      (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
2797                   CallConv != CallingConv::X86_ThisCall))) {
2798    FuncInfo->setVarArgsFrameIndex(
2799        MFI->CreateFixedObject(1, StackSize, true));
2800  }
2801
2802  // Figure out if XMM registers are in use.
2803  assert(!(Subtarget->useSoftFloat() &&
2804           Fn->hasFnAttribute(Attribute::NoImplicitFloat)) &&
2805         "SSE register cannot be used when SSE is disabled!");
2806
2807  // 64-bit calling conventions support varargs and register parameters, so we
2808  // have to do extra work to spill them in the prologue.
2809  if (Is64Bit && isVarArg && MFI->hasVAStart()) {
2810    // Find the first unallocated argument registers.
2811    ArrayRef<MCPhysReg> ArgGPRs = get64BitArgumentGPRs(CallConv, Subtarget);
2812    ArrayRef<MCPhysReg> ArgXMMs = get64BitArgumentXMMs(MF, CallConv, Subtarget);
2813    unsigned NumIntRegs = CCInfo.getFirstUnallocated(ArgGPRs);
2814    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(ArgXMMs);
2815    assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
2816           "SSE register cannot be used when SSE is disabled!");
2817
2818    // Gather all the live in physical registers.
2819    SmallVector<SDValue, 6> LiveGPRs;
2820    SmallVector<SDValue, 8> LiveXMMRegs;
2821    SDValue ALVal;
2822    for (MCPhysReg Reg : ArgGPRs.slice(NumIntRegs)) {
2823      unsigned GPR = MF.addLiveIn(Reg, &X86::GR64RegClass);
2824      LiveGPRs.push_back(
2825          DAG.getCopyFromReg(Chain, dl, GPR, MVT::i64));
2826    }
2827    if (!ArgXMMs.empty()) {
2828      unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
2829      ALVal = DAG.getCopyFromReg(Chain, dl, AL, MVT::i8);
2830      for (MCPhysReg Reg : ArgXMMs.slice(NumXMMRegs)) {
2831        unsigned XMMReg = MF.addLiveIn(Reg, &X86::VR128RegClass);
2832        LiveXMMRegs.push_back(
2833            DAG.getCopyFromReg(Chain, dl, XMMReg, MVT::v4f32));
2834      }
2835    }
2836
2837    if (IsWin64) {
2838      // Get to the caller-allocated home save location.  Add 8 to account
2839      // for the return address.
2840      int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
2841      FuncInfo->setRegSaveFrameIndex(
2842          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
2843      // Fixup to set vararg frame on shadow area (4 x i64).
2844      if (NumIntRegs < 4)
2845        FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
2846    } else {
2847      // For X86-64, if there are vararg parameters that are passed via
2848      // registers, then we must store them to their spots on the stack so
2849      // they may be loaded by deferencing the result of va_next.
2850      FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
2851      FuncInfo->setVarArgsFPOffset(ArgGPRs.size() * 8 + NumXMMRegs * 16);
2852      FuncInfo->setRegSaveFrameIndex(MFI->CreateStackObject(
2853          ArgGPRs.size() * 8 + ArgXMMs.size() * 16, 16, false));
2854    }
2855
2856    // Store the integer parameter registers.
2857    SmallVector<SDValue, 8> MemOps;
2858    SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
2859                                      getPointerTy(DAG.getDataLayout()));
2860    unsigned Offset = FuncInfo->getVarArgsGPOffset();
2861    for (SDValue Val : LiveGPRs) {
2862      SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
2863                                RSFIN, DAG.getIntPtrConstant(Offset, dl));
2864      SDValue Store =
2865          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2866                       MachinePointerInfo::getFixedStack(
2867                           DAG.getMachineFunction(),
2868                           FuncInfo->getRegSaveFrameIndex(), Offset),
2869                       false, false, 0);
2870      MemOps.push_back(Store);
2871      Offset += 8;
2872    }
2873
2874    if (!ArgXMMs.empty() && NumXMMRegs != ArgXMMs.size()) {
2875      // Now store the XMM (fp + vector) parameter registers.
2876      SmallVector<SDValue, 12> SaveXMMOps;
2877      SaveXMMOps.push_back(Chain);
2878      SaveXMMOps.push_back(ALVal);
2879      SaveXMMOps.push_back(DAG.getIntPtrConstant(
2880                             FuncInfo->getRegSaveFrameIndex(), dl));
2881      SaveXMMOps.push_back(DAG.getIntPtrConstant(
2882                             FuncInfo->getVarArgsFPOffset(), dl));
2883      SaveXMMOps.insert(SaveXMMOps.end(), LiveXMMRegs.begin(),
2884                        LiveXMMRegs.end());
2885      MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2886                                   MVT::Other, SaveXMMOps));
2887    }
2888
2889    if (!MemOps.empty())
2890      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
2891  }
2892
2893  if (isVarArg && MFI->hasMustTailInVarArgFunc()) {
2894    // Find the largest legal vector type.
2895    MVT VecVT = MVT::Other;
2896    // FIXME: Only some x86_32 calling conventions support AVX512.
2897    if (Subtarget->hasAVX512() &&
2898        (Is64Bit || (CallConv == CallingConv::X86_VectorCall ||
2899                     CallConv == CallingConv::Intel_OCL_BI)))
2900      VecVT = MVT::v16f32;
2901    else if (Subtarget->hasAVX())
2902      VecVT = MVT::v8f32;
2903    else if (Subtarget->hasSSE2())
2904      VecVT = MVT::v4f32;
2905
2906    // We forward some GPRs and some vector types.
2907    SmallVector<MVT, 2> RegParmTypes;
2908    MVT IntVT = Is64Bit ? MVT::i64 : MVT::i32;
2909    RegParmTypes.push_back(IntVT);
2910    if (VecVT != MVT::Other)
2911      RegParmTypes.push_back(VecVT);
2912
2913    // Compute the set of forwarded registers. The rest are scratch.
2914    SmallVectorImpl<ForwardedRegister> &Forwards =
2915        FuncInfo->getForwardedMustTailRegParms();
2916    CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, CC_X86);
2917
2918    // Conservatively forward AL on x86_64, since it might be used for varargs.
2919    if (Is64Bit && !CCInfo.isAllocated(X86::AL)) {
2920      unsigned ALVReg = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
2921      Forwards.push_back(ForwardedRegister(ALVReg, X86::AL, MVT::i8));
2922    }
2923
2924    // Copy all forwards from physical to virtual registers.
2925    for (ForwardedRegister &F : Forwards) {
2926      // FIXME: Can we use a less constrained schedule?
2927      SDValue RegVal = DAG.getCopyFromReg(Chain, dl, F.VReg, F.VT);
2928      F.VReg = MF.getRegInfo().createVirtualRegister(getRegClassFor(F.VT));
2929      Chain = DAG.getCopyToReg(Chain, dl, F.VReg, RegVal);
2930    }
2931  }
2932
2933  // Some CCs need callee pop.
2934  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2935                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2936    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2937  } else if (CallConv == CallingConv::X86_INTR && Ins.size() == 2) {
2938    // X86 interrupts must pop the error code if present
2939    FuncInfo->setBytesToPopOnReturn(Is64Bit ? 8 : 4);
2940  } else {
2941    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2942    // If this is an sret function, the return should pop the hidden pointer.
2943    if (!Is64Bit && !canGuaranteeTCO(CallConv) &&
2944        !Subtarget->getTargetTriple().isOSMSVCRT() &&
2945        argsAreStructReturn(Ins) == StackStructReturn)
2946      FuncInfo->setBytesToPopOnReturn(4);
2947  }
2948
2949  if (!Is64Bit) {
2950    // RegSaveFrameIndex is X86-64 only.
2951    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2952    if (CallConv == CallingConv::X86_FastCall ||
2953        CallConv == CallingConv::X86_ThisCall)
2954      // fastcc functions can't have varargs.
2955      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2956  }
2957
2958  FuncInfo->setArgumentStackSize(StackSize);
2959
2960  if (WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo()) {
2961    EHPersonality Personality = classifyEHPersonality(Fn->getPersonalityFn());
2962    if (Personality == EHPersonality::CoreCLR) {
2963      assert(Is64Bit);
2964      // TODO: Add a mechanism to frame lowering that will allow us to indicate
2965      // that we'd prefer this slot be allocated towards the bottom of the frame
2966      // (i.e. near the stack pointer after allocating the frame).  Every
2967      // funclet needs a copy of this slot in its (mostly empty) frame, and the
2968      // offset from the bottom of this and each funclet's frame must be the
2969      // same, so the size of funclets' (mostly empty) frames is dictated by
2970      // how far this slot is from the bottom (since they allocate just enough
2971      // space to accomodate holding this slot at the correct offset).
2972      int PSPSymFI = MFI->CreateStackObject(8, 8, /*isSS=*/false);
2973      EHInfo->PSPSymFrameIdx = PSPSymFI;
2974    }
2975  }
2976
2977  return Chain;
2978}
2979
2980SDValue
2981X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2982                                    SDValue StackPtr, SDValue Arg,
2983                                    SDLoc dl, SelectionDAG &DAG,
2984                                    const CCValAssign &VA,
2985                                    ISD::ArgFlagsTy Flags) const {
2986  unsigned LocMemOffset = VA.getLocMemOffset();
2987  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
2988  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
2989                       StackPtr, PtrOff);
2990  if (Flags.isByVal())
2991    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2992
2993  return DAG.getStore(
2994      Chain, dl, Arg, PtrOff,
2995      MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset),
2996      false, false, 0);
2997}
2998
2999/// Emit a load of return address if tail call
3000/// optimization is performed and it is required.
3001SDValue
3002X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
3003                                           SDValue &OutRetAddr, SDValue Chain,
3004                                           bool IsTailCall, bool Is64Bit,
3005                                           int FPDiff, SDLoc dl) const {
3006  // Adjust the Return address stack slot.
3007  EVT VT = getPointerTy(DAG.getDataLayout());
3008  OutRetAddr = getReturnAddressFrameIndex(DAG);
3009
3010  // Load the "old" Return address.
3011  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
3012                           false, false, false, 0);
3013  return SDValue(OutRetAddr.getNode(), 1);
3014}
3015
3016/// Emit a store of the return address if tail call
3017/// optimization is performed and it is required (FPDiff!=0).
3018static SDValue EmitTailCallStoreRetAddr(SelectionDAG &DAG, MachineFunction &MF,
3019                                        SDValue Chain, SDValue RetAddrFrIdx,
3020                                        EVT PtrVT, unsigned SlotSize,
3021                                        int FPDiff, SDLoc dl) {
3022  // Store the return address to the appropriate stack slot.
3023  if (!FPDiff) return Chain;
3024  // Calculate the new stack slot for the return address.
3025  int NewReturnAddrFI =
3026    MF.getFrameInfo()->CreateFixedObject(SlotSize, (int64_t)FPDiff - SlotSize,
3027                                         false);
3028  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT);
3029  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
3030                       MachinePointerInfo::getFixedStack(
3031                           DAG.getMachineFunction(), NewReturnAddrFI),
3032                       false, false, 0);
3033  return Chain;
3034}
3035
3036/// Returns a vector_shuffle mask for an movs{s|d}, movd
3037/// operation of specified width.
3038static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1,
3039                       SDValue V2) {
3040  unsigned NumElems = VT.getVectorNumElements();
3041  SmallVector<int, 8> Mask;
3042  Mask.push_back(NumElems);
3043  for (unsigned i = 1; i != NumElems; ++i)
3044    Mask.push_back(i);
3045  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3046}
3047
3048SDValue
3049X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
3050                             SmallVectorImpl<SDValue> &InVals) const {
3051  SelectionDAG &DAG                     = CLI.DAG;
3052  SDLoc &dl                             = CLI.DL;
3053  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
3054  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
3055  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
3056  SDValue Chain                         = CLI.Chain;
3057  SDValue Callee                        = CLI.Callee;
3058  CallingConv::ID CallConv              = CLI.CallConv;
3059  bool &isTailCall                      = CLI.IsTailCall;
3060  bool isVarArg                         = CLI.IsVarArg;
3061
3062  MachineFunction &MF = DAG.getMachineFunction();
3063  bool Is64Bit        = Subtarget->is64Bit();
3064  bool IsWin64        = Subtarget->isCallingConvWin64(CallConv);
3065  StructReturnType SR = callIsStructReturn(Outs);
3066  bool IsSibcall      = false;
3067  X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>();
3068  auto Attr = MF.getFunction()->getFnAttribute("disable-tail-calls");
3069
3070  if (CallConv == CallingConv::X86_INTR)
3071    report_fatal_error("X86 interrupts may not be called directly");
3072
3073  if (Attr.getValueAsString() == "true")
3074    isTailCall = false;
3075
3076  if (Subtarget->isPICStyleGOT() &&
3077      !MF.getTarget().Options.GuaranteedTailCallOpt) {
3078    // If we are using a GOT, disable tail calls to external symbols with
3079    // default visibility. Tail calling such a symbol requires using a GOT
3080    // relocation, which forces early binding of the symbol. This breaks code
3081    // that require lazy function symbol resolution. Using musttail or
3082    // GuaranteedTailCallOpt will override this.
3083    GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
3084    if (!G || (!G->getGlobal()->hasLocalLinkage() &&
3085               G->getGlobal()->hasDefaultVisibility()))
3086      isTailCall = false;
3087  }
3088
3089  bool IsMustTail = CLI.CS && CLI.CS->isMustTailCall();
3090  if (IsMustTail) {
3091    // Force this to be a tail call.  The verifier rules are enough to ensure
3092    // that we can lower this successfully without moving the return address
3093    // around.
3094    isTailCall = true;
3095  } else if (isTailCall) {
3096    // Check if it's really possible to do a tail call.
3097    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
3098                    isVarArg, SR != NotStructReturn,
3099                    MF.getFunction()->hasStructRetAttr(), CLI.RetTy,
3100                    Outs, OutVals, Ins, DAG);
3101
3102    // Sibcalls are automatically detected tailcalls which do not require
3103    // ABI changes.
3104    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
3105      IsSibcall = true;
3106
3107    if (isTailCall)
3108      ++NumTailCalls;
3109  }
3110
3111  assert(!(isVarArg && canGuaranteeTCO(CallConv)) &&
3112         "Var args not supported with calling convention fastcc, ghc or hipe");
3113
3114  // Analyze operands of the call, assigning locations to each operand.
3115  SmallVector<CCValAssign, 16> ArgLocs;
3116  CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
3117
3118  // Allocate shadow area for Win64
3119  if (IsWin64)
3120    CCInfo.AllocateStack(32, 8);
3121
3122  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
3123
3124  // Get a count of how many bytes are to be pushed on the stack.
3125  unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
3126  if (IsSibcall)
3127    // This is a sibcall. The memory operands are available in caller's
3128    // own caller's stack.
3129    NumBytes = 0;
3130  else if (MF.getTarget().Options.GuaranteedTailCallOpt &&
3131           canGuaranteeTCO(CallConv))
3132    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
3133
3134  int FPDiff = 0;
3135  if (isTailCall && !IsSibcall && !IsMustTail) {
3136    // Lower arguments at fp - stackoffset + fpdiff.
3137    unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn();
3138
3139    FPDiff = NumBytesCallerPushed - NumBytes;
3140
3141    // Set the delta of movement of the returnaddr stackslot.
3142    // But only set if delta is greater than previous delta.
3143    if (FPDiff < X86Info->getTCReturnAddrDelta())
3144      X86Info->setTCReturnAddrDelta(FPDiff);
3145  }
3146
3147  unsigned NumBytesToPush = NumBytes;
3148  unsigned NumBytesToPop = NumBytes;
3149
3150  // If we have an inalloca argument, all stack space has already been allocated
3151  // for us and be right at the top of the stack.  We don't support multiple
3152  // arguments passed in memory when using inalloca.
3153  if (!Outs.empty() && Outs.back().Flags.isInAlloca()) {
3154    NumBytesToPush = 0;
3155    if (!ArgLocs.back().isMemLoc())
3156      report_fatal_error("cannot use inalloca attribute on a register "
3157                         "parameter");
3158    if (ArgLocs.back().getLocMemOffset() != 0)
3159      report_fatal_error("any parameter with the inalloca attribute must be "
3160                         "the only memory argument");
3161  }
3162
3163  if (!IsSibcall)
3164    Chain = DAG.getCALLSEQ_START(
3165        Chain, DAG.getIntPtrConstant(NumBytesToPush, dl, true), dl);
3166
3167  SDValue RetAddrFrIdx;
3168  // Load return address for tail calls.
3169  if (isTailCall && FPDiff)
3170    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
3171                                    Is64Bit, FPDiff, dl);
3172
3173  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3174  SmallVector<SDValue, 8> MemOpChains;
3175  SDValue StackPtr;
3176
3177  // Walk the register/memloc assignments, inserting copies/loads.  In the case
3178  // of tail call optimization arguments are handle later.
3179  const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
3180  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3181    // Skip inalloca arguments, they have already been written.
3182    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3183    if (Flags.isInAlloca())
3184      continue;
3185
3186    CCValAssign &VA = ArgLocs[i];
3187    EVT RegVT = VA.getLocVT();
3188    SDValue Arg = OutVals[i];
3189    bool isByVal = Flags.isByVal();
3190
3191    // Promote the value if needed.
3192    switch (VA.getLocInfo()) {
3193    default: llvm_unreachable("Unknown loc info!");
3194    case CCValAssign::Full: break;
3195    case CCValAssign::SExt:
3196      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
3197      break;
3198    case CCValAssign::ZExt:
3199      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
3200      break;
3201    case CCValAssign::AExt:
3202      if (Arg.getValueType().isVector() &&
3203          Arg.getValueType().getVectorElementType() == MVT::i1)
3204        Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
3205      else if (RegVT.is128BitVector()) {
3206        // Special case: passing MMX values in XMM registers.
3207        Arg = DAG.getBitcast(MVT::i64, Arg);
3208        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
3209        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
3210      } else
3211        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
3212      break;
3213    case CCValAssign::BCvt:
3214      Arg = DAG.getBitcast(RegVT, Arg);
3215      break;
3216    case CCValAssign::Indirect: {
3217      // Store the argument.
3218      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
3219      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
3220      Chain = DAG.getStore(
3221          Chain, dl, Arg, SpillSlot,
3222          MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
3223          false, false, 0);
3224      Arg = SpillSlot;
3225      break;
3226    }
3227    }
3228
3229    if (VA.isRegLoc()) {
3230      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3231      if (isVarArg && IsWin64) {
3232        // Win64 ABI requires argument XMM reg to be copied to the corresponding
3233        // shadow reg if callee is a varargs function.
3234        unsigned ShadowReg = 0;
3235        switch (VA.getLocReg()) {
3236        case X86::XMM0: ShadowReg = X86::RCX; break;
3237        case X86::XMM1: ShadowReg = X86::RDX; break;
3238        case X86::XMM2: ShadowReg = X86::R8; break;
3239        case X86::XMM3: ShadowReg = X86::R9; break;
3240        }
3241        if (ShadowReg)
3242          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
3243      }
3244    } else if (!IsSibcall && (!isTailCall || isByVal)) {
3245      assert(VA.isMemLoc());
3246      if (!StackPtr.getNode())
3247        StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
3248                                      getPointerTy(DAG.getDataLayout()));
3249      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
3250                                             dl, DAG, VA, Flags));
3251    }
3252  }
3253
3254  if (!MemOpChains.empty())
3255    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
3256
3257  if (Subtarget->isPICStyleGOT()) {
3258    // ELF / PIC requires GOT in the EBX register before function calls via PLT
3259    // GOT pointer.
3260    if (!isTailCall) {
3261      RegsToPass.push_back(std::make_pair(
3262          unsigned(X86::EBX), DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(),
3263                                          getPointerTy(DAG.getDataLayout()))));
3264    } else {
3265      // If we are tail calling and generating PIC/GOT style code load the
3266      // address of the callee into ECX. The value in ecx is used as target of
3267      // the tail jump. This is done to circumvent the ebx/callee-saved problem
3268      // for tail calls on PIC/GOT architectures. Normally we would just put the
3269      // address of GOT into ebx and then call target@PLT. But for tail calls
3270      // ebx would be restored (since ebx is callee saved) before jumping to the
3271      // target@PLT.
3272
3273      // Note: The actual moving to ECX is done further down.
3274      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
3275      if (G && !G->getGlobal()->hasLocalLinkage() &&
3276          G->getGlobal()->hasDefaultVisibility())
3277        Callee = LowerGlobalAddress(Callee, DAG);
3278      else if (isa<ExternalSymbolSDNode>(Callee))
3279        Callee = LowerExternalSymbol(Callee, DAG);
3280    }
3281  }
3282
3283  if (Is64Bit && isVarArg && !IsWin64 && !IsMustTail) {
3284    // From AMD64 ABI document:
3285    // For calls that may call functions that use varargs or stdargs
3286    // (prototype-less calls or calls to functions containing ellipsis (...) in
3287    // the declaration) %al is used as hidden argument to specify the number
3288    // of SSE registers used. The contents of %al do not need to match exactly
3289    // the number of registers, but must be an ubound on the number of SSE
3290    // registers used and is in the range 0 - 8 inclusive.
3291
3292    // Count the number of XMM registers allocated.
3293    static const MCPhysReg XMMArgRegs[] = {
3294      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3295      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3296    };
3297    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
3298    assert((Subtarget->hasSSE1() || !NumXMMRegs)
3299           && "SSE registers cannot be used when SSE is disabled");
3300
3301    RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
3302                                        DAG.getConstant(NumXMMRegs, dl,
3303                                                        MVT::i8)));
3304  }
3305
3306  if (isVarArg && IsMustTail) {
3307    const auto &Forwards = X86Info->getForwardedMustTailRegParms();
3308    for (const auto &F : Forwards) {
3309      SDValue Val = DAG.getCopyFromReg(Chain, dl, F.VReg, F.VT);
3310      RegsToPass.push_back(std::make_pair(unsigned(F.PReg), Val));
3311    }
3312  }
3313
3314  // For tail calls lower the arguments to the 'real' stack slots.  Sibcalls
3315  // don't need this because the eligibility check rejects calls that require
3316  // shuffling arguments passed in memory.
3317  if (!IsSibcall && isTailCall) {
3318    // Force all the incoming stack arguments to be loaded from the stack
3319    // before any new outgoing arguments are stored to the stack, because the
3320    // outgoing stack slots may alias the incoming argument stack slots, and
3321    // the alias isn't otherwise explicit. This is slightly more conservative
3322    // than necessary, because it means that each store effectively depends
3323    // on every argument instead of just those arguments it would clobber.
3324    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
3325
3326    SmallVector<SDValue, 8> MemOpChains2;
3327    SDValue FIN;
3328    int FI = 0;
3329    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3330      CCValAssign &VA = ArgLocs[i];
3331      if (VA.isRegLoc())
3332        continue;
3333      assert(VA.isMemLoc());
3334      SDValue Arg = OutVals[i];
3335      ISD::ArgFlagsTy Flags = Outs[i].Flags;
3336      // Skip inalloca arguments.  They don't require any work.
3337      if (Flags.isInAlloca())
3338        continue;
3339      // Create frame index.
3340      int32_t Offset = VA.getLocMemOffset()+FPDiff;
3341      uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
3342      FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
3343      FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
3344
3345      if (Flags.isByVal()) {
3346        // Copy relative to framepointer.
3347        SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset(), dl);
3348        if (!StackPtr.getNode())
3349          StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
3350                                        getPointerTy(DAG.getDataLayout()));
3351        Source = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
3352                             StackPtr, Source);
3353
3354        MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
3355                                                         ArgChain,
3356                                                         Flags, DAG, dl));
3357      } else {
3358        // Store relative to framepointer.
3359        MemOpChains2.push_back(DAG.getStore(
3360            ArgChain, dl, Arg, FIN,
3361            MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
3362            false, false, 0));
3363      }
3364    }
3365
3366    if (!MemOpChains2.empty())
3367      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
3368
3369    // Store the return address to the appropriate stack slot.
3370    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx,
3371                                     getPointerTy(DAG.getDataLayout()),
3372                                     RegInfo->getSlotSize(), FPDiff, dl);
3373  }
3374
3375  // Build a sequence of copy-to-reg nodes chained together with token chain
3376  // and flag operands which copy the outgoing args into registers.
3377  SDValue InFlag;
3378  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3379    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3380                             RegsToPass[i].second, InFlag);
3381    InFlag = Chain.getValue(1);
3382  }
3383
3384  if (DAG.getTarget().getCodeModel() == CodeModel::Large) {
3385    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
3386    // In the 64-bit large code model, we have to make all calls
3387    // through a register, since the call instruction's 32-bit
3388    // pc-relative offset may not be large enough to hold the whole
3389    // address.
3390  } else if (Callee->getOpcode() == ISD::GlobalAddress) {
3391    // If the callee is a GlobalAddress node (quite common, every direct call
3392    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
3393    // it.
3394    GlobalAddressSDNode* G = cast<GlobalAddressSDNode>(Callee);
3395
3396    // We should use extra load for direct calls to dllimported functions in
3397    // non-JIT mode.
3398    const GlobalValue *GV = G->getGlobal();
3399    if (!GV->hasDLLImportStorageClass()) {
3400      unsigned char OpFlags = 0;
3401      bool ExtraLoad = false;
3402      unsigned WrapperKind = ISD::DELETED_NODE;
3403
3404      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
3405      // external symbols most go through the PLT in PIC mode.  If the symbol
3406      // has hidden or protected visibility, or if it is static or local, then
3407      // we don't need to use the PLT - we can directly call it.
3408      if (Subtarget->isTargetELF() &&
3409          DAG.getTarget().getRelocationModel() == Reloc::PIC_ &&
3410          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
3411        OpFlags = X86II::MO_PLT;
3412      } else if (Subtarget->isPICStyleStubAny() &&
3413                 !GV->isStrongDefinitionForLinker() &&
3414                 (!Subtarget->getTargetTriple().isMacOSX() ||
3415                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
3416        // PC-relative references to external symbols should go through $stub,
3417        // unless we're building with the leopard linker or later, which
3418        // automatically synthesizes these stubs.
3419        OpFlags = X86II::MO_DARWIN_STUB;
3420      } else if (Subtarget->isPICStyleRIPRel() && isa<Function>(GV) &&
3421                 cast<Function>(GV)->hasFnAttribute(Attribute::NonLazyBind)) {
3422        // If the function is marked as non-lazy, generate an indirect call
3423        // which loads from the GOT directly. This avoids runtime overhead
3424        // at the cost of eager binding (and one extra byte of encoding).
3425        OpFlags = X86II::MO_GOTPCREL;
3426        WrapperKind = X86ISD::WrapperRIP;
3427        ExtraLoad = true;
3428      }
3429
3430      Callee = DAG.getTargetGlobalAddress(
3431          GV, dl, getPointerTy(DAG.getDataLayout()), G->getOffset(), OpFlags);
3432
3433      // Add a wrapper if needed.
3434      if (WrapperKind != ISD::DELETED_NODE)
3435        Callee = DAG.getNode(X86ISD::WrapperRIP, dl,
3436                             getPointerTy(DAG.getDataLayout()), Callee);
3437      // Add extra indirection if needed.
3438      if (ExtraLoad)
3439        Callee = DAG.getLoad(
3440            getPointerTy(DAG.getDataLayout()), dl, DAG.getEntryNode(), Callee,
3441            MachinePointerInfo::getGOT(DAG.getMachineFunction()), false, false,
3442            false, 0);
3443    }
3444  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3445    unsigned char OpFlags = 0;
3446
3447    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
3448    // external symbols should go through the PLT.
3449    if (Subtarget->isTargetELF() &&
3450        DAG.getTarget().getRelocationModel() == Reloc::PIC_) {
3451      OpFlags = X86II::MO_PLT;
3452    } else if (Subtarget->isPICStyleStubAny() &&
3453               (!Subtarget->getTargetTriple().isMacOSX() ||
3454                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
3455      // PC-relative references to external symbols should go through $stub,
3456      // unless we're building with the leopard linker or later, which
3457      // automatically synthesizes these stubs.
3458      OpFlags = X86II::MO_DARWIN_STUB;
3459    }
3460
3461    Callee = DAG.getTargetExternalSymbol(
3462        S->getSymbol(), getPointerTy(DAG.getDataLayout()), OpFlags);
3463  } else if (Subtarget->isTarget64BitILP32() &&
3464             Callee->getValueType(0) == MVT::i32) {
3465    // Zero-extend the 32-bit Callee address into a 64-bit according to x32 ABI
3466    Callee = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Callee);
3467  }
3468
3469  // Returns a chain & a flag for retval copy to use.
3470  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3471  SmallVector<SDValue, 8> Ops;
3472
3473  if (!IsSibcall && isTailCall) {
3474    Chain = DAG.getCALLSEQ_END(Chain,
3475                               DAG.getIntPtrConstant(NumBytesToPop, dl, true),
3476                               DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
3477    InFlag = Chain.getValue(1);
3478  }
3479
3480  Ops.push_back(Chain);
3481  Ops.push_back(Callee);
3482
3483  if (isTailCall)
3484    Ops.push_back(DAG.getConstant(FPDiff, dl, MVT::i32));
3485
3486  // Add argument registers to the end of the list so that they are known live
3487  // into the call.
3488  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
3489    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
3490                                  RegsToPass[i].second.getValueType()));
3491
3492  // Add a register mask operand representing the call-preserved registers.
3493  const uint32_t *Mask = RegInfo->getCallPreservedMask(MF, CallConv);
3494  assert(Mask && "Missing call preserved mask for calling convention");
3495
3496  // If this is an invoke in a 32-bit function using a funclet-based
3497  // personality, assume the function clobbers all registers. If an exception
3498  // is thrown, the runtime will not restore CSRs.
3499  // FIXME: Model this more precisely so that we can register allocate across
3500  // the normal edge and spill and fill across the exceptional edge.
3501  if (!Is64Bit && CLI.CS && CLI.CS->isInvoke()) {
3502    const Function *CallerFn = MF.getFunction();
3503    EHPersonality Pers =
3504        CallerFn->hasPersonalityFn()
3505            ? classifyEHPersonality(CallerFn->getPersonalityFn())
3506            : EHPersonality::Unknown;
3507    if (isFuncletEHPersonality(Pers))
3508      Mask = RegInfo->getNoPreservedMask();
3509  }
3510
3511  Ops.push_back(DAG.getRegisterMask(Mask));
3512
3513  if (InFlag.getNode())
3514    Ops.push_back(InFlag);
3515
3516  if (isTailCall) {
3517    // We used to do:
3518    //// If this is the first return lowered for this function, add the regs
3519    //// to the liveout set for the function.
3520    // This isn't right, although it's probably harmless on x86; liveouts
3521    // should be computed from returns not tail calls.  Consider a void
3522    // function making a tail call to a function returning int.
3523    MF.getFrameInfo()->setHasTailCall();
3524    return DAG.getNode(X86ISD::TC_RETURN, dl, NodeTys, Ops);
3525  }
3526
3527  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops);
3528  InFlag = Chain.getValue(1);
3529
3530  // Create the CALLSEQ_END node.
3531  unsigned NumBytesForCalleeToPop;
3532  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
3533                       DAG.getTarget().Options.GuaranteedTailCallOpt))
3534    NumBytesForCalleeToPop = NumBytes;    // Callee pops everything
3535  else if (!Is64Bit && !canGuaranteeTCO(CallConv) &&
3536           !Subtarget->getTargetTriple().isOSMSVCRT() &&
3537           SR == StackStructReturn)
3538    // If this is a call to a struct-return function, the callee
3539    // pops the hidden struct pointer, so we have to push it back.
3540    // This is common for Darwin/X86, Linux & Mingw32 targets.
3541    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
3542    NumBytesForCalleeToPop = 4;
3543  else
3544    NumBytesForCalleeToPop = 0;  // Callee pops nothing.
3545
3546  // Returns a flag for retval copy to use.
3547  if (!IsSibcall) {
3548    Chain = DAG.getCALLSEQ_END(Chain,
3549                               DAG.getIntPtrConstant(NumBytesToPop, dl, true),
3550                               DAG.getIntPtrConstant(NumBytesForCalleeToPop, dl,
3551                                                     true),
3552                               InFlag, dl);
3553    InFlag = Chain.getValue(1);
3554  }
3555
3556  // Handle result values, copying them out of physregs into vregs that we
3557  // return.
3558  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
3559                         Ins, dl, DAG, InVals);
3560}
3561
3562//===----------------------------------------------------------------------===//
3563//                Fast Calling Convention (tail call) implementation
3564//===----------------------------------------------------------------------===//
3565
3566//  Like std call, callee cleans arguments, convention except that ECX is
3567//  reserved for storing the tail called function address. Only 2 registers are
3568//  free for argument passing (inreg). Tail call optimization is performed
3569//  provided:
3570//                * tailcallopt is enabled
3571//                * caller/callee are fastcc
3572//  On X86_64 architecture with GOT-style position independent code only local
3573//  (within module) calls are supported at the moment.
3574//  To keep the stack aligned according to platform abi the function
3575//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
3576//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
3577//  If a tail called function callee has more arguments than the caller the
3578//  caller needs to make sure that there is room to move the RETADDR to. This is
3579//  achieved by reserving an area the size of the argument delta right after the
3580//  original RETADDR, but before the saved framepointer or the spilled registers
3581//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
3582//  stack layout:
3583//    arg1
3584//    arg2
3585//    RETADDR
3586//    [ new RETADDR
3587//      move area ]
3588//    (possible EBP)
3589//    ESI
3590//    EDI
3591//    local1 ..
3592
3593/// Make the stack size align e.g 16n + 12 aligned for a 16-byte align
3594/// requirement.
3595unsigned
3596X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
3597                                               SelectionDAG& DAG) const {
3598  const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
3599  const TargetFrameLowering &TFI = *Subtarget->getFrameLowering();
3600  unsigned StackAlignment = TFI.getStackAlignment();
3601  uint64_t AlignMask = StackAlignment - 1;
3602  int64_t Offset = StackSize;
3603  unsigned SlotSize = RegInfo->getSlotSize();
3604  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
3605    // Number smaller than 12 so just add the difference.
3606    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
3607  } else {
3608    // Mask out lower bits, add stackalignment once plus the 12 bytes.
3609    Offset = ((~AlignMask) & Offset) + StackAlignment +
3610      (StackAlignment-SlotSize);
3611  }
3612  return Offset;
3613}
3614
3615/// Return true if the given stack call argument is already available in the
3616/// same position (relatively) of the caller's incoming argument stack.
3617static
3618bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
3619                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
3620                         const X86InstrInfo *TII) {
3621  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
3622  int FI = INT_MAX;
3623  if (Arg.getOpcode() == ISD::CopyFromReg) {
3624    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
3625    if (!TargetRegisterInfo::isVirtualRegister(VR))
3626      return false;
3627    MachineInstr *Def = MRI->getVRegDef(VR);
3628    if (!Def)
3629      return false;
3630    if (!Flags.isByVal()) {
3631      if (!TII->isLoadFromStackSlot(Def, FI))
3632        return false;
3633    } else {
3634      unsigned Opcode = Def->getOpcode();
3635      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r ||
3636           Opcode == X86::LEA64_32r) &&
3637          Def->getOperand(1).isFI()) {
3638        FI = Def->getOperand(1).getIndex();
3639        Bytes = Flags.getByValSize();
3640      } else
3641        return false;
3642    }
3643  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
3644    if (Flags.isByVal())
3645      // ByVal argument is passed in as a pointer but it's now being
3646      // dereferenced. e.g.
3647      // define @foo(%struct.X* %A) {
3648      //   tail call @bar(%struct.X* byval %A)
3649      // }
3650      return false;
3651    SDValue Ptr = Ld->getBasePtr();
3652    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
3653    if (!FINode)
3654      return false;
3655    FI = FINode->getIndex();
3656  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
3657    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
3658    FI = FINode->getIndex();
3659    Bytes = Flags.getByValSize();
3660  } else
3661    return false;
3662
3663  assert(FI != INT_MAX);
3664  if (!MFI->isFixedObjectIndex(FI))
3665    return false;
3666  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
3667}
3668
3669/// Check whether the call is eligible for tail call optimization. Targets
3670/// that want to do tail call optimization should implement this function.
3671bool X86TargetLowering::IsEligibleForTailCallOptimization(
3672    SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
3673    bool isCalleeStructRet, bool isCallerStructRet, Type *RetTy,
3674    const SmallVectorImpl<ISD::OutputArg> &Outs,
3675    const SmallVectorImpl<SDValue> &OutVals,
3676    const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
3677  if (!mayTailCallThisCC(CalleeCC))
3678    return false;
3679
3680  // If -tailcallopt is specified, make fastcc functions tail-callable.
3681  MachineFunction &MF = DAG.getMachineFunction();
3682  const Function *CallerF = MF.getFunction();
3683
3684  // If the function return type is x86_fp80 and the callee return type is not,
3685  // then the FP_EXTEND of the call result is not a nop. It's not safe to
3686  // perform a tailcall optimization here.
3687  if (CallerF->getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty())
3688    return false;
3689
3690  CallingConv::ID CallerCC = CallerF->getCallingConv();
3691  bool CCMatch = CallerCC == CalleeCC;
3692  bool IsCalleeWin64 = Subtarget->isCallingConvWin64(CalleeCC);
3693  bool IsCallerWin64 = Subtarget->isCallingConvWin64(CallerCC);
3694
3695  // Win64 functions have extra shadow space for argument homing. Don't do the
3696  // sibcall if the caller and callee have mismatched expectations for this
3697  // space.
3698  if (IsCalleeWin64 != IsCallerWin64)
3699    return false;
3700
3701  if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
3702    if (canGuaranteeTCO(CalleeCC) && CCMatch)
3703      return true;
3704    return false;
3705  }
3706
3707  // Look for obvious safe cases to perform tail call optimization that do not
3708  // require ABI changes. This is what gcc calls sibcall.
3709
3710  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
3711  // emit a special epilogue.
3712  const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
3713  if (RegInfo->needsStackRealignment(MF))
3714    return false;
3715
3716  // Also avoid sibcall optimization if either caller or callee uses struct
3717  // return semantics.
3718  if (isCalleeStructRet || isCallerStructRet)
3719    return false;
3720
3721  // Do not sibcall optimize vararg calls unless all arguments are passed via
3722  // registers.
3723  if (isVarArg && !Outs.empty()) {
3724    // Optimizing for varargs on Win64 is unlikely to be safe without
3725    // additional testing.
3726    if (IsCalleeWin64 || IsCallerWin64)
3727      return false;
3728
3729    SmallVector<CCValAssign, 16> ArgLocs;
3730    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
3731                   *DAG.getContext());
3732
3733    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
3734    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
3735      if (!ArgLocs[i].isRegLoc())
3736        return false;
3737  }
3738
3739  // If the call result is in ST0 / ST1, it needs to be popped off the x87
3740  // stack.  Therefore, if it's not used by the call it is not safe to optimize
3741  // this into a sibcall.
3742  bool Unused = false;
3743  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3744    if (!Ins[i].Used) {
3745      Unused = true;
3746      break;
3747    }
3748  }
3749  if (Unused) {
3750    SmallVector<CCValAssign, 16> RVLocs;
3751    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(), RVLocs,
3752                   *DAG.getContext());
3753    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
3754    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
3755      CCValAssign &VA = RVLocs[i];
3756      if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
3757        return false;
3758    }
3759  }
3760
3761  // If the calling conventions do not match, then we'd better make sure the
3762  // results are returned in the same way as what the caller expects.
3763  if (!CCMatch) {
3764    SmallVector<CCValAssign, 16> RVLocs1;
3765    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), RVLocs1,
3766                    *DAG.getContext());
3767    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
3768
3769    SmallVector<CCValAssign, 16> RVLocs2;
3770    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), RVLocs2,
3771                    *DAG.getContext());
3772    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
3773
3774    if (RVLocs1.size() != RVLocs2.size())
3775      return false;
3776    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
3777      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
3778        return false;
3779      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
3780        return false;
3781      if (RVLocs1[i].isRegLoc()) {
3782        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
3783          return false;
3784      } else {
3785        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
3786          return false;
3787      }
3788    }
3789  }
3790
3791  unsigned StackArgsSize = 0;
3792
3793  // If the callee takes no arguments then go on to check the results of the
3794  // call.
3795  if (!Outs.empty()) {
3796    // Check if stack adjustment is needed. For now, do not do this if any
3797    // argument is passed on the stack.
3798    SmallVector<CCValAssign, 16> ArgLocs;
3799    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
3800                   *DAG.getContext());
3801
3802    // Allocate shadow area for Win64
3803    if (IsCalleeWin64)
3804      CCInfo.AllocateStack(32, 8);
3805
3806    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
3807    StackArgsSize = CCInfo.getNextStackOffset();
3808
3809    if (CCInfo.getNextStackOffset()) {
3810      // Check if the arguments are already laid out in the right way as
3811      // the caller's fixed stack objects.
3812      MachineFrameInfo *MFI = MF.getFrameInfo();
3813      const MachineRegisterInfo *MRI = &MF.getRegInfo();
3814      const X86InstrInfo *TII = Subtarget->getInstrInfo();
3815      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3816        CCValAssign &VA = ArgLocs[i];
3817        SDValue Arg = OutVals[i];
3818        ISD::ArgFlagsTy Flags = Outs[i].Flags;
3819        if (VA.getLocInfo() == CCValAssign::Indirect)
3820          return false;
3821        if (!VA.isRegLoc()) {
3822          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
3823                                   MFI, MRI, TII))
3824            return false;
3825        }
3826      }
3827    }
3828
3829    // If the tailcall address may be in a register, then make sure it's
3830    // possible to register allocate for it. In 32-bit, the call address can
3831    // only target EAX, EDX, or ECX since the tail call must be scheduled after
3832    // callee-saved registers are restored. These happen to be the same
3833    // registers used to pass 'inreg' arguments so watch out for those.
3834    if (!Subtarget->is64Bit() &&
3835        ((!isa<GlobalAddressSDNode>(Callee) &&
3836          !isa<ExternalSymbolSDNode>(Callee)) ||
3837         DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
3838      unsigned NumInRegs = 0;
3839      // In PIC we need an extra register to formulate the address computation
3840      // for the callee.
3841      unsigned MaxInRegs =
3842        (DAG.getTarget().getRelocationModel() == Reloc::PIC_) ? 2 : 3;
3843
3844      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3845        CCValAssign &VA = ArgLocs[i];
3846        if (!VA.isRegLoc())
3847          continue;
3848        unsigned Reg = VA.getLocReg();
3849        switch (Reg) {
3850        default: break;
3851        case X86::EAX: case X86::EDX: case X86::ECX:
3852          if (++NumInRegs == MaxInRegs)
3853            return false;
3854          break;
3855        }
3856      }
3857    }
3858  }
3859
3860  bool CalleeWillPop =
3861      X86::isCalleePop(CalleeCC, Subtarget->is64Bit(), isVarArg,
3862                       MF.getTarget().Options.GuaranteedTailCallOpt);
3863
3864  if (unsigned BytesToPop =
3865          MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn()) {
3866    // If we have bytes to pop, the callee must pop them.
3867    bool CalleePopMatches = CalleeWillPop && BytesToPop == StackArgsSize;
3868    if (!CalleePopMatches)
3869      return false;
3870  } else if (CalleeWillPop && StackArgsSize > 0) {
3871    // If we don't have bytes to pop, make sure the callee doesn't pop any.
3872    return false;
3873  }
3874
3875  return true;
3876}
3877
3878FastISel *
3879X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
3880                                  const TargetLibraryInfo *libInfo) const {
3881  return X86::createFastISel(funcInfo, libInfo);
3882}
3883
3884//===----------------------------------------------------------------------===//
3885//                           Other Lowering Hooks
3886//===----------------------------------------------------------------------===//
3887
3888static bool MayFoldLoad(SDValue Op) {
3889  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
3890}
3891
3892static bool MayFoldIntoStore(SDValue Op) {
3893  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
3894}
3895
3896static bool isTargetShuffle(unsigned Opcode) {
3897  switch(Opcode) {
3898  default: return false;
3899  case X86ISD::BLENDI:
3900  case X86ISD::PSHUFB:
3901  case X86ISD::PSHUFD:
3902  case X86ISD::PSHUFHW:
3903  case X86ISD::PSHUFLW:
3904  case X86ISD::SHUFP:
3905  case X86ISD::PALIGNR:
3906  case X86ISD::MOVLHPS:
3907  case X86ISD::MOVLHPD:
3908  case X86ISD::MOVHLPS:
3909  case X86ISD::MOVLPS:
3910  case X86ISD::MOVLPD:
3911  case X86ISD::MOVSHDUP:
3912  case X86ISD::MOVSLDUP:
3913  case X86ISD::MOVDDUP:
3914  case X86ISD::MOVSS:
3915  case X86ISD::MOVSD:
3916  case X86ISD::UNPCKL:
3917  case X86ISD::UNPCKH:
3918  case X86ISD::VPERMILPI:
3919  case X86ISD::VPERM2X128:
3920  case X86ISD::VPERMI:
3921  case X86ISD::VPERMV:
3922  case X86ISD::VPERMV3:
3923    return true;
3924  }
3925}
3926
3927static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, MVT VT,
3928                                    SDValue V1, unsigned TargetMask,
3929                                    SelectionDAG &DAG) {
3930  switch(Opc) {
3931  default: llvm_unreachable("Unknown x86 shuffle node");
3932  case X86ISD::PSHUFD:
3933  case X86ISD::PSHUFHW:
3934  case X86ISD::PSHUFLW:
3935  case X86ISD::VPERMILPI:
3936  case X86ISD::VPERMI:
3937    return DAG.getNode(Opc, dl, VT, V1,
3938                       DAG.getConstant(TargetMask, dl, MVT::i8));
3939  }
3940}
3941
3942static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, MVT VT,
3943                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
3944  switch(Opc) {
3945  default: llvm_unreachable("Unknown x86 shuffle node");
3946  case X86ISD::MOVLHPS:
3947  case X86ISD::MOVLHPD:
3948  case X86ISD::MOVHLPS:
3949  case X86ISD::MOVLPS:
3950  case X86ISD::MOVLPD:
3951  case X86ISD::MOVSS:
3952  case X86ISD::MOVSD:
3953  case X86ISD::UNPCKL:
3954  case X86ISD::UNPCKH:
3955    return DAG.getNode(Opc, dl, VT, V1, V2);
3956  }
3957}
3958
3959SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
3960  MachineFunction &MF = DAG.getMachineFunction();
3961  const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
3962  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
3963  int ReturnAddrIndex = FuncInfo->getRAIndex();
3964
3965  if (ReturnAddrIndex == 0) {
3966    // Set up a frame object for the return address.
3967    unsigned SlotSize = RegInfo->getSlotSize();
3968    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize,
3969                                                           -(int64_t)SlotSize,
3970                                                           false);
3971    FuncInfo->setRAIndex(ReturnAddrIndex);
3972  }
3973
3974  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy(DAG.getDataLayout()));
3975}
3976
3977bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
3978                                       bool hasSymbolicDisplacement) {
3979  // Offset should fit into 32 bit immediate field.
3980  if (!isInt<32>(Offset))
3981    return false;
3982
3983  // If we don't have a symbolic displacement - we don't have any extra
3984  // restrictions.
3985  if (!hasSymbolicDisplacement)
3986    return true;
3987
3988  // FIXME: Some tweaks might be needed for medium code model.
3989  if (M != CodeModel::Small && M != CodeModel::Kernel)
3990    return false;
3991
3992  // For small code model we assume that latest object is 16MB before end of 31
3993  // bits boundary. We may also accept pretty large negative constants knowing
3994  // that all objects are in the positive half of address space.
3995  if (M == CodeModel::Small && Offset < 16*1024*1024)
3996    return true;
3997
3998  // For kernel code model we know that all object resist in the negative half
3999  // of 32bits address space. We may not accept negative offsets, since they may
4000  // be just off and we may accept pretty large positive ones.
4001  if (M == CodeModel::Kernel && Offset >= 0)
4002    return true;
4003
4004  return false;
4005}
4006
4007/// Determines whether the callee is required to pop its own arguments.
4008/// Callee pop is necessary to support tail calls.
4009bool X86::isCalleePop(CallingConv::ID CallingConv,
4010                      bool is64Bit, bool IsVarArg, bool GuaranteeTCO) {
4011  // If GuaranteeTCO is true, we force some calls to be callee pop so that we
4012  // can guarantee TCO.
4013  if (!IsVarArg && shouldGuaranteeTCO(CallingConv, GuaranteeTCO))
4014    return true;
4015
4016  switch (CallingConv) {
4017  default:
4018    return false;
4019  case CallingConv::X86_StdCall:
4020  case CallingConv::X86_FastCall:
4021  case CallingConv::X86_ThisCall:
4022  case CallingConv::X86_VectorCall:
4023    return !is64Bit;
4024  }
4025}
4026
4027/// \brief Return true if the condition is an unsigned comparison operation.
4028static bool isX86CCUnsigned(unsigned X86CC) {
4029  switch (X86CC) {
4030  default: llvm_unreachable("Invalid integer condition!");
4031  case X86::COND_E:     return true;
4032  case X86::COND_G:     return false;
4033  case X86::COND_GE:    return false;
4034  case X86::COND_L:     return false;
4035  case X86::COND_LE:    return false;
4036  case X86::COND_NE:    return true;
4037  case X86::COND_B:     return true;
4038  case X86::COND_A:     return true;
4039  case X86::COND_BE:    return true;
4040  case X86::COND_AE:    return true;
4041  }
4042}
4043
4044static X86::CondCode TranslateIntegerX86CC(ISD::CondCode SetCCOpcode) {
4045  switch (SetCCOpcode) {
4046  default: llvm_unreachable("Invalid integer condition!");
4047  case ISD::SETEQ:  return X86::COND_E;
4048  case ISD::SETGT:  return X86::COND_G;
4049  case ISD::SETGE:  return X86::COND_GE;
4050  case ISD::SETLT:  return X86::COND_L;
4051  case ISD::SETLE:  return X86::COND_LE;
4052  case ISD::SETNE:  return X86::COND_NE;
4053  case ISD::SETULT: return X86::COND_B;
4054  case ISD::SETUGT: return X86::COND_A;
4055  case ISD::SETULE: return X86::COND_BE;
4056  case ISD::SETUGE: return X86::COND_AE;
4057  }
4058}
4059
4060/// Do a one-to-one translation of a ISD::CondCode to the X86-specific
4061/// condition code, returning the condition code and the LHS/RHS of the
4062/// comparison to make.
4063static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, SDLoc DL, bool isFP,
4064                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
4065  if (!isFP) {
4066    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4067      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
4068        // X > -1   -> X == 0, jump !sign.
4069        RHS = DAG.getConstant(0, DL, RHS.getValueType());
4070        return X86::COND_NS;
4071      }
4072      if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
4073        // X < 0   -> X == 0, jump on sign.
4074        return X86::COND_S;
4075      }
4076      if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
4077        // X < 1   -> X <= 0
4078        RHS = DAG.getConstant(0, DL, RHS.getValueType());
4079        return X86::COND_LE;
4080      }
4081    }
4082
4083    return TranslateIntegerX86CC(SetCCOpcode);
4084  }
4085
4086  // First determine if it is required or is profitable to flip the operands.
4087
4088  // If LHS is a foldable load, but RHS is not, flip the condition.
4089  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
4090      !ISD::isNON_EXTLoad(RHS.getNode())) {
4091    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
4092    std::swap(LHS, RHS);
4093  }
4094
4095  switch (SetCCOpcode) {
4096  default: break;
4097  case ISD::SETOLT:
4098  case ISD::SETOLE:
4099  case ISD::SETUGT:
4100  case ISD::SETUGE:
4101    std::swap(LHS, RHS);
4102    break;
4103  }
4104
4105  // On a floating point condition, the flags are set as follows:
4106  // ZF  PF  CF   op
4107  //  0 | 0 | 0 | X > Y
4108  //  0 | 0 | 1 | X < Y
4109  //  1 | 0 | 0 | X == Y
4110  //  1 | 1 | 1 | unordered
4111  switch (SetCCOpcode) {
4112  default: llvm_unreachable("Condcode should be pre-legalized away");
4113  case ISD::SETUEQ:
4114  case ISD::SETEQ:   return X86::COND_E;
4115  case ISD::SETOLT:              // flipped
4116  case ISD::SETOGT:
4117  case ISD::SETGT:   return X86::COND_A;
4118  case ISD::SETOLE:              // flipped
4119  case ISD::SETOGE:
4120  case ISD::SETGE:   return X86::COND_AE;
4121  case ISD::SETUGT:              // flipped
4122  case ISD::SETULT:
4123  case ISD::SETLT:   return X86::COND_B;
4124  case ISD::SETUGE:              // flipped
4125  case ISD::SETULE:
4126  case ISD::SETLE:   return X86::COND_BE;
4127  case ISD::SETONE:
4128  case ISD::SETNE:   return X86::COND_NE;
4129  case ISD::SETUO:   return X86::COND_P;
4130  case ISD::SETO:    return X86::COND_NP;
4131  case ISD::SETOEQ:
4132  case ISD::SETUNE:  return X86::COND_INVALID;
4133  }
4134}
4135
4136/// Is there a floating point cmov for the specific X86 condition code?
4137/// Current x86 isa includes the following FP cmov instructions:
4138/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
4139static bool hasFPCMov(unsigned X86CC) {
4140  switch (X86CC) {
4141  default:
4142    return false;
4143  case X86::COND_B:
4144  case X86::COND_BE:
4145  case X86::COND_E:
4146  case X86::COND_P:
4147  case X86::COND_A:
4148  case X86::COND_AE:
4149  case X86::COND_NE:
4150  case X86::COND_NP:
4151    return true;
4152  }
4153}
4154
4155/// Returns true if the target can instruction select the
4156/// specified FP immediate natively. If false, the legalizer will
4157/// materialize the FP immediate as a load from a constant pool.
4158bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
4159  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
4160    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
4161      return true;
4162  }
4163  return false;
4164}
4165
4166bool X86TargetLowering::shouldReduceLoadWidth(SDNode *Load,
4167                                              ISD::LoadExtType ExtTy,
4168                                              EVT NewVT) const {
4169  // "ELF Handling for Thread-Local Storage" specifies that R_X86_64_GOTTPOFF
4170  // relocation target a movq or addq instruction: don't let the load shrink.
4171  SDValue BasePtr = cast<LoadSDNode>(Load)->getBasePtr();
4172  if (BasePtr.getOpcode() == X86ISD::WrapperRIP)
4173    if (const auto *GA = dyn_cast<GlobalAddressSDNode>(BasePtr.getOperand(0)))
4174      return GA->getTargetFlags() != X86II::MO_GOTTPOFF;
4175  return true;
4176}
4177
4178/// \brief Returns true if it is beneficial to convert a load of a constant
4179/// to just the constant itself.
4180bool X86TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
4181                                                          Type *Ty) const {
4182  assert(Ty->isIntegerTy());
4183
4184  unsigned BitSize = Ty->getPrimitiveSizeInBits();
4185  if (BitSize == 0 || BitSize > 64)
4186    return false;
4187  return true;
4188}
4189
4190bool X86TargetLowering::isExtractSubvectorCheap(EVT ResVT,
4191                                                unsigned Index) const {
4192  if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
4193    return false;
4194
4195  return (Index == 0 || Index == ResVT.getVectorNumElements());
4196}
4197
4198bool X86TargetLowering::isCheapToSpeculateCttz() const {
4199  // Speculate cttz only if we can directly use TZCNT.
4200  return Subtarget->hasBMI();
4201}
4202
4203bool X86TargetLowering::isCheapToSpeculateCtlz() const {
4204  // Speculate ctlz only if we can directly use LZCNT.
4205  return Subtarget->hasLZCNT();
4206}
4207
4208/// Return true if every element in Mask, beginning
4209/// from position Pos and ending in Pos+Size is undef.
4210static bool isUndefInRange(ArrayRef<int> Mask, unsigned Pos, unsigned Size) {
4211  for (unsigned i = Pos, e = Pos + Size; i != e; ++i)
4212    if (0 <= Mask[i])
4213      return false;
4214  return true;
4215}
4216
4217/// Return true if Val is undef or if its value falls within the
4218/// specified range (L, H].
4219static bool isUndefOrInRange(int Val, int Low, int Hi) {
4220  return (Val < 0) || (Val >= Low && Val < Hi);
4221}
4222
4223/// Val is either less than zero (undef) or equal to the specified value.
4224static bool isUndefOrEqual(int Val, int CmpVal) {
4225  return (Val < 0 || Val == CmpVal);
4226}
4227
4228/// Return true if every element in Mask, beginning
4229/// from position Pos and ending in Pos+Size, falls within the specified
4230/// sequential range (Low, Low+Size]. or is undef.
4231static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
4232                                       unsigned Pos, unsigned Size, int Low) {
4233  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
4234    if (!isUndefOrEqual(Mask[i], Low))
4235      return false;
4236  return true;
4237}
4238
4239/// Return true if the specified EXTRACT_SUBVECTOR operand specifies a vector
4240/// extract that is suitable for instruction that extract 128 or 256 bit vectors
4241static bool isVEXTRACTIndex(SDNode *N, unsigned vecWidth) {
4242  assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width");
4243  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4244    return false;
4245
4246  // The index should be aligned on a vecWidth-bit boundary.
4247  uint64_t Index =
4248    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4249
4250  MVT VT = N->getSimpleValueType(0);
4251  unsigned ElSize = VT.getVectorElementType().getSizeInBits();
4252  bool Result = (Index * ElSize) % vecWidth == 0;
4253
4254  return Result;
4255}
4256
4257/// Return true if the specified INSERT_SUBVECTOR
4258/// operand specifies a subvector insert that is suitable for input to
4259/// insertion of 128 or 256-bit subvectors
4260static bool isVINSERTIndex(SDNode *N, unsigned vecWidth) {
4261  assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width");
4262  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4263    return false;
4264  // The index should be aligned on a vecWidth-bit boundary.
4265  uint64_t Index =
4266    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4267
4268  MVT VT = N->getSimpleValueType(0);
4269  unsigned ElSize = VT.getVectorElementType().getSizeInBits();
4270  bool Result = (Index * ElSize) % vecWidth == 0;
4271
4272  return Result;
4273}
4274
4275bool X86::isVINSERT128Index(SDNode *N) {
4276  return isVINSERTIndex(N, 128);
4277}
4278
4279bool X86::isVINSERT256Index(SDNode *N) {
4280  return isVINSERTIndex(N, 256);
4281}
4282
4283bool X86::isVEXTRACT128Index(SDNode *N) {
4284  return isVEXTRACTIndex(N, 128);
4285}
4286
4287bool X86::isVEXTRACT256Index(SDNode *N) {
4288  return isVEXTRACTIndex(N, 256);
4289}
4290
4291static unsigned getExtractVEXTRACTImmediate(SDNode *N, unsigned vecWidth) {
4292  assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width");
4293  assert(isa<ConstantSDNode>(N->getOperand(1).getNode()) &&
4294         "Illegal extract subvector for VEXTRACT");
4295
4296  uint64_t Index =
4297    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4298
4299  MVT VecVT = N->getOperand(0).getSimpleValueType();
4300  MVT ElVT = VecVT.getVectorElementType();
4301
4302  unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits();
4303  return Index / NumElemsPerChunk;
4304}
4305
4306static unsigned getInsertVINSERTImmediate(SDNode *N, unsigned vecWidth) {
4307  assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width");
4308  assert(isa<ConstantSDNode>(N->getOperand(2).getNode()) &&
4309         "Illegal insert subvector for VINSERT");
4310
4311  uint64_t Index =
4312    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4313
4314  MVT VecVT = N->getSimpleValueType(0);
4315  MVT ElVT = VecVT.getVectorElementType();
4316
4317  unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits();
4318  return Index / NumElemsPerChunk;
4319}
4320
4321/// Return the appropriate immediate to extract the specified
4322/// EXTRACT_SUBVECTOR index with VEXTRACTF128 and VINSERTI128 instructions.
4323unsigned X86::getExtractVEXTRACT128Immediate(SDNode *N) {
4324  return getExtractVEXTRACTImmediate(N, 128);
4325}
4326
4327/// Return the appropriate immediate to extract the specified
4328/// EXTRACT_SUBVECTOR index with VEXTRACTF64x4 and VINSERTI64x4 instructions.
4329unsigned X86::getExtractVEXTRACT256Immediate(SDNode *N) {
4330  return getExtractVEXTRACTImmediate(N, 256);
4331}
4332
4333/// Return the appropriate immediate to insert at the specified
4334/// INSERT_SUBVECTOR index with VINSERTF128 and VINSERTI128 instructions.
4335unsigned X86::getInsertVINSERT128Immediate(SDNode *N) {
4336  return getInsertVINSERTImmediate(N, 128);
4337}
4338
4339/// Return the appropriate immediate to insert at the specified
4340/// INSERT_SUBVECTOR index with VINSERTF46x4 and VINSERTI64x4 instructions.
4341unsigned X86::getInsertVINSERT256Immediate(SDNode *N) {
4342  return getInsertVINSERTImmediate(N, 256);
4343}
4344
4345/// Returns true if Elt is a constant zero or a floating point constant +0.0.
4346bool X86::isZeroNode(SDValue Elt) {
4347  return isNullConstant(Elt) || isNullFPConstant(Elt);
4348}
4349
4350// Build a vector of constants
4351// Use an UNDEF node if MaskElt == -1.
4352// Spilt 64-bit constants in the 32-bit mode.
4353static SDValue getConstVector(ArrayRef<int> Values, MVT VT,
4354                              SelectionDAG &DAG,
4355                              SDLoc dl, bool IsMask = false) {
4356
4357  SmallVector<SDValue, 32>  Ops;
4358  bool Split = false;
4359
4360  MVT ConstVecVT = VT;
4361  unsigned NumElts = VT.getVectorNumElements();
4362  bool In64BitMode = DAG.getTargetLoweringInfo().isTypeLegal(MVT::i64);
4363  if (!In64BitMode && VT.getVectorElementType() == MVT::i64) {
4364    ConstVecVT = MVT::getVectorVT(MVT::i32, NumElts * 2);
4365    Split = true;
4366  }
4367
4368  MVT EltVT = ConstVecVT.getVectorElementType();
4369  for (unsigned i = 0; i < NumElts; ++i) {
4370    bool IsUndef = Values[i] < 0 && IsMask;
4371    SDValue OpNode = IsUndef ? DAG.getUNDEF(EltVT) :
4372      DAG.getConstant(Values[i], dl, EltVT);
4373    Ops.push_back(OpNode);
4374    if (Split)
4375      Ops.push_back(IsUndef ? DAG.getUNDEF(EltVT) :
4376                    DAG.getConstant(0, dl, EltVT));
4377  }
4378  SDValue ConstsNode = DAG.getNode(ISD::BUILD_VECTOR, dl, ConstVecVT, Ops);
4379  if (Split)
4380    ConstsNode = DAG.getBitcast(VT, ConstsNode);
4381  return ConstsNode;
4382}
4383
4384/// Returns a vector of specified type with all zero elements.
4385static SDValue getZeroVector(MVT VT, const X86Subtarget *Subtarget,
4386                             SelectionDAG &DAG, SDLoc dl) {
4387  assert(VT.isVector() && "Expected a vector type");
4388
4389  // Always build SSE zero vectors as <4 x i32> bitcasted
4390  // to their dest type. This ensures they get CSE'd.
4391  SDValue Vec;
4392  if (VT.is128BitVector()) {  // SSE
4393    if (Subtarget->hasSSE2()) {  // SSE2
4394      SDValue Cst = DAG.getConstant(0, dl, MVT::i32);
4395      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4396    } else { // SSE1
4397      SDValue Cst = DAG.getConstantFP(+0.0, dl, MVT::f32);
4398      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4399    }
4400  } else if (VT.is256BitVector()) { // AVX
4401    if (Subtarget->hasInt256()) { // AVX2
4402      SDValue Cst = DAG.getConstant(0, dl, MVT::i32);
4403      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4404      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops);
4405    } else {
4406      // 256-bit logic and arithmetic instructions in AVX are all
4407      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4408      SDValue Cst = DAG.getConstantFP(+0.0, dl, MVT::f32);
4409      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4410      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops);
4411    }
4412  } else if (VT.is512BitVector()) { // AVX-512
4413      SDValue Cst = DAG.getConstant(0, dl, MVT::i32);
4414      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst,
4415                        Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4416      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i32, Ops);
4417  } else if (VT.getVectorElementType() == MVT::i1) {
4418
4419    assert((Subtarget->hasBWI() || VT.getVectorNumElements() <= 16)
4420            && "Unexpected vector type");
4421    assert((Subtarget->hasVLX() || VT.getVectorNumElements() >= 8)
4422            && "Unexpected vector type");
4423    SDValue Cst = DAG.getConstant(0, dl, MVT::i1);
4424    SmallVector<SDValue, 64> Ops(VT.getVectorNumElements(), Cst);
4425    return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
4426  } else
4427    llvm_unreachable("Unexpected vector type");
4428
4429  return DAG.getBitcast(VT, Vec);
4430}
4431
4432static SDValue ExtractSubVector(SDValue Vec, unsigned IdxVal,
4433                                SelectionDAG &DAG, SDLoc dl,
4434                                unsigned vectorWidth) {
4435  assert((vectorWidth == 128 || vectorWidth == 256) &&
4436         "Unsupported vector width");
4437  EVT VT = Vec.getValueType();
4438  EVT ElVT = VT.getVectorElementType();
4439  unsigned Factor = VT.getSizeInBits()/vectorWidth;
4440  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
4441                                  VT.getVectorNumElements()/Factor);
4442
4443  // Extract from UNDEF is UNDEF.
4444  if (Vec.getOpcode() == ISD::UNDEF)
4445    return DAG.getUNDEF(ResultVT);
4446
4447  // Extract the relevant vectorWidth bits.  Generate an EXTRACT_SUBVECTOR
4448  unsigned ElemsPerChunk = vectorWidth / ElVT.getSizeInBits();
4449  assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2");
4450
4451  // This is the index of the first element of the vectorWidth-bit chunk
4452  // we want. Since ElemsPerChunk is a power of 2 just need to clear bits.
4453  IdxVal &= ~(ElemsPerChunk - 1);
4454
4455  // If the input is a buildvector just emit a smaller one.
4456  if (Vec.getOpcode() == ISD::BUILD_VECTOR)
4457    return DAG.getNode(ISD::BUILD_VECTOR, dl, ResultVT,
4458                       makeArrayRef(Vec->op_begin() + IdxVal, ElemsPerChunk));
4459
4460  SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, dl);
4461  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec, VecIdx);
4462}
4463
4464/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
4465/// sets things up to match to an AVX VEXTRACTF128 / VEXTRACTI128
4466/// or AVX-512 VEXTRACTF32x4 / VEXTRACTI32x4
4467/// instructions or a simple subregister reference. Idx is an index in the
4468/// 128 bits we want.  It need not be aligned to a 128-bit boundary.  That makes
4469/// lowering EXTRACT_VECTOR_ELT operations easier.
4470static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
4471                                   SelectionDAG &DAG, SDLoc dl) {
4472  assert((Vec.getValueType().is256BitVector() ||
4473          Vec.getValueType().is512BitVector()) && "Unexpected vector size!");
4474  return ExtractSubVector(Vec, IdxVal, DAG, dl, 128);
4475}
4476
4477/// Generate a DAG to grab 256-bits from a 512-bit vector.
4478static SDValue Extract256BitVector(SDValue Vec, unsigned IdxVal,
4479                                   SelectionDAG &DAG, SDLoc dl) {
4480  assert(Vec.getValueType().is512BitVector() && "Unexpected vector size!");
4481  return ExtractSubVector(Vec, IdxVal, DAG, dl, 256);
4482}
4483
4484static SDValue InsertSubVector(SDValue Result, SDValue Vec,
4485                               unsigned IdxVal, SelectionDAG &DAG,
4486                               SDLoc dl, unsigned vectorWidth) {
4487  assert((vectorWidth == 128 || vectorWidth == 256) &&
4488         "Unsupported vector width");
4489  // Inserting UNDEF is Result
4490  if (Vec.getOpcode() == ISD::UNDEF)
4491    return Result;
4492  EVT VT = Vec.getValueType();
4493  EVT ElVT = VT.getVectorElementType();
4494  EVT ResultVT = Result.getValueType();
4495
4496  // Insert the relevant vectorWidth bits.
4497  unsigned ElemsPerChunk = vectorWidth/ElVT.getSizeInBits();
4498  assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2");
4499
4500  // This is the index of the first element of the vectorWidth-bit chunk
4501  // we want. Since ElemsPerChunk is a power of 2 just need to clear bits.
4502  IdxVal &= ~(ElemsPerChunk - 1);
4503
4504  SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, dl);
4505  return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec, VecIdx);
4506}
4507
4508/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
4509/// sets things up to match to an AVX VINSERTF128/VINSERTI128 or
4510/// AVX-512 VINSERTF32x4/VINSERTI32x4 instructions or a
4511/// simple superregister reference.  Idx is an index in the 128 bits
4512/// we want.  It need not be aligned to a 128-bit boundary.  That makes
4513/// lowering INSERT_VECTOR_ELT operations easier.
4514static SDValue Insert128BitVector(SDValue Result, SDValue Vec, unsigned IdxVal,
4515                                  SelectionDAG &DAG, SDLoc dl) {
4516  assert(Vec.getValueType().is128BitVector() && "Unexpected vector size!");
4517
4518  // For insertion into the zero index (low half) of a 256-bit vector, it is
4519  // more efficient to generate a blend with immediate instead of an insert*128.
4520  // We are still creating an INSERT_SUBVECTOR below with an undef node to
4521  // extend the subvector to the size of the result vector. Make sure that
4522  // we are not recursing on that node by checking for undef here.
4523  if (IdxVal == 0 && Result.getValueType().is256BitVector() &&
4524      Result.getOpcode() != ISD::UNDEF) {
4525    EVT ResultVT = Result.getValueType();
4526    SDValue ZeroIndex = DAG.getIntPtrConstant(0, dl);
4527    SDValue Undef = DAG.getUNDEF(ResultVT);
4528    SDValue Vec256 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Undef,
4529                                 Vec, ZeroIndex);
4530
4531    // The blend instruction, and therefore its mask, depend on the data type.
4532    MVT ScalarType = ResultVT.getVectorElementType().getSimpleVT();
4533    if (ScalarType.isFloatingPoint()) {
4534      // Choose either vblendps (float) or vblendpd (double).
4535      unsigned ScalarSize = ScalarType.getSizeInBits();
4536      assert((ScalarSize == 64 || ScalarSize == 32) && "Unknown float type");
4537      unsigned MaskVal = (ScalarSize == 64) ? 0x03 : 0x0f;
4538      SDValue Mask = DAG.getConstant(MaskVal, dl, MVT::i8);
4539      return DAG.getNode(X86ISD::BLENDI, dl, ResultVT, Result, Vec256, Mask);
4540    }
4541
4542    const X86Subtarget &Subtarget =
4543    static_cast<const X86Subtarget &>(DAG.getSubtarget());
4544
4545    // AVX2 is needed for 256-bit integer blend support.
4546    // Integers must be cast to 32-bit because there is only vpblendd;
4547    // vpblendw can't be used for this because it has a handicapped mask.
4548
4549    // If we don't have AVX2, then cast to float. Using a wrong domain blend
4550    // is still more efficient than using the wrong domain vinsertf128 that
4551    // will be created by InsertSubVector().
4552    MVT CastVT = Subtarget.hasAVX2() ? MVT::v8i32 : MVT::v8f32;
4553
4554    SDValue Mask = DAG.getConstant(0x0f, dl, MVT::i8);
4555    Vec256 = DAG.getBitcast(CastVT, Vec256);
4556    Vec256 = DAG.getNode(X86ISD::BLENDI, dl, CastVT, Result, Vec256, Mask);
4557    return DAG.getBitcast(ResultVT, Vec256);
4558  }
4559
4560  return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 128);
4561}
4562
4563static SDValue Insert256BitVector(SDValue Result, SDValue Vec, unsigned IdxVal,
4564                                  SelectionDAG &DAG, SDLoc dl) {
4565  assert(Vec.getValueType().is256BitVector() && "Unexpected vector size!");
4566  return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 256);
4567}
4568
4569/// Insert i1-subvector to i1-vector.
4570static SDValue Insert1BitVector(SDValue Op, SelectionDAG &DAG) {
4571
4572  SDLoc dl(Op);
4573  SDValue Vec = Op.getOperand(0);
4574  SDValue SubVec = Op.getOperand(1);
4575  SDValue Idx = Op.getOperand(2);
4576
4577  if (!isa<ConstantSDNode>(Idx))
4578    return SDValue();
4579
4580  unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
4581  if (IdxVal == 0  && Vec.isUndef()) // the operation is legal
4582    return Op;
4583
4584  MVT OpVT = Op.getSimpleValueType();
4585  MVT SubVecVT = SubVec.getSimpleValueType();
4586  unsigned NumElems = OpVT.getVectorNumElements();
4587  unsigned SubVecNumElems = SubVecVT.getVectorNumElements();
4588
4589  assert(IdxVal + SubVecNumElems <= NumElems &&
4590         IdxVal % SubVecVT.getSizeInBits() == 0 &&
4591         "Unexpected index value in INSERT_SUBVECTOR");
4592
4593  // There are 3 possible cases:
4594  // 1. Subvector should be inserted in the lower part (IdxVal == 0)
4595  // 2. Subvector should be inserted in the upper part
4596  //    (IdxVal + SubVecNumElems == NumElems)
4597  // 3. Subvector should be inserted in the middle (for example v2i1
4598  //    to v16i1, index 2)
4599
4600  SDValue ZeroIdx = DAG.getIntPtrConstant(0, dl);
4601  SDValue Undef = DAG.getUNDEF(OpVT);
4602  SDValue WideSubVec =
4603    DAG.getNode(ISD::INSERT_SUBVECTOR, dl, OpVT, Undef, SubVec, ZeroIdx);
4604  if (Vec.isUndef())
4605    return DAG.getNode(X86ISD::VSHLI, dl, OpVT, WideSubVec,
4606      DAG.getConstant(IdxVal, dl, MVT::i8));
4607
4608  if (ISD::isBuildVectorAllZeros(Vec.getNode())) {
4609    unsigned ShiftLeft = NumElems - SubVecNumElems;
4610    unsigned ShiftRight = NumElems - SubVecNumElems - IdxVal;
4611    WideSubVec = DAG.getNode(X86ISD::VSHLI, dl, OpVT, WideSubVec,
4612      DAG.getConstant(ShiftLeft, dl, MVT::i8));
4613    return ShiftRight ? DAG.getNode(X86ISD::VSRLI, dl, OpVT, WideSubVec,
4614      DAG.getConstant(ShiftRight, dl, MVT::i8)) : WideSubVec;
4615  }
4616
4617  if (IdxVal == 0) {
4618    // Zero lower bits of the Vec
4619    SDValue ShiftBits = DAG.getConstant(SubVecNumElems, dl, MVT::i8);
4620    Vec = DAG.getNode(X86ISD::VSRLI, dl, OpVT, Vec, ShiftBits);
4621    Vec = DAG.getNode(X86ISD::VSHLI, dl, OpVT, Vec, ShiftBits);
4622    // Merge them together
4623    return DAG.getNode(ISD::OR, dl, OpVT, Vec, WideSubVec);
4624  }
4625
4626  // Simple case when we put subvector in the upper part
4627  if (IdxVal + SubVecNumElems == NumElems) {
4628    // Zero upper bits of the Vec
4629    WideSubVec = DAG.getNode(X86ISD::VSHLI, dl, OpVT, Vec,
4630                        DAG.getConstant(IdxVal, dl, MVT::i8));
4631    SDValue ShiftBits = DAG.getConstant(SubVecNumElems, dl, MVT::i8);
4632    Vec = DAG.getNode(X86ISD::VSHLI, dl, OpVT, Vec, ShiftBits);
4633    Vec = DAG.getNode(X86ISD::VSRLI, dl, OpVT, Vec, ShiftBits);
4634    return DAG.getNode(ISD::OR, dl, OpVT, Vec, WideSubVec);
4635  }
4636  // Subvector should be inserted in the middle - use shuffle
4637  SmallVector<int, 64> Mask;
4638  for (unsigned i = 0; i < NumElems; ++i)
4639    Mask.push_back(i >= IdxVal && i < IdxVal + SubVecNumElems ?
4640                    i : i + NumElems);
4641  return DAG.getVectorShuffle(OpVT, dl, WideSubVec, Vec, Mask);
4642}
4643
4644/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
4645/// instructions. This is used because creating CONCAT_VECTOR nodes of
4646/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
4647/// large BUILD_VECTORS.
4648static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
4649                                   unsigned NumElems, SelectionDAG &DAG,
4650                                   SDLoc dl) {
4651  SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
4652  return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
4653}
4654
4655static SDValue Concat256BitVectors(SDValue V1, SDValue V2, EVT VT,
4656                                   unsigned NumElems, SelectionDAG &DAG,
4657                                   SDLoc dl) {
4658  SDValue V = Insert256BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
4659  return Insert256BitVector(V, V2, NumElems/2, DAG, dl);
4660}
4661
4662/// Returns a vector of specified type with all bits set.
4663/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4664/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4665/// Then bitcast to their original type, ensuring they get CSE'd.
4666static SDValue getOnesVector(EVT VT, const X86Subtarget *Subtarget,
4667                             SelectionDAG &DAG, SDLoc dl) {
4668  assert(VT.isVector() && "Expected a vector type");
4669
4670  SDValue Cst = DAG.getConstant(~0U, dl, MVT::i32);
4671  SDValue Vec;
4672  if (VT.is512BitVector()) {
4673    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst,
4674                      Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4675    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i32, Ops);
4676  } else if (VT.is256BitVector()) {
4677    if (Subtarget->hasInt256()) { // AVX2
4678      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4679      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops);
4680    } else { // AVX
4681      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4682      Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
4683    }
4684  } else if (VT.is128BitVector()) {
4685    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4686  } else
4687    llvm_unreachable("Unexpected vector type");
4688
4689  return DAG.getBitcast(VT, Vec);
4690}
4691
4692/// Returns a vector_shuffle node for an unpackl operation.
4693static SDValue getUnpackl(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1,
4694                          SDValue V2) {
4695  unsigned NumElems = VT.getVectorNumElements();
4696  SmallVector<int, 8> Mask;
4697  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4698    Mask.push_back(i);
4699    Mask.push_back(i + NumElems);
4700  }
4701  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4702}
4703
4704/// Returns a vector_shuffle node for an unpackh operation.
4705static SDValue getUnpackh(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1,
4706                          SDValue V2) {
4707  unsigned NumElems = VT.getVectorNumElements();
4708  SmallVector<int, 8> Mask;
4709  for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
4710    Mask.push_back(i + Half);
4711    Mask.push_back(i + NumElems + Half);
4712  }
4713  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4714}
4715
4716/// Return a vector_shuffle of the specified vector of zero or undef vector.
4717/// This produces a shuffle where the low element of V2 is swizzled into the
4718/// zero/undef vector, landing at element Idx.
4719/// This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4720static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4721                                           bool IsZero,
4722                                           const X86Subtarget *Subtarget,
4723                                           SelectionDAG &DAG) {
4724  MVT VT = V2.getSimpleValueType();
4725  SDValue V1 = IsZero
4726    ? getZeroVector(VT, Subtarget, DAG, SDLoc(V2)) : DAG.getUNDEF(VT);
4727  unsigned NumElems = VT.getVectorNumElements();
4728  SmallVector<int, 16> MaskVec;
4729  for (unsigned i = 0; i != NumElems; ++i)
4730    // If this is the insertion idx, put the low elt of V2 here.
4731    MaskVec.push_back(i == Idx ? NumElems : i);
4732  return DAG.getVectorShuffle(VT, SDLoc(V2), V1, V2, &MaskVec[0]);
4733}
4734
4735/// Calculates the shuffle mask corresponding to the target-specific opcode.
4736/// Returns true if the Mask could be calculated. Sets IsUnary to true if only
4737/// uses one source. Note that this will set IsUnary for shuffles which use a
4738/// single input multiple times, and in those cases it will
4739/// adjust the mask to only have indices within that single input.
4740/// FIXME: Add support for Decode*Mask functions that return SM_SentinelZero.
4741static bool getTargetShuffleMask(SDNode *N, MVT VT,
4742                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
4743  unsigned NumElems = VT.getVectorNumElements();
4744  SDValue ImmN;
4745
4746  IsUnary = false;
4747  bool IsFakeUnary = false;
4748  switch(N->getOpcode()) {
4749  case X86ISD::BLENDI:
4750    ImmN = N->getOperand(N->getNumOperands()-1);
4751    DecodeBLENDMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4752    break;
4753  case X86ISD::SHUFP:
4754    ImmN = N->getOperand(N->getNumOperands()-1);
4755    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4756    IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
4757    break;
4758  case X86ISD::UNPCKH:
4759    DecodeUNPCKHMask(VT, Mask);
4760    IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
4761    break;
4762  case X86ISD::UNPCKL:
4763    DecodeUNPCKLMask(VT, Mask);
4764    IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
4765    break;
4766  case X86ISD::MOVHLPS:
4767    DecodeMOVHLPSMask(NumElems, Mask);
4768    IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
4769    break;
4770  case X86ISD::MOVLHPS:
4771    DecodeMOVLHPSMask(NumElems, Mask);
4772    IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
4773    break;
4774  case X86ISD::PALIGNR:
4775    ImmN = N->getOperand(N->getNumOperands()-1);
4776    DecodePALIGNRMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4777    break;
4778  case X86ISD::PSHUFD:
4779  case X86ISD::VPERMILPI:
4780    ImmN = N->getOperand(N->getNumOperands()-1);
4781    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4782    IsUnary = true;
4783    break;
4784  case X86ISD::PSHUFHW:
4785    ImmN = N->getOperand(N->getNumOperands()-1);
4786    DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4787    IsUnary = true;
4788    break;
4789  case X86ISD::PSHUFLW:
4790    ImmN = N->getOperand(N->getNumOperands()-1);
4791    DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4792    IsUnary = true;
4793    break;
4794  case X86ISD::PSHUFB: {
4795    IsUnary = true;
4796    SDValue MaskNode = N->getOperand(1);
4797    while (MaskNode->getOpcode() == ISD::BITCAST)
4798      MaskNode = MaskNode->getOperand(0);
4799
4800    if (MaskNode->getOpcode() == ISD::BUILD_VECTOR) {
4801      // If we have a build-vector, then things are easy.
4802      MVT VT = MaskNode.getSimpleValueType();
4803      assert(VT.isVector() &&
4804             "Can't produce a non-vector with a build_vector!");
4805      if (!VT.isInteger())
4806        return false;
4807
4808      int NumBytesPerElement = VT.getVectorElementType().getSizeInBits() / 8;
4809
4810      SmallVector<uint64_t, 32> RawMask;
4811      for (int i = 0, e = MaskNode->getNumOperands(); i < e; ++i) {
4812        SDValue Op = MaskNode->getOperand(i);
4813        if (Op->getOpcode() == ISD::UNDEF) {
4814          RawMask.push_back((uint64_t)SM_SentinelUndef);
4815          continue;
4816        }
4817        auto *CN = dyn_cast<ConstantSDNode>(Op.getNode());
4818        if (!CN)
4819          return false;
4820        APInt MaskElement = CN->getAPIntValue();
4821
4822        // We now have to decode the element which could be any integer size and
4823        // extract each byte of it.
4824        for (int j = 0; j < NumBytesPerElement; ++j) {
4825          // Note that this is x86 and so always little endian: the low byte is
4826          // the first byte of the mask.
4827          RawMask.push_back(MaskElement.getLoBits(8).getZExtValue());
4828          MaskElement = MaskElement.lshr(8);
4829        }
4830      }
4831      DecodePSHUFBMask(RawMask, Mask);
4832      break;
4833    }
4834
4835    auto *MaskLoad = dyn_cast<LoadSDNode>(MaskNode);
4836    if (!MaskLoad)
4837      return false;
4838
4839    SDValue Ptr = MaskLoad->getBasePtr();
4840    if (Ptr->getOpcode() == X86ISD::Wrapper ||
4841        Ptr->getOpcode() == X86ISD::WrapperRIP)
4842      Ptr = Ptr->getOperand(0);
4843
4844    auto *MaskCP = dyn_cast<ConstantPoolSDNode>(Ptr);
4845    if (!MaskCP || MaskCP->isMachineConstantPoolEntry())
4846      return false;
4847
4848    if (auto *C = dyn_cast<Constant>(MaskCP->getConstVal())) {
4849      DecodePSHUFBMask(C, Mask);
4850      if (Mask.empty())
4851        return false;
4852      break;
4853    }
4854
4855    return false;
4856  }
4857  case X86ISD::VPERMI:
4858    ImmN = N->getOperand(N->getNumOperands()-1);
4859    DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4860    IsUnary = true;
4861    break;
4862  case X86ISD::MOVSS:
4863  case X86ISD::MOVSD:
4864    DecodeScalarMoveMask(VT, /* IsLoad */ false, Mask);
4865    break;
4866  case X86ISD::VPERM2X128:
4867    ImmN = N->getOperand(N->getNumOperands()-1);
4868    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4869    if (Mask.empty()) return false;
4870    // Mask only contains negative index if an element is zero.
4871    if (std::any_of(Mask.begin(), Mask.end(),
4872                    [](int M){ return M == SM_SentinelZero; }))
4873      return false;
4874    break;
4875  case X86ISD::MOVSLDUP:
4876    DecodeMOVSLDUPMask(VT, Mask);
4877    IsUnary = true;
4878    break;
4879  case X86ISD::MOVSHDUP:
4880    DecodeMOVSHDUPMask(VT, Mask);
4881    IsUnary = true;
4882    break;
4883  case X86ISD::MOVDDUP:
4884    DecodeMOVDDUPMask(VT, Mask);
4885    IsUnary = true;
4886    break;
4887  case X86ISD::MOVLHPD:
4888  case X86ISD::MOVLPD:
4889  case X86ISD::MOVLPS:
4890    // Not yet implemented
4891    return false;
4892  case X86ISD::VPERMV: {
4893    IsUnary = true;
4894    SDValue MaskNode = N->getOperand(0);
4895    while (MaskNode->getOpcode() == ISD::BITCAST)
4896      MaskNode = MaskNode->getOperand(0);
4897
4898    unsigned MaskLoBits = Log2_64(VT.getVectorNumElements());
4899    SmallVector<uint64_t, 32> RawMask;
4900    if (MaskNode->getOpcode() == ISD::BUILD_VECTOR) {
4901      // If we have a build-vector, then things are easy.
4902      assert(MaskNode.getSimpleValueType().isInteger() &&
4903             MaskNode.getSimpleValueType().getVectorNumElements() ==
4904             VT.getVectorNumElements());
4905
4906      for (unsigned i = 0; i < MaskNode->getNumOperands(); ++i) {
4907        SDValue Op = MaskNode->getOperand(i);
4908        if (Op->getOpcode() == ISD::UNDEF)
4909          RawMask.push_back((uint64_t)SM_SentinelUndef);
4910        else if (isa<ConstantSDNode>(Op)) {
4911          APInt MaskElement = cast<ConstantSDNode>(Op)->getAPIntValue();
4912          RawMask.push_back(MaskElement.getLoBits(MaskLoBits).getZExtValue());
4913        } else
4914          return false;
4915      }
4916      DecodeVPERMVMask(RawMask, Mask);
4917      break;
4918    }
4919    if (MaskNode->getOpcode() == X86ISD::VBROADCAST) {
4920      unsigned NumEltsInMask = MaskNode->getNumOperands();
4921      MaskNode = MaskNode->getOperand(0);
4922      auto *CN = dyn_cast<ConstantSDNode>(MaskNode);
4923      if (CN) {
4924        APInt MaskEltValue = CN->getAPIntValue();
4925        for (unsigned i = 0; i < NumEltsInMask; ++i)
4926          RawMask.push_back(MaskEltValue.getLoBits(MaskLoBits).getZExtValue());
4927        DecodeVPERMVMask(RawMask, Mask);
4928        break;
4929      }
4930      // It may be a scalar load
4931    }
4932
4933    auto *MaskLoad = dyn_cast<LoadSDNode>(MaskNode);
4934    if (!MaskLoad)
4935      return false;
4936
4937    SDValue Ptr = MaskLoad->getBasePtr();
4938    if (Ptr->getOpcode() == X86ISD::Wrapper ||
4939        Ptr->getOpcode() == X86ISD::WrapperRIP)
4940      Ptr = Ptr->getOperand(0);
4941
4942    auto *MaskCP = dyn_cast<ConstantPoolSDNode>(Ptr);
4943    if (!MaskCP || MaskCP->isMachineConstantPoolEntry())
4944      return false;
4945
4946    auto *C = dyn_cast<Constant>(MaskCP->getConstVal());
4947    if (C) {
4948      DecodeVPERMVMask(C, VT, Mask);
4949      if (Mask.empty())
4950        return false;
4951      break;
4952    }
4953    return false;
4954  }
4955  case X86ISD::VPERMV3: {
4956    IsUnary = false;
4957    SDValue MaskNode = N->getOperand(1);
4958    while (MaskNode->getOpcode() == ISD::BITCAST)
4959      MaskNode = MaskNode->getOperand(1);
4960
4961    if (MaskNode->getOpcode() == ISD::BUILD_VECTOR) {
4962      // If we have a build-vector, then things are easy.
4963      assert(MaskNode.getSimpleValueType().isInteger() &&
4964             MaskNode.getSimpleValueType().getVectorNumElements() ==
4965             VT.getVectorNumElements());
4966
4967      SmallVector<uint64_t, 32> RawMask;
4968      unsigned MaskLoBits = Log2_64(VT.getVectorNumElements()*2);
4969
4970      for (unsigned i = 0; i < MaskNode->getNumOperands(); ++i) {
4971        SDValue Op = MaskNode->getOperand(i);
4972        if (Op->getOpcode() == ISD::UNDEF)
4973          RawMask.push_back((uint64_t)SM_SentinelUndef);
4974        else {
4975          auto *CN = dyn_cast<ConstantSDNode>(Op.getNode());
4976          if (!CN)
4977            return false;
4978          APInt MaskElement = CN->getAPIntValue();
4979          RawMask.push_back(MaskElement.getLoBits(MaskLoBits).getZExtValue());
4980        }
4981      }
4982      DecodeVPERMV3Mask(RawMask, Mask);
4983      break;
4984    }
4985
4986    auto *MaskLoad = dyn_cast<LoadSDNode>(MaskNode);
4987    if (!MaskLoad)
4988      return false;
4989
4990    SDValue Ptr = MaskLoad->getBasePtr();
4991    if (Ptr->getOpcode() == X86ISD::Wrapper ||
4992        Ptr->getOpcode() == X86ISD::WrapperRIP)
4993      Ptr = Ptr->getOperand(0);
4994
4995    auto *MaskCP = dyn_cast<ConstantPoolSDNode>(Ptr);
4996    if (!MaskCP || MaskCP->isMachineConstantPoolEntry())
4997      return false;
4998
4999    auto *C = dyn_cast<Constant>(MaskCP->getConstVal());
5000    if (C) {
5001      DecodeVPERMV3Mask(C, VT, Mask);
5002      if (Mask.empty())
5003        return false;
5004      break;
5005    }
5006    return false;
5007  }
5008  default: llvm_unreachable("unknown target shuffle node");
5009  }
5010
5011  // If we have a fake unary shuffle, the shuffle mask is spread across two
5012  // inputs that are actually the same node. Re-map the mask to always point
5013  // into the first input.
5014  if (IsFakeUnary)
5015    for (int &M : Mask)
5016      if (M >= (int)Mask.size())
5017        M -= Mask.size();
5018
5019  return true;
5020}
5021
5022/// Returns the scalar element that will make up the ith
5023/// element of the result of the vector shuffle.
5024static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
5025                                   unsigned Depth) {
5026  if (Depth == 6)
5027    return SDValue();  // Limit search depth.
5028
5029  SDValue V = SDValue(N, 0);
5030  EVT VT = V.getValueType();
5031  unsigned Opcode = V.getOpcode();
5032
5033  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
5034  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
5035    int Elt = SV->getMaskElt(Index);
5036
5037    if (Elt < 0)
5038      return DAG.getUNDEF(VT.getVectorElementType());
5039
5040    unsigned NumElems = VT.getVectorNumElements();
5041    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
5042                                         : SV->getOperand(1);
5043    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
5044  }
5045
5046  // Recurse into target specific vector shuffles to find scalars.
5047  if (isTargetShuffle(Opcode)) {
5048    MVT ShufVT = V.getSimpleValueType();
5049    unsigned NumElems = ShufVT.getVectorNumElements();
5050    SmallVector<int, 16> ShuffleMask;
5051    bool IsUnary;
5052
5053    if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary))
5054      return SDValue();
5055
5056    int Elt = ShuffleMask[Index];
5057    if (Elt < 0)
5058      return DAG.getUNDEF(ShufVT.getVectorElementType());
5059
5060    SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
5061                                         : N->getOperand(1);
5062    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
5063                               Depth+1);
5064  }
5065
5066  // Actual nodes that may contain scalar elements
5067  if (Opcode == ISD::BITCAST) {
5068    V = V.getOperand(0);
5069    EVT SrcVT = V.getValueType();
5070    unsigned NumElems = VT.getVectorNumElements();
5071
5072    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
5073      return SDValue();
5074  }
5075
5076  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5077    return (Index == 0) ? V.getOperand(0)
5078                        : DAG.getUNDEF(VT.getVectorElementType());
5079
5080  if (V.getOpcode() == ISD::BUILD_VECTOR)
5081    return V.getOperand(Index);
5082
5083  return SDValue();
5084}
5085
5086/// Custom lower build_vector of v16i8.
5087static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
5088                                       unsigned NumNonZero, unsigned NumZero,
5089                                       SelectionDAG &DAG,
5090                                       const X86Subtarget* Subtarget,
5091                                       const TargetLowering &TLI) {
5092  if (NumNonZero > 8)
5093    return SDValue();
5094
5095  SDLoc dl(Op);
5096  SDValue V;
5097  bool First = true;
5098
5099  // SSE4.1 - use PINSRB to insert each byte directly.
5100  if (Subtarget->hasSSE41()) {
5101    for (unsigned i = 0; i < 16; ++i) {
5102      bool isNonZero = (NonZeros & (1 << i)) != 0;
5103      if (isNonZero) {
5104        if (First) {
5105          if (NumZero)
5106            V = getZeroVector(MVT::v16i8, Subtarget, DAG, dl);
5107          else
5108            V = DAG.getUNDEF(MVT::v16i8);
5109          First = false;
5110        }
5111        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
5112                        MVT::v16i8, V, Op.getOperand(i),
5113                        DAG.getIntPtrConstant(i, dl));
5114      }
5115    }
5116
5117    return V;
5118  }
5119
5120  // Pre-SSE4.1 - merge byte pairs and insert with PINSRW.
5121  for (unsigned i = 0; i < 16; ++i) {
5122    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
5123    if (ThisIsNonZero && First) {
5124      if (NumZero)
5125        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
5126      else
5127        V = DAG.getUNDEF(MVT::v8i16);
5128      First = false;
5129    }
5130
5131    if ((i & 1) != 0) {
5132      SDValue ThisElt, LastElt;
5133      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
5134      if (LastIsNonZero) {
5135        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
5136                              MVT::i16, Op.getOperand(i-1));
5137      }
5138      if (ThisIsNonZero) {
5139        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
5140        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
5141                              ThisElt, DAG.getConstant(8, dl, MVT::i8));
5142        if (LastIsNonZero)
5143          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
5144      } else
5145        ThisElt = LastElt;
5146
5147      if (ThisElt.getNode())
5148        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
5149                        DAG.getIntPtrConstant(i/2, dl));
5150    }
5151  }
5152
5153  return DAG.getBitcast(MVT::v16i8, V);
5154}
5155
5156/// Custom lower build_vector of v8i16.
5157static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
5158                                     unsigned NumNonZero, unsigned NumZero,
5159                                     SelectionDAG &DAG,
5160                                     const X86Subtarget* Subtarget,
5161                                     const TargetLowering &TLI) {
5162  if (NumNonZero > 4)
5163    return SDValue();
5164
5165  SDLoc dl(Op);
5166  SDValue V;
5167  bool First = true;
5168  for (unsigned i = 0; i < 8; ++i) {
5169    bool isNonZero = (NonZeros & (1 << i)) != 0;
5170    if (isNonZero) {
5171      if (First) {
5172        if (NumZero)
5173          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
5174        else
5175          V = DAG.getUNDEF(MVT::v8i16);
5176        First = false;
5177      }
5178      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
5179                      MVT::v8i16, V, Op.getOperand(i),
5180                      DAG.getIntPtrConstant(i, dl));
5181    }
5182  }
5183
5184  return V;
5185}
5186
5187/// Custom lower build_vector of v4i32 or v4f32.
5188static SDValue LowerBuildVectorv4x32(SDValue Op, SelectionDAG &DAG,
5189                                     const X86Subtarget *Subtarget,
5190                                     const TargetLowering &TLI) {
5191  // Find all zeroable elements.
5192  std::bitset<4> Zeroable;
5193  for (int i=0; i < 4; ++i) {
5194    SDValue Elt = Op->getOperand(i);
5195    Zeroable[i] = (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt));
5196  }
5197  assert(Zeroable.size() - Zeroable.count() > 1 &&
5198         "We expect at least two non-zero elements!");
5199
5200  // We only know how to deal with build_vector nodes where elements are either
5201  // zeroable or extract_vector_elt with constant index.
5202  SDValue FirstNonZero;
5203  unsigned FirstNonZeroIdx;
5204  for (unsigned i=0; i < 4; ++i) {
5205    if (Zeroable[i])
5206      continue;
5207    SDValue Elt = Op->getOperand(i);
5208    if (Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5209        !isa<ConstantSDNode>(Elt.getOperand(1)))
5210      return SDValue();
5211    // Make sure that this node is extracting from a 128-bit vector.
5212    MVT VT = Elt.getOperand(0).getSimpleValueType();
5213    if (!VT.is128BitVector())
5214      return SDValue();
5215    if (!FirstNonZero.getNode()) {
5216      FirstNonZero = Elt;
5217      FirstNonZeroIdx = i;
5218    }
5219  }
5220
5221  assert(FirstNonZero.getNode() && "Unexpected build vector of all zeros!");
5222  SDValue V1 = FirstNonZero.getOperand(0);
5223  MVT VT = V1.getSimpleValueType();
5224
5225  // See if this build_vector can be lowered as a blend with zero.
5226  SDValue Elt;
5227  unsigned EltMaskIdx, EltIdx;
5228  int Mask[4];
5229  for (EltIdx = 0; EltIdx < 4; ++EltIdx) {
5230    if (Zeroable[EltIdx]) {
5231      // The zero vector will be on the right hand side.
5232      Mask[EltIdx] = EltIdx+4;
5233      continue;
5234    }
5235
5236    Elt = Op->getOperand(EltIdx);
5237    // By construction, Elt is a EXTRACT_VECTOR_ELT with constant index.
5238    EltMaskIdx = cast<ConstantSDNode>(Elt.getOperand(1))->getZExtValue();
5239    if (Elt.getOperand(0) != V1 || EltMaskIdx != EltIdx)
5240      break;
5241    Mask[EltIdx] = EltIdx;
5242  }
5243
5244  if (EltIdx == 4) {
5245    // Let the shuffle legalizer deal with blend operations.
5246    SDValue VZero = getZeroVector(VT, Subtarget, DAG, SDLoc(Op));
5247    if (V1.getSimpleValueType() != VT)
5248      V1 = DAG.getNode(ISD::BITCAST, SDLoc(V1), VT, V1);
5249    return DAG.getVectorShuffle(VT, SDLoc(V1), V1, VZero, &Mask[0]);
5250  }
5251
5252  // See if we can lower this build_vector to a INSERTPS.
5253  if (!Subtarget->hasSSE41())
5254    return SDValue();
5255
5256  SDValue V2 = Elt.getOperand(0);
5257  if (Elt == FirstNonZero && EltIdx == FirstNonZeroIdx)
5258    V1 = SDValue();
5259
5260  bool CanFold = true;
5261  for (unsigned i = EltIdx + 1; i < 4 && CanFold; ++i) {
5262    if (Zeroable[i])
5263      continue;
5264
5265    SDValue Current = Op->getOperand(i);
5266    SDValue SrcVector = Current->getOperand(0);
5267    if (!V1.getNode())
5268      V1 = SrcVector;
5269    CanFold = SrcVector == V1 &&
5270      cast<ConstantSDNode>(Current.getOperand(1))->getZExtValue() == i;
5271  }
5272
5273  if (!CanFold)
5274    return SDValue();
5275
5276  assert(V1.getNode() && "Expected at least two non-zero elements!");
5277  if (V1.getSimpleValueType() != MVT::v4f32)
5278    V1 = DAG.getNode(ISD::BITCAST, SDLoc(V1), MVT::v4f32, V1);
5279  if (V2.getSimpleValueType() != MVT::v4f32)
5280    V2 = DAG.getNode(ISD::BITCAST, SDLoc(V2), MVT::v4f32, V2);
5281
5282  // Ok, we can emit an INSERTPS instruction.
5283  unsigned ZMask = Zeroable.to_ulong();
5284
5285  unsigned InsertPSMask = EltMaskIdx << 6 | EltIdx << 4 | ZMask;
5286  assert((InsertPSMask & ~0xFFu) == 0 && "Invalid mask!");
5287  SDLoc DL(Op);
5288  SDValue Result = DAG.getNode(X86ISD::INSERTPS, DL, MVT::v4f32, V1, V2,
5289                               DAG.getIntPtrConstant(InsertPSMask, DL));
5290  return DAG.getBitcast(VT, Result);
5291}
5292
5293/// Return a vector logical shift node.
5294static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
5295                         unsigned NumBits, SelectionDAG &DAG,
5296                         const TargetLowering &TLI, SDLoc dl) {
5297  assert(VT.is128BitVector() && "Unknown type for VShift");
5298  MVT ShVT = MVT::v2i64;
5299  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
5300  SrcOp = DAG.getBitcast(ShVT, SrcOp);
5301  MVT ScalarShiftTy = TLI.getScalarShiftAmountTy(DAG.getDataLayout(), VT);
5302  assert(NumBits % 8 == 0 && "Only support byte sized shifts");
5303  SDValue ShiftVal = DAG.getConstant(NumBits/8, dl, ScalarShiftTy);
5304  return DAG.getBitcast(VT, DAG.getNode(Opc, dl, ShVT, SrcOp, ShiftVal));
5305}
5306
5307static SDValue
5308LowerAsSplatVectorLoad(SDValue SrcOp, MVT VT, SDLoc dl, SelectionDAG &DAG) {
5309
5310  // Check if the scalar load can be widened into a vector load. And if
5311  // the address is "base + cst" see if the cst can be "absorbed" into
5312  // the shuffle mask.
5313  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
5314    SDValue Ptr = LD->getBasePtr();
5315    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
5316      return SDValue();
5317    EVT PVT = LD->getValueType(0);
5318    if (PVT != MVT::i32 && PVT != MVT::f32)
5319      return SDValue();
5320
5321    int FI = -1;
5322    int64_t Offset = 0;
5323    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
5324      FI = FINode->getIndex();
5325      Offset = 0;
5326    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
5327               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
5328      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
5329      Offset = Ptr.getConstantOperandVal(1);
5330      Ptr = Ptr.getOperand(0);
5331    } else {
5332      return SDValue();
5333    }
5334
5335    // FIXME: 256-bit vector instructions don't require a strict alignment,
5336    // improve this code to support it better.
5337    unsigned RequiredAlign = VT.getSizeInBits()/8;
5338    SDValue Chain = LD->getChain();
5339    // Make sure the stack object alignment is at least 16 or 32.
5340    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5341    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
5342      if (MFI->isFixedObjectIndex(FI)) {
5343        // Can't change the alignment. FIXME: It's possible to compute
5344        // the exact stack offset and reference FI + adjust offset instead.
5345        // If someone *really* cares about this. That's the way to implement it.
5346        return SDValue();
5347      } else {
5348        MFI->setObjectAlignment(FI, RequiredAlign);
5349      }
5350    }
5351
5352    // (Offset % 16 or 32) must be multiple of 4. Then address is then
5353    // Ptr + (Offset & ~15).
5354    if (Offset < 0)
5355      return SDValue();
5356    if ((Offset % RequiredAlign) & 3)
5357      return SDValue();
5358    int64_t StartOffset = Offset & ~int64_t(RequiredAlign - 1);
5359    if (StartOffset) {
5360      SDLoc DL(Ptr);
5361      Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
5362                        DAG.getConstant(StartOffset, DL, Ptr.getValueType()));
5363    }
5364
5365    int EltNo = (Offset - StartOffset) >> 2;
5366    unsigned NumElems = VT.getVectorNumElements();
5367
5368    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
5369    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
5370                             LD->getPointerInfo().getWithOffset(StartOffset),
5371                             false, false, false, 0);
5372
5373    SmallVector<int, 8> Mask(NumElems, EltNo);
5374
5375    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
5376  }
5377
5378  return SDValue();
5379}
5380
5381/// Given the initializing elements 'Elts' of a vector of type 'VT', see if the
5382/// elements can be replaced by a single large load which has the same value as
5383/// a build_vector or insert_subvector whose loaded operands are 'Elts'.
5384///
5385/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
5386///
5387/// FIXME: we'd also like to handle the case where the last elements are zero
5388/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
5389/// There's even a handy isZeroNode for that purpose.
5390static SDValue EltsFromConsecutiveLoads(EVT VT, ArrayRef<SDValue> Elts,
5391                                        SDLoc &DL, SelectionDAG &DAG,
5392                                        bool isAfterLegalize) {
5393  unsigned NumElems = Elts.size();
5394
5395  LoadSDNode *LDBase = nullptr;
5396  unsigned LastLoadedElt = -1U;
5397
5398  // For each element in the initializer, see if we've found a load or an undef.
5399  // If we don't find an initial load element, or later load elements are
5400  // non-consecutive, bail out.
5401  for (unsigned i = 0; i < NumElems; ++i) {
5402    SDValue Elt = Elts[i];
5403    // Look through a bitcast.
5404    if (Elt.getNode() && Elt.getOpcode() == ISD::BITCAST)
5405      Elt = Elt.getOperand(0);
5406    if (!Elt.getNode() ||
5407        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
5408      return SDValue();
5409    if (!LDBase) {
5410      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
5411        return SDValue();
5412      LDBase = cast<LoadSDNode>(Elt.getNode());
5413      LastLoadedElt = i;
5414      continue;
5415    }
5416    if (Elt.getOpcode() == ISD::UNDEF)
5417      continue;
5418
5419    LoadSDNode *LD = cast<LoadSDNode>(Elt);
5420    EVT LdVT = Elt.getValueType();
5421    // Each loaded element must be the correct fractional portion of the
5422    // requested vector load.
5423    if (LdVT.getSizeInBits() != VT.getSizeInBits() / NumElems)
5424      return SDValue();
5425    if (!DAG.isConsecutiveLoad(LD, LDBase, LdVT.getSizeInBits() / 8, i))
5426      return SDValue();
5427    LastLoadedElt = i;
5428  }
5429
5430  // If we have found an entire vector of loads and undefs, then return a large
5431  // load of the entire vector width starting at the base pointer.  If we found
5432  // consecutive loads for the low half, generate a vzext_load node.
5433  if (LastLoadedElt == NumElems - 1) {
5434    assert(LDBase && "Did not find base load for merging consecutive loads");
5435    EVT EltVT = LDBase->getValueType(0);
5436    // Ensure that the input vector size for the merged loads matches the
5437    // cumulative size of the input elements.
5438    if (VT.getSizeInBits() != EltVT.getSizeInBits() * NumElems)
5439      return SDValue();
5440
5441    if (isAfterLegalize &&
5442        !DAG.getTargetLoweringInfo().isOperationLegal(ISD::LOAD, VT))
5443      return SDValue();
5444
5445    SDValue NewLd = SDValue();
5446
5447    NewLd = DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5448                        LDBase->getPointerInfo(), LDBase->isVolatile(),
5449                        LDBase->isNonTemporal(), LDBase->isInvariant(),
5450                        LDBase->getAlignment());
5451
5452    if (LDBase->hasAnyUseOfValue(1)) {
5453      SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
5454                                     SDValue(LDBase, 1),
5455                                     SDValue(NewLd.getNode(), 1));
5456      DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
5457      DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
5458                             SDValue(NewLd.getNode(), 1));
5459    }
5460
5461    return NewLd;
5462  }
5463
5464  //TODO: The code below fires only for for loading the low v2i32 / v2f32
5465  //of a v4i32 / v4f32. It's probably worth generalizing.
5466  EVT EltVT = VT.getVectorElementType();
5467  if (NumElems == 4 && LastLoadedElt == 1 && (EltVT.getSizeInBits() == 32) &&
5468      DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
5469    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
5470    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
5471    SDValue ResNode =
5472        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, MVT::i64,
5473                                LDBase->getPointerInfo(),
5474                                LDBase->getAlignment(),
5475                                false/*isVolatile*/, true/*ReadMem*/,
5476                                false/*WriteMem*/);
5477
5478    // Make sure the newly-created LOAD is in the same position as LDBase in
5479    // terms of dependency. We create a TokenFactor for LDBase and ResNode, and
5480    // update uses of LDBase's output chain to use the TokenFactor.
5481    if (LDBase->hasAnyUseOfValue(1)) {
5482      SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
5483                             SDValue(LDBase, 1), SDValue(ResNode.getNode(), 1));
5484      DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
5485      DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
5486                             SDValue(ResNode.getNode(), 1));
5487    }
5488
5489    return DAG.getBitcast(VT, ResNode);
5490  }
5491  return SDValue();
5492}
5493
5494/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
5495/// to generate a splat value for the following cases:
5496/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
5497/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
5498/// a scalar load, or a constant.
5499/// The VBROADCAST node is returned when a pattern is found,
5500/// or SDValue() otherwise.
5501static SDValue LowerVectorBroadcast(SDValue Op, const X86Subtarget* Subtarget,
5502                                    SelectionDAG &DAG) {
5503  // VBROADCAST requires AVX.
5504  // TODO: Splats could be generated for non-AVX CPUs using SSE
5505  // instructions, but there's less potential gain for only 128-bit vectors.
5506  if (!Subtarget->hasAVX())
5507    return SDValue();
5508
5509  MVT VT = Op.getSimpleValueType();
5510  SDLoc dl(Op);
5511
5512  assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()) &&
5513         "Unsupported vector type for broadcast.");
5514
5515  SDValue Ld;
5516  bool ConstSplatVal;
5517
5518  switch (Op.getOpcode()) {
5519    default:
5520      // Unknown pattern found.
5521      return SDValue();
5522
5523    case ISD::BUILD_VECTOR: {
5524      auto *BVOp = cast<BuildVectorSDNode>(Op.getNode());
5525      BitVector UndefElements;
5526      SDValue Splat = BVOp->getSplatValue(&UndefElements);
5527
5528      // We need a splat of a single value to use broadcast, and it doesn't
5529      // make any sense if the value is only in one element of the vector.
5530      if (!Splat || (VT.getVectorNumElements() - UndefElements.count()) <= 1)
5531        return SDValue();
5532
5533      Ld = Splat;
5534      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5535                       Ld.getOpcode() == ISD::ConstantFP);
5536
5537      // Make sure that all of the users of a non-constant load are from the
5538      // BUILD_VECTOR node.
5539      if (!ConstSplatVal && !BVOp->isOnlyUserOf(Ld.getNode()))
5540        return SDValue();
5541      break;
5542    }
5543
5544    case ISD::VECTOR_SHUFFLE: {
5545      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5546
5547      // Shuffles must have a splat mask where the first element is
5548      // broadcasted.
5549      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
5550        return SDValue();
5551
5552      SDValue Sc = Op.getOperand(0);
5553      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR &&
5554          Sc.getOpcode() != ISD::BUILD_VECTOR) {
5555
5556        if (!Subtarget->hasInt256())
5557          return SDValue();
5558
5559        // Use the register form of the broadcast instruction available on AVX2.
5560        if (VT.getSizeInBits() >= 256)
5561          Sc = Extract128BitVector(Sc, 0, DAG, dl);
5562        return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc);
5563      }
5564
5565      Ld = Sc.getOperand(0);
5566      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5567                       Ld.getOpcode() == ISD::ConstantFP);
5568
5569      // The scalar_to_vector node and the suspected
5570      // load node must have exactly one user.
5571      // Constants may have multiple users.
5572
5573      // AVX-512 has register version of the broadcast
5574      bool hasRegVer = Subtarget->hasAVX512() && VT.is512BitVector() &&
5575        Ld.getValueType().getSizeInBits() >= 32;
5576      if (!ConstSplatVal && ((!Sc.hasOneUse() || !Ld.hasOneUse()) &&
5577          !hasRegVer))
5578        return SDValue();
5579      break;
5580    }
5581  }
5582
5583  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5584  bool IsGE256 = (VT.getSizeInBits() >= 256);
5585
5586  // When optimizing for size, generate up to 5 extra bytes for a broadcast
5587  // instruction to save 8 or more bytes of constant pool data.
5588  // TODO: If multiple splats are generated to load the same constant,
5589  // it may be detrimental to overall size. There needs to be a way to detect
5590  // that condition to know if this is truly a size win.
5591  bool OptForSize = DAG.getMachineFunction().getFunction()->optForSize();
5592
5593  // Handle broadcasting a single constant scalar from the constant pool
5594  // into a vector.
5595  // On Sandybridge (no AVX2), it is still better to load a constant vector
5596  // from the constant pool and not to broadcast it from a scalar.
5597  // But override that restriction when optimizing for size.
5598  // TODO: Check if splatting is recommended for other AVX-capable CPUs.
5599  if (ConstSplatVal && (Subtarget->hasAVX2() || OptForSize)) {
5600    EVT CVT = Ld.getValueType();
5601    assert(!CVT.isVector() && "Must not broadcast a vector type");
5602
5603    // Splat f32, i32, v4f64, v4i64 in all cases with AVX2.
5604    // For size optimization, also splat v2f64 and v2i64, and for size opt
5605    // with AVX2, also splat i8 and i16.
5606    // With pattern matching, the VBROADCAST node may become a VMOVDDUP.
5607    if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64) ||
5608        (OptForSize && (ScalarSize == 64 || Subtarget->hasAVX2()))) {
5609      const Constant *C = nullptr;
5610      if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
5611        C = CI->getConstantIntValue();
5612      else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
5613        C = CF->getConstantFPValue();
5614
5615      assert(C && "Invalid constant type");
5616
5617      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5618      SDValue CP =
5619          DAG.getConstantPool(C, TLI.getPointerTy(DAG.getDataLayout()));
5620      unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
5621      Ld = DAG.getLoad(
5622          CVT, dl, DAG.getEntryNode(), CP,
5623          MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
5624          false, false, Alignment);
5625
5626      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5627    }
5628  }
5629
5630  bool IsLoad = ISD::isNormalLoad(Ld.getNode());
5631
5632  // Handle AVX2 in-register broadcasts.
5633  if (!IsLoad && Subtarget->hasInt256() &&
5634      (ScalarSize == 32 || (IsGE256 && ScalarSize == 64)))
5635    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5636
5637  // The scalar source must be a normal load.
5638  if (!IsLoad)
5639    return SDValue();
5640
5641  if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64) ||
5642      (Subtarget->hasVLX() && ScalarSize == 64))
5643    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5644
5645  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5646  // double since there is no vbroadcastsd xmm
5647  if (Subtarget->hasInt256() && Ld.getValueType().isInteger()) {
5648    if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
5649      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5650  }
5651
5652  // Unsupported broadcast.
5653  return SDValue();
5654}
5655
5656/// \brief For an EXTRACT_VECTOR_ELT with a constant index return the real
5657/// underlying vector and index.
5658///
5659/// Modifies \p ExtractedFromVec to the real vector and returns the real
5660/// index.
5661static int getUnderlyingExtractedFromVec(SDValue &ExtractedFromVec,
5662                                         SDValue ExtIdx) {
5663  int Idx = cast<ConstantSDNode>(ExtIdx)->getZExtValue();
5664  if (!isa<ShuffleVectorSDNode>(ExtractedFromVec))
5665    return Idx;
5666
5667  // For 256-bit vectors, LowerEXTRACT_VECTOR_ELT_SSE4 may have already
5668  // lowered this:
5669  //   (extract_vector_elt (v8f32 %vreg1), Constant<6>)
5670  // to:
5671  //   (extract_vector_elt (vector_shuffle<2,u,u,u>
5672  //                           (extract_subvector (v8f32 %vreg0), Constant<4>),
5673  //                           undef)
5674  //                       Constant<0>)
5675  // In this case the vector is the extract_subvector expression and the index
5676  // is 2, as specified by the shuffle.
5677  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(ExtractedFromVec);
5678  SDValue ShuffleVec = SVOp->getOperand(0);
5679  MVT ShuffleVecVT = ShuffleVec.getSimpleValueType();
5680  assert(ShuffleVecVT.getVectorElementType() ==
5681         ExtractedFromVec.getSimpleValueType().getVectorElementType());
5682
5683  int ShuffleIdx = SVOp->getMaskElt(Idx);
5684  if (isUndefOrInRange(ShuffleIdx, 0, ShuffleVecVT.getVectorNumElements())) {
5685    ExtractedFromVec = ShuffleVec;
5686    return ShuffleIdx;
5687  }
5688  return Idx;
5689}
5690
5691static SDValue buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) {
5692  MVT VT = Op.getSimpleValueType();
5693
5694  // Skip if insert_vec_elt is not supported.
5695  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5696  if (!TLI.isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT))
5697    return SDValue();
5698
5699  SDLoc DL(Op);
5700  unsigned NumElems = Op.getNumOperands();
5701
5702  SDValue VecIn1;
5703  SDValue VecIn2;
5704  SmallVector<unsigned, 4> InsertIndices;
5705  SmallVector<int, 8> Mask(NumElems, -1);
5706
5707  for (unsigned i = 0; i != NumElems; ++i) {
5708    unsigned Opc = Op.getOperand(i).getOpcode();
5709
5710    if (Opc == ISD::UNDEF)
5711      continue;
5712
5713    if (Opc != ISD::EXTRACT_VECTOR_ELT) {
5714      // Quit if more than 1 elements need inserting.
5715      if (InsertIndices.size() > 1)
5716        return SDValue();
5717
5718      InsertIndices.push_back(i);
5719      continue;
5720    }
5721
5722    SDValue ExtractedFromVec = Op.getOperand(i).getOperand(0);
5723    SDValue ExtIdx = Op.getOperand(i).getOperand(1);
5724    // Quit if non-constant index.
5725    if (!isa<ConstantSDNode>(ExtIdx))
5726      return SDValue();
5727    int Idx = getUnderlyingExtractedFromVec(ExtractedFromVec, ExtIdx);
5728
5729    // Quit if extracted from vector of different type.
5730    if (ExtractedFromVec.getValueType() != VT)
5731      return SDValue();
5732
5733    if (!VecIn1.getNode())
5734      VecIn1 = ExtractedFromVec;
5735    else if (VecIn1 != ExtractedFromVec) {
5736      if (!VecIn2.getNode())
5737        VecIn2 = ExtractedFromVec;
5738      else if (VecIn2 != ExtractedFromVec)
5739        // Quit if more than 2 vectors to shuffle
5740        return SDValue();
5741    }
5742
5743    if (ExtractedFromVec == VecIn1)
5744      Mask[i] = Idx;
5745    else if (ExtractedFromVec == VecIn2)
5746      Mask[i] = Idx + NumElems;
5747  }
5748
5749  if (!VecIn1.getNode())
5750    return SDValue();
5751
5752  VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
5753  SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, &Mask[0]);
5754  for (unsigned i = 0, e = InsertIndices.size(); i != e; ++i) {
5755    unsigned Idx = InsertIndices[i];
5756    NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx),
5757                     DAG.getIntPtrConstant(Idx, DL));
5758  }
5759
5760  return NV;
5761}
5762
5763static SDValue ConvertI1VectorToInteger(SDValue Op, SelectionDAG &DAG) {
5764  assert(ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
5765         Op.getScalarValueSizeInBits() == 1 &&
5766         "Can not convert non-constant vector");
5767  uint64_t Immediate = 0;
5768  for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) {
5769    SDValue In = Op.getOperand(idx);
5770    if (In.getOpcode() != ISD::UNDEF)
5771      Immediate |= cast<ConstantSDNode>(In)->getZExtValue() << idx;
5772  }
5773  SDLoc dl(Op);
5774  MVT VT =
5775   MVT::getIntegerVT(std::max((int)Op.getValueType().getSizeInBits(), 8));
5776  return DAG.getConstant(Immediate, dl, VT);
5777}
5778// Lower BUILD_VECTOR operation for v8i1 and v16i1 types.
5779SDValue
5780X86TargetLowering::LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const {
5781
5782  MVT VT = Op.getSimpleValueType();
5783  assert((VT.getVectorElementType() == MVT::i1) &&
5784         "Unexpected type in LowerBUILD_VECTORvXi1!");
5785
5786  SDLoc dl(Op);
5787  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5788    SDValue Cst = DAG.getTargetConstant(0, dl, MVT::i1);
5789    SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Cst);
5790    return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
5791  }
5792
5793  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5794    SDValue Cst = DAG.getTargetConstant(1, dl, MVT::i1);
5795    SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Cst);
5796    return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
5797  }
5798
5799  if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
5800    SDValue Imm = ConvertI1VectorToInteger(Op, DAG);
5801    if (Imm.getValueSizeInBits() == VT.getSizeInBits())
5802      return DAG.getBitcast(VT, Imm);
5803    SDValue ExtVec = DAG.getBitcast(MVT::v8i1, Imm);
5804    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, ExtVec,
5805                        DAG.getIntPtrConstant(0, dl));
5806  }
5807
5808  // Vector has one or more non-const elements
5809  uint64_t Immediate = 0;
5810  SmallVector<unsigned, 16> NonConstIdx;
5811  bool IsSplat = true;
5812  bool HasConstElts = false;
5813  int SplatIdx = -1;
5814  for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) {
5815    SDValue In = Op.getOperand(idx);
5816    if (In.getOpcode() == ISD::UNDEF)
5817      continue;
5818    if (!isa<ConstantSDNode>(In))
5819      NonConstIdx.push_back(idx);
5820    else {
5821      Immediate |= cast<ConstantSDNode>(In)->getZExtValue() << idx;
5822      HasConstElts = true;
5823    }
5824    if (SplatIdx == -1)
5825      SplatIdx = idx;
5826    else if (In != Op.getOperand(SplatIdx))
5827      IsSplat = false;
5828  }
5829
5830  // for splat use " (select i1 splat_elt, all-ones, all-zeroes)"
5831  if (IsSplat)
5832    return DAG.getNode(ISD::SELECT, dl, VT, Op.getOperand(SplatIdx),
5833                       DAG.getConstant(1, dl, VT),
5834                       DAG.getConstant(0, dl, VT));
5835
5836  // insert elements one by one
5837  SDValue DstVec;
5838  SDValue Imm;
5839  if (Immediate) {
5840    MVT ImmVT = MVT::getIntegerVT(std::max((int)VT.getSizeInBits(), 8));
5841    Imm = DAG.getConstant(Immediate, dl, ImmVT);
5842  }
5843  else if (HasConstElts)
5844    Imm = DAG.getConstant(0, dl, VT);
5845  else
5846    Imm = DAG.getUNDEF(VT);
5847  if (Imm.getValueSizeInBits() == VT.getSizeInBits())
5848    DstVec = DAG.getBitcast(VT, Imm);
5849  else {
5850    SDValue ExtVec = DAG.getBitcast(MVT::v8i1, Imm);
5851    DstVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, ExtVec,
5852                         DAG.getIntPtrConstant(0, dl));
5853  }
5854
5855  for (unsigned i = 0; i < NonConstIdx.size(); ++i) {
5856    unsigned InsertIdx = NonConstIdx[i];
5857    DstVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
5858                         Op.getOperand(InsertIdx),
5859                         DAG.getIntPtrConstant(InsertIdx, dl));
5860  }
5861  return DstVec;
5862}
5863
5864/// \brief Return true if \p N implements a horizontal binop and return the
5865/// operands for the horizontal binop into V0 and V1.
5866///
5867/// This is a helper function of LowerToHorizontalOp().
5868/// This function checks that the build_vector \p N in input implements a
5869/// horizontal operation. Parameter \p Opcode defines the kind of horizontal
5870/// operation to match.
5871/// For example, if \p Opcode is equal to ISD::ADD, then this function
5872/// checks if \p N implements a horizontal arithmetic add; if instead \p Opcode
5873/// is equal to ISD::SUB, then this function checks if this is a horizontal
5874/// arithmetic sub.
5875///
5876/// This function only analyzes elements of \p N whose indices are
5877/// in range [BaseIdx, LastIdx).
5878static bool isHorizontalBinOp(const BuildVectorSDNode *N, unsigned Opcode,
5879                              SelectionDAG &DAG,
5880                              unsigned BaseIdx, unsigned LastIdx,
5881                              SDValue &V0, SDValue &V1) {
5882  EVT VT = N->getValueType(0);
5883
5884  assert(BaseIdx * 2 <= LastIdx && "Invalid Indices in input!");
5885  assert(VT.isVector() && VT.getVectorNumElements() >= LastIdx &&
5886         "Invalid Vector in input!");
5887
5888  bool IsCommutable = (Opcode == ISD::ADD || Opcode == ISD::FADD);
5889  bool CanFold = true;
5890  unsigned ExpectedVExtractIdx = BaseIdx;
5891  unsigned NumElts = LastIdx - BaseIdx;
5892  V0 = DAG.getUNDEF(VT);
5893  V1 = DAG.getUNDEF(VT);
5894
5895  // Check if N implements a horizontal binop.
5896  for (unsigned i = 0, e = NumElts; i != e && CanFold; ++i) {
5897    SDValue Op = N->getOperand(i + BaseIdx);
5898
5899    // Skip UNDEFs.
5900    if (Op->getOpcode() == ISD::UNDEF) {
5901      // Update the expected vector extract index.
5902      if (i * 2 == NumElts)
5903        ExpectedVExtractIdx = BaseIdx;
5904      ExpectedVExtractIdx += 2;
5905      continue;
5906    }
5907
5908    CanFold = Op->getOpcode() == Opcode && Op->hasOneUse();
5909
5910    if (!CanFold)
5911      break;
5912
5913    SDValue Op0 = Op.getOperand(0);
5914    SDValue Op1 = Op.getOperand(1);
5915
5916    // Try to match the following pattern:
5917    // (BINOP (extract_vector_elt A, I), (extract_vector_elt A, I+1))
5918    CanFold = (Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5919        Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5920        Op0.getOperand(0) == Op1.getOperand(0) &&
5921        isa<ConstantSDNode>(Op0.getOperand(1)) &&
5922        isa<ConstantSDNode>(Op1.getOperand(1)));
5923    if (!CanFold)
5924      break;
5925
5926    unsigned I0 = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
5927    unsigned I1 = cast<ConstantSDNode>(Op1.getOperand(1))->getZExtValue();
5928
5929    if (i * 2 < NumElts) {
5930      if (V0.getOpcode() == ISD::UNDEF) {
5931        V0 = Op0.getOperand(0);
5932        if (V0.getValueType() != VT)
5933          return false;
5934      }
5935    } else {
5936      if (V1.getOpcode() == ISD::UNDEF) {
5937        V1 = Op0.getOperand(0);
5938        if (V1.getValueType() != VT)
5939          return false;
5940      }
5941      if (i * 2 == NumElts)
5942        ExpectedVExtractIdx = BaseIdx;
5943    }
5944
5945    SDValue Expected = (i * 2 < NumElts) ? V0 : V1;
5946    if (I0 == ExpectedVExtractIdx)
5947      CanFold = I1 == I0 + 1 && Op0.getOperand(0) == Expected;
5948    else if (IsCommutable && I1 == ExpectedVExtractIdx) {
5949      // Try to match the following dag sequence:
5950      // (BINOP (extract_vector_elt A, I+1), (extract_vector_elt A, I))
5951      CanFold = I0 == I1 + 1 && Op1.getOperand(0) == Expected;
5952    } else
5953      CanFold = false;
5954
5955    ExpectedVExtractIdx += 2;
5956  }
5957
5958  return CanFold;
5959}
5960
5961/// \brief Emit a sequence of two 128-bit horizontal add/sub followed by
5962/// a concat_vector.
5963///
5964/// This is a helper function of LowerToHorizontalOp().
5965/// This function expects two 256-bit vectors called V0 and V1.
5966/// At first, each vector is split into two separate 128-bit vectors.
5967/// Then, the resulting 128-bit vectors are used to implement two
5968/// horizontal binary operations.
5969///
5970/// The kind of horizontal binary operation is defined by \p X86Opcode.
5971///
5972/// \p Mode specifies how the 128-bit parts of V0 and V1 are passed in input to
5973/// the two new horizontal binop.
5974/// When Mode is set, the first horizontal binop dag node would take as input
5975/// the lower 128-bit of V0 and the upper 128-bit of V0. The second
5976/// horizontal binop dag node would take as input the lower 128-bit of V1
5977/// and the upper 128-bit of V1.
5978///   Example:
5979///     HADD V0_LO, V0_HI
5980///     HADD V1_LO, V1_HI
5981///
5982/// Otherwise, the first horizontal binop dag node takes as input the lower
5983/// 128-bit of V0 and the lower 128-bit of V1, and the second horizontal binop
5984/// dag node takes the upper 128-bit of V0 and the upper 128-bit of V1.
5985///   Example:
5986///     HADD V0_LO, V1_LO
5987///     HADD V0_HI, V1_HI
5988///
5989/// If \p isUndefLO is set, then the algorithm propagates UNDEF to the lower
5990/// 128-bits of the result. If \p isUndefHI is set, then UNDEF is propagated to
5991/// the upper 128-bits of the result.
5992static SDValue ExpandHorizontalBinOp(const SDValue &V0, const SDValue &V1,
5993                                     SDLoc DL, SelectionDAG &DAG,
5994                                     unsigned X86Opcode, bool Mode,
5995                                     bool isUndefLO, bool isUndefHI) {
5996  EVT VT = V0.getValueType();
5997  assert(VT.is256BitVector() && VT == V1.getValueType() &&
5998         "Invalid nodes in input!");
5999
6000  unsigned NumElts = VT.getVectorNumElements();
6001  SDValue V0_LO = Extract128BitVector(V0, 0, DAG, DL);
6002  SDValue V0_HI = Extract128BitVector(V0, NumElts/2, DAG, DL);
6003  SDValue V1_LO = Extract128BitVector(V1, 0, DAG, DL);
6004  SDValue V1_HI = Extract128BitVector(V1, NumElts/2, DAG, DL);
6005  EVT NewVT = V0_LO.getValueType();
6006
6007  SDValue LO = DAG.getUNDEF(NewVT);
6008  SDValue HI = DAG.getUNDEF(NewVT);
6009
6010  if (Mode) {
6011    // Don't emit a horizontal binop if the result is expected to be UNDEF.
6012    if (!isUndefLO && V0->getOpcode() != ISD::UNDEF)
6013      LO = DAG.getNode(X86Opcode, DL, NewVT, V0_LO, V0_HI);
6014    if (!isUndefHI && V1->getOpcode() != ISD::UNDEF)
6015      HI = DAG.getNode(X86Opcode, DL, NewVT, V1_LO, V1_HI);
6016  } else {
6017    // Don't emit a horizontal binop if the result is expected to be UNDEF.
6018    if (!isUndefLO && (V0_LO->getOpcode() != ISD::UNDEF ||
6019                       V1_LO->getOpcode() != ISD::UNDEF))
6020      LO = DAG.getNode(X86Opcode, DL, NewVT, V0_LO, V1_LO);
6021
6022    if (!isUndefHI && (V0_HI->getOpcode() != ISD::UNDEF ||
6023                       V1_HI->getOpcode() != ISD::UNDEF))
6024      HI = DAG.getNode(X86Opcode, DL, NewVT, V0_HI, V1_HI);
6025  }
6026
6027  return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LO, HI);
6028}
6029
6030/// Try to fold a build_vector that performs an 'addsub' to an X86ISD::ADDSUB
6031/// node.
6032static SDValue LowerToAddSub(const BuildVectorSDNode *BV,
6033                             const X86Subtarget *Subtarget, SelectionDAG &DAG) {
6034  MVT VT = BV->getSimpleValueType(0);
6035  if ((!Subtarget->hasSSE3() || (VT != MVT::v4f32 && VT != MVT::v2f64)) &&
6036      (!Subtarget->hasAVX() || (VT != MVT::v8f32 && VT != MVT::v4f64)))
6037    return SDValue();
6038
6039  SDLoc DL(BV);
6040  unsigned NumElts = VT.getVectorNumElements();
6041  SDValue InVec0 = DAG.getUNDEF(VT);
6042  SDValue InVec1 = DAG.getUNDEF(VT);
6043
6044  assert((VT == MVT::v8f32 || VT == MVT::v4f64 || VT == MVT::v4f32 ||
6045          VT == MVT::v2f64) && "build_vector with an invalid type found!");
6046
6047  // Odd-numbered elements in the input build vector are obtained from
6048  // adding two integer/float elements.
6049  // Even-numbered elements in the input build vector are obtained from
6050  // subtracting two integer/float elements.
6051  unsigned ExpectedOpcode = ISD::FSUB;
6052  unsigned NextExpectedOpcode = ISD::FADD;
6053  bool AddFound = false;
6054  bool SubFound = false;
6055
6056  for (unsigned i = 0, e = NumElts; i != e; ++i) {
6057    SDValue Op = BV->getOperand(i);
6058
6059    // Skip 'undef' values.
6060    unsigned Opcode = Op.getOpcode();
6061    if (Opcode == ISD::UNDEF) {
6062      std::swap(ExpectedOpcode, NextExpectedOpcode);
6063      continue;
6064    }
6065
6066    // Early exit if we found an unexpected opcode.
6067    if (Opcode != ExpectedOpcode)
6068      return SDValue();
6069
6070    SDValue Op0 = Op.getOperand(0);
6071    SDValue Op1 = Op.getOperand(1);
6072
6073    // Try to match the following pattern:
6074    // (BINOP (extract_vector_elt A, i), (extract_vector_elt B, i))
6075    // Early exit if we cannot match that sequence.
6076    if (Op0.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
6077        Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
6078        !isa<ConstantSDNode>(Op0.getOperand(1)) ||
6079        !isa<ConstantSDNode>(Op1.getOperand(1)) ||
6080        Op0.getOperand(1) != Op1.getOperand(1))
6081      return SDValue();
6082
6083    unsigned I0 = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
6084    if (I0 != i)
6085      return SDValue();
6086
6087    // We found a valid add/sub node. Update the information accordingly.
6088    if (i & 1)
6089      AddFound = true;
6090    else
6091      SubFound = true;
6092
6093    // Update InVec0 and InVec1.
6094    if (InVec0.getOpcode() == ISD::UNDEF) {
6095      InVec0 = Op0.getOperand(0);
6096      if (InVec0.getSimpleValueType() != VT)
6097        return SDValue();
6098    }
6099    if (InVec1.getOpcode() == ISD::UNDEF) {
6100      InVec1 = Op1.getOperand(0);
6101      if (InVec1.getSimpleValueType() != VT)
6102        return SDValue();
6103    }
6104
6105    // Make sure that operands in input to each add/sub node always
6106    // come from a same pair of vectors.
6107    if (InVec0 != Op0.getOperand(0)) {
6108      if (ExpectedOpcode == ISD::FSUB)
6109        return SDValue();
6110
6111      // FADD is commutable. Try to commute the operands
6112      // and then test again.
6113      std::swap(Op0, Op1);
6114      if (InVec0 != Op0.getOperand(0))
6115        return SDValue();
6116    }
6117
6118    if (InVec1 != Op1.getOperand(0))
6119      return SDValue();
6120
6121    // Update the pair of expected opcodes.
6122    std::swap(ExpectedOpcode, NextExpectedOpcode);
6123  }
6124
6125  // Don't try to fold this build_vector into an ADDSUB if the inputs are undef.
6126  if (AddFound && SubFound && InVec0.getOpcode() != ISD::UNDEF &&
6127      InVec1.getOpcode() != ISD::UNDEF)
6128    return DAG.getNode(X86ISD::ADDSUB, DL, VT, InVec0, InVec1);
6129
6130  return SDValue();
6131}
6132
6133/// Lower BUILD_VECTOR to a horizontal add/sub operation if possible.
6134static SDValue LowerToHorizontalOp(const BuildVectorSDNode *BV,
6135                                   const X86Subtarget *Subtarget,
6136                                   SelectionDAG &DAG) {
6137  MVT VT = BV->getSimpleValueType(0);
6138  unsigned NumElts = VT.getVectorNumElements();
6139  unsigned NumUndefsLO = 0;
6140  unsigned NumUndefsHI = 0;
6141  unsigned Half = NumElts/2;
6142
6143  // Count the number of UNDEF operands in the build_vector in input.
6144  for (unsigned i = 0, e = Half; i != e; ++i)
6145    if (BV->getOperand(i)->getOpcode() == ISD::UNDEF)
6146      NumUndefsLO++;
6147
6148  for (unsigned i = Half, e = NumElts; i != e; ++i)
6149    if (BV->getOperand(i)->getOpcode() == ISD::UNDEF)
6150      NumUndefsHI++;
6151
6152  // Early exit if this is either a build_vector of all UNDEFs or all the
6153  // operands but one are UNDEF.
6154  if (NumUndefsLO + NumUndefsHI + 1 >= NumElts)
6155    return SDValue();
6156
6157  SDLoc DL(BV);
6158  SDValue InVec0, InVec1;
6159  if ((VT == MVT::v4f32 || VT == MVT::v2f64) && Subtarget->hasSSE3()) {
6160    // Try to match an SSE3 float HADD/HSUB.
6161    if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, NumElts, InVec0, InVec1))
6162      return DAG.getNode(X86ISD::FHADD, DL, VT, InVec0, InVec1);
6163
6164    if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, NumElts, InVec0, InVec1))
6165      return DAG.getNode(X86ISD::FHSUB, DL, VT, InVec0, InVec1);
6166  } else if ((VT == MVT::v4i32 || VT == MVT::v8i16) && Subtarget->hasSSSE3()) {
6167    // Try to match an SSSE3 integer HADD/HSUB.
6168    if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, NumElts, InVec0, InVec1))
6169      return DAG.getNode(X86ISD::HADD, DL, VT, InVec0, InVec1);
6170
6171    if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, NumElts, InVec0, InVec1))
6172      return DAG.getNode(X86ISD::HSUB, DL, VT, InVec0, InVec1);
6173  }
6174
6175  if (!Subtarget->hasAVX())
6176    return SDValue();
6177
6178  if ((VT == MVT::v8f32 || VT == MVT::v4f64)) {
6179    // Try to match an AVX horizontal add/sub of packed single/double
6180    // precision floating point values from 256-bit vectors.
6181    SDValue InVec2, InVec3;
6182    if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, Half, InVec0, InVec1) &&
6183        isHorizontalBinOp(BV, ISD::FADD, DAG, Half, NumElts, InVec2, InVec3) &&
6184        ((InVec0.getOpcode() == ISD::UNDEF ||
6185          InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) &&
6186        ((InVec1.getOpcode() == ISD::UNDEF ||
6187          InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3))
6188      return DAG.getNode(X86ISD::FHADD, DL, VT, InVec0, InVec1);
6189
6190    if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, Half, InVec0, InVec1) &&
6191        isHorizontalBinOp(BV, ISD::FSUB, DAG, Half, NumElts, InVec2, InVec3) &&
6192        ((InVec0.getOpcode() == ISD::UNDEF ||
6193          InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) &&
6194        ((InVec1.getOpcode() == ISD::UNDEF ||
6195          InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3))
6196      return DAG.getNode(X86ISD::FHSUB, DL, VT, InVec0, InVec1);
6197  } else if (VT == MVT::v8i32 || VT == MVT::v16i16) {
6198    // Try to match an AVX2 horizontal add/sub of signed integers.
6199    SDValue InVec2, InVec3;
6200    unsigned X86Opcode;
6201    bool CanFold = true;
6202
6203    if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, Half, InVec0, InVec1) &&
6204        isHorizontalBinOp(BV, ISD::ADD, DAG, Half, NumElts, InVec2, InVec3) &&
6205        ((InVec0.getOpcode() == ISD::UNDEF ||
6206          InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) &&
6207        ((InVec1.getOpcode() == ISD::UNDEF ||
6208          InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3))
6209      X86Opcode = X86ISD::HADD;
6210    else if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, Half, InVec0, InVec1) &&
6211        isHorizontalBinOp(BV, ISD::SUB, DAG, Half, NumElts, InVec2, InVec3) &&
6212        ((InVec0.getOpcode() == ISD::UNDEF ||
6213          InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) &&
6214        ((InVec1.getOpcode() == ISD::UNDEF ||
6215          InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3))
6216      X86Opcode = X86ISD::HSUB;
6217    else
6218      CanFold = false;
6219
6220    if (CanFold) {
6221      // Fold this build_vector into a single horizontal add/sub.
6222      // Do this only if the target has AVX2.
6223      if (Subtarget->hasAVX2())
6224        return DAG.getNode(X86Opcode, DL, VT, InVec0, InVec1);
6225
6226      // Do not try to expand this build_vector into a pair of horizontal
6227      // add/sub if we can emit a pair of scalar add/sub.
6228      if (NumUndefsLO + 1 == Half || NumUndefsHI + 1 == Half)
6229        return SDValue();
6230
6231      // Convert this build_vector into a pair of horizontal binop followed by
6232      // a concat vector.
6233      bool isUndefLO = NumUndefsLO == Half;
6234      bool isUndefHI = NumUndefsHI == Half;
6235      return ExpandHorizontalBinOp(InVec0, InVec1, DL, DAG, X86Opcode, false,
6236                                   isUndefLO, isUndefHI);
6237    }
6238  }
6239
6240  if ((VT == MVT::v8f32 || VT == MVT::v4f64 || VT == MVT::v8i32 ||
6241       VT == MVT::v16i16) && Subtarget->hasAVX()) {
6242    unsigned X86Opcode;
6243    if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, NumElts, InVec0, InVec1))
6244      X86Opcode = X86ISD::HADD;
6245    else if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, NumElts, InVec0, InVec1))
6246      X86Opcode = X86ISD::HSUB;
6247    else if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, NumElts, InVec0, InVec1))
6248      X86Opcode = X86ISD::FHADD;
6249    else if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, NumElts, InVec0, InVec1))
6250      X86Opcode = X86ISD::FHSUB;
6251    else
6252      return SDValue();
6253
6254    // Don't try to expand this build_vector into a pair of horizontal add/sub
6255    // if we can simply emit a pair of scalar add/sub.
6256    if (NumUndefsLO + 1 == Half || NumUndefsHI + 1 == Half)
6257      return SDValue();
6258
6259    // Convert this build_vector into two horizontal add/sub followed by
6260    // a concat vector.
6261    bool isUndefLO = NumUndefsLO == Half;
6262    bool isUndefHI = NumUndefsHI == Half;
6263    return ExpandHorizontalBinOp(InVec0, InVec1, DL, DAG, X86Opcode, true,
6264                                 isUndefLO, isUndefHI);
6265  }
6266
6267  return SDValue();
6268}
6269
6270SDValue
6271X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6272  SDLoc dl(Op);
6273
6274  MVT VT = Op.getSimpleValueType();
6275  MVT ExtVT = VT.getVectorElementType();
6276  unsigned NumElems = Op.getNumOperands();
6277
6278  // Generate vectors for predicate vectors.
6279  if (VT.getVectorElementType() == MVT::i1 && Subtarget->hasAVX512())
6280    return LowerBUILD_VECTORvXi1(Op, DAG);
6281
6282  // Vectors containing all zeros can be matched by pxor and xorps later
6283  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
6284    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
6285    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
6286    if (VT == MVT::v4i32 || VT == MVT::v8i32 || VT == MVT::v16i32)
6287      return Op;
6288
6289    return getZeroVector(VT, Subtarget, DAG, dl);
6290  }
6291
6292  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
6293  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
6294  // vpcmpeqd on 256-bit vectors.
6295  if (Subtarget->hasSSE2() && ISD::isBuildVectorAllOnes(Op.getNode())) {
6296    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasInt256()))
6297      return Op;
6298
6299    if (!VT.is512BitVector())
6300      return getOnesVector(VT, Subtarget, DAG, dl);
6301  }
6302
6303  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(Op.getNode());
6304  if (SDValue AddSub = LowerToAddSub(BV, Subtarget, DAG))
6305    return AddSub;
6306  if (SDValue HorizontalOp = LowerToHorizontalOp(BV, Subtarget, DAG))
6307    return HorizontalOp;
6308  if (SDValue Broadcast = LowerVectorBroadcast(Op, Subtarget, DAG))
6309    return Broadcast;
6310
6311  unsigned EVTBits = ExtVT.getSizeInBits();
6312
6313  unsigned NumZero  = 0;
6314  unsigned NumNonZero = 0;
6315  uint64_t NonZeros = 0;
6316  bool IsAllConstants = true;
6317  SmallSet<SDValue, 8> Values;
6318  for (unsigned i = 0; i < NumElems; ++i) {
6319    SDValue Elt = Op.getOperand(i);
6320    if (Elt.getOpcode() == ISD::UNDEF)
6321      continue;
6322    Values.insert(Elt);
6323    if (Elt.getOpcode() != ISD::Constant &&
6324        Elt.getOpcode() != ISD::ConstantFP)
6325      IsAllConstants = false;
6326    if (X86::isZeroNode(Elt))
6327      NumZero++;
6328    else {
6329      assert(i < sizeof(NonZeros) * 8); // Make sure the shift is within range.
6330      NonZeros |= ((uint64_t)1 << i);
6331      NumNonZero++;
6332    }
6333  }
6334
6335  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
6336  if (NumNonZero == 0)
6337    return DAG.getUNDEF(VT);
6338
6339  // Special case for single non-zero, non-undef, element.
6340  if (NumNonZero == 1) {
6341    unsigned Idx = countTrailingZeros(NonZeros);
6342    SDValue Item = Op.getOperand(Idx);
6343
6344    // If this is an insertion of an i64 value on x86-32, and if the top bits of
6345    // the value are obviously zero, truncate the value to i32 and do the
6346    // insertion that way.  Only do this if the value is non-constant or if the
6347    // value is a constant being inserted into element 0.  It is cheaper to do
6348    // a constant pool load than it is to do a movd + shuffle.
6349    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
6350        (!IsAllConstants || Idx == 0)) {
6351      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
6352        // Handle SSE only.
6353        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
6354        MVT VecVT = MVT::v4i32;
6355
6356        // Truncate the value (which may itself be a constant) to i32, and
6357        // convert it to a vector with movd (S2V+shuffle to zero extend).
6358        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
6359        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
6360        return DAG.getBitcast(VT, getShuffleVectorZeroOrUndef(
6361                                      Item, Idx * 2, true, Subtarget, DAG));
6362      }
6363    }
6364
6365    // If we have a constant or non-constant insertion into the low element of
6366    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
6367    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
6368    // depending on what the source datatype is.
6369    if (Idx == 0) {
6370      if (NumZero == 0)
6371        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
6372
6373      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
6374          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
6375        if (VT.is512BitVector()) {
6376          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
6377          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
6378                             Item, DAG.getIntPtrConstant(0, dl));
6379        }
6380        assert((VT.is128BitVector() || VT.is256BitVector()) &&
6381               "Expected an SSE value type!");
6382        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
6383        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
6384        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
6385      }
6386
6387      // We can't directly insert an i8 or i16 into a vector, so zero extend
6388      // it to i32 first.
6389      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
6390        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
6391        if (VT.is256BitVector()) {
6392          if (Subtarget->hasAVX()) {
6393            Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v8i32, Item);
6394            Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
6395          } else {
6396            // Without AVX, we need to extend to a 128-bit vector and then
6397            // insert into the 256-bit vector.
6398            Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
6399            SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
6400            Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
6401          }
6402        } else {
6403          assert(VT.is128BitVector() && "Expected an SSE value type!");
6404          Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
6405          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
6406        }
6407        return DAG.getBitcast(VT, Item);
6408      }
6409    }
6410
6411    // Is it a vector logical left shift?
6412    if (NumElems == 2 && Idx == 1 &&
6413        X86::isZeroNode(Op.getOperand(0)) &&
6414        !X86::isZeroNode(Op.getOperand(1))) {
6415      unsigned NumBits = VT.getSizeInBits();
6416      return getVShift(true, VT,
6417                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6418                                   VT, Op.getOperand(1)),
6419                       NumBits/2, DAG, *this, dl);
6420    }
6421
6422    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
6423      return SDValue();
6424
6425    // Otherwise, if this is a vector with i32 or f32 elements, and the element
6426    // is a non-constant being inserted into an element other than the low one,
6427    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
6428    // movd/movss) to move this into the low element, then shuffle it into
6429    // place.
6430    if (EVTBits == 32) {
6431      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
6432      return getShuffleVectorZeroOrUndef(Item, Idx, NumZero > 0, Subtarget, DAG);
6433    }
6434  }
6435
6436  // Splat is obviously ok. Let legalizer expand it to a shuffle.
6437  if (Values.size() == 1) {
6438    if (EVTBits == 32) {
6439      // Instead of a shuffle like this:
6440      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
6441      // Check if it's possible to issue this instead.
6442      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
6443      unsigned Idx = countTrailingZeros(NonZeros);
6444      SDValue Item = Op.getOperand(Idx);
6445      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
6446        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
6447    }
6448    return SDValue();
6449  }
6450
6451  // A vector full of immediates; various special cases are already
6452  // handled, so this is best done with a single constant-pool load.
6453  if (IsAllConstants)
6454    return SDValue();
6455
6456  // For AVX-length vectors, see if we can use a vector load to get all of the
6457  // elements, otherwise build the individual 128-bit pieces and use
6458  // shuffles to put them in place.
6459  if (VT.is256BitVector() || VT.is512BitVector()) {
6460    SmallVector<SDValue, 64> V(Op->op_begin(), Op->op_begin() + NumElems);
6461
6462    // Check for a build vector of consecutive loads.
6463    if (SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG, false))
6464      return LD;
6465
6466    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
6467
6468    // Build both the lower and upper subvector.
6469    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT,
6470                                makeArrayRef(&V[0], NumElems/2));
6471    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT,
6472                                makeArrayRef(&V[NumElems / 2], NumElems/2));
6473
6474    // Recreate the wider vector with the lower and upper part.
6475    if (VT.is256BitVector())
6476      return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
6477    return Concat256BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
6478  }
6479
6480  // Let legalizer expand 2-wide build_vectors.
6481  if (EVTBits == 64) {
6482    if (NumNonZero == 1) {
6483      // One half is zero or undef.
6484      unsigned Idx = countTrailingZeros(NonZeros);
6485      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
6486                               Op.getOperand(Idx));
6487      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
6488    }
6489    return SDValue();
6490  }
6491
6492  // If element VT is < 32 bits, convert it to inserts into a zero vector.
6493  if (EVTBits == 8 && NumElems == 16)
6494    if (SDValue V = LowerBuildVectorv16i8(Op, NonZeros, NumNonZero, NumZero,
6495                                          DAG, Subtarget, *this))
6496      return V;
6497
6498  if (EVTBits == 16 && NumElems == 8)
6499    if (SDValue V = LowerBuildVectorv8i16(Op, NonZeros, NumNonZero, NumZero,
6500                                          DAG, Subtarget, *this))
6501      return V;
6502
6503  // If element VT is == 32 bits and has 4 elems, try to generate an INSERTPS
6504  if (EVTBits == 32 && NumElems == 4)
6505    if (SDValue V = LowerBuildVectorv4x32(Op, DAG, Subtarget, *this))
6506      return V;
6507
6508  // If element VT is == 32 bits, turn it into a number of shuffles.
6509  SmallVector<SDValue, 8> V(NumElems);
6510  if (NumElems == 4 && NumZero > 0) {
6511    for (unsigned i = 0; i < 4; ++i) {
6512      bool isZero = !(NonZeros & (1ULL << i));
6513      if (isZero)
6514        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
6515      else
6516        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
6517    }
6518
6519    for (unsigned i = 0; i < 2; ++i) {
6520      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
6521        default: break;
6522        case 0:
6523          V[i] = V[i*2];  // Must be a zero vector.
6524          break;
6525        case 1:
6526          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
6527          break;
6528        case 2:
6529          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
6530          break;
6531        case 3:
6532          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
6533          break;
6534      }
6535    }
6536
6537    bool Reverse1 = (NonZeros & 0x3) == 2;
6538    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
6539    int MaskVec[] = {
6540      Reverse1 ? 1 : 0,
6541      Reverse1 ? 0 : 1,
6542      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
6543      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
6544    };
6545    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
6546  }
6547
6548  if (Values.size() > 1 && VT.is128BitVector()) {
6549    // Check for a build vector of consecutive loads.
6550    for (unsigned i = 0; i < NumElems; ++i)
6551      V[i] = Op.getOperand(i);
6552
6553    // Check for elements which are consecutive loads.
6554    if (SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG, false))
6555      return LD;
6556
6557    // Check for a build vector from mostly shuffle plus few inserting.
6558    if (SDValue Sh = buildFromShuffleMostly(Op, DAG))
6559      return Sh;
6560
6561    // For SSE 4.1, use insertps to put the high elements into the low element.
6562    if (Subtarget->hasSSE41()) {
6563      SDValue Result;
6564      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
6565        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
6566      else
6567        Result = DAG.getUNDEF(VT);
6568
6569      for (unsigned i = 1; i < NumElems; ++i) {
6570        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
6571        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
6572                             Op.getOperand(i), DAG.getIntPtrConstant(i, dl));
6573      }
6574      return Result;
6575    }
6576
6577    // Otherwise, expand into a number of unpckl*, start by extending each of
6578    // our (non-undef) elements to the full vector width with the element in the
6579    // bottom slot of the vector (which generates no code for SSE).
6580    for (unsigned i = 0; i < NumElems; ++i) {
6581      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
6582        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
6583      else
6584        V[i] = DAG.getUNDEF(VT);
6585    }
6586
6587    // Next, we iteratively mix elements, e.g. for v4f32:
6588    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
6589    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
6590    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
6591    unsigned EltStride = NumElems >> 1;
6592    while (EltStride != 0) {
6593      for (unsigned i = 0; i < EltStride; ++i) {
6594        // If V[i+EltStride] is undef and this is the first round of mixing,
6595        // then it is safe to just drop this shuffle: V[i] is already in the
6596        // right place, the one element (since it's the first round) being
6597        // inserted as undef can be dropped.  This isn't safe for successive
6598        // rounds because they will permute elements within both vectors.
6599        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
6600            EltStride == NumElems/2)
6601          continue;
6602
6603        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
6604      }
6605      EltStride >>= 1;
6606    }
6607    return V[0];
6608  }
6609  return SDValue();
6610}
6611
6612// 256-bit AVX can use the vinsertf128 instruction
6613// to create 256-bit vectors from two other 128-bit ones.
6614static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
6615  SDLoc dl(Op);
6616  MVT ResVT = Op.getSimpleValueType();
6617
6618  assert((ResVT.is256BitVector() ||
6619          ResVT.is512BitVector()) && "Value type must be 256-/512-bit wide");
6620
6621  SDValue V1 = Op.getOperand(0);
6622  SDValue V2 = Op.getOperand(1);
6623  unsigned NumElems = ResVT.getVectorNumElements();
6624  if (ResVT.is256BitVector())
6625    return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
6626
6627  if (Op.getNumOperands() == 4) {
6628    MVT HalfVT = MVT::getVectorVT(ResVT.getVectorElementType(),
6629                                  ResVT.getVectorNumElements()/2);
6630    SDValue V3 = Op.getOperand(2);
6631    SDValue V4 = Op.getOperand(3);
6632    return Concat256BitVectors(Concat128BitVectors(V1, V2, HalfVT, NumElems/2, DAG, dl),
6633      Concat128BitVectors(V3, V4, HalfVT, NumElems/2, DAG, dl), ResVT, NumElems, DAG, dl);
6634  }
6635  return Concat256BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
6636}
6637
6638static SDValue LowerCONCAT_VECTORSvXi1(SDValue Op,
6639                                       const X86Subtarget *Subtarget,
6640                                       SelectionDAG & DAG) {
6641  SDLoc dl(Op);
6642  MVT ResVT = Op.getSimpleValueType();
6643  unsigned NumOfOperands = Op.getNumOperands();
6644
6645  assert(isPowerOf2_32(NumOfOperands) &&
6646         "Unexpected number of operands in CONCAT_VECTORS");
6647
6648  SDValue Undef = DAG.getUNDEF(ResVT);
6649  if (NumOfOperands > 2) {
6650    // Specialize the cases when all, or all but one, of the operands are undef.
6651    unsigned NumOfDefinedOps = 0;
6652    unsigned OpIdx = 0;
6653    for (unsigned i = 0; i < NumOfOperands; i++)
6654      if (!Op.getOperand(i).isUndef()) {
6655        NumOfDefinedOps++;
6656        OpIdx = i;
6657      }
6658    if (NumOfDefinedOps == 0)
6659      return Undef;
6660    if (NumOfDefinedOps == 1) {
6661      unsigned SubVecNumElts =
6662        Op.getOperand(OpIdx).getValueType().getVectorNumElements();
6663      SDValue IdxVal = DAG.getIntPtrConstant(SubVecNumElts * OpIdx, dl);
6664      return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Undef,
6665                         Op.getOperand(OpIdx), IdxVal);
6666    }
6667
6668    MVT HalfVT = MVT::getVectorVT(ResVT.getVectorElementType(),
6669                                  ResVT.getVectorNumElements()/2);
6670    SmallVector<SDValue, 2> Ops;
6671    for (unsigned i = 0; i < NumOfOperands/2; i++)
6672      Ops.push_back(Op.getOperand(i));
6673    SDValue Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfVT, Ops);
6674    Ops.clear();
6675    for (unsigned i = NumOfOperands/2; i < NumOfOperands; i++)
6676      Ops.push_back(Op.getOperand(i));
6677    SDValue Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfVT, Ops);
6678    return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi);
6679  }
6680
6681  // 2 operands
6682  SDValue V1 = Op.getOperand(0);
6683  SDValue V2 = Op.getOperand(1);
6684  unsigned NumElems = ResVT.getVectorNumElements();
6685  assert(V1.getValueType() == V2.getValueType() &&
6686         V1.getValueType().getVectorNumElements() == NumElems/2 &&
6687         "Unexpected operands in CONCAT_VECTORS");
6688
6689  if (ResVT.getSizeInBits() >= 16)
6690    return Op; // The operation is legal with KUNPCK
6691
6692  bool IsZeroV1 = ISD::isBuildVectorAllZeros(V1.getNode());
6693  bool IsZeroV2 = ISD::isBuildVectorAllZeros(V2.getNode());
6694  SDValue ZeroVec = getZeroVector(ResVT, Subtarget, DAG, dl);
6695  if (IsZeroV1 && IsZeroV2)
6696    return ZeroVec;
6697
6698  SDValue ZeroIdx = DAG.getIntPtrConstant(0, dl);
6699  if (V2.isUndef())
6700    return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Undef, V1, ZeroIdx);
6701  if (IsZeroV2)
6702    return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, ZeroVec, V1, ZeroIdx);
6703
6704  SDValue IdxVal = DAG.getIntPtrConstant(NumElems/2, dl);
6705  if (V1.isUndef())
6706    V2 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Undef, V2, IdxVal);
6707
6708  if (IsZeroV1)
6709    return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, ZeroVec, V2, IdxVal);
6710
6711  V1 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Undef, V1, ZeroIdx);
6712  return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, V1, V2, IdxVal);
6713}
6714
6715static SDValue LowerCONCAT_VECTORS(SDValue Op,
6716                                   const X86Subtarget *Subtarget,
6717                                   SelectionDAG &DAG) {
6718  MVT VT = Op.getSimpleValueType();
6719  if (VT.getVectorElementType() == MVT::i1)
6720    return LowerCONCAT_VECTORSvXi1(Op, Subtarget, DAG);
6721
6722  assert((VT.is256BitVector() && Op.getNumOperands() == 2) ||
6723         (VT.is512BitVector() && (Op.getNumOperands() == 2 ||
6724          Op.getNumOperands() == 4)));
6725
6726  // AVX can use the vinsertf128 instruction to create 256-bit vectors
6727  // from two other 128-bit ones.
6728
6729  // 512-bit vector may contain 2 256-bit vectors or 4 128-bit vectors
6730  return LowerAVXCONCAT_VECTORS(Op, DAG);
6731}
6732
6733//===----------------------------------------------------------------------===//
6734// Vector shuffle lowering
6735//
6736// This is an experimental code path for lowering vector shuffles on x86. It is
6737// designed to handle arbitrary vector shuffles and blends, gracefully
6738// degrading performance as necessary. It works hard to recognize idiomatic
6739// shuffles and lower them to optimal instruction patterns without leaving
6740// a framework that allows reasonably efficient handling of all vector shuffle
6741// patterns.
6742//===----------------------------------------------------------------------===//
6743
6744/// \brief Tiny helper function to identify a no-op mask.
6745///
6746/// This is a somewhat boring predicate function. It checks whether the mask
6747/// array input, which is assumed to be a single-input shuffle mask of the kind
6748/// used by the X86 shuffle instructions (not a fully general
6749/// ShuffleVectorSDNode mask) requires any shuffles to occur. Both undef and an
6750/// in-place shuffle are 'no-op's.
6751static bool isNoopShuffleMask(ArrayRef<int> Mask) {
6752  for (int i = 0, Size = Mask.size(); i < Size; ++i)
6753    if (Mask[i] != -1 && Mask[i] != i)
6754      return false;
6755  return true;
6756}
6757
6758/// \brief Helper function to classify a mask as a single-input mask.
6759///
6760/// This isn't a generic single-input test because in the vector shuffle
6761/// lowering we canonicalize single inputs to be the first input operand. This
6762/// means we can more quickly test for a single input by only checking whether
6763/// an input from the second operand exists. We also assume that the size of
6764/// mask corresponds to the size of the input vectors which isn't true in the
6765/// fully general case.
6766static bool isSingleInputShuffleMask(ArrayRef<int> Mask) {
6767  for (int M : Mask)
6768    if (M >= (int)Mask.size())
6769      return false;
6770  return true;
6771}
6772
6773/// \brief Test whether there are elements crossing 128-bit lanes in this
6774/// shuffle mask.
6775///
6776/// X86 divides up its shuffles into in-lane and cross-lane shuffle operations
6777/// and we routinely test for these.
6778static bool is128BitLaneCrossingShuffleMask(MVT VT, ArrayRef<int> Mask) {
6779  int LaneSize = 128 / VT.getScalarSizeInBits();
6780  int Size = Mask.size();
6781  for (int i = 0; i < Size; ++i)
6782    if (Mask[i] >= 0 && (Mask[i] % Size) / LaneSize != i / LaneSize)
6783      return true;
6784  return false;
6785}
6786
6787/// \brief Test whether a shuffle mask is equivalent within each 128-bit lane.
6788///
6789/// This checks a shuffle mask to see if it is performing the same
6790/// 128-bit lane-relative shuffle in each 128-bit lane. This trivially implies
6791/// that it is also not lane-crossing. It may however involve a blend from the
6792/// same lane of a second vector.
6793///
6794/// The specific repeated shuffle mask is populated in \p RepeatedMask, as it is
6795/// non-trivial to compute in the face of undef lanes. The representation is
6796/// *not* suitable for use with existing 128-bit shuffles as it will contain
6797/// entries from both V1 and V2 inputs to the wider mask.
6798static bool
6799is128BitLaneRepeatedShuffleMask(MVT VT, ArrayRef<int> Mask,
6800                                SmallVectorImpl<int> &RepeatedMask) {
6801  int LaneSize = 128 / VT.getScalarSizeInBits();
6802  RepeatedMask.resize(LaneSize, -1);
6803  int Size = Mask.size();
6804  for (int i = 0; i < Size; ++i) {
6805    if (Mask[i] < 0)
6806      continue;
6807    if ((Mask[i] % Size) / LaneSize != i / LaneSize)
6808      // This entry crosses lanes, so there is no way to model this shuffle.
6809      return false;
6810
6811    // Ok, handle the in-lane shuffles by detecting if and when they repeat.
6812    if (RepeatedMask[i % LaneSize] == -1)
6813      // This is the first non-undef entry in this slot of a 128-bit lane.
6814      RepeatedMask[i % LaneSize] =
6815          Mask[i] < Size ? Mask[i] % LaneSize : Mask[i] % LaneSize + Size;
6816    else if (RepeatedMask[i % LaneSize] + (i / LaneSize) * LaneSize != Mask[i])
6817      // Found a mismatch with the repeated mask.
6818      return false;
6819  }
6820  return true;
6821}
6822
6823/// \brief Checks whether a shuffle mask is equivalent to an explicit list of
6824/// arguments.
6825///
6826/// This is a fast way to test a shuffle mask against a fixed pattern:
6827///
6828///   if (isShuffleEquivalent(Mask, 3, 2, {1, 0})) { ... }
6829///
6830/// It returns true if the mask is exactly as wide as the argument list, and
6831/// each element of the mask is either -1 (signifying undef) or the value given
6832/// in the argument.
6833static bool isShuffleEquivalent(SDValue V1, SDValue V2, ArrayRef<int> Mask,
6834                                ArrayRef<int> ExpectedMask) {
6835  if (Mask.size() != ExpectedMask.size())
6836    return false;
6837
6838  int Size = Mask.size();
6839
6840  // If the values are build vectors, we can look through them to find
6841  // equivalent inputs that make the shuffles equivalent.
6842  auto *BV1 = dyn_cast<BuildVectorSDNode>(V1);
6843  auto *BV2 = dyn_cast<BuildVectorSDNode>(V2);
6844
6845  for (int i = 0; i < Size; ++i)
6846    if (Mask[i] != -1 && Mask[i] != ExpectedMask[i]) {
6847      auto *MaskBV = Mask[i] < Size ? BV1 : BV2;
6848      auto *ExpectedBV = ExpectedMask[i] < Size ? BV1 : BV2;
6849      if (!MaskBV || !ExpectedBV ||
6850          MaskBV->getOperand(Mask[i] % Size) !=
6851              ExpectedBV->getOperand(ExpectedMask[i] % Size))
6852        return false;
6853    }
6854
6855  return true;
6856}
6857
6858/// \brief Get a 4-lane 8-bit shuffle immediate for a mask.
6859///
6860/// This helper function produces an 8-bit shuffle immediate corresponding to
6861/// the ubiquitous shuffle encoding scheme used in x86 instructions for
6862/// shuffling 4 lanes. It can be used with most of the PSHUF instructions for
6863/// example.
6864///
6865/// NB: We rely heavily on "undef" masks preserving the input lane.
6866static SDValue getV4X86ShuffleImm8ForMask(ArrayRef<int> Mask, SDLoc DL,
6867                                          SelectionDAG &DAG) {
6868  assert(Mask.size() == 4 && "Only 4-lane shuffle masks");
6869  assert(Mask[0] >= -1 && Mask[0] < 4 && "Out of bound mask element!");
6870  assert(Mask[1] >= -1 && Mask[1] < 4 && "Out of bound mask element!");
6871  assert(Mask[2] >= -1 && Mask[2] < 4 && "Out of bound mask element!");
6872  assert(Mask[3] >= -1 && Mask[3] < 4 && "Out of bound mask element!");
6873
6874  unsigned Imm = 0;
6875  Imm |= (Mask[0] == -1 ? 0 : Mask[0]) << 0;
6876  Imm |= (Mask[1] == -1 ? 1 : Mask[1]) << 2;
6877  Imm |= (Mask[2] == -1 ? 2 : Mask[2]) << 4;
6878  Imm |= (Mask[3] == -1 ? 3 : Mask[3]) << 6;
6879  return DAG.getConstant(Imm, DL, MVT::i8);
6880}
6881
6882/// \brief Compute whether each element of a shuffle is zeroable.
6883///
6884/// A "zeroable" vector shuffle element is one which can be lowered to zero.
6885/// Either it is an undef element in the shuffle mask, the element of the input
6886/// referenced is undef, or the element of the input referenced is known to be
6887/// zero. Many x86 shuffles can zero lanes cheaply and we often want to handle
6888/// as many lanes with this technique as possible to simplify the remaining
6889/// shuffle.
6890static SmallBitVector computeZeroableShuffleElements(ArrayRef<int> Mask,
6891                                                     SDValue V1, SDValue V2) {
6892  SmallBitVector Zeroable(Mask.size(), false);
6893
6894  while (V1.getOpcode() == ISD::BITCAST)
6895    V1 = V1->getOperand(0);
6896  while (V2.getOpcode() == ISD::BITCAST)
6897    V2 = V2->getOperand(0);
6898
6899  bool V1IsZero = ISD::isBuildVectorAllZeros(V1.getNode());
6900  bool V2IsZero = ISD::isBuildVectorAllZeros(V2.getNode());
6901
6902  for (int i = 0, Size = Mask.size(); i < Size; ++i) {
6903    int M = Mask[i];
6904    // Handle the easy cases.
6905    if (M < 0 || (M >= 0 && M < Size && V1IsZero) || (M >= Size && V2IsZero)) {
6906      Zeroable[i] = true;
6907      continue;
6908    }
6909
6910    // If this is an index into a build_vector node (which has the same number
6911    // of elements), dig out the input value and use it.
6912    SDValue V = M < Size ? V1 : V2;
6913    if (V.getOpcode() != ISD::BUILD_VECTOR || Size != (int)V.getNumOperands())
6914      continue;
6915
6916    SDValue Input = V.getOperand(M % Size);
6917    // The UNDEF opcode check really should be dead code here, but not quite
6918    // worth asserting on (it isn't invalid, just unexpected).
6919    if (Input.getOpcode() == ISD::UNDEF || X86::isZeroNode(Input))
6920      Zeroable[i] = true;
6921  }
6922
6923  return Zeroable;
6924}
6925
6926// X86 has dedicated unpack instructions that can handle specific blend
6927// operations: UNPCKH and UNPCKL.
6928static SDValue lowerVectorShuffleWithUNPCK(SDLoc DL, MVT VT, ArrayRef<int> Mask,
6929                                           SDValue V1, SDValue V2,
6930                                           SelectionDAG &DAG) {
6931  int NumElts = VT.getVectorNumElements();
6932  int NumEltsInLane = 128 / VT.getScalarSizeInBits();
6933  SmallVector<int, 8> Unpckl;
6934  SmallVector<int, 8> Unpckh;
6935
6936  for (int i = 0; i < NumElts; ++i) {
6937    unsigned LaneStart = (i / NumEltsInLane) * NumEltsInLane;
6938    int LoPos = (i % NumEltsInLane) / 2 + LaneStart + NumElts * (i % 2);
6939    int HiPos = LoPos + NumEltsInLane / 2;
6940    Unpckl.push_back(LoPos);
6941    Unpckh.push_back(HiPos);
6942  }
6943
6944  if (isShuffleEquivalent(V1, V2, Mask, Unpckl))
6945    return DAG.getNode(X86ISD::UNPCKL, DL, VT, V1, V2);
6946  if (isShuffleEquivalent(V1, V2, Mask, Unpckh))
6947    return DAG.getNode(X86ISD::UNPCKH, DL, VT, V1, V2);
6948
6949  // Commute and try again.
6950  ShuffleVectorSDNode::commuteMask(Unpckl);
6951  if (isShuffleEquivalent(V1, V2, Mask, Unpckl))
6952    return DAG.getNode(X86ISD::UNPCKL, DL, VT, V2, V1);
6953
6954  ShuffleVectorSDNode::commuteMask(Unpckh);
6955  if (isShuffleEquivalent(V1, V2, Mask, Unpckh))
6956    return DAG.getNode(X86ISD::UNPCKH, DL, VT, V2, V1);
6957
6958  return SDValue();
6959}
6960
6961/// \brief Try to emit a bitmask instruction for a shuffle.
6962///
6963/// This handles cases where we can model a blend exactly as a bitmask due to
6964/// one of the inputs being zeroable.
6965static SDValue lowerVectorShuffleAsBitMask(SDLoc DL, MVT VT, SDValue V1,
6966                                           SDValue V2, ArrayRef<int> Mask,
6967                                           SelectionDAG &DAG) {
6968  MVT EltVT = VT.getVectorElementType();
6969  int NumEltBits = EltVT.getSizeInBits();
6970  MVT IntEltVT = MVT::getIntegerVT(NumEltBits);
6971  SDValue Zero = DAG.getConstant(0, DL, IntEltVT);
6972  SDValue AllOnes = DAG.getConstant(APInt::getAllOnesValue(NumEltBits), DL,
6973                                    IntEltVT);
6974  if (EltVT.isFloatingPoint()) {
6975    Zero = DAG.getBitcast(EltVT, Zero);
6976    AllOnes = DAG.getBitcast(EltVT, AllOnes);
6977  }
6978  SmallVector<SDValue, 16> VMaskOps(Mask.size(), Zero);
6979  SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
6980  SDValue V;
6981  for (int i = 0, Size = Mask.size(); i < Size; ++i) {
6982    if (Zeroable[i])
6983      continue;
6984    if (Mask[i] % Size != i)
6985      return SDValue(); // Not a blend.
6986    if (!V)
6987      V = Mask[i] < Size ? V1 : V2;
6988    else if (V != (Mask[i] < Size ? V1 : V2))
6989      return SDValue(); // Can only let one input through the mask.
6990
6991    VMaskOps[i] = AllOnes;
6992  }
6993  if (!V)
6994    return SDValue(); // No non-zeroable elements!
6995
6996  SDValue VMask = DAG.getNode(ISD::BUILD_VECTOR, DL, VT, VMaskOps);
6997  V = DAG.getNode(VT.isFloatingPoint()
6998                  ? (unsigned) X86ISD::FAND : (unsigned) ISD::AND,
6999                  DL, VT, V, VMask);
7000  return V;
7001}
7002
7003/// \brief Try to emit a blend instruction for a shuffle using bit math.
7004///
7005/// This is used as a fallback approach when first class blend instructions are
7006/// unavailable. Currently it is only suitable for integer vectors, but could
7007/// be generalized for floating point vectors if desirable.
7008static SDValue lowerVectorShuffleAsBitBlend(SDLoc DL, MVT VT, SDValue V1,
7009                                            SDValue V2, ArrayRef<int> Mask,
7010                                            SelectionDAG &DAG) {
7011  assert(VT.isInteger() && "Only supports integer vector types!");
7012  MVT EltVT = VT.getVectorElementType();
7013  int NumEltBits = EltVT.getSizeInBits();
7014  SDValue Zero = DAG.getConstant(0, DL, EltVT);
7015  SDValue AllOnes = DAG.getConstant(APInt::getAllOnesValue(NumEltBits), DL,
7016                                    EltVT);
7017  SmallVector<SDValue, 16> MaskOps;
7018  for (int i = 0, Size = Mask.size(); i < Size; ++i) {
7019    if (Mask[i] != -1 && Mask[i] != i && Mask[i] != i + Size)
7020      return SDValue(); // Shuffled input!
7021    MaskOps.push_back(Mask[i] < Size ? AllOnes : Zero);
7022  }
7023
7024  SDValue V1Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, VT, MaskOps);
7025  V1 = DAG.getNode(ISD::AND, DL, VT, V1, V1Mask);
7026  // We have to cast V2 around.
7027  MVT MaskVT = MVT::getVectorVT(MVT::i64, VT.getSizeInBits() / 64);
7028  V2 = DAG.getBitcast(VT, DAG.getNode(X86ISD::ANDNP, DL, MaskVT,
7029                                      DAG.getBitcast(MaskVT, V1Mask),
7030                                      DAG.getBitcast(MaskVT, V2)));
7031  return DAG.getNode(ISD::OR, DL, VT, V1, V2);
7032}
7033
7034/// \brief Try to emit a blend instruction for a shuffle.
7035///
7036/// This doesn't do any checks for the availability of instructions for blending
7037/// these values. It relies on the availability of the X86ISD::BLENDI pattern to
7038/// be matched in the backend with the type given. What it does check for is
7039/// that the shuffle mask is a blend, or convertible into a blend with zero.
7040static SDValue lowerVectorShuffleAsBlend(SDLoc DL, MVT VT, SDValue V1,
7041                                         SDValue V2, ArrayRef<int> Original,
7042                                         const X86Subtarget *Subtarget,
7043                                         SelectionDAG &DAG) {
7044  bool V1IsZero = ISD::isBuildVectorAllZeros(V1.getNode());
7045  bool V2IsZero = ISD::isBuildVectorAllZeros(V2.getNode());
7046  SmallVector<int, 8> Mask(Original.begin(), Original.end());
7047  SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
7048  bool ForceV1Zero = false, ForceV2Zero = false;
7049
7050  // Attempt to generate the binary blend mask. If an input is zero then
7051  // we can use any lane.
7052  // TODO: generalize the zero matching to any scalar like isShuffleEquivalent.
7053  unsigned BlendMask = 0;
7054  for (int i = 0, Size = Mask.size(); i < Size; ++i) {
7055    int M = Mask[i];
7056    if (M < 0)
7057      continue;
7058    if (M == i)
7059      continue;
7060    if (M == i + Size) {
7061      BlendMask |= 1u << i;
7062      continue;
7063    }
7064    if (Zeroable[i]) {
7065      if (V1IsZero) {
7066        ForceV1Zero = true;
7067        Mask[i] = i;
7068        continue;
7069      }
7070      if (V2IsZero) {
7071        ForceV2Zero = true;
7072        BlendMask |= 1u << i;
7073        Mask[i] = i + Size;
7074        continue;
7075      }
7076    }
7077    return SDValue(); // Shuffled input!
7078  }
7079
7080  // Create a REAL zero vector - ISD::isBuildVectorAllZeros allows UNDEFs.
7081  if (ForceV1Zero)
7082    V1 = getZeroVector(VT, Subtarget, DAG, DL);
7083  if (ForceV2Zero)
7084    V2 = getZeroVector(VT, Subtarget, DAG, DL);
7085
7086  auto ScaleBlendMask = [](unsigned BlendMask, int Size, int Scale) {
7087    unsigned ScaledMask = 0;
7088    for (int i = 0; i != Size; ++i)
7089      if (BlendMask & (1u << i))
7090        for (int j = 0; j != Scale; ++j)
7091          ScaledMask |= 1u << (i * Scale + j);
7092    return ScaledMask;
7093  };
7094
7095  switch (VT.SimpleTy) {
7096  case MVT::v2f64:
7097  case MVT::v4f32:
7098  case MVT::v4f64:
7099  case MVT::v8f32:
7100    return DAG.getNode(X86ISD::BLENDI, DL, VT, V1, V2,
7101                       DAG.getConstant(BlendMask, DL, MVT::i8));
7102
7103  case MVT::v4i64:
7104  case MVT::v8i32:
7105    assert(Subtarget->hasAVX2() && "256-bit integer blends require AVX2!");
7106    // FALLTHROUGH
7107  case MVT::v2i64:
7108  case MVT::v4i32:
7109    // If we have AVX2 it is faster to use VPBLENDD when the shuffle fits into
7110    // that instruction.
7111    if (Subtarget->hasAVX2()) {
7112      // Scale the blend by the number of 32-bit dwords per element.
7113      int Scale =  VT.getScalarSizeInBits() / 32;
7114      BlendMask = ScaleBlendMask(BlendMask, Mask.size(), Scale);
7115      MVT BlendVT = VT.getSizeInBits() > 128 ? MVT::v8i32 : MVT::v4i32;
7116      V1 = DAG.getBitcast(BlendVT, V1);
7117      V2 = DAG.getBitcast(BlendVT, V2);
7118      return DAG.getBitcast(
7119          VT, DAG.getNode(X86ISD::BLENDI, DL, BlendVT, V1, V2,
7120                          DAG.getConstant(BlendMask, DL, MVT::i8)));
7121    }
7122    // FALLTHROUGH
7123  case MVT::v8i16: {
7124    // For integer shuffles we need to expand the mask and cast the inputs to
7125    // v8i16s prior to blending.
7126    int Scale = 8 / VT.getVectorNumElements();
7127    BlendMask = ScaleBlendMask(BlendMask, Mask.size(), Scale);
7128    V1 = DAG.getBitcast(MVT::v8i16, V1);
7129    V2 = DAG.getBitcast(MVT::v8i16, V2);
7130    return DAG.getBitcast(VT,
7131                          DAG.getNode(X86ISD::BLENDI, DL, MVT::v8i16, V1, V2,
7132                                      DAG.getConstant(BlendMask, DL, MVT::i8)));
7133  }
7134
7135  case MVT::v16i16: {
7136    assert(Subtarget->hasAVX2() && "256-bit integer blends require AVX2!");
7137    SmallVector<int, 8> RepeatedMask;
7138    if (is128BitLaneRepeatedShuffleMask(MVT::v16i16, Mask, RepeatedMask)) {
7139      // We can lower these with PBLENDW which is mirrored across 128-bit lanes.
7140      assert(RepeatedMask.size() == 8 && "Repeated mask size doesn't match!");
7141      BlendMask = 0;
7142      for (int i = 0; i < 8; ++i)
7143        if (RepeatedMask[i] >= 16)
7144          BlendMask |= 1u << i;
7145      return DAG.getNode(X86ISD::BLENDI, DL, MVT::v16i16, V1, V2,
7146                         DAG.getConstant(BlendMask, DL, MVT::i8));
7147    }
7148  }
7149    // FALLTHROUGH
7150  case MVT::v16i8:
7151  case MVT::v32i8: {
7152    assert((VT.is128BitVector() || Subtarget->hasAVX2()) &&
7153           "256-bit byte-blends require AVX2 support!");
7154
7155    // Attempt to lower to a bitmask if we can. VPAND is faster than VPBLENDVB.
7156    if (SDValue Masked = lowerVectorShuffleAsBitMask(DL, VT, V1, V2, Mask, DAG))
7157      return Masked;
7158
7159    // Scale the blend by the number of bytes per element.
7160    int Scale = VT.getScalarSizeInBits() / 8;
7161
7162    // This form of blend is always done on bytes. Compute the byte vector
7163    // type.
7164    MVT BlendVT = MVT::getVectorVT(MVT::i8, VT.getSizeInBits() / 8);
7165
7166    // Compute the VSELECT mask. Note that VSELECT is really confusing in the
7167    // mix of LLVM's code generator and the x86 backend. We tell the code
7168    // generator that boolean values in the elements of an x86 vector register
7169    // are -1 for true and 0 for false. We then use the LLVM semantics of 'true'
7170    // mapping a select to operand #1, and 'false' mapping to operand #2. The
7171    // reality in x86 is that vector masks (pre-AVX-512) use only the high bit
7172    // of the element (the remaining are ignored) and 0 in that high bit would
7173    // mean operand #1 while 1 in the high bit would mean operand #2. So while
7174    // the LLVM model for boolean values in vector elements gets the relevant
7175    // bit set, it is set backwards and over constrained relative to x86's
7176    // actual model.
7177    SmallVector<SDValue, 32> VSELECTMask;
7178    for (int i = 0, Size = Mask.size(); i < Size; ++i)
7179      for (int j = 0; j < Scale; ++j)
7180        VSELECTMask.push_back(
7181            Mask[i] < 0 ? DAG.getUNDEF(MVT::i8)
7182                        : DAG.getConstant(Mask[i] < Size ? -1 : 0, DL,
7183                                          MVT::i8));
7184
7185    V1 = DAG.getBitcast(BlendVT, V1);
7186    V2 = DAG.getBitcast(BlendVT, V2);
7187    return DAG.getBitcast(VT, DAG.getNode(ISD::VSELECT, DL, BlendVT,
7188                                          DAG.getNode(ISD::BUILD_VECTOR, DL,
7189                                                      BlendVT, VSELECTMask),
7190                                          V1, V2));
7191  }
7192
7193  default:
7194    llvm_unreachable("Not a supported integer vector type!");
7195  }
7196}
7197
7198/// \brief Try to lower as a blend of elements from two inputs followed by
7199/// a single-input permutation.
7200///
7201/// This matches the pattern where we can blend elements from two inputs and
7202/// then reduce the shuffle to a single-input permutation.
7203static SDValue lowerVectorShuffleAsBlendAndPermute(SDLoc DL, MVT VT, SDValue V1,
7204                                                   SDValue V2,
7205                                                   ArrayRef<int> Mask,
7206                                                   SelectionDAG &DAG) {
7207  // We build up the blend mask while checking whether a blend is a viable way
7208  // to reduce the shuffle.
7209  SmallVector<int, 32> BlendMask(Mask.size(), -1);
7210  SmallVector<int, 32> PermuteMask(Mask.size(), -1);
7211
7212  for (int i = 0, Size = Mask.size(); i < Size; ++i) {
7213    if (Mask[i] < 0)
7214      continue;
7215
7216    assert(Mask[i] < Size * 2 && "Shuffle input is out of bounds.");
7217
7218    if (BlendMask[Mask[i] % Size] == -1)
7219      BlendMask[Mask[i] % Size] = Mask[i];
7220    else if (BlendMask[Mask[i] % Size] != Mask[i])
7221      return SDValue(); // Can't blend in the needed input!
7222
7223    PermuteMask[i] = Mask[i] % Size;
7224  }
7225
7226  SDValue V = DAG.getVectorShuffle(VT, DL, V1, V2, BlendMask);
7227  return DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), PermuteMask);
7228}
7229
7230/// \brief Generic routine to decompose a shuffle and blend into indepndent
7231/// blends and permutes.
7232///
7233/// This matches the extremely common pattern for handling combined
7234/// shuffle+blend operations on newer X86 ISAs where we have very fast blend
7235/// operations. It will try to pick the best arrangement of shuffles and
7236/// blends.
7237static SDValue lowerVectorShuffleAsDecomposedShuffleBlend(SDLoc DL, MVT VT,
7238                                                          SDValue V1,
7239                                                          SDValue V2,
7240                                                          ArrayRef<int> Mask,
7241                                                          SelectionDAG &DAG) {
7242  // Shuffle the input elements into the desired positions in V1 and V2 and
7243  // blend them together.
7244  SmallVector<int, 32> V1Mask(Mask.size(), -1);
7245  SmallVector<int, 32> V2Mask(Mask.size(), -1);
7246  SmallVector<int, 32> BlendMask(Mask.size(), -1);
7247  for (int i = 0, Size = Mask.size(); i < Size; ++i)
7248    if (Mask[i] >= 0 && Mask[i] < Size) {
7249      V1Mask[i] = Mask[i];
7250      BlendMask[i] = i;
7251    } else if (Mask[i] >= Size) {
7252      V2Mask[i] = Mask[i] - Size;
7253      BlendMask[i] = i + Size;
7254    }
7255
7256  // Try to lower with the simpler initial blend strategy unless one of the
7257  // input shuffles would be a no-op. We prefer to shuffle inputs as the
7258  // shuffle may be able to fold with a load or other benefit. However, when
7259  // we'll have to do 2x as many shuffles in order to achieve this, blending
7260  // first is a better strategy.
7261  if (!isNoopShuffleMask(V1Mask) && !isNoopShuffleMask(V2Mask))
7262    if (SDValue BlendPerm =
7263            lowerVectorShuffleAsBlendAndPermute(DL, VT, V1, V2, Mask, DAG))
7264      return BlendPerm;
7265
7266  V1 = DAG.getVectorShuffle(VT, DL, V1, DAG.getUNDEF(VT), V1Mask);
7267  V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Mask);
7268  return DAG.getVectorShuffle(VT, DL, V1, V2, BlendMask);
7269}
7270
7271/// \brief Try to lower a vector shuffle as a byte rotation.
7272///
7273/// SSSE3 has a generic PALIGNR instruction in x86 that will do an arbitrary
7274/// byte-rotation of the concatenation of two vectors; pre-SSSE3 can use
7275/// a PSRLDQ/PSLLDQ/POR pattern to get a similar effect. This routine will
7276/// try to generically lower a vector shuffle through such an pattern. It
7277/// does not check for the profitability of lowering either as PALIGNR or
7278/// PSRLDQ/PSLLDQ/POR, only whether the mask is valid to lower in that form.
7279/// This matches shuffle vectors that look like:
7280///
7281///   v8i16 [11, 12, 13, 14, 15, 0, 1, 2]
7282///
7283/// Essentially it concatenates V1 and V2, shifts right by some number of
7284/// elements, and takes the low elements as the result. Note that while this is
7285/// specified as a *right shift* because x86 is little-endian, it is a *left
7286/// rotate* of the vector lanes.
7287static SDValue lowerVectorShuffleAsByteRotate(SDLoc DL, MVT VT, SDValue V1,
7288                                              SDValue V2,
7289                                              ArrayRef<int> Mask,
7290                                              const X86Subtarget *Subtarget,
7291                                              SelectionDAG &DAG) {
7292  assert(!isNoopShuffleMask(Mask) && "We shouldn't lower no-op shuffles!");
7293
7294  int NumElts = Mask.size();
7295  int NumLanes = VT.getSizeInBits() / 128;
7296  int NumLaneElts = NumElts / NumLanes;
7297
7298  // We need to detect various ways of spelling a rotation:
7299  //   [11, 12, 13, 14, 15,  0,  1,  2]
7300  //   [-1, 12, 13, 14, -1, -1,  1, -1]
7301  //   [-1, -1, -1, -1, -1, -1,  1,  2]
7302  //   [ 3,  4,  5,  6,  7,  8,  9, 10]
7303  //   [-1,  4,  5,  6, -1, -1,  9, -1]
7304  //   [-1,  4,  5,  6, -1, -1, -1, -1]
7305  int Rotation = 0;
7306  SDValue Lo, Hi;
7307  for (int l = 0; l < NumElts; l += NumLaneElts) {
7308    for (int i = 0; i < NumLaneElts; ++i) {
7309      if (Mask[l + i] == -1)
7310        continue;
7311      assert(Mask[l + i] >= 0 && "Only -1 is a valid negative mask element!");
7312
7313      // Get the mod-Size index and lane correct it.
7314      int LaneIdx = (Mask[l + i] % NumElts) - l;
7315      // Make sure it was in this lane.
7316      if (LaneIdx < 0 || LaneIdx >= NumLaneElts)
7317        return SDValue();
7318
7319      // Determine where a rotated vector would have started.
7320      int StartIdx = i - LaneIdx;
7321      if (StartIdx == 0)
7322        // The identity rotation isn't interesting, stop.
7323        return SDValue();
7324
7325      // If we found the tail of a vector the rotation must be the missing
7326      // front. If we found the head of a vector, it must be how much of the
7327      // head.
7328      int CandidateRotation = StartIdx < 0 ? -StartIdx : NumLaneElts - StartIdx;
7329
7330      if (Rotation == 0)
7331        Rotation = CandidateRotation;
7332      else if (Rotation != CandidateRotation)
7333        // The rotations don't match, so we can't match this mask.
7334        return SDValue();
7335
7336      // Compute which value this mask is pointing at.
7337      SDValue MaskV = Mask[l + i] < NumElts ? V1 : V2;
7338
7339      // Compute which of the two target values this index should be assigned
7340      // to. This reflects whether the high elements are remaining or the low
7341      // elements are remaining.
7342      SDValue &TargetV = StartIdx < 0 ? Hi : Lo;
7343
7344      // Either set up this value if we've not encountered it before, or check
7345      // that it remains consistent.
7346      if (!TargetV)
7347        TargetV = MaskV;
7348      else if (TargetV != MaskV)
7349        // This may be a rotation, but it pulls from the inputs in some
7350        // unsupported interleaving.
7351        return SDValue();
7352    }
7353  }
7354
7355  // Check that we successfully analyzed the mask, and normalize the results.
7356  assert(Rotation != 0 && "Failed to locate a viable rotation!");
7357  assert((Lo || Hi) && "Failed to find a rotated input vector!");
7358  if (!Lo)
7359    Lo = Hi;
7360  else if (!Hi)
7361    Hi = Lo;
7362
7363  // The actual rotate instruction rotates bytes, so we need to scale the
7364  // rotation based on how many bytes are in the vector lane.
7365  int Scale = 16 / NumLaneElts;
7366
7367  // SSSE3 targets can use the palignr instruction.
7368  if (Subtarget->hasSSSE3()) {
7369    // Cast the inputs to i8 vector of correct length to match PALIGNR.
7370    MVT AlignVT = MVT::getVectorVT(MVT::i8, 16 * NumLanes);
7371    Lo = DAG.getBitcast(AlignVT, Lo);
7372    Hi = DAG.getBitcast(AlignVT, Hi);
7373
7374    return DAG.getBitcast(
7375        VT, DAG.getNode(X86ISD::PALIGNR, DL, AlignVT, Lo, Hi,
7376                        DAG.getConstant(Rotation * Scale, DL, MVT::i8)));
7377  }
7378
7379  assert(VT.is128BitVector() &&
7380         "Rotate-based lowering only supports 128-bit lowering!");
7381  assert(Mask.size() <= 16 &&
7382         "Can shuffle at most 16 bytes in a 128-bit vector!");
7383
7384  // Default SSE2 implementation
7385  int LoByteShift = 16 - Rotation * Scale;
7386  int HiByteShift = Rotation * Scale;
7387
7388  // Cast the inputs to v2i64 to match PSLLDQ/PSRLDQ.
7389  Lo = DAG.getBitcast(MVT::v2i64, Lo);
7390  Hi = DAG.getBitcast(MVT::v2i64, Hi);
7391
7392  SDValue LoShift = DAG.getNode(X86ISD::VSHLDQ, DL, MVT::v2i64, Lo,
7393                                DAG.getConstant(LoByteShift, DL, MVT::i8));
7394  SDValue HiShift = DAG.getNode(X86ISD::VSRLDQ, DL, MVT::v2i64, Hi,
7395                                DAG.getConstant(HiByteShift, DL, MVT::i8));
7396  return DAG.getBitcast(VT,
7397                        DAG.getNode(ISD::OR, DL, MVT::v2i64, LoShift, HiShift));
7398}
7399
7400/// \brief Try to lower a vector shuffle as a bit shift (shifts in zeros).
7401///
7402/// Attempts to match a shuffle mask against the PSLL(W/D/Q/DQ) and
7403/// PSRL(W/D/Q/DQ) SSE2 and AVX2 logical bit-shift instructions. The function
7404/// matches elements from one of the input vectors shuffled to the left or
7405/// right with zeroable elements 'shifted in'. It handles both the strictly
7406/// bit-wise element shifts and the byte shift across an entire 128-bit double
7407/// quad word lane.
7408///
7409/// PSHL : (little-endian) left bit shift.
7410/// [ zz, 0, zz,  2 ]
7411/// [ -1, 4, zz, -1 ]
7412/// PSRL : (little-endian) right bit shift.
7413/// [  1, zz,  3, zz]
7414/// [ -1, -1,  7, zz]
7415/// PSLLDQ : (little-endian) left byte shift
7416/// [ zz,  0,  1,  2,  3,  4,  5,  6]
7417/// [ zz, zz, -1, -1,  2,  3,  4, -1]
7418/// [ zz, zz, zz, zz, zz, zz, -1,  1]
7419/// PSRLDQ : (little-endian) right byte shift
7420/// [  5, 6,  7, zz, zz, zz, zz, zz]
7421/// [ -1, 5,  6,  7, zz, zz, zz, zz]
7422/// [  1, 2, -1, -1, -1, -1, zz, zz]
7423static SDValue lowerVectorShuffleAsShift(SDLoc DL, MVT VT, SDValue V1,
7424                                         SDValue V2, ArrayRef<int> Mask,
7425                                         SelectionDAG &DAG) {
7426  SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
7427
7428  int Size = Mask.size();
7429  assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
7430
7431  auto CheckZeros = [&](int Shift, int Scale, bool Left) {
7432    for (int i = 0; i < Size; i += Scale)
7433      for (int j = 0; j < Shift; ++j)
7434        if (!Zeroable[i + j + (Left ? 0 : (Scale - Shift))])
7435          return false;
7436
7437    return true;
7438  };
7439
7440  auto MatchShift = [&](int Shift, int Scale, bool Left, SDValue V) {
7441    for (int i = 0; i != Size; i += Scale) {
7442      unsigned Pos = Left ? i + Shift : i;
7443      unsigned Low = Left ? i : i + Shift;
7444      unsigned Len = Scale - Shift;
7445      if (!isSequentialOrUndefInRange(Mask, Pos, Len,
7446                                      Low + (V == V1 ? 0 : Size)))
7447        return SDValue();
7448    }
7449
7450    int ShiftEltBits = VT.getScalarSizeInBits() * Scale;
7451    bool ByteShift = ShiftEltBits > 64;
7452    unsigned OpCode = Left ? (ByteShift ? X86ISD::VSHLDQ : X86ISD::VSHLI)
7453                           : (ByteShift ? X86ISD::VSRLDQ : X86ISD::VSRLI);
7454    int ShiftAmt = Shift * VT.getScalarSizeInBits() / (ByteShift ? 8 : 1);
7455
7456    // Normalize the scale for byte shifts to still produce an i64 element
7457    // type.
7458    Scale = ByteShift ? Scale / 2 : Scale;
7459
7460    // We need to round trip through the appropriate type for the shift.
7461    MVT ShiftSVT = MVT::getIntegerVT(VT.getScalarSizeInBits() * Scale);
7462    MVT ShiftVT = MVT::getVectorVT(ShiftSVT, Size / Scale);
7463    assert(DAG.getTargetLoweringInfo().isTypeLegal(ShiftVT) &&
7464           "Illegal integer vector type");
7465    V = DAG.getBitcast(ShiftVT, V);
7466
7467    V = DAG.getNode(OpCode, DL, ShiftVT, V,
7468                    DAG.getConstant(ShiftAmt, DL, MVT::i8));
7469    return DAG.getBitcast(VT, V);
7470  };
7471
7472  // SSE/AVX supports logical shifts up to 64-bit integers - so we can just
7473  // keep doubling the size of the integer elements up to that. We can
7474  // then shift the elements of the integer vector by whole multiples of
7475  // their width within the elements of the larger integer vector. Test each
7476  // multiple to see if we can find a match with the moved element indices
7477  // and that the shifted in elements are all zeroable.
7478  for (int Scale = 2; Scale * VT.getScalarSizeInBits() <= 128; Scale *= 2)
7479    for (int Shift = 1; Shift != Scale; ++Shift)
7480      for (bool Left : {true, false})
7481        if (CheckZeros(Shift, Scale, Left))
7482          for (SDValue V : {V1, V2})
7483            if (SDValue Match = MatchShift(Shift, Scale, Left, V))
7484              return Match;
7485
7486  // no match
7487  return SDValue();
7488}
7489
7490/// \brief Try to lower a vector shuffle using SSE4a EXTRQ/INSERTQ.
7491static SDValue lowerVectorShuffleWithSSE4A(SDLoc DL, MVT VT, SDValue V1,
7492                                           SDValue V2, ArrayRef<int> Mask,
7493                                           SelectionDAG &DAG) {
7494  SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
7495  assert(!Zeroable.all() && "Fully zeroable shuffle mask");
7496
7497  int Size = Mask.size();
7498  int HalfSize = Size / 2;
7499  assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
7500
7501  // Upper half must be undefined.
7502  if (!isUndefInRange(Mask, HalfSize, HalfSize))
7503    return SDValue();
7504
7505  // EXTRQ: Extract Len elements from lower half of source, starting at Idx.
7506  // Remainder of lower half result is zero and upper half is all undef.
7507  auto LowerAsEXTRQ = [&]() {
7508    // Determine the extraction length from the part of the
7509    // lower half that isn't zeroable.
7510    int Len = HalfSize;
7511    for (; Len > 0; --Len)
7512      if (!Zeroable[Len - 1])
7513        break;
7514    assert(Len > 0 && "Zeroable shuffle mask");
7515
7516    // Attempt to match first Len sequential elements from the lower half.
7517    SDValue Src;
7518    int Idx = -1;
7519    for (int i = 0; i != Len; ++i) {
7520      int M = Mask[i];
7521      if (M < 0)
7522        continue;
7523      SDValue &V = (M < Size ? V1 : V2);
7524      M = M % Size;
7525
7526      // The extracted elements must start at a valid index and all mask
7527      // elements must be in the lower half.
7528      if (i > M || M >= HalfSize)
7529        return SDValue();
7530
7531      if (Idx < 0 || (Src == V && Idx == (M - i))) {
7532        Src = V;
7533        Idx = M - i;
7534        continue;
7535      }
7536      return SDValue();
7537    }
7538
7539    if (Idx < 0)
7540      return SDValue();
7541
7542    assert((Idx + Len) <= HalfSize && "Illegal extraction mask");
7543    int BitLen = (Len * VT.getScalarSizeInBits()) & 0x3f;
7544    int BitIdx = (Idx * VT.getScalarSizeInBits()) & 0x3f;
7545    return DAG.getNode(X86ISD::EXTRQI, DL, VT, Src,
7546                       DAG.getConstant(BitLen, DL, MVT::i8),
7547                       DAG.getConstant(BitIdx, DL, MVT::i8));
7548  };
7549
7550  if (SDValue ExtrQ = LowerAsEXTRQ())
7551    return ExtrQ;
7552
7553  // INSERTQ: Extract lowest Len elements from lower half of second source and
7554  // insert over first source, starting at Idx.
7555  // { A[0], .., A[Idx-1], B[0], .., B[Len-1], A[Idx+Len], .., UNDEF, ... }
7556  auto LowerAsInsertQ = [&]() {
7557    for (int Idx = 0; Idx != HalfSize; ++Idx) {
7558      SDValue Base;
7559
7560      // Attempt to match first source from mask before insertion point.
7561      if (isUndefInRange(Mask, 0, Idx)) {
7562        /* EMPTY */
7563      } else if (isSequentialOrUndefInRange(Mask, 0, Idx, 0)) {
7564        Base = V1;
7565      } else if (isSequentialOrUndefInRange(Mask, 0, Idx, Size)) {
7566        Base = V2;
7567      } else {
7568        continue;
7569      }
7570
7571      // Extend the extraction length looking to match both the insertion of
7572      // the second source and the remaining elements of the first.
7573      for (int Hi = Idx + 1; Hi <= HalfSize; ++Hi) {
7574        SDValue Insert;
7575        int Len = Hi - Idx;
7576
7577        // Match insertion.
7578        if (isSequentialOrUndefInRange(Mask, Idx, Len, 0)) {
7579          Insert = V1;
7580        } else if (isSequentialOrUndefInRange(Mask, Idx, Len, Size)) {
7581          Insert = V2;
7582        } else {
7583          continue;
7584        }
7585
7586        // Match the remaining elements of the lower half.
7587        if (isUndefInRange(Mask, Hi, HalfSize - Hi)) {
7588          /* EMPTY */
7589        } else if ((!Base || (Base == V1)) &&
7590                   isSequentialOrUndefInRange(Mask, Hi, HalfSize - Hi, Hi)) {
7591          Base = V1;
7592        } else if ((!Base || (Base == V2)) &&
7593                   isSequentialOrUndefInRange(Mask, Hi, HalfSize - Hi,
7594                                              Size + Hi)) {
7595          Base = V2;
7596        } else {
7597          continue;
7598        }
7599
7600        // We may not have a base (first source) - this can safely be undefined.
7601        if (!Base)
7602          Base = DAG.getUNDEF(VT);
7603
7604        int BitLen = (Len * VT.getScalarSizeInBits()) & 0x3f;
7605        int BitIdx = (Idx * VT.getScalarSizeInBits()) & 0x3f;
7606        return DAG.getNode(X86ISD::INSERTQI, DL, VT, Base, Insert,
7607                           DAG.getConstant(BitLen, DL, MVT::i8),
7608                           DAG.getConstant(BitIdx, DL, MVT::i8));
7609      }
7610    }
7611
7612    return SDValue();
7613  };
7614
7615  if (SDValue InsertQ = LowerAsInsertQ())
7616    return InsertQ;
7617
7618  return SDValue();
7619}
7620
7621/// \brief Lower a vector shuffle as a zero or any extension.
7622///
7623/// Given a specific number of elements, element bit width, and extension
7624/// stride, produce either a zero or any extension based on the available
7625/// features of the subtarget. The extended elements are consecutive and
7626/// begin and can start from an offseted element index in the input; to
7627/// avoid excess shuffling the offset must either being in the bottom lane
7628/// or at the start of a higher lane. All extended elements must be from
7629/// the same lane.
7630static SDValue lowerVectorShuffleAsSpecificZeroOrAnyExtend(
7631    SDLoc DL, MVT VT, int Scale, int Offset, bool AnyExt, SDValue InputV,
7632    ArrayRef<int> Mask, const X86Subtarget *Subtarget, SelectionDAG &DAG) {
7633  assert(Scale > 1 && "Need a scale to extend.");
7634  int EltBits = VT.getScalarSizeInBits();
7635  int NumElements = VT.getVectorNumElements();
7636  int NumEltsPerLane = 128 / EltBits;
7637  int OffsetLane = Offset / NumEltsPerLane;
7638  assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
7639         "Only 8, 16, and 32 bit elements can be extended.");
7640  assert(Scale * EltBits <= 64 && "Cannot zero extend past 64 bits.");
7641  assert(0 <= Offset && "Extension offset must be positive.");
7642  assert((Offset < NumEltsPerLane || Offset % NumEltsPerLane == 0) &&
7643         "Extension offset must be in the first lane or start an upper lane.");
7644
7645  // Check that an index is in same lane as the base offset.
7646  auto SafeOffset = [&](int Idx) {
7647    return OffsetLane == (Idx / NumEltsPerLane);
7648  };
7649
7650  // Shift along an input so that the offset base moves to the first element.
7651  auto ShuffleOffset = [&](SDValue V) {
7652    if (!Offset)
7653      return V;
7654
7655    SmallVector<int, 8> ShMask((unsigned)NumElements, -1);
7656    for (int i = 0; i * Scale < NumElements; ++i) {
7657      int SrcIdx = i + Offset;
7658      ShMask[i] = SafeOffset(SrcIdx) ? SrcIdx : -1;
7659    }
7660    return DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), ShMask);
7661  };
7662
7663  // Found a valid zext mask! Try various lowering strategies based on the
7664  // input type and available ISA extensions.
7665  if (Subtarget->hasSSE41()) {
7666    // Not worth offseting 128-bit vectors if scale == 2, a pattern using
7667    // PUNPCK will catch this in a later shuffle match.
7668    if (Offset && Scale == 2 && VT.is128BitVector())
7669      return SDValue();
7670    MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits * Scale),
7671                                 NumElements / Scale);
7672    InputV = DAG.getNode(X86ISD::VZEXT, DL, ExtVT, ShuffleOffset(InputV));
7673    return DAG.getBitcast(VT, InputV);
7674  }
7675
7676  assert(VT.is128BitVector() && "Only 128-bit vectors can be extended.");
7677
7678  // For any extends we can cheat for larger element sizes and use shuffle
7679  // instructions that can fold with a load and/or copy.
7680  if (AnyExt && EltBits == 32) {
7681    int PSHUFDMask[4] = {Offset, -1, SafeOffset(Offset + 1) ? Offset + 1 : -1,
7682                         -1};
7683    return DAG.getBitcast(
7684        VT, DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32,
7685                        DAG.getBitcast(MVT::v4i32, InputV),
7686                        getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
7687  }
7688  if (AnyExt && EltBits == 16 && Scale > 2) {
7689    int PSHUFDMask[4] = {Offset / 2, -1,
7690                         SafeOffset(Offset + 1) ? (Offset + 1) / 2 : -1, -1};
7691    InputV = DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32,
7692                         DAG.getBitcast(MVT::v4i32, InputV),
7693                         getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG));
7694    int PSHUFWMask[4] = {1, -1, -1, -1};
7695    unsigned OddEvenOp = (Offset & 1 ? X86ISD::PSHUFLW : X86ISD::PSHUFHW);
7696    return DAG.getBitcast(
7697        VT, DAG.getNode(OddEvenOp, DL, MVT::v8i16,
7698                        DAG.getBitcast(MVT::v8i16, InputV),
7699                        getV4X86ShuffleImm8ForMask(PSHUFWMask, DL, DAG)));
7700  }
7701
7702  // The SSE4A EXTRQ instruction can efficiently extend the first 2 lanes
7703  // to 64-bits.
7704  if ((Scale * EltBits) == 64 && EltBits < 32 && Subtarget->hasSSE4A()) {
7705    assert(NumElements == (int)Mask.size() && "Unexpected shuffle mask size!");
7706    assert(VT.is128BitVector() && "Unexpected vector width!");
7707
7708    int LoIdx = Offset * EltBits;
7709    SDValue Lo = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64,
7710                             DAG.getNode(X86ISD::EXTRQI, DL, VT, InputV,
7711                                         DAG.getConstant(EltBits, DL, MVT::i8),
7712                                         DAG.getConstant(LoIdx, DL, MVT::i8)));
7713
7714    if (isUndefInRange(Mask, NumElements / 2, NumElements / 2) ||
7715        !SafeOffset(Offset + 1))
7716      return DAG.getNode(ISD::BITCAST, DL, VT, Lo);
7717
7718    int HiIdx = (Offset + 1) * EltBits;
7719    SDValue Hi = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64,
7720                             DAG.getNode(X86ISD::EXTRQI, DL, VT, InputV,
7721                                         DAG.getConstant(EltBits, DL, MVT::i8),
7722                                         DAG.getConstant(HiIdx, DL, MVT::i8)));
7723    return DAG.getNode(ISD::BITCAST, DL, VT,
7724                       DAG.getNode(X86ISD::UNPCKL, DL, MVT::v2i64, Lo, Hi));
7725  }
7726
7727  // If this would require more than 2 unpack instructions to expand, use
7728  // pshufb when available. We can only use more than 2 unpack instructions
7729  // when zero extending i8 elements which also makes it easier to use pshufb.
7730  if (Scale > 4 && EltBits == 8 && Subtarget->hasSSSE3()) {
7731    assert(NumElements == 16 && "Unexpected byte vector width!");
7732    SDValue PSHUFBMask[16];
7733    for (int i = 0; i < 16; ++i) {
7734      int Idx = Offset + (i / Scale);
7735      PSHUFBMask[i] = DAG.getConstant(
7736          (i % Scale == 0 && SafeOffset(Idx)) ? Idx : 0x80, DL, MVT::i8);
7737    }
7738    InputV = DAG.getBitcast(MVT::v16i8, InputV);
7739    return DAG.getBitcast(VT,
7740                          DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, InputV,
7741                                      DAG.getNode(ISD::BUILD_VECTOR, DL,
7742                                                  MVT::v16i8, PSHUFBMask)));
7743  }
7744
7745  // If we are extending from an offset, ensure we start on a boundary that
7746  // we can unpack from.
7747  int AlignToUnpack = Offset % (NumElements / Scale);
7748  if (AlignToUnpack) {
7749    SmallVector<int, 8> ShMask((unsigned)NumElements, -1);
7750    for (int i = AlignToUnpack; i < NumElements; ++i)
7751      ShMask[i - AlignToUnpack] = i;
7752    InputV = DAG.getVectorShuffle(VT, DL, InputV, DAG.getUNDEF(VT), ShMask);
7753    Offset -= AlignToUnpack;
7754  }
7755
7756  // Otherwise emit a sequence of unpacks.
7757  do {
7758    unsigned UnpackLoHi = X86ISD::UNPCKL;
7759    if (Offset >= (NumElements / 2)) {
7760      UnpackLoHi = X86ISD::UNPCKH;
7761      Offset -= (NumElements / 2);
7762    }
7763
7764    MVT InputVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits), NumElements);
7765    SDValue Ext = AnyExt ? DAG.getUNDEF(InputVT)
7766                         : getZeroVector(InputVT, Subtarget, DAG, DL);
7767    InputV = DAG.getBitcast(InputVT, InputV);
7768    InputV = DAG.getNode(UnpackLoHi, DL, InputVT, InputV, Ext);
7769    Scale /= 2;
7770    EltBits *= 2;
7771    NumElements /= 2;
7772  } while (Scale > 1);
7773  return DAG.getBitcast(VT, InputV);
7774}
7775
7776/// \brief Try to lower a vector shuffle as a zero extension on any microarch.
7777///
7778/// This routine will try to do everything in its power to cleverly lower
7779/// a shuffle which happens to match the pattern of a zero extend. It doesn't
7780/// check for the profitability of this lowering,  it tries to aggressively
7781/// match this pattern. It will use all of the micro-architectural details it
7782/// can to emit an efficient lowering. It handles both blends with all-zero
7783/// inputs to explicitly zero-extend and undef-lanes (sometimes undef due to
7784/// masking out later).
7785///
7786/// The reason we have dedicated lowering for zext-style shuffles is that they
7787/// are both incredibly common and often quite performance sensitive.
7788static SDValue lowerVectorShuffleAsZeroOrAnyExtend(
7789    SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
7790    const X86Subtarget *Subtarget, SelectionDAG &DAG) {
7791  SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
7792
7793  int Bits = VT.getSizeInBits();
7794  int NumLanes = Bits / 128;
7795  int NumElements = VT.getVectorNumElements();
7796  int NumEltsPerLane = NumElements / NumLanes;
7797  assert(VT.getScalarSizeInBits() <= 32 &&
7798         "Exceeds 32-bit integer zero extension limit");
7799  assert((int)Mask.size() == NumElements && "Unexpected shuffle mask size");
7800
7801  // Define a helper function to check a particular ext-scale and lower to it if
7802  // valid.
7803  auto Lower = [&](int Scale) -> SDValue {
7804    SDValue InputV;
7805    bool AnyExt = true;
7806    int Offset = 0;
7807    int Matches = 0;
7808    for (int i = 0; i < NumElements; ++i) {
7809      int M = Mask[i];
7810      if (M == -1)
7811        continue; // Valid anywhere but doesn't tell us anything.
7812      if (i % Scale != 0) {
7813        // Each of the extended elements need to be zeroable.
7814        if (!Zeroable[i])
7815          return SDValue();
7816
7817        // We no longer are in the anyext case.
7818        AnyExt = false;
7819        continue;
7820      }
7821
7822      // Each of the base elements needs to be consecutive indices into the
7823      // same input vector.
7824      SDValue V = M < NumElements ? V1 : V2;
7825      M = M % NumElements;
7826      if (!InputV) {
7827        InputV = V;
7828        Offset = M - (i / Scale);
7829      } else if (InputV != V)
7830        return SDValue(); // Flip-flopping inputs.
7831
7832      // Offset must start in the lowest 128-bit lane or at the start of an
7833      // upper lane.
7834      // FIXME: Is it ever worth allowing a negative base offset?
7835      if (!((0 <= Offset && Offset < NumEltsPerLane) ||
7836            (Offset % NumEltsPerLane) == 0))
7837        return SDValue();
7838
7839      // If we are offsetting, all referenced entries must come from the same
7840      // lane.
7841      if (Offset && (Offset / NumEltsPerLane) != (M / NumEltsPerLane))
7842        return SDValue();
7843
7844      if ((M % NumElements) != (Offset + (i / Scale)))
7845        return SDValue(); // Non-consecutive strided elements.
7846      Matches++;
7847    }
7848
7849    // If we fail to find an input, we have a zero-shuffle which should always
7850    // have already been handled.
7851    // FIXME: Maybe handle this here in case during blending we end up with one?
7852    if (!InputV)
7853      return SDValue();
7854
7855    // If we are offsetting, don't extend if we only match a single input, we
7856    // can always do better by using a basic PSHUF or PUNPCK.
7857    if (Offset != 0 && Matches < 2)
7858      return SDValue();
7859
7860    return lowerVectorShuffleAsSpecificZeroOrAnyExtend(
7861        DL, VT, Scale, Offset, AnyExt, InputV, Mask, Subtarget, DAG);
7862  };
7863
7864  // The widest scale possible for extending is to a 64-bit integer.
7865  assert(Bits % 64 == 0 &&
7866         "The number of bits in a vector must be divisible by 64 on x86!");
7867  int NumExtElements = Bits / 64;
7868
7869  // Each iteration, try extending the elements half as much, but into twice as
7870  // many elements.
7871  for (; NumExtElements < NumElements; NumExtElements *= 2) {
7872    assert(NumElements % NumExtElements == 0 &&
7873           "The input vector size must be divisible by the extended size.");
7874    if (SDValue V = Lower(NumElements / NumExtElements))
7875      return V;
7876  }
7877
7878  // General extends failed, but 128-bit vectors may be able to use MOVQ.
7879  if (Bits != 128)
7880    return SDValue();
7881
7882  // Returns one of the source operands if the shuffle can be reduced to a
7883  // MOVQ, copying the lower 64-bits and zero-extending to the upper 64-bits.
7884  auto CanZExtLowHalf = [&]() {
7885    for (int i = NumElements / 2; i != NumElements; ++i)
7886      if (!Zeroable[i])
7887        return SDValue();
7888    if (isSequentialOrUndefInRange(Mask, 0, NumElements / 2, 0))
7889      return V1;
7890    if (isSequentialOrUndefInRange(Mask, 0, NumElements / 2, NumElements))
7891      return V2;
7892    return SDValue();
7893  };
7894
7895  if (SDValue V = CanZExtLowHalf()) {
7896    V = DAG.getBitcast(MVT::v2i64, V);
7897    V = DAG.getNode(X86ISD::VZEXT_MOVL, DL, MVT::v2i64, V);
7898    return DAG.getBitcast(VT, V);
7899  }
7900
7901  // No viable ext lowering found.
7902  return SDValue();
7903}
7904
7905/// \brief Try to get a scalar value for a specific element of a vector.
7906///
7907/// Looks through BUILD_VECTOR and SCALAR_TO_VECTOR nodes to find a scalar.
7908static SDValue getScalarValueForVectorElement(SDValue V, int Idx,
7909                                              SelectionDAG &DAG) {
7910  MVT VT = V.getSimpleValueType();
7911  MVT EltVT = VT.getVectorElementType();
7912  while (V.getOpcode() == ISD::BITCAST)
7913    V = V.getOperand(0);
7914  // If the bitcasts shift the element size, we can't extract an equivalent
7915  // element from it.
7916  MVT NewVT = V.getSimpleValueType();
7917  if (!NewVT.isVector() || NewVT.getScalarSizeInBits() != VT.getScalarSizeInBits())
7918    return SDValue();
7919
7920  if (V.getOpcode() == ISD::BUILD_VECTOR ||
7921      (Idx == 0 && V.getOpcode() == ISD::SCALAR_TO_VECTOR)) {
7922    // Ensure the scalar operand is the same size as the destination.
7923    // FIXME: Add support for scalar truncation where possible.
7924    SDValue S = V.getOperand(Idx);
7925    if (EltVT.getSizeInBits() == S.getSimpleValueType().getSizeInBits())
7926      return DAG.getNode(ISD::BITCAST, SDLoc(V), EltVT, S);
7927  }
7928
7929  return SDValue();
7930}
7931
7932/// \brief Helper to test for a load that can be folded with x86 shuffles.
7933///
7934/// This is particularly important because the set of instructions varies
7935/// significantly based on whether the operand is a load or not.
7936static bool isShuffleFoldableLoad(SDValue V) {
7937  while (V.getOpcode() == ISD::BITCAST)
7938    V = V.getOperand(0);
7939
7940  return ISD::isNON_EXTLoad(V.getNode());
7941}
7942
7943/// \brief Try to lower insertion of a single element into a zero vector.
7944///
7945/// This is a common pattern that we have especially efficient patterns to lower
7946/// across all subtarget feature sets.
7947static SDValue lowerVectorShuffleAsElementInsertion(
7948    SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
7949    const X86Subtarget *Subtarget, SelectionDAG &DAG) {
7950  SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
7951  MVT ExtVT = VT;
7952  MVT EltVT = VT.getVectorElementType();
7953
7954  int V2Index = std::find_if(Mask.begin(), Mask.end(),
7955                             [&Mask](int M) { return M >= (int)Mask.size(); }) -
7956                Mask.begin();
7957  bool IsV1Zeroable = true;
7958  for (int i = 0, Size = Mask.size(); i < Size; ++i)
7959    if (i != V2Index && !Zeroable[i]) {
7960      IsV1Zeroable = false;
7961      break;
7962    }
7963
7964  // Check for a single input from a SCALAR_TO_VECTOR node.
7965  // FIXME: All of this should be canonicalized into INSERT_VECTOR_ELT and
7966  // all the smarts here sunk into that routine. However, the current
7967  // lowering of BUILD_VECTOR makes that nearly impossible until the old
7968  // vector shuffle lowering is dead.
7969  SDValue V2S = getScalarValueForVectorElement(V2, Mask[V2Index] - Mask.size(),
7970                                               DAG);
7971  if (V2S && DAG.getTargetLoweringInfo().isTypeLegal(V2S.getValueType())) {
7972    // We need to zext the scalar if it is smaller than an i32.
7973    V2S = DAG.getBitcast(EltVT, V2S);
7974    if (EltVT == MVT::i8 || EltVT == MVT::i16) {
7975      // Using zext to expand a narrow element won't work for non-zero
7976      // insertions.
7977      if (!IsV1Zeroable)
7978        return SDValue();
7979
7980      // Zero-extend directly to i32.
7981      ExtVT = MVT::v4i32;
7982      V2S = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, V2S);
7983    }
7984    V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, ExtVT, V2S);
7985  } else if (Mask[V2Index] != (int)Mask.size() || EltVT == MVT::i8 ||
7986             EltVT == MVT::i16) {
7987    // Either not inserting from the low element of the input or the input
7988    // element size is too small to use VZEXT_MOVL to clear the high bits.
7989    return SDValue();
7990  }
7991
7992  if (!IsV1Zeroable) {
7993    // If V1 can't be treated as a zero vector we have fewer options to lower
7994    // this. We can't support integer vectors or non-zero targets cheaply, and
7995    // the V1 elements can't be permuted in any way.
7996    assert(VT == ExtVT && "Cannot change extended type when non-zeroable!");
7997    if (!VT.isFloatingPoint() || V2Index != 0)
7998      return SDValue();
7999    SmallVector<int, 8> V1Mask(Mask.begin(), Mask.end());
8000    V1Mask[V2Index] = -1;
8001    if (!isNoopShuffleMask(V1Mask))
8002      return SDValue();
8003    // This is essentially a special case blend operation, but if we have
8004    // general purpose blend operations, they are always faster. Bail and let
8005    // the rest of the lowering handle these as blends.
8006    if (Subtarget->hasSSE41())
8007      return SDValue();
8008
8009    // Otherwise, use MOVSD or MOVSS.
8010    assert((EltVT == MVT::f32 || EltVT == MVT::f64) &&
8011           "Only two types of floating point element types to handle!");
8012    return DAG.getNode(EltVT == MVT::f32 ? X86ISD::MOVSS : X86ISD::MOVSD, DL,
8013                       ExtVT, V1, V2);
8014  }
8015
8016  // This lowering only works for the low element with floating point vectors.
8017  if (VT.isFloatingPoint() && V2Index != 0)
8018    return SDValue();
8019
8020  V2 = DAG.getNode(X86ISD::VZEXT_MOVL, DL, ExtVT, V2);
8021  if (ExtVT != VT)
8022    V2 = DAG.getBitcast(VT, V2);
8023
8024  if (V2Index != 0) {
8025    // If we have 4 or fewer lanes we can cheaply shuffle the element into
8026    // the desired position. Otherwise it is more efficient to do a vector
8027    // shift left. We know that we can do a vector shift left because all
8028    // the inputs are zero.
8029    if (VT.isFloatingPoint() || VT.getVectorNumElements() <= 4) {
8030      SmallVector<int, 4> V2Shuffle(Mask.size(), 1);
8031      V2Shuffle[V2Index] = 0;
8032      V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Shuffle);
8033    } else {
8034      V2 = DAG.getBitcast(MVT::v2i64, V2);
8035      V2 = DAG.getNode(
8036          X86ISD::VSHLDQ, DL, MVT::v2i64, V2,
8037          DAG.getConstant(V2Index * EltVT.getSizeInBits() / 8, DL,
8038                          DAG.getTargetLoweringInfo().getScalarShiftAmountTy(
8039                              DAG.getDataLayout(), VT)));
8040      V2 = DAG.getBitcast(VT, V2);
8041    }
8042  }
8043  return V2;
8044}
8045
8046/// \brief Try to lower broadcast of a single - truncated - integer element,
8047/// coming from a scalar_to_vector/build_vector node \p V0 with larger elements.
8048///
8049/// This assumes we have AVX2.
8050static SDValue lowerVectorShuffleAsTruncBroadcast(SDLoc DL, MVT VT, SDValue V0,
8051                                                  int BroadcastIdx,
8052                                                  const X86Subtarget *Subtarget,
8053                                                  SelectionDAG &DAG) {
8054  assert(Subtarget->hasAVX2() &&
8055         "We can only lower integer broadcasts with AVX2!");
8056
8057  EVT EltVT = VT.getVectorElementType();
8058  EVT V0VT = V0.getValueType();
8059
8060  assert(VT.isInteger() && "Unexpected non-integer trunc broadcast!");
8061  assert(V0VT.isVector() && "Unexpected non-vector vector-sized value!");
8062
8063  EVT V0EltVT = V0VT.getVectorElementType();
8064  if (!V0EltVT.isInteger())
8065    return SDValue();
8066
8067  const unsigned EltSize = EltVT.getSizeInBits();
8068  const unsigned V0EltSize = V0EltVT.getSizeInBits();
8069
8070  // This is only a truncation if the original element type is larger.
8071  if (V0EltSize <= EltSize)
8072    return SDValue();
8073
8074  assert(((V0EltSize % EltSize) == 0) &&
8075         "Scalar type sizes must all be powers of 2 on x86!");
8076
8077  const unsigned V0Opc = V0.getOpcode();
8078  const unsigned Scale = V0EltSize / EltSize;
8079  const unsigned V0BroadcastIdx = BroadcastIdx / Scale;
8080
8081  if ((V0Opc != ISD::SCALAR_TO_VECTOR || V0BroadcastIdx != 0) &&
8082      V0Opc != ISD::BUILD_VECTOR)
8083    return SDValue();
8084
8085  SDValue Scalar = V0.getOperand(V0BroadcastIdx);
8086
8087  // If we're extracting non-least-significant bits, shift so we can truncate.
8088  // Hopefully, we can fold away the trunc/srl/load into the broadcast.
8089  // Even if we can't (and !isShuffleFoldableLoad(Scalar)), prefer
8090  // vpbroadcast+vmovd+shr to vpshufb(m)+vmovd.
8091  if (const int OffsetIdx = BroadcastIdx % Scale)
8092    Scalar = DAG.getNode(ISD::SRL, DL, Scalar.getValueType(), Scalar,
8093            DAG.getConstant(OffsetIdx * EltSize, DL, Scalar.getValueType()));
8094
8095  return DAG.getNode(X86ISD::VBROADCAST, DL, VT,
8096                     DAG.getNode(ISD::TRUNCATE, DL, EltVT, Scalar));
8097}
8098
8099/// \brief Try to lower broadcast of a single element.
8100///
8101/// For convenience, this code also bundles all of the subtarget feature set
8102/// filtering. While a little annoying to re-dispatch on type here, there isn't
8103/// a convenient way to factor it out.
8104/// FIXME: This is very similar to LowerVectorBroadcast - can we merge them?
8105static SDValue lowerVectorShuffleAsBroadcast(SDLoc DL, MVT VT, SDValue V,
8106                                             ArrayRef<int> Mask,
8107                                             const X86Subtarget *Subtarget,
8108                                             SelectionDAG &DAG) {
8109  if (!Subtarget->hasAVX())
8110    return SDValue();
8111  if (VT.isInteger() && !Subtarget->hasAVX2())
8112    return SDValue();
8113
8114  // Check that the mask is a broadcast.
8115  int BroadcastIdx = -1;
8116  for (int M : Mask)
8117    if (M >= 0 && BroadcastIdx == -1)
8118      BroadcastIdx = M;
8119    else if (M >= 0 && M != BroadcastIdx)
8120      return SDValue();
8121
8122  assert(BroadcastIdx < (int)Mask.size() && "We only expect to be called with "
8123                                            "a sorted mask where the broadcast "
8124                                            "comes from V1.");
8125
8126  // Go up the chain of (vector) values to find a scalar load that we can
8127  // combine with the broadcast.
8128  for (;;) {
8129    switch (V.getOpcode()) {
8130    case ISD::CONCAT_VECTORS: {
8131      int OperandSize = Mask.size() / V.getNumOperands();
8132      V = V.getOperand(BroadcastIdx / OperandSize);
8133      BroadcastIdx %= OperandSize;
8134      continue;
8135    }
8136
8137    case ISD::INSERT_SUBVECTOR: {
8138      SDValue VOuter = V.getOperand(0), VInner = V.getOperand(1);
8139      auto ConstantIdx = dyn_cast<ConstantSDNode>(V.getOperand(2));
8140      if (!ConstantIdx)
8141        break;
8142
8143      int BeginIdx = (int)ConstantIdx->getZExtValue();
8144      int EndIdx =
8145          BeginIdx + (int)VInner.getSimpleValueType().getVectorNumElements();
8146      if (BroadcastIdx >= BeginIdx && BroadcastIdx < EndIdx) {
8147        BroadcastIdx -= BeginIdx;
8148        V = VInner;
8149      } else {
8150        V = VOuter;
8151      }
8152      continue;
8153    }
8154    }
8155    break;
8156  }
8157
8158  // Check if this is a broadcast of a scalar. We special case lowering
8159  // for scalars so that we can more effectively fold with loads.
8160  // First, look through bitcast: if the original value has a larger element
8161  // type than the shuffle, the broadcast element is in essence truncated.
8162  // Make that explicit to ease folding.
8163  if (V.getOpcode() == ISD::BITCAST && VT.isInteger())
8164    if (SDValue TruncBroadcast = lowerVectorShuffleAsTruncBroadcast(
8165            DL, VT, V.getOperand(0), BroadcastIdx, Subtarget, DAG))
8166      return TruncBroadcast;
8167
8168  // Also check the simpler case, where we can directly reuse the scalar.
8169  if (V.getOpcode() == ISD::BUILD_VECTOR ||
8170      (V.getOpcode() == ISD::SCALAR_TO_VECTOR && BroadcastIdx == 0)) {
8171    V = V.getOperand(BroadcastIdx);
8172
8173    // If the scalar isn't a load, we can't broadcast from it in AVX1.
8174    // Only AVX2 has register broadcasts.
8175    if (!Subtarget->hasAVX2() && !isShuffleFoldableLoad(V))
8176      return SDValue();
8177  } else if (MayFoldLoad(V) && !cast<LoadSDNode>(V)->isVolatile()) {
8178    // If we are broadcasting a load that is only used by the shuffle
8179    // then we can reduce the vector load to the broadcasted scalar load.
8180    LoadSDNode *Ld = cast<LoadSDNode>(V);
8181    SDValue BaseAddr = Ld->getOperand(1);
8182    EVT AddrVT = BaseAddr.getValueType();
8183    EVT SVT = VT.getScalarType();
8184    unsigned Offset = BroadcastIdx * SVT.getStoreSize();
8185    SDValue NewAddr = DAG.getNode(
8186        ISD::ADD, DL, AddrVT, BaseAddr,
8187        DAG.getConstant(Offset, DL, AddrVT));
8188    V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
8189                    DAG.getMachineFunction().getMachineMemOperand(
8190                        Ld->getMemOperand(), Offset, SVT.getStoreSize()));
8191  } else if (BroadcastIdx != 0 || !Subtarget->hasAVX2()) {
8192    // We can't broadcast from a vector register without AVX2, and we can only
8193    // broadcast from the zero-element of a vector register.
8194    return SDValue();
8195  }
8196
8197  return DAG.getNode(X86ISD::VBROADCAST, DL, VT, V);
8198}
8199
8200// Check for whether we can use INSERTPS to perform the shuffle. We only use
8201// INSERTPS when the V1 elements are already in the correct locations
8202// because otherwise we can just always use two SHUFPS instructions which
8203// are much smaller to encode than a SHUFPS and an INSERTPS. We can also
8204// perform INSERTPS if a single V1 element is out of place and all V2
8205// elements are zeroable.
8206static SDValue lowerVectorShuffleAsInsertPS(SDValue Op, SDValue V1, SDValue V2,
8207                                            ArrayRef<int> Mask,
8208                                            SelectionDAG &DAG) {
8209  assert(Op.getSimpleValueType() == MVT::v4f32 && "Bad shuffle type!");
8210  assert(V1.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
8211  assert(V2.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
8212  assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
8213
8214  SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
8215
8216  unsigned ZMask = 0;
8217  int V1DstIndex = -1;
8218  int V2DstIndex = -1;
8219  bool V1UsedInPlace = false;
8220
8221  for (int i = 0; i < 4; ++i) {
8222    // Synthesize a zero mask from the zeroable elements (includes undefs).
8223    if (Zeroable[i]) {
8224      ZMask |= 1 << i;
8225      continue;
8226    }
8227
8228    // Flag if we use any V1 inputs in place.
8229    if (i == Mask[i]) {
8230      V1UsedInPlace = true;
8231      continue;
8232    }
8233
8234    // We can only insert a single non-zeroable element.
8235    if (V1DstIndex != -1 || V2DstIndex != -1)
8236      return SDValue();
8237
8238    if (Mask[i] < 4) {
8239      // V1 input out of place for insertion.
8240      V1DstIndex = i;
8241    } else {
8242      // V2 input for insertion.
8243      V2DstIndex = i;
8244    }
8245  }
8246
8247  // Don't bother if we have no (non-zeroable) element for insertion.
8248  if (V1DstIndex == -1 && V2DstIndex == -1)
8249    return SDValue();
8250
8251  // Determine element insertion src/dst indices. The src index is from the
8252  // start of the inserted vector, not the start of the concatenated vector.
8253  unsigned V2SrcIndex = 0;
8254  if (V1DstIndex != -1) {
8255    // If we have a V1 input out of place, we use V1 as the V2 element insertion
8256    // and don't use the original V2 at all.
8257    V2SrcIndex = Mask[V1DstIndex];
8258    V2DstIndex = V1DstIndex;
8259    V2 = V1;
8260  } else {
8261    V2SrcIndex = Mask[V2DstIndex] - 4;
8262  }
8263
8264  // If no V1 inputs are used in place, then the result is created only from
8265  // the zero mask and the V2 insertion - so remove V1 dependency.
8266  if (!V1UsedInPlace)
8267    V1 = DAG.getUNDEF(MVT::v4f32);
8268
8269  unsigned InsertPSMask = V2SrcIndex << 6 | V2DstIndex << 4 | ZMask;
8270  assert((InsertPSMask & ~0xFFu) == 0 && "Invalid mask!");
8271
8272  // Insert the V2 element into the desired position.
8273  SDLoc DL(Op);
8274  return DAG.getNode(X86ISD::INSERTPS, DL, MVT::v4f32, V1, V2,
8275                     DAG.getConstant(InsertPSMask, DL, MVT::i8));
8276}
8277
8278/// \brief Try to lower a shuffle as a permute of the inputs followed by an
8279/// UNPCK instruction.
8280///
8281/// This specifically targets cases where we end up with alternating between
8282/// the two inputs, and so can permute them into something that feeds a single
8283/// UNPCK instruction. Note that this routine only targets integer vectors
8284/// because for floating point vectors we have a generalized SHUFPS lowering
8285/// strategy that handles everything that doesn't *exactly* match an unpack,
8286/// making this clever lowering unnecessary.
8287static SDValue lowerVectorShuffleAsPermuteAndUnpack(SDLoc DL, MVT VT,
8288                                                    SDValue V1, SDValue V2,
8289                                                    ArrayRef<int> Mask,
8290                                                    SelectionDAG &DAG) {
8291  assert(!VT.isFloatingPoint() &&
8292         "This routine only supports integer vectors.");
8293  assert(!isSingleInputShuffleMask(Mask) &&
8294         "This routine should only be used when blending two inputs.");
8295  assert(Mask.size() >= 2 && "Single element masks are invalid.");
8296
8297  int Size = Mask.size();
8298
8299  int NumLoInputs = std::count_if(Mask.begin(), Mask.end(), [Size](int M) {
8300    return M >= 0 && M % Size < Size / 2;
8301  });
8302  int NumHiInputs = std::count_if(
8303      Mask.begin(), Mask.end(), [Size](int M) { return M % Size >= Size / 2; });
8304
8305  bool UnpackLo = NumLoInputs >= NumHiInputs;
8306
8307  auto TryUnpack = [&](MVT UnpackVT, int Scale) {
8308    SmallVector<int, 32> V1Mask(Mask.size(), -1);
8309    SmallVector<int, 32> V2Mask(Mask.size(), -1);
8310
8311    for (int i = 0; i < Size; ++i) {
8312      if (Mask[i] < 0)
8313        continue;
8314
8315      // Each element of the unpack contains Scale elements from this mask.
8316      int UnpackIdx = i / Scale;
8317
8318      // We only handle the case where V1 feeds the first slots of the unpack.
8319      // We rely on canonicalization to ensure this is the case.
8320      if ((UnpackIdx % 2 == 0) != (Mask[i] < Size))
8321        return SDValue();
8322
8323      // Setup the mask for this input. The indexing is tricky as we have to
8324      // handle the unpack stride.
8325      SmallVectorImpl<int> &VMask = (UnpackIdx % 2 == 0) ? V1Mask : V2Mask;
8326      VMask[(UnpackIdx / 2) * Scale + i % Scale + (UnpackLo ? 0 : Size / 2)] =
8327          Mask[i] % Size;
8328    }
8329
8330    // If we will have to shuffle both inputs to use the unpack, check whether
8331    // we can just unpack first and shuffle the result. If so, skip this unpack.
8332    if ((NumLoInputs == 0 || NumHiInputs == 0) && !isNoopShuffleMask(V1Mask) &&
8333        !isNoopShuffleMask(V2Mask))
8334      return SDValue();
8335
8336    // Shuffle the inputs into place.
8337    V1 = DAG.getVectorShuffle(VT, DL, V1, DAG.getUNDEF(VT), V1Mask);
8338    V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Mask);
8339
8340    // Cast the inputs to the type we will use to unpack them.
8341    V1 = DAG.getBitcast(UnpackVT, V1);
8342    V2 = DAG.getBitcast(UnpackVT, V2);
8343
8344    // Unpack the inputs and cast the result back to the desired type.
8345    return DAG.getBitcast(
8346        VT, DAG.getNode(UnpackLo ? X86ISD::UNPCKL : X86ISD::UNPCKH, DL,
8347                        UnpackVT, V1, V2));
8348  };
8349
8350  // We try each unpack from the largest to the smallest to try and find one
8351  // that fits this mask.
8352  int OrigNumElements = VT.getVectorNumElements();
8353  int OrigScalarSize = VT.getScalarSizeInBits();
8354  for (int ScalarSize = 64; ScalarSize >= OrigScalarSize; ScalarSize /= 2) {
8355    int Scale = ScalarSize / OrigScalarSize;
8356    int NumElements = OrigNumElements / Scale;
8357    MVT UnpackVT = MVT::getVectorVT(MVT::getIntegerVT(ScalarSize), NumElements);
8358    if (SDValue Unpack = TryUnpack(UnpackVT, Scale))
8359      return Unpack;
8360  }
8361
8362  // If none of the unpack-rooted lowerings worked (or were profitable) try an
8363  // initial unpack.
8364  if (NumLoInputs == 0 || NumHiInputs == 0) {
8365    assert((NumLoInputs > 0 || NumHiInputs > 0) &&
8366           "We have to have *some* inputs!");
8367    int HalfOffset = NumLoInputs == 0 ? Size / 2 : 0;
8368
8369    // FIXME: We could consider the total complexity of the permute of each
8370    // possible unpacking. Or at the least we should consider how many
8371    // half-crossings are created.
8372    // FIXME: We could consider commuting the unpacks.
8373
8374    SmallVector<int, 32> PermMask;
8375    PermMask.assign(Size, -1);
8376    for (int i = 0; i < Size; ++i) {
8377      if (Mask[i] < 0)
8378        continue;
8379
8380      assert(Mask[i] % Size >= HalfOffset && "Found input from wrong half!");
8381
8382      PermMask[i] =
8383          2 * ((Mask[i] % Size) - HalfOffset) + (Mask[i] < Size ? 0 : 1);
8384    }
8385    return DAG.getVectorShuffle(
8386        VT, DL, DAG.getNode(NumLoInputs == 0 ? X86ISD::UNPCKH : X86ISD::UNPCKL,
8387                            DL, VT, V1, V2),
8388        DAG.getUNDEF(VT), PermMask);
8389  }
8390
8391  return SDValue();
8392}
8393
8394/// \brief Handle lowering of 2-lane 64-bit floating point shuffles.
8395///
8396/// This is the basis function for the 2-lane 64-bit shuffles as we have full
8397/// support for floating point shuffles but not integer shuffles. These
8398/// instructions will incur a domain crossing penalty on some chips though so
8399/// it is better to avoid lowering through this for integer vectors where
8400/// possible.
8401static SDValue lowerV2F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
8402                                       const X86Subtarget *Subtarget,
8403                                       SelectionDAG &DAG) {
8404  SDLoc DL(Op);
8405  assert(Op.getSimpleValueType() == MVT::v2f64 && "Bad shuffle type!");
8406  assert(V1.getSimpleValueType() == MVT::v2f64 && "Bad operand type!");
8407  assert(V2.getSimpleValueType() == MVT::v2f64 && "Bad operand type!");
8408  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
8409  ArrayRef<int> Mask = SVOp->getMask();
8410  assert(Mask.size() == 2 && "Unexpected mask size for v2 shuffle!");
8411
8412  if (isSingleInputShuffleMask(Mask)) {
8413    // Use low duplicate instructions for masks that match their pattern.
8414    if (Subtarget->hasSSE3())
8415      if (isShuffleEquivalent(V1, V2, Mask, {0, 0}))
8416        return DAG.getNode(X86ISD::MOVDDUP, DL, MVT::v2f64, V1);
8417
8418    // Straight shuffle of a single input vector. Simulate this by using the
8419    // single input as both of the "inputs" to this instruction..
8420    unsigned SHUFPDMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1);
8421
8422    if (Subtarget->hasAVX()) {
8423      // If we have AVX, we can use VPERMILPS which will allow folding a load
8424      // into the shuffle.
8425      return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v2f64, V1,
8426                         DAG.getConstant(SHUFPDMask, DL, MVT::i8));
8427    }
8428
8429    return DAG.getNode(X86ISD::SHUFP, DL, MVT::v2f64, V1, V1,
8430                       DAG.getConstant(SHUFPDMask, DL, MVT::i8));
8431  }
8432  assert(Mask[0] >= 0 && Mask[0] < 2 && "Non-canonicalized blend!");
8433  assert(Mask[1] >= 2 && "Non-canonicalized blend!");
8434
8435  // If we have a single input, insert that into V1 if we can do so cheaply.
8436  if ((Mask[0] >= 2) + (Mask[1] >= 2) == 1) {
8437    if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
8438            DL, MVT::v2f64, V1, V2, Mask, Subtarget, DAG))
8439      return Insertion;
8440    // Try inverting the insertion since for v2 masks it is easy to do and we
8441    // can't reliably sort the mask one way or the other.
8442    int InverseMask[2] = {Mask[0] < 0 ? -1 : (Mask[0] ^ 2),
8443                          Mask[1] < 0 ? -1 : (Mask[1] ^ 2)};
8444    if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
8445            DL, MVT::v2f64, V2, V1, InverseMask, Subtarget, DAG))
8446      return Insertion;
8447  }
8448
8449  // Try to use one of the special instruction patterns to handle two common
8450  // blend patterns if a zero-blend above didn't work.
8451  if (isShuffleEquivalent(V1, V2, Mask, {0, 3}) ||
8452      isShuffleEquivalent(V1, V2, Mask, {1, 3}))
8453    if (SDValue V1S = getScalarValueForVectorElement(V1, Mask[0], DAG))
8454      // We can either use a special instruction to load over the low double or
8455      // to move just the low double.
8456      return DAG.getNode(
8457          isShuffleFoldableLoad(V1S) ? X86ISD::MOVLPD : X86ISD::MOVSD,
8458          DL, MVT::v2f64, V2,
8459          DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64, V1S));
8460
8461  if (Subtarget->hasSSE41())
8462    if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v2f64, V1, V2, Mask,
8463                                                  Subtarget, DAG))
8464      return Blend;
8465
8466  // Use dedicated unpack instructions for masks that match their pattern.
8467  if (SDValue V =
8468          lowerVectorShuffleWithUNPCK(DL, MVT::v2f64, Mask, V1, V2, DAG))
8469    return V;
8470
8471  unsigned SHUFPDMask = (Mask[0] == 1) | (((Mask[1] - 2) == 1) << 1);
8472  return DAG.getNode(X86ISD::SHUFP, DL, MVT::v2f64, V1, V2,
8473                     DAG.getConstant(SHUFPDMask, DL, MVT::i8));
8474}
8475
8476/// \brief Handle lowering of 2-lane 64-bit integer shuffles.
8477///
8478/// Tries to lower a 2-lane 64-bit shuffle using shuffle operations provided by
8479/// the integer unit to minimize domain crossing penalties. However, for blends
8480/// it falls back to the floating point shuffle operation with appropriate bit
8481/// casting.
8482static SDValue lowerV2I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
8483                                       const X86Subtarget *Subtarget,
8484                                       SelectionDAG &DAG) {
8485  SDLoc DL(Op);
8486  assert(Op.getSimpleValueType() == MVT::v2i64 && "Bad shuffle type!");
8487  assert(V1.getSimpleValueType() == MVT::v2i64 && "Bad operand type!");
8488  assert(V2.getSimpleValueType() == MVT::v2i64 && "Bad operand type!");
8489  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
8490  ArrayRef<int> Mask = SVOp->getMask();
8491  assert(Mask.size() == 2 && "Unexpected mask size for v2 shuffle!");
8492
8493  if (isSingleInputShuffleMask(Mask)) {
8494    // Check for being able to broadcast a single element.
8495    if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v2i64, V1,
8496                                                          Mask, Subtarget, DAG))
8497      return Broadcast;
8498
8499    // Straight shuffle of a single input vector. For everything from SSE2
8500    // onward this has a single fast instruction with no scary immediates.
8501    // We have to map the mask as it is actually a v4i32 shuffle instruction.
8502    V1 = DAG.getBitcast(MVT::v4i32, V1);
8503    int WidenedMask[4] = {
8504        std::max(Mask[0], 0) * 2, std::max(Mask[0], 0) * 2 + 1,
8505        std::max(Mask[1], 0) * 2, std::max(Mask[1], 0) * 2 + 1};
8506    return DAG.getBitcast(
8507        MVT::v2i64,
8508        DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V1,
8509                    getV4X86ShuffleImm8ForMask(WidenedMask, DL, DAG)));
8510  }
8511  assert(Mask[0] != -1 && "No undef lanes in multi-input v2 shuffles!");
8512  assert(Mask[1] != -1 && "No undef lanes in multi-input v2 shuffles!");
8513  assert(Mask[0] < 2 && "We sort V1 to be the first input.");
8514  assert(Mask[1] >= 2 && "We sort V2 to be the second input.");
8515
8516  // If we have a blend of two PACKUS operations an the blend aligns with the
8517  // low and half halves, we can just merge the PACKUS operations. This is
8518  // particularly important as it lets us merge shuffles that this routine itself
8519  // creates.
8520  auto GetPackNode = [](SDValue V) {
8521    while (V.getOpcode() == ISD::BITCAST)
8522      V = V.getOperand(0);
8523
8524    return V.getOpcode() == X86ISD::PACKUS ? V : SDValue();
8525  };
8526  if (SDValue V1Pack = GetPackNode(V1))
8527    if (SDValue V2Pack = GetPackNode(V2))
8528      return DAG.getBitcast(MVT::v2i64,
8529                            DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8,
8530                                        Mask[0] == 0 ? V1Pack.getOperand(0)
8531                                                     : V1Pack.getOperand(1),
8532                                        Mask[1] == 2 ? V2Pack.getOperand(0)
8533                                                     : V2Pack.getOperand(1)));
8534
8535  // Try to use shift instructions.
8536  if (SDValue Shift =
8537          lowerVectorShuffleAsShift(DL, MVT::v2i64, V1, V2, Mask, DAG))
8538    return Shift;
8539
8540  // When loading a scalar and then shuffling it into a vector we can often do
8541  // the insertion cheaply.
8542  if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
8543          DL, MVT::v2i64, V1, V2, Mask, Subtarget, DAG))
8544    return Insertion;
8545  // Try inverting the insertion since for v2 masks it is easy to do and we
8546  // can't reliably sort the mask one way or the other.
8547  int InverseMask[2] = {Mask[0] ^ 2, Mask[1] ^ 2};
8548  if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
8549          DL, MVT::v2i64, V2, V1, InverseMask, Subtarget, DAG))
8550    return Insertion;
8551
8552  // We have different paths for blend lowering, but they all must use the
8553  // *exact* same predicate.
8554  bool IsBlendSupported = Subtarget->hasSSE41();
8555  if (IsBlendSupported)
8556    if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v2i64, V1, V2, Mask,
8557                                                  Subtarget, DAG))
8558      return Blend;
8559
8560  // Use dedicated unpack instructions for masks that match their pattern.
8561  if (SDValue V =
8562          lowerVectorShuffleWithUNPCK(DL, MVT::v2i64, Mask, V1, V2, DAG))
8563    return V;
8564
8565  // Try to use byte rotation instructions.
8566  // Its more profitable for pre-SSSE3 to use shuffles/unpacks.
8567  if (Subtarget->hasSSSE3())
8568    if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
8569            DL, MVT::v2i64, V1, V2, Mask, Subtarget, DAG))
8570      return Rotate;
8571
8572  // If we have direct support for blends, we should lower by decomposing into
8573  // a permute. That will be faster than the domain cross.
8574  if (IsBlendSupported)
8575    return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v2i64, V1, V2,
8576                                                      Mask, DAG);
8577
8578  // We implement this with SHUFPD which is pretty lame because it will likely
8579  // incur 2 cycles of stall for integer vectors on Nehalem and older chips.
8580  // However, all the alternatives are still more cycles and newer chips don't
8581  // have this problem. It would be really nice if x86 had better shuffles here.
8582  V1 = DAG.getBitcast(MVT::v2f64, V1);
8583  V2 = DAG.getBitcast(MVT::v2f64, V2);
8584  return DAG.getBitcast(MVT::v2i64,
8585                        DAG.getVectorShuffle(MVT::v2f64, DL, V1, V2, Mask));
8586}
8587
8588/// \brief Test whether this can be lowered with a single SHUFPS instruction.
8589///
8590/// This is used to disable more specialized lowerings when the shufps lowering
8591/// will happen to be efficient.
8592static bool isSingleSHUFPSMask(ArrayRef<int> Mask) {
8593  // This routine only handles 128-bit shufps.
8594  assert(Mask.size() == 4 && "Unsupported mask size!");
8595
8596  // To lower with a single SHUFPS we need to have the low half and high half
8597  // each requiring a single input.
8598  if (Mask[0] != -1 && Mask[1] != -1 && (Mask[0] < 4) != (Mask[1] < 4))
8599    return false;
8600  if (Mask[2] != -1 && Mask[3] != -1 && (Mask[2] < 4) != (Mask[3] < 4))
8601    return false;
8602
8603  return true;
8604}
8605
8606/// \brief Lower a vector shuffle using the SHUFPS instruction.
8607///
8608/// This is a helper routine dedicated to lowering vector shuffles using SHUFPS.
8609/// It makes no assumptions about whether this is the *best* lowering, it simply
8610/// uses it.
8611static SDValue lowerVectorShuffleWithSHUFPS(SDLoc DL, MVT VT,
8612                                            ArrayRef<int> Mask, SDValue V1,
8613                                            SDValue V2, SelectionDAG &DAG) {
8614  SDValue LowV = V1, HighV = V2;
8615  int NewMask[4] = {Mask[0], Mask[1], Mask[2], Mask[3]};
8616
8617  int NumV2Elements =
8618      std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; });
8619
8620  if (NumV2Elements == 1) {
8621    int V2Index =
8622        std::find_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; }) -
8623        Mask.begin();
8624
8625    // Compute the index adjacent to V2Index and in the same half by toggling
8626    // the low bit.
8627    int V2AdjIndex = V2Index ^ 1;
8628
8629    if (Mask[V2AdjIndex] == -1) {
8630      // Handles all the cases where we have a single V2 element and an undef.
8631      // This will only ever happen in the high lanes because we commute the
8632      // vector otherwise.
8633      if (V2Index < 2)
8634        std::swap(LowV, HighV);
8635      NewMask[V2Index] -= 4;
8636    } else {
8637      // Handle the case where the V2 element ends up adjacent to a V1 element.
8638      // To make this work, blend them together as the first step.
8639      int V1Index = V2AdjIndex;
8640      int BlendMask[4] = {Mask[V2Index] - 4, 0, Mask[V1Index], 0};
8641      V2 = DAG.getNode(X86ISD::SHUFP, DL, VT, V2, V1,
8642                       getV4X86ShuffleImm8ForMask(BlendMask, DL, DAG));
8643
8644      // Now proceed to reconstruct the final blend as we have the necessary
8645      // high or low half formed.
8646      if (V2Index < 2) {
8647        LowV = V2;
8648        HighV = V1;
8649      } else {
8650        HighV = V2;
8651      }
8652      NewMask[V1Index] = 2; // We put the V1 element in V2[2].
8653      NewMask[V2Index] = 0; // We shifted the V2 element into V2[0].
8654    }
8655  } else if (NumV2Elements == 2) {
8656    if (Mask[0] < 4 && Mask[1] < 4) {
8657      // Handle the easy case where we have V1 in the low lanes and V2 in the
8658      // high lanes.
8659      NewMask[2] -= 4;
8660      NewMask[3] -= 4;
8661    } else if (Mask[2] < 4 && Mask[3] < 4) {
8662      // We also handle the reversed case because this utility may get called
8663      // when we detect a SHUFPS pattern but can't easily commute the shuffle to
8664      // arrange things in the right direction.
8665      NewMask[0] -= 4;
8666      NewMask[1] -= 4;
8667      HighV = V1;
8668      LowV = V2;
8669    } else {
8670      // We have a mixture of V1 and V2 in both low and high lanes. Rather than
8671      // trying to place elements directly, just blend them and set up the final
8672      // shuffle to place them.
8673
8674      // The first two blend mask elements are for V1, the second two are for
8675      // V2.
8676      int BlendMask[4] = {Mask[0] < 4 ? Mask[0] : Mask[1],
8677                          Mask[2] < 4 ? Mask[2] : Mask[3],
8678                          (Mask[0] >= 4 ? Mask[0] : Mask[1]) - 4,
8679                          (Mask[2] >= 4 ? Mask[2] : Mask[3]) - 4};
8680      V1 = DAG.getNode(X86ISD::SHUFP, DL, VT, V1, V2,
8681                       getV4X86ShuffleImm8ForMask(BlendMask, DL, DAG));
8682
8683      // Now we do a normal shuffle of V1 by giving V1 as both operands to
8684      // a blend.
8685      LowV = HighV = V1;
8686      NewMask[0] = Mask[0] < 4 ? 0 : 2;
8687      NewMask[1] = Mask[0] < 4 ? 2 : 0;
8688      NewMask[2] = Mask[2] < 4 ? 1 : 3;
8689      NewMask[3] = Mask[2] < 4 ? 3 : 1;
8690    }
8691  }
8692  return DAG.getNode(X86ISD::SHUFP, DL, VT, LowV, HighV,
8693                     getV4X86ShuffleImm8ForMask(NewMask, DL, DAG));
8694}
8695
8696/// \brief Lower 4-lane 32-bit floating point shuffles.
8697///
8698/// Uses instructions exclusively from the floating point unit to minimize
8699/// domain crossing penalties, as these are sufficient to implement all v4f32
8700/// shuffles.
8701static SDValue lowerV4F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
8702                                       const X86Subtarget *Subtarget,
8703                                       SelectionDAG &DAG) {
8704  SDLoc DL(Op);
8705  assert(Op.getSimpleValueType() == MVT::v4f32 && "Bad shuffle type!");
8706  assert(V1.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
8707  assert(V2.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
8708  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
8709  ArrayRef<int> Mask = SVOp->getMask();
8710  assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
8711
8712  int NumV2Elements =
8713      std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; });
8714
8715  if (NumV2Elements == 0) {
8716    // Check for being able to broadcast a single element.
8717    if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v4f32, V1,
8718                                                          Mask, Subtarget, DAG))
8719      return Broadcast;
8720
8721    // Use even/odd duplicate instructions for masks that match their pattern.
8722    if (Subtarget->hasSSE3()) {
8723      if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2}))
8724        return DAG.getNode(X86ISD::MOVSLDUP, DL, MVT::v4f32, V1);
8725      if (isShuffleEquivalent(V1, V2, Mask, {1, 1, 3, 3}))
8726        return DAG.getNode(X86ISD::MOVSHDUP, DL, MVT::v4f32, V1);
8727    }
8728
8729    if (Subtarget->hasAVX()) {
8730      // If we have AVX, we can use VPERMILPS which will allow folding a load
8731      // into the shuffle.
8732      return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v4f32, V1,
8733                         getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
8734    }
8735
8736    // Otherwise, use a straight shuffle of a single input vector. We pass the
8737    // input vector to both operands to simulate this with a SHUFPS.
8738    return DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f32, V1, V1,
8739                       getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
8740  }
8741
8742  // There are special ways we can lower some single-element blends. However, we
8743  // have custom ways we can lower more complex single-element blends below that
8744  // we defer to if both this and BLENDPS fail to match, so restrict this to
8745  // when the V2 input is targeting element 0 of the mask -- that is the fast
8746  // case here.
8747  if (NumV2Elements == 1 && Mask[0] >= 4)
8748    if (SDValue V = lowerVectorShuffleAsElementInsertion(DL, MVT::v4f32, V1, V2,
8749                                                         Mask, Subtarget, DAG))
8750      return V;
8751
8752  if (Subtarget->hasSSE41()) {
8753    if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4f32, V1, V2, Mask,
8754                                                  Subtarget, DAG))
8755      return Blend;
8756
8757    // Use INSERTPS if we can complete the shuffle efficiently.
8758    if (SDValue V = lowerVectorShuffleAsInsertPS(Op, V1, V2, Mask, DAG))
8759      return V;
8760
8761    if (!isSingleSHUFPSMask(Mask))
8762      if (SDValue BlendPerm = lowerVectorShuffleAsBlendAndPermute(
8763              DL, MVT::v4f32, V1, V2, Mask, DAG))
8764        return BlendPerm;
8765  }
8766
8767  // Use dedicated unpack instructions for masks that match their pattern.
8768  if (SDValue V =
8769          lowerVectorShuffleWithUNPCK(DL, MVT::v4f32, Mask, V1, V2, DAG))
8770    return V;
8771
8772  // Otherwise fall back to a SHUFPS lowering strategy.
8773  return lowerVectorShuffleWithSHUFPS(DL, MVT::v4f32, Mask, V1, V2, DAG);
8774}
8775
8776/// \brief Lower 4-lane i32 vector shuffles.
8777///
8778/// We try to handle these with integer-domain shuffles where we can, but for
8779/// blends we use the floating point domain blend instructions.
8780static SDValue lowerV4I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
8781                                       const X86Subtarget *Subtarget,
8782                                       SelectionDAG &DAG) {
8783  SDLoc DL(Op);
8784  assert(Op.getSimpleValueType() == MVT::v4i32 && "Bad shuffle type!");
8785  assert(V1.getSimpleValueType() == MVT::v4i32 && "Bad operand type!");
8786  assert(V2.getSimpleValueType() == MVT::v4i32 && "Bad operand type!");
8787  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
8788  ArrayRef<int> Mask = SVOp->getMask();
8789  assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
8790
8791  // Whenever we can lower this as a zext, that instruction is strictly faster
8792  // than any alternative. It also allows us to fold memory operands into the
8793  // shuffle in many cases.
8794  if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(DL, MVT::v4i32, V1, V2,
8795                                                         Mask, Subtarget, DAG))
8796    return ZExt;
8797
8798  int NumV2Elements =
8799      std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; });
8800
8801  if (NumV2Elements == 0) {
8802    // Check for being able to broadcast a single element.
8803    if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v4i32, V1,
8804                                                          Mask, Subtarget, DAG))
8805      return Broadcast;
8806
8807    // Straight shuffle of a single input vector. For everything from SSE2
8808    // onward this has a single fast instruction with no scary immediates.
8809    // We coerce the shuffle pattern to be compatible with UNPCK instructions
8810    // but we aren't actually going to use the UNPCK instruction because doing
8811    // so prevents folding a load into this instruction or making a copy.
8812    const int UnpackLoMask[] = {0, 0, 1, 1};
8813    const int UnpackHiMask[] = {2, 2, 3, 3};
8814    if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 1, 1}))
8815      Mask = UnpackLoMask;
8816    else if (isShuffleEquivalent(V1, V2, Mask, {2, 2, 3, 3}))
8817      Mask = UnpackHiMask;
8818
8819    return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V1,
8820                       getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
8821  }
8822
8823  // Try to use shift instructions.
8824  if (SDValue Shift =
8825          lowerVectorShuffleAsShift(DL, MVT::v4i32, V1, V2, Mask, DAG))
8826    return Shift;
8827
8828  // There are special ways we can lower some single-element blends.
8829  if (NumV2Elements == 1)
8830    if (SDValue V = lowerVectorShuffleAsElementInsertion(DL, MVT::v4i32, V1, V2,
8831                                                         Mask, Subtarget, DAG))
8832      return V;
8833
8834  // We have different paths for blend lowering, but they all must use the
8835  // *exact* same predicate.
8836  bool IsBlendSupported = Subtarget->hasSSE41();
8837  if (IsBlendSupported)
8838    if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4i32, V1, V2, Mask,
8839                                                  Subtarget, DAG))
8840      return Blend;
8841
8842  if (SDValue Masked =
8843          lowerVectorShuffleAsBitMask(DL, MVT::v4i32, V1, V2, Mask, DAG))
8844    return Masked;
8845
8846  // Use dedicated unpack instructions for masks that match their pattern.
8847  if (SDValue V =
8848          lowerVectorShuffleWithUNPCK(DL, MVT::v4i32, Mask, V1, V2, DAG))
8849    return V;
8850
8851  // Try to use byte rotation instructions.
8852  // Its more profitable for pre-SSSE3 to use shuffles/unpacks.
8853  if (Subtarget->hasSSSE3())
8854    if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
8855            DL, MVT::v4i32, V1, V2, Mask, Subtarget, DAG))
8856      return Rotate;
8857
8858  // If we have direct support for blends, we should lower by decomposing into
8859  // a permute. That will be faster than the domain cross.
8860  if (IsBlendSupported)
8861    return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4i32, V1, V2,
8862                                                      Mask, DAG);
8863
8864  // Try to lower by permuting the inputs into an unpack instruction.
8865  if (SDValue Unpack = lowerVectorShuffleAsPermuteAndUnpack(DL, MVT::v4i32, V1,
8866                                                            V2, Mask, DAG))
8867    return Unpack;
8868
8869  // We implement this with SHUFPS because it can blend from two vectors.
8870  // Because we're going to eventually use SHUFPS, we use SHUFPS even to build
8871  // up the inputs, bypassing domain shift penalties that we would encur if we
8872  // directly used PSHUFD on Nehalem and older. For newer chips, this isn't
8873  // relevant.
8874  return DAG.getBitcast(
8875      MVT::v4i32,
8876      DAG.getVectorShuffle(MVT::v4f32, DL, DAG.getBitcast(MVT::v4f32, V1),
8877                           DAG.getBitcast(MVT::v4f32, V2), Mask));
8878}
8879
8880/// \brief Lowering of single-input v8i16 shuffles is the cornerstone of SSE2
8881/// shuffle lowering, and the most complex part.
8882///
8883/// The lowering strategy is to try to form pairs of input lanes which are
8884/// targeted at the same half of the final vector, and then use a dword shuffle
8885/// to place them onto the right half, and finally unpack the paired lanes into
8886/// their final position.
8887///
8888/// The exact breakdown of how to form these dword pairs and align them on the
8889/// correct sides is really tricky. See the comments within the function for
8890/// more of the details.
8891///
8892/// This code also handles repeated 128-bit lanes of v8i16 shuffles, but each
8893/// lane must shuffle the *exact* same way. In fact, you must pass a v8 Mask to
8894/// this routine for it to work correctly. To shuffle a 256-bit or 512-bit i16
8895/// vector, form the analogous 128-bit 8-element Mask.
8896static SDValue lowerV8I16GeneralSingleInputVectorShuffle(
8897    SDLoc DL, MVT VT, SDValue V, MutableArrayRef<int> Mask,
8898    const X86Subtarget *Subtarget, SelectionDAG &DAG) {
8899  assert(VT.getVectorElementType() == MVT::i16 && "Bad input type!");
8900  MVT PSHUFDVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() / 2);
8901
8902  assert(Mask.size() == 8 && "Shuffle mask length doen't match!");
8903  MutableArrayRef<int> LoMask = Mask.slice(0, 4);
8904  MutableArrayRef<int> HiMask = Mask.slice(4, 4);
8905
8906  SmallVector<int, 4> LoInputs;
8907  std::copy_if(LoMask.begin(), LoMask.end(), std::back_inserter(LoInputs),
8908               [](int M) { return M >= 0; });
8909  std::sort(LoInputs.begin(), LoInputs.end());
8910  LoInputs.erase(std::unique(LoInputs.begin(), LoInputs.end()), LoInputs.end());
8911  SmallVector<int, 4> HiInputs;
8912  std::copy_if(HiMask.begin(), HiMask.end(), std::back_inserter(HiInputs),
8913               [](int M) { return M >= 0; });
8914  std::sort(HiInputs.begin(), HiInputs.end());
8915  HiInputs.erase(std::unique(HiInputs.begin(), HiInputs.end()), HiInputs.end());
8916  int NumLToL =
8917      std::lower_bound(LoInputs.begin(), LoInputs.end(), 4) - LoInputs.begin();
8918  int NumHToL = LoInputs.size() - NumLToL;
8919  int NumLToH =
8920      std::lower_bound(HiInputs.begin(), HiInputs.end(), 4) - HiInputs.begin();
8921  int NumHToH = HiInputs.size() - NumLToH;
8922  MutableArrayRef<int> LToLInputs(LoInputs.data(), NumLToL);
8923  MutableArrayRef<int> LToHInputs(HiInputs.data(), NumLToH);
8924  MutableArrayRef<int> HToLInputs(LoInputs.data() + NumLToL, NumHToL);
8925  MutableArrayRef<int> HToHInputs(HiInputs.data() + NumLToH, NumHToH);
8926
8927  // Simplify the 1-into-3 and 3-into-1 cases with a single pshufd. For all
8928  // such inputs we can swap two of the dwords across the half mark and end up
8929  // with <=2 inputs to each half in each half. Once there, we can fall through
8930  // to the generic code below. For example:
8931  //
8932  // Input: [a, b, c, d, e, f, g, h] -PSHUFD[0,2,1,3]-> [a, b, e, f, c, d, g, h]
8933  // Mask:  [0, 1, 2, 7, 4, 5, 6, 3] -----------------> [0, 1, 4, 7, 2, 3, 6, 5]
8934  //
8935  // However in some very rare cases we have a 1-into-3 or 3-into-1 on one half
8936  // and an existing 2-into-2 on the other half. In this case we may have to
8937  // pre-shuffle the 2-into-2 half to avoid turning it into a 3-into-1 or
8938  // 1-into-3 which could cause us to cycle endlessly fixing each side in turn.
8939  // Fortunately, we don't have to handle anything but a 2-into-2 pattern
8940  // because any other situation (including a 3-into-1 or 1-into-3 in the other
8941  // half than the one we target for fixing) will be fixed when we re-enter this
8942  // path. We will also combine away any sequence of PSHUFD instructions that
8943  // result into a single instruction. Here is an example of the tricky case:
8944  //
8945  // Input: [a, b, c, d, e, f, g, h] -PSHUFD[0,2,1,3]-> [a, b, e, f, c, d, g, h]
8946  // Mask:  [3, 7, 1, 0, 2, 7, 3, 5] -THIS-IS-BAD!!!!-> [5, 7, 1, 0, 4, 7, 5, 3]
8947  //
8948  // This now has a 1-into-3 in the high half! Instead, we do two shuffles:
8949  //
8950  // Input: [a, b, c, d, e, f, g, h] PSHUFHW[0,2,1,3]-> [a, b, c, d, e, g, f, h]
8951  // Mask:  [3, 7, 1, 0, 2, 7, 3, 5] -----------------> [3, 7, 1, 0, 2, 7, 3, 6]
8952  //
8953  // Input: [a, b, c, d, e, g, f, h] -PSHUFD[0,2,1,3]-> [a, b, e, g, c, d, f, h]
8954  // Mask:  [3, 7, 1, 0, 2, 7, 3, 6] -----------------> [5, 7, 1, 0, 4, 7, 5, 6]
8955  //
8956  // The result is fine to be handled by the generic logic.
8957  auto balanceSides = [&](ArrayRef<int> AToAInputs, ArrayRef<int> BToAInputs,
8958                          ArrayRef<int> BToBInputs, ArrayRef<int> AToBInputs,
8959                          int AOffset, int BOffset) {
8960    assert((AToAInputs.size() == 3 || AToAInputs.size() == 1) &&
8961           "Must call this with A having 3 or 1 inputs from the A half.");
8962    assert((BToAInputs.size() == 1 || BToAInputs.size() == 3) &&
8963           "Must call this with B having 1 or 3 inputs from the B half.");
8964    assert(AToAInputs.size() + BToAInputs.size() == 4 &&
8965           "Must call this with either 3:1 or 1:3 inputs (summing to 4).");
8966
8967    bool ThreeAInputs = AToAInputs.size() == 3;
8968
8969    // Compute the index of dword with only one word among the three inputs in
8970    // a half by taking the sum of the half with three inputs and subtracting
8971    // the sum of the actual three inputs. The difference is the remaining
8972    // slot.
8973    int ADWord, BDWord;
8974    int &TripleDWord = ThreeAInputs ? ADWord : BDWord;
8975    int &OneInputDWord = ThreeAInputs ? BDWord : ADWord;
8976    int TripleInputOffset = ThreeAInputs ? AOffset : BOffset;
8977    ArrayRef<int> TripleInputs = ThreeAInputs ? AToAInputs : BToAInputs;
8978    int OneInput = ThreeAInputs ? BToAInputs[0] : AToAInputs[0];
8979    int TripleInputSum = 0 + 1 + 2 + 3 + (4 * TripleInputOffset);
8980    int TripleNonInputIdx =
8981        TripleInputSum - std::accumulate(TripleInputs.begin(), TripleInputs.end(), 0);
8982    TripleDWord = TripleNonInputIdx / 2;
8983
8984    // We use xor with one to compute the adjacent DWord to whichever one the
8985    // OneInput is in.
8986    OneInputDWord = (OneInput / 2) ^ 1;
8987
8988    // Check for one tricky case: We're fixing a 3<-1 or a 1<-3 shuffle for AToA
8989    // and BToA inputs. If there is also such a problem with the BToB and AToB
8990    // inputs, we don't try to fix it necessarily -- we'll recurse and see it in
8991    // the next pass. However, if we have a 2<-2 in the BToB and AToB inputs, it
8992    // is essential that we don't *create* a 3<-1 as then we might oscillate.
8993    if (BToBInputs.size() == 2 && AToBInputs.size() == 2) {
8994      // Compute how many inputs will be flipped by swapping these DWords. We
8995      // need
8996      // to balance this to ensure we don't form a 3-1 shuffle in the other
8997      // half.
8998      int NumFlippedAToBInputs =
8999          std::count(AToBInputs.begin(), AToBInputs.end(), 2 * ADWord) +
9000          std::count(AToBInputs.begin(), AToBInputs.end(), 2 * ADWord + 1);
9001      int NumFlippedBToBInputs =
9002          std::count(BToBInputs.begin(), BToBInputs.end(), 2 * BDWord) +
9003          std::count(BToBInputs.begin(), BToBInputs.end(), 2 * BDWord + 1);
9004      if ((NumFlippedAToBInputs == 1 &&
9005           (NumFlippedBToBInputs == 0 || NumFlippedBToBInputs == 2)) ||
9006          (NumFlippedBToBInputs == 1 &&
9007           (NumFlippedAToBInputs == 0 || NumFlippedAToBInputs == 2))) {
9008        // We choose whether to fix the A half or B half based on whether that
9009        // half has zero flipped inputs. At zero, we may not be able to fix it
9010        // with that half. We also bias towards fixing the B half because that
9011        // will more commonly be the high half, and we have to bias one way.
9012        auto FixFlippedInputs = [&V, &DL, &Mask, &DAG](int PinnedIdx, int DWord,
9013                                                       ArrayRef<int> Inputs) {
9014          int FixIdx = PinnedIdx ^ 1; // The adjacent slot to the pinned slot.
9015          bool IsFixIdxInput = std::find(Inputs.begin(), Inputs.end(),
9016                                         PinnedIdx ^ 1) != Inputs.end();
9017          // Determine whether the free index is in the flipped dword or the
9018          // unflipped dword based on where the pinned index is. We use this bit
9019          // in an xor to conditionally select the adjacent dword.
9020          int FixFreeIdx = 2 * (DWord ^ (PinnedIdx / 2 == DWord));
9021          bool IsFixFreeIdxInput = std::find(Inputs.begin(), Inputs.end(),
9022                                             FixFreeIdx) != Inputs.end();
9023          if (IsFixIdxInput == IsFixFreeIdxInput)
9024            FixFreeIdx += 1;
9025          IsFixFreeIdxInput = std::find(Inputs.begin(), Inputs.end(),
9026                                        FixFreeIdx) != Inputs.end();
9027          assert(IsFixIdxInput != IsFixFreeIdxInput &&
9028                 "We need to be changing the number of flipped inputs!");
9029          int PSHUFHalfMask[] = {0, 1, 2, 3};
9030          std::swap(PSHUFHalfMask[FixFreeIdx % 4], PSHUFHalfMask[FixIdx % 4]);
9031          V = DAG.getNode(FixIdx < 4 ? X86ISD::PSHUFLW : X86ISD::PSHUFHW, DL,
9032                          MVT::v8i16, V,
9033                          getV4X86ShuffleImm8ForMask(PSHUFHalfMask, DL, DAG));
9034
9035          for (int &M : Mask)
9036            if (M != -1 && M == FixIdx)
9037              M = FixFreeIdx;
9038            else if (M != -1 && M == FixFreeIdx)
9039              M = FixIdx;
9040        };
9041        if (NumFlippedBToBInputs != 0) {
9042          int BPinnedIdx =
9043              BToAInputs.size() == 3 ? TripleNonInputIdx : OneInput;
9044          FixFlippedInputs(BPinnedIdx, BDWord, BToBInputs);
9045        } else {
9046          assert(NumFlippedAToBInputs != 0 && "Impossible given predicates!");
9047          int APinnedIdx = ThreeAInputs ? TripleNonInputIdx : OneInput;
9048          FixFlippedInputs(APinnedIdx, ADWord, AToBInputs);
9049        }
9050      }
9051    }
9052
9053    int PSHUFDMask[] = {0, 1, 2, 3};
9054    PSHUFDMask[ADWord] = BDWord;
9055    PSHUFDMask[BDWord] = ADWord;
9056    V = DAG.getBitcast(
9057        VT,
9058        DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT, DAG.getBitcast(PSHUFDVT, V),
9059                    getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
9060
9061    // Adjust the mask to match the new locations of A and B.
9062    for (int &M : Mask)
9063      if (M != -1 && M/2 == ADWord)
9064        M = 2 * BDWord + M % 2;
9065      else if (M != -1 && M/2 == BDWord)
9066        M = 2 * ADWord + M % 2;
9067
9068    // Recurse back into this routine to re-compute state now that this isn't
9069    // a 3 and 1 problem.
9070    return lowerV8I16GeneralSingleInputVectorShuffle(DL, VT, V, Mask, Subtarget,
9071                                                     DAG);
9072  };
9073  if ((NumLToL == 3 && NumHToL == 1) || (NumLToL == 1 && NumHToL == 3))
9074    return balanceSides(LToLInputs, HToLInputs, HToHInputs, LToHInputs, 0, 4);
9075  else if ((NumHToH == 3 && NumLToH == 1) || (NumHToH == 1 && NumLToH == 3))
9076    return balanceSides(HToHInputs, LToHInputs, LToLInputs, HToLInputs, 4, 0);
9077
9078  // At this point there are at most two inputs to the low and high halves from
9079  // each half. That means the inputs can always be grouped into dwords and
9080  // those dwords can then be moved to the correct half with a dword shuffle.
9081  // We use at most one low and one high word shuffle to collect these paired
9082  // inputs into dwords, and finally a dword shuffle to place them.
9083  int PSHUFLMask[4] = {-1, -1, -1, -1};
9084  int PSHUFHMask[4] = {-1, -1, -1, -1};
9085  int PSHUFDMask[4] = {-1, -1, -1, -1};
9086
9087  // First fix the masks for all the inputs that are staying in their
9088  // original halves. This will then dictate the targets of the cross-half
9089  // shuffles.
9090  auto fixInPlaceInputs =
9091      [&PSHUFDMask](ArrayRef<int> InPlaceInputs, ArrayRef<int> IncomingInputs,
9092                    MutableArrayRef<int> SourceHalfMask,
9093                    MutableArrayRef<int> HalfMask, int HalfOffset) {
9094    if (InPlaceInputs.empty())
9095      return;
9096    if (InPlaceInputs.size() == 1) {
9097      SourceHalfMask[InPlaceInputs[0] - HalfOffset] =
9098          InPlaceInputs[0] - HalfOffset;
9099      PSHUFDMask[InPlaceInputs[0] / 2] = InPlaceInputs[0] / 2;
9100      return;
9101    }
9102    if (IncomingInputs.empty()) {
9103      // Just fix all of the in place inputs.
9104      for (int Input : InPlaceInputs) {
9105        SourceHalfMask[Input - HalfOffset] = Input - HalfOffset;
9106        PSHUFDMask[Input / 2] = Input / 2;
9107      }
9108      return;
9109    }
9110
9111    assert(InPlaceInputs.size() == 2 && "Cannot handle 3 or 4 inputs!");
9112    SourceHalfMask[InPlaceInputs[0] - HalfOffset] =
9113        InPlaceInputs[0] - HalfOffset;
9114    // Put the second input next to the first so that they are packed into
9115    // a dword. We find the adjacent index by toggling the low bit.
9116    int AdjIndex = InPlaceInputs[0] ^ 1;
9117    SourceHalfMask[AdjIndex - HalfOffset] = InPlaceInputs[1] - HalfOffset;
9118    std::replace(HalfMask.begin(), HalfMask.end(), InPlaceInputs[1], AdjIndex);
9119    PSHUFDMask[AdjIndex / 2] = AdjIndex / 2;
9120  };
9121  fixInPlaceInputs(LToLInputs, HToLInputs, PSHUFLMask, LoMask, 0);
9122  fixInPlaceInputs(HToHInputs, LToHInputs, PSHUFHMask, HiMask, 4);
9123
9124  // Now gather the cross-half inputs and place them into a free dword of
9125  // their target half.
9126  // FIXME: This operation could almost certainly be simplified dramatically to
9127  // look more like the 3-1 fixing operation.
9128  auto moveInputsToRightHalf = [&PSHUFDMask](
9129      MutableArrayRef<int> IncomingInputs, ArrayRef<int> ExistingInputs,
9130      MutableArrayRef<int> SourceHalfMask, MutableArrayRef<int> HalfMask,
9131      MutableArrayRef<int> FinalSourceHalfMask, int SourceOffset,
9132      int DestOffset) {
9133    auto isWordClobbered = [](ArrayRef<int> SourceHalfMask, int Word) {
9134      return SourceHalfMask[Word] != -1 && SourceHalfMask[Word] != Word;
9135    };
9136    auto isDWordClobbered = [&isWordClobbered](ArrayRef<int> SourceHalfMask,
9137                                               int Word) {
9138      int LowWord = Word & ~1;
9139      int HighWord = Word | 1;
9140      return isWordClobbered(SourceHalfMask, LowWord) ||
9141             isWordClobbered(SourceHalfMask, HighWord);
9142    };
9143
9144    if (IncomingInputs.empty())
9145      return;
9146
9147    if (ExistingInputs.empty()) {
9148      // Map any dwords with inputs from them into the right half.
9149      for (int Input : IncomingInputs) {
9150        // If the source half mask maps over the inputs, turn those into
9151        // swaps and use the swapped lane.
9152        if (isWordClobbered(SourceHalfMask, Input - SourceOffset)) {
9153          if (SourceHalfMask[SourceHalfMask[Input - SourceOffset]] == -1) {
9154            SourceHalfMask[SourceHalfMask[Input - SourceOffset]] =
9155                Input - SourceOffset;
9156            // We have to swap the uses in our half mask in one sweep.
9157            for (int &M : HalfMask)
9158              if (M == SourceHalfMask[Input - SourceOffset] + SourceOffset)
9159                M = Input;
9160              else if (M == Input)
9161                M = SourceHalfMask[Input - SourceOffset] + SourceOffset;
9162          } else {
9163            assert(SourceHalfMask[SourceHalfMask[Input - SourceOffset]] ==
9164                       Input - SourceOffset &&
9165                   "Previous placement doesn't match!");
9166          }
9167          // Note that this correctly re-maps both when we do a swap and when
9168          // we observe the other side of the swap above. We rely on that to
9169          // avoid swapping the members of the input list directly.
9170          Input = SourceHalfMask[Input - SourceOffset] + SourceOffset;
9171        }
9172
9173        // Map the input's dword into the correct half.
9174        if (PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] == -1)
9175          PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] = Input / 2;
9176        else
9177          assert(PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] ==
9178                     Input / 2 &&
9179                 "Previous placement doesn't match!");
9180      }
9181
9182      // And just directly shift any other-half mask elements to be same-half
9183      // as we will have mirrored the dword containing the element into the
9184      // same position within that half.
9185      for (int &M : HalfMask)
9186        if (M >= SourceOffset && M < SourceOffset + 4) {
9187          M = M - SourceOffset + DestOffset;
9188          assert(M >= 0 && "This should never wrap below zero!");
9189        }
9190      return;
9191    }
9192
9193    // Ensure we have the input in a viable dword of its current half. This
9194    // is particularly tricky because the original position may be clobbered
9195    // by inputs being moved and *staying* in that half.
9196    if (IncomingInputs.size() == 1) {
9197      if (isWordClobbered(SourceHalfMask, IncomingInputs[0] - SourceOffset)) {
9198        int InputFixed = std::find(std::begin(SourceHalfMask),
9199                                   std::end(SourceHalfMask), -1) -
9200                         std::begin(SourceHalfMask) + SourceOffset;
9201        SourceHalfMask[InputFixed - SourceOffset] =
9202            IncomingInputs[0] - SourceOffset;
9203        std::replace(HalfMask.begin(), HalfMask.end(), IncomingInputs[0],
9204                     InputFixed);
9205        IncomingInputs[0] = InputFixed;
9206      }
9207    } else if (IncomingInputs.size() == 2) {
9208      if (IncomingInputs[0] / 2 != IncomingInputs[1] / 2 ||
9209          isDWordClobbered(SourceHalfMask, IncomingInputs[0] - SourceOffset)) {
9210        // We have two non-adjacent or clobbered inputs we need to extract from
9211        // the source half. To do this, we need to map them into some adjacent
9212        // dword slot in the source mask.
9213        int InputsFixed[2] = {IncomingInputs[0] - SourceOffset,
9214                              IncomingInputs[1] - SourceOffset};
9215
9216        // If there is a free slot in the source half mask adjacent to one of
9217        // the inputs, place the other input in it. We use (Index XOR 1) to
9218        // compute an adjacent index.
9219        if (!isWordClobbered(SourceHalfMask, InputsFixed[0]) &&
9220            SourceHalfMask[InputsFixed[0] ^ 1] == -1) {
9221          SourceHalfMask[InputsFixed[0]] = InputsFixed[0];
9222          SourceHalfMask[InputsFixed[0] ^ 1] = InputsFixed[1];
9223          InputsFixed[1] = InputsFixed[0] ^ 1;
9224        } else if (!isWordClobbered(SourceHalfMask, InputsFixed[1]) &&
9225                   SourceHalfMask[InputsFixed[1] ^ 1] == -1) {
9226          SourceHalfMask[InputsFixed[1]] = InputsFixed[1];
9227          SourceHalfMask[InputsFixed[1] ^ 1] = InputsFixed[0];
9228          InputsFixed[0] = InputsFixed[1] ^ 1;
9229        } else if (SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1)] == -1 &&
9230                   SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1) + 1] == -1) {
9231          // The two inputs are in the same DWord but it is clobbered and the
9232          // adjacent DWord isn't used at all. Move both inputs to the free
9233          // slot.
9234          SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1)] = InputsFixed[0];
9235          SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1) + 1] = InputsFixed[1];
9236          InputsFixed[0] = 2 * ((InputsFixed[0] / 2) ^ 1);
9237          InputsFixed[1] = 2 * ((InputsFixed[0] / 2) ^ 1) + 1;
9238        } else {
9239          // The only way we hit this point is if there is no clobbering
9240          // (because there are no off-half inputs to this half) and there is no
9241          // free slot adjacent to one of the inputs. In this case, we have to
9242          // swap an input with a non-input.
9243          for (int i = 0; i < 4; ++i)
9244            assert((SourceHalfMask[i] == -1 || SourceHalfMask[i] == i) &&
9245                   "We can't handle any clobbers here!");
9246          assert(InputsFixed[1] != (InputsFixed[0] ^ 1) &&
9247                 "Cannot have adjacent inputs here!");
9248
9249          SourceHalfMask[InputsFixed[0] ^ 1] = InputsFixed[1];
9250          SourceHalfMask[InputsFixed[1]] = InputsFixed[0] ^ 1;
9251
9252          // We also have to update the final source mask in this case because
9253          // it may need to undo the above swap.
9254          for (int &M : FinalSourceHalfMask)
9255            if (M == (InputsFixed[0] ^ 1) + SourceOffset)
9256              M = InputsFixed[1] + SourceOffset;
9257            else if (M == InputsFixed[1] + SourceOffset)
9258              M = (InputsFixed[0] ^ 1) + SourceOffset;
9259
9260          InputsFixed[1] = InputsFixed[0] ^ 1;
9261        }
9262
9263        // Point everything at the fixed inputs.
9264        for (int &M : HalfMask)
9265          if (M == IncomingInputs[0])
9266            M = InputsFixed[0] + SourceOffset;
9267          else if (M == IncomingInputs[1])
9268            M = InputsFixed[1] + SourceOffset;
9269
9270        IncomingInputs[0] = InputsFixed[0] + SourceOffset;
9271        IncomingInputs[1] = InputsFixed[1] + SourceOffset;
9272      }
9273    } else {
9274      llvm_unreachable("Unhandled input size!");
9275    }
9276
9277    // Now hoist the DWord down to the right half.
9278    int FreeDWord = (PSHUFDMask[DestOffset / 2] == -1 ? 0 : 1) + DestOffset / 2;
9279    assert(PSHUFDMask[FreeDWord] == -1 && "DWord not free");
9280    PSHUFDMask[FreeDWord] = IncomingInputs[0] / 2;
9281    for (int &M : HalfMask)
9282      for (int Input : IncomingInputs)
9283        if (M == Input)
9284          M = FreeDWord * 2 + Input % 2;
9285  };
9286  moveInputsToRightHalf(HToLInputs, LToLInputs, PSHUFHMask, LoMask, HiMask,
9287                        /*SourceOffset*/ 4, /*DestOffset*/ 0);
9288  moveInputsToRightHalf(LToHInputs, HToHInputs, PSHUFLMask, HiMask, LoMask,
9289                        /*SourceOffset*/ 0, /*DestOffset*/ 4);
9290
9291  // Now enact all the shuffles we've computed to move the inputs into their
9292  // target half.
9293  if (!isNoopShuffleMask(PSHUFLMask))
9294    V = DAG.getNode(X86ISD::PSHUFLW, DL, VT, V,
9295                    getV4X86ShuffleImm8ForMask(PSHUFLMask, DL, DAG));
9296  if (!isNoopShuffleMask(PSHUFHMask))
9297    V = DAG.getNode(X86ISD::PSHUFHW, DL, VT, V,
9298                    getV4X86ShuffleImm8ForMask(PSHUFHMask, DL, DAG));
9299  if (!isNoopShuffleMask(PSHUFDMask))
9300    V = DAG.getBitcast(
9301        VT,
9302        DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT, DAG.getBitcast(PSHUFDVT, V),
9303                    getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
9304
9305  // At this point, each half should contain all its inputs, and we can then
9306  // just shuffle them into their final position.
9307  assert(std::count_if(LoMask.begin(), LoMask.end(),
9308                       [](int M) { return M >= 4; }) == 0 &&
9309         "Failed to lift all the high half inputs to the low mask!");
9310  assert(std::count_if(HiMask.begin(), HiMask.end(),
9311                       [](int M) { return M >= 0 && M < 4; }) == 0 &&
9312         "Failed to lift all the low half inputs to the high mask!");
9313
9314  // Do a half shuffle for the low mask.
9315  if (!isNoopShuffleMask(LoMask))
9316    V = DAG.getNode(X86ISD::PSHUFLW, DL, VT, V,
9317                    getV4X86ShuffleImm8ForMask(LoMask, DL, DAG));
9318
9319  // Do a half shuffle with the high mask after shifting its values down.
9320  for (int &M : HiMask)
9321    if (M >= 0)
9322      M -= 4;
9323  if (!isNoopShuffleMask(HiMask))
9324    V = DAG.getNode(X86ISD::PSHUFHW, DL, VT, V,
9325                    getV4X86ShuffleImm8ForMask(HiMask, DL, DAG));
9326
9327  return V;
9328}
9329
9330/// \brief Helper to form a PSHUFB-based shuffle+blend.
9331static SDValue lowerVectorShuffleAsPSHUFB(SDLoc DL, MVT VT, SDValue V1,
9332                                          SDValue V2, ArrayRef<int> Mask,
9333                                          SelectionDAG &DAG, bool &V1InUse,
9334                                          bool &V2InUse) {
9335  SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
9336  SDValue V1Mask[16];
9337  SDValue V2Mask[16];
9338  V1InUse = false;
9339  V2InUse = false;
9340
9341  int Size = Mask.size();
9342  int Scale = 16 / Size;
9343  for (int i = 0; i < 16; ++i) {
9344    if (Mask[i / Scale] == -1) {
9345      V1Mask[i] = V2Mask[i] = DAG.getUNDEF(MVT::i8);
9346    } else {
9347      const int ZeroMask = 0x80;
9348      int V1Idx = Mask[i / Scale] < Size ? Mask[i / Scale] * Scale + i % Scale
9349                                          : ZeroMask;
9350      int V2Idx = Mask[i / Scale] < Size
9351                      ? ZeroMask
9352                      : (Mask[i / Scale] - Size) * Scale + i % Scale;
9353      if (Zeroable[i / Scale])
9354        V1Idx = V2Idx = ZeroMask;
9355      V1Mask[i] = DAG.getConstant(V1Idx, DL, MVT::i8);
9356      V2Mask[i] = DAG.getConstant(V2Idx, DL, MVT::i8);
9357      V1InUse |= (ZeroMask != V1Idx);
9358      V2InUse |= (ZeroMask != V2Idx);
9359    }
9360  }
9361
9362  if (V1InUse)
9363    V1 = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8,
9364                     DAG.getBitcast(MVT::v16i8, V1),
9365                     DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, V1Mask));
9366  if (V2InUse)
9367    V2 = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8,
9368                     DAG.getBitcast(MVT::v16i8, V2),
9369                     DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, V2Mask));
9370
9371  // If we need shuffled inputs from both, blend the two.
9372  SDValue V;
9373  if (V1InUse && V2InUse)
9374    V = DAG.getNode(ISD::OR, DL, MVT::v16i8, V1, V2);
9375  else
9376    V = V1InUse ? V1 : V2;
9377
9378  // Cast the result back to the correct type.
9379  return DAG.getBitcast(VT, V);
9380}
9381
9382/// \brief Generic lowering of 8-lane i16 shuffles.
9383///
9384/// This handles both single-input shuffles and combined shuffle/blends with
9385/// two inputs. The single input shuffles are immediately delegated to
9386/// a dedicated lowering routine.
9387///
9388/// The blends are lowered in one of three fundamental ways. If there are few
9389/// enough inputs, it delegates to a basic UNPCK-based strategy. If the shuffle
9390/// of the input is significantly cheaper when lowered as an interleaving of
9391/// the two inputs, try to interleave them. Otherwise, blend the low and high
9392/// halves of the inputs separately (making them have relatively few inputs)
9393/// and then concatenate them.
9394static SDValue lowerV8I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
9395                                       const X86Subtarget *Subtarget,
9396                                       SelectionDAG &DAG) {
9397  SDLoc DL(Op);
9398  assert(Op.getSimpleValueType() == MVT::v8i16 && "Bad shuffle type!");
9399  assert(V1.getSimpleValueType() == MVT::v8i16 && "Bad operand type!");
9400  assert(V2.getSimpleValueType() == MVT::v8i16 && "Bad operand type!");
9401  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9402  ArrayRef<int> OrigMask = SVOp->getMask();
9403  int MaskStorage[8] = {OrigMask[0], OrigMask[1], OrigMask[2], OrigMask[3],
9404                        OrigMask[4], OrigMask[5], OrigMask[6], OrigMask[7]};
9405  MutableArrayRef<int> Mask(MaskStorage);
9406
9407  assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
9408
9409  // Whenever we can lower this as a zext, that instruction is strictly faster
9410  // than any alternative.
9411  if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(
9412          DL, MVT::v8i16, V1, V2, OrigMask, Subtarget, DAG))
9413    return ZExt;
9414
9415  auto isV1 = [](int M) { return M >= 0 && M < 8; };
9416  (void)isV1;
9417  auto isV2 = [](int M) { return M >= 8; };
9418
9419  int NumV2Inputs = std::count_if(Mask.begin(), Mask.end(), isV2);
9420
9421  if (NumV2Inputs == 0) {
9422    // Check for being able to broadcast a single element.
9423    if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v8i16, V1,
9424                                                          Mask, Subtarget, DAG))
9425      return Broadcast;
9426
9427    // Try to use shift instructions.
9428    if (SDValue Shift =
9429            lowerVectorShuffleAsShift(DL, MVT::v8i16, V1, V1, Mask, DAG))
9430      return Shift;
9431
9432    // Use dedicated unpack instructions for masks that match their pattern.
9433    if (SDValue V =
9434            lowerVectorShuffleWithUNPCK(DL, MVT::v8i16, Mask, V1, V2, DAG))
9435      return V;
9436
9437    // Try to use byte rotation instructions.
9438    if (SDValue Rotate = lowerVectorShuffleAsByteRotate(DL, MVT::v8i16, V1, V1,
9439                                                        Mask, Subtarget, DAG))
9440      return Rotate;
9441
9442    return lowerV8I16GeneralSingleInputVectorShuffle(DL, MVT::v8i16, V1, Mask,
9443                                                     Subtarget, DAG);
9444  }
9445
9446  assert(std::any_of(Mask.begin(), Mask.end(), isV1) &&
9447         "All single-input shuffles should be canonicalized to be V1-input "
9448         "shuffles.");
9449
9450  // Try to use shift instructions.
9451  if (SDValue Shift =
9452          lowerVectorShuffleAsShift(DL, MVT::v8i16, V1, V2, Mask, DAG))
9453    return Shift;
9454
9455  // See if we can use SSE4A Extraction / Insertion.
9456  if (Subtarget->hasSSE4A())
9457    if (SDValue V = lowerVectorShuffleWithSSE4A(DL, MVT::v8i16, V1, V2, Mask, DAG))
9458      return V;
9459
9460  // There are special ways we can lower some single-element blends.
9461  if (NumV2Inputs == 1)
9462    if (SDValue V = lowerVectorShuffleAsElementInsertion(DL, MVT::v8i16, V1, V2,
9463                                                         Mask, Subtarget, DAG))
9464      return V;
9465
9466  // We have different paths for blend lowering, but they all must use the
9467  // *exact* same predicate.
9468  bool IsBlendSupported = Subtarget->hasSSE41();
9469  if (IsBlendSupported)
9470    if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8i16, V1, V2, Mask,
9471                                                  Subtarget, DAG))
9472      return Blend;
9473
9474  if (SDValue Masked =
9475          lowerVectorShuffleAsBitMask(DL, MVT::v8i16, V1, V2, Mask, DAG))
9476    return Masked;
9477
9478  // Use dedicated unpack instructions for masks that match their pattern.
9479  if (SDValue V =
9480          lowerVectorShuffleWithUNPCK(DL, MVT::v8i16, Mask, V1, V2, DAG))
9481    return V;
9482
9483  // Try to use byte rotation instructions.
9484  if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
9485          DL, MVT::v8i16, V1, V2, Mask, Subtarget, DAG))
9486    return Rotate;
9487
9488  if (SDValue BitBlend =
9489          lowerVectorShuffleAsBitBlend(DL, MVT::v8i16, V1, V2, Mask, DAG))
9490    return BitBlend;
9491
9492  if (SDValue Unpack = lowerVectorShuffleAsPermuteAndUnpack(DL, MVT::v8i16, V1,
9493                                                            V2, Mask, DAG))
9494    return Unpack;
9495
9496  // If we can't directly blend but can use PSHUFB, that will be better as it
9497  // can both shuffle and set up the inefficient blend.
9498  if (!IsBlendSupported && Subtarget->hasSSSE3()) {
9499    bool V1InUse, V2InUse;
9500    return lowerVectorShuffleAsPSHUFB(DL, MVT::v8i16, V1, V2, Mask, DAG,
9501                                      V1InUse, V2InUse);
9502  }
9503
9504  // We can always bit-blend if we have to so the fallback strategy is to
9505  // decompose into single-input permutes and blends.
9506  return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8i16, V1, V2,
9507                                                      Mask, DAG);
9508}
9509
9510/// \brief Check whether a compaction lowering can be done by dropping even
9511/// elements and compute how many times even elements must be dropped.
9512///
9513/// This handles shuffles which take every Nth element where N is a power of
9514/// two. Example shuffle masks:
9515///
9516///  N = 1:  0,  2,  4,  6,  8, 10, 12, 14,  0,  2,  4,  6,  8, 10, 12, 14
9517///  N = 1:  0,  2,  4,  6,  8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30
9518///  N = 2:  0,  4,  8, 12,  0,  4,  8, 12,  0,  4,  8, 12,  0,  4,  8, 12
9519///  N = 2:  0,  4,  8, 12, 16, 20, 24, 28,  0,  4,  8, 12, 16, 20, 24, 28
9520///  N = 3:  0,  8,  0,  8,  0,  8,  0,  8,  0,  8,  0,  8,  0,  8,  0,  8
9521///  N = 3:  0,  8, 16, 24,  0,  8, 16, 24,  0,  8, 16, 24,  0,  8, 16, 24
9522///
9523/// Any of these lanes can of course be undef.
9524///
9525/// This routine only supports N <= 3.
9526/// FIXME: Evaluate whether either AVX or AVX-512 have any opportunities here
9527/// for larger N.
9528///
9529/// \returns N above, or the number of times even elements must be dropped if
9530/// there is such a number. Otherwise returns zero.
9531static int canLowerByDroppingEvenElements(ArrayRef<int> Mask) {
9532  // Figure out whether we're looping over two inputs or just one.
9533  bool IsSingleInput = isSingleInputShuffleMask(Mask);
9534
9535  // The modulus for the shuffle vector entries is based on whether this is
9536  // a single input or not.
9537  int ShuffleModulus = Mask.size() * (IsSingleInput ? 1 : 2);
9538  assert(isPowerOf2_32((uint32_t)ShuffleModulus) &&
9539         "We should only be called with masks with a power-of-2 size!");
9540
9541  uint64_t ModMask = (uint64_t)ShuffleModulus - 1;
9542
9543  // We track whether the input is viable for all power-of-2 strides 2^1, 2^2,
9544  // and 2^3 simultaneously. This is because we may have ambiguity with
9545  // partially undef inputs.
9546  bool ViableForN[3] = {true, true, true};
9547
9548  for (int i = 0, e = Mask.size(); i < e; ++i) {
9549    // Ignore undef lanes, we'll optimistically collapse them to the pattern we
9550    // want.
9551    if (Mask[i] == -1)
9552      continue;
9553
9554    bool IsAnyViable = false;
9555    for (unsigned j = 0; j != array_lengthof(ViableForN); ++j)
9556      if (ViableForN[j]) {
9557        uint64_t N = j + 1;
9558
9559        // The shuffle mask must be equal to (i * 2^N) % M.
9560        if ((uint64_t)Mask[i] == (((uint64_t)i << N) & ModMask))
9561          IsAnyViable = true;
9562        else
9563          ViableForN[j] = false;
9564      }
9565    // Early exit if we exhaust the possible powers of two.
9566    if (!IsAnyViable)
9567      break;
9568  }
9569
9570  for (unsigned j = 0; j != array_lengthof(ViableForN); ++j)
9571    if (ViableForN[j])
9572      return j + 1;
9573
9574  // Return 0 as there is no viable power of two.
9575  return 0;
9576}
9577
9578/// \brief Generic lowering of v16i8 shuffles.
9579///
9580/// This is a hybrid strategy to lower v16i8 vectors. It first attempts to
9581/// detect any complexity reducing interleaving. If that doesn't help, it uses
9582/// UNPCK to spread the i8 elements across two i16-element vectors, and uses
9583/// the existing lowering for v8i16 blends on each half, finally PACK-ing them
9584/// back together.
9585static SDValue lowerV16I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
9586                                       const X86Subtarget *Subtarget,
9587                                       SelectionDAG &DAG) {
9588  SDLoc DL(Op);
9589  assert(Op.getSimpleValueType() == MVT::v16i8 && "Bad shuffle type!");
9590  assert(V1.getSimpleValueType() == MVT::v16i8 && "Bad operand type!");
9591  assert(V2.getSimpleValueType() == MVT::v16i8 && "Bad operand type!");
9592  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9593  ArrayRef<int> Mask = SVOp->getMask();
9594  assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
9595
9596  // Try to use shift instructions.
9597  if (SDValue Shift =
9598          lowerVectorShuffleAsShift(DL, MVT::v16i8, V1, V2, Mask, DAG))
9599    return Shift;
9600
9601  // Try to use byte rotation instructions.
9602  if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
9603          DL, MVT::v16i8, V1, V2, Mask, Subtarget, DAG))
9604    return Rotate;
9605
9606  // Try to use a zext lowering.
9607  if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(
9608          DL, MVT::v16i8, V1, V2, Mask, Subtarget, DAG))
9609    return ZExt;
9610
9611  // See if we can use SSE4A Extraction / Insertion.
9612  if (Subtarget->hasSSE4A())
9613    if (SDValue V = lowerVectorShuffleWithSSE4A(DL, MVT::v16i8, V1, V2, Mask, DAG))
9614      return V;
9615
9616  int NumV2Elements =
9617      std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 16; });
9618
9619  // For single-input shuffles, there are some nicer lowering tricks we can use.
9620  if (NumV2Elements == 0) {
9621    // Check for being able to broadcast a single element.
9622    if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v16i8, V1,
9623                                                          Mask, Subtarget, DAG))
9624      return Broadcast;
9625
9626    // Check whether we can widen this to an i16 shuffle by duplicating bytes.
9627    // Notably, this handles splat and partial-splat shuffles more efficiently.
9628    // However, it only makes sense if the pre-duplication shuffle simplifies
9629    // things significantly. Currently, this means we need to be able to
9630    // express the pre-duplication shuffle as an i16 shuffle.
9631    //
9632    // FIXME: We should check for other patterns which can be widened into an
9633    // i16 shuffle as well.
9634    auto canWidenViaDuplication = [](ArrayRef<int> Mask) {
9635      for (int i = 0; i < 16; i += 2)
9636        if (Mask[i] != -1 && Mask[i + 1] != -1 && Mask[i] != Mask[i + 1])
9637          return false;
9638
9639      return true;
9640    };
9641    auto tryToWidenViaDuplication = [&]() -> SDValue {
9642      if (!canWidenViaDuplication(Mask))
9643        return SDValue();
9644      SmallVector<int, 4> LoInputs;
9645      std::copy_if(Mask.begin(), Mask.end(), std::back_inserter(LoInputs),
9646                   [](int M) { return M >= 0 && M < 8; });
9647      std::sort(LoInputs.begin(), LoInputs.end());
9648      LoInputs.erase(std::unique(LoInputs.begin(), LoInputs.end()),
9649                     LoInputs.end());
9650      SmallVector<int, 4> HiInputs;
9651      std::copy_if(Mask.begin(), Mask.end(), std::back_inserter(HiInputs),
9652                   [](int M) { return M >= 8; });
9653      std::sort(HiInputs.begin(), HiInputs.end());
9654      HiInputs.erase(std::unique(HiInputs.begin(), HiInputs.end()),
9655                     HiInputs.end());
9656
9657      bool TargetLo = LoInputs.size() >= HiInputs.size();
9658      ArrayRef<int> InPlaceInputs = TargetLo ? LoInputs : HiInputs;
9659      ArrayRef<int> MovingInputs = TargetLo ? HiInputs : LoInputs;
9660
9661      int PreDupI16Shuffle[] = {-1, -1, -1, -1, -1, -1, -1, -1};
9662      SmallDenseMap<int, int, 8> LaneMap;
9663      for (int I : InPlaceInputs) {
9664        PreDupI16Shuffle[I/2] = I/2;
9665        LaneMap[I] = I;
9666      }
9667      int j = TargetLo ? 0 : 4, je = j + 4;
9668      for (int i = 0, ie = MovingInputs.size(); i < ie; ++i) {
9669        // Check if j is already a shuffle of this input. This happens when
9670        // there are two adjacent bytes after we move the low one.
9671        if (PreDupI16Shuffle[j] != MovingInputs[i] / 2) {
9672          // If we haven't yet mapped the input, search for a slot into which
9673          // we can map it.
9674          while (j < je && PreDupI16Shuffle[j] != -1)
9675            ++j;
9676
9677          if (j == je)
9678            // We can't place the inputs into a single half with a simple i16 shuffle, so bail.
9679            return SDValue();
9680
9681          // Map this input with the i16 shuffle.
9682          PreDupI16Shuffle[j] = MovingInputs[i] / 2;
9683        }
9684
9685        // Update the lane map based on the mapping we ended up with.
9686        LaneMap[MovingInputs[i]] = 2 * j + MovingInputs[i] % 2;
9687      }
9688      V1 = DAG.getBitcast(
9689          MVT::v16i8,
9690          DAG.getVectorShuffle(MVT::v8i16, DL, DAG.getBitcast(MVT::v8i16, V1),
9691                               DAG.getUNDEF(MVT::v8i16), PreDupI16Shuffle));
9692
9693      // Unpack the bytes to form the i16s that will be shuffled into place.
9694      V1 = DAG.getNode(TargetLo ? X86ISD::UNPCKL : X86ISD::UNPCKH, DL,
9695                       MVT::v16i8, V1, V1);
9696
9697      int PostDupI16Shuffle[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
9698      for (int i = 0; i < 16; ++i)
9699        if (Mask[i] != -1) {
9700          int MappedMask = LaneMap[Mask[i]] - (TargetLo ? 0 : 8);
9701          assert(MappedMask < 8 && "Invalid v8 shuffle mask!");
9702          if (PostDupI16Shuffle[i / 2] == -1)
9703            PostDupI16Shuffle[i / 2] = MappedMask;
9704          else
9705            assert(PostDupI16Shuffle[i / 2] == MappedMask &&
9706                   "Conflicting entrties in the original shuffle!");
9707        }
9708      return DAG.getBitcast(
9709          MVT::v16i8,
9710          DAG.getVectorShuffle(MVT::v8i16, DL, DAG.getBitcast(MVT::v8i16, V1),
9711                               DAG.getUNDEF(MVT::v8i16), PostDupI16Shuffle));
9712    };
9713    if (SDValue V = tryToWidenViaDuplication())
9714      return V;
9715  }
9716
9717  if (SDValue Masked =
9718          lowerVectorShuffleAsBitMask(DL, MVT::v16i8, V1, V2, Mask, DAG))
9719    return Masked;
9720
9721  // Use dedicated unpack instructions for masks that match their pattern.
9722  if (SDValue V =
9723          lowerVectorShuffleWithUNPCK(DL, MVT::v16i8, Mask, V1, V2, DAG))
9724    return V;
9725
9726  // Check for SSSE3 which lets us lower all v16i8 shuffles much more directly
9727  // with PSHUFB. It is important to do this before we attempt to generate any
9728  // blends but after all of the single-input lowerings. If the single input
9729  // lowerings can find an instruction sequence that is faster than a PSHUFB, we
9730  // want to preserve that and we can DAG combine any longer sequences into
9731  // a PSHUFB in the end. But once we start blending from multiple inputs,
9732  // the complexity of DAG combining bad patterns back into PSHUFB is too high,
9733  // and there are *very* few patterns that would actually be faster than the
9734  // PSHUFB approach because of its ability to zero lanes.
9735  //
9736  // FIXME: The only exceptions to the above are blends which are exact
9737  // interleavings with direct instructions supporting them. We currently don't
9738  // handle those well here.
9739  if (Subtarget->hasSSSE3()) {
9740    bool V1InUse = false;
9741    bool V2InUse = false;
9742
9743    SDValue PSHUFB = lowerVectorShuffleAsPSHUFB(DL, MVT::v16i8, V1, V2, Mask,
9744                                                DAG, V1InUse, V2InUse);
9745
9746    // If both V1 and V2 are in use and we can use a direct blend or an unpack,
9747    // do so. This avoids using them to handle blends-with-zero which is
9748    // important as a single pshufb is significantly faster for that.
9749    if (V1InUse && V2InUse) {
9750      if (Subtarget->hasSSE41())
9751        if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v16i8, V1, V2,
9752                                                      Mask, Subtarget, DAG))
9753          return Blend;
9754
9755      // We can use an unpack to do the blending rather than an or in some
9756      // cases. Even though the or may be (very minorly) more efficient, we
9757      // preference this lowering because there are common cases where part of
9758      // the complexity of the shuffles goes away when we do the final blend as
9759      // an unpack.
9760      // FIXME: It might be worth trying to detect if the unpack-feeding
9761      // shuffles will both be pshufb, in which case we shouldn't bother with
9762      // this.
9763      if (SDValue Unpack = lowerVectorShuffleAsPermuteAndUnpack(
9764              DL, MVT::v16i8, V1, V2, Mask, DAG))
9765        return Unpack;
9766    }
9767
9768    return PSHUFB;
9769  }
9770
9771  // There are special ways we can lower some single-element blends.
9772  if (NumV2Elements == 1)
9773    if (SDValue V = lowerVectorShuffleAsElementInsertion(DL, MVT::v16i8, V1, V2,
9774                                                         Mask, Subtarget, DAG))
9775      return V;
9776
9777  if (SDValue BitBlend =
9778          lowerVectorShuffleAsBitBlend(DL, MVT::v16i8, V1, V2, Mask, DAG))
9779    return BitBlend;
9780
9781  // Check whether a compaction lowering can be done. This handles shuffles
9782  // which take every Nth element for some even N. See the helper function for
9783  // details.
9784  //
9785  // We special case these as they can be particularly efficiently handled with
9786  // the PACKUSB instruction on x86 and they show up in common patterns of
9787  // rearranging bytes to truncate wide elements.
9788  if (int NumEvenDrops = canLowerByDroppingEvenElements(Mask)) {
9789    // NumEvenDrops is the power of two stride of the elements. Another way of
9790    // thinking about it is that we need to drop the even elements this many
9791    // times to get the original input.
9792    bool IsSingleInput = isSingleInputShuffleMask(Mask);
9793
9794    // First we need to zero all the dropped bytes.
9795    assert(NumEvenDrops <= 3 &&
9796           "No support for dropping even elements more than 3 times.");
9797    // We use the mask type to pick which bytes are preserved based on how many
9798    // elements are dropped.
9799    MVT MaskVTs[] = { MVT::v8i16, MVT::v4i32, MVT::v2i64 };
9800    SDValue ByteClearMask = DAG.getBitcast(
9801        MVT::v16i8, DAG.getConstant(0xFF, DL, MaskVTs[NumEvenDrops - 1]));
9802    V1 = DAG.getNode(ISD::AND, DL, MVT::v16i8, V1, ByteClearMask);
9803    if (!IsSingleInput)
9804      V2 = DAG.getNode(ISD::AND, DL, MVT::v16i8, V2, ByteClearMask);
9805
9806    // Now pack things back together.
9807    V1 = DAG.getBitcast(MVT::v8i16, V1);
9808    V2 = IsSingleInput ? V1 : DAG.getBitcast(MVT::v8i16, V2);
9809    SDValue Result = DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, V1, V2);
9810    for (int i = 1; i < NumEvenDrops; ++i) {
9811      Result = DAG.getBitcast(MVT::v8i16, Result);
9812      Result = DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, Result, Result);
9813    }
9814
9815    return Result;
9816  }
9817
9818  // Handle multi-input cases by blending single-input shuffles.
9819  if (NumV2Elements > 0)
9820    return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v16i8, V1, V2,
9821                                                      Mask, DAG);
9822
9823  // The fallback path for single-input shuffles widens this into two v8i16
9824  // vectors with unpacks, shuffles those, and then pulls them back together
9825  // with a pack.
9826  SDValue V = V1;
9827
9828  int LoBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
9829  int HiBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
9830  for (int i = 0; i < 16; ++i)
9831    if (Mask[i] >= 0)
9832      (i < 8 ? LoBlendMask[i] : HiBlendMask[i % 8]) = Mask[i];
9833
9834  SDValue Zero = getZeroVector(MVT::v8i16, Subtarget, DAG, DL);
9835
9836  SDValue VLoHalf, VHiHalf;
9837  // Check if any of the odd lanes in the v16i8 are used. If not, we can mask
9838  // them out and avoid using UNPCK{L,H} to extract the elements of V as
9839  // i16s.
9840  if (std::none_of(std::begin(LoBlendMask), std::end(LoBlendMask),
9841                   [](int M) { return M >= 0 && M % 2 == 1; }) &&
9842      std::none_of(std::begin(HiBlendMask), std::end(HiBlendMask),
9843                   [](int M) { return M >= 0 && M % 2 == 1; })) {
9844    // Use a mask to drop the high bytes.
9845    VLoHalf = DAG.getBitcast(MVT::v8i16, V);
9846    VLoHalf = DAG.getNode(ISD::AND, DL, MVT::v8i16, VLoHalf,
9847                     DAG.getConstant(0x00FF, DL, MVT::v8i16));
9848
9849    // This will be a single vector shuffle instead of a blend so nuke VHiHalf.
9850    VHiHalf = DAG.getUNDEF(MVT::v8i16);
9851
9852    // Squash the masks to point directly into VLoHalf.
9853    for (int &M : LoBlendMask)
9854      if (M >= 0)
9855        M /= 2;
9856    for (int &M : HiBlendMask)
9857      if (M >= 0)
9858        M /= 2;
9859  } else {
9860    // Otherwise just unpack the low half of V into VLoHalf and the high half into
9861    // VHiHalf so that we can blend them as i16s.
9862    VLoHalf = DAG.getBitcast(
9863        MVT::v8i16, DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i8, V, Zero));
9864    VHiHalf = DAG.getBitcast(
9865        MVT::v8i16, DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16i8, V, Zero));
9866  }
9867
9868  SDValue LoV = DAG.getVectorShuffle(MVT::v8i16, DL, VLoHalf, VHiHalf, LoBlendMask);
9869  SDValue HiV = DAG.getVectorShuffle(MVT::v8i16, DL, VLoHalf, VHiHalf, HiBlendMask);
9870
9871  return DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, LoV, HiV);
9872}
9873
9874/// \brief Dispatching routine to lower various 128-bit x86 vector shuffles.
9875///
9876/// This routine breaks down the specific type of 128-bit shuffle and
9877/// dispatches to the lowering routines accordingly.
9878static SDValue lower128BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2,
9879                                        MVT VT, const X86Subtarget *Subtarget,
9880                                        SelectionDAG &DAG) {
9881  switch (VT.SimpleTy) {
9882  case MVT::v2i64:
9883    return lowerV2I64VectorShuffle(Op, V1, V2, Subtarget, DAG);
9884  case MVT::v2f64:
9885    return lowerV2F64VectorShuffle(Op, V1, V2, Subtarget, DAG);
9886  case MVT::v4i32:
9887    return lowerV4I32VectorShuffle(Op, V1, V2, Subtarget, DAG);
9888  case MVT::v4f32:
9889    return lowerV4F32VectorShuffle(Op, V1, V2, Subtarget, DAG);
9890  case MVT::v8i16:
9891    return lowerV8I16VectorShuffle(Op, V1, V2, Subtarget, DAG);
9892  case MVT::v16i8:
9893    return lowerV16I8VectorShuffle(Op, V1, V2, Subtarget, DAG);
9894
9895  default:
9896    llvm_unreachable("Unimplemented!");
9897  }
9898}
9899
9900/// \brief Helper function to test whether a shuffle mask could be
9901/// simplified by widening the elements being shuffled.
9902///
9903/// Appends the mask for wider elements in WidenedMask if valid. Otherwise
9904/// leaves it in an unspecified state.
9905///
9906/// NOTE: This must handle normal vector shuffle masks and *target* vector
9907/// shuffle masks. The latter have the special property of a '-2' representing
9908/// a zero-ed lane of a vector.
9909static bool canWidenShuffleElements(ArrayRef<int> Mask,
9910                                    SmallVectorImpl<int> &WidenedMask) {
9911  for (int i = 0, Size = Mask.size(); i < Size; i += 2) {
9912    // If both elements are undef, its trivial.
9913    if (Mask[i] == SM_SentinelUndef && Mask[i + 1] == SM_SentinelUndef) {
9914      WidenedMask.push_back(SM_SentinelUndef);
9915      continue;
9916    }
9917
9918    // Check for an undef mask and a mask value properly aligned to fit with
9919    // a pair of values. If we find such a case, use the non-undef mask's value.
9920    if (Mask[i] == SM_SentinelUndef && Mask[i + 1] >= 0 && Mask[i + 1] % 2 == 1) {
9921      WidenedMask.push_back(Mask[i + 1] / 2);
9922      continue;
9923    }
9924    if (Mask[i + 1] == SM_SentinelUndef && Mask[i] >= 0 && Mask[i] % 2 == 0) {
9925      WidenedMask.push_back(Mask[i] / 2);
9926      continue;
9927    }
9928
9929    // When zeroing, we need to spread the zeroing across both lanes to widen.
9930    if (Mask[i] == SM_SentinelZero || Mask[i + 1] == SM_SentinelZero) {
9931      if ((Mask[i] == SM_SentinelZero || Mask[i] == SM_SentinelUndef) &&
9932          (Mask[i + 1] == SM_SentinelZero || Mask[i + 1] == SM_SentinelUndef)) {
9933        WidenedMask.push_back(SM_SentinelZero);
9934        continue;
9935      }
9936      return false;
9937    }
9938
9939    // Finally check if the two mask values are adjacent and aligned with
9940    // a pair.
9941    if (Mask[i] != SM_SentinelUndef && Mask[i] % 2 == 0 && Mask[i] + 1 == Mask[i + 1]) {
9942      WidenedMask.push_back(Mask[i] / 2);
9943      continue;
9944    }
9945
9946    // Otherwise we can't safely widen the elements used in this shuffle.
9947    return false;
9948  }
9949  assert(WidenedMask.size() == Mask.size() / 2 &&
9950         "Incorrect size of mask after widening the elements!");
9951
9952  return true;
9953}
9954
9955/// \brief Generic routine to split vector shuffle into half-sized shuffles.
9956///
9957/// This routine just extracts two subvectors, shuffles them independently, and
9958/// then concatenates them back together. This should work effectively with all
9959/// AVX vector shuffle types.
9960static SDValue splitAndLowerVectorShuffle(SDLoc DL, MVT VT, SDValue V1,
9961                                          SDValue V2, ArrayRef<int> Mask,
9962                                          SelectionDAG &DAG) {
9963  assert(VT.getSizeInBits() >= 256 &&
9964         "Only for 256-bit or wider vector shuffles!");
9965  assert(V1.getSimpleValueType() == VT && "Bad operand type!");
9966  assert(V2.getSimpleValueType() == VT && "Bad operand type!");
9967
9968  ArrayRef<int> LoMask = Mask.slice(0, Mask.size() / 2);
9969  ArrayRef<int> HiMask = Mask.slice(Mask.size() / 2);
9970
9971  int NumElements = VT.getVectorNumElements();
9972  int SplitNumElements = NumElements / 2;
9973  MVT ScalarVT = VT.getVectorElementType();
9974  MVT SplitVT = MVT::getVectorVT(ScalarVT, NumElements / 2);
9975
9976  // Rather than splitting build-vectors, just build two narrower build
9977  // vectors. This helps shuffling with splats and zeros.
9978  auto SplitVector = [&](SDValue V) {
9979    while (V.getOpcode() == ISD::BITCAST)
9980      V = V->getOperand(0);
9981
9982    MVT OrigVT = V.getSimpleValueType();
9983    int OrigNumElements = OrigVT.getVectorNumElements();
9984    int OrigSplitNumElements = OrigNumElements / 2;
9985    MVT OrigScalarVT = OrigVT.getVectorElementType();
9986    MVT OrigSplitVT = MVT::getVectorVT(OrigScalarVT, OrigNumElements / 2);
9987
9988    SDValue LoV, HiV;
9989
9990    auto *BV = dyn_cast<BuildVectorSDNode>(V);
9991    if (!BV) {
9992      LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigSplitVT, V,
9993                        DAG.getIntPtrConstant(0, DL));
9994      HiV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigSplitVT, V,
9995                        DAG.getIntPtrConstant(OrigSplitNumElements, DL));
9996    } else {
9997
9998      SmallVector<SDValue, 16> LoOps, HiOps;
9999      for (int i = 0; i < OrigSplitNumElements; ++i) {
10000        LoOps.push_back(BV->getOperand(i));
10001        HiOps.push_back(BV->getOperand(i + OrigSplitNumElements));
10002      }
10003      LoV = DAG.getNode(ISD::BUILD_VECTOR, DL, OrigSplitVT, LoOps);
10004      HiV = DAG.getNode(ISD::BUILD_VECTOR, DL, OrigSplitVT, HiOps);
10005    }
10006    return std::make_pair(DAG.getBitcast(SplitVT, LoV),
10007                          DAG.getBitcast(SplitVT, HiV));
10008  };
10009
10010  SDValue LoV1, HiV1, LoV2, HiV2;
10011  std::tie(LoV1, HiV1) = SplitVector(V1);
10012  std::tie(LoV2, HiV2) = SplitVector(V2);
10013
10014  // Now create two 4-way blends of these half-width vectors.
10015  auto HalfBlend = [&](ArrayRef<int> HalfMask) {
10016    bool UseLoV1 = false, UseHiV1 = false, UseLoV2 = false, UseHiV2 = false;
10017    SmallVector<int, 32> V1BlendMask, V2BlendMask, BlendMask;
10018    for (int i = 0; i < SplitNumElements; ++i) {
10019      int M = HalfMask[i];
10020      if (M >= NumElements) {
10021        if (M >= NumElements + SplitNumElements)
10022          UseHiV2 = true;
10023        else
10024          UseLoV2 = true;
10025        V2BlendMask.push_back(M - NumElements);
10026        V1BlendMask.push_back(-1);
10027        BlendMask.push_back(SplitNumElements + i);
10028      } else if (M >= 0) {
10029        if (M >= SplitNumElements)
10030          UseHiV1 = true;
10031        else
10032          UseLoV1 = true;
10033        V2BlendMask.push_back(-1);
10034        V1BlendMask.push_back(M);
10035        BlendMask.push_back(i);
10036      } else {
10037        V2BlendMask.push_back(-1);
10038        V1BlendMask.push_back(-1);
10039        BlendMask.push_back(-1);
10040      }
10041    }
10042
10043    // Because the lowering happens after all combining takes place, we need to
10044    // manually combine these blend masks as much as possible so that we create
10045    // a minimal number of high-level vector shuffle nodes.
10046
10047    // First try just blending the halves of V1 or V2.
10048    if (!UseLoV1 && !UseHiV1 && !UseLoV2 && !UseHiV2)
10049      return DAG.getUNDEF(SplitVT);
10050    if (!UseLoV2 && !UseHiV2)
10051      return DAG.getVectorShuffle(SplitVT, DL, LoV1, HiV1, V1BlendMask);
10052    if (!UseLoV1 && !UseHiV1)
10053      return DAG.getVectorShuffle(SplitVT, DL, LoV2, HiV2, V2BlendMask);
10054
10055    SDValue V1Blend, V2Blend;
10056    if (UseLoV1 && UseHiV1) {
10057      V1Blend =
10058        DAG.getVectorShuffle(SplitVT, DL, LoV1, HiV1, V1BlendMask);
10059    } else {
10060      // We only use half of V1 so map the usage down into the final blend mask.
10061      V1Blend = UseLoV1 ? LoV1 : HiV1;
10062      for (int i = 0; i < SplitNumElements; ++i)
10063        if (BlendMask[i] >= 0 && BlendMask[i] < SplitNumElements)
10064          BlendMask[i] = V1BlendMask[i] - (UseLoV1 ? 0 : SplitNumElements);
10065    }
10066    if (UseLoV2 && UseHiV2) {
10067      V2Blend =
10068        DAG.getVectorShuffle(SplitVT, DL, LoV2, HiV2, V2BlendMask);
10069    } else {
10070      // We only use half of V2 so map the usage down into the final blend mask.
10071      V2Blend = UseLoV2 ? LoV2 : HiV2;
10072      for (int i = 0; i < SplitNumElements; ++i)
10073        if (BlendMask[i] >= SplitNumElements)
10074          BlendMask[i] = V2BlendMask[i] + (UseLoV2 ? SplitNumElements : 0);
10075    }
10076    return DAG.getVectorShuffle(SplitVT, DL, V1Blend, V2Blend, BlendMask);
10077  };
10078  SDValue Lo = HalfBlend(LoMask);
10079  SDValue Hi = HalfBlend(HiMask);
10080  return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
10081}
10082
10083/// \brief Either split a vector in halves or decompose the shuffles and the
10084/// blend.
10085///
10086/// This is provided as a good fallback for many lowerings of non-single-input
10087/// shuffles with more than one 128-bit lane. In those cases, we want to select
10088/// between splitting the shuffle into 128-bit components and stitching those
10089/// back together vs. extracting the single-input shuffles and blending those
10090/// results.
10091static SDValue lowerVectorShuffleAsSplitOrBlend(SDLoc DL, MVT VT, SDValue V1,
10092                                                SDValue V2, ArrayRef<int> Mask,
10093                                                SelectionDAG &DAG) {
10094  assert(!isSingleInputShuffleMask(Mask) && "This routine must not be used to "
10095                                            "lower single-input shuffles as it "
10096                                            "could then recurse on itself.");
10097  int Size = Mask.size();
10098
10099  // If this can be modeled as a broadcast of two elements followed by a blend,
10100  // prefer that lowering. This is especially important because broadcasts can
10101  // often fold with memory operands.
10102  auto DoBothBroadcast = [&] {
10103    int V1BroadcastIdx = -1, V2BroadcastIdx = -1;
10104    for (int M : Mask)
10105      if (M >= Size) {
10106        if (V2BroadcastIdx == -1)
10107          V2BroadcastIdx = M - Size;
10108        else if (M - Size != V2BroadcastIdx)
10109          return false;
10110      } else if (M >= 0) {
10111        if (V1BroadcastIdx == -1)
10112          V1BroadcastIdx = M;
10113        else if (M != V1BroadcastIdx)
10114          return false;
10115      }
10116    return true;
10117  };
10118  if (DoBothBroadcast())
10119    return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask,
10120                                                      DAG);
10121
10122  // If the inputs all stem from a single 128-bit lane of each input, then we
10123  // split them rather than blending because the split will decompose to
10124  // unusually few instructions.
10125  int LaneCount = VT.getSizeInBits() / 128;
10126  int LaneSize = Size / LaneCount;
10127  SmallBitVector LaneInputs[2];
10128  LaneInputs[0].resize(LaneCount, false);
10129  LaneInputs[1].resize(LaneCount, false);
10130  for (int i = 0; i < Size; ++i)
10131    if (Mask[i] >= 0)
10132      LaneInputs[Mask[i] / Size][(Mask[i] % Size) / LaneSize] = true;
10133  if (LaneInputs[0].count() <= 1 && LaneInputs[1].count() <= 1)
10134    return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG);
10135
10136  // Otherwise, just fall back to decomposed shuffles and a blend. This requires
10137  // that the decomposed single-input shuffles don't end up here.
10138  return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask, DAG);
10139}
10140
10141/// \brief Lower a vector shuffle crossing multiple 128-bit lanes as
10142/// a permutation and blend of those lanes.
10143///
10144/// This essentially blends the out-of-lane inputs to each lane into the lane
10145/// from a permuted copy of the vector. This lowering strategy results in four
10146/// instructions in the worst case for a single-input cross lane shuffle which
10147/// is lower than any other fully general cross-lane shuffle strategy I'm aware
10148/// of. Special cases for each particular shuffle pattern should be handled
10149/// prior to trying this lowering.
10150static SDValue lowerVectorShuffleAsLanePermuteAndBlend(SDLoc DL, MVT VT,
10151                                                       SDValue V1, SDValue V2,
10152                                                       ArrayRef<int> Mask,
10153                                                       SelectionDAG &DAG) {
10154  // FIXME: This should probably be generalized for 512-bit vectors as well.
10155  assert(VT.is256BitVector() && "Only for 256-bit vector shuffles!");
10156  int LaneSize = Mask.size() / 2;
10157
10158  // If there are only inputs from one 128-bit lane, splitting will in fact be
10159  // less expensive. The flags track whether the given lane contains an element
10160  // that crosses to another lane.
10161  bool LaneCrossing[2] = {false, false};
10162  for (int i = 0, Size = Mask.size(); i < Size; ++i)
10163    if (Mask[i] >= 0 && (Mask[i] % Size) / LaneSize != i / LaneSize)
10164      LaneCrossing[(Mask[i] % Size) / LaneSize] = true;
10165  if (!LaneCrossing[0] || !LaneCrossing[1])
10166    return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG);
10167
10168  if (isSingleInputShuffleMask(Mask)) {
10169    SmallVector<int, 32> FlippedBlendMask;
10170    for (int i = 0, Size = Mask.size(); i < Size; ++i)
10171      FlippedBlendMask.push_back(
10172          Mask[i] < 0 ? -1 : (((Mask[i] % Size) / LaneSize == i / LaneSize)
10173                                  ? Mask[i]
10174                                  : Mask[i] % LaneSize +
10175                                        (i / LaneSize) * LaneSize + Size));
10176
10177    // Flip the vector, and blend the results which should now be in-lane. The
10178    // VPERM2X128 mask uses the low 2 bits for the low source and bits 4 and
10179    // 5 for the high source. The value 3 selects the high half of source 2 and
10180    // the value 2 selects the low half of source 2. We only use source 2 to
10181    // allow folding it into a memory operand.
10182    unsigned PERMMask = 3 | 2 << 4;
10183    SDValue Flipped = DAG.getNode(X86ISD::VPERM2X128, DL, VT, DAG.getUNDEF(VT),
10184                                  V1, DAG.getConstant(PERMMask, DL, MVT::i8));
10185    return DAG.getVectorShuffle(VT, DL, V1, Flipped, FlippedBlendMask);
10186  }
10187
10188  // This now reduces to two single-input shuffles of V1 and V2 which at worst
10189  // will be handled by the above logic and a blend of the results, much like
10190  // other patterns in AVX.
10191  return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask, DAG);
10192}
10193
10194/// \brief Handle lowering 2-lane 128-bit shuffles.
10195static SDValue lowerV2X128VectorShuffle(SDLoc DL, MVT VT, SDValue V1,
10196                                        SDValue V2, ArrayRef<int> Mask,
10197                                        const X86Subtarget *Subtarget,
10198                                        SelectionDAG &DAG) {
10199  // TODO: If minimizing size and one of the inputs is a zero vector and the
10200  // the zero vector has only one use, we could use a VPERM2X128 to save the
10201  // instruction bytes needed to explicitly generate the zero vector.
10202
10203  // Blends are faster and handle all the non-lane-crossing cases.
10204  if (SDValue Blend = lowerVectorShuffleAsBlend(DL, VT, V1, V2, Mask,
10205                                                Subtarget, DAG))
10206    return Blend;
10207
10208  bool IsV1Zero = ISD::isBuildVectorAllZeros(V1.getNode());
10209  bool IsV2Zero = ISD::isBuildVectorAllZeros(V2.getNode());
10210
10211  // If either input operand is a zero vector, use VPERM2X128 because its mask
10212  // allows us to replace the zero input with an implicit zero.
10213  if (!IsV1Zero && !IsV2Zero) {
10214    // Check for patterns which can be matched with a single insert of a 128-bit
10215    // subvector.
10216    bool OnlyUsesV1 = isShuffleEquivalent(V1, V2, Mask, {0, 1, 0, 1});
10217    if (OnlyUsesV1 || isShuffleEquivalent(V1, V2, Mask, {0, 1, 4, 5})) {
10218      MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(),
10219                                   VT.getVectorNumElements() / 2);
10220      SDValue LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V1,
10221                                DAG.getIntPtrConstant(0, DL));
10222      SDValue HiV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT,
10223                                OnlyUsesV1 ? V1 : V2,
10224                                DAG.getIntPtrConstant(0, DL));
10225      return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LoV, HiV);
10226    }
10227  }
10228
10229  // Otherwise form a 128-bit permutation. After accounting for undefs,
10230  // convert the 64-bit shuffle mask selection values into 128-bit
10231  // selection bits by dividing the indexes by 2 and shifting into positions
10232  // defined by a vperm2*128 instruction's immediate control byte.
10233
10234  // The immediate permute control byte looks like this:
10235  //    [1:0] - select 128 bits from sources for low half of destination
10236  //    [2]   - ignore
10237  //    [3]   - zero low half of destination
10238  //    [5:4] - select 128 bits from sources for high half of destination
10239  //    [6]   - ignore
10240  //    [7]   - zero high half of destination
10241
10242  int MaskLO = Mask[0];
10243  if (MaskLO == SM_SentinelUndef)
10244    MaskLO = Mask[1] == SM_SentinelUndef ? 0 : Mask[1];
10245
10246  int MaskHI = Mask[2];
10247  if (MaskHI == SM_SentinelUndef)
10248    MaskHI = Mask[3] == SM_SentinelUndef ? 0 : Mask[3];
10249
10250  unsigned PermMask = MaskLO / 2 | (MaskHI / 2) << 4;
10251
10252  // If either input is a zero vector, replace it with an undef input.
10253  // Shuffle mask values <  4 are selecting elements of V1.
10254  // Shuffle mask values >= 4 are selecting elements of V2.
10255  // Adjust each half of the permute mask by clearing the half that was
10256  // selecting the zero vector and setting the zero mask bit.
10257  if (IsV1Zero) {
10258    V1 = DAG.getUNDEF(VT);
10259    if (MaskLO < 4)
10260      PermMask = (PermMask & 0xf0) | 0x08;
10261    if (MaskHI < 4)
10262      PermMask = (PermMask & 0x0f) | 0x80;
10263  }
10264  if (IsV2Zero) {
10265    V2 = DAG.getUNDEF(VT);
10266    if (MaskLO >= 4)
10267      PermMask = (PermMask & 0xf0) | 0x08;
10268    if (MaskHI >= 4)
10269      PermMask = (PermMask & 0x0f) | 0x80;
10270  }
10271
10272  return DAG.getNode(X86ISD::VPERM2X128, DL, VT, V1, V2,
10273                     DAG.getConstant(PermMask, DL, MVT::i8));
10274}
10275
10276/// \brief Lower a vector shuffle by first fixing the 128-bit lanes and then
10277/// shuffling each lane.
10278///
10279/// This will only succeed when the result of fixing the 128-bit lanes results
10280/// in a single-input non-lane-crossing shuffle with a repeating shuffle mask in
10281/// each 128-bit lanes. This handles many cases where we can quickly blend away
10282/// the lane crosses early and then use simpler shuffles within each lane.
10283///
10284/// FIXME: It might be worthwhile at some point to support this without
10285/// requiring the 128-bit lane-relative shuffles to be repeating, but currently
10286/// in x86 only floating point has interesting non-repeating shuffles, and even
10287/// those are still *marginally* more expensive.
10288static SDValue lowerVectorShuffleByMerging128BitLanes(
10289    SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
10290    const X86Subtarget *Subtarget, SelectionDAG &DAG) {
10291  assert(!isSingleInputShuffleMask(Mask) &&
10292         "This is only useful with multiple inputs.");
10293
10294  int Size = Mask.size();
10295  int LaneSize = 128 / VT.getScalarSizeInBits();
10296  int NumLanes = Size / LaneSize;
10297  assert(NumLanes > 1 && "Only handles 256-bit and wider shuffles.");
10298
10299  // See if we can build a hypothetical 128-bit lane-fixing shuffle mask. Also
10300  // check whether the in-128-bit lane shuffles share a repeating pattern.
10301  SmallVector<int, 4> Lanes;
10302  Lanes.resize(NumLanes, -1);
10303  SmallVector<int, 4> InLaneMask;
10304  InLaneMask.resize(LaneSize, -1);
10305  for (int i = 0; i < Size; ++i) {
10306    if (Mask[i] < 0)
10307      continue;
10308
10309    int j = i / LaneSize;
10310
10311    if (Lanes[j] < 0) {
10312      // First entry we've seen for this lane.
10313      Lanes[j] = Mask[i] / LaneSize;
10314    } else if (Lanes[j] != Mask[i] / LaneSize) {
10315      // This doesn't match the lane selected previously!
10316      return SDValue();
10317    }
10318
10319    // Check that within each lane we have a consistent shuffle mask.
10320    int k = i % LaneSize;
10321    if (InLaneMask[k] < 0) {
10322      InLaneMask[k] = Mask[i] % LaneSize;
10323    } else if (InLaneMask[k] != Mask[i] % LaneSize) {
10324      // This doesn't fit a repeating in-lane mask.
10325      return SDValue();
10326    }
10327  }
10328
10329  // First shuffle the lanes into place.
10330  MVT LaneVT = MVT::getVectorVT(VT.isFloatingPoint() ? MVT::f64 : MVT::i64,
10331                                VT.getSizeInBits() / 64);
10332  SmallVector<int, 8> LaneMask;
10333  LaneMask.resize(NumLanes * 2, -1);
10334  for (int i = 0; i < NumLanes; ++i)
10335    if (Lanes[i] >= 0) {
10336      LaneMask[2 * i + 0] = 2*Lanes[i] + 0;
10337      LaneMask[2 * i + 1] = 2*Lanes[i] + 1;
10338    }
10339
10340  V1 = DAG.getBitcast(LaneVT, V1);
10341  V2 = DAG.getBitcast(LaneVT, V2);
10342  SDValue LaneShuffle = DAG.getVectorShuffle(LaneVT, DL, V1, V2, LaneMask);
10343
10344  // Cast it back to the type we actually want.
10345  LaneShuffle = DAG.getBitcast(VT, LaneShuffle);
10346
10347  // Now do a simple shuffle that isn't lane crossing.
10348  SmallVector<int, 8> NewMask;
10349  NewMask.resize(Size, -1);
10350  for (int i = 0; i < Size; ++i)
10351    if (Mask[i] >= 0)
10352      NewMask[i] = (i / LaneSize) * LaneSize + Mask[i] % LaneSize;
10353  assert(!is128BitLaneCrossingShuffleMask(VT, NewMask) &&
10354         "Must not introduce lane crosses at this point!");
10355
10356  return DAG.getVectorShuffle(VT, DL, LaneShuffle, DAG.getUNDEF(VT), NewMask);
10357}
10358
10359/// \brief Test whether the specified input (0 or 1) is in-place blended by the
10360/// given mask.
10361///
10362/// This returns true if the elements from a particular input are already in the
10363/// slot required by the given mask and require no permutation.
10364static bool isShuffleMaskInputInPlace(int Input, ArrayRef<int> Mask) {
10365  assert((Input == 0 || Input == 1) && "Only two inputs to shuffles.");
10366  int Size = Mask.size();
10367  for (int i = 0; i < Size; ++i)
10368    if (Mask[i] >= 0 && Mask[i] / Size == Input && Mask[i] % Size != i)
10369      return false;
10370
10371  return true;
10372}
10373
10374static SDValue lowerVectorShuffleWithSHUFPD(SDLoc DL, MVT VT,
10375                                            ArrayRef<int> Mask, SDValue V1,
10376                                            SDValue V2, SelectionDAG &DAG) {
10377
10378  // Mask for V8F64: 0/1,  8/9,  2/3,  10/11, 4/5, ..
10379  // Mask for V4F64; 0/1,  4/5,  2/3,  6/7..
10380  assert(VT.getScalarSizeInBits() == 64 && "Unexpected data type for VSHUFPD");
10381  int NumElts = VT.getVectorNumElements();
10382  bool ShufpdMask = true;
10383  bool CommutableMask = true;
10384  unsigned Immediate = 0;
10385  for (int i = 0; i < NumElts; ++i) {
10386    if (Mask[i] < 0)
10387      continue;
10388    int Val = (i & 6) + NumElts * (i & 1);
10389    int CommutVal = (i & 0xe) + NumElts * ((i & 1)^1);
10390    if (Mask[i] < Val ||  Mask[i] > Val + 1)
10391      ShufpdMask = false;
10392    if (Mask[i] < CommutVal ||  Mask[i] > CommutVal + 1)
10393      CommutableMask = false;
10394    Immediate |= (Mask[i] % 2) << i;
10395  }
10396  if (ShufpdMask)
10397    return DAG.getNode(X86ISD::SHUFP, DL, VT, V1, V2,
10398                       DAG.getConstant(Immediate, DL, MVT::i8));
10399  if (CommutableMask)
10400    return DAG.getNode(X86ISD::SHUFP, DL, VT, V2, V1,
10401                       DAG.getConstant(Immediate, DL, MVT::i8));
10402  return SDValue();
10403}
10404
10405/// \brief Handle lowering of 4-lane 64-bit floating point shuffles.
10406///
10407/// Also ends up handling lowering of 4-lane 64-bit integer shuffles when AVX2
10408/// isn't available.
10409static SDValue lowerV4F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
10410                                       const X86Subtarget *Subtarget,
10411                                       SelectionDAG &DAG) {
10412  SDLoc DL(Op);
10413  assert(V1.getSimpleValueType() == MVT::v4f64 && "Bad operand type!");
10414  assert(V2.getSimpleValueType() == MVT::v4f64 && "Bad operand type!");
10415  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
10416  ArrayRef<int> Mask = SVOp->getMask();
10417  assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
10418
10419  SmallVector<int, 4> WidenedMask;
10420  if (canWidenShuffleElements(Mask, WidenedMask))
10421    return lowerV2X128VectorShuffle(DL, MVT::v4f64, V1, V2, Mask, Subtarget,
10422                                    DAG);
10423
10424  if (isSingleInputShuffleMask(Mask)) {
10425    // Check for being able to broadcast a single element.
10426    if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v4f64, V1,
10427                                                          Mask, Subtarget, DAG))
10428      return Broadcast;
10429
10430    // Use low duplicate instructions for masks that match their pattern.
10431    if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2}))
10432      return DAG.getNode(X86ISD::MOVDDUP, DL, MVT::v4f64, V1);
10433
10434    if (!is128BitLaneCrossingShuffleMask(MVT::v4f64, Mask)) {
10435      // Non-half-crossing single input shuffles can be lowerid with an
10436      // interleaved permutation.
10437      unsigned VPERMILPMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1) |
10438                              ((Mask[2] == 3) << 2) | ((Mask[3] == 3) << 3);
10439      return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v4f64, V1,
10440                         DAG.getConstant(VPERMILPMask, DL, MVT::i8));
10441    }
10442
10443    // With AVX2 we have direct support for this permutation.
10444    if (Subtarget->hasAVX2())
10445      return DAG.getNode(X86ISD::VPERMI, DL, MVT::v4f64, V1,
10446                         getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
10447
10448    // Otherwise, fall back.
10449    return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v4f64, V1, V2, Mask,
10450                                                   DAG);
10451  }
10452
10453  // Use dedicated unpack instructions for masks that match their pattern.
10454  if (SDValue V =
10455          lowerVectorShuffleWithUNPCK(DL, MVT::v4f64, Mask, V1, V2, DAG))
10456    return V;
10457
10458  if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4f64, V1, V2, Mask,
10459                                                Subtarget, DAG))
10460    return Blend;
10461
10462  // Check if the blend happens to exactly fit that of SHUFPD.
10463  if (SDValue Op =
10464      lowerVectorShuffleWithSHUFPD(DL, MVT::v4f64, Mask, V1, V2, DAG))
10465    return Op;
10466
10467  // Try to simplify this by merging 128-bit lanes to enable a lane-based
10468  // shuffle. However, if we have AVX2 and either inputs are already in place,
10469  // we will be able to shuffle even across lanes the other input in a single
10470  // instruction so skip this pattern.
10471  if (!(Subtarget->hasAVX2() && (isShuffleMaskInputInPlace(0, Mask) ||
10472                                 isShuffleMaskInputInPlace(1, Mask))))
10473    if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
10474            DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG))
10475      return Result;
10476
10477  // If we have AVX2 then we always want to lower with a blend because an v4 we
10478  // can fully permute the elements.
10479  if (Subtarget->hasAVX2())
10480    return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4f64, V1, V2,
10481                                                      Mask, DAG);
10482
10483  // Otherwise fall back on generic lowering.
10484  return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v4f64, V1, V2, Mask, DAG);
10485}
10486
10487/// \brief Handle lowering of 4-lane 64-bit integer shuffles.
10488///
10489/// This routine is only called when we have AVX2 and thus a reasonable
10490/// instruction set for v4i64 shuffling..
10491static SDValue lowerV4I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
10492                                       const X86Subtarget *Subtarget,
10493                                       SelectionDAG &DAG) {
10494  SDLoc DL(Op);
10495  assert(V1.getSimpleValueType() == MVT::v4i64 && "Bad operand type!");
10496  assert(V2.getSimpleValueType() == MVT::v4i64 && "Bad operand type!");
10497  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
10498  ArrayRef<int> Mask = SVOp->getMask();
10499  assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
10500  assert(Subtarget->hasAVX2() && "We can only lower v4i64 with AVX2!");
10501
10502  SmallVector<int, 4> WidenedMask;
10503  if (canWidenShuffleElements(Mask, WidenedMask))
10504    return lowerV2X128VectorShuffle(DL, MVT::v4i64, V1, V2, Mask, Subtarget,
10505                                    DAG);
10506
10507  if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4i64, V1, V2, Mask,
10508                                                Subtarget, DAG))
10509    return Blend;
10510
10511  // Check for being able to broadcast a single element.
10512  if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v4i64, V1,
10513                                                        Mask, Subtarget, DAG))
10514    return Broadcast;
10515
10516  // When the shuffle is mirrored between the 128-bit lanes of the unit, we can
10517  // use lower latency instructions that will operate on both 128-bit lanes.
10518  SmallVector<int, 2> RepeatedMask;
10519  if (is128BitLaneRepeatedShuffleMask(MVT::v4i64, Mask, RepeatedMask)) {
10520    if (isSingleInputShuffleMask(Mask)) {
10521      int PSHUFDMask[] = {-1, -1, -1, -1};
10522      for (int i = 0; i < 2; ++i)
10523        if (RepeatedMask[i] >= 0) {
10524          PSHUFDMask[2 * i] = 2 * RepeatedMask[i];
10525          PSHUFDMask[2 * i + 1] = 2 * RepeatedMask[i] + 1;
10526        }
10527      return DAG.getBitcast(
10528          MVT::v4i64,
10529          DAG.getNode(X86ISD::PSHUFD, DL, MVT::v8i32,
10530                      DAG.getBitcast(MVT::v8i32, V1),
10531                      getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
10532    }
10533  }
10534
10535  // AVX2 provides a direct instruction for permuting a single input across
10536  // lanes.
10537  if (isSingleInputShuffleMask(Mask))
10538    return DAG.getNode(X86ISD::VPERMI, DL, MVT::v4i64, V1,
10539                       getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
10540
10541  // Try to use shift instructions.
10542  if (SDValue Shift =
10543          lowerVectorShuffleAsShift(DL, MVT::v4i64, V1, V2, Mask, DAG))
10544    return Shift;
10545
10546  // Use dedicated unpack instructions for masks that match their pattern.
10547  if (SDValue V =
10548          lowerVectorShuffleWithUNPCK(DL, MVT::v4i64, Mask, V1, V2, DAG))
10549    return V;
10550
10551  // Try to simplify this by merging 128-bit lanes to enable a lane-based
10552  // shuffle. However, if we have AVX2 and either inputs are already in place,
10553  // we will be able to shuffle even across lanes the other input in a single
10554  // instruction so skip this pattern.
10555  if (!(Subtarget->hasAVX2() && (isShuffleMaskInputInPlace(0, Mask) ||
10556                                 isShuffleMaskInputInPlace(1, Mask))))
10557    if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
10558            DL, MVT::v4i64, V1, V2, Mask, Subtarget, DAG))
10559      return Result;
10560
10561  // Otherwise fall back on generic blend lowering.
10562  return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4i64, V1, V2,
10563                                                    Mask, DAG);
10564}
10565
10566/// \brief Handle lowering of 8-lane 32-bit floating point shuffles.
10567///
10568/// Also ends up handling lowering of 8-lane 32-bit integer shuffles when AVX2
10569/// isn't available.
10570static SDValue lowerV8F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
10571                                       const X86Subtarget *Subtarget,
10572                                       SelectionDAG &DAG) {
10573  SDLoc DL(Op);
10574  assert(V1.getSimpleValueType() == MVT::v8f32 && "Bad operand type!");
10575  assert(V2.getSimpleValueType() == MVT::v8f32 && "Bad operand type!");
10576  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
10577  ArrayRef<int> Mask = SVOp->getMask();
10578  assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
10579
10580  if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8f32, V1, V2, Mask,
10581                                                Subtarget, DAG))
10582    return Blend;
10583
10584  // Check for being able to broadcast a single element.
10585  if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v8f32, V1,
10586                                                        Mask, Subtarget, DAG))
10587    return Broadcast;
10588
10589  // If the shuffle mask is repeated in each 128-bit lane, we have many more
10590  // options to efficiently lower the shuffle.
10591  SmallVector<int, 4> RepeatedMask;
10592  if (is128BitLaneRepeatedShuffleMask(MVT::v8f32, Mask, RepeatedMask)) {
10593    assert(RepeatedMask.size() == 4 &&
10594           "Repeated masks must be half the mask width!");
10595
10596    // Use even/odd duplicate instructions for masks that match their pattern.
10597    if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2, 4, 4, 6, 6}))
10598      return DAG.getNode(X86ISD::MOVSLDUP, DL, MVT::v8f32, V1);
10599    if (isShuffleEquivalent(V1, V2, Mask, {1, 1, 3, 3, 5, 5, 7, 7}))
10600      return DAG.getNode(X86ISD::MOVSHDUP, DL, MVT::v8f32, V1);
10601
10602    if (isSingleInputShuffleMask(Mask))
10603      return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v8f32, V1,
10604                         getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG));
10605
10606    // Use dedicated unpack instructions for masks that match their pattern.
10607    if (SDValue V =
10608            lowerVectorShuffleWithUNPCK(DL, MVT::v8f32, Mask, V1, V2, DAG))
10609      return V;
10610
10611    // Otherwise, fall back to a SHUFPS sequence. Here it is important that we
10612    // have already handled any direct blends. We also need to squash the
10613    // repeated mask into a simulated v4f32 mask.
10614    for (int i = 0; i < 4; ++i)
10615      if (RepeatedMask[i] >= 8)
10616        RepeatedMask[i] -= 4;
10617    return lowerVectorShuffleWithSHUFPS(DL, MVT::v8f32, RepeatedMask, V1, V2, DAG);
10618  }
10619
10620  // If we have a single input shuffle with different shuffle patterns in the
10621  // two 128-bit lanes use the variable mask to VPERMILPS.
10622  if (isSingleInputShuffleMask(Mask)) {
10623    SDValue VPermMask[8];
10624    for (int i = 0; i < 8; ++i)
10625      VPermMask[i] = Mask[i] < 0 ? DAG.getUNDEF(MVT::i32)
10626                                 : DAG.getConstant(Mask[i], DL, MVT::i32);
10627    if (!is128BitLaneCrossingShuffleMask(MVT::v8f32, Mask))
10628      return DAG.getNode(
10629          X86ISD::VPERMILPV, DL, MVT::v8f32, V1,
10630          DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i32, VPermMask));
10631
10632    if (Subtarget->hasAVX2())
10633      return DAG.getNode(
10634          X86ISD::VPERMV, DL, MVT::v8f32,
10635          DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i32, VPermMask), V1);
10636
10637    // Otherwise, fall back.
10638    return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v8f32, V1, V2, Mask,
10639                                                   DAG);
10640  }
10641
10642  // Try to simplify this by merging 128-bit lanes to enable a lane-based
10643  // shuffle.
10644  if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
10645          DL, MVT::v8f32, V1, V2, Mask, Subtarget, DAG))
10646    return Result;
10647
10648  // If we have AVX2 then we always want to lower with a blend because at v8 we
10649  // can fully permute the elements.
10650  if (Subtarget->hasAVX2())
10651    return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8f32, V1, V2,
10652                                                      Mask, DAG);
10653
10654  // Otherwise fall back on generic lowering.
10655  return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v8f32, V1, V2, Mask, DAG);
10656}
10657
10658/// \brief Handle lowering of 8-lane 32-bit integer shuffles.
10659///
10660/// This routine is only called when we have AVX2 and thus a reasonable
10661/// instruction set for v8i32 shuffling..
10662static SDValue lowerV8I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
10663                                       const X86Subtarget *Subtarget,
10664                                       SelectionDAG &DAG) {
10665  SDLoc DL(Op);
10666  assert(V1.getSimpleValueType() == MVT::v8i32 && "Bad operand type!");
10667  assert(V2.getSimpleValueType() == MVT::v8i32 && "Bad operand type!");
10668  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
10669  ArrayRef<int> Mask = SVOp->getMask();
10670  assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
10671  assert(Subtarget->hasAVX2() && "We can only lower v8i32 with AVX2!");
10672
10673  // Whenever we can lower this as a zext, that instruction is strictly faster
10674  // than any alternative. It also allows us to fold memory operands into the
10675  // shuffle in many cases.
10676  if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(DL, MVT::v8i32, V1, V2,
10677                                                         Mask, Subtarget, DAG))
10678    return ZExt;
10679
10680  if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8i32, V1, V2, Mask,
10681                                                Subtarget, DAG))
10682    return Blend;
10683
10684  // Check for being able to broadcast a single element.
10685  if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v8i32, V1,
10686                                                        Mask, Subtarget, DAG))
10687    return Broadcast;
10688
10689  // If the shuffle mask is repeated in each 128-bit lane we can use more
10690  // efficient instructions that mirror the shuffles across the two 128-bit
10691  // lanes.
10692  SmallVector<int, 4> RepeatedMask;
10693  if (is128BitLaneRepeatedShuffleMask(MVT::v8i32, Mask, RepeatedMask)) {
10694    assert(RepeatedMask.size() == 4 && "Unexpected repeated mask size!");
10695    if (isSingleInputShuffleMask(Mask))
10696      return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v8i32, V1,
10697                         getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG));
10698
10699    // Use dedicated unpack instructions for masks that match their pattern.
10700    if (SDValue V =
10701            lowerVectorShuffleWithUNPCK(DL, MVT::v8i32, Mask, V1, V2, DAG))
10702      return V;
10703  }
10704
10705  // Try to use shift instructions.
10706  if (SDValue Shift =
10707          lowerVectorShuffleAsShift(DL, MVT::v8i32, V1, V2, Mask, DAG))
10708    return Shift;
10709
10710  if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
10711          DL, MVT::v8i32, V1, V2, Mask, Subtarget, DAG))
10712    return Rotate;
10713
10714  // If the shuffle patterns aren't repeated but it is a single input, directly
10715  // generate a cross-lane VPERMD instruction.
10716  if (isSingleInputShuffleMask(Mask)) {
10717    SDValue VPermMask[8];
10718    for (int i = 0; i < 8; ++i)
10719      VPermMask[i] = Mask[i] < 0 ? DAG.getUNDEF(MVT::i32)
10720                                 : DAG.getConstant(Mask[i], DL, MVT::i32);
10721    return DAG.getNode(
10722        X86ISD::VPERMV, DL, MVT::v8i32,
10723        DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i32, VPermMask), V1);
10724  }
10725
10726  // Try to simplify this by merging 128-bit lanes to enable a lane-based
10727  // shuffle.
10728  if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
10729          DL, MVT::v8i32, V1, V2, Mask, Subtarget, DAG))
10730    return Result;
10731
10732  // Otherwise fall back on generic blend lowering.
10733  return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8i32, V1, V2,
10734                                                    Mask, DAG);
10735}
10736
10737/// \brief Handle lowering of 16-lane 16-bit integer shuffles.
10738///
10739/// This routine is only called when we have AVX2 and thus a reasonable
10740/// instruction set for v16i16 shuffling..
10741static SDValue lowerV16I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
10742                                        const X86Subtarget *Subtarget,
10743                                        SelectionDAG &DAG) {
10744  SDLoc DL(Op);
10745  assert(V1.getSimpleValueType() == MVT::v16i16 && "Bad operand type!");
10746  assert(V2.getSimpleValueType() == MVT::v16i16 && "Bad operand type!");
10747  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
10748  ArrayRef<int> Mask = SVOp->getMask();
10749  assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
10750  assert(Subtarget->hasAVX2() && "We can only lower v16i16 with AVX2!");
10751
10752  // Whenever we can lower this as a zext, that instruction is strictly faster
10753  // than any alternative. It also allows us to fold memory operands into the
10754  // shuffle in many cases.
10755  if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(DL, MVT::v16i16, V1, V2,
10756                                                         Mask, Subtarget, DAG))
10757    return ZExt;
10758
10759  // Check for being able to broadcast a single element.
10760  if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v16i16, V1,
10761                                                        Mask, Subtarget, DAG))
10762    return Broadcast;
10763
10764  if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v16i16, V1, V2, Mask,
10765                                                Subtarget, DAG))
10766    return Blend;
10767
10768  // Use dedicated unpack instructions for masks that match their pattern.
10769  if (SDValue V =
10770          lowerVectorShuffleWithUNPCK(DL, MVT::v16i16, Mask, V1, V2, DAG))
10771    return V;
10772
10773  // Try to use shift instructions.
10774  if (SDValue Shift =
10775          lowerVectorShuffleAsShift(DL, MVT::v16i16, V1, V2, Mask, DAG))
10776    return Shift;
10777
10778  // Try to use byte rotation instructions.
10779  if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
10780          DL, MVT::v16i16, V1, V2, Mask, Subtarget, DAG))
10781    return Rotate;
10782
10783  if (isSingleInputShuffleMask(Mask)) {
10784    // There are no generalized cross-lane shuffle operations available on i16
10785    // element types.
10786    if (is128BitLaneCrossingShuffleMask(MVT::v16i16, Mask))
10787      return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v16i16, V1, V2,
10788                                                     Mask, DAG);
10789
10790    SmallVector<int, 8> RepeatedMask;
10791    if (is128BitLaneRepeatedShuffleMask(MVT::v16i16, Mask, RepeatedMask)) {
10792      // As this is a single-input shuffle, the repeated mask should be
10793      // a strictly valid v8i16 mask that we can pass through to the v8i16
10794      // lowering to handle even the v16 case.
10795      return lowerV8I16GeneralSingleInputVectorShuffle(
10796          DL, MVT::v16i16, V1, RepeatedMask, Subtarget, DAG);
10797    }
10798
10799    SDValue PSHUFBMask[32];
10800    for (int i = 0; i < 16; ++i) {
10801      if (Mask[i] == -1) {
10802        PSHUFBMask[2 * i] = PSHUFBMask[2 * i + 1] = DAG.getUNDEF(MVT::i8);
10803        continue;
10804      }
10805
10806      int M = i < 8 ? Mask[i] : Mask[i] - 8;
10807      assert(M >= 0 && M < 8 && "Invalid single-input mask!");
10808      PSHUFBMask[2 * i] = DAG.getConstant(2 * M, DL, MVT::i8);
10809      PSHUFBMask[2 * i + 1] = DAG.getConstant(2 * M + 1, DL, MVT::i8);
10810    }
10811    return DAG.getBitcast(MVT::v16i16,
10812                          DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8,
10813                                      DAG.getBitcast(MVT::v32i8, V1),
10814                                      DAG.getNode(ISD::BUILD_VECTOR, DL,
10815                                                  MVT::v32i8, PSHUFBMask)));
10816  }
10817
10818  // Try to simplify this by merging 128-bit lanes to enable a lane-based
10819  // shuffle.
10820  if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
10821          DL, MVT::v16i16, V1, V2, Mask, Subtarget, DAG))
10822    return Result;
10823
10824  // Otherwise fall back on generic lowering.
10825  return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v16i16, V1, V2, Mask, DAG);
10826}
10827
10828/// \brief Handle lowering of 32-lane 8-bit integer shuffles.
10829///
10830/// This routine is only called when we have AVX2 and thus a reasonable
10831/// instruction set for v32i8 shuffling..
10832static SDValue lowerV32I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
10833                                       const X86Subtarget *Subtarget,
10834                                       SelectionDAG &DAG) {
10835  SDLoc DL(Op);
10836  assert(V1.getSimpleValueType() == MVT::v32i8 && "Bad operand type!");
10837  assert(V2.getSimpleValueType() == MVT::v32i8 && "Bad operand type!");
10838  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
10839  ArrayRef<int> Mask = SVOp->getMask();
10840  assert(Mask.size() == 32 && "Unexpected mask size for v32 shuffle!");
10841  assert(Subtarget->hasAVX2() && "We can only lower v32i8 with AVX2!");
10842
10843  // Whenever we can lower this as a zext, that instruction is strictly faster
10844  // than any alternative. It also allows us to fold memory operands into the
10845  // shuffle in many cases.
10846  if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(DL, MVT::v32i8, V1, V2,
10847                                                         Mask, Subtarget, DAG))
10848    return ZExt;
10849
10850  // Check for being able to broadcast a single element.
10851  if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v32i8, V1,
10852                                                        Mask, Subtarget, DAG))
10853    return Broadcast;
10854
10855  if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v32i8, V1, V2, Mask,
10856                                                Subtarget, DAG))
10857    return Blend;
10858
10859  // Use dedicated unpack instructions for masks that match their pattern.
10860  if (SDValue V =
10861          lowerVectorShuffleWithUNPCK(DL, MVT::v32i8, Mask, V1, V2, DAG))
10862    return V;
10863
10864  // Try to use shift instructions.
10865  if (SDValue Shift =
10866          lowerVectorShuffleAsShift(DL, MVT::v32i8, V1, V2, Mask, DAG))
10867    return Shift;
10868
10869  // Try to use byte rotation instructions.
10870  if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
10871          DL, MVT::v32i8, V1, V2, Mask, Subtarget, DAG))
10872    return Rotate;
10873
10874  if (isSingleInputShuffleMask(Mask)) {
10875    // There are no generalized cross-lane shuffle operations available on i8
10876    // element types.
10877    if (is128BitLaneCrossingShuffleMask(MVT::v32i8, Mask))
10878      return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v32i8, V1, V2,
10879                                                     Mask, DAG);
10880
10881    SDValue PSHUFBMask[32];
10882    for (int i = 0; i < 32; ++i)
10883      PSHUFBMask[i] =
10884          Mask[i] < 0
10885              ? DAG.getUNDEF(MVT::i8)
10886              : DAG.getConstant(Mask[i] < 16 ? Mask[i] : Mask[i] - 16, DL,
10887                                MVT::i8);
10888
10889    return DAG.getNode(
10890        X86ISD::PSHUFB, DL, MVT::v32i8, V1,
10891        DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8, PSHUFBMask));
10892  }
10893
10894  // Try to simplify this by merging 128-bit lanes to enable a lane-based
10895  // shuffle.
10896  if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
10897          DL, MVT::v32i8, V1, V2, Mask, Subtarget, DAG))
10898    return Result;
10899
10900  // Otherwise fall back on generic lowering.
10901  return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v32i8, V1, V2, Mask, DAG);
10902}
10903
10904/// \brief High-level routine to lower various 256-bit x86 vector shuffles.
10905///
10906/// This routine either breaks down the specific type of a 256-bit x86 vector
10907/// shuffle or splits it into two 128-bit shuffles and fuses the results back
10908/// together based on the available instructions.
10909static SDValue lower256BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2,
10910                                        MVT VT, const X86Subtarget *Subtarget,
10911                                        SelectionDAG &DAG) {
10912  SDLoc DL(Op);
10913  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
10914  ArrayRef<int> Mask = SVOp->getMask();
10915
10916  // If we have a single input to the zero element, insert that into V1 if we
10917  // can do so cheaply.
10918  int NumElts = VT.getVectorNumElements();
10919  int NumV2Elements = std::count_if(Mask.begin(), Mask.end(), [NumElts](int M) {
10920    return M >= NumElts;
10921  });
10922
10923  if (NumV2Elements == 1 && Mask[0] >= NumElts)
10924    if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
10925                              DL, VT, V1, V2, Mask, Subtarget, DAG))
10926      return Insertion;
10927
10928  // There is a really nice hard cut-over between AVX1 and AVX2 that means we
10929  // can check for those subtargets here and avoid much of the subtarget
10930  // querying in the per-vector-type lowering routines. With AVX1 we have
10931  // essentially *zero* ability to manipulate a 256-bit vector with integer
10932  // types. Since we'll use floating point types there eventually, just
10933  // immediately cast everything to a float and operate entirely in that domain.
10934  if (VT.isInteger() && !Subtarget->hasAVX2()) {
10935    int ElementBits = VT.getScalarSizeInBits();
10936    if (ElementBits < 32)
10937      // No floating point type available, decompose into 128-bit vectors.
10938      return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG);
10939
10940    MVT FpVT = MVT::getVectorVT(MVT::getFloatingPointVT(ElementBits),
10941                                VT.getVectorNumElements());
10942    V1 = DAG.getBitcast(FpVT, V1);
10943    V2 = DAG.getBitcast(FpVT, V2);
10944    return DAG.getBitcast(VT, DAG.getVectorShuffle(FpVT, DL, V1, V2, Mask));
10945  }
10946
10947  switch (VT.SimpleTy) {
10948  case MVT::v4f64:
10949    return lowerV4F64VectorShuffle(Op, V1, V2, Subtarget, DAG);
10950  case MVT::v4i64:
10951    return lowerV4I64VectorShuffle(Op, V1, V2, Subtarget, DAG);
10952  case MVT::v8f32:
10953    return lowerV8F32VectorShuffle(Op, V1, V2, Subtarget, DAG);
10954  case MVT::v8i32:
10955    return lowerV8I32VectorShuffle(Op, V1, V2, Subtarget, DAG);
10956  case MVT::v16i16:
10957    return lowerV16I16VectorShuffle(Op, V1, V2, Subtarget, DAG);
10958  case MVT::v32i8:
10959    return lowerV32I8VectorShuffle(Op, V1, V2, Subtarget, DAG);
10960
10961  default:
10962    llvm_unreachable("Not a valid 256-bit x86 vector type!");
10963  }
10964}
10965
10966/// \brief Try to lower a vector shuffle as a 128-bit shuffles.
10967static SDValue lowerV4X128VectorShuffle(SDLoc DL, MVT VT,
10968                                        ArrayRef<int> Mask,
10969                                        SDValue V1, SDValue V2,
10970                                        SelectionDAG &DAG) {
10971  assert(VT.getScalarSizeInBits() == 64 &&
10972         "Unexpected element type size for 128bit shuffle.");
10973
10974  // To handle 256 bit vector requires VLX and most probably
10975  // function lowerV2X128VectorShuffle() is better solution.
10976  assert(VT.is512BitVector() && "Unexpected vector size for 128bit shuffle.");
10977
10978  SmallVector<int, 4> WidenedMask;
10979  if (!canWidenShuffleElements(Mask, WidenedMask))
10980    return SDValue();
10981
10982  // Form a 128-bit permutation.
10983  // Convert the 64-bit shuffle mask selection values into 128-bit selection
10984  // bits defined by a vshuf64x2 instruction's immediate control byte.
10985  unsigned PermMask = 0, Imm = 0;
10986  unsigned ControlBitsNum = WidenedMask.size() / 2;
10987
10988  for (int i = 0, Size = WidenedMask.size(); i < Size; ++i) {
10989    if (WidenedMask[i] == SM_SentinelZero)
10990      return SDValue();
10991
10992    // Use first element in place of undef mask.
10993    Imm = (WidenedMask[i] == SM_SentinelUndef) ? 0 : WidenedMask[i];
10994    PermMask |= (Imm % WidenedMask.size()) << (i * ControlBitsNum);
10995  }
10996
10997  return DAG.getNode(X86ISD::SHUF128, DL, VT, V1, V2,
10998                     DAG.getConstant(PermMask, DL, MVT::i8));
10999}
11000
11001static SDValue lowerVectorShuffleWithPERMV(SDLoc DL, MVT VT,
11002                                           ArrayRef<int> Mask, SDValue V1,
11003                                           SDValue V2, SelectionDAG &DAG) {
11004
11005  assert(VT.getScalarSizeInBits() >= 16 && "Unexpected data type for PERMV");
11006
11007  MVT MaskEltVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
11008  MVT MaskVecVT = MVT::getVectorVT(MaskEltVT, VT.getVectorNumElements());
11009
11010  SDValue MaskNode = getConstVector(Mask, MaskVecVT, DAG, DL, true);
11011  if (isSingleInputShuffleMask(Mask))
11012    return DAG.getNode(X86ISD::VPERMV, DL, VT, MaskNode, V1);
11013
11014  return DAG.getNode(X86ISD::VPERMV3, DL, VT, V1, MaskNode, V2);
11015}
11016
11017/// \brief Handle lowering of 8-lane 64-bit floating point shuffles.
11018static SDValue lowerV8F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
11019                                       const X86Subtarget *Subtarget,
11020                                       SelectionDAG &DAG) {
11021  SDLoc DL(Op);
11022  assert(V1.getSimpleValueType() == MVT::v8f64 && "Bad operand type!");
11023  assert(V2.getSimpleValueType() == MVT::v8f64 && "Bad operand type!");
11024  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
11025  ArrayRef<int> Mask = SVOp->getMask();
11026  assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
11027
11028  if (SDValue Shuf128 =
11029          lowerV4X128VectorShuffle(DL, MVT::v8f64, Mask, V1, V2, DAG))
11030    return Shuf128;
11031
11032  if (SDValue Unpck =
11033          lowerVectorShuffleWithUNPCK(DL, MVT::v8f64, Mask, V1, V2, DAG))
11034    return Unpck;
11035
11036  return lowerVectorShuffleWithPERMV(DL, MVT::v8f64, Mask, V1, V2, DAG);
11037}
11038
11039/// \brief Handle lowering of 16-lane 32-bit floating point shuffles.
11040static SDValue lowerV16F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
11041                                        const X86Subtarget *Subtarget,
11042                                        SelectionDAG &DAG) {
11043  SDLoc DL(Op);
11044  assert(V1.getSimpleValueType() == MVT::v16f32 && "Bad operand type!");
11045  assert(V2.getSimpleValueType() == MVT::v16f32 && "Bad operand type!");
11046  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
11047  ArrayRef<int> Mask = SVOp->getMask();
11048  assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
11049
11050  if (SDValue Unpck =
11051          lowerVectorShuffleWithUNPCK(DL, MVT::v16f32, Mask, V1, V2, DAG))
11052    return Unpck;
11053
11054  return lowerVectorShuffleWithPERMV(DL, MVT::v16f32, Mask, V1, V2, DAG);
11055}
11056
11057/// \brief Handle lowering of 8-lane 64-bit integer shuffles.
11058static SDValue lowerV8I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
11059                                       const X86Subtarget *Subtarget,
11060                                       SelectionDAG &DAG) {
11061  SDLoc DL(Op);
11062  assert(V1.getSimpleValueType() == MVT::v8i64 && "Bad operand type!");
11063  assert(V2.getSimpleValueType() == MVT::v8i64 && "Bad operand type!");
11064  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
11065  ArrayRef<int> Mask = SVOp->getMask();
11066  assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
11067
11068  if (SDValue Shuf128 =
11069          lowerV4X128VectorShuffle(DL, MVT::v8i64, Mask, V1, V2, DAG))
11070    return Shuf128;
11071
11072  if (SDValue Unpck =
11073          lowerVectorShuffleWithUNPCK(DL, MVT::v8i64, Mask, V1, V2, DAG))
11074    return Unpck;
11075
11076  return lowerVectorShuffleWithPERMV(DL, MVT::v8i64, Mask, V1, V2, DAG);
11077}
11078
11079/// \brief Handle lowering of 16-lane 32-bit integer shuffles.
11080static SDValue lowerV16I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
11081                                        const X86Subtarget *Subtarget,
11082                                        SelectionDAG &DAG) {
11083  SDLoc DL(Op);
11084  assert(V1.getSimpleValueType() == MVT::v16i32 && "Bad operand type!");
11085  assert(V2.getSimpleValueType() == MVT::v16i32 && "Bad operand type!");
11086  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
11087  ArrayRef<int> Mask = SVOp->getMask();
11088  assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
11089
11090  if (SDValue Unpck =
11091          lowerVectorShuffleWithUNPCK(DL, MVT::v16i32, Mask, V1, V2, DAG))
11092    return Unpck;
11093
11094  return lowerVectorShuffleWithPERMV(DL, MVT::v16i32, Mask, V1, V2, DAG);
11095}
11096
11097/// \brief Handle lowering of 32-lane 16-bit integer shuffles.
11098static SDValue lowerV32I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
11099                                        const X86Subtarget *Subtarget,
11100                                        SelectionDAG &DAG) {
11101  SDLoc DL(Op);
11102  assert(V1.getSimpleValueType() == MVT::v32i16 && "Bad operand type!");
11103  assert(V2.getSimpleValueType() == MVT::v32i16 && "Bad operand type!");
11104  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
11105  ArrayRef<int> Mask = SVOp->getMask();
11106  assert(Mask.size() == 32 && "Unexpected mask size for v32 shuffle!");
11107  assert(Subtarget->hasBWI() && "We can only lower v32i16 with AVX-512-BWI!");
11108
11109  return lowerVectorShuffleWithPERMV(DL, MVT::v32i16, Mask, V1, V2, DAG);
11110}
11111
11112/// \brief Handle lowering of 64-lane 8-bit integer shuffles.
11113static SDValue lowerV64I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
11114                                       const X86Subtarget *Subtarget,
11115                                       SelectionDAG &DAG) {
11116  SDLoc DL(Op);
11117  assert(V1.getSimpleValueType() == MVT::v64i8 && "Bad operand type!");
11118  assert(V2.getSimpleValueType() == MVT::v64i8 && "Bad operand type!");
11119  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
11120  ArrayRef<int> Mask = SVOp->getMask();
11121  assert(Mask.size() == 64 && "Unexpected mask size for v64 shuffle!");
11122  assert(Subtarget->hasBWI() && "We can only lower v64i8 with AVX-512-BWI!");
11123
11124  // FIXME: Implement direct support for this type!
11125  return splitAndLowerVectorShuffle(DL, MVT::v64i8, V1, V2, Mask, DAG);
11126}
11127
11128/// \brief High-level routine to lower various 512-bit x86 vector shuffles.
11129///
11130/// This routine either breaks down the specific type of a 512-bit x86 vector
11131/// shuffle or splits it into two 256-bit shuffles and fuses the results back
11132/// together based on the available instructions.
11133static SDValue lower512BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2,
11134                                        MVT VT, const X86Subtarget *Subtarget,
11135                                        SelectionDAG &DAG) {
11136  SDLoc DL(Op);
11137  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
11138  ArrayRef<int> Mask = SVOp->getMask();
11139  assert(Subtarget->hasAVX512() &&
11140         "Cannot lower 512-bit vectors w/ basic ISA!");
11141
11142  // Check for being able to broadcast a single element.
11143  if (SDValue Broadcast =
11144          lowerVectorShuffleAsBroadcast(DL, VT, V1, Mask, Subtarget, DAG))
11145    return Broadcast;
11146
11147  // Dispatch to each element type for lowering. If we don't have supprot for
11148  // specific element type shuffles at 512 bits, immediately split them and
11149  // lower them. Each lowering routine of a given type is allowed to assume that
11150  // the requisite ISA extensions for that element type are available.
11151  switch (VT.SimpleTy) {
11152  case MVT::v8f64:
11153    return lowerV8F64VectorShuffle(Op, V1, V2, Subtarget, DAG);
11154  case MVT::v16f32:
11155    return lowerV16F32VectorShuffle(Op, V1, V2, Subtarget, DAG);
11156  case MVT::v8i64:
11157    return lowerV8I64VectorShuffle(Op, V1, V2, Subtarget, DAG);
11158  case MVT::v16i32:
11159    return lowerV16I32VectorShuffle(Op, V1, V2, Subtarget, DAG);
11160  case MVT::v32i16:
11161    if (Subtarget->hasBWI())
11162      return lowerV32I16VectorShuffle(Op, V1, V2, Subtarget, DAG);
11163    break;
11164  case MVT::v64i8:
11165    if (Subtarget->hasBWI())
11166      return lowerV64I8VectorShuffle(Op, V1, V2, Subtarget, DAG);
11167    break;
11168
11169  default:
11170    llvm_unreachable("Not a valid 512-bit x86 vector type!");
11171  }
11172
11173  // Otherwise fall back on splitting.
11174  return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG);
11175}
11176
11177// Lower vXi1 vector shuffles.
11178// There is no a dedicated instruction on AVX-512 that shuffles the masks.
11179// The only way to shuffle bits is to sign-extend the mask vector to SIMD
11180// vector, shuffle and then truncate it back.
11181static SDValue lower1BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2,
11182                                      MVT VT, const X86Subtarget *Subtarget,
11183                                      SelectionDAG &DAG) {
11184  SDLoc DL(Op);
11185  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
11186  ArrayRef<int> Mask = SVOp->getMask();
11187  assert(Subtarget->hasAVX512() &&
11188         "Cannot lower 512-bit vectors w/o basic ISA!");
11189  MVT ExtVT;
11190  switch (VT.SimpleTy) {
11191  default:
11192    llvm_unreachable("Expected a vector of i1 elements");
11193  case MVT::v2i1:
11194    ExtVT = MVT::v2i64;
11195    break;
11196  case MVT::v4i1:
11197    ExtVT = MVT::v4i32;
11198    break;
11199  case MVT::v8i1:
11200    ExtVT = MVT::v8i64; // Take 512-bit type, more shuffles on KNL
11201    break;
11202  case MVT::v16i1:
11203    ExtVT = MVT::v16i32;
11204    break;
11205  case MVT::v32i1:
11206    ExtVT = MVT::v32i16;
11207    break;
11208  case MVT::v64i1:
11209    ExtVT = MVT::v64i8;
11210    break;
11211  }
11212
11213  if (ISD::isBuildVectorAllZeros(V1.getNode()))
11214    V1 = getZeroVector(ExtVT, Subtarget, DAG, DL);
11215  else if (ISD::isBuildVectorAllOnes(V1.getNode()))
11216    V1 = getOnesVector(ExtVT, Subtarget, DAG, DL);
11217  else
11218    V1 = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, V1);
11219
11220  if (V2.isUndef())
11221    V2 = DAG.getUNDEF(ExtVT);
11222  else if (ISD::isBuildVectorAllZeros(V2.getNode()))
11223    V2 = getZeroVector(ExtVT, Subtarget, DAG, DL);
11224  else if (ISD::isBuildVectorAllOnes(V2.getNode()))
11225    V2 = getOnesVector(ExtVT, Subtarget, DAG, DL);
11226  else
11227    V2 = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, V2);
11228  return DAG.getNode(ISD::TRUNCATE, DL, VT,
11229                     DAG.getVectorShuffle(ExtVT, DL, V1, V2, Mask));
11230}
11231/// \brief Top-level lowering for x86 vector shuffles.
11232///
11233/// This handles decomposition, canonicalization, and lowering of all x86
11234/// vector shuffles. Most of the specific lowering strategies are encapsulated
11235/// above in helper routines. The canonicalization attempts to widen shuffles
11236/// to involve fewer lanes of wider elements, consolidate symmetric patterns
11237/// s.t. only one of the two inputs needs to be tested, etc.
11238static SDValue lowerVectorShuffle(SDValue Op, const X86Subtarget *Subtarget,
11239                                  SelectionDAG &DAG) {
11240  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
11241  ArrayRef<int> Mask = SVOp->getMask();
11242  SDValue V1 = Op.getOperand(0);
11243  SDValue V2 = Op.getOperand(1);
11244  MVT VT = Op.getSimpleValueType();
11245  int NumElements = VT.getVectorNumElements();
11246  SDLoc dl(Op);
11247  bool Is1BitVector = (VT.getVectorElementType() == MVT::i1);
11248
11249  assert((VT.getSizeInBits() != 64 || Is1BitVector) &&
11250         "Can't lower MMX shuffles");
11251
11252  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
11253  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
11254  if (V1IsUndef && V2IsUndef)
11255    return DAG.getUNDEF(VT);
11256
11257  // When we create a shuffle node we put the UNDEF node to second operand,
11258  // but in some cases the first operand may be transformed to UNDEF.
11259  // In this case we should just commute the node.
11260  if (V1IsUndef)
11261    return DAG.getCommutedVectorShuffle(*SVOp);
11262
11263  // Check for non-undef masks pointing at an undef vector and make the masks
11264  // undef as well. This makes it easier to match the shuffle based solely on
11265  // the mask.
11266  if (V2IsUndef)
11267    for (int M : Mask)
11268      if (M >= NumElements) {
11269        SmallVector<int, 8> NewMask(Mask.begin(), Mask.end());
11270        for (int &M : NewMask)
11271          if (M >= NumElements)
11272            M = -1;
11273        return DAG.getVectorShuffle(VT, dl, V1, V2, NewMask);
11274      }
11275
11276  // We actually see shuffles that are entirely re-arrangements of a set of
11277  // zero inputs. This mostly happens while decomposing complex shuffles into
11278  // simple ones. Directly lower these as a buildvector of zeros.
11279  SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
11280  if (Zeroable.all())
11281    return getZeroVector(VT, Subtarget, DAG, dl);
11282
11283  // Try to collapse shuffles into using a vector type with fewer elements but
11284  // wider element types. We cap this to not form integers or floating point
11285  // elements wider than 64 bits, but it might be interesting to form i128
11286  // integers to handle flipping the low and high halves of AVX 256-bit vectors.
11287  SmallVector<int, 16> WidenedMask;
11288  if (VT.getScalarSizeInBits() < 64 && !Is1BitVector &&
11289      canWidenShuffleElements(Mask, WidenedMask)) {
11290    MVT NewEltVT = VT.isFloatingPoint()
11291                       ? MVT::getFloatingPointVT(VT.getScalarSizeInBits() * 2)
11292                       : MVT::getIntegerVT(VT.getScalarSizeInBits() * 2);
11293    MVT NewVT = MVT::getVectorVT(NewEltVT, VT.getVectorNumElements() / 2);
11294    // Make sure that the new vector type is legal. For example, v2f64 isn't
11295    // legal on SSE1.
11296    if (DAG.getTargetLoweringInfo().isTypeLegal(NewVT)) {
11297      V1 = DAG.getBitcast(NewVT, V1);
11298      V2 = DAG.getBitcast(NewVT, V2);
11299      return DAG.getBitcast(
11300          VT, DAG.getVectorShuffle(NewVT, dl, V1, V2, WidenedMask));
11301    }
11302  }
11303
11304  int NumV1Elements = 0, NumUndefElements = 0, NumV2Elements = 0;
11305  for (int M : SVOp->getMask())
11306    if (M < 0)
11307      ++NumUndefElements;
11308    else if (M < NumElements)
11309      ++NumV1Elements;
11310    else
11311      ++NumV2Elements;
11312
11313  // Commute the shuffle as needed such that more elements come from V1 than
11314  // V2. This allows us to match the shuffle pattern strictly on how many
11315  // elements come from V1 without handling the symmetric cases.
11316  if (NumV2Elements > NumV1Elements)
11317    return DAG.getCommutedVectorShuffle(*SVOp);
11318
11319  // When the number of V1 and V2 elements are the same, try to minimize the
11320  // number of uses of V2 in the low half of the vector. When that is tied,
11321  // ensure that the sum of indices for V1 is equal to or lower than the sum
11322  // indices for V2. When those are equal, try to ensure that the number of odd
11323  // indices for V1 is lower than the number of odd indices for V2.
11324  if (NumV1Elements == NumV2Elements) {
11325    int LowV1Elements = 0, LowV2Elements = 0;
11326    for (int M : SVOp->getMask().slice(0, NumElements / 2))
11327      if (M >= NumElements)
11328        ++LowV2Elements;
11329      else if (M >= 0)
11330        ++LowV1Elements;
11331    if (LowV2Elements > LowV1Elements) {
11332      return DAG.getCommutedVectorShuffle(*SVOp);
11333    } else if (LowV2Elements == LowV1Elements) {
11334      int SumV1Indices = 0, SumV2Indices = 0;
11335      for (int i = 0, Size = SVOp->getMask().size(); i < Size; ++i)
11336        if (SVOp->getMask()[i] >= NumElements)
11337          SumV2Indices += i;
11338        else if (SVOp->getMask()[i] >= 0)
11339          SumV1Indices += i;
11340      if (SumV2Indices < SumV1Indices) {
11341        return DAG.getCommutedVectorShuffle(*SVOp);
11342      } else if (SumV2Indices == SumV1Indices) {
11343        int NumV1OddIndices = 0, NumV2OddIndices = 0;
11344        for (int i = 0, Size = SVOp->getMask().size(); i < Size; ++i)
11345          if (SVOp->getMask()[i] >= NumElements)
11346            NumV2OddIndices += i % 2;
11347          else if (SVOp->getMask()[i] >= 0)
11348            NumV1OddIndices += i % 2;
11349        if (NumV2OddIndices < NumV1OddIndices)
11350          return DAG.getCommutedVectorShuffle(*SVOp);
11351      }
11352    }
11353  }
11354
11355  // For each vector width, delegate to a specialized lowering routine.
11356  if (VT.is128BitVector())
11357    return lower128BitVectorShuffle(Op, V1, V2, VT, Subtarget, DAG);
11358
11359  if (VT.is256BitVector())
11360    return lower256BitVectorShuffle(Op, V1, V2, VT, Subtarget, DAG);
11361
11362  if (VT.is512BitVector())
11363    return lower512BitVectorShuffle(Op, V1, V2, VT, Subtarget, DAG);
11364
11365  if (Is1BitVector)
11366    return lower1BitVectorShuffle(Op, V1, V2, VT, Subtarget, DAG);
11367  llvm_unreachable("Unimplemented!");
11368}
11369
11370// This function assumes its argument is a BUILD_VECTOR of constants or
11371// undef SDNodes. i.e: ISD::isBuildVectorOfConstantSDNodes(BuildVector) is
11372// true.
11373static bool BUILD_VECTORtoBlendMask(BuildVectorSDNode *BuildVector,
11374                                    unsigned &MaskValue) {
11375  MaskValue = 0;
11376  unsigned NumElems = BuildVector->getNumOperands();
11377
11378  // There are 2 lanes if (NumElems > 8), and 1 lane otherwise.
11379  // We don't handle the >2 lanes case right now.
11380  unsigned NumLanes = (NumElems - 1) / 8 + 1;
11381  if (NumLanes > 2)
11382    return false;
11383
11384  unsigned NumElemsInLane = NumElems / NumLanes;
11385
11386  // Blend for v16i16 should be symmetric for the both lanes.
11387  for (unsigned i = 0; i < NumElemsInLane; ++i) {
11388    SDValue EltCond = BuildVector->getOperand(i);
11389    SDValue SndLaneEltCond =
11390        (NumLanes == 2) ? BuildVector->getOperand(i + NumElemsInLane) : EltCond;
11391
11392    int Lane1Cond = -1, Lane2Cond = -1;
11393    if (isa<ConstantSDNode>(EltCond))
11394      Lane1Cond = !isNullConstant(EltCond);
11395    if (isa<ConstantSDNode>(SndLaneEltCond))
11396      Lane2Cond = !isNullConstant(SndLaneEltCond);
11397
11398    unsigned LaneMask = 0;
11399    if (Lane1Cond == Lane2Cond || Lane2Cond < 0)
11400      // Lane1Cond != 0, means we want the first argument.
11401      // Lane1Cond == 0, means we want the second argument.
11402      // The encoding of this argument is 0 for the first argument, 1
11403      // for the second. Therefore, invert the condition.
11404      LaneMask = !Lane1Cond << i;
11405    else if (Lane1Cond < 0)
11406      LaneMask = !Lane2Cond << i;
11407    else
11408      return false;
11409
11410    MaskValue |= LaneMask;
11411    if (NumLanes == 2)
11412      MaskValue |= LaneMask << NumElemsInLane;
11413  }
11414  return true;
11415}
11416
11417/// \brief Try to lower a VSELECT instruction to a vector shuffle.
11418static SDValue lowerVSELECTtoVectorShuffle(SDValue Op,
11419                                           const X86Subtarget *Subtarget,
11420                                           SelectionDAG &DAG) {
11421  SDValue Cond = Op.getOperand(0);
11422  SDValue LHS = Op.getOperand(1);
11423  SDValue RHS = Op.getOperand(2);
11424  SDLoc dl(Op);
11425  MVT VT = Op.getSimpleValueType();
11426
11427  if (!ISD::isBuildVectorOfConstantSDNodes(Cond.getNode()))
11428    return SDValue();
11429  auto *CondBV = cast<BuildVectorSDNode>(Cond);
11430
11431  // Only non-legal VSELECTs reach this lowering, convert those into generic
11432  // shuffles and re-use the shuffle lowering path for blends.
11433  SmallVector<int, 32> Mask;
11434  for (int i = 0, Size = VT.getVectorNumElements(); i < Size; ++i) {
11435    SDValue CondElt = CondBV->getOperand(i);
11436    Mask.push_back(
11437        isa<ConstantSDNode>(CondElt) ? i + (isNullConstant(CondElt) ? Size : 0)
11438                                     : -1);
11439  }
11440  return DAG.getVectorShuffle(VT, dl, LHS, RHS, Mask);
11441}
11442
11443SDValue X86TargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
11444  // A vselect where all conditions and data are constants can be optimized into
11445  // a single vector load by SelectionDAGLegalize::ExpandBUILD_VECTOR().
11446  if (ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(0).getNode()) &&
11447      ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(1).getNode()) &&
11448      ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(2).getNode()))
11449    return SDValue();
11450
11451  // Try to lower this to a blend-style vector shuffle. This can handle all
11452  // constant condition cases.
11453  if (SDValue BlendOp = lowerVSELECTtoVectorShuffle(Op, Subtarget, DAG))
11454    return BlendOp;
11455
11456  // Variable blends are only legal from SSE4.1 onward.
11457  if (!Subtarget->hasSSE41())
11458    return SDValue();
11459
11460  // Only some types will be legal on some subtargets. If we can emit a legal
11461  // VSELECT-matching blend, return Op, and but if we need to expand, return
11462  // a null value.
11463  switch (Op.getSimpleValueType().SimpleTy) {
11464  default:
11465    // Most of the vector types have blends past SSE4.1.
11466    return Op;
11467
11468  case MVT::v32i8:
11469    // The byte blends for AVX vectors were introduced only in AVX2.
11470    if (Subtarget->hasAVX2())
11471      return Op;
11472
11473    return SDValue();
11474
11475  case MVT::v8i16:
11476  case MVT::v16i16:
11477    // AVX-512 BWI and VLX features support VSELECT with i16 elements.
11478    if (Subtarget->hasBWI() && Subtarget->hasVLX())
11479      return Op;
11480
11481    // FIXME: We should custom lower this by fixing the condition and using i8
11482    // blends.
11483    return SDValue();
11484  }
11485}
11486
11487static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
11488  MVT VT = Op.getSimpleValueType();
11489  SDLoc dl(Op);
11490
11491  if (!Op.getOperand(0).getSimpleValueType().is128BitVector())
11492    return SDValue();
11493
11494  if (VT.getSizeInBits() == 8) {
11495    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
11496                                  Op.getOperand(0), Op.getOperand(1));
11497    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
11498                                  DAG.getValueType(VT));
11499    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
11500  }
11501
11502  if (VT.getSizeInBits() == 16) {
11503    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
11504    if (isNullConstant(Op.getOperand(1)))
11505      return DAG.getNode(
11506          ISD::TRUNCATE, dl, MVT::i16,
11507          DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
11508                      DAG.getBitcast(MVT::v4i32, Op.getOperand(0)),
11509                      Op.getOperand(1)));
11510    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
11511                                  Op.getOperand(0), Op.getOperand(1));
11512    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
11513                                  DAG.getValueType(VT));
11514    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
11515  }
11516
11517  if (VT == MVT::f32) {
11518    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
11519    // the result back to FR32 register. It's only worth matching if the
11520    // result has a single use which is a store or a bitcast to i32.  And in
11521    // the case of a store, it's not worth it if the index is a constant 0,
11522    // because a MOVSSmr can be used instead, which is smaller and faster.
11523    if (!Op.hasOneUse())
11524      return SDValue();
11525    SDNode *User = *Op.getNode()->use_begin();
11526    if ((User->getOpcode() != ISD::STORE ||
11527         isNullConstant(Op.getOperand(1))) &&
11528        (User->getOpcode() != ISD::BITCAST ||
11529         User->getValueType(0) != MVT::i32))
11530      return SDValue();
11531    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
11532                                  DAG.getBitcast(MVT::v4i32, Op.getOperand(0)),
11533                                  Op.getOperand(1));
11534    return DAG.getBitcast(MVT::f32, Extract);
11535  }
11536
11537  if (VT == MVT::i32 || VT == MVT::i64) {
11538    // ExtractPS/pextrq works with constant index.
11539    if (isa<ConstantSDNode>(Op.getOperand(1)))
11540      return Op;
11541  }
11542  return SDValue();
11543}
11544
11545/// Extract one bit from mask vector, like v16i1 or v8i1.
11546/// AVX-512 feature.
11547SDValue
11548X86TargetLowering::ExtractBitFromMaskVector(SDValue Op, SelectionDAG &DAG) const {
11549  SDValue Vec = Op.getOperand(0);
11550  SDLoc dl(Vec);
11551  MVT VecVT = Vec.getSimpleValueType();
11552  SDValue Idx = Op.getOperand(1);
11553  MVT EltVT = Op.getSimpleValueType();
11554
11555  assert((EltVT == MVT::i1) && "Unexpected operands in ExtractBitFromMaskVector");
11556  assert((VecVT.getVectorNumElements() <= 16 || Subtarget->hasBWI()) &&
11557         "Unexpected vector type in ExtractBitFromMaskVector");
11558
11559  // variable index can't be handled in mask registers,
11560  // extend vector to VR512
11561  if (!isa<ConstantSDNode>(Idx)) {
11562    MVT ExtVT = (VecVT == MVT::v8i1 ?  MVT::v8i64 : MVT::v16i32);
11563    SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVT, Vec);
11564    SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
11565                              ExtVT.getVectorElementType(), Ext, Idx);
11566    return DAG.getNode(ISD::TRUNCATE, dl, EltVT, Elt);
11567  }
11568
11569  unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
11570  const TargetRegisterClass* rc = getRegClassFor(VecVT);
11571  if (!Subtarget->hasDQI() && (VecVT.getVectorNumElements() <= 8))
11572    rc = getRegClassFor(MVT::v16i1);
11573  unsigned MaxSift = rc->getSize()*8 - 1;
11574  Vec = DAG.getNode(X86ISD::VSHLI, dl, VecVT, Vec,
11575                    DAG.getConstant(MaxSift - IdxVal, dl, MVT::i8));
11576  Vec = DAG.getNode(X86ISD::VSRLI, dl, VecVT, Vec,
11577                    DAG.getConstant(MaxSift, dl, MVT::i8));
11578  return DAG.getNode(X86ISD::VEXTRACT, dl, MVT::i1, Vec,
11579                       DAG.getIntPtrConstant(0, dl));
11580}
11581
11582SDValue
11583X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
11584                                           SelectionDAG &DAG) const {
11585  SDLoc dl(Op);
11586  SDValue Vec = Op.getOperand(0);
11587  MVT VecVT = Vec.getSimpleValueType();
11588  SDValue Idx = Op.getOperand(1);
11589
11590  if (Op.getSimpleValueType() == MVT::i1)
11591    return ExtractBitFromMaskVector(Op, DAG);
11592
11593  if (!isa<ConstantSDNode>(Idx)) {
11594    if (VecVT.is512BitVector() ||
11595        (VecVT.is256BitVector() && Subtarget->hasInt256() &&
11596         VecVT.getVectorElementType().getSizeInBits() == 32)) {
11597
11598      MVT MaskEltVT =
11599        MVT::getIntegerVT(VecVT.getVectorElementType().getSizeInBits());
11600      MVT MaskVT = MVT::getVectorVT(MaskEltVT, VecVT.getSizeInBits() /
11601                                    MaskEltVT.getSizeInBits());
11602
11603      Idx = DAG.getZExtOrTrunc(Idx, dl, MaskEltVT);
11604      auto PtrVT = getPointerTy(DAG.getDataLayout());
11605      SDValue Mask = DAG.getNode(X86ISD::VINSERT, dl, MaskVT,
11606                                 getZeroVector(MaskVT, Subtarget, DAG, dl), Idx,
11607                                 DAG.getConstant(0, dl, PtrVT));
11608      SDValue Perm = DAG.getNode(X86ISD::VPERMV, dl, VecVT, Mask, Vec);
11609      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Perm,
11610                         DAG.getConstant(0, dl, PtrVT));
11611    }
11612    return SDValue();
11613  }
11614
11615  // If this is a 256-bit vector result, first extract the 128-bit vector and
11616  // then extract the element from the 128-bit vector.
11617  if (VecVT.is256BitVector() || VecVT.is512BitVector()) {
11618
11619    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
11620    // Get the 128-bit vector.
11621    Vec = Extract128BitVector(Vec, IdxVal, DAG, dl);
11622    MVT EltVT = VecVT.getVectorElementType();
11623
11624    unsigned ElemsPerChunk = 128 / EltVT.getSizeInBits();
11625    assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2");
11626
11627    // Find IdxVal modulo ElemsPerChunk. Since ElemsPerChunk is a power of 2
11628    // this can be done with a mask.
11629    IdxVal &= ElemsPerChunk - 1;
11630    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
11631                       DAG.getConstant(IdxVal, dl, MVT::i32));
11632  }
11633
11634  assert(VecVT.is128BitVector() && "Unexpected vector length");
11635
11636  if (Subtarget->hasSSE41())
11637    if (SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG))
11638      return Res;
11639
11640  MVT VT = Op.getSimpleValueType();
11641  // TODO: handle v16i8.
11642  if (VT.getSizeInBits() == 16) {
11643    SDValue Vec = Op.getOperand(0);
11644    if (isNullConstant(Op.getOperand(1)))
11645      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
11646                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
11647                                     DAG.getBitcast(MVT::v4i32, Vec),
11648                                     Op.getOperand(1)));
11649    // Transform it so it match pextrw which produces a 32-bit result.
11650    MVT EltVT = MVT::i32;
11651    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
11652                                  Op.getOperand(0), Op.getOperand(1));
11653    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
11654                                  DAG.getValueType(VT));
11655    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
11656  }
11657
11658  if (VT.getSizeInBits() == 32) {
11659    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
11660    if (Idx == 0)
11661      return Op;
11662
11663    // SHUFPS the element to the lowest double word, then movss.
11664    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
11665    MVT VVT = Op.getOperand(0).getSimpleValueType();
11666    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
11667                                       DAG.getUNDEF(VVT), Mask);
11668    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
11669                       DAG.getIntPtrConstant(0, dl));
11670  }
11671
11672  if (VT.getSizeInBits() == 64) {
11673    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
11674    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
11675    //        to match extract_elt for f64.
11676    if (isNullConstant(Op.getOperand(1)))
11677      return Op;
11678
11679    // UNPCKHPD the element to the lowest double word, then movsd.
11680    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
11681    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
11682    int Mask[2] = { 1, -1 };
11683    MVT VVT = Op.getOperand(0).getSimpleValueType();
11684    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
11685                                       DAG.getUNDEF(VVT), Mask);
11686    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
11687                       DAG.getIntPtrConstant(0, dl));
11688  }
11689
11690  return SDValue();
11691}
11692
11693/// Insert one bit to mask vector, like v16i1 or v8i1.
11694/// AVX-512 feature.
11695SDValue
11696X86TargetLowering::InsertBitToMaskVector(SDValue Op, SelectionDAG &DAG) const {
11697  SDLoc dl(Op);
11698  SDValue Vec = Op.getOperand(0);
11699  SDValue Elt = Op.getOperand(1);
11700  SDValue Idx = Op.getOperand(2);
11701  MVT VecVT = Vec.getSimpleValueType();
11702
11703  if (!isa<ConstantSDNode>(Idx)) {
11704    // Non constant index. Extend source and destination,
11705    // insert element and then truncate the result.
11706    MVT ExtVecVT = (VecVT == MVT::v8i1 ?  MVT::v8i64 : MVT::v16i32);
11707    MVT ExtEltVT = (VecVT == MVT::v8i1 ?  MVT::i64 : MVT::i32);
11708    SDValue ExtOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ExtVecVT,
11709      DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVecVT, Vec),
11710      DAG.getNode(ISD::ZERO_EXTEND, dl, ExtEltVT, Elt), Idx);
11711    return DAG.getNode(ISD::TRUNCATE, dl, VecVT, ExtOp);
11712  }
11713
11714  unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
11715  SDValue EltInVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Elt);
11716  if (IdxVal)
11717    EltInVec = DAG.getNode(X86ISD::VSHLI, dl, VecVT, EltInVec,
11718                           DAG.getConstant(IdxVal, dl, MVT::i8));
11719  if (Vec.getOpcode() == ISD::UNDEF)
11720    return EltInVec;
11721  return DAG.getNode(ISD::OR, dl, VecVT, Vec, EltInVec);
11722}
11723
11724SDValue X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
11725                                                  SelectionDAG &DAG) const {
11726  MVT VT = Op.getSimpleValueType();
11727  MVT EltVT = VT.getVectorElementType();
11728
11729  if (EltVT == MVT::i1)
11730    return InsertBitToMaskVector(Op, DAG);
11731
11732  SDLoc dl(Op);
11733  SDValue N0 = Op.getOperand(0);
11734  SDValue N1 = Op.getOperand(1);
11735  SDValue N2 = Op.getOperand(2);
11736  if (!isa<ConstantSDNode>(N2))
11737    return SDValue();
11738  auto *N2C = cast<ConstantSDNode>(N2);
11739  unsigned IdxVal = N2C->getZExtValue();
11740
11741  // If the vector is wider than 128 bits, extract the 128-bit subvector, insert
11742  // into that, and then insert the subvector back into the result.
11743  if (VT.is256BitVector() || VT.is512BitVector()) {
11744    // With a 256-bit vector, we can insert into the zero element efficiently
11745    // using a blend if we have AVX or AVX2 and the right data type.
11746    if (VT.is256BitVector() && IdxVal == 0) {
11747      // TODO: It is worthwhile to cast integer to floating point and back
11748      // and incur a domain crossing penalty if that's what we'll end up
11749      // doing anyway after extracting to a 128-bit vector.
11750      if ((Subtarget->hasAVX() && (EltVT == MVT::f64 || EltVT == MVT::f32)) ||
11751          (Subtarget->hasAVX2() && EltVT == MVT::i32)) {
11752        SDValue N1Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, N1);
11753        N2 = DAG.getIntPtrConstant(1, dl);
11754        return DAG.getNode(X86ISD::BLENDI, dl, VT, N0, N1Vec, N2);
11755      }
11756    }
11757
11758    // Get the desired 128-bit vector chunk.
11759    SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
11760
11761    // Insert the element into the desired chunk.
11762    unsigned NumEltsIn128 = 128 / EltVT.getSizeInBits();
11763    assert(isPowerOf2_32(NumEltsIn128));
11764    // Since NumEltsIn128 is a power of 2 we can use mask instead of modulo.
11765    unsigned IdxIn128 = IdxVal & (NumEltsIn128 - 1);
11766
11767    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
11768                    DAG.getConstant(IdxIn128, dl, MVT::i32));
11769
11770    // Insert the changed part back into the bigger vector
11771    return Insert128BitVector(N0, V, IdxVal, DAG, dl);
11772  }
11773  assert(VT.is128BitVector() && "Only 128-bit vector types should be left!");
11774
11775  if (Subtarget->hasSSE41()) {
11776    if (EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) {
11777      unsigned Opc;
11778      if (VT == MVT::v8i16) {
11779        Opc = X86ISD::PINSRW;
11780      } else {
11781        assert(VT == MVT::v16i8);
11782        Opc = X86ISD::PINSRB;
11783      }
11784
11785      // Transform it so it match pinsr{b,w} which expects a GR32 as its second
11786      // argument.
11787      if (N1.getValueType() != MVT::i32)
11788        N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
11789      if (N2.getValueType() != MVT::i32)
11790        N2 = DAG.getIntPtrConstant(IdxVal, dl);
11791      return DAG.getNode(Opc, dl, VT, N0, N1, N2);
11792    }
11793
11794    if (EltVT == MVT::f32) {
11795      // Bits [7:6] of the constant are the source select. This will always be
11796      //   zero here. The DAG Combiner may combine an extract_elt index into
11797      //   these bits. For example (insert (extract, 3), 2) could be matched by
11798      //   putting the '3' into bits [7:6] of X86ISD::INSERTPS.
11799      // Bits [5:4] of the constant are the destination select. This is the
11800      //   value of the incoming immediate.
11801      // Bits [3:0] of the constant are the zero mask. The DAG Combiner may
11802      //   combine either bitwise AND or insert of float 0.0 to set these bits.
11803
11804      bool MinSize = DAG.getMachineFunction().getFunction()->optForMinSize();
11805      if (IdxVal == 0 && (!MinSize || !MayFoldLoad(N1))) {
11806        // If this is an insertion of 32-bits into the low 32-bits of
11807        // a vector, we prefer to generate a blend with immediate rather
11808        // than an insertps. Blends are simpler operations in hardware and so
11809        // will always have equal or better performance than insertps.
11810        // But if optimizing for size and there's a load folding opportunity,
11811        // generate insertps because blendps does not have a 32-bit memory
11812        // operand form.
11813        N2 = DAG.getIntPtrConstant(1, dl);
11814        N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
11815        return DAG.getNode(X86ISD::BLENDI, dl, VT, N0, N1, N2);
11816      }
11817      N2 = DAG.getIntPtrConstant(IdxVal << 4, dl);
11818      // Create this as a scalar to vector..
11819      N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
11820      return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
11821    }
11822
11823    if (EltVT == MVT::i32 || EltVT == MVT::i64) {
11824      // PINSR* works with constant index.
11825      return Op;
11826    }
11827  }
11828
11829  if (EltVT == MVT::i8)
11830    return SDValue();
11831
11832  if (EltVT.getSizeInBits() == 16) {
11833    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
11834    // as its second argument.
11835    if (N1.getValueType() != MVT::i32)
11836      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
11837    if (N2.getValueType() != MVT::i32)
11838      N2 = DAG.getIntPtrConstant(IdxVal, dl);
11839    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
11840  }
11841  return SDValue();
11842}
11843
11844static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
11845  SDLoc dl(Op);
11846  MVT OpVT = Op.getSimpleValueType();
11847
11848  // If this is a 256-bit vector result, first insert into a 128-bit
11849  // vector and then insert into the 256-bit vector.
11850  if (!OpVT.is128BitVector()) {
11851    // Insert into a 128-bit vector.
11852    unsigned SizeFactor = OpVT.getSizeInBits()/128;
11853    MVT VT128 = MVT::getVectorVT(OpVT.getVectorElementType(),
11854                                 OpVT.getVectorNumElements() / SizeFactor);
11855
11856    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
11857
11858    // Insert the 128-bit vector.
11859    return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
11860  }
11861
11862  if (OpVT == MVT::v1i64 &&
11863      Op.getOperand(0).getValueType() == MVT::i64)
11864    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
11865
11866  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
11867  assert(OpVT.is128BitVector() && "Expected an SSE type!");
11868  return DAG.getBitcast(
11869      OpVT, DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, AnyExt));
11870}
11871
11872// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
11873// a simple subregister reference or explicit instructions to grab
11874// upper bits of a vector.
11875static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
11876                                      SelectionDAG &DAG) {
11877  SDLoc dl(Op);
11878  SDValue In =  Op.getOperand(0);
11879  SDValue Idx = Op.getOperand(1);
11880  unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
11881  MVT ResVT   = Op.getSimpleValueType();
11882  MVT InVT    = In.getSimpleValueType();
11883
11884  if (Subtarget->hasFp256()) {
11885    if (ResVT.is128BitVector() &&
11886        (InVT.is256BitVector() || InVT.is512BitVector()) &&
11887        isa<ConstantSDNode>(Idx)) {
11888      return Extract128BitVector(In, IdxVal, DAG, dl);
11889    }
11890    if (ResVT.is256BitVector() && InVT.is512BitVector() &&
11891        isa<ConstantSDNode>(Idx)) {
11892      return Extract256BitVector(In, IdxVal, DAG, dl);
11893    }
11894  }
11895  return SDValue();
11896}
11897
11898// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
11899// simple superregister reference or explicit instructions to insert
11900// the upper bits of a vector.
11901static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
11902                                     SelectionDAG &DAG) {
11903  if (!Subtarget->hasAVX())
11904    return SDValue();
11905
11906  SDLoc dl(Op);
11907  SDValue Vec = Op.getOperand(0);
11908  SDValue SubVec = Op.getOperand(1);
11909  SDValue Idx = Op.getOperand(2);
11910
11911  if (!isa<ConstantSDNode>(Idx))
11912    return SDValue();
11913
11914  unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
11915  MVT OpVT = Op.getSimpleValueType();
11916  MVT SubVecVT = SubVec.getSimpleValueType();
11917
11918  // Fold two 16-byte subvector loads into one 32-byte load:
11919  // (insert_subvector (insert_subvector undef, (load addr), 0),
11920  //                   (load addr + 16), Elts/2)
11921  // --> load32 addr
11922  if ((IdxVal == OpVT.getVectorNumElements() / 2) &&
11923      Vec.getOpcode() == ISD::INSERT_SUBVECTOR &&
11924      OpVT.is256BitVector() && SubVecVT.is128BitVector()) {
11925    auto *Idx2 = dyn_cast<ConstantSDNode>(Vec.getOperand(2));
11926    if (Idx2 && Idx2->getZExtValue() == 0) {
11927      SDValue SubVec2 = Vec.getOperand(1);
11928      // If needed, look through a bitcast to get to the load.
11929      if (SubVec2.getNode() && SubVec2.getOpcode() == ISD::BITCAST)
11930        SubVec2 = SubVec2.getOperand(0);
11931
11932      if (auto *FirstLd = dyn_cast<LoadSDNode>(SubVec2)) {
11933        bool Fast;
11934        unsigned Alignment = FirstLd->getAlignment();
11935        unsigned AS = FirstLd->getAddressSpace();
11936        const X86TargetLowering *TLI = Subtarget->getTargetLowering();
11937        if (TLI->allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(),
11938                                    OpVT, AS, Alignment, &Fast) && Fast) {
11939          SDValue Ops[] = { SubVec2, SubVec };
11940          if (SDValue Ld = EltsFromConsecutiveLoads(OpVT, Ops, dl, DAG, false))
11941            return Ld;
11942        }
11943      }
11944    }
11945  }
11946
11947  if ((OpVT.is256BitVector() || OpVT.is512BitVector()) &&
11948      SubVecVT.is128BitVector())
11949    return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
11950
11951  if (OpVT.is512BitVector() && SubVecVT.is256BitVector())
11952    return Insert256BitVector(Vec, SubVec, IdxVal, DAG, dl);
11953
11954  if (OpVT.getVectorElementType() == MVT::i1)
11955    return Insert1BitVector(Op, DAG);
11956
11957  return SDValue();
11958}
11959
11960// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
11961// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
11962// one of the above mentioned nodes. It has to be wrapped because otherwise
11963// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
11964// be used to form addressing mode. These wrapped nodes will be selected
11965// into MOV32ri.
11966SDValue
11967X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
11968  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
11969
11970  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
11971  // global base reg.
11972  unsigned char OpFlag = 0;
11973  unsigned WrapperKind = X86ISD::Wrapper;
11974  CodeModel::Model M = DAG.getTarget().getCodeModel();
11975
11976  if (Subtarget->isPICStyleRIPRel() &&
11977      (M == CodeModel::Small || M == CodeModel::Kernel))
11978    WrapperKind = X86ISD::WrapperRIP;
11979  else if (Subtarget->isPICStyleGOT())
11980    OpFlag = X86II::MO_GOTOFF;
11981  else if (Subtarget->isPICStyleStubPIC())
11982    OpFlag = X86II::MO_PIC_BASE_OFFSET;
11983
11984  auto PtrVT = getPointerTy(DAG.getDataLayout());
11985  SDValue Result = DAG.getTargetConstantPool(
11986      CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(), OpFlag);
11987  SDLoc DL(CP);
11988  Result = DAG.getNode(WrapperKind, DL, PtrVT, Result);
11989  // With PIC, the address is actually $g + Offset.
11990  if (OpFlag) {
11991    Result =
11992        DAG.getNode(ISD::ADD, DL, PtrVT,
11993                    DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), Result);
11994  }
11995
11996  return Result;
11997}
11998
11999SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
12000  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
12001
12002  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
12003  // global base reg.
12004  unsigned char OpFlag = 0;
12005  unsigned WrapperKind = X86ISD::Wrapper;
12006  CodeModel::Model M = DAG.getTarget().getCodeModel();
12007
12008  if (Subtarget->isPICStyleRIPRel() &&
12009      (M == CodeModel::Small || M == CodeModel::Kernel))
12010    WrapperKind = X86ISD::WrapperRIP;
12011  else if (Subtarget->isPICStyleGOT())
12012    OpFlag = X86II::MO_GOTOFF;
12013  else if (Subtarget->isPICStyleStubPIC())
12014    OpFlag = X86II::MO_PIC_BASE_OFFSET;
12015
12016  auto PtrVT = getPointerTy(DAG.getDataLayout());
12017  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, OpFlag);
12018  SDLoc DL(JT);
12019  Result = DAG.getNode(WrapperKind, DL, PtrVT, Result);
12020
12021  // With PIC, the address is actually $g + Offset.
12022  if (OpFlag)
12023    Result =
12024        DAG.getNode(ISD::ADD, DL, PtrVT,
12025                    DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), Result);
12026
12027  return Result;
12028}
12029
12030SDValue
12031X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
12032  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
12033
12034  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
12035  // global base reg.
12036  unsigned char OpFlag = 0;
12037  unsigned WrapperKind = X86ISD::Wrapper;
12038  CodeModel::Model M = DAG.getTarget().getCodeModel();
12039
12040  if (Subtarget->isPICStyleRIPRel() &&
12041      (M == CodeModel::Small || M == CodeModel::Kernel)) {
12042    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
12043      OpFlag = X86II::MO_GOTPCREL;
12044    WrapperKind = X86ISD::WrapperRIP;
12045  } else if (Subtarget->isPICStyleGOT()) {
12046    OpFlag = X86II::MO_GOT;
12047  } else if (Subtarget->isPICStyleStubPIC()) {
12048    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
12049  } else if (Subtarget->isPICStyleStubNoDynamic()) {
12050    OpFlag = X86II::MO_DARWIN_NONLAZY;
12051  }
12052
12053  auto PtrVT = getPointerTy(DAG.getDataLayout());
12054  SDValue Result = DAG.getTargetExternalSymbol(Sym, PtrVT, OpFlag);
12055
12056  SDLoc DL(Op);
12057  Result = DAG.getNode(WrapperKind, DL, PtrVT, Result);
12058
12059  // With PIC, the address is actually $g + Offset.
12060  if (DAG.getTarget().getRelocationModel() == Reloc::PIC_ &&
12061      !Subtarget->is64Bit()) {
12062    Result =
12063        DAG.getNode(ISD::ADD, DL, PtrVT,
12064                    DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), Result);
12065  }
12066
12067  // For symbols that require a load from a stub to get the address, emit the
12068  // load.
12069  if (isGlobalStubReference(OpFlag))
12070    Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
12071                         MachinePointerInfo::getGOT(DAG.getMachineFunction()),
12072                         false, false, false, 0);
12073
12074  return Result;
12075}
12076
12077SDValue
12078X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
12079  // Create the TargetBlockAddressAddress node.
12080  unsigned char OpFlags =
12081    Subtarget->ClassifyBlockAddressReference();
12082  CodeModel::Model M = DAG.getTarget().getCodeModel();
12083  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
12084  int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset();
12085  SDLoc dl(Op);
12086  auto PtrVT = getPointerTy(DAG.getDataLayout());
12087  SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset, OpFlags);
12088
12089  if (Subtarget->isPICStyleRIPRel() &&
12090      (M == CodeModel::Small || M == CodeModel::Kernel))
12091    Result = DAG.getNode(X86ISD::WrapperRIP, dl, PtrVT, Result);
12092  else
12093    Result = DAG.getNode(X86ISD::Wrapper, dl, PtrVT, Result);
12094
12095  // With PIC, the address is actually $g + Offset.
12096  if (isGlobalRelativeToPICBase(OpFlags)) {
12097    Result = DAG.getNode(ISD::ADD, dl, PtrVT,
12098                         DAG.getNode(X86ISD::GlobalBaseReg, dl, PtrVT), Result);
12099  }
12100
12101  return Result;
12102}
12103
12104SDValue
12105X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, SDLoc dl,
12106                                      int64_t Offset, SelectionDAG &DAG) const {
12107  // Create the TargetGlobalAddress node, folding in the constant
12108  // offset if it is legal.
12109  unsigned char OpFlags =
12110      Subtarget->ClassifyGlobalReference(GV, DAG.getTarget());
12111  CodeModel::Model M = DAG.getTarget().getCodeModel();
12112  auto PtrVT = getPointerTy(DAG.getDataLayout());
12113  SDValue Result;
12114  if (OpFlags == X86II::MO_NO_FLAG &&
12115      X86::isOffsetSuitableForCodeModel(Offset, M)) {
12116    // A direct static reference to a global.
12117    Result = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset);
12118    Offset = 0;
12119  } else {
12120    Result = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, OpFlags);
12121  }
12122
12123  if (Subtarget->isPICStyleRIPRel() &&
12124      (M == CodeModel::Small || M == CodeModel::Kernel))
12125    Result = DAG.getNode(X86ISD::WrapperRIP, dl, PtrVT, Result);
12126  else
12127    Result = DAG.getNode(X86ISD::Wrapper, dl, PtrVT, Result);
12128
12129  // With PIC, the address is actually $g + Offset.
12130  if (isGlobalRelativeToPICBase(OpFlags)) {
12131    Result = DAG.getNode(ISD::ADD, dl, PtrVT,
12132                         DAG.getNode(X86ISD::GlobalBaseReg, dl, PtrVT), Result);
12133  }
12134
12135  // For globals that require a load from a stub to get the address, emit the
12136  // load.
12137  if (isGlobalStubReference(OpFlags))
12138    Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
12139                         MachinePointerInfo::getGOT(DAG.getMachineFunction()),
12140                         false, false, false, 0);
12141
12142  // If there was a non-zero offset that we didn't fold, create an explicit
12143  // addition for it.
12144  if (Offset != 0)
12145    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result,
12146                         DAG.getConstant(Offset, dl, PtrVT));
12147
12148  return Result;
12149}
12150
12151SDValue
12152X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
12153  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
12154  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
12155  return LowerGlobalAddress(GV, SDLoc(Op), Offset, DAG);
12156}
12157
12158static SDValue
12159GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
12160           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
12161           unsigned char OperandFlags, bool LocalDynamic = false) {
12162  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
12163  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
12164  SDLoc dl(GA);
12165  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
12166                                           GA->getValueType(0),
12167                                           GA->getOffset(),
12168                                           OperandFlags);
12169
12170  X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
12171                                           : X86ISD::TLSADDR;
12172
12173  if (InFlag) {
12174    SDValue Ops[] = { Chain,  TGA, *InFlag };
12175    Chain = DAG.getNode(CallType, dl, NodeTys, Ops);
12176  } else {
12177    SDValue Ops[]  = { Chain, TGA };
12178    Chain = DAG.getNode(CallType, dl, NodeTys, Ops);
12179  }
12180
12181  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
12182  MFI->setAdjustsStack(true);
12183  MFI->setHasCalls(true);
12184
12185  SDValue Flag = Chain.getValue(1);
12186  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
12187}
12188
12189// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
12190static SDValue
12191LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
12192                                const EVT PtrVT) {
12193  SDValue InFlag;
12194  SDLoc dl(GA);  // ? function entry point might be better
12195  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
12196                                   DAG.getNode(X86ISD::GlobalBaseReg,
12197                                               SDLoc(), PtrVT), InFlag);
12198  InFlag = Chain.getValue(1);
12199
12200  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
12201}
12202
12203// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
12204static SDValue
12205LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
12206                                const EVT PtrVT) {
12207  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, nullptr, PtrVT,
12208                    X86::RAX, X86II::MO_TLSGD);
12209}
12210
12211static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
12212                                           SelectionDAG &DAG,
12213                                           const EVT PtrVT,
12214                                           bool is64Bit) {
12215  SDLoc dl(GA);
12216
12217  // Get the start address of the TLS block for this module.
12218  X86MachineFunctionInfo* MFI = DAG.getMachineFunction()
12219      .getInfo<X86MachineFunctionInfo>();
12220  MFI->incNumLocalDynamicTLSAccesses();
12221
12222  SDValue Base;
12223  if (is64Bit) {
12224    Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, nullptr, PtrVT, X86::RAX,
12225                      X86II::MO_TLSLD, /*LocalDynamic=*/true);
12226  } else {
12227    SDValue InFlag;
12228    SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
12229        DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), InFlag);
12230    InFlag = Chain.getValue(1);
12231    Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
12232                      X86II::MO_TLSLDM, /*LocalDynamic=*/true);
12233  }
12234
12235  // Note: the CleanupLocalDynamicTLSPass will remove redundant computations
12236  // of Base.
12237
12238  // Build x@dtpoff.
12239  unsigned char OperandFlags = X86II::MO_DTPOFF;
12240  unsigned WrapperKind = X86ISD::Wrapper;
12241  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
12242                                           GA->getValueType(0),
12243                                           GA->getOffset(), OperandFlags);
12244  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
12245
12246  // Add x@dtpoff with the base.
12247  return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
12248}
12249
12250// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
12251static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
12252                                   const EVT PtrVT, TLSModel::Model model,
12253                                   bool is64Bit, bool isPIC) {
12254  SDLoc dl(GA);
12255
12256  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
12257  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
12258                                                         is64Bit ? 257 : 256));
12259
12260  SDValue ThreadPointer =
12261      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), DAG.getIntPtrConstant(0, dl),
12262                  MachinePointerInfo(Ptr), false, false, false, 0);
12263
12264  unsigned char OperandFlags = 0;
12265  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
12266  // initialexec.
12267  unsigned WrapperKind = X86ISD::Wrapper;
12268  if (model == TLSModel::LocalExec) {
12269    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
12270  } else if (model == TLSModel::InitialExec) {
12271    if (is64Bit) {
12272      OperandFlags = X86II::MO_GOTTPOFF;
12273      WrapperKind = X86ISD::WrapperRIP;
12274    } else {
12275      OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
12276    }
12277  } else {
12278    llvm_unreachable("Unexpected model");
12279  }
12280
12281  // emit "addl x@ntpoff,%eax" (local exec)
12282  // or "addl x@indntpoff,%eax" (initial exec)
12283  // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
12284  SDValue TGA =
12285      DAG.getTargetGlobalAddress(GA->getGlobal(), dl, GA->getValueType(0),
12286                                 GA->getOffset(), OperandFlags);
12287  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
12288
12289  if (model == TLSModel::InitialExec) {
12290    if (isPIC && !is64Bit) {
12291      Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
12292                           DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT),
12293                           Offset);
12294    }
12295
12296    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
12297                         MachinePointerInfo::getGOT(DAG.getMachineFunction()),
12298                         false, false, false, 0);
12299  }
12300
12301  // The address of the thread local variable is the add of the thread
12302  // pointer with the offset of the variable.
12303  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
12304}
12305
12306SDValue
12307X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
12308
12309  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
12310
12311  // Cygwin uses emutls.
12312  // FIXME: It may be EmulatedTLS-generic also for X86-Android.
12313  if (Subtarget->isTargetWindowsCygwin())
12314    return LowerToTLSEmulatedModel(GA, DAG);
12315
12316  const GlobalValue *GV = GA->getGlobal();
12317  auto PtrVT = getPointerTy(DAG.getDataLayout());
12318
12319  if (Subtarget->isTargetELF()) {
12320    if (DAG.getTarget().Options.EmulatedTLS)
12321      return LowerToTLSEmulatedModel(GA, DAG);
12322    TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
12323    switch (model) {
12324      case TLSModel::GeneralDynamic:
12325        if (Subtarget->is64Bit())
12326          return LowerToTLSGeneralDynamicModel64(GA, DAG, PtrVT);
12327        return LowerToTLSGeneralDynamicModel32(GA, DAG, PtrVT);
12328      case TLSModel::LocalDynamic:
12329        return LowerToTLSLocalDynamicModel(GA, DAG, PtrVT,
12330                                           Subtarget->is64Bit());
12331      case TLSModel::InitialExec:
12332      case TLSModel::LocalExec:
12333        return LowerToTLSExecModel(GA, DAG, PtrVT, model, Subtarget->is64Bit(),
12334                                   DAG.getTarget().getRelocationModel() ==
12335                                       Reloc::PIC_);
12336    }
12337    llvm_unreachable("Unknown TLS model.");
12338  }
12339
12340  if (Subtarget->isTargetDarwin()) {
12341    // Darwin only has one model of TLS.  Lower to that.
12342    unsigned char OpFlag = 0;
12343    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
12344                           X86ISD::WrapperRIP : X86ISD::Wrapper;
12345
12346    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
12347    // global base reg.
12348    bool PIC32 = (DAG.getTarget().getRelocationModel() == Reloc::PIC_) &&
12349                 !Subtarget->is64Bit();
12350    if (PIC32)
12351      OpFlag = X86II::MO_TLVP_PIC_BASE;
12352    else
12353      OpFlag = X86II::MO_TLVP;
12354    SDLoc DL(Op);
12355    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
12356                                                GA->getValueType(0),
12357                                                GA->getOffset(), OpFlag);
12358    SDValue Offset = DAG.getNode(WrapperKind, DL, PtrVT, Result);
12359
12360    // With PIC32, the address is actually $g + Offset.
12361    if (PIC32)
12362      Offset = DAG.getNode(ISD::ADD, DL, PtrVT,
12363                           DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT),
12364                           Offset);
12365
12366    // Lowering the machine isd will make sure everything is in the right
12367    // location.
12368    SDValue Chain = DAG.getEntryNode();
12369    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
12370    SDValue Args[] = { Chain, Offset };
12371    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args);
12372
12373    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
12374    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
12375    MFI->setAdjustsStack(true);
12376
12377    // And our return value (tls address) is in the standard call return value
12378    // location.
12379    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
12380    return DAG.getCopyFromReg(Chain, DL, Reg, PtrVT, Chain.getValue(1));
12381  }
12382
12383  if (Subtarget->isTargetKnownWindowsMSVC() ||
12384      Subtarget->isTargetWindowsGNU()) {
12385    // Just use the implicit TLS architecture
12386    // Need to generate someting similar to:
12387    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
12388    //                                  ; from TEB
12389    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
12390    //   mov     rcx, qword [rdx+rcx*8]
12391    //   mov     eax, .tls$:tlsvar
12392    //   [rax+rcx] contains the address
12393    // Windows 64bit: gs:0x58
12394    // Windows 32bit: fs:__tls_array
12395
12396    SDLoc dl(GA);
12397    SDValue Chain = DAG.getEntryNode();
12398
12399    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
12400    // %gs:0x58 (64-bit). On MinGW, __tls_array is not available, so directly
12401    // use its literal value of 0x2C.
12402    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
12403                                        ? Type::getInt8PtrTy(*DAG.getContext(),
12404                                                             256)
12405                                        : Type::getInt32PtrTy(*DAG.getContext(),
12406                                                              257));
12407
12408    SDValue TlsArray = Subtarget->is64Bit()
12409                           ? DAG.getIntPtrConstant(0x58, dl)
12410                           : (Subtarget->isTargetWindowsGNU()
12411                                  ? DAG.getIntPtrConstant(0x2C, dl)
12412                                  : DAG.getExternalSymbol("_tls_array", PtrVT));
12413
12414    SDValue ThreadPointer =
12415        DAG.getLoad(PtrVT, dl, Chain, TlsArray, MachinePointerInfo(Ptr), false,
12416                    false, false, 0);
12417
12418    SDValue res;
12419    if (GV->getThreadLocalMode() == GlobalVariable::LocalExecTLSModel) {
12420      res = ThreadPointer;
12421    } else {
12422      // Load the _tls_index variable
12423      SDValue IDX = DAG.getExternalSymbol("_tls_index", PtrVT);
12424      if (Subtarget->is64Bit())
12425        IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, PtrVT, Chain, IDX,
12426                             MachinePointerInfo(), MVT::i32, false, false,
12427                             false, 0);
12428      else
12429        IDX = DAG.getLoad(PtrVT, dl, Chain, IDX, MachinePointerInfo(), false,
12430                          false, false, 0);
12431
12432      auto &DL = DAG.getDataLayout();
12433      SDValue Scale =
12434          DAG.getConstant(Log2_64_Ceil(DL.getPointerSize()), dl, PtrVT);
12435      IDX = DAG.getNode(ISD::SHL, dl, PtrVT, IDX, Scale);
12436
12437      res = DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, IDX);
12438    }
12439
12440    res = DAG.getLoad(PtrVT, dl, Chain, res, MachinePointerInfo(), false, false,
12441                      false, 0);
12442
12443    // Get the offset of start of .tls section
12444    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
12445                                             GA->getValueType(0),
12446                                             GA->getOffset(), X86II::MO_SECREL);
12447    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, PtrVT, TGA);
12448
12449    // The address of the thread local variable is the add of the thread
12450    // pointer with the offset of the variable.
12451    return DAG.getNode(ISD::ADD, dl, PtrVT, res, Offset);
12452  }
12453
12454  llvm_unreachable("TLS not implemented for this target.");
12455}
12456
12457/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
12458/// and take a 2 x i32 value to shift plus a shift amount.
12459static SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) {
12460  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
12461  MVT VT = Op.getSimpleValueType();
12462  unsigned VTBits = VT.getSizeInBits();
12463  SDLoc dl(Op);
12464  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
12465  SDValue ShOpLo = Op.getOperand(0);
12466  SDValue ShOpHi = Op.getOperand(1);
12467  SDValue ShAmt  = Op.getOperand(2);
12468  // X86ISD::SHLD and X86ISD::SHRD have defined overflow behavior but the
12469  // generic ISD nodes haven't. Insert an AND to be safe, it's optimized away
12470  // during isel.
12471  SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
12472                                  DAG.getConstant(VTBits - 1, dl, MVT::i8));
12473  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
12474                                     DAG.getConstant(VTBits - 1, dl, MVT::i8))
12475                       : DAG.getConstant(0, dl, VT);
12476
12477  SDValue Tmp2, Tmp3;
12478  if (Op.getOpcode() == ISD::SHL_PARTS) {
12479    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
12480    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
12481  } else {
12482    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
12483    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
12484  }
12485
12486  // If the shift amount is larger or equal than the width of a part we can't
12487  // rely on the results of shld/shrd. Insert a test and select the appropriate
12488  // values for large shift amounts.
12489  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
12490                                DAG.getConstant(VTBits, dl, MVT::i8));
12491  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
12492                             AndNode, DAG.getConstant(0, dl, MVT::i8));
12493
12494  SDValue Hi, Lo;
12495  SDValue CC = DAG.getConstant(X86::COND_NE, dl, MVT::i8);
12496  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
12497  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
12498
12499  if (Op.getOpcode() == ISD::SHL_PARTS) {
12500    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0);
12501    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1);
12502  } else {
12503    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0);
12504    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1);
12505  }
12506
12507  SDValue Ops[2] = { Lo, Hi };
12508  return DAG.getMergeValues(Ops, dl);
12509}
12510
12511SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
12512                                           SelectionDAG &DAG) const {
12513  SDValue Src = Op.getOperand(0);
12514  MVT SrcVT = Src.getSimpleValueType();
12515  MVT VT = Op.getSimpleValueType();
12516  SDLoc dl(Op);
12517
12518  if (SrcVT.isVector()) {
12519    if (SrcVT == MVT::v2i32 && VT == MVT::v2f64) {
12520      return DAG.getNode(X86ISD::CVTDQ2PD, dl, VT,
12521                         DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i32, Src,
12522                         DAG.getUNDEF(SrcVT)));
12523    }
12524    if (SrcVT.getVectorElementType() == MVT::i1) {
12525      MVT IntegerVT = MVT::getVectorVT(MVT::i32, SrcVT.getVectorNumElements());
12526      return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(),
12527                         DAG.getNode(ISD::SIGN_EXTEND, dl, IntegerVT, Src));
12528    }
12529    return SDValue();
12530  }
12531
12532  assert(SrcVT <= MVT::i64 && SrcVT >= MVT::i16 &&
12533         "Unknown SINT_TO_FP to lower!");
12534
12535  // These are really Legal; return the operand so the caller accepts it as
12536  // Legal.
12537  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
12538    return Op;
12539  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
12540      Subtarget->is64Bit()) {
12541    return Op;
12542  }
12543
12544  unsigned Size = SrcVT.getSizeInBits()/8;
12545  MachineFunction &MF = DAG.getMachineFunction();
12546  auto PtrVT = getPointerTy(MF.getDataLayout());
12547  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
12548  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
12549  SDValue Chain = DAG.getStore(
12550      DAG.getEntryNode(), dl, Op.getOperand(0), StackSlot,
12551      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), false,
12552      false, 0);
12553  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
12554}
12555
12556SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
12557                                     SDValue StackSlot,
12558                                     SelectionDAG &DAG) const {
12559  // Build the FILD
12560  SDLoc DL(Op);
12561  SDVTList Tys;
12562  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
12563  if (useSSE)
12564    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
12565  else
12566    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
12567
12568  unsigned ByteSize = SrcVT.getSizeInBits()/8;
12569
12570  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
12571  MachineMemOperand *MMO;
12572  if (FI) {
12573    int SSFI = FI->getIndex();
12574    MMO = DAG.getMachineFunction().getMachineMemOperand(
12575        MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
12576        MachineMemOperand::MOLoad, ByteSize, ByteSize);
12577  } else {
12578    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
12579    StackSlot = StackSlot.getOperand(1);
12580  }
12581  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
12582  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
12583                                           X86ISD::FILD, DL,
12584                                           Tys, Ops, SrcVT, MMO);
12585
12586  if (useSSE) {
12587    Chain = Result.getValue(1);
12588    SDValue InFlag = Result.getValue(2);
12589
12590    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
12591    // shouldn't be necessary except that RFP cannot be live across
12592    // multiple blocks. When stackifier is fixed, they can be uncoupled.
12593    MachineFunction &MF = DAG.getMachineFunction();
12594    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
12595    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
12596    auto PtrVT = getPointerTy(MF.getDataLayout());
12597    SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
12598    Tys = DAG.getVTList(MVT::Other);
12599    SDValue Ops[] = {
12600      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
12601    };
12602    MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
12603        MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
12604        MachineMemOperand::MOStore, SSFISize, SSFISize);
12605
12606    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
12607                                    Ops, Op.getValueType(), MMO);
12608    Result = DAG.getLoad(
12609        Op.getValueType(), DL, Chain, StackSlot,
12610        MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
12611        false, false, false, 0);
12612  }
12613
12614  return Result;
12615}
12616
12617// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
12618SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
12619                                               SelectionDAG &DAG) const {
12620  // This algorithm is not obvious. Here it is what we're trying to output:
12621  /*
12622     movq       %rax,  %xmm0
12623     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
12624     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
12625     #ifdef __SSE3__
12626       haddpd   %xmm0, %xmm0
12627     #else
12628       pshufd   $0x4e, %xmm0, %xmm1
12629       addpd    %xmm1, %xmm0
12630     #endif
12631  */
12632
12633  SDLoc dl(Op);
12634  LLVMContext *Context = DAG.getContext();
12635
12636  // Build some magic constants.
12637  static const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
12638  Constant *C0 = ConstantDataVector::get(*Context, CV0);
12639  auto PtrVT = getPointerTy(DAG.getDataLayout());
12640  SDValue CPIdx0 = DAG.getConstantPool(C0, PtrVT, 16);
12641
12642  SmallVector<Constant*,2> CV1;
12643  CV1.push_back(
12644    ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
12645                                      APInt(64, 0x4330000000000000ULL))));
12646  CV1.push_back(
12647    ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
12648                                      APInt(64, 0x4530000000000000ULL))));
12649  Constant *C1 = ConstantVector::get(CV1);
12650  SDValue CPIdx1 = DAG.getConstantPool(C1, PtrVT, 16);
12651
12652  // Load the 64-bit value into an XMM register.
12653  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
12654                            Op.getOperand(0));
12655  SDValue CLod0 =
12656      DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
12657                  MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
12658                  false, false, false, 16);
12659  SDValue Unpck1 =
12660      getUnpackl(DAG, dl, MVT::v4i32, DAG.getBitcast(MVT::v4i32, XR1), CLod0);
12661
12662  SDValue CLod1 =
12663      DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
12664                  MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
12665                  false, false, false, 16);
12666  SDValue XR2F = DAG.getBitcast(MVT::v2f64, Unpck1);
12667  // TODO: Are there any fast-math-flags to propagate here?
12668  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
12669  SDValue Result;
12670
12671  if (Subtarget->hasSSE3()) {
12672    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
12673    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
12674  } else {
12675    SDValue S2F = DAG.getBitcast(MVT::v4i32, Sub);
12676    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
12677                                           S2F, 0x4E, DAG);
12678    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
12679                         DAG.getBitcast(MVT::v2f64, Shuffle), Sub);
12680  }
12681
12682  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
12683                     DAG.getIntPtrConstant(0, dl));
12684}
12685
12686// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
12687SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
12688                                               SelectionDAG &DAG) const {
12689  SDLoc dl(Op);
12690  // FP constant to bias correct the final result.
12691  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), dl,
12692                                   MVT::f64);
12693
12694  // Load the 32-bit value into an XMM register.
12695  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
12696                             Op.getOperand(0));
12697
12698  // Zero out the upper parts of the register.
12699  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
12700
12701  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
12702                     DAG.getBitcast(MVT::v2f64, Load),
12703                     DAG.getIntPtrConstant(0, dl));
12704
12705  // Or the load with the bias.
12706  SDValue Or = DAG.getNode(
12707      ISD::OR, dl, MVT::v2i64,
12708      DAG.getBitcast(MVT::v2i64,
12709                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, Load)),
12710      DAG.getBitcast(MVT::v2i64,
12711                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, Bias)));
12712  Or =
12713      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
12714                  DAG.getBitcast(MVT::v2f64, Or), DAG.getIntPtrConstant(0, dl));
12715
12716  // Subtract the bias.
12717  // TODO: Are there any fast-math-flags to propagate here?
12718  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
12719
12720  // Handle final rounding.
12721  MVT DestVT = Op.getSimpleValueType();
12722
12723  if (DestVT.bitsLT(MVT::f64))
12724    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
12725                       DAG.getIntPtrConstant(0, dl));
12726  if (DestVT.bitsGT(MVT::f64))
12727    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
12728
12729  // Handle final rounding.
12730  return Sub;
12731}
12732
12733static SDValue lowerUINT_TO_FP_vXi32(SDValue Op, SelectionDAG &DAG,
12734                                     const X86Subtarget &Subtarget) {
12735  // The algorithm is the following:
12736  // #ifdef __SSE4_1__
12737  //     uint4 lo = _mm_blend_epi16( v, (uint4) 0x4b000000, 0xaa);
12738  //     uint4 hi = _mm_blend_epi16( _mm_srli_epi32(v,16),
12739  //                                 (uint4) 0x53000000, 0xaa);
12740  // #else
12741  //     uint4 lo = (v & (uint4) 0xffff) | (uint4) 0x4b000000;
12742  //     uint4 hi = (v >> 16) | (uint4) 0x53000000;
12743  // #endif
12744  //     float4 fhi = (float4) hi - (0x1.0p39f + 0x1.0p23f);
12745  //     return (float4) lo + fhi;
12746
12747  // We shouldn't use it when unsafe-fp-math is enabled though: we might later
12748  // reassociate the two FADDs, and if we do that, the algorithm fails
12749  // spectacularly (PR24512).
12750  // FIXME: If we ever have some kind of Machine FMF, this should be marked
12751  // as non-fast and always be enabled. Why isn't SDAG FMF enough? Because
12752  // there's also the MachineCombiner reassociations happening on Machine IR.
12753  if (DAG.getTarget().Options.UnsafeFPMath)
12754    return SDValue();
12755
12756  SDLoc DL(Op);
12757  SDValue V = Op->getOperand(0);
12758  MVT VecIntVT = V.getSimpleValueType();
12759  bool Is128 = VecIntVT == MVT::v4i32;
12760  MVT VecFloatVT = Is128 ? MVT::v4f32 : MVT::v8f32;
12761  // If we convert to something else than the supported type, e.g., to v4f64,
12762  // abort early.
12763  if (VecFloatVT != Op->getSimpleValueType(0))
12764    return SDValue();
12765
12766  unsigned NumElts = VecIntVT.getVectorNumElements();
12767  assert((VecIntVT == MVT::v4i32 || VecIntVT == MVT::v8i32) &&
12768         "Unsupported custom type");
12769  assert(NumElts <= 8 && "The size of the constant array must be fixed");
12770
12771  // In the #idef/#else code, we have in common:
12772  // - The vector of constants:
12773  // -- 0x4b000000
12774  // -- 0x53000000
12775  // - A shift:
12776  // -- v >> 16
12777
12778  // Create the splat vector for 0x4b000000.
12779  SDValue CstLow = DAG.getConstant(0x4b000000, DL, MVT::i32);
12780  SDValue CstLowArray[] = {CstLow, CstLow, CstLow, CstLow,
12781                           CstLow, CstLow, CstLow, CstLow};
12782  SDValue VecCstLow = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT,
12783                                  makeArrayRef(&CstLowArray[0], NumElts));
12784  // Create the splat vector for 0x53000000.
12785  SDValue CstHigh = DAG.getConstant(0x53000000, DL, MVT::i32);
12786  SDValue CstHighArray[] = {CstHigh, CstHigh, CstHigh, CstHigh,
12787                            CstHigh, CstHigh, CstHigh, CstHigh};
12788  SDValue VecCstHigh = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT,
12789                                   makeArrayRef(&CstHighArray[0], NumElts));
12790
12791  // Create the right shift.
12792  SDValue CstShift = DAG.getConstant(16, DL, MVT::i32);
12793  SDValue CstShiftArray[] = {CstShift, CstShift, CstShift, CstShift,
12794                             CstShift, CstShift, CstShift, CstShift};
12795  SDValue VecCstShift = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT,
12796                                    makeArrayRef(&CstShiftArray[0], NumElts));
12797  SDValue HighShift = DAG.getNode(ISD::SRL, DL, VecIntVT, V, VecCstShift);
12798
12799  SDValue Low, High;
12800  if (Subtarget.hasSSE41()) {
12801    MVT VecI16VT = Is128 ? MVT::v8i16 : MVT::v16i16;
12802    //     uint4 lo = _mm_blend_epi16( v, (uint4) 0x4b000000, 0xaa);
12803    SDValue VecCstLowBitcast = DAG.getBitcast(VecI16VT, VecCstLow);
12804    SDValue VecBitcast = DAG.getBitcast(VecI16VT, V);
12805    // Low will be bitcasted right away, so do not bother bitcasting back to its
12806    // original type.
12807    Low = DAG.getNode(X86ISD::BLENDI, DL, VecI16VT, VecBitcast,
12808                      VecCstLowBitcast, DAG.getConstant(0xaa, DL, MVT::i32));
12809    //     uint4 hi = _mm_blend_epi16( _mm_srli_epi32(v,16),
12810    //                                 (uint4) 0x53000000, 0xaa);
12811    SDValue VecCstHighBitcast = DAG.getBitcast(VecI16VT, VecCstHigh);
12812    SDValue VecShiftBitcast = DAG.getBitcast(VecI16VT, HighShift);
12813    // High will be bitcasted right away, so do not bother bitcasting back to
12814    // its original type.
12815    High = DAG.getNode(X86ISD::BLENDI, DL, VecI16VT, VecShiftBitcast,
12816                       VecCstHighBitcast, DAG.getConstant(0xaa, DL, MVT::i32));
12817  } else {
12818    SDValue CstMask = DAG.getConstant(0xffff, DL, MVT::i32);
12819    SDValue VecCstMask = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT, CstMask,
12820                                     CstMask, CstMask, CstMask);
12821    //     uint4 lo = (v & (uint4) 0xffff) | (uint4) 0x4b000000;
12822    SDValue LowAnd = DAG.getNode(ISD::AND, DL, VecIntVT, V, VecCstMask);
12823    Low = DAG.getNode(ISD::OR, DL, VecIntVT, LowAnd, VecCstLow);
12824
12825    //     uint4 hi = (v >> 16) | (uint4) 0x53000000;
12826    High = DAG.getNode(ISD::OR, DL, VecIntVT, HighShift, VecCstHigh);
12827  }
12828
12829  // Create the vector constant for -(0x1.0p39f + 0x1.0p23f).
12830  SDValue CstFAdd = DAG.getConstantFP(
12831      APFloat(APFloat::IEEEsingle, APInt(32, 0xD3000080)), DL, MVT::f32);
12832  SDValue CstFAddArray[] = {CstFAdd, CstFAdd, CstFAdd, CstFAdd,
12833                            CstFAdd, CstFAdd, CstFAdd, CstFAdd};
12834  SDValue VecCstFAdd = DAG.getNode(ISD::BUILD_VECTOR, DL, VecFloatVT,
12835                                   makeArrayRef(&CstFAddArray[0], NumElts));
12836
12837  //     float4 fhi = (float4) hi - (0x1.0p39f + 0x1.0p23f);
12838  SDValue HighBitcast = DAG.getBitcast(VecFloatVT, High);
12839  // TODO: Are there any fast-math-flags to propagate here?
12840  SDValue FHigh =
12841      DAG.getNode(ISD::FADD, DL, VecFloatVT, HighBitcast, VecCstFAdd);
12842  //     return (float4) lo + fhi;
12843  SDValue LowBitcast = DAG.getBitcast(VecFloatVT, Low);
12844  return DAG.getNode(ISD::FADD, DL, VecFloatVT, LowBitcast, FHigh);
12845}
12846
12847SDValue X86TargetLowering::lowerUINT_TO_FP_vec(SDValue Op,
12848                                               SelectionDAG &DAG) const {
12849  SDValue N0 = Op.getOperand(0);
12850  MVT SVT = N0.getSimpleValueType();
12851  SDLoc dl(Op);
12852
12853  switch (SVT.SimpleTy) {
12854  default:
12855    llvm_unreachable("Custom UINT_TO_FP is not supported!");
12856  case MVT::v4i8:
12857  case MVT::v4i16:
12858  case MVT::v8i8:
12859  case MVT::v8i16: {
12860    MVT NVT = MVT::getVectorVT(MVT::i32, SVT.getVectorNumElements());
12861    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(),
12862                       DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N0));
12863  }
12864  case MVT::v4i32:
12865  case MVT::v8i32:
12866    return lowerUINT_TO_FP_vXi32(Op, DAG, *Subtarget);
12867  case MVT::v16i8:
12868  case MVT::v16i16:
12869    assert(Subtarget->hasAVX512());
12870    return DAG.getNode(ISD::UINT_TO_FP, dl, Op.getValueType(),
12871                       DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v16i32, N0));
12872  }
12873}
12874
12875SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
12876                                           SelectionDAG &DAG) const {
12877  SDValue N0 = Op.getOperand(0);
12878  SDLoc dl(Op);
12879  auto PtrVT = getPointerTy(DAG.getDataLayout());
12880
12881  if (Op.getSimpleValueType().isVector())
12882    return lowerUINT_TO_FP_vec(Op, DAG);
12883
12884  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
12885  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
12886  // the optimization here.
12887  if (DAG.SignBitIsZero(N0))
12888    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
12889
12890  MVT SrcVT = N0.getSimpleValueType();
12891  MVT DstVT = Op.getSimpleValueType();
12892
12893  if (Subtarget->hasAVX512() && isScalarFPTypeInSSEReg(DstVT) &&
12894      (SrcVT == MVT::i32 || (SrcVT == MVT::i64 && Subtarget->is64Bit()))) {
12895    // Conversions from unsigned i32 to f32/f64 are legal,
12896    // using VCVTUSI2SS/SD.  Same for i64 in 64-bit mode.
12897    return Op;
12898  }
12899
12900  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
12901    return LowerUINT_TO_FP_i64(Op, DAG);
12902  if (SrcVT == MVT::i32 && X86ScalarSSEf64)
12903    return LowerUINT_TO_FP_i32(Op, DAG);
12904  if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
12905    return SDValue();
12906
12907  // Make a 64-bit buffer, and use it to build an FILD.
12908  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
12909  if (SrcVT == MVT::i32) {
12910    SDValue WordOff = DAG.getConstant(4, dl, PtrVT);
12911    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, WordOff);
12912    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
12913                                  StackSlot, MachinePointerInfo(),
12914                                  false, false, 0);
12915    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, dl, MVT::i32),
12916                                  OffsetSlot, MachinePointerInfo(),
12917                                  false, false, 0);
12918    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
12919    return Fild;
12920  }
12921
12922  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
12923  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
12924                               StackSlot, MachinePointerInfo(),
12925                               false, false, 0);
12926  // For i64 source, we need to add the appropriate power of 2 if the input
12927  // was negative.  This is the same as the optimization in
12928  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
12929  // we must be careful to do the computation in x87 extended precision, not
12930  // in SSE. (The generic code can't know it's OK to do this, or how to.)
12931  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
12932  MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
12933      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
12934      MachineMemOperand::MOLoad, 8, 8);
12935
12936  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
12937  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
12938  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops,
12939                                         MVT::i64, MMO);
12940
12941  APInt FF(32, 0x5F800000ULL);
12942
12943  // Check whether the sign bit is set.
12944  SDValue SignSet = DAG.getSetCC(
12945      dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64),
12946      Op.getOperand(0), DAG.getConstant(0, dl, MVT::i64), ISD::SETLT);
12947
12948  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
12949  SDValue FudgePtr = DAG.getConstantPool(
12950      ConstantInt::get(*DAG.getContext(), FF.zext(64)), PtrVT);
12951
12952  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
12953  SDValue Zero = DAG.getIntPtrConstant(0, dl);
12954  SDValue Four = DAG.getIntPtrConstant(4, dl);
12955  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
12956                               Zero, Four);
12957  FudgePtr = DAG.getNode(ISD::ADD, dl, PtrVT, FudgePtr, Offset);
12958
12959  // Load the value out, extending it from f32 to f80.
12960  // FIXME: Avoid the extend by constructing the right constant pool?
12961  SDValue Fudge = DAG.getExtLoad(
12962      ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(), FudgePtr,
12963      MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32,
12964      false, false, false, 4);
12965  // Extend everything to 80 bits to force it to be done on x87.
12966  // TODO: Are there any fast-math-flags to propagate here?
12967  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
12968  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add,
12969                     DAG.getIntPtrConstant(0, dl));
12970}
12971
12972// If the given FP_TO_SINT (IsSigned) or FP_TO_UINT (!IsSigned) operation
12973// is legal, or has an fp128 or f16 source (which needs to be promoted to f32),
12974// just return an <SDValue(), SDValue()> pair.
12975// Otherwise it is assumed to be a conversion from one of f32, f64 or f80
12976// to i16, i32 or i64, and we lower it to a legal sequence.
12977// If lowered to the final integer result we return a <result, SDValue()> pair.
12978// Otherwise we lower it to a sequence ending with a FIST, return a
12979// <FIST, StackSlot> pair, and the caller is responsible for loading
12980// the final integer result from StackSlot.
12981std::pair<SDValue,SDValue>
12982X86TargetLowering::FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
12983                                   bool IsSigned, bool IsReplace) const {
12984  SDLoc DL(Op);
12985
12986  EVT DstTy = Op.getValueType();
12987  EVT TheVT = Op.getOperand(0).getValueType();
12988  auto PtrVT = getPointerTy(DAG.getDataLayout());
12989
12990  if (TheVT != MVT::f32 && TheVT != MVT::f64 && TheVT != MVT::f80) {
12991    // f16 must be promoted before using the lowering in this routine.
12992    // fp128 does not use this lowering.
12993    return std::make_pair(SDValue(), SDValue());
12994  }
12995
12996  // If using FIST to compute an unsigned i64, we'll need some fixup
12997  // to handle values above the maximum signed i64.  A FIST is always
12998  // used for the 32-bit subtarget, but also for f80 on a 64-bit target.
12999  bool UnsignedFixup = !IsSigned &&
13000                       DstTy == MVT::i64 &&
13001                       (!Subtarget->is64Bit() ||
13002                        !isScalarFPTypeInSSEReg(TheVT));
13003
13004  if (!IsSigned && DstTy != MVT::i64 && !Subtarget->hasAVX512()) {
13005    // Replace the fp-to-uint32 operation with an fp-to-sint64 FIST.
13006    // The low 32 bits of the fist result will have the correct uint32 result.
13007    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
13008    DstTy = MVT::i64;
13009  }
13010
13011  assert(DstTy.getSimpleVT() <= MVT::i64 &&
13012         DstTy.getSimpleVT() >= MVT::i16 &&
13013         "Unknown FP_TO_INT to lower!");
13014
13015  // These are really Legal.
13016  if (DstTy == MVT::i32 &&
13017      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
13018    return std::make_pair(SDValue(), SDValue());
13019  if (Subtarget->is64Bit() &&
13020      DstTy == MVT::i64 &&
13021      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
13022    return std::make_pair(SDValue(), SDValue());
13023
13024  // We lower FP->int64 into FISTP64 followed by a load from a temporary
13025  // stack slot.
13026  MachineFunction &MF = DAG.getMachineFunction();
13027  unsigned MemSize = DstTy.getSizeInBits()/8;
13028  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
13029  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
13030
13031  unsigned Opc;
13032  switch (DstTy.getSimpleVT().SimpleTy) {
13033  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
13034  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
13035  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
13036  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
13037  }
13038
13039  SDValue Chain = DAG.getEntryNode();
13040  SDValue Value = Op.getOperand(0);
13041  SDValue Adjust; // 0x0 or 0x80000000, for result sign bit adjustment.
13042
13043  if (UnsignedFixup) {
13044    //
13045    // Conversion to unsigned i64 is implemented with a select,
13046    // depending on whether the source value fits in the range
13047    // of a signed i64.  Let Thresh be the FP equivalent of
13048    // 0x8000000000000000ULL.
13049    //
13050    //  Adjust i32 = (Value < Thresh) ? 0 : 0x80000000;
13051    //  FistSrc    = (Value < Thresh) ? Value : (Value - Thresh);
13052    //  Fist-to-mem64 FistSrc
13053    //  Add 0 or 0x800...0ULL to the 64-bit result, which is equivalent
13054    //  to XOR'ing the high 32 bits with Adjust.
13055    //
13056    // Being a power of 2, Thresh is exactly representable in all FP formats.
13057    // For X87 we'd like to use the smallest FP type for this constant, but
13058    // for DAG type consistency we have to match the FP operand type.
13059
13060    APFloat Thresh(APFloat::IEEEsingle, APInt(32, 0x5f000000));
13061    LLVM_ATTRIBUTE_UNUSED APFloat::opStatus Status = APFloat::opOK;
13062    bool LosesInfo = false;
13063    if (TheVT == MVT::f64)
13064      // The rounding mode is irrelevant as the conversion should be exact.
13065      Status = Thresh.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
13066                              &LosesInfo);
13067    else if (TheVT == MVT::f80)
13068      Status = Thresh.convert(APFloat::x87DoubleExtended,
13069                              APFloat::rmNearestTiesToEven, &LosesInfo);
13070
13071    assert(Status == APFloat::opOK && !LosesInfo &&
13072           "FP conversion should have been exact");
13073
13074    SDValue ThreshVal = DAG.getConstantFP(Thresh, DL, TheVT);
13075
13076    SDValue Cmp = DAG.getSetCC(DL,
13077                               getSetCCResultType(DAG.getDataLayout(),
13078                                                  *DAG.getContext(), TheVT),
13079                               Value, ThreshVal, ISD::SETLT);
13080    Adjust = DAG.getSelect(DL, MVT::i32, Cmp,
13081                           DAG.getConstant(0, DL, MVT::i32),
13082                           DAG.getConstant(0x80000000, DL, MVT::i32));
13083    SDValue Sub = DAG.getNode(ISD::FSUB, DL, TheVT, Value, ThreshVal);
13084    Cmp = DAG.getSetCC(DL, getSetCCResultType(DAG.getDataLayout(),
13085                                              *DAG.getContext(), TheVT),
13086                       Value, ThreshVal, ISD::SETLT);
13087    Value = DAG.getSelect(DL, TheVT, Cmp, Value, Sub);
13088  }
13089
13090  // FIXME This causes a redundant load/store if the SSE-class value is already
13091  // in memory, such as if it is on the callstack.
13092  if (isScalarFPTypeInSSEReg(TheVT)) {
13093    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
13094    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
13095                         MachinePointerInfo::getFixedStack(MF, SSFI), false,
13096                         false, 0);
13097    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
13098    SDValue Ops[] = {
13099      Chain, StackSlot, DAG.getValueType(TheVT)
13100    };
13101
13102    MachineMemOperand *MMO =
13103        MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, SSFI),
13104                                MachineMemOperand::MOLoad, MemSize, MemSize);
13105    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, DstTy, MMO);
13106    Chain = Value.getValue(1);
13107    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
13108    StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
13109  }
13110
13111  MachineMemOperand *MMO =
13112      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, SSFI),
13113                              MachineMemOperand::MOStore, MemSize, MemSize);
13114
13115  if (UnsignedFixup) {
13116
13117    // Insert the FIST, load its result as two i32's,
13118    // and XOR the high i32 with Adjust.
13119
13120    SDValue FistOps[] = { Chain, Value, StackSlot };
13121    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
13122                                           FistOps, DstTy, MMO);
13123
13124    SDValue Low32 = DAG.getLoad(MVT::i32, DL, FIST, StackSlot,
13125                                MachinePointerInfo(),
13126                                false, false, false, 0);
13127    SDValue HighAddr = DAG.getNode(ISD::ADD, DL, PtrVT, StackSlot,
13128                                   DAG.getConstant(4, DL, PtrVT));
13129
13130    SDValue High32 = DAG.getLoad(MVT::i32, DL, FIST, HighAddr,
13131                                 MachinePointerInfo(),
13132                                 false, false, false, 0);
13133    High32 = DAG.getNode(ISD::XOR, DL, MVT::i32, High32, Adjust);
13134
13135    if (Subtarget->is64Bit()) {
13136      // Join High32 and Low32 into a 64-bit result.
13137      // (High32 << 32) | Low32
13138      Low32 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Low32);
13139      High32 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, High32);
13140      High32 = DAG.getNode(ISD::SHL, DL, MVT::i64, High32,
13141                           DAG.getConstant(32, DL, MVT::i8));
13142      SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i64, High32, Low32);
13143      return std::make_pair(Result, SDValue());
13144    }
13145
13146    SDValue ResultOps[] = { Low32, High32 };
13147
13148    SDValue pair = IsReplace
13149      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, ResultOps)
13150      : DAG.getMergeValues(ResultOps, DL);
13151    return std::make_pair(pair, SDValue());
13152  } else {
13153    // Build the FP_TO_INT*_IN_MEM
13154    SDValue Ops[] = { Chain, Value, StackSlot };
13155    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
13156                                           Ops, DstTy, MMO);
13157    return std::make_pair(FIST, StackSlot);
13158  }
13159}
13160
13161static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG,
13162                              const X86Subtarget *Subtarget) {
13163  MVT VT = Op->getSimpleValueType(0);
13164  SDValue In = Op->getOperand(0);
13165  MVT InVT = In.getSimpleValueType();
13166  SDLoc dl(Op);
13167
13168  if (VT.is512BitVector() || InVT.getVectorElementType() == MVT::i1)
13169    return DAG.getNode(ISD::ZERO_EXTEND, dl, VT, In);
13170
13171  // Optimize vectors in AVX mode:
13172  //
13173  //   v8i16 -> v8i32
13174  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
13175  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
13176  //   Concat upper and lower parts.
13177  //
13178  //   v4i32 -> v4i64
13179  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
13180  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
13181  //   Concat upper and lower parts.
13182  //
13183
13184  if (((VT != MVT::v16i16) || (InVT != MVT::v16i8)) &&
13185      ((VT != MVT::v8i32) || (InVT != MVT::v8i16)) &&
13186      ((VT != MVT::v4i64) || (InVT != MVT::v4i32)))
13187    return SDValue();
13188
13189  if (Subtarget->hasInt256())
13190    return DAG.getNode(X86ISD::VZEXT, dl, VT, In);
13191
13192  SDValue ZeroVec = getZeroVector(InVT, Subtarget, DAG, dl);
13193  SDValue Undef = DAG.getUNDEF(InVT);
13194  bool NeedZero = Op.getOpcode() == ISD::ZERO_EXTEND;
13195  SDValue OpLo = getUnpackl(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
13196  SDValue OpHi = getUnpackh(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
13197
13198  MVT HVT = MVT::getVectorVT(VT.getVectorElementType(),
13199                             VT.getVectorNumElements()/2);
13200
13201  OpLo = DAG.getBitcast(HVT, OpLo);
13202  OpHi = DAG.getBitcast(HVT, OpHi);
13203
13204  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
13205}
13206
13207static  SDValue LowerZERO_EXTEND_AVX512(SDValue Op,
13208                  const X86Subtarget *Subtarget, SelectionDAG &DAG) {
13209  MVT VT = Op->getSimpleValueType(0);
13210  SDValue In = Op->getOperand(0);
13211  MVT InVT = In.getSimpleValueType();
13212  SDLoc DL(Op);
13213  unsigned int NumElts = VT.getVectorNumElements();
13214  if (NumElts != 8 && NumElts != 16 && !Subtarget->hasBWI())
13215    return SDValue();
13216
13217  if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1)
13218    return DAG.getNode(X86ISD::VZEXT, DL, VT, In);
13219
13220  assert(InVT.getVectorElementType() == MVT::i1);
13221  MVT ExtVT = NumElts == 8 ? MVT::v8i64 : MVT::v16i32;
13222  SDValue One =
13223   DAG.getConstant(APInt(ExtVT.getScalarSizeInBits(), 1), DL, ExtVT);
13224  SDValue Zero =
13225   DAG.getConstant(APInt::getNullValue(ExtVT.getScalarSizeInBits()), DL, ExtVT);
13226
13227  SDValue V = DAG.getNode(ISD::VSELECT, DL, ExtVT, In, One, Zero);
13228  if (VT.is512BitVector())
13229    return V;
13230  return DAG.getNode(X86ISD::VTRUNC, DL, VT, V);
13231}
13232
13233static SDValue LowerANY_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
13234                               SelectionDAG &DAG) {
13235  if (Subtarget->hasFp256())
13236    if (SDValue Res = LowerAVXExtend(Op, DAG, Subtarget))
13237      return Res;
13238
13239  return SDValue();
13240}
13241
13242static SDValue LowerZERO_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
13243                                SelectionDAG &DAG) {
13244  SDLoc DL(Op);
13245  MVT VT = Op.getSimpleValueType();
13246  SDValue In = Op.getOperand(0);
13247  MVT SVT = In.getSimpleValueType();
13248
13249  if (VT.is512BitVector() || SVT.getVectorElementType() == MVT::i1)
13250    return LowerZERO_EXTEND_AVX512(Op, Subtarget, DAG);
13251
13252  if (Subtarget->hasFp256())
13253    if (SDValue Res = LowerAVXExtend(Op, DAG, Subtarget))
13254      return Res;
13255
13256  assert(!VT.is256BitVector() || !SVT.is128BitVector() ||
13257         VT.getVectorNumElements() != SVT.getVectorNumElements());
13258  return SDValue();
13259}
13260
13261SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
13262  SDLoc DL(Op);
13263  MVT VT = Op.getSimpleValueType();
13264  SDValue In = Op.getOperand(0);
13265  MVT InVT = In.getSimpleValueType();
13266
13267  if (VT == MVT::i1) {
13268    assert((InVT.isInteger() && (InVT.getSizeInBits() <= 64)) &&
13269           "Invalid scalar TRUNCATE operation");
13270    if (InVT.getSizeInBits() >= 32)
13271      return SDValue();
13272    In = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, In);
13273    return DAG.getNode(ISD::TRUNCATE, DL, VT, In);
13274  }
13275  assert(VT.getVectorNumElements() == InVT.getVectorNumElements() &&
13276         "Invalid TRUNCATE operation");
13277
13278  // move vector to mask - truncate solution for SKX
13279  if (VT.getVectorElementType() == MVT::i1) {
13280    if (InVT.is512BitVector() && InVT.getScalarSizeInBits() <= 16 &&
13281        Subtarget->hasBWI())
13282      return Op; // legal, will go to VPMOVB2M, VPMOVW2M
13283    if ((InVT.is256BitVector() || InVT.is128BitVector())
13284        && InVT.getScalarSizeInBits() <= 16 &&
13285        Subtarget->hasBWI() && Subtarget->hasVLX())
13286      return Op; // legal, will go to VPMOVB2M, VPMOVW2M
13287    if (InVT.is512BitVector() && InVT.getScalarSizeInBits() >= 32 &&
13288        Subtarget->hasDQI())
13289      return Op; // legal, will go to VPMOVD2M, VPMOVQ2M
13290    if ((InVT.is256BitVector() || InVT.is128BitVector())
13291        && InVT.getScalarSizeInBits() >= 32 &&
13292        Subtarget->hasDQI() && Subtarget->hasVLX())
13293      return Op; // legal, will go to VPMOVB2M, VPMOVQ2M
13294    }
13295
13296  if (VT.getVectorElementType() == MVT::i1) {
13297    assert(VT.getVectorElementType() == MVT::i1 && "Unexpected vector type");
13298    unsigned NumElts = InVT.getVectorNumElements();
13299    assert ((NumElts == 8 || NumElts == 16) && "Unexpected vector type");
13300    if (InVT.getSizeInBits() < 512) {
13301      MVT ExtVT = (NumElts == 16)? MVT::v16i32 : MVT::v8i64;
13302      In = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, In);
13303      InVT = ExtVT;
13304    }
13305
13306    SDValue OneV =
13307     DAG.getConstant(APInt::getSignBit(InVT.getScalarSizeInBits()), DL, InVT);
13308    SDValue And = DAG.getNode(ISD::AND, DL, InVT, OneV, In);
13309    return DAG.getNode(X86ISD::TESTM, DL, VT, And, And);
13310  }
13311
13312  // vpmovqb/w/d, vpmovdb/w, vpmovwb
13313  if (Subtarget->hasAVX512()) {
13314    // word to byte only under BWI
13315    if (InVT == MVT::v16i16 && !Subtarget->hasBWI()) // v16i16 -> v16i8
13316      return DAG.getNode(X86ISD::VTRUNC, DL, VT,
13317                         DAG.getNode(X86ISD::VSEXT, DL, MVT::v16i32, In));
13318    return DAG.getNode(X86ISD::VTRUNC, DL, VT, In);
13319  }
13320  if ((VT == MVT::v4i32) && (InVT == MVT::v4i64)) {
13321    // On AVX2, v4i64 -> v4i32 becomes VPERMD.
13322    if (Subtarget->hasInt256()) {
13323      static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
13324      In = DAG.getBitcast(MVT::v8i32, In);
13325      In = DAG.getVectorShuffle(MVT::v8i32, DL, In, DAG.getUNDEF(MVT::v8i32),
13326                                ShufMask);
13327      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, In,
13328                         DAG.getIntPtrConstant(0, DL));
13329    }
13330
13331    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
13332                               DAG.getIntPtrConstant(0, DL));
13333    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
13334                               DAG.getIntPtrConstant(2, DL));
13335    OpLo = DAG.getBitcast(MVT::v4i32, OpLo);
13336    OpHi = DAG.getBitcast(MVT::v4i32, OpHi);
13337    static const int ShufMask[] = {0, 2, 4, 6};
13338    return DAG.getVectorShuffle(VT, DL, OpLo, OpHi, ShufMask);
13339  }
13340
13341  if ((VT == MVT::v8i16) && (InVT == MVT::v8i32)) {
13342    // On AVX2, v8i32 -> v8i16 becomed PSHUFB.
13343    if (Subtarget->hasInt256()) {
13344      In = DAG.getBitcast(MVT::v32i8, In);
13345
13346      SmallVector<SDValue,32> pshufbMask;
13347      for (unsigned i = 0; i < 2; ++i) {
13348        pshufbMask.push_back(DAG.getConstant(0x0, DL, MVT::i8));
13349        pshufbMask.push_back(DAG.getConstant(0x1, DL, MVT::i8));
13350        pshufbMask.push_back(DAG.getConstant(0x4, DL, MVT::i8));
13351        pshufbMask.push_back(DAG.getConstant(0x5, DL, MVT::i8));
13352        pshufbMask.push_back(DAG.getConstant(0x8, DL, MVT::i8));
13353        pshufbMask.push_back(DAG.getConstant(0x9, DL, MVT::i8));
13354        pshufbMask.push_back(DAG.getConstant(0xc, DL, MVT::i8));
13355        pshufbMask.push_back(DAG.getConstant(0xd, DL, MVT::i8));
13356        for (unsigned j = 0; j < 8; ++j)
13357          pshufbMask.push_back(DAG.getConstant(0x80, DL, MVT::i8));
13358      }
13359      SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8, pshufbMask);
13360      In = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8, In, BV);
13361      In = DAG.getBitcast(MVT::v4i64, In);
13362
13363      static const int ShufMask[] = {0,  2,  -1,  -1};
13364      In = DAG.getVectorShuffle(MVT::v4i64, DL,  In, DAG.getUNDEF(MVT::v4i64),
13365                                &ShufMask[0]);
13366      In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
13367                       DAG.getIntPtrConstant(0, DL));
13368      return DAG.getBitcast(VT, In);
13369    }
13370
13371    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
13372                               DAG.getIntPtrConstant(0, DL));
13373
13374    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
13375                               DAG.getIntPtrConstant(4, DL));
13376
13377    OpLo = DAG.getBitcast(MVT::v16i8, OpLo);
13378    OpHi = DAG.getBitcast(MVT::v16i8, OpHi);
13379
13380    // The PSHUFB mask:
13381    static const int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
13382                                   -1, -1, -1, -1, -1, -1, -1, -1};
13383
13384    SDValue Undef = DAG.getUNDEF(MVT::v16i8);
13385    OpLo = DAG.getVectorShuffle(MVT::v16i8, DL, OpLo, Undef, ShufMask1);
13386    OpHi = DAG.getVectorShuffle(MVT::v16i8, DL, OpHi, Undef, ShufMask1);
13387
13388    OpLo = DAG.getBitcast(MVT::v4i32, OpLo);
13389    OpHi = DAG.getBitcast(MVT::v4i32, OpHi);
13390
13391    // The MOVLHPS Mask:
13392    static const int ShufMask2[] = {0, 1, 4, 5};
13393    SDValue res = DAG.getVectorShuffle(MVT::v4i32, DL, OpLo, OpHi, ShufMask2);
13394    return DAG.getBitcast(MVT::v8i16, res);
13395  }
13396
13397  // Handle truncation of V256 to V128 using shuffles.
13398  if (!VT.is128BitVector() || !InVT.is256BitVector())
13399    return SDValue();
13400
13401  assert(Subtarget->hasFp256() && "256-bit vector without AVX!");
13402
13403  unsigned NumElems = VT.getVectorNumElements();
13404  MVT NVT = MVT::getVectorVT(VT.getVectorElementType(), NumElems * 2);
13405
13406  SmallVector<int, 16> MaskVec(NumElems * 2, -1);
13407  // Prepare truncation shuffle mask
13408  for (unsigned i = 0; i != NumElems; ++i)
13409    MaskVec[i] = i * 2;
13410  SDValue V = DAG.getVectorShuffle(NVT, DL, DAG.getBitcast(NVT, In),
13411                                   DAG.getUNDEF(NVT), &MaskVec[0]);
13412  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V,
13413                     DAG.getIntPtrConstant(0, DL));
13414}
13415
13416SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
13417                                           SelectionDAG &DAG) const {
13418  assert(!Op.getSimpleValueType().isVector());
13419
13420  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
13421    /*IsSigned=*/ true, /*IsReplace=*/ false);
13422  SDValue FIST = Vals.first, StackSlot = Vals.second;
13423  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
13424  if (!FIST.getNode())
13425    return Op;
13426
13427  if (StackSlot.getNode())
13428    // Load the result.
13429    return DAG.getLoad(Op.getValueType(), SDLoc(Op),
13430                       FIST, StackSlot, MachinePointerInfo(),
13431                       false, false, false, 0);
13432
13433  // The node is the result.
13434  return FIST;
13435}
13436
13437SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
13438                                           SelectionDAG &DAG) const {
13439  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
13440    /*IsSigned=*/ false, /*IsReplace=*/ false);
13441  SDValue FIST = Vals.first, StackSlot = Vals.second;
13442  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
13443  if (!FIST.getNode())
13444    return Op;
13445
13446  if (StackSlot.getNode())
13447    // Load the result.
13448    return DAG.getLoad(Op.getValueType(), SDLoc(Op),
13449                       FIST, StackSlot, MachinePointerInfo(),
13450                       false, false, false, 0);
13451
13452  // The node is the result.
13453  return FIST;
13454}
13455
13456static SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) {
13457  SDLoc DL(Op);
13458  MVT VT = Op.getSimpleValueType();
13459  SDValue In = Op.getOperand(0);
13460  MVT SVT = In.getSimpleValueType();
13461
13462  assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!");
13463
13464  return DAG.getNode(X86ISD::VFPEXT, DL, VT,
13465                     DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32,
13466                                 In, DAG.getUNDEF(SVT)));
13467}
13468
13469/// The only differences between FABS and FNEG are the mask and the logic op.
13470/// FNEG also has a folding opportunity for FNEG(FABS(x)).
13471static SDValue LowerFABSorFNEG(SDValue Op, SelectionDAG &DAG) {
13472  assert((Op.getOpcode() == ISD::FABS || Op.getOpcode() == ISD::FNEG) &&
13473         "Wrong opcode for lowering FABS or FNEG.");
13474
13475  bool IsFABS = (Op.getOpcode() == ISD::FABS);
13476
13477  // If this is a FABS and it has an FNEG user, bail out to fold the combination
13478  // into an FNABS. We'll lower the FABS after that if it is still in use.
13479  if (IsFABS)
13480    for (SDNode *User : Op->uses())
13481      if (User->getOpcode() == ISD::FNEG)
13482        return Op;
13483
13484  SDLoc dl(Op);
13485  MVT VT = Op.getSimpleValueType();
13486
13487  bool IsF128 = (VT == MVT::f128);
13488
13489  // FIXME: Use function attribute "OptimizeForSize" and/or CodeGenOpt::Level to
13490  // decide if we should generate a 16-byte constant mask when we only need 4 or
13491  // 8 bytes for the scalar case.
13492
13493  MVT LogicVT;
13494  MVT EltVT;
13495  unsigned NumElts;
13496
13497  if (VT.isVector()) {
13498    LogicVT = VT;
13499    EltVT = VT.getVectorElementType();
13500    NumElts = VT.getVectorNumElements();
13501  } else if (IsF128) {
13502    // SSE instructions are used for optimized f128 logical operations.
13503    LogicVT = MVT::f128;
13504    EltVT = VT;
13505    NumElts = 1;
13506  } else {
13507    // There are no scalar bitwise logical SSE/AVX instructions, so we
13508    // generate a 16-byte vector constant and logic op even for the scalar case.
13509    // Using a 16-byte mask allows folding the load of the mask with
13510    // the logic op, so it can save (~4 bytes) on code size.
13511    LogicVT = (VT == MVT::f64) ? MVT::v2f64 : MVT::v4f32;
13512    EltVT = VT;
13513    NumElts = (VT == MVT::f64) ? 2 : 4;
13514  }
13515
13516  unsigned EltBits = EltVT.getSizeInBits();
13517  LLVMContext *Context = DAG.getContext();
13518  // For FABS, mask is 0x7f...; for FNEG, mask is 0x80...
13519  APInt MaskElt =
13520    IsFABS ? APInt::getSignedMaxValue(EltBits) : APInt::getSignBit(EltBits);
13521  Constant *C = ConstantInt::get(*Context, MaskElt);
13522  C = ConstantVector::getSplat(NumElts, C);
13523  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13524  SDValue CPIdx = DAG.getConstantPool(C, TLI.getPointerTy(DAG.getDataLayout()));
13525  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
13526  SDValue Mask =
13527      DAG.getLoad(LogicVT, dl, DAG.getEntryNode(), CPIdx,
13528                  MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
13529                  false, false, false, Alignment);
13530
13531  SDValue Op0 = Op.getOperand(0);
13532  bool IsFNABS = !IsFABS && (Op0.getOpcode() == ISD::FABS);
13533  unsigned LogicOp =
13534    IsFABS ? X86ISD::FAND : IsFNABS ? X86ISD::FOR : X86ISD::FXOR;
13535  SDValue Operand = IsFNABS ? Op0.getOperand(0) : Op0;
13536
13537  if (VT.isVector() || IsF128)
13538    return DAG.getNode(LogicOp, dl, LogicVT, Operand, Mask);
13539
13540  // For the scalar case extend to a 128-bit vector, perform the logic op,
13541  // and extract the scalar result back out.
13542  Operand = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LogicVT, Operand);
13543  SDValue LogicNode = DAG.getNode(LogicOp, dl, LogicVT, Operand, Mask);
13544  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, LogicNode,
13545                     DAG.getIntPtrConstant(0, dl));
13546}
13547
13548static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
13549  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13550  LLVMContext *Context = DAG.getContext();
13551  SDValue Op0 = Op.getOperand(0);
13552  SDValue Op1 = Op.getOperand(1);
13553  SDLoc dl(Op);
13554  MVT VT = Op.getSimpleValueType();
13555  MVT SrcVT = Op1.getSimpleValueType();
13556  bool IsF128 = (VT == MVT::f128);
13557
13558  // If second operand is smaller, extend it first.
13559  if (SrcVT.bitsLT(VT)) {
13560    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
13561    SrcVT = VT;
13562  }
13563  // And if it is bigger, shrink it first.
13564  if (SrcVT.bitsGT(VT)) {
13565    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1, dl));
13566    SrcVT = VT;
13567  }
13568
13569  // At this point the operands and the result should have the same
13570  // type, and that won't be f80 since that is not custom lowered.
13571  assert((VT == MVT::f64 || VT == MVT::f32 || IsF128) &&
13572         "Unexpected type in LowerFCOPYSIGN");
13573
13574  const fltSemantics &Sem =
13575      VT == MVT::f64 ? APFloat::IEEEdouble :
13576          (IsF128 ? APFloat::IEEEquad : APFloat::IEEEsingle);
13577  const unsigned SizeInBits = VT.getSizeInBits();
13578
13579  SmallVector<Constant *, 4> CV(
13580      VT == MVT::f64 ? 2 : (IsF128 ? 1 : 4),
13581      ConstantFP::get(*Context, APFloat(Sem, APInt(SizeInBits, 0))));
13582
13583  // First, clear all bits but the sign bit from the second operand (sign).
13584  CV[0] = ConstantFP::get(*Context,
13585                          APFloat(Sem, APInt::getHighBitsSet(SizeInBits, 1)));
13586  Constant *C = ConstantVector::get(CV);
13587  auto PtrVT = TLI.getPointerTy(DAG.getDataLayout());
13588  SDValue CPIdx = DAG.getConstantPool(C, PtrVT, 16);
13589
13590  // Perform all logic operations as 16-byte vectors because there are no
13591  // scalar FP logic instructions in SSE. This allows load folding of the
13592  // constants into the logic instructions.
13593  MVT LogicVT = (VT == MVT::f64) ? MVT::v2f64 : (IsF128 ? MVT::f128 : MVT::v4f32);
13594  SDValue Mask1 =
13595      DAG.getLoad(LogicVT, dl, DAG.getEntryNode(), CPIdx,
13596                  MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
13597                  false, false, false, 16);
13598  if (!IsF128)
13599    Op1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LogicVT, Op1);
13600  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, LogicVT, Op1, Mask1);
13601
13602  // Next, clear the sign bit from the first operand (magnitude).
13603  // If it's a constant, we can clear it here.
13604  if (ConstantFPSDNode *Op0CN = dyn_cast<ConstantFPSDNode>(Op0)) {
13605    APFloat APF = Op0CN->getValueAPF();
13606    // If the magnitude is a positive zero, the sign bit alone is enough.
13607    if (APF.isPosZero())
13608      return IsF128 ? SignBit :
13609          DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SrcVT, SignBit,
13610                      DAG.getIntPtrConstant(0, dl));
13611    APF.clearSign();
13612    CV[0] = ConstantFP::get(*Context, APF);
13613  } else {
13614    CV[0] = ConstantFP::get(
13615        *Context,
13616        APFloat(Sem, APInt::getLowBitsSet(SizeInBits, SizeInBits - 1)));
13617  }
13618  C = ConstantVector::get(CV);
13619  CPIdx = DAG.getConstantPool(C, PtrVT, 16);
13620  SDValue Val =
13621      DAG.getLoad(LogicVT, dl, DAG.getEntryNode(), CPIdx,
13622                  MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
13623                  false, false, false, 16);
13624  // If the magnitude operand wasn't a constant, we need to AND out the sign.
13625  if (!isa<ConstantFPSDNode>(Op0)) {
13626    if (!IsF128)
13627      Op0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LogicVT, Op0);
13628    Val = DAG.getNode(X86ISD::FAND, dl, LogicVT, Op0, Val);
13629  }
13630  // OR the magnitude value with the sign bit.
13631  Val = DAG.getNode(X86ISD::FOR, dl, LogicVT, Val, SignBit);
13632  return IsF128 ? Val :
13633      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SrcVT, Val,
13634                  DAG.getIntPtrConstant(0, dl));
13635}
13636
13637static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) {
13638  SDValue N0 = Op.getOperand(0);
13639  SDLoc dl(Op);
13640  MVT VT = Op.getSimpleValueType();
13641
13642  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
13643  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
13644                                  DAG.getConstant(1, dl, VT));
13645  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, dl, VT));
13646}
13647
13648// Check whether an OR'd tree is PTEST-able.
13649static SDValue LowerVectorAllZeroTest(SDValue Op, const X86Subtarget *Subtarget,
13650                                      SelectionDAG &DAG) {
13651  assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree.");
13652
13653  if (!Subtarget->hasSSE41())
13654    return SDValue();
13655
13656  if (!Op->hasOneUse())
13657    return SDValue();
13658
13659  SDNode *N = Op.getNode();
13660  SDLoc DL(N);
13661
13662  SmallVector<SDValue, 8> Opnds;
13663  DenseMap<SDValue, unsigned> VecInMap;
13664  SmallVector<SDValue, 8> VecIns;
13665  EVT VT = MVT::Other;
13666
13667  // Recognize a special case where a vector is casted into wide integer to
13668  // test all 0s.
13669  Opnds.push_back(N->getOperand(0));
13670  Opnds.push_back(N->getOperand(1));
13671
13672  for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) {
13673    SmallVectorImpl<SDValue>::const_iterator I = Opnds.begin() + Slot;
13674    // BFS traverse all OR'd operands.
13675    if (I->getOpcode() == ISD::OR) {
13676      Opnds.push_back(I->getOperand(0));
13677      Opnds.push_back(I->getOperand(1));
13678      // Re-evaluate the number of nodes to be traversed.
13679      e += 2; // 2 more nodes (LHS and RHS) are pushed.
13680      continue;
13681    }
13682
13683    // Quit if a non-EXTRACT_VECTOR_ELT
13684    if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13685      return SDValue();
13686
13687    // Quit if without a constant index.
13688    SDValue Idx = I->getOperand(1);
13689    if (!isa<ConstantSDNode>(Idx))
13690      return SDValue();
13691
13692    SDValue ExtractedFromVec = I->getOperand(0);
13693    DenseMap<SDValue, unsigned>::iterator M = VecInMap.find(ExtractedFromVec);
13694    if (M == VecInMap.end()) {
13695      VT = ExtractedFromVec.getValueType();
13696      // Quit if not 128/256-bit vector.
13697      if (!VT.is128BitVector() && !VT.is256BitVector())
13698        return SDValue();
13699      // Quit if not the same type.
13700      if (VecInMap.begin() != VecInMap.end() &&
13701          VT != VecInMap.begin()->first.getValueType())
13702        return SDValue();
13703      M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first;
13704      VecIns.push_back(ExtractedFromVec);
13705    }
13706    M->second |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue();
13707  }
13708
13709  assert((VT.is128BitVector() || VT.is256BitVector()) &&
13710         "Not extracted from 128-/256-bit vector.");
13711
13712  unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U;
13713
13714  for (DenseMap<SDValue, unsigned>::const_iterator
13715        I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) {
13716    // Quit if not all elements are used.
13717    if (I->second != FullMask)
13718      return SDValue();
13719  }
13720
13721  MVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
13722
13723  // Cast all vectors into TestVT for PTEST.
13724  for (unsigned i = 0, e = VecIns.size(); i < e; ++i)
13725    VecIns[i] = DAG.getBitcast(TestVT, VecIns[i]);
13726
13727  // If more than one full vectors are evaluated, OR them first before PTEST.
13728  for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) {
13729    // Each iteration will OR 2 nodes and append the result until there is only
13730    // 1 node left, i.e. the final OR'd value of all vectors.
13731    SDValue LHS = VecIns[Slot];
13732    SDValue RHS = VecIns[Slot + 1];
13733    VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS));
13734  }
13735
13736  return DAG.getNode(X86ISD::PTEST, DL, MVT::i32,
13737                     VecIns.back(), VecIns.back());
13738}
13739
13740/// \brief return true if \c Op has a use that doesn't just read flags.
13741static bool hasNonFlagsUse(SDValue Op) {
13742  for (SDNode::use_iterator UI = Op->use_begin(), UE = Op->use_end(); UI != UE;
13743       ++UI) {
13744    SDNode *User = *UI;
13745    unsigned UOpNo = UI.getOperandNo();
13746    if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
13747      // Look pass truncate.
13748      UOpNo = User->use_begin().getOperandNo();
13749      User = *User->use_begin();
13750    }
13751
13752    if (User->getOpcode() != ISD::BRCOND && User->getOpcode() != ISD::SETCC &&
13753        !(User->getOpcode() == ISD::SELECT && UOpNo == 0))
13754      return true;
13755  }
13756  return false;
13757}
13758
13759/// Emit nodes that will be selected as "test Op0,Op0", or something
13760/// equivalent.
13761SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC, SDLoc dl,
13762                                    SelectionDAG &DAG) const {
13763  if (Op.getValueType() == MVT::i1) {
13764    SDValue ExtOp = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i8, Op);
13765    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, ExtOp,
13766                       DAG.getConstant(0, dl, MVT::i8));
13767  }
13768  // CF and OF aren't always set the way we want. Determine which
13769  // of these we need.
13770  bool NeedCF = false;
13771  bool NeedOF = false;
13772  switch (X86CC) {
13773  default: break;
13774  case X86::COND_A: case X86::COND_AE:
13775  case X86::COND_B: case X86::COND_BE:
13776    NeedCF = true;
13777    break;
13778  case X86::COND_G: case X86::COND_GE:
13779  case X86::COND_L: case X86::COND_LE:
13780  case X86::COND_O: case X86::COND_NO: {
13781    // Check if we really need to set the
13782    // Overflow flag. If NoSignedWrap is present
13783    // that is not actually needed.
13784    switch (Op->getOpcode()) {
13785    case ISD::ADD:
13786    case ISD::SUB:
13787    case ISD::MUL:
13788    case ISD::SHL: {
13789      const auto *BinNode = cast<BinaryWithFlagsSDNode>(Op.getNode());
13790      if (BinNode->Flags.hasNoSignedWrap())
13791        break;
13792    }
13793    default:
13794      NeedOF = true;
13795      break;
13796    }
13797    break;
13798  }
13799  }
13800  // See if we can use the EFLAGS value from the operand instead of
13801  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
13802  // we prove that the arithmetic won't overflow, we can't use OF or CF.
13803  if (Op.getResNo() != 0 || NeedOF || NeedCF) {
13804    // Emit a CMP with 0, which is the TEST pattern.
13805    //if (Op.getValueType() == MVT::i1)
13806    //  return DAG.getNode(X86ISD::CMP, dl, MVT::i1, Op,
13807    //                     DAG.getConstant(0, MVT::i1));
13808    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
13809                       DAG.getConstant(0, dl, Op.getValueType()));
13810  }
13811  unsigned Opcode = 0;
13812  unsigned NumOperands = 0;
13813
13814  // Truncate operations may prevent the merge of the SETCC instruction
13815  // and the arithmetic instruction before it. Attempt to truncate the operands
13816  // of the arithmetic instruction and use a reduced bit-width instruction.
13817  bool NeedTruncation = false;
13818  SDValue ArithOp = Op;
13819  if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) {
13820    SDValue Arith = Op->getOperand(0);
13821    // Both the trunc and the arithmetic op need to have one user each.
13822    if (Arith->hasOneUse())
13823      switch (Arith.getOpcode()) {
13824        default: break;
13825        case ISD::ADD:
13826        case ISD::SUB:
13827        case ISD::AND:
13828        case ISD::OR:
13829        case ISD::XOR: {
13830          NeedTruncation = true;
13831          ArithOp = Arith;
13832        }
13833      }
13834  }
13835
13836  // NOTICE: In the code below we use ArithOp to hold the arithmetic operation
13837  // which may be the result of a CAST.  We use the variable 'Op', which is the
13838  // non-casted variable when we check for possible users.
13839  switch (ArithOp.getOpcode()) {
13840  case ISD::ADD:
13841    // Due to an isel shortcoming, be conservative if this add is likely to be
13842    // selected as part of a load-modify-store instruction. When the root node
13843    // in a match is a store, isel doesn't know how to remap non-chain non-flag
13844    // uses of other nodes in the match, such as the ADD in this case. This
13845    // leads to the ADD being left around and reselected, with the result being
13846    // two adds in the output.  Alas, even if none our users are stores, that
13847    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
13848    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
13849    // climbing the DAG back to the root, and it doesn't seem to be worth the
13850    // effort.
13851    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
13852         UE = Op.getNode()->use_end(); UI != UE; ++UI)
13853      if (UI->getOpcode() != ISD::CopyToReg &&
13854          UI->getOpcode() != ISD::SETCC &&
13855          UI->getOpcode() != ISD::STORE)
13856        goto default_case;
13857
13858    if (ConstantSDNode *C =
13859        dyn_cast<ConstantSDNode>(ArithOp.getNode()->getOperand(1))) {
13860      // An add of one will be selected as an INC.
13861      if (C->isOne() && !Subtarget->slowIncDec()) {
13862        Opcode = X86ISD::INC;
13863        NumOperands = 1;
13864        break;
13865      }
13866
13867      // An add of negative one (subtract of one) will be selected as a DEC.
13868      if (C->isAllOnesValue() && !Subtarget->slowIncDec()) {
13869        Opcode = X86ISD::DEC;
13870        NumOperands = 1;
13871        break;
13872      }
13873    }
13874
13875    // Otherwise use a regular EFLAGS-setting add.
13876    Opcode = X86ISD::ADD;
13877    NumOperands = 2;
13878    break;
13879  case ISD::SHL:
13880  case ISD::SRL:
13881    // If we have a constant logical shift that's only used in a comparison
13882    // against zero turn it into an equivalent AND. This allows turning it into
13883    // a TEST instruction later.
13884    if ((X86CC == X86::COND_E || X86CC == X86::COND_NE) && Op->hasOneUse() &&
13885        isa<ConstantSDNode>(Op->getOperand(1)) && !hasNonFlagsUse(Op)) {
13886      EVT VT = Op.getValueType();
13887      unsigned BitWidth = VT.getSizeInBits();
13888      unsigned ShAmt = Op->getConstantOperandVal(1);
13889      if (ShAmt >= BitWidth) // Avoid undefined shifts.
13890        break;
13891      APInt Mask = ArithOp.getOpcode() == ISD::SRL
13892                       ? APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt)
13893                       : APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt);
13894      if (!Mask.isSignedIntN(32)) // Avoid large immediates.
13895        break;
13896      SDValue New = DAG.getNode(ISD::AND, dl, VT, Op->getOperand(0),
13897                                DAG.getConstant(Mask, dl, VT));
13898      DAG.ReplaceAllUsesWith(Op, New);
13899      Op = New;
13900    }
13901    break;
13902
13903  case ISD::AND:
13904    // If the primary and result isn't used, don't bother using X86ISD::AND,
13905    // because a TEST instruction will be better.
13906    if (!hasNonFlagsUse(Op))
13907      break;
13908    // FALL THROUGH
13909  case ISD::SUB:
13910  case ISD::OR:
13911  case ISD::XOR:
13912    // Due to the ISEL shortcoming noted above, be conservative if this op is
13913    // likely to be selected as part of a load-modify-store instruction.
13914    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
13915           UE = Op.getNode()->use_end(); UI != UE; ++UI)
13916      if (UI->getOpcode() == ISD::STORE)
13917        goto default_case;
13918
13919    // Otherwise use a regular EFLAGS-setting instruction.
13920    switch (ArithOp.getOpcode()) {
13921    default: llvm_unreachable("unexpected operator!");
13922    case ISD::SUB: Opcode = X86ISD::SUB; break;
13923    case ISD::XOR: Opcode = X86ISD::XOR; break;
13924    case ISD::AND: Opcode = X86ISD::AND; break;
13925    case ISD::OR: {
13926      if (!NeedTruncation && (X86CC == X86::COND_E || X86CC == X86::COND_NE)) {
13927        SDValue EFLAGS = LowerVectorAllZeroTest(Op, Subtarget, DAG);
13928        if (EFLAGS.getNode())
13929          return EFLAGS;
13930      }
13931      Opcode = X86ISD::OR;
13932      break;
13933    }
13934    }
13935
13936    NumOperands = 2;
13937    break;
13938  case X86ISD::ADD:
13939  case X86ISD::SUB:
13940  case X86ISD::INC:
13941  case X86ISD::DEC:
13942  case X86ISD::OR:
13943  case X86ISD::XOR:
13944  case X86ISD::AND:
13945    return SDValue(Op.getNode(), 1);
13946  default:
13947  default_case:
13948    break;
13949  }
13950
13951  // If we found that truncation is beneficial, perform the truncation and
13952  // update 'Op'.
13953  if (NeedTruncation) {
13954    EVT VT = Op.getValueType();
13955    SDValue WideVal = Op->getOperand(0);
13956    EVT WideVT = WideVal.getValueType();
13957    unsigned ConvertedOp = 0;
13958    // Use a target machine opcode to prevent further DAGCombine
13959    // optimizations that may separate the arithmetic operations
13960    // from the setcc node.
13961    switch (WideVal.getOpcode()) {
13962      default: break;
13963      case ISD::ADD: ConvertedOp = X86ISD::ADD; break;
13964      case ISD::SUB: ConvertedOp = X86ISD::SUB; break;
13965      case ISD::AND: ConvertedOp = X86ISD::AND; break;
13966      case ISD::OR:  ConvertedOp = X86ISD::OR;  break;
13967      case ISD::XOR: ConvertedOp = X86ISD::XOR; break;
13968    }
13969
13970    if (ConvertedOp) {
13971      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13972      if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) {
13973        SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0));
13974        SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1));
13975        Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1);
13976      }
13977    }
13978  }
13979
13980  if (Opcode == 0)
13981    // Emit a CMP with 0, which is the TEST pattern.
13982    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
13983                       DAG.getConstant(0, dl, Op.getValueType()));
13984
13985  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
13986  SmallVector<SDValue, 4> Ops(Op->op_begin(), Op->op_begin() + NumOperands);
13987
13988  SDValue New = DAG.getNode(Opcode, dl, VTs, Ops);
13989  DAG.ReplaceAllUsesWith(Op, New);
13990  return SDValue(New.getNode(), 1);
13991}
13992
13993/// Emit nodes that will be selected as "cmp Op0,Op1", or something
13994/// equivalent.
13995SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
13996                                   SDLoc dl, SelectionDAG &DAG) const {
13997  if (isNullConstant(Op1))
13998    return EmitTest(Op0, X86CC, dl, DAG);
13999
14000  assert(!(isa<ConstantSDNode>(Op1) && Op0.getValueType() == MVT::i1) &&
14001         "Unexpected comparison operation for MVT::i1 operands");
14002
14003  if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
14004       Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
14005    // Do the comparison at i32 if it's smaller, besides the Atom case.
14006    // This avoids subregister aliasing issues. Keep the smaller reference
14007    // if we're optimizing for size, however, as that'll allow better folding
14008    // of memory operations.
14009    if (Op0.getValueType() != MVT::i32 && Op0.getValueType() != MVT::i64 &&
14010        !DAG.getMachineFunction().getFunction()->optForMinSize() &&
14011        !Subtarget->isAtom()) {
14012      unsigned ExtendOp =
14013          isX86CCUnsigned(X86CC) ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
14014      Op0 = DAG.getNode(ExtendOp, dl, MVT::i32, Op0);
14015      Op1 = DAG.getNode(ExtendOp, dl, MVT::i32, Op1);
14016    }
14017    // Use SUB instead of CMP to enable CSE between SUB and CMP.
14018    SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32);
14019    SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs,
14020                              Op0, Op1);
14021    return SDValue(Sub.getNode(), 1);
14022  }
14023  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
14024}
14025
14026/// Convert a comparison if required by the subtarget.
14027SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
14028                                                 SelectionDAG &DAG) const {
14029  // If the subtarget does not support the FUCOMI instruction, floating-point
14030  // comparisons have to be converted.
14031  if (Subtarget->hasCMov() ||
14032      Cmp.getOpcode() != X86ISD::CMP ||
14033      !Cmp.getOperand(0).getValueType().isFloatingPoint() ||
14034      !Cmp.getOperand(1).getValueType().isFloatingPoint())
14035    return Cmp;
14036
14037  // The instruction selector will select an FUCOM instruction instead of
14038  // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
14039  // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
14040  // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
14041  SDLoc dl(Cmp);
14042  SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
14043  SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
14044  SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
14045                            DAG.getConstant(8, dl, MVT::i8));
14046  SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
14047
14048  // Some 64-bit targets lack SAHF support, but they do support FCOMI.
14049  assert(Subtarget->hasLAHFSAHF() && "Target doesn't support SAHF or FCOMI?");
14050  return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
14051}
14052
14053/// The minimum architected relative accuracy is 2^-12. We need one
14054/// Newton-Raphson step to have a good float result (24 bits of precision).
14055SDValue X86TargetLowering::getRsqrtEstimate(SDValue Op,
14056                                            DAGCombinerInfo &DCI,
14057                                            unsigned &RefinementSteps,
14058                                            bool &UseOneConstNR) const {
14059  EVT VT = Op.getValueType();
14060  const char *RecipOp;
14061
14062  // SSE1 has rsqrtss and rsqrtps. AVX adds a 256-bit variant for rsqrtps.
14063  // TODO: Add support for AVX512 (v16f32).
14064  // It is likely not profitable to do this for f64 because a double-precision
14065  // rsqrt estimate with refinement on x86 prior to FMA requires at least 16
14066  // instructions: convert to single, rsqrtss, convert back to double, refine
14067  // (3 steps = at least 13 insts). If an 'rsqrtsd' variant was added to the ISA
14068  // along with FMA, this could be a throughput win.
14069  if (VT == MVT::f32 && Subtarget->hasSSE1())
14070    RecipOp = "sqrtf";
14071  else if ((VT == MVT::v4f32 && Subtarget->hasSSE1()) ||
14072           (VT == MVT::v8f32 && Subtarget->hasAVX()))
14073    RecipOp = "vec-sqrtf";
14074  else
14075    return SDValue();
14076
14077  TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals;
14078  if (!Recips.isEnabled(RecipOp))
14079    return SDValue();
14080
14081  RefinementSteps = Recips.getRefinementSteps(RecipOp);
14082  UseOneConstNR = false;
14083  return DCI.DAG.getNode(X86ISD::FRSQRT, SDLoc(Op), VT, Op);
14084}
14085
14086/// The minimum architected relative accuracy is 2^-12. We need one
14087/// Newton-Raphson step to have a good float result (24 bits of precision).
14088SDValue X86TargetLowering::getRecipEstimate(SDValue Op,
14089                                            DAGCombinerInfo &DCI,
14090                                            unsigned &RefinementSteps) const {
14091  EVT VT = Op.getValueType();
14092  const char *RecipOp;
14093
14094  // SSE1 has rcpss and rcpps. AVX adds a 256-bit variant for rcpps.
14095  // TODO: Add support for AVX512 (v16f32).
14096  // It is likely not profitable to do this for f64 because a double-precision
14097  // reciprocal estimate with refinement on x86 prior to FMA requires
14098  // 15 instructions: convert to single, rcpss, convert back to double, refine
14099  // (3 steps = 12 insts). If an 'rcpsd' variant was added to the ISA
14100  // along with FMA, this could be a throughput win.
14101  if (VT == MVT::f32 && Subtarget->hasSSE1())
14102    RecipOp = "divf";
14103  else if ((VT == MVT::v4f32 && Subtarget->hasSSE1()) ||
14104           (VT == MVT::v8f32 && Subtarget->hasAVX()))
14105    RecipOp = "vec-divf";
14106  else
14107    return SDValue();
14108
14109  TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals;
14110  if (!Recips.isEnabled(RecipOp))
14111    return SDValue();
14112
14113  RefinementSteps = Recips.getRefinementSteps(RecipOp);
14114  return DCI.DAG.getNode(X86ISD::FRCP, SDLoc(Op), VT, Op);
14115}
14116
14117/// If we have at least two divisions that use the same divisor, convert to
14118/// multplication by a reciprocal. This may need to be adjusted for a given
14119/// CPU if a division's cost is not at least twice the cost of a multiplication.
14120/// This is because we still need one division to calculate the reciprocal and
14121/// then we need two multiplies by that reciprocal as replacements for the
14122/// original divisions.
14123unsigned X86TargetLowering::combineRepeatedFPDivisors() const {
14124  return 2;
14125}
14126
14127/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
14128/// if it's possible.
14129SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
14130                                     SDLoc dl, SelectionDAG &DAG) const {
14131  SDValue Op0 = And.getOperand(0);
14132  SDValue Op1 = And.getOperand(1);
14133  if (Op0.getOpcode() == ISD::TRUNCATE)
14134    Op0 = Op0.getOperand(0);
14135  if (Op1.getOpcode() == ISD::TRUNCATE)
14136    Op1 = Op1.getOperand(0);
14137
14138  SDValue LHS, RHS;
14139  if (Op1.getOpcode() == ISD::SHL)
14140    std::swap(Op0, Op1);
14141  if (Op0.getOpcode() == ISD::SHL) {
14142    if (isOneConstant(Op0.getOperand(0))) {
14143        // If we looked past a truncate, check that it's only truncating away
14144        // known zeros.
14145        unsigned BitWidth = Op0.getValueSizeInBits();
14146        unsigned AndBitWidth = And.getValueSizeInBits();
14147        if (BitWidth > AndBitWidth) {
14148          APInt Zeros, Ones;
14149          DAG.computeKnownBits(Op0, Zeros, Ones);
14150          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
14151            return SDValue();
14152        }
14153        LHS = Op1;
14154        RHS = Op0.getOperand(1);
14155      }
14156  } else if (Op1.getOpcode() == ISD::Constant) {
14157    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
14158    uint64_t AndRHSVal = AndRHS->getZExtValue();
14159    SDValue AndLHS = Op0;
14160
14161    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
14162      LHS = AndLHS.getOperand(0);
14163      RHS = AndLHS.getOperand(1);
14164    }
14165
14166    // Use BT if the immediate can't be encoded in a TEST instruction.
14167    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
14168      LHS = AndLHS;
14169      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), dl, LHS.getValueType());
14170    }
14171  }
14172
14173  if (LHS.getNode()) {
14174    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
14175    // instruction.  Since the shift amount is in-range-or-undefined, we know
14176    // that doing a bittest on the i32 value is ok.  We extend to i32 because
14177    // the encoding for the i16 version is larger than the i32 version.
14178    // Also promote i16 to i32 for performance / code size reason.
14179    if (LHS.getValueType() == MVT::i8 ||
14180        LHS.getValueType() == MVT::i16)
14181      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
14182
14183    // If the operand types disagree, extend the shift amount to match.  Since
14184    // BT ignores high bits (like shifts) we can use anyextend.
14185    if (LHS.getValueType() != RHS.getValueType())
14186      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
14187
14188    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
14189    X86::CondCode Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
14190    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
14191                       DAG.getConstant(Cond, dl, MVT::i8), BT);
14192  }
14193
14194  return SDValue();
14195}
14196
14197/// \brief - Turns an ISD::CondCode into a value suitable for SSE floating point
14198/// mask CMPs.
14199static int translateX86FSETCC(ISD::CondCode SetCCOpcode, SDValue &Op0,
14200                              SDValue &Op1) {
14201  unsigned SSECC;
14202  bool Swap = false;
14203
14204  // SSE Condition code mapping:
14205  //  0 - EQ
14206  //  1 - LT
14207  //  2 - LE
14208  //  3 - UNORD
14209  //  4 - NEQ
14210  //  5 - NLT
14211  //  6 - NLE
14212  //  7 - ORD
14213  switch (SetCCOpcode) {
14214  default: llvm_unreachable("Unexpected SETCC condition");
14215  case ISD::SETOEQ:
14216  case ISD::SETEQ:  SSECC = 0; break;
14217  case ISD::SETOGT:
14218  case ISD::SETGT:  Swap = true; // Fallthrough
14219  case ISD::SETLT:
14220  case ISD::SETOLT: SSECC = 1; break;
14221  case ISD::SETOGE:
14222  case ISD::SETGE:  Swap = true; // Fallthrough
14223  case ISD::SETLE:
14224  case ISD::SETOLE: SSECC = 2; break;
14225  case ISD::SETUO:  SSECC = 3; break;
14226  case ISD::SETUNE:
14227  case ISD::SETNE:  SSECC = 4; break;
14228  case ISD::SETULE: Swap = true; // Fallthrough
14229  case ISD::SETUGE: SSECC = 5; break;
14230  case ISD::SETULT: Swap = true; // Fallthrough
14231  case ISD::SETUGT: SSECC = 6; break;
14232  case ISD::SETO:   SSECC = 7; break;
14233  case ISD::SETUEQ:
14234  case ISD::SETONE: SSECC = 8; break;
14235  }
14236  if (Swap)
14237    std::swap(Op0, Op1);
14238
14239  return SSECC;
14240}
14241
14242// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
14243// ones, and then concatenate the result back.
14244static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
14245  MVT VT = Op.getSimpleValueType();
14246
14247  assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC &&
14248         "Unsupported value type for operation");
14249
14250  unsigned NumElems = VT.getVectorNumElements();
14251  SDLoc dl(Op);
14252  SDValue CC = Op.getOperand(2);
14253
14254  // Extract the LHS vectors
14255  SDValue LHS = Op.getOperand(0);
14256  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
14257  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
14258
14259  // Extract the RHS vectors
14260  SDValue RHS = Op.getOperand(1);
14261  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
14262  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
14263
14264  // Issue the operation on the smaller types and concatenate the result back
14265  MVT EltVT = VT.getVectorElementType();
14266  MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
14267  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
14268                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
14269                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
14270}
14271
14272static SDValue LowerBoolVSETCC_AVX512(SDValue Op, SelectionDAG &DAG) {
14273  SDValue Op0 = Op.getOperand(0);
14274  SDValue Op1 = Op.getOperand(1);
14275  SDValue CC = Op.getOperand(2);
14276  MVT VT = Op.getSimpleValueType();
14277  SDLoc dl(Op);
14278
14279  assert(Op0.getSimpleValueType().getVectorElementType() == MVT::i1 &&
14280         "Unexpected type for boolean compare operation");
14281  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
14282  SDValue NotOp0 = DAG.getNode(ISD::XOR, dl, VT, Op0,
14283                               DAG.getConstant(-1, dl, VT));
14284  SDValue NotOp1 = DAG.getNode(ISD::XOR, dl, VT, Op1,
14285                               DAG.getConstant(-1, dl, VT));
14286  switch (SetCCOpcode) {
14287  default: llvm_unreachable("Unexpected SETCC condition");
14288  case ISD::SETEQ:
14289    // (x == y) -> ~(x ^ y)
14290    return DAG.getNode(ISD::XOR, dl, VT,
14291                       DAG.getNode(ISD::XOR, dl, VT, Op0, Op1),
14292                       DAG.getConstant(-1, dl, VT));
14293  case ISD::SETNE:
14294    // (x != y) -> (x ^ y)
14295    return DAG.getNode(ISD::XOR, dl, VT, Op0, Op1);
14296  case ISD::SETUGT:
14297  case ISD::SETGT:
14298    // (x > y) -> (x & ~y)
14299    return DAG.getNode(ISD::AND, dl, VT, Op0, NotOp1);
14300  case ISD::SETULT:
14301  case ISD::SETLT:
14302    // (x < y) -> (~x & y)
14303    return DAG.getNode(ISD::AND, dl, VT, NotOp0, Op1);
14304  case ISD::SETULE:
14305  case ISD::SETLE:
14306    // (x <= y) -> (~x | y)
14307    return DAG.getNode(ISD::OR, dl, VT, NotOp0, Op1);
14308  case ISD::SETUGE:
14309  case ISD::SETGE:
14310    // (x >=y) -> (x | ~y)
14311    return DAG.getNode(ISD::OR, dl, VT, Op0, NotOp1);
14312  }
14313}
14314
14315static SDValue LowerIntVSETCC_AVX512(SDValue Op, SelectionDAG &DAG,
14316                                     const X86Subtarget *Subtarget) {
14317  SDValue Op0 = Op.getOperand(0);
14318  SDValue Op1 = Op.getOperand(1);
14319  SDValue CC = Op.getOperand(2);
14320  MVT VT = Op.getSimpleValueType();
14321  SDLoc dl(Op);
14322
14323  assert(Op0.getSimpleValueType().getVectorElementType().getSizeInBits() >= 8 &&
14324         Op.getSimpleValueType().getVectorElementType() == MVT::i1 &&
14325         "Cannot set masked compare for this operation");
14326
14327  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
14328  unsigned  Opc = 0;
14329  bool Unsigned = false;
14330  bool Swap = false;
14331  unsigned SSECC;
14332  switch (SetCCOpcode) {
14333  default: llvm_unreachable("Unexpected SETCC condition");
14334  case ISD::SETNE:  SSECC = 4; break;
14335  case ISD::SETEQ:  Opc = X86ISD::PCMPEQM; break;
14336  case ISD::SETUGT: SSECC = 6; Unsigned = true; break;
14337  case ISD::SETLT:  Swap = true; //fall-through
14338  case ISD::SETGT:  Opc = X86ISD::PCMPGTM; break;
14339  case ISD::SETULT: SSECC = 1; Unsigned = true; break;
14340  case ISD::SETUGE: SSECC = 5; Unsigned = true; break; //NLT
14341  case ISD::SETGE:  Swap = true; SSECC = 2; break; // LE + swap
14342  case ISD::SETULE: Unsigned = true; //fall-through
14343  case ISD::SETLE:  SSECC = 2; break;
14344  }
14345
14346  if (Swap)
14347    std::swap(Op0, Op1);
14348  if (Opc)
14349    return DAG.getNode(Opc, dl, VT, Op0, Op1);
14350  Opc = Unsigned ? X86ISD::CMPMU: X86ISD::CMPM;
14351  return DAG.getNode(Opc, dl, VT, Op0, Op1,
14352                     DAG.getConstant(SSECC, dl, MVT::i8));
14353}
14354
14355/// \brief Try to turn a VSETULT into a VSETULE by modifying its second
14356/// operand \p Op1.  If non-trivial (for example because it's not constant)
14357/// return an empty value.
14358static SDValue ChangeVSETULTtoVSETULE(SDLoc dl, SDValue Op1, SelectionDAG &DAG)
14359{
14360  BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op1.getNode());
14361  if (!BV)
14362    return SDValue();
14363
14364  MVT VT = Op1.getSimpleValueType();
14365  MVT EVT = VT.getVectorElementType();
14366  unsigned n = VT.getVectorNumElements();
14367  SmallVector<SDValue, 8> ULTOp1;
14368
14369  for (unsigned i = 0; i < n; ++i) {
14370    ConstantSDNode *Elt = dyn_cast<ConstantSDNode>(BV->getOperand(i));
14371    if (!Elt || Elt->isOpaque() || Elt->getSimpleValueType(0) != EVT)
14372      return SDValue();
14373
14374    // Avoid underflow.
14375    APInt Val = Elt->getAPIntValue();
14376    if (Val == 0)
14377      return SDValue();
14378
14379    ULTOp1.push_back(DAG.getConstant(Val - 1, dl, EVT));
14380  }
14381
14382  return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, ULTOp1);
14383}
14384
14385static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget,
14386                           SelectionDAG &DAG) {
14387  SDValue Op0 = Op.getOperand(0);
14388  SDValue Op1 = Op.getOperand(1);
14389  SDValue CC = Op.getOperand(2);
14390  MVT VT = Op.getSimpleValueType();
14391  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
14392  bool isFP = Op.getOperand(1).getSimpleValueType().isFloatingPoint();
14393  SDLoc dl(Op);
14394
14395  if (isFP) {
14396#ifndef NDEBUG
14397    MVT EltVT = Op0.getSimpleValueType().getVectorElementType();
14398    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
14399#endif
14400
14401    unsigned SSECC = translateX86FSETCC(SetCCOpcode, Op0, Op1);
14402    unsigned Opc = X86ISD::CMPP;
14403    if (Subtarget->hasAVX512() && VT.getVectorElementType() == MVT::i1) {
14404      assert(VT.getVectorNumElements() <= 16);
14405      Opc = X86ISD::CMPM;
14406    }
14407    // In the two special cases we can't handle, emit two comparisons.
14408    if (SSECC == 8) {
14409      unsigned CC0, CC1;
14410      unsigned CombineOpc;
14411      if (SetCCOpcode == ISD::SETUEQ) {
14412        CC0 = 3; CC1 = 0; CombineOpc = ISD::OR;
14413      } else {
14414        assert(SetCCOpcode == ISD::SETONE);
14415        CC0 = 7; CC1 = 4; CombineOpc = ISD::AND;
14416      }
14417
14418      SDValue Cmp0 = DAG.getNode(Opc, dl, VT, Op0, Op1,
14419                                 DAG.getConstant(CC0, dl, MVT::i8));
14420      SDValue Cmp1 = DAG.getNode(Opc, dl, VT, Op0, Op1,
14421                                 DAG.getConstant(CC1, dl, MVT::i8));
14422      return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1);
14423    }
14424    // Handle all other FP comparisons here.
14425    return DAG.getNode(Opc, dl, VT, Op0, Op1,
14426                       DAG.getConstant(SSECC, dl, MVT::i8));
14427  }
14428
14429  MVT VTOp0 = Op0.getSimpleValueType();
14430  assert(VTOp0 == Op1.getSimpleValueType() &&
14431         "Expected operands with same type!");
14432  assert(VT.getVectorNumElements() == VTOp0.getVectorNumElements() &&
14433         "Invalid number of packed elements for source and destination!");
14434
14435  if (VT.is128BitVector() && VTOp0.is256BitVector()) {
14436    // On non-AVX512 targets, a vector of MVT::i1 is promoted by the type
14437    // legalizer to a wider vector type.  In the case of 'vsetcc' nodes, the
14438    // legalizer firstly checks if the first operand in input to the setcc has
14439    // a legal type. If so, then it promotes the return type to that same type.
14440    // Otherwise, the return type is promoted to the 'next legal type' which,
14441    // for a vector of MVT::i1 is always a 128-bit integer vector type.
14442    //
14443    // We reach this code only if the following two conditions are met:
14444    // 1. Both return type and operand type have been promoted to wider types
14445    //    by the type legalizer.
14446    // 2. The original operand type has been promoted to a 256-bit vector.
14447    //
14448    // Note that condition 2. only applies for AVX targets.
14449    SDValue NewOp = DAG.getSetCC(dl, VTOp0, Op0, Op1, SetCCOpcode);
14450    return DAG.getZExtOrTrunc(NewOp, dl, VT);
14451  }
14452
14453  // The non-AVX512 code below works under the assumption that source and
14454  // destination types are the same.
14455  assert((Subtarget->hasAVX512() || (VT == VTOp0)) &&
14456         "Value types for source and destination must be the same!");
14457
14458  // Break 256-bit integer vector compare into smaller ones.
14459  if (VT.is256BitVector() && !Subtarget->hasInt256())
14460    return Lower256IntVSETCC(Op, DAG);
14461
14462  MVT OpVT = Op1.getSimpleValueType();
14463  if (OpVT.getVectorElementType() == MVT::i1)
14464    return LowerBoolVSETCC_AVX512(Op, DAG);
14465
14466  bool MaskResult = (VT.getVectorElementType() == MVT::i1);
14467  if (Subtarget->hasAVX512()) {
14468    if (Op1.getSimpleValueType().is512BitVector() ||
14469        (Subtarget->hasBWI() && Subtarget->hasVLX()) ||
14470        (MaskResult && OpVT.getVectorElementType().getSizeInBits() >= 32))
14471      return LowerIntVSETCC_AVX512(Op, DAG, Subtarget);
14472
14473    // In AVX-512 architecture setcc returns mask with i1 elements,
14474    // But there is no compare instruction for i8 and i16 elements in KNL.
14475    // We are not talking about 512-bit operands in this case, these
14476    // types are illegal.
14477    if (MaskResult &&
14478        (OpVT.getVectorElementType().getSizeInBits() < 32 &&
14479         OpVT.getVectorElementType().getSizeInBits() >= 8))
14480      return DAG.getNode(ISD::TRUNCATE, dl, VT,
14481                         DAG.getNode(ISD::SETCC, dl, OpVT, Op0, Op1, CC));
14482  }
14483
14484  // Lower using XOP integer comparisons.
14485  if ((VT == MVT::v16i8 || VT == MVT::v8i16 ||
14486       VT == MVT::v4i32 || VT == MVT::v2i64) && Subtarget->hasXOP()) {
14487    // Translate compare code to XOP PCOM compare mode.
14488    unsigned CmpMode = 0;
14489    switch (SetCCOpcode) {
14490    default: llvm_unreachable("Unexpected SETCC condition");
14491    case ISD::SETULT:
14492    case ISD::SETLT: CmpMode = 0x00; break;
14493    case ISD::SETULE:
14494    case ISD::SETLE: CmpMode = 0x01; break;
14495    case ISD::SETUGT:
14496    case ISD::SETGT: CmpMode = 0x02; break;
14497    case ISD::SETUGE:
14498    case ISD::SETGE: CmpMode = 0x03; break;
14499    case ISD::SETEQ: CmpMode = 0x04; break;
14500    case ISD::SETNE: CmpMode = 0x05; break;
14501    }
14502
14503    // Are we comparing unsigned or signed integers?
14504    unsigned Opc = ISD::isUnsignedIntSetCC(SetCCOpcode)
14505      ? X86ISD::VPCOMU : X86ISD::VPCOM;
14506
14507    return DAG.getNode(Opc, dl, VT, Op0, Op1,
14508                       DAG.getConstant(CmpMode, dl, MVT::i8));
14509  }
14510
14511  // We are handling one of the integer comparisons here.  Since SSE only has
14512  // GT and EQ comparisons for integer, swapping operands and multiple
14513  // operations may be required for some comparisons.
14514  unsigned Opc;
14515  bool Swap = false, Invert = false, FlipSigns = false, MinMax = false;
14516  bool Subus = false;
14517
14518  switch (SetCCOpcode) {
14519  default: llvm_unreachable("Unexpected SETCC condition");
14520  case ISD::SETNE:  Invert = true;
14521  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
14522  case ISD::SETLT:  Swap = true;
14523  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
14524  case ISD::SETGE:  Swap = true;
14525  case ISD::SETLE:  Opc = X86ISD::PCMPGT;
14526                    Invert = true; break;
14527  case ISD::SETULT: Swap = true;
14528  case ISD::SETUGT: Opc = X86ISD::PCMPGT;
14529                    FlipSigns = true; break;
14530  case ISD::SETUGE: Swap = true;
14531  case ISD::SETULE: Opc = X86ISD::PCMPGT;
14532                    FlipSigns = true; Invert = true; break;
14533  }
14534
14535  // Special case: Use min/max operations for SETULE/SETUGE
14536  MVT VET = VT.getVectorElementType();
14537  bool hasMinMax =
14538       (Subtarget->hasSSE41() && (VET >= MVT::i8 && VET <= MVT::i32))
14539    || (Subtarget->hasSSE2()  && (VET == MVT::i8));
14540
14541  if (hasMinMax) {
14542    switch (SetCCOpcode) {
14543    default: break;
14544    case ISD::SETULE: Opc = ISD::UMIN; MinMax = true; break;
14545    case ISD::SETUGE: Opc = ISD::UMAX; MinMax = true; break;
14546    }
14547
14548    if (MinMax) { Swap = false; Invert = false; FlipSigns = false; }
14549  }
14550
14551  bool hasSubus = Subtarget->hasSSE2() && (VET == MVT::i8 || VET == MVT::i16);
14552  if (!MinMax && hasSubus) {
14553    // As another special case, use PSUBUS[BW] when it's profitable. E.g. for
14554    // Op0 u<= Op1:
14555    //   t = psubus Op0, Op1
14556    //   pcmpeq t, <0..0>
14557    switch (SetCCOpcode) {
14558    default: break;
14559    case ISD::SETULT: {
14560      // If the comparison is against a constant we can turn this into a
14561      // setule.  With psubus, setule does not require a swap.  This is
14562      // beneficial because the constant in the register is no longer
14563      // destructed as the destination so it can be hoisted out of a loop.
14564      // Only do this pre-AVX since vpcmp* is no longer destructive.
14565      if (Subtarget->hasAVX())
14566        break;
14567      SDValue ULEOp1 = ChangeVSETULTtoVSETULE(dl, Op1, DAG);
14568      if (ULEOp1.getNode()) {
14569        Op1 = ULEOp1;
14570        Subus = true; Invert = false; Swap = false;
14571      }
14572      break;
14573    }
14574    // Psubus is better than flip-sign because it requires no inversion.
14575    case ISD::SETUGE: Subus = true; Invert = false; Swap = true;  break;
14576    case ISD::SETULE: Subus = true; Invert = false; Swap = false; break;
14577    }
14578
14579    if (Subus) {
14580      Opc = X86ISD::SUBUS;
14581      FlipSigns = false;
14582    }
14583  }
14584
14585  if (Swap)
14586    std::swap(Op0, Op1);
14587
14588  // Check that the operation in question is available (most are plain SSE2,
14589  // but PCMPGTQ and PCMPEQQ have different requirements).
14590  if (VT == MVT::v2i64) {
14591    if (Opc == X86ISD::PCMPGT && !Subtarget->hasSSE42()) {
14592      assert(Subtarget->hasSSE2() && "Don't know how to lower!");
14593
14594      // First cast everything to the right type.
14595      Op0 = DAG.getBitcast(MVT::v4i32, Op0);
14596      Op1 = DAG.getBitcast(MVT::v4i32, Op1);
14597
14598      // Since SSE has no unsigned integer comparisons, we need to flip the sign
14599      // bits of the inputs before performing those operations. The lower
14600      // compare is always unsigned.
14601      SDValue SB;
14602      if (FlipSigns) {
14603        SB = DAG.getConstant(0x80000000U, dl, MVT::v4i32);
14604      } else {
14605        SDValue Sign = DAG.getConstant(0x80000000U, dl, MVT::i32);
14606        SDValue Zero = DAG.getConstant(0x00000000U, dl, MVT::i32);
14607        SB = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
14608                         Sign, Zero, Sign, Zero);
14609      }
14610      Op0 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op0, SB);
14611      Op1 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op1, SB);
14612
14613      // Emulate PCMPGTQ with (hi1 > hi2) | ((hi1 == hi2) & (lo1 > lo2))
14614      SDValue GT = DAG.getNode(X86ISD::PCMPGT, dl, MVT::v4i32, Op0, Op1);
14615      SDValue EQ = DAG.getNode(X86ISD::PCMPEQ, dl, MVT::v4i32, Op0, Op1);
14616
14617      // Create masks for only the low parts/high parts of the 64 bit integers.
14618      static const int MaskHi[] = { 1, 1, 3, 3 };
14619      static const int MaskLo[] = { 0, 0, 2, 2 };
14620      SDValue EQHi = DAG.getVectorShuffle(MVT::v4i32, dl, EQ, EQ, MaskHi);
14621      SDValue GTLo = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskLo);
14622      SDValue GTHi = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskHi);
14623
14624      SDValue Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, EQHi, GTLo);
14625      Result = DAG.getNode(ISD::OR, dl, MVT::v4i32, Result, GTHi);
14626
14627      if (Invert)
14628        Result = DAG.getNOT(dl, Result, MVT::v4i32);
14629
14630      return DAG.getBitcast(VT, Result);
14631    }
14632
14633    if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41()) {
14634      // If pcmpeqq is missing but pcmpeqd is available synthesize pcmpeqq with
14635      // pcmpeqd + pshufd + pand.
14636      assert(Subtarget->hasSSE2() && !FlipSigns && "Don't know how to lower!");
14637
14638      // First cast everything to the right type.
14639      Op0 = DAG.getBitcast(MVT::v4i32, Op0);
14640      Op1 = DAG.getBitcast(MVT::v4i32, Op1);
14641
14642      // Do the compare.
14643      SDValue Result = DAG.getNode(Opc, dl, MVT::v4i32, Op0, Op1);
14644
14645      // Make sure the lower and upper halves are both all-ones.
14646      static const int Mask[] = { 1, 0, 3, 2 };
14647      SDValue Shuf = DAG.getVectorShuffle(MVT::v4i32, dl, Result, Result, Mask);
14648      Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, Result, Shuf);
14649
14650      if (Invert)
14651        Result = DAG.getNOT(dl, Result, MVT::v4i32);
14652
14653      return DAG.getBitcast(VT, Result);
14654    }
14655  }
14656
14657  // Since SSE has no unsigned integer comparisons, we need to flip the sign
14658  // bits of the inputs before performing those operations.
14659  if (FlipSigns) {
14660    MVT EltVT = VT.getVectorElementType();
14661    SDValue SB = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()), dl,
14662                                 VT);
14663    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SB);
14664    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SB);
14665  }
14666
14667  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
14668
14669  // If the logical-not of the result is required, perform that now.
14670  if (Invert)
14671    Result = DAG.getNOT(dl, Result, VT);
14672
14673  if (MinMax)
14674    Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Op0, Result);
14675
14676  if (Subus)
14677    Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Result,
14678                         getZeroVector(VT, Subtarget, DAG, dl));
14679
14680  return Result;
14681}
14682
14683SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
14684
14685  MVT VT = Op.getSimpleValueType();
14686
14687  if (VT.isVector()) return LowerVSETCC(Op, Subtarget, DAG);
14688
14689  assert(((!Subtarget->hasAVX512() && VT == MVT::i8) || (VT == MVT::i1))
14690         && "SetCC type must be 8-bit or 1-bit integer");
14691  SDValue Op0 = Op.getOperand(0);
14692  SDValue Op1 = Op.getOperand(1);
14693  SDLoc dl(Op);
14694  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
14695
14696  // Optimize to BT if possible.
14697  // Lower (X & (1 << N)) == 0 to BT(X, N).
14698  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
14699  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
14700  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
14701      isNullConstant(Op1) &&
14702      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
14703    if (SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG)) {
14704      if (VT == MVT::i1)
14705        return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewSetCC);
14706      return NewSetCC;
14707    }
14708  }
14709
14710  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
14711  // these.
14712  if ((isOneConstant(Op1) || isNullConstant(Op1)) &&
14713      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
14714
14715    // If the input is a setcc, then reuse the input setcc or use a new one with
14716    // the inverted condition.
14717    if (Op0.getOpcode() == X86ISD::SETCC) {
14718      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
14719      bool Invert = (CC == ISD::SETNE) ^ isNullConstant(Op1);
14720      if (!Invert)
14721        return Op0;
14722
14723      CCode = X86::GetOppositeBranchCondition(CCode);
14724      SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
14725                                  DAG.getConstant(CCode, dl, MVT::i8),
14726                                  Op0.getOperand(1));
14727      if (VT == MVT::i1)
14728        return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, SetCC);
14729      return SetCC;
14730    }
14731  }
14732  if ((Op0.getValueType() == MVT::i1) && isOneConstant(Op1) &&
14733      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
14734
14735    ISD::CondCode NewCC = ISD::getSetCCInverse(CC, true);
14736    return DAG.getSetCC(dl, VT, Op0, DAG.getConstant(0, dl, MVT::i1), NewCC);
14737  }
14738
14739  bool isFP = Op1.getSimpleValueType().isFloatingPoint();
14740  unsigned X86CC = TranslateX86CC(CC, dl, isFP, Op0, Op1, DAG);
14741  if (X86CC == X86::COND_INVALID)
14742    return SDValue();
14743
14744  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, dl, DAG);
14745  EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
14746  SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
14747                              DAG.getConstant(X86CC, dl, MVT::i8), EFLAGS);
14748  if (VT == MVT::i1)
14749    return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, SetCC);
14750  return SetCC;
14751}
14752
14753SDValue X86TargetLowering::LowerSETCCE(SDValue Op, SelectionDAG &DAG) const {
14754  SDValue LHS = Op.getOperand(0);
14755  SDValue RHS = Op.getOperand(1);
14756  SDValue Carry = Op.getOperand(2);
14757  SDValue Cond = Op.getOperand(3);
14758  SDLoc DL(Op);
14759
14760  assert(LHS.getSimpleValueType().isInteger() && "SETCCE is integer only.");
14761  X86::CondCode CC = TranslateIntegerX86CC(cast<CondCodeSDNode>(Cond)->get());
14762
14763  assert(Carry.getOpcode() != ISD::CARRY_FALSE);
14764  SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
14765  SDValue Cmp = DAG.getNode(X86ISD::SBB, DL, VTs, LHS, RHS, Carry);
14766  return DAG.getNode(X86ISD::SETCC, DL, Op.getValueType(),
14767                     DAG.getConstant(CC, DL, MVT::i8), Cmp.getValue(1));
14768}
14769
14770// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
14771static bool isX86LogicalCmp(SDValue Op) {
14772  unsigned Opc = Op.getNode()->getOpcode();
14773  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
14774      Opc == X86ISD::SAHF)
14775    return true;
14776  if (Op.getResNo() == 1 &&
14777      (Opc == X86ISD::ADD ||
14778       Opc == X86ISD::SUB ||
14779       Opc == X86ISD::ADC ||
14780       Opc == X86ISD::SBB ||
14781       Opc == X86ISD::SMUL ||
14782       Opc == X86ISD::UMUL ||
14783       Opc == X86ISD::INC ||
14784       Opc == X86ISD::DEC ||
14785       Opc == X86ISD::OR ||
14786       Opc == X86ISD::XOR ||
14787       Opc == X86ISD::AND))
14788    return true;
14789
14790  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
14791    return true;
14792
14793  return false;
14794}
14795
14796static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) {
14797  if (V.getOpcode() != ISD::TRUNCATE)
14798    return false;
14799
14800  SDValue VOp0 = V.getOperand(0);
14801  unsigned InBits = VOp0.getValueSizeInBits();
14802  unsigned Bits = V.getValueSizeInBits();
14803  return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits));
14804}
14805
14806SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
14807  bool addTest = true;
14808  SDValue Cond  = Op.getOperand(0);
14809  SDValue Op1 = Op.getOperand(1);
14810  SDValue Op2 = Op.getOperand(2);
14811  SDLoc DL(Op);
14812  MVT VT = Op1.getSimpleValueType();
14813  SDValue CC;
14814
14815  // Lower FP selects into a CMP/AND/ANDN/OR sequence when the necessary SSE ops
14816  // are available or VBLENDV if AVX is available.
14817  // Otherwise FP cmovs get lowered into a less efficient branch sequence later.
14818  if (Cond.getOpcode() == ISD::SETCC &&
14819      ((Subtarget->hasSSE2() && (VT == MVT::f32 || VT == MVT::f64)) ||
14820       (Subtarget->hasSSE1() && VT == MVT::f32)) &&
14821      VT == Cond.getOperand(0).getSimpleValueType() && Cond->hasOneUse()) {
14822    SDValue CondOp0 = Cond.getOperand(0), CondOp1 = Cond.getOperand(1);
14823    int SSECC = translateX86FSETCC(
14824        cast<CondCodeSDNode>(Cond.getOperand(2))->get(), CondOp0, CondOp1);
14825
14826    if (SSECC != 8) {
14827      if (Subtarget->hasAVX512()) {
14828        SDValue Cmp = DAG.getNode(X86ISD::FSETCC, DL, MVT::i1, CondOp0, CondOp1,
14829                                  DAG.getConstant(SSECC, DL, MVT::i8));
14830        return DAG.getNode(X86ISD::SELECT, DL, VT, Cmp, Op1, Op2);
14831      }
14832
14833      SDValue Cmp = DAG.getNode(X86ISD::FSETCC, DL, VT, CondOp0, CondOp1,
14834                                DAG.getConstant(SSECC, DL, MVT::i8));
14835
14836      // If we have AVX, we can use a variable vector select (VBLENDV) instead
14837      // of 3 logic instructions for size savings and potentially speed.
14838      // Unfortunately, there is no scalar form of VBLENDV.
14839
14840      // If either operand is a constant, don't try this. We can expect to
14841      // optimize away at least one of the logic instructions later in that
14842      // case, so that sequence would be faster than a variable blend.
14843
14844      // BLENDV was introduced with SSE 4.1, but the 2 register form implicitly
14845      // uses XMM0 as the selection register. That may need just as many
14846      // instructions as the AND/ANDN/OR sequence due to register moves, so
14847      // don't bother.
14848
14849      if (Subtarget->hasAVX() &&
14850          !isa<ConstantFPSDNode>(Op1) && !isa<ConstantFPSDNode>(Op2)) {
14851
14852        // Convert to vectors, do a VSELECT, and convert back to scalar.
14853        // All of the conversions should be optimized away.
14854
14855        MVT VecVT = VT == MVT::f32 ? MVT::v4f32 : MVT::v2f64;
14856        SDValue VOp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Op1);
14857        SDValue VOp2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Op2);
14858        SDValue VCmp = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Cmp);
14859
14860        MVT VCmpVT = VT == MVT::f32 ? MVT::v4i32 : MVT::v2i64;
14861        VCmp = DAG.getBitcast(VCmpVT, VCmp);
14862
14863        SDValue VSel = DAG.getNode(ISD::VSELECT, DL, VecVT, VCmp, VOp1, VOp2);
14864
14865        return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
14866                           VSel, DAG.getIntPtrConstant(0, DL));
14867      }
14868      SDValue AndN = DAG.getNode(X86ISD::FANDN, DL, VT, Cmp, Op2);
14869      SDValue And = DAG.getNode(X86ISD::FAND, DL, VT, Cmp, Op1);
14870      return DAG.getNode(X86ISD::FOR, DL, VT, AndN, And);
14871    }
14872  }
14873
14874  if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
14875    SDValue Op1Scalar;
14876    if (ISD::isBuildVectorOfConstantSDNodes(Op1.getNode()))
14877      Op1Scalar = ConvertI1VectorToInteger(Op1, DAG);
14878    else if (Op1.getOpcode() == ISD::BITCAST && Op1.getOperand(0))
14879      Op1Scalar = Op1.getOperand(0);
14880    SDValue Op2Scalar;
14881    if (ISD::isBuildVectorOfConstantSDNodes(Op2.getNode()))
14882      Op2Scalar = ConvertI1VectorToInteger(Op2, DAG);
14883    else if (Op2.getOpcode() == ISD::BITCAST && Op2.getOperand(0))
14884      Op2Scalar = Op2.getOperand(0);
14885    if (Op1Scalar.getNode() && Op2Scalar.getNode()) {
14886      SDValue newSelect = DAG.getNode(ISD::SELECT, DL,
14887                                      Op1Scalar.getValueType(),
14888                                      Cond, Op1Scalar, Op2Scalar);
14889      if (newSelect.getValueSizeInBits() == VT.getSizeInBits())
14890        return DAG.getBitcast(VT, newSelect);
14891      SDValue ExtVec = DAG.getBitcast(MVT::v8i1, newSelect);
14892      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, ExtVec,
14893                         DAG.getIntPtrConstant(0, DL));
14894    }
14895  }
14896
14897  if (VT == MVT::v4i1 || VT == MVT::v2i1) {
14898    SDValue zeroConst = DAG.getIntPtrConstant(0, DL);
14899    Op1 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, MVT::v8i1,
14900                      DAG.getUNDEF(MVT::v8i1), Op1, zeroConst);
14901    Op2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, MVT::v8i1,
14902                      DAG.getUNDEF(MVT::v8i1), Op2, zeroConst);
14903    SDValue newSelect = DAG.getNode(ISD::SELECT, DL, MVT::v8i1,
14904                                    Cond, Op1, Op2);
14905    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, newSelect, zeroConst);
14906  }
14907
14908  if (Cond.getOpcode() == ISD::SETCC) {
14909    SDValue NewCond = LowerSETCC(Cond, DAG);
14910    if (NewCond.getNode())
14911      Cond = NewCond;
14912  }
14913
14914  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
14915  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
14916  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
14917  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
14918  if (Cond.getOpcode() == X86ISD::SETCC &&
14919      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
14920      isNullConstant(Cond.getOperand(1).getOperand(1))) {
14921    SDValue Cmp = Cond.getOperand(1);
14922
14923    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
14924
14925    if ((isAllOnesConstant(Op1) || isAllOnesConstant(Op2)) &&
14926        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
14927      SDValue Y = isAllOnesConstant(Op2) ? Op1 : Op2;
14928
14929      SDValue CmpOp0 = Cmp.getOperand(0);
14930      // Apply further optimizations for special cases
14931      // (select (x != 0), -1, 0) -> neg & sbb
14932      // (select (x == 0), 0, -1) -> neg & sbb
14933      if (isNullConstant(Y) &&
14934            (isAllOnesConstant(Op1) == (CondCode == X86::COND_NE))) {
14935          SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
14936          SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs,
14937                                    DAG.getConstant(0, DL,
14938                                                    CmpOp0.getValueType()),
14939                                    CmpOp0);
14940          SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
14941                                    DAG.getConstant(X86::COND_B, DL, MVT::i8),
14942                                    SDValue(Neg.getNode(), 1));
14943          return Res;
14944        }
14945
14946      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
14947                        CmpOp0, DAG.getConstant(1, DL, CmpOp0.getValueType()));
14948      Cmp = ConvertCmpIfNecessary(Cmp, DAG);
14949
14950      SDValue Res =   // Res = 0 or -1.
14951        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
14952                    DAG.getConstant(X86::COND_B, DL, MVT::i8), Cmp);
14953
14954      if (isAllOnesConstant(Op1) != (CondCode == X86::COND_E))
14955        Res = DAG.getNOT(DL, Res, Res.getValueType());
14956
14957      if (!isNullConstant(Op2))
14958        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
14959      return Res;
14960    }
14961  }
14962
14963  // Look past (and (setcc_carry (cmp ...)), 1).
14964  if (Cond.getOpcode() == ISD::AND &&
14965      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY &&
14966      isOneConstant(Cond.getOperand(1)))
14967    Cond = Cond.getOperand(0);
14968
14969  // If condition flag is set by a X86ISD::CMP, then use it as the condition
14970  // setting operand in place of the X86ISD::SETCC.
14971  unsigned CondOpcode = Cond.getOpcode();
14972  if (CondOpcode == X86ISD::SETCC ||
14973      CondOpcode == X86ISD::SETCC_CARRY) {
14974    CC = Cond.getOperand(0);
14975
14976    SDValue Cmp = Cond.getOperand(1);
14977    unsigned Opc = Cmp.getOpcode();
14978    MVT VT = Op.getSimpleValueType();
14979
14980    bool IllegalFPCMov = false;
14981    if (VT.isFloatingPoint() && !VT.isVector() &&
14982        !isScalarFPTypeInSSEReg(VT))  // FPStack?
14983      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
14984
14985    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
14986        Opc == X86ISD::BT) { // FIXME
14987      Cond = Cmp;
14988      addTest = false;
14989    }
14990  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
14991             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
14992             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
14993              Cond.getOperand(0).getValueType() != MVT::i8)) {
14994    SDValue LHS = Cond.getOperand(0);
14995    SDValue RHS = Cond.getOperand(1);
14996    unsigned X86Opcode;
14997    unsigned X86Cond;
14998    SDVTList VTs;
14999    switch (CondOpcode) {
15000    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
15001    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
15002    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
15003    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
15004    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
15005    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
15006    default: llvm_unreachable("unexpected overflowing operator");
15007    }
15008    if (CondOpcode == ISD::UMULO)
15009      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
15010                          MVT::i32);
15011    else
15012      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
15013
15014    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
15015
15016    if (CondOpcode == ISD::UMULO)
15017      Cond = X86Op.getValue(2);
15018    else
15019      Cond = X86Op.getValue(1);
15020
15021    CC = DAG.getConstant(X86Cond, DL, MVT::i8);
15022    addTest = false;
15023  }
15024
15025  if (addTest) {
15026    // Look past the truncate if the high bits are known zero.
15027    if (isTruncWithZeroHighBitsInput(Cond, DAG))
15028      Cond = Cond.getOperand(0);
15029
15030    // We know the result of AND is compared against zero. Try to match
15031    // it to BT.
15032    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
15033      if (SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG)) {
15034        CC = NewSetCC.getOperand(0);
15035        Cond = NewSetCC.getOperand(1);
15036        addTest = false;
15037      }
15038    }
15039  }
15040
15041  if (addTest) {
15042    CC = DAG.getConstant(X86::COND_NE, DL, MVT::i8);
15043    Cond = EmitTest(Cond, X86::COND_NE, DL, DAG);
15044  }
15045
15046  // a <  b ? -1 :  0 -> RES = ~setcc_carry
15047  // a <  b ?  0 : -1 -> RES = setcc_carry
15048  // a >= b ? -1 :  0 -> RES = setcc_carry
15049  // a >= b ?  0 : -1 -> RES = ~setcc_carry
15050  if (Cond.getOpcode() == X86ISD::SUB) {
15051    Cond = ConvertCmpIfNecessary(Cond, DAG);
15052    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
15053
15054    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
15055        (isAllOnesConstant(Op1) || isAllOnesConstant(Op2)) &&
15056        (isNullConstant(Op1) || isNullConstant(Op2))) {
15057      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
15058                                DAG.getConstant(X86::COND_B, DL, MVT::i8),
15059                                Cond);
15060      if (isAllOnesConstant(Op1) != (CondCode == X86::COND_B))
15061        return DAG.getNOT(DL, Res, Res.getValueType());
15062      return Res;
15063    }
15064  }
15065
15066  // X86 doesn't have an i8 cmov. If both operands are the result of a truncate
15067  // widen the cmov and push the truncate through. This avoids introducing a new
15068  // branch during isel and doesn't add any extensions.
15069  if (Op.getValueType() == MVT::i8 &&
15070      Op1.getOpcode() == ISD::TRUNCATE && Op2.getOpcode() == ISD::TRUNCATE) {
15071    SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0);
15072    if (T1.getValueType() == T2.getValueType() &&
15073        // Blacklist CopyFromReg to avoid partial register stalls.
15074        T1.getOpcode() != ISD::CopyFromReg && T2.getOpcode()!=ISD::CopyFromReg){
15075      SDVTList VTs = DAG.getVTList(T1.getValueType(), MVT::Glue);
15076      SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, VTs, T2, T1, CC, Cond);
15077      return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov);
15078    }
15079  }
15080
15081  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
15082  // condition is true.
15083  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
15084  SDValue Ops[] = { Op2, Op1, CC, Cond };
15085  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops);
15086}
15087
15088static SDValue LowerSIGN_EXTEND_AVX512(SDValue Op,
15089                                       const X86Subtarget *Subtarget,
15090                                       SelectionDAG &DAG) {
15091  MVT VT = Op->getSimpleValueType(0);
15092  SDValue In = Op->getOperand(0);
15093  MVT InVT = In.getSimpleValueType();
15094  MVT VTElt = VT.getVectorElementType();
15095  MVT InVTElt = InVT.getVectorElementType();
15096  SDLoc dl(Op);
15097
15098  // SKX processor
15099  if ((InVTElt == MVT::i1) &&
15100      (((Subtarget->hasBWI() && Subtarget->hasVLX() &&
15101        VT.getSizeInBits() <= 256 && VTElt.getSizeInBits() <= 16)) ||
15102
15103       ((Subtarget->hasBWI() && VT.is512BitVector() &&
15104        VTElt.getSizeInBits() <= 16)) ||
15105
15106       ((Subtarget->hasDQI() && Subtarget->hasVLX() &&
15107        VT.getSizeInBits() <= 256 && VTElt.getSizeInBits() >= 32)) ||
15108
15109       ((Subtarget->hasDQI() && VT.is512BitVector() &&
15110        VTElt.getSizeInBits() >= 32))))
15111    return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
15112
15113  unsigned int NumElts = VT.getVectorNumElements();
15114
15115  if (NumElts != 8 && NumElts != 16 && !Subtarget->hasBWI())
15116    return SDValue();
15117
15118  if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1) {
15119    if (In.getOpcode() == X86ISD::VSEXT || In.getOpcode() == X86ISD::VZEXT)
15120      return DAG.getNode(In.getOpcode(), dl, VT, In.getOperand(0));
15121    return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
15122  }
15123
15124  assert (InVT.getVectorElementType() == MVT::i1 && "Unexpected vector type");
15125  MVT ExtVT = NumElts == 8 ? MVT::v8i64 : MVT::v16i32;
15126  SDValue NegOne =
15127   DAG.getConstant(APInt::getAllOnesValue(ExtVT.getScalarSizeInBits()), dl,
15128                   ExtVT);
15129  SDValue Zero =
15130   DAG.getConstant(APInt::getNullValue(ExtVT.getScalarSizeInBits()), dl, ExtVT);
15131
15132  SDValue V = DAG.getNode(ISD::VSELECT, dl, ExtVT, In, NegOne, Zero);
15133  if (VT.is512BitVector())
15134    return V;
15135  return DAG.getNode(X86ISD::VTRUNC, dl, VT, V);
15136}
15137
15138static SDValue LowerSIGN_EXTEND_VECTOR_INREG(SDValue Op,
15139                                             const X86Subtarget *Subtarget,
15140                                             SelectionDAG &DAG) {
15141  SDValue In = Op->getOperand(0);
15142  MVT VT = Op->getSimpleValueType(0);
15143  MVT InVT = In.getSimpleValueType();
15144  assert(VT.getSizeInBits() == InVT.getSizeInBits());
15145
15146  MVT InSVT = InVT.getVectorElementType();
15147  assert(VT.getVectorElementType().getSizeInBits() > InSVT.getSizeInBits());
15148
15149  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
15150    return SDValue();
15151  if (InSVT != MVT::i32 && InSVT != MVT::i16 && InSVT != MVT::i8)
15152    return SDValue();
15153
15154  SDLoc dl(Op);
15155
15156  // SSE41 targets can use the pmovsx* instructions directly.
15157  if (Subtarget->hasSSE41())
15158    return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
15159
15160  // pre-SSE41 targets unpack lower lanes and then sign-extend using SRAI.
15161  SDValue Curr = In;
15162  MVT CurrVT = InVT;
15163
15164  // As SRAI is only available on i16/i32 types, we expand only up to i32
15165  // and handle i64 separately.
15166  while (CurrVT != VT && CurrVT.getVectorElementType() != MVT::i32) {
15167    Curr = DAG.getNode(X86ISD::UNPCKL, dl, CurrVT, DAG.getUNDEF(CurrVT), Curr);
15168    MVT CurrSVT = MVT::getIntegerVT(CurrVT.getScalarSizeInBits() * 2);
15169    CurrVT = MVT::getVectorVT(CurrSVT, CurrVT.getVectorNumElements() / 2);
15170    Curr = DAG.getBitcast(CurrVT, Curr);
15171  }
15172
15173  SDValue SignExt = Curr;
15174  if (CurrVT != InVT) {
15175    unsigned SignExtShift =
15176        CurrVT.getVectorElementType().getSizeInBits() - InSVT.getSizeInBits();
15177    SignExt = DAG.getNode(X86ISD::VSRAI, dl, CurrVT, Curr,
15178                          DAG.getConstant(SignExtShift, dl, MVT::i8));
15179  }
15180
15181  if (CurrVT == VT)
15182    return SignExt;
15183
15184  if (VT == MVT::v2i64 && CurrVT == MVT::v4i32) {
15185    SDValue Sign = DAG.getNode(X86ISD::VSRAI, dl, CurrVT, Curr,
15186                               DAG.getConstant(31, dl, MVT::i8));
15187    SDValue Ext = DAG.getVectorShuffle(CurrVT, dl, SignExt, Sign, {0, 4, 1, 5});
15188    return DAG.getBitcast(VT, Ext);
15189  }
15190
15191  return SDValue();
15192}
15193
15194static SDValue LowerSIGN_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
15195                                SelectionDAG &DAG) {
15196  MVT VT = Op->getSimpleValueType(0);
15197  SDValue In = Op->getOperand(0);
15198  MVT InVT = In.getSimpleValueType();
15199  SDLoc dl(Op);
15200
15201  if (VT.is512BitVector() || InVT.getVectorElementType() == MVT::i1)
15202    return LowerSIGN_EXTEND_AVX512(Op, Subtarget, DAG);
15203
15204  if ((VT != MVT::v4i64 || InVT != MVT::v4i32) &&
15205      (VT != MVT::v8i32 || InVT != MVT::v8i16) &&
15206      (VT != MVT::v16i16 || InVT != MVT::v16i8))
15207    return SDValue();
15208
15209  if (Subtarget->hasInt256())
15210    return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
15211
15212  // Optimize vectors in AVX mode
15213  // Sign extend  v8i16 to v8i32 and
15214  //              v4i32 to v4i64
15215  //
15216  // Divide input vector into two parts
15217  // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
15218  // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
15219  // concat the vectors to original VT
15220
15221  unsigned NumElems = InVT.getVectorNumElements();
15222  SDValue Undef = DAG.getUNDEF(InVT);
15223
15224  SmallVector<int,8> ShufMask1(NumElems, -1);
15225  for (unsigned i = 0; i != NumElems/2; ++i)
15226    ShufMask1[i] = i;
15227
15228  SDValue OpLo = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask1[0]);
15229
15230  SmallVector<int,8> ShufMask2(NumElems, -1);
15231  for (unsigned i = 0; i != NumElems/2; ++i)
15232    ShufMask2[i] = i + NumElems/2;
15233
15234  SDValue OpHi = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask2[0]);
15235
15236  MVT HalfVT = MVT::getVectorVT(VT.getVectorElementType(),
15237                                VT.getVectorNumElements()/2);
15238
15239  OpLo = DAG.getNode(X86ISD::VSEXT, dl, HalfVT, OpLo);
15240  OpHi = DAG.getNode(X86ISD::VSEXT, dl, HalfVT, OpHi);
15241
15242  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
15243}
15244
15245// Lower vector extended loads using a shuffle. If SSSE3 is not available we
15246// may emit an illegal shuffle but the expansion is still better than scalar
15247// code. We generate X86ISD::VSEXT for SEXTLOADs if it's available, otherwise
15248// we'll emit a shuffle and a arithmetic shift.
15249// FIXME: Is the expansion actually better than scalar code? It doesn't seem so.
15250// TODO: It is possible to support ZExt by zeroing the undef values during
15251// the shuffle phase or after the shuffle.
15252static SDValue LowerExtendedLoad(SDValue Op, const X86Subtarget *Subtarget,
15253                                 SelectionDAG &DAG) {
15254  MVT RegVT = Op.getSimpleValueType();
15255  assert(RegVT.isVector() && "We only custom lower vector sext loads.");
15256  assert(RegVT.isInteger() &&
15257         "We only custom lower integer vector sext loads.");
15258
15259  // Nothing useful we can do without SSE2 shuffles.
15260  assert(Subtarget->hasSSE2() && "We only custom lower sext loads with SSE2.");
15261
15262  LoadSDNode *Ld = cast<LoadSDNode>(Op.getNode());
15263  SDLoc dl(Ld);
15264  EVT MemVT = Ld->getMemoryVT();
15265  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15266  unsigned RegSz = RegVT.getSizeInBits();
15267
15268  ISD::LoadExtType Ext = Ld->getExtensionType();
15269
15270  assert((Ext == ISD::EXTLOAD || Ext == ISD::SEXTLOAD)
15271         && "Only anyext and sext are currently implemented.");
15272  assert(MemVT != RegVT && "Cannot extend to the same type");
15273  assert(MemVT.isVector() && "Must load a vector from memory");
15274
15275  unsigned NumElems = RegVT.getVectorNumElements();
15276  unsigned MemSz = MemVT.getSizeInBits();
15277  assert(RegSz > MemSz && "Register size must be greater than the mem size");
15278
15279  if (Ext == ISD::SEXTLOAD && RegSz == 256 && !Subtarget->hasInt256()) {
15280    // The only way in which we have a legal 256-bit vector result but not the
15281    // integer 256-bit operations needed to directly lower a sextload is if we
15282    // have AVX1 but not AVX2. In that case, we can always emit a sextload to
15283    // a 128-bit vector and a normal sign_extend to 256-bits that should get
15284    // correctly legalized. We do this late to allow the canonical form of
15285    // sextload to persist throughout the rest of the DAG combiner -- it wants
15286    // to fold together any extensions it can, and so will fuse a sign_extend
15287    // of an sextload into a sextload targeting a wider value.
15288    SDValue Load;
15289    if (MemSz == 128) {
15290      // Just switch this to a normal load.
15291      assert(TLI.isTypeLegal(MemVT) && "If the memory type is a 128-bit type, "
15292                                       "it must be a legal 128-bit vector "
15293                                       "type!");
15294      Load = DAG.getLoad(MemVT, dl, Ld->getChain(), Ld->getBasePtr(),
15295                  Ld->getPointerInfo(), Ld->isVolatile(), Ld->isNonTemporal(),
15296                  Ld->isInvariant(), Ld->getAlignment());
15297    } else {
15298      assert(MemSz < 128 &&
15299             "Can't extend a type wider than 128 bits to a 256 bit vector!");
15300      // Do an sext load to a 128-bit vector type. We want to use the same
15301      // number of elements, but elements half as wide. This will end up being
15302      // recursively lowered by this routine, but will succeed as we definitely
15303      // have all the necessary features if we're using AVX1.
15304      EVT HalfEltVT =
15305          EVT::getIntegerVT(*DAG.getContext(), RegVT.getScalarSizeInBits() / 2);
15306      EVT HalfVecVT = EVT::getVectorVT(*DAG.getContext(), HalfEltVT, NumElems);
15307      Load =
15308          DAG.getExtLoad(Ext, dl, HalfVecVT, Ld->getChain(), Ld->getBasePtr(),
15309                         Ld->getPointerInfo(), MemVT, Ld->isVolatile(),
15310                         Ld->isNonTemporal(), Ld->isInvariant(),
15311                         Ld->getAlignment());
15312    }
15313
15314    // Replace chain users with the new chain.
15315    assert(Load->getNumValues() == 2 && "Loads must carry a chain!");
15316    DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Load.getValue(1));
15317
15318    // Finally, do a normal sign-extend to the desired register.
15319    return DAG.getSExtOrTrunc(Load, dl, RegVT);
15320  }
15321
15322  // All sizes must be a power of two.
15323  assert(isPowerOf2_32(RegSz * MemSz * NumElems) &&
15324         "Non-power-of-two elements are not custom lowered!");
15325
15326  // Attempt to load the original value using scalar loads.
15327  // Find the largest scalar type that divides the total loaded size.
15328  MVT SclrLoadTy = MVT::i8;
15329  for (MVT Tp : MVT::integer_valuetypes()) {
15330    if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) {
15331      SclrLoadTy = Tp;
15332    }
15333  }
15334
15335  // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
15336  if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 &&
15337      (64 <= MemSz))
15338    SclrLoadTy = MVT::f64;
15339
15340  // Calculate the number of scalar loads that we need to perform
15341  // in order to load our vector from memory.
15342  unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits();
15343
15344  assert((Ext != ISD::SEXTLOAD || NumLoads == 1) &&
15345         "Can only lower sext loads with a single scalar load!");
15346
15347  unsigned loadRegZize = RegSz;
15348  if (Ext == ISD::SEXTLOAD && RegSz >= 256)
15349    loadRegZize = 128;
15350
15351  // Represent our vector as a sequence of elements which are the
15352  // largest scalar that we can load.
15353  EVT LoadUnitVecVT = EVT::getVectorVT(
15354      *DAG.getContext(), SclrLoadTy, loadRegZize / SclrLoadTy.getSizeInBits());
15355
15356  // Represent the data using the same element type that is stored in
15357  // memory. In practice, we ''widen'' MemVT.
15358  EVT WideVecVT =
15359      EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
15360                       loadRegZize / MemVT.getScalarSizeInBits());
15361
15362  assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() &&
15363         "Invalid vector type");
15364
15365  // We can't shuffle using an illegal type.
15366  assert(TLI.isTypeLegal(WideVecVT) &&
15367         "We only lower types that form legal widened vector types");
15368
15369  SmallVector<SDValue, 8> Chains;
15370  SDValue Ptr = Ld->getBasePtr();
15371  SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits() / 8, dl,
15372                                      TLI.getPointerTy(DAG.getDataLayout()));
15373  SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
15374
15375  for (unsigned i = 0; i < NumLoads; ++i) {
15376    // Perform a single load.
15377    SDValue ScalarLoad =
15378        DAG.getLoad(SclrLoadTy, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
15379                    Ld->isVolatile(), Ld->isNonTemporal(), Ld->isInvariant(),
15380                    Ld->getAlignment());
15381    Chains.push_back(ScalarLoad.getValue(1));
15382    // Create the first element type using SCALAR_TO_VECTOR in order to avoid
15383    // another round of DAGCombining.
15384    if (i == 0)
15385      Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
15386    else
15387      Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
15388                        ScalarLoad, DAG.getIntPtrConstant(i, dl));
15389
15390    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
15391  }
15392
15393  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
15394
15395  // Bitcast the loaded value to a vector of the original element type, in
15396  // the size of the target vector type.
15397  SDValue SlicedVec = DAG.getBitcast(WideVecVT, Res);
15398  unsigned SizeRatio = RegSz / MemSz;
15399
15400  if (Ext == ISD::SEXTLOAD) {
15401    // If we have SSE4.1, we can directly emit a VSEXT node.
15402    if (Subtarget->hasSSE41()) {
15403      SDValue Sext = DAG.getNode(X86ISD::VSEXT, dl, RegVT, SlicedVec);
15404      DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF);
15405      return Sext;
15406    }
15407
15408    // Otherwise we'll use SIGN_EXTEND_VECTOR_INREG to sign extend the lowest
15409    // lanes.
15410    assert(TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND_VECTOR_INREG, RegVT) &&
15411           "We can't implement a sext load without SIGN_EXTEND_VECTOR_INREG!");
15412
15413    SDValue Shuff = DAG.getSignExtendVectorInReg(SlicedVec, dl, RegVT);
15414    DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF);
15415    return Shuff;
15416  }
15417
15418  // Redistribute the loaded elements into the different locations.
15419  SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
15420  for (unsigned i = 0; i != NumElems; ++i)
15421    ShuffleVec[i * SizeRatio] = i;
15422
15423  SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
15424                                       DAG.getUNDEF(WideVecVT), &ShuffleVec[0]);
15425
15426  // Bitcast to the requested type.
15427  Shuff = DAG.getBitcast(RegVT, Shuff);
15428  DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF);
15429  return Shuff;
15430}
15431
15432// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
15433// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
15434// from the AND / OR.
15435static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
15436  Opc = Op.getOpcode();
15437  if (Opc != ISD::OR && Opc != ISD::AND)
15438    return false;
15439  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
15440          Op.getOperand(0).hasOneUse() &&
15441          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
15442          Op.getOperand(1).hasOneUse());
15443}
15444
15445// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
15446// 1 and that the SETCC node has a single use.
15447static bool isXor1OfSetCC(SDValue Op) {
15448  if (Op.getOpcode() != ISD::XOR)
15449    return false;
15450  if (isOneConstant(Op.getOperand(1)))
15451    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
15452           Op.getOperand(0).hasOneUse();
15453  return false;
15454}
15455
15456SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
15457  bool addTest = true;
15458  SDValue Chain = Op.getOperand(0);
15459  SDValue Cond  = Op.getOperand(1);
15460  SDValue Dest  = Op.getOperand(2);
15461  SDLoc dl(Op);
15462  SDValue CC;
15463  bool Inverted = false;
15464
15465  if (Cond.getOpcode() == ISD::SETCC) {
15466    // Check for setcc([su]{add,sub,mul}o == 0).
15467    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
15468        isNullConstant(Cond.getOperand(1)) &&
15469        Cond.getOperand(0).getResNo() == 1 &&
15470        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
15471         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
15472         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
15473         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
15474         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
15475         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
15476      Inverted = true;
15477      Cond = Cond.getOperand(0);
15478    } else {
15479      SDValue NewCond = LowerSETCC(Cond, DAG);
15480      if (NewCond.getNode())
15481        Cond = NewCond;
15482    }
15483  }
15484#if 0
15485  // FIXME: LowerXALUO doesn't handle these!!
15486  else if (Cond.getOpcode() == X86ISD::ADD  ||
15487           Cond.getOpcode() == X86ISD::SUB  ||
15488           Cond.getOpcode() == X86ISD::SMUL ||
15489           Cond.getOpcode() == X86ISD::UMUL)
15490    Cond = LowerXALUO(Cond, DAG);
15491#endif
15492
15493  // Look pass (and (setcc_carry (cmp ...)), 1).
15494  if (Cond.getOpcode() == ISD::AND &&
15495      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY &&
15496      isOneConstant(Cond.getOperand(1)))
15497    Cond = Cond.getOperand(0);
15498
15499  // If condition flag is set by a X86ISD::CMP, then use it as the condition
15500  // setting operand in place of the X86ISD::SETCC.
15501  unsigned CondOpcode = Cond.getOpcode();
15502  if (CondOpcode == X86ISD::SETCC ||
15503      CondOpcode == X86ISD::SETCC_CARRY) {
15504    CC = Cond.getOperand(0);
15505
15506    SDValue Cmp = Cond.getOperand(1);
15507    unsigned Opc = Cmp.getOpcode();
15508    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
15509    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
15510      Cond = Cmp;
15511      addTest = false;
15512    } else {
15513      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
15514      default: break;
15515      case X86::COND_O:
15516      case X86::COND_B:
15517        // These can only come from an arithmetic instruction with overflow,
15518        // e.g. SADDO, UADDO.
15519        Cond = Cond.getNode()->getOperand(1);
15520        addTest = false;
15521        break;
15522      }
15523    }
15524  }
15525  CondOpcode = Cond.getOpcode();
15526  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
15527      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
15528      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
15529       Cond.getOperand(0).getValueType() != MVT::i8)) {
15530    SDValue LHS = Cond.getOperand(0);
15531    SDValue RHS = Cond.getOperand(1);
15532    unsigned X86Opcode;
15533    unsigned X86Cond;
15534    SDVTList VTs;
15535    // Keep this in sync with LowerXALUO, otherwise we might create redundant
15536    // instructions that can't be removed afterwards (i.e. X86ISD::ADD and
15537    // X86ISD::INC).
15538    switch (CondOpcode) {
15539    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
15540    case ISD::SADDO:
15541      if (isOneConstant(RHS)) {
15542          X86Opcode = X86ISD::INC; X86Cond = X86::COND_O;
15543          break;
15544        }
15545      X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
15546    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
15547    case ISD::SSUBO:
15548      if (isOneConstant(RHS)) {
15549          X86Opcode = X86ISD::DEC; X86Cond = X86::COND_O;
15550          break;
15551        }
15552      X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
15553    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
15554    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
15555    default: llvm_unreachable("unexpected overflowing operator");
15556    }
15557    if (Inverted)
15558      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
15559    if (CondOpcode == ISD::UMULO)
15560      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
15561                          MVT::i32);
15562    else
15563      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
15564
15565    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
15566
15567    if (CondOpcode == ISD::UMULO)
15568      Cond = X86Op.getValue(2);
15569    else
15570      Cond = X86Op.getValue(1);
15571
15572    CC = DAG.getConstant(X86Cond, dl, MVT::i8);
15573    addTest = false;
15574  } else {
15575    unsigned CondOpc;
15576    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
15577      SDValue Cmp = Cond.getOperand(0).getOperand(1);
15578      if (CondOpc == ISD::OR) {
15579        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
15580        // two branches instead of an explicit OR instruction with a
15581        // separate test.
15582        if (Cmp == Cond.getOperand(1).getOperand(1) &&
15583            isX86LogicalCmp(Cmp)) {
15584          CC = Cond.getOperand(0).getOperand(0);
15585          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
15586                              Chain, Dest, CC, Cmp);
15587          CC = Cond.getOperand(1).getOperand(0);
15588          Cond = Cmp;
15589          addTest = false;
15590        }
15591      } else { // ISD::AND
15592        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
15593        // two branches instead of an explicit AND instruction with a
15594        // separate test. However, we only do this if this block doesn't
15595        // have a fall-through edge, because this requires an explicit
15596        // jmp when the condition is false.
15597        if (Cmp == Cond.getOperand(1).getOperand(1) &&
15598            isX86LogicalCmp(Cmp) &&
15599            Op.getNode()->hasOneUse()) {
15600          X86::CondCode CCode =
15601            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
15602          CCode = X86::GetOppositeBranchCondition(CCode);
15603          CC = DAG.getConstant(CCode, dl, MVT::i8);
15604          SDNode *User = *Op.getNode()->use_begin();
15605          // Look for an unconditional branch following this conditional branch.
15606          // We need this because we need to reverse the successors in order
15607          // to implement FCMP_OEQ.
15608          if (User->getOpcode() == ISD::BR) {
15609            SDValue FalseBB = User->getOperand(1);
15610            SDNode *NewBR =
15611              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
15612            assert(NewBR == User);
15613            (void)NewBR;
15614            Dest = FalseBB;
15615
15616            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
15617                                Chain, Dest, CC, Cmp);
15618            X86::CondCode CCode =
15619              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
15620            CCode = X86::GetOppositeBranchCondition(CCode);
15621            CC = DAG.getConstant(CCode, dl, MVT::i8);
15622            Cond = Cmp;
15623            addTest = false;
15624          }
15625        }
15626      }
15627    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
15628      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
15629      // It should be transformed during dag combiner except when the condition
15630      // is set by a arithmetics with overflow node.
15631      X86::CondCode CCode =
15632        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
15633      CCode = X86::GetOppositeBranchCondition(CCode);
15634      CC = DAG.getConstant(CCode, dl, MVT::i8);
15635      Cond = Cond.getOperand(0).getOperand(1);
15636      addTest = false;
15637    } else if (Cond.getOpcode() == ISD::SETCC &&
15638               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
15639      // For FCMP_OEQ, we can emit
15640      // two branches instead of an explicit AND instruction with a
15641      // separate test. However, we only do this if this block doesn't
15642      // have a fall-through edge, because this requires an explicit
15643      // jmp when the condition is false.
15644      if (Op.getNode()->hasOneUse()) {
15645        SDNode *User = *Op.getNode()->use_begin();
15646        // Look for an unconditional branch following this conditional branch.
15647        // We need this because we need to reverse the successors in order
15648        // to implement FCMP_OEQ.
15649        if (User->getOpcode() == ISD::BR) {
15650          SDValue FalseBB = User->getOperand(1);
15651          SDNode *NewBR =
15652            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
15653          assert(NewBR == User);
15654          (void)NewBR;
15655          Dest = FalseBB;
15656
15657          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
15658                                    Cond.getOperand(0), Cond.getOperand(1));
15659          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
15660          CC = DAG.getConstant(X86::COND_NE, dl, MVT::i8);
15661          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
15662                              Chain, Dest, CC, Cmp);
15663          CC = DAG.getConstant(X86::COND_P, dl, MVT::i8);
15664          Cond = Cmp;
15665          addTest = false;
15666        }
15667      }
15668    } else if (Cond.getOpcode() == ISD::SETCC &&
15669               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
15670      // For FCMP_UNE, we can emit
15671      // two branches instead of an explicit AND instruction with a
15672      // separate test. However, we only do this if this block doesn't
15673      // have a fall-through edge, because this requires an explicit
15674      // jmp when the condition is false.
15675      if (Op.getNode()->hasOneUse()) {
15676        SDNode *User = *Op.getNode()->use_begin();
15677        // Look for an unconditional branch following this conditional branch.
15678        // We need this because we need to reverse the successors in order
15679        // to implement FCMP_UNE.
15680        if (User->getOpcode() == ISD::BR) {
15681          SDValue FalseBB = User->getOperand(1);
15682          SDNode *NewBR =
15683            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
15684          assert(NewBR == User);
15685          (void)NewBR;
15686
15687          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
15688                                    Cond.getOperand(0), Cond.getOperand(1));
15689          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
15690          CC = DAG.getConstant(X86::COND_NE, dl, MVT::i8);
15691          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
15692                              Chain, Dest, CC, Cmp);
15693          CC = DAG.getConstant(X86::COND_NP, dl, MVT::i8);
15694          Cond = Cmp;
15695          addTest = false;
15696          Dest = FalseBB;
15697        }
15698      }
15699    }
15700  }
15701
15702  if (addTest) {
15703    // Look pass the truncate if the high bits are known zero.
15704    if (isTruncWithZeroHighBitsInput(Cond, DAG))
15705        Cond = Cond.getOperand(0);
15706
15707    // We know the result of AND is compared against zero. Try to match
15708    // it to BT.
15709    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
15710      if (SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG)) {
15711        CC = NewSetCC.getOperand(0);
15712        Cond = NewSetCC.getOperand(1);
15713        addTest = false;
15714      }
15715    }
15716  }
15717
15718  if (addTest) {
15719    X86::CondCode X86Cond = Inverted ? X86::COND_E : X86::COND_NE;
15720    CC = DAG.getConstant(X86Cond, dl, MVT::i8);
15721    Cond = EmitTest(Cond, X86Cond, dl, DAG);
15722  }
15723  Cond = ConvertCmpIfNecessary(Cond, DAG);
15724  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
15725                     Chain, Dest, CC, Cond);
15726}
15727
15728// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
15729// Calls to _alloca are needed to probe the stack when allocating more than 4k
15730// bytes in one go. Touching the stack at 4K increments is necessary to ensure
15731// that the guard pages used by the OS virtual memory manager are allocated in
15732// correct sequence.
15733SDValue
15734X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
15735                                           SelectionDAG &DAG) const {
15736  MachineFunction &MF = DAG.getMachineFunction();
15737  bool SplitStack = MF.shouldSplitStack();
15738  bool Lower = (Subtarget->isOSWindows() && !Subtarget->isTargetMachO()) ||
15739               SplitStack;
15740  SDLoc dl(Op);
15741
15742  // Get the inputs.
15743  SDNode *Node = Op.getNode();
15744  SDValue Chain = Op.getOperand(0);
15745  SDValue Size  = Op.getOperand(1);
15746  unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
15747  EVT VT = Node->getValueType(0);
15748
15749  // Chain the dynamic stack allocation so that it doesn't modify the stack
15750  // pointer when other instructions are using the stack.
15751  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, dl, true), dl);
15752
15753  bool Is64Bit = Subtarget->is64Bit();
15754  MVT SPTy = getPointerTy(DAG.getDataLayout());
15755
15756  SDValue Result;
15757  if (!Lower) {
15758    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15759    unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
15760    assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
15761                    " not tell us which reg is the stack pointer!");
15762    EVT VT = Node->getValueType(0);
15763    SDValue Tmp3 = Node->getOperand(2);
15764
15765    SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
15766    Chain = SP.getValue(1);
15767    unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
15768    const TargetFrameLowering &TFI = *Subtarget->getFrameLowering();
15769    unsigned StackAlign = TFI.getStackAlignment();
15770    Result = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
15771    if (Align > StackAlign)
15772      Result = DAG.getNode(ISD::AND, dl, VT, Result,
15773                         DAG.getConstant(-(uint64_t)Align, dl, VT));
15774    Chain = DAG.getCopyToReg(Chain, dl, SPReg, Result); // Output chain
15775  } else if (SplitStack) {
15776    MachineRegisterInfo &MRI = MF.getRegInfo();
15777
15778    if (Is64Bit) {
15779      // The 64 bit implementation of segmented stacks needs to clobber both r10
15780      // r11. This makes it impossible to use it along with nested parameters.
15781      const Function *F = MF.getFunction();
15782
15783      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
15784           I != E; ++I)
15785        if (I->hasNestAttr())
15786          report_fatal_error("Cannot use segmented stacks with functions that "
15787                             "have nested arguments.");
15788    }
15789
15790    const TargetRegisterClass *AddrRegClass = getRegClassFor(SPTy);
15791    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
15792    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
15793    Result = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
15794                                DAG.getRegister(Vreg, SPTy));
15795  } else {
15796    SDValue Flag;
15797    const unsigned Reg = (Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX);
15798
15799    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
15800    Flag = Chain.getValue(1);
15801    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
15802
15803    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
15804
15805    const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
15806    unsigned SPReg = RegInfo->getStackRegister();
15807    SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, SPTy);
15808    Chain = SP.getValue(1);
15809
15810    if (Align) {
15811      SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
15812                       DAG.getConstant(-(uint64_t)Align, dl, VT));
15813      Chain = DAG.getCopyToReg(Chain, dl, SPReg, SP);
15814    }
15815
15816    Result = SP;
15817  }
15818
15819  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
15820                             DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
15821
15822  SDValue Ops[2] = {Result, Chain};
15823  return DAG.getMergeValues(Ops, dl);
15824}
15825
15826SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
15827  MachineFunction &MF = DAG.getMachineFunction();
15828  auto PtrVT = getPointerTy(MF.getDataLayout());
15829  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
15830
15831  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
15832  SDLoc DL(Op);
15833
15834  if (!Subtarget->is64Bit() ||
15835      Subtarget->isCallingConvWin64(MF.getFunction()->getCallingConv())) {
15836    // vastart just stores the address of the VarArgsFrameIndex slot into the
15837    // memory location argument.
15838    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
15839    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
15840                        MachinePointerInfo(SV), false, false, 0);
15841  }
15842
15843  // __va_list_tag:
15844  //   gp_offset         (0 - 6 * 8)
15845  //   fp_offset         (48 - 48 + 8 * 16)
15846  //   overflow_arg_area (point to parameters coming in memory).
15847  //   reg_save_area
15848  SmallVector<SDValue, 8> MemOps;
15849  SDValue FIN = Op.getOperand(1);
15850  // Store gp_offset
15851  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
15852                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
15853                                               DL, MVT::i32),
15854                               FIN, MachinePointerInfo(SV), false, false, 0);
15855  MemOps.push_back(Store);
15856
15857  // Store fp_offset
15858  FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4, DL));
15859  Store = DAG.getStore(Op.getOperand(0), DL,
15860                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(), DL,
15861                                       MVT::i32),
15862                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
15863  MemOps.push_back(Store);
15864
15865  // Store ptr to overflow_arg_area
15866  FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4, DL));
15867  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
15868  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
15869                       MachinePointerInfo(SV, 8),
15870                       false, false, 0);
15871  MemOps.push_back(Store);
15872
15873  // Store ptr to reg_save_area.
15874  FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(
15875      Subtarget->isTarget64BitLP64() ? 8 : 4, DL));
15876  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT);
15877  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN, MachinePointerInfo(
15878      SV, Subtarget->isTarget64BitLP64() ? 16 : 12), false, false, 0);
15879  MemOps.push_back(Store);
15880  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
15881}
15882
15883SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
15884  assert(Subtarget->is64Bit() &&
15885         "LowerVAARG only handles 64-bit va_arg!");
15886  assert(Op.getNode()->getNumOperands() == 4);
15887
15888  MachineFunction &MF = DAG.getMachineFunction();
15889  if (Subtarget->isCallingConvWin64(MF.getFunction()->getCallingConv()))
15890    // The Win64 ABI uses char* instead of a structure.
15891    return DAG.expandVAArg(Op.getNode());
15892
15893  SDValue Chain = Op.getOperand(0);
15894  SDValue SrcPtr = Op.getOperand(1);
15895  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
15896  unsigned Align = Op.getConstantOperandVal(3);
15897  SDLoc dl(Op);
15898
15899  EVT ArgVT = Op.getNode()->getValueType(0);
15900  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
15901  uint32_t ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy);
15902  uint8_t ArgMode;
15903
15904  // Decide which area this value should be read from.
15905  // TODO: Implement the AMD64 ABI in its entirety. This simple
15906  // selection mechanism works only for the basic types.
15907  if (ArgVT == MVT::f80) {
15908    llvm_unreachable("va_arg for f80 not yet implemented");
15909  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
15910    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
15911  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
15912    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
15913  } else {
15914    llvm_unreachable("Unhandled argument type in LowerVAARG");
15915  }
15916
15917  if (ArgMode == 2) {
15918    // Sanity Check: Make sure using fp_offset makes sense.
15919    assert(!Subtarget->useSoftFloat() &&
15920           !(MF.getFunction()->hasFnAttribute(Attribute::NoImplicitFloat)) &&
15921           Subtarget->hasSSE1());
15922  }
15923
15924  // Insert VAARG_64 node into the DAG
15925  // VAARG_64 returns two values: Variable Argument Address, Chain
15926  SDValue InstOps[] = {Chain, SrcPtr, DAG.getConstant(ArgSize, dl, MVT::i32),
15927                       DAG.getConstant(ArgMode, dl, MVT::i8),
15928                       DAG.getConstant(Align, dl, MVT::i32)};
15929  SDVTList VTs = DAG.getVTList(getPointerTy(DAG.getDataLayout()), MVT::Other);
15930  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
15931                                          VTs, InstOps, MVT::i64,
15932                                          MachinePointerInfo(SV),
15933                                          /*Align=*/0,
15934                                          /*Volatile=*/false,
15935                                          /*ReadMem=*/true,
15936                                          /*WriteMem=*/true);
15937  Chain = VAARG.getValue(1);
15938
15939  // Load the next argument and return it
15940  return DAG.getLoad(ArgVT, dl,
15941                     Chain,
15942                     VAARG,
15943                     MachinePointerInfo(),
15944                     false, false, false, 0);
15945}
15946
15947static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget,
15948                           SelectionDAG &DAG) {
15949  // X86-64 va_list is a struct { i32, i32, i8*, i8* }, except on Windows,
15950  // where a va_list is still an i8*.
15951  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
15952  if (Subtarget->isCallingConvWin64(
15953        DAG.getMachineFunction().getFunction()->getCallingConv()))
15954    // Probably a Win64 va_copy.
15955    return DAG.expandVACopy(Op.getNode());
15956
15957  SDValue Chain = Op.getOperand(0);
15958  SDValue DstPtr = Op.getOperand(1);
15959  SDValue SrcPtr = Op.getOperand(2);
15960  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
15961  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
15962  SDLoc DL(Op);
15963
15964  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
15965                       DAG.getIntPtrConstant(24, DL), 8, /*isVolatile*/false,
15966                       false, false,
15967                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
15968}
15969
15970// getTargetVShiftByConstNode - Handle vector element shifts where the shift
15971// amount is a constant. Takes immediate version of shift as input.
15972static SDValue getTargetVShiftByConstNode(unsigned Opc, SDLoc dl, MVT VT,
15973                                          SDValue SrcOp, uint64_t ShiftAmt,
15974                                          SelectionDAG &DAG) {
15975  MVT ElementType = VT.getVectorElementType();
15976
15977  // Fold this packed shift into its first operand if ShiftAmt is 0.
15978  if (ShiftAmt == 0)
15979    return SrcOp;
15980
15981  // Check for ShiftAmt >= element width
15982  if (ShiftAmt >= ElementType.getSizeInBits()) {
15983    if (Opc == X86ISD::VSRAI)
15984      ShiftAmt = ElementType.getSizeInBits() - 1;
15985    else
15986      return DAG.getConstant(0, dl, VT);
15987  }
15988
15989  assert((Opc == X86ISD::VSHLI || Opc == X86ISD::VSRLI || Opc == X86ISD::VSRAI)
15990         && "Unknown target vector shift-by-constant node");
15991
15992  // Fold this packed vector shift into a build vector if SrcOp is a
15993  // vector of Constants or UNDEFs, and SrcOp valuetype is the same as VT.
15994  if (VT == SrcOp.getSimpleValueType() &&
15995      ISD::isBuildVectorOfConstantSDNodes(SrcOp.getNode())) {
15996    SmallVector<SDValue, 8> Elts;
15997    unsigned NumElts = SrcOp->getNumOperands();
15998    ConstantSDNode *ND;
15999
16000    switch(Opc) {
16001    default: llvm_unreachable(nullptr);
16002    case X86ISD::VSHLI:
16003      for (unsigned i=0; i!=NumElts; ++i) {
16004        SDValue CurrentOp = SrcOp->getOperand(i);
16005        if (CurrentOp->getOpcode() == ISD::UNDEF) {
16006          Elts.push_back(CurrentOp);
16007          continue;
16008        }
16009        ND = cast<ConstantSDNode>(CurrentOp);
16010        const APInt &C = ND->getAPIntValue();
16011        Elts.push_back(DAG.getConstant(C.shl(ShiftAmt), dl, ElementType));
16012      }
16013      break;
16014    case X86ISD::VSRLI:
16015      for (unsigned i=0; i!=NumElts; ++i) {
16016        SDValue CurrentOp = SrcOp->getOperand(i);
16017        if (CurrentOp->getOpcode() == ISD::UNDEF) {
16018          Elts.push_back(CurrentOp);
16019          continue;
16020        }
16021        ND = cast<ConstantSDNode>(CurrentOp);
16022        const APInt &C = ND->getAPIntValue();
16023        Elts.push_back(DAG.getConstant(C.lshr(ShiftAmt), dl, ElementType));
16024      }
16025      break;
16026    case X86ISD::VSRAI:
16027      for (unsigned i=0; i!=NumElts; ++i) {
16028        SDValue CurrentOp = SrcOp->getOperand(i);
16029        if (CurrentOp->getOpcode() == ISD::UNDEF) {
16030          Elts.push_back(CurrentOp);
16031          continue;
16032        }
16033        ND = cast<ConstantSDNode>(CurrentOp);
16034        const APInt &C = ND->getAPIntValue();
16035        Elts.push_back(DAG.getConstant(C.ashr(ShiftAmt), dl, ElementType));
16036      }
16037      break;
16038    }
16039
16040    return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Elts);
16041  }
16042
16043  return DAG.getNode(Opc, dl, VT, SrcOp,
16044                     DAG.getConstant(ShiftAmt, dl, MVT::i8));
16045}
16046
16047// getTargetVShiftNode - Handle vector element shifts where the shift amount
16048// may or may not be a constant. Takes immediate version of shift as input.
16049static SDValue getTargetVShiftNode(unsigned Opc, SDLoc dl, MVT VT,
16050                                   SDValue SrcOp, SDValue ShAmt,
16051                                   SelectionDAG &DAG) {
16052  MVT SVT = ShAmt.getSimpleValueType();
16053  assert((SVT == MVT::i32 || SVT == MVT::i64) && "Unexpected value type!");
16054
16055  // Catch shift-by-constant.
16056  if (ConstantSDNode *CShAmt = dyn_cast<ConstantSDNode>(ShAmt))
16057    return getTargetVShiftByConstNode(Opc, dl, VT, SrcOp,
16058                                      CShAmt->getZExtValue(), DAG);
16059
16060  // Change opcode to non-immediate version
16061  switch (Opc) {
16062    default: llvm_unreachable("Unknown target vector shift node");
16063    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
16064    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
16065    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
16066  }
16067
16068  const X86Subtarget &Subtarget =
16069      static_cast<const X86Subtarget &>(DAG.getSubtarget());
16070  if (Subtarget.hasSSE41() && ShAmt.getOpcode() == ISD::ZERO_EXTEND &&
16071      ShAmt.getOperand(0).getSimpleValueType() == MVT::i16) {
16072    // Let the shuffle legalizer expand this shift amount node.
16073    SDValue Op0 = ShAmt.getOperand(0);
16074    Op0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(Op0), MVT::v8i16, Op0);
16075    ShAmt = getShuffleVectorZeroOrUndef(Op0, 0, true, &Subtarget, DAG);
16076  } else {
16077    // Need to build a vector containing shift amount.
16078    // SSE/AVX packed shifts only use the lower 64-bit of the shift count.
16079    SmallVector<SDValue, 4> ShOps;
16080    ShOps.push_back(ShAmt);
16081    if (SVT == MVT::i32) {
16082      ShOps.push_back(DAG.getConstant(0, dl, SVT));
16083      ShOps.push_back(DAG.getUNDEF(SVT));
16084    }
16085    ShOps.push_back(DAG.getUNDEF(SVT));
16086
16087    MVT BVT = SVT == MVT::i32 ? MVT::v4i32 : MVT::v2i64;
16088    ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, BVT, ShOps);
16089  }
16090
16091  // The return type has to be a 128-bit type with the same element
16092  // type as the input type.
16093  MVT EltVT = VT.getVectorElementType();
16094  MVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits());
16095
16096  ShAmt = DAG.getBitcast(ShVT, ShAmt);
16097  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
16098}
16099
16100/// \brief Return Mask with the necessary casting or extending
16101/// for \p Mask according to \p MaskVT when lowering masking intrinsics
16102static SDValue getMaskNode(SDValue Mask, MVT MaskVT,
16103                           const X86Subtarget *Subtarget,
16104                           SelectionDAG &DAG, SDLoc dl) {
16105
16106  if (MaskVT.bitsGT(Mask.getSimpleValueType())) {
16107    // Mask should be extended
16108    Mask = DAG.getNode(ISD::ANY_EXTEND, dl,
16109                       MVT::getIntegerVT(MaskVT.getSizeInBits()), Mask);
16110  }
16111
16112  if (Mask.getSimpleValueType() == MVT::i64 && Subtarget->is32Bit()) {
16113    if (MaskVT == MVT::v64i1) {
16114      assert(Subtarget->hasBWI() && "Expected AVX512BW target!");
16115      // In case 32bit mode, bitcast i64 is illegal, extend/split it.
16116      SDValue Lo, Hi;
16117      Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Mask,
16118                          DAG.getConstant(0, dl, MVT::i32));
16119      Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Mask,
16120                          DAG.getConstant(1, dl, MVT::i32));
16121
16122      Lo = DAG.getBitcast(MVT::v32i1, Lo);
16123      Hi = DAG.getBitcast(MVT::v32i1, Hi);
16124
16125      return DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v64i1, Lo, Hi);
16126    } else {
16127      // MaskVT require < 64bit. Truncate mask (should succeed in any case),
16128      // and bitcast.
16129      MVT TruncVT = MVT::getIntegerVT(MaskVT.getSizeInBits());
16130      return DAG.getBitcast(MaskVT,
16131                            DAG.getNode(ISD::TRUNCATE, dl, TruncVT, Mask));
16132    }
16133
16134  } else {
16135    MVT BitcastVT = MVT::getVectorVT(MVT::i1,
16136                                     Mask.getSimpleValueType().getSizeInBits());
16137    // In case when MaskVT equals v2i1 or v4i1, low 2 or 4 elements
16138    // are extracted by EXTRACT_SUBVECTOR.
16139    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
16140                       DAG.getBitcast(BitcastVT, Mask),
16141                       DAG.getIntPtrConstant(0, dl));
16142  }
16143}
16144
16145/// \brief Return (and \p Op, \p Mask) for compare instructions or
16146/// (vselect \p Mask, \p Op, \p PreservedSrc) for others along with the
16147/// necessary casting or extending for \p Mask when lowering masking intrinsics
16148static SDValue getVectorMaskingNode(SDValue Op, SDValue Mask,
16149                  SDValue PreservedSrc,
16150                  const X86Subtarget *Subtarget,
16151                  SelectionDAG &DAG) {
16152  MVT VT = Op.getSimpleValueType();
16153  MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
16154  unsigned OpcodeSelect = ISD::VSELECT;
16155  SDLoc dl(Op);
16156
16157  if (isAllOnesConstant(Mask))
16158    return Op;
16159
16160  SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
16161
16162  switch (Op.getOpcode()) {
16163  default: break;
16164  case X86ISD::PCMPEQM:
16165  case X86ISD::PCMPGTM:
16166  case X86ISD::CMPM:
16167  case X86ISD::CMPMU:
16168    return DAG.getNode(ISD::AND, dl, VT, Op, VMask);
16169  case X86ISD::VFPCLASS:
16170    case X86ISD::VFPCLASSS:
16171    return DAG.getNode(ISD::OR, dl, VT, Op, VMask);
16172  case X86ISD::VTRUNC:
16173  case X86ISD::VTRUNCS:
16174  case X86ISD::VTRUNCUS:
16175    // We can't use ISD::VSELECT here because it is not always "Legal"
16176    // for the destination type. For example vpmovqb require only AVX512
16177    // and vselect that can operate on byte element type require BWI
16178    OpcodeSelect = X86ISD::SELECT;
16179    break;
16180  }
16181  if (PreservedSrc.getOpcode() == ISD::UNDEF)
16182    PreservedSrc = getZeroVector(VT, Subtarget, DAG, dl);
16183  return DAG.getNode(OpcodeSelect, dl, VT, VMask, Op, PreservedSrc);
16184}
16185
16186/// \brief Creates an SDNode for a predicated scalar operation.
16187/// \returns (X86vselect \p Mask, \p Op, \p PreservedSrc).
16188/// The mask is coming as MVT::i8 and it should be truncated
16189/// to MVT::i1 while lowering masking intrinsics.
16190/// The main difference between ScalarMaskingNode and VectorMaskingNode is using
16191/// "X86select" instead of "vselect". We just can't create the "vselect" node
16192/// for a scalar instruction.
16193static SDValue getScalarMaskingNode(SDValue Op, SDValue Mask,
16194                                    SDValue PreservedSrc,
16195                                    const X86Subtarget *Subtarget,
16196                                    SelectionDAG &DAG) {
16197  if (isAllOnesConstant(Mask))
16198    return Op;
16199
16200  MVT VT = Op.getSimpleValueType();
16201  SDLoc dl(Op);
16202  // The mask should be of type MVT::i1
16203  SDValue IMask = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Mask);
16204
16205  if (Op.getOpcode() == X86ISD::FSETCC)
16206    return DAG.getNode(ISD::AND, dl, VT, Op, IMask);
16207  if (Op.getOpcode() == X86ISD::VFPCLASS ||
16208      Op.getOpcode() == X86ISD::VFPCLASSS)
16209    return DAG.getNode(ISD::OR, dl, VT, Op, IMask);
16210
16211  if (PreservedSrc.getOpcode() == ISD::UNDEF)
16212    PreservedSrc = getZeroVector(VT, Subtarget, DAG, dl);
16213  return DAG.getNode(X86ISD::SELECT, dl, VT, IMask, Op, PreservedSrc);
16214}
16215
16216static int getSEHRegistrationNodeSize(const Function *Fn) {
16217  if (!Fn->hasPersonalityFn())
16218    report_fatal_error(
16219        "querying registration node size for function without personality");
16220  // The RegNodeSize is 6 32-bit words for SEH and 4 for C++ EH. See
16221  // WinEHStatePass for the full struct definition.
16222  switch (classifyEHPersonality(Fn->getPersonalityFn())) {
16223  case EHPersonality::MSVC_X86SEH: return 24;
16224  case EHPersonality::MSVC_CXX: return 16;
16225  default: break;
16226  }
16227  report_fatal_error(
16228      "can only recover FP for 32-bit MSVC EH personality functions");
16229}
16230
16231/// When the MSVC runtime transfers control to us, either to an outlined
16232/// function or when returning to a parent frame after catching an exception, we
16233/// recover the parent frame pointer by doing arithmetic on the incoming EBP.
16234/// Here's the math:
16235///   RegNodeBase = EntryEBP - RegNodeSize
16236///   ParentFP = RegNodeBase - ParentFrameOffset
16237/// Subtracting RegNodeSize takes us to the offset of the registration node, and
16238/// subtracting the offset (negative on x86) takes us back to the parent FP.
16239static SDValue recoverFramePointer(SelectionDAG &DAG, const Function *Fn,
16240                                   SDValue EntryEBP) {
16241  MachineFunction &MF = DAG.getMachineFunction();
16242  SDLoc dl;
16243
16244  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16245  MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
16246
16247  // It's possible that the parent function no longer has a personality function
16248  // if the exceptional code was optimized away, in which case we just return
16249  // the incoming EBP.
16250  if (!Fn->hasPersonalityFn())
16251    return EntryEBP;
16252
16253  // Get an MCSymbol that will ultimately resolve to the frame offset of the EH
16254  // registration, or the .set_setframe offset.
16255  MCSymbol *OffsetSym =
16256      MF.getMMI().getContext().getOrCreateParentFrameOffsetSymbol(
16257          GlobalValue::getRealLinkageName(Fn->getName()));
16258  SDValue OffsetSymVal = DAG.getMCSymbol(OffsetSym, PtrVT);
16259  SDValue ParentFrameOffset =
16260      DAG.getNode(ISD::LOCAL_RECOVER, dl, PtrVT, OffsetSymVal);
16261
16262  // Return EntryEBP + ParentFrameOffset for x64. This adjusts from RSP after
16263  // prologue to RBP in the parent function.
16264  const X86Subtarget &Subtarget =
16265      static_cast<const X86Subtarget &>(DAG.getSubtarget());
16266  if (Subtarget.is64Bit())
16267    return DAG.getNode(ISD::ADD, dl, PtrVT, EntryEBP, ParentFrameOffset);
16268
16269  int RegNodeSize = getSEHRegistrationNodeSize(Fn);
16270  // RegNodeBase = EntryEBP - RegNodeSize
16271  // ParentFP = RegNodeBase - ParentFrameOffset
16272  SDValue RegNodeBase = DAG.getNode(ISD::SUB, dl, PtrVT, EntryEBP,
16273                                    DAG.getConstant(RegNodeSize, dl, PtrVT));
16274  return DAG.getNode(ISD::SUB, dl, PtrVT, RegNodeBase, ParentFrameOffset);
16275}
16276
16277static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, const X86Subtarget *Subtarget,
16278                                       SelectionDAG &DAG) {
16279  SDLoc dl(Op);
16280  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
16281  MVT VT = Op.getSimpleValueType();
16282  const IntrinsicData* IntrData = getIntrinsicWithoutChain(IntNo);
16283  if (IntrData) {
16284    switch(IntrData->Type) {
16285    case INTR_TYPE_1OP:
16286      return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1));
16287    case INTR_TYPE_2OP:
16288      return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1),
16289        Op.getOperand(2));
16290    case INTR_TYPE_2OP_IMM8:
16291      return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1),
16292                         DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op.getOperand(2)));
16293    case INTR_TYPE_3OP:
16294      return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1),
16295        Op.getOperand(2), Op.getOperand(3));
16296    case INTR_TYPE_4OP:
16297      return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1),
16298        Op.getOperand(2), Op.getOperand(3), Op.getOperand(4));
16299    case INTR_TYPE_1OP_MASK_RM: {
16300      SDValue Src = Op.getOperand(1);
16301      SDValue PassThru = Op.getOperand(2);
16302      SDValue Mask = Op.getOperand(3);
16303      SDValue RoundingMode;
16304      // We allways add rounding mode to the Node.
16305      // If the rounding mode is not specified, we add the
16306      // "current direction" mode.
16307      if (Op.getNumOperands() == 4)
16308        RoundingMode =
16309          DAG.getConstant(X86::STATIC_ROUNDING::CUR_DIRECTION, dl, MVT::i32);
16310      else
16311        RoundingMode = Op.getOperand(4);
16312      unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
16313      if (IntrWithRoundingModeOpcode != 0)
16314        if (cast<ConstantSDNode>(RoundingMode)->getZExtValue() !=
16315            X86::STATIC_ROUNDING::CUR_DIRECTION)
16316          return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
16317                                      dl, Op.getValueType(), Src, RoundingMode),
16318                                      Mask, PassThru, Subtarget, DAG);
16319      return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src,
16320                                              RoundingMode),
16321                                  Mask, PassThru, Subtarget, DAG);
16322    }
16323    case INTR_TYPE_1OP_MASK: {
16324      SDValue Src = Op.getOperand(1);
16325      SDValue PassThru = Op.getOperand(2);
16326      SDValue Mask = Op.getOperand(3);
16327      // We add rounding mode to the Node when
16328      //   - RM Opcode is specified and
16329      //   - RM is not "current direction".
16330      unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
16331      if (IntrWithRoundingModeOpcode != 0) {
16332        SDValue Rnd = Op.getOperand(4);
16333        unsigned Round = cast<ConstantSDNode>(Rnd)->getZExtValue();
16334        if (Round != X86::STATIC_ROUNDING::CUR_DIRECTION) {
16335          return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
16336                                      dl, Op.getValueType(),
16337                                      Src, Rnd),
16338                                      Mask, PassThru, Subtarget, DAG);
16339        }
16340      }
16341      return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src),
16342                                  Mask, PassThru, Subtarget, DAG);
16343    }
16344    case INTR_TYPE_SCALAR_MASK: {
16345      SDValue Src1 = Op.getOperand(1);
16346      SDValue Src2 = Op.getOperand(2);
16347      SDValue passThru = Op.getOperand(3);
16348      SDValue Mask = Op.getOperand(4);
16349      return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1, Src2),
16350                                  Mask, passThru, Subtarget, DAG);
16351    }
16352    case INTR_TYPE_SCALAR_MASK_RM: {
16353      SDValue Src1 = Op.getOperand(1);
16354      SDValue Src2 = Op.getOperand(2);
16355      SDValue Src0 = Op.getOperand(3);
16356      SDValue Mask = Op.getOperand(4);
16357      // There are 2 kinds of intrinsics in this group:
16358      // (1) With suppress-all-exceptions (sae) or rounding mode- 6 operands
16359      // (2) With rounding mode and sae - 7 operands.
16360      if (Op.getNumOperands() == 6) {
16361        SDValue Sae  = Op.getOperand(5);
16362        unsigned Opc = IntrData->Opc1 ? IntrData->Opc1 : IntrData->Opc0;
16363        return getScalarMaskingNode(DAG.getNode(Opc, dl, VT, Src1, Src2,
16364                                                Sae),
16365                                    Mask, Src0, Subtarget, DAG);
16366      }
16367      assert(Op.getNumOperands() == 7 && "Unexpected intrinsic form");
16368      SDValue RoundingMode  = Op.getOperand(5);
16369      SDValue Sae  = Op.getOperand(6);
16370      return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1, Src2,
16371                                              RoundingMode, Sae),
16372                                  Mask, Src0, Subtarget, DAG);
16373    }
16374    case INTR_TYPE_2OP_MASK:
16375    case INTR_TYPE_2OP_IMM8_MASK: {
16376      SDValue Src1 = Op.getOperand(1);
16377      SDValue Src2 = Op.getOperand(2);
16378      SDValue PassThru = Op.getOperand(3);
16379      SDValue Mask = Op.getOperand(4);
16380
16381      if (IntrData->Type == INTR_TYPE_2OP_IMM8_MASK)
16382        Src2 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Src2);
16383
16384      // We specify 2 possible opcodes for intrinsics with rounding modes.
16385      // First, we check if the intrinsic may have non-default rounding mode,
16386      // (IntrData->Opc1 != 0), then we check the rounding mode operand.
16387      unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
16388      if (IntrWithRoundingModeOpcode != 0) {
16389        SDValue Rnd = Op.getOperand(5);
16390        unsigned Round = cast<ConstantSDNode>(Rnd)->getZExtValue();
16391        if (Round != X86::STATIC_ROUNDING::CUR_DIRECTION) {
16392          return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
16393                                      dl, Op.getValueType(),
16394                                      Src1, Src2, Rnd),
16395                                      Mask, PassThru, Subtarget, DAG);
16396        }
16397      }
16398      // TODO: Intrinsics should have fast-math-flags to propagate.
16399      return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,Src1,Src2),
16400                                  Mask, PassThru, Subtarget, DAG);
16401    }
16402    case INTR_TYPE_2OP_MASK_RM: {
16403      SDValue Src1 = Op.getOperand(1);
16404      SDValue Src2 = Op.getOperand(2);
16405      SDValue PassThru = Op.getOperand(3);
16406      SDValue Mask = Op.getOperand(4);
16407      // We specify 2 possible modes for intrinsics, with/without rounding
16408      // modes.
16409      // First, we check if the intrinsic have rounding mode (6 operands),
16410      // if not, we set rounding mode to "current".
16411      SDValue Rnd;
16412      if (Op.getNumOperands() == 6)
16413        Rnd = Op.getOperand(5);
16414      else
16415        Rnd = DAG.getConstant(X86::STATIC_ROUNDING::CUR_DIRECTION, dl, MVT::i32);
16416      return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
16417                                              Src1, Src2, Rnd),
16418                                  Mask, PassThru, Subtarget, DAG);
16419    }
16420    case INTR_TYPE_3OP_SCALAR_MASK_RM: {
16421      SDValue Src1 = Op.getOperand(1);
16422      SDValue Src2 = Op.getOperand(2);
16423      SDValue Src3 = Op.getOperand(3);
16424      SDValue PassThru = Op.getOperand(4);
16425      SDValue Mask = Op.getOperand(5);
16426      SDValue Sae  = Op.getOperand(6);
16427
16428      return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1,
16429                                              Src2, Src3, Sae),
16430                                  Mask, PassThru, Subtarget, DAG);
16431    }
16432    case INTR_TYPE_3OP_MASK_RM: {
16433      SDValue Src1 = Op.getOperand(1);
16434      SDValue Src2 = Op.getOperand(2);
16435      SDValue Imm = Op.getOperand(3);
16436      SDValue PassThru = Op.getOperand(4);
16437      SDValue Mask = Op.getOperand(5);
16438      // We specify 2 possible modes for intrinsics, with/without rounding
16439      // modes.
16440      // First, we check if the intrinsic have rounding mode (7 operands),
16441      // if not, we set rounding mode to "current".
16442      SDValue Rnd;
16443      if (Op.getNumOperands() == 7)
16444        Rnd = Op.getOperand(6);
16445      else
16446        Rnd = DAG.getConstant(X86::STATIC_ROUNDING::CUR_DIRECTION, dl, MVT::i32);
16447      return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
16448        Src1, Src2, Imm, Rnd),
16449        Mask, PassThru, Subtarget, DAG);
16450    }
16451    case INTR_TYPE_3OP_IMM8_MASK:
16452    case INTR_TYPE_3OP_MASK:
16453    case INSERT_SUBVEC: {
16454      SDValue Src1 = Op.getOperand(1);
16455      SDValue Src2 = Op.getOperand(2);
16456      SDValue Src3 = Op.getOperand(3);
16457      SDValue PassThru = Op.getOperand(4);
16458      SDValue Mask = Op.getOperand(5);
16459
16460      if (IntrData->Type == INTR_TYPE_3OP_IMM8_MASK)
16461        Src3 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Src3);
16462      else if (IntrData->Type == INSERT_SUBVEC) {
16463        // imm should be adapted to ISD::INSERT_SUBVECTOR behavior
16464        assert(isa<ConstantSDNode>(Src3) && "Expected a ConstantSDNode here!");
16465        unsigned Imm = cast<ConstantSDNode>(Src3)->getZExtValue();
16466        Imm *= Src2.getSimpleValueType().getVectorNumElements();
16467        Src3 = DAG.getTargetConstant(Imm, dl, MVT::i32);
16468      }
16469
16470      // We specify 2 possible opcodes for intrinsics with rounding modes.
16471      // First, we check if the intrinsic may have non-default rounding mode,
16472      // (IntrData->Opc1 != 0), then we check the rounding mode operand.
16473      unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
16474      if (IntrWithRoundingModeOpcode != 0) {
16475        SDValue Rnd = Op.getOperand(6);
16476        unsigned Round = cast<ConstantSDNode>(Rnd)->getZExtValue();
16477        if (Round != X86::STATIC_ROUNDING::CUR_DIRECTION) {
16478          return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
16479                                      dl, Op.getValueType(),
16480                                      Src1, Src2, Src3, Rnd),
16481                                      Mask, PassThru, Subtarget, DAG);
16482        }
16483      }
16484      return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
16485                                              Src1, Src2, Src3),
16486                                  Mask, PassThru, Subtarget, DAG);
16487    }
16488    case VPERM_3OP_MASKZ:
16489    case VPERM_3OP_MASK:{
16490      // Src2 is the PassThru
16491      SDValue Src1 = Op.getOperand(1);
16492      SDValue Src2 = Op.getOperand(2);
16493      SDValue Src3 = Op.getOperand(3);
16494      SDValue Mask = Op.getOperand(4);
16495      MVT VT = Op.getSimpleValueType();
16496      SDValue PassThru = SDValue();
16497
16498      // set PassThru element
16499      if (IntrData->Type == VPERM_3OP_MASKZ)
16500        PassThru = getZeroVector(VT, Subtarget, DAG, dl);
16501      else
16502        PassThru = DAG.getBitcast(VT, Src2);
16503
16504      // Swap Src1 and Src2 in the node creation
16505      return getVectorMaskingNode(DAG.getNode(IntrData->Opc0,
16506                                              dl, Op.getValueType(),
16507                                              Src2, Src1, Src3),
16508                                  Mask, PassThru, Subtarget, DAG);
16509    }
16510    case FMA_OP_MASK3:
16511    case FMA_OP_MASKZ:
16512    case FMA_OP_MASK: {
16513      SDValue Src1 = Op.getOperand(1);
16514      SDValue Src2 = Op.getOperand(2);
16515      SDValue Src3 = Op.getOperand(3);
16516      SDValue Mask = Op.getOperand(4);
16517      MVT VT = Op.getSimpleValueType();
16518      SDValue PassThru = SDValue();
16519
16520      // set PassThru element
16521      if (IntrData->Type == FMA_OP_MASKZ)
16522        PassThru = getZeroVector(VT, Subtarget, DAG, dl);
16523      else if (IntrData->Type == FMA_OP_MASK3)
16524        PassThru = Src3;
16525      else
16526        PassThru = Src1;
16527
16528      // We specify 2 possible opcodes for intrinsics with rounding modes.
16529      // First, we check if the intrinsic may have non-default rounding mode,
16530      // (IntrData->Opc1 != 0), then we check the rounding mode operand.
16531      unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
16532      if (IntrWithRoundingModeOpcode != 0) {
16533        SDValue Rnd = Op.getOperand(5);
16534        if (cast<ConstantSDNode>(Rnd)->getZExtValue() !=
16535            X86::STATIC_ROUNDING::CUR_DIRECTION)
16536          return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
16537                                                  dl, Op.getValueType(),
16538                                                  Src1, Src2, Src3, Rnd),
16539                                      Mask, PassThru, Subtarget, DAG);
16540      }
16541      return getVectorMaskingNode(DAG.getNode(IntrData->Opc0,
16542                                              dl, Op.getValueType(),
16543                                              Src1, Src2, Src3),
16544                                  Mask, PassThru, Subtarget, DAG);
16545    }
16546    case TERLOG_OP_MASK:
16547    case TERLOG_OP_MASKZ: {
16548      SDValue Src1 = Op.getOperand(1);
16549      SDValue Src2 = Op.getOperand(2);
16550      SDValue Src3 = Op.getOperand(3);
16551      SDValue Src4 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op.getOperand(4));
16552      SDValue Mask = Op.getOperand(5);
16553      MVT VT = Op.getSimpleValueType();
16554      SDValue PassThru = Src1;
16555      // Set PassThru element.
16556      if (IntrData->Type == TERLOG_OP_MASKZ)
16557        PassThru = getZeroVector(VT, Subtarget, DAG, dl);
16558
16559      return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
16560                                              Src1, Src2, Src3, Src4),
16561                                  Mask, PassThru, Subtarget, DAG);
16562    }
16563    case FPCLASS: {
16564      // FPclass intrinsics with mask
16565       SDValue Src1 = Op.getOperand(1);
16566       MVT VT = Src1.getSimpleValueType();
16567       MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
16568       SDValue Imm = Op.getOperand(2);
16569       SDValue Mask = Op.getOperand(3);
16570       MVT BitcastVT = MVT::getVectorVT(MVT::i1,
16571                                     Mask.getSimpleValueType().getSizeInBits());
16572       SDValue FPclass = DAG.getNode(IntrData->Opc0, dl, MaskVT, Src1, Imm);
16573       SDValue FPclassMask = getVectorMaskingNode(FPclass, Mask,
16574                                                 DAG.getTargetConstant(0, dl, MaskVT),
16575                                                 Subtarget, DAG);
16576       SDValue Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, BitcastVT,
16577                                 DAG.getUNDEF(BitcastVT), FPclassMask,
16578                                 DAG.getIntPtrConstant(0, dl));
16579       return DAG.getBitcast(Op.getValueType(), Res);
16580    }
16581    case FPCLASSS: {
16582      SDValue Src1 = Op.getOperand(1);
16583      SDValue Imm = Op.getOperand(2);
16584      SDValue Mask = Op.getOperand(3);
16585      SDValue FPclass = DAG.getNode(IntrData->Opc0, dl, MVT::i1, Src1, Imm);
16586      SDValue FPclassMask = getScalarMaskingNode(FPclass, Mask,
16587        DAG.getTargetConstant(0, dl, MVT::i1), Subtarget, DAG);
16588      return DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i8, FPclassMask);
16589    }
16590    case CMP_MASK:
16591    case CMP_MASK_CC: {
16592      // Comparison intrinsics with masks.
16593      // Example of transformation:
16594      // (i8 (int_x86_avx512_mask_pcmpeq_q_128
16595      //             (v2i64 %a), (v2i64 %b), (i8 %mask))) ->
16596      // (i8 (bitcast
16597      //   (v8i1 (insert_subvector undef,
16598      //           (v2i1 (and (PCMPEQM %a, %b),
16599      //                      (extract_subvector
16600      //                         (v8i1 (bitcast %mask)), 0))), 0))))
16601      MVT VT = Op.getOperand(1).getSimpleValueType();
16602      MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
16603      SDValue Mask = Op.getOperand((IntrData->Type == CMP_MASK_CC) ? 4 : 3);
16604      MVT BitcastVT = MVT::getVectorVT(MVT::i1,
16605                                       Mask.getSimpleValueType().getSizeInBits());
16606      SDValue Cmp;
16607      if (IntrData->Type == CMP_MASK_CC) {
16608        SDValue CC = Op.getOperand(3);
16609        CC = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, CC);
16610        // We specify 2 possible opcodes for intrinsics with rounding modes.
16611        // First, we check if the intrinsic may have non-default rounding mode,
16612        // (IntrData->Opc1 != 0), then we check the rounding mode operand.
16613        if (IntrData->Opc1 != 0) {
16614          SDValue Rnd = Op.getOperand(5);
16615          if (cast<ConstantSDNode>(Rnd)->getZExtValue() !=
16616              X86::STATIC_ROUNDING::CUR_DIRECTION)
16617            Cmp = DAG.getNode(IntrData->Opc1, dl, MaskVT, Op.getOperand(1),
16618                              Op.getOperand(2), CC, Rnd);
16619        }
16620        //default rounding mode
16621        if(!Cmp.getNode())
16622            Cmp = DAG.getNode(IntrData->Opc0, dl, MaskVT, Op.getOperand(1),
16623                              Op.getOperand(2), CC);
16624
16625      } else {
16626        assert(IntrData->Type == CMP_MASK && "Unexpected intrinsic type!");
16627        Cmp = DAG.getNode(IntrData->Opc0, dl, MaskVT, Op.getOperand(1),
16628                          Op.getOperand(2));
16629      }
16630      SDValue CmpMask = getVectorMaskingNode(Cmp, Mask,
16631                                             DAG.getTargetConstant(0, dl,
16632                                                                   MaskVT),
16633                                             Subtarget, DAG);
16634      SDValue Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, BitcastVT,
16635                                DAG.getUNDEF(BitcastVT), CmpMask,
16636                                DAG.getIntPtrConstant(0, dl));
16637      return DAG.getBitcast(Op.getValueType(), Res);
16638    }
16639    case CMP_MASK_SCALAR_CC: {
16640      SDValue Src1 = Op.getOperand(1);
16641      SDValue Src2 = Op.getOperand(2);
16642      SDValue CC = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op.getOperand(3));
16643      SDValue Mask = Op.getOperand(4);
16644
16645      SDValue Cmp;
16646      if (IntrData->Opc1 != 0) {
16647        SDValue Rnd = Op.getOperand(5);
16648        if (cast<ConstantSDNode>(Rnd)->getZExtValue() !=
16649            X86::STATIC_ROUNDING::CUR_DIRECTION)
16650          Cmp = DAG.getNode(IntrData->Opc1, dl, MVT::i1, Src1, Src2, CC, Rnd);
16651      }
16652      //default rounding mode
16653      if(!Cmp.getNode())
16654        Cmp = DAG.getNode(IntrData->Opc0, dl, MVT::i1, Src1, Src2, CC);
16655
16656      SDValue CmpMask = getScalarMaskingNode(Cmp, Mask,
16657                                             DAG.getTargetConstant(0, dl,
16658                                                                   MVT::i1),
16659                                             Subtarget, DAG);
16660
16661      return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i8,
16662                         DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i8, CmpMask),
16663                         DAG.getValueType(MVT::i1));
16664    }
16665    case COMI: { // Comparison intrinsics
16666      ISD::CondCode CC = (ISD::CondCode)IntrData->Opc1;
16667      SDValue LHS = Op.getOperand(1);
16668      SDValue RHS = Op.getOperand(2);
16669      unsigned X86CC = TranslateX86CC(CC, dl, true, LHS, RHS, DAG);
16670      assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
16671      SDValue Cond = DAG.getNode(IntrData->Opc0, dl, MVT::i32, LHS, RHS);
16672      SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
16673                                  DAG.getConstant(X86CC, dl, MVT::i8), Cond);
16674      return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
16675    }
16676    case COMI_RM: { // Comparison intrinsics with Sae
16677      SDValue LHS = Op.getOperand(1);
16678      SDValue RHS = Op.getOperand(2);
16679      SDValue CC = Op.getOperand(3);
16680      SDValue Sae = Op.getOperand(4);
16681      auto ComiType = TranslateX86ConstCondToX86CC(CC);
16682      // choose between ordered and unordered (comi/ucomi)
16683      unsigned comiOp = std::get<0>(ComiType) ? IntrData->Opc0 : IntrData->Opc1;
16684      SDValue Cond;
16685      if (cast<ConstantSDNode>(Sae)->getZExtValue() !=
16686                                           X86::STATIC_ROUNDING::CUR_DIRECTION)
16687        Cond = DAG.getNode(comiOp, dl, MVT::i32, LHS, RHS, Sae);
16688      else
16689        Cond = DAG.getNode(comiOp, dl, MVT::i32, LHS, RHS);
16690      SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
16691        DAG.getConstant(std::get<1>(ComiType), dl, MVT::i8), Cond);
16692      return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
16693    }
16694    case VSHIFT:
16695      return getTargetVShiftNode(IntrData->Opc0, dl, Op.getSimpleValueType(),
16696                                 Op.getOperand(1), Op.getOperand(2), DAG);
16697    case VSHIFT_MASK:
16698      return getVectorMaskingNode(getTargetVShiftNode(IntrData->Opc0, dl,
16699                                                      Op.getSimpleValueType(),
16700                                                      Op.getOperand(1),
16701                                                      Op.getOperand(2), DAG),
16702                                  Op.getOperand(4), Op.getOperand(3), Subtarget,
16703                                  DAG);
16704    case COMPRESS_EXPAND_IN_REG: {
16705      SDValue Mask = Op.getOperand(3);
16706      SDValue DataToCompress = Op.getOperand(1);
16707      SDValue PassThru = Op.getOperand(2);
16708      if (isAllOnesConstant(Mask)) // return data as is
16709        return Op.getOperand(1);
16710
16711      return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
16712                                              DataToCompress),
16713                                  Mask, PassThru, Subtarget, DAG);
16714    }
16715    case BROADCASTM: {
16716      SDValue Mask = Op.getOperand(1);
16717      MVT MaskVT = MVT::getVectorVT(MVT::i1, Mask.getSimpleValueType().getSizeInBits());
16718      Mask = DAG.getBitcast(MaskVT, Mask);
16719      return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Mask);
16720    }
16721    case BLEND: {
16722      SDValue Mask = Op.getOperand(3);
16723      MVT VT = Op.getSimpleValueType();
16724      MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
16725      SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
16726      return DAG.getNode(IntrData->Opc0, dl, VT, VMask, Op.getOperand(1),
16727                         Op.getOperand(2));
16728    }
16729    case KUNPCK: {
16730      MVT VT = Op.getSimpleValueType();
16731      MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getSizeInBits()/2);
16732
16733      SDValue Src1 = getMaskNode(Op.getOperand(1), MaskVT, Subtarget, DAG, dl);
16734      SDValue Src2 = getMaskNode(Op.getOperand(2), MaskVT, Subtarget, DAG, dl);
16735      // Arguments should be swapped.
16736      SDValue Res = DAG.getNode(IntrData->Opc0, dl,
16737                                MVT::getVectorVT(MVT::i1, VT.getSizeInBits()),
16738                                Src2, Src1);
16739      return DAG.getBitcast(VT, Res);
16740    }
16741    default:
16742      break;
16743    }
16744  }
16745
16746  switch (IntNo) {
16747  default: return SDValue();    // Don't custom lower most intrinsics.
16748
16749  case Intrinsic::x86_avx2_permd:
16750  case Intrinsic::x86_avx2_permps:
16751    // Operands intentionally swapped. Mask is last operand to intrinsic,
16752    // but second operand for node/instruction.
16753    return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
16754                       Op.getOperand(2), Op.getOperand(1));
16755
16756  // ptest and testp intrinsics. The intrinsic these come from are designed to
16757  // return an integer value, not just an instruction so lower it to the ptest
16758  // or testp pattern and a setcc for the result.
16759  case Intrinsic::x86_sse41_ptestz:
16760  case Intrinsic::x86_sse41_ptestc:
16761  case Intrinsic::x86_sse41_ptestnzc:
16762  case Intrinsic::x86_avx_ptestz_256:
16763  case Intrinsic::x86_avx_ptestc_256:
16764  case Intrinsic::x86_avx_ptestnzc_256:
16765  case Intrinsic::x86_avx_vtestz_ps:
16766  case Intrinsic::x86_avx_vtestc_ps:
16767  case Intrinsic::x86_avx_vtestnzc_ps:
16768  case Intrinsic::x86_avx_vtestz_pd:
16769  case Intrinsic::x86_avx_vtestc_pd:
16770  case Intrinsic::x86_avx_vtestnzc_pd:
16771  case Intrinsic::x86_avx_vtestz_ps_256:
16772  case Intrinsic::x86_avx_vtestc_ps_256:
16773  case Intrinsic::x86_avx_vtestnzc_ps_256:
16774  case Intrinsic::x86_avx_vtestz_pd_256:
16775  case Intrinsic::x86_avx_vtestc_pd_256:
16776  case Intrinsic::x86_avx_vtestnzc_pd_256: {
16777    bool IsTestPacked = false;
16778    unsigned X86CC;
16779    switch (IntNo) {
16780    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
16781    case Intrinsic::x86_avx_vtestz_ps:
16782    case Intrinsic::x86_avx_vtestz_pd:
16783    case Intrinsic::x86_avx_vtestz_ps_256:
16784    case Intrinsic::x86_avx_vtestz_pd_256:
16785      IsTestPacked = true; // Fallthrough
16786    case Intrinsic::x86_sse41_ptestz:
16787    case Intrinsic::x86_avx_ptestz_256:
16788      // ZF = 1
16789      X86CC = X86::COND_E;
16790      break;
16791    case Intrinsic::x86_avx_vtestc_ps:
16792    case Intrinsic::x86_avx_vtestc_pd:
16793    case Intrinsic::x86_avx_vtestc_ps_256:
16794    case Intrinsic::x86_avx_vtestc_pd_256:
16795      IsTestPacked = true; // Fallthrough
16796    case Intrinsic::x86_sse41_ptestc:
16797    case Intrinsic::x86_avx_ptestc_256:
16798      // CF = 1
16799      X86CC = X86::COND_B;
16800      break;
16801    case Intrinsic::x86_avx_vtestnzc_ps:
16802    case Intrinsic::x86_avx_vtestnzc_pd:
16803    case Intrinsic::x86_avx_vtestnzc_ps_256:
16804    case Intrinsic::x86_avx_vtestnzc_pd_256:
16805      IsTestPacked = true; // Fallthrough
16806    case Intrinsic::x86_sse41_ptestnzc:
16807    case Intrinsic::x86_avx_ptestnzc_256:
16808      // ZF and CF = 0
16809      X86CC = X86::COND_A;
16810      break;
16811    }
16812
16813    SDValue LHS = Op.getOperand(1);
16814    SDValue RHS = Op.getOperand(2);
16815    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
16816    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
16817    SDValue CC = DAG.getConstant(X86CC, dl, MVT::i8);
16818    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
16819    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
16820  }
16821  case Intrinsic::x86_avx512_kortestz_w:
16822  case Intrinsic::x86_avx512_kortestc_w: {
16823    unsigned X86CC = (IntNo == Intrinsic::x86_avx512_kortestz_w)? X86::COND_E: X86::COND_B;
16824    SDValue LHS = DAG.getBitcast(MVT::v16i1, Op.getOperand(1));
16825    SDValue RHS = DAG.getBitcast(MVT::v16i1, Op.getOperand(2));
16826    SDValue CC = DAG.getConstant(X86CC, dl, MVT::i8);
16827    SDValue Test = DAG.getNode(X86ISD::KORTEST, dl, MVT::i32, LHS, RHS);
16828    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i1, CC, Test);
16829    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
16830  }
16831
16832  case Intrinsic::x86_sse42_pcmpistria128:
16833  case Intrinsic::x86_sse42_pcmpestria128:
16834  case Intrinsic::x86_sse42_pcmpistric128:
16835  case Intrinsic::x86_sse42_pcmpestric128:
16836  case Intrinsic::x86_sse42_pcmpistrio128:
16837  case Intrinsic::x86_sse42_pcmpestrio128:
16838  case Intrinsic::x86_sse42_pcmpistris128:
16839  case Intrinsic::x86_sse42_pcmpestris128:
16840  case Intrinsic::x86_sse42_pcmpistriz128:
16841  case Intrinsic::x86_sse42_pcmpestriz128: {
16842    unsigned Opcode;
16843    unsigned X86CC;
16844    switch (IntNo) {
16845    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
16846    case Intrinsic::x86_sse42_pcmpistria128:
16847      Opcode = X86ISD::PCMPISTRI;
16848      X86CC = X86::COND_A;
16849      break;
16850    case Intrinsic::x86_sse42_pcmpestria128:
16851      Opcode = X86ISD::PCMPESTRI;
16852      X86CC = X86::COND_A;
16853      break;
16854    case Intrinsic::x86_sse42_pcmpistric128:
16855      Opcode = X86ISD::PCMPISTRI;
16856      X86CC = X86::COND_B;
16857      break;
16858    case Intrinsic::x86_sse42_pcmpestric128:
16859      Opcode = X86ISD::PCMPESTRI;
16860      X86CC = X86::COND_B;
16861      break;
16862    case Intrinsic::x86_sse42_pcmpistrio128:
16863      Opcode = X86ISD::PCMPISTRI;
16864      X86CC = X86::COND_O;
16865      break;
16866    case Intrinsic::x86_sse42_pcmpestrio128:
16867      Opcode = X86ISD::PCMPESTRI;
16868      X86CC = X86::COND_O;
16869      break;
16870    case Intrinsic::x86_sse42_pcmpistris128:
16871      Opcode = X86ISD::PCMPISTRI;
16872      X86CC = X86::COND_S;
16873      break;
16874    case Intrinsic::x86_sse42_pcmpestris128:
16875      Opcode = X86ISD::PCMPESTRI;
16876      X86CC = X86::COND_S;
16877      break;
16878    case Intrinsic::x86_sse42_pcmpistriz128:
16879      Opcode = X86ISD::PCMPISTRI;
16880      X86CC = X86::COND_E;
16881      break;
16882    case Intrinsic::x86_sse42_pcmpestriz128:
16883      Opcode = X86ISD::PCMPESTRI;
16884      X86CC = X86::COND_E;
16885      break;
16886    }
16887    SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
16888    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
16889    SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps);
16890    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
16891                                DAG.getConstant(X86CC, dl, MVT::i8),
16892                                SDValue(PCMP.getNode(), 1));
16893    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
16894  }
16895
16896  case Intrinsic::x86_sse42_pcmpistri128:
16897  case Intrinsic::x86_sse42_pcmpestri128: {
16898    unsigned Opcode;
16899    if (IntNo == Intrinsic::x86_sse42_pcmpistri128)
16900      Opcode = X86ISD::PCMPISTRI;
16901    else
16902      Opcode = X86ISD::PCMPESTRI;
16903
16904    SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
16905    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
16906    return DAG.getNode(Opcode, dl, VTs, NewOps);
16907  }
16908
16909  case Intrinsic::x86_seh_lsda: {
16910    // Compute the symbol for the LSDA. We know it'll get emitted later.
16911    MachineFunction &MF = DAG.getMachineFunction();
16912    SDValue Op1 = Op.getOperand(1);
16913    auto *Fn = cast<Function>(cast<GlobalAddressSDNode>(Op1)->getGlobal());
16914    MCSymbol *LSDASym = MF.getMMI().getContext().getOrCreateLSDASymbol(
16915        GlobalValue::getRealLinkageName(Fn->getName()));
16916
16917    // Generate a simple absolute symbol reference. This intrinsic is only
16918    // supported on 32-bit Windows, which isn't PIC.
16919    SDValue Result = DAG.getMCSymbol(LSDASym, VT);
16920    return DAG.getNode(X86ISD::Wrapper, dl, VT, Result);
16921  }
16922
16923  case Intrinsic::x86_seh_recoverfp: {
16924    SDValue FnOp = Op.getOperand(1);
16925    SDValue IncomingFPOp = Op.getOperand(2);
16926    GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(FnOp);
16927    auto *Fn = dyn_cast_or_null<Function>(GSD ? GSD->getGlobal() : nullptr);
16928    if (!Fn)
16929      report_fatal_error(
16930          "llvm.x86.seh.recoverfp must take a function as the first argument");
16931    return recoverFramePointer(DAG, Fn, IncomingFPOp);
16932  }
16933
16934  case Intrinsic::localaddress: {
16935    // Returns one of the stack, base, or frame pointer registers, depending on
16936    // which is used to reference local variables.
16937    MachineFunction &MF = DAG.getMachineFunction();
16938    const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
16939    unsigned Reg;
16940    if (RegInfo->hasBasePointer(MF))
16941      Reg = RegInfo->getBaseRegister();
16942    else // This function handles the SP or FP case.
16943      Reg = RegInfo->getPtrSizedFrameRegister(MF);
16944    return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
16945  }
16946  }
16947}
16948
16949static SDValue getGatherNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
16950                              SDValue Src, SDValue Mask, SDValue Base,
16951                              SDValue Index, SDValue ScaleOp, SDValue Chain,
16952                              const X86Subtarget * Subtarget) {
16953  SDLoc dl(Op);
16954  auto *C = cast<ConstantSDNode>(ScaleOp);
16955  SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl, MVT::i8);
16956  MVT MaskVT = MVT::getVectorVT(MVT::i1,
16957                             Index.getSimpleValueType().getVectorNumElements());
16958  SDValue MaskInReg;
16959  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask);
16960  if (MaskC)
16961    MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), dl, MaskVT);
16962  else {
16963    MVT BitcastVT = MVT::getVectorVT(MVT::i1,
16964                                     Mask.getSimpleValueType().getSizeInBits());
16965
16966    // In case when MaskVT equals v2i1 or v4i1, low 2 or 4 elements
16967    // are extracted by EXTRACT_SUBVECTOR.
16968    MaskInReg = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
16969                            DAG.getBitcast(BitcastVT, Mask),
16970                            DAG.getIntPtrConstant(0, dl));
16971  }
16972  SDVTList VTs = DAG.getVTList(Op.getValueType(), MaskVT, MVT::Other);
16973  SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32);
16974  SDValue Segment = DAG.getRegister(0, MVT::i32);
16975  if (Src.getOpcode() == ISD::UNDEF)
16976    Src = getZeroVector(Op.getSimpleValueType(), Subtarget, DAG, dl);
16977  SDValue Ops[] = {Src, MaskInReg, Base, Scale, Index, Disp, Segment, Chain};
16978  SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
16979  SDValue RetOps[] = { SDValue(Res, 0), SDValue(Res, 2) };
16980  return DAG.getMergeValues(RetOps, dl);
16981}
16982
16983static SDValue getScatterNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
16984                               SDValue Src, SDValue Mask, SDValue Base,
16985                               SDValue Index, SDValue ScaleOp, SDValue Chain) {
16986  SDLoc dl(Op);
16987  auto *C = cast<ConstantSDNode>(ScaleOp);
16988  SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl, MVT::i8);
16989  SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32);
16990  SDValue Segment = DAG.getRegister(0, MVT::i32);
16991  MVT MaskVT = MVT::getVectorVT(MVT::i1,
16992                             Index.getSimpleValueType().getVectorNumElements());
16993  SDValue MaskInReg;
16994  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask);
16995  if (MaskC)
16996    MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), dl, MaskVT);
16997  else {
16998    MVT BitcastVT = MVT::getVectorVT(MVT::i1,
16999                                     Mask.getSimpleValueType().getSizeInBits());
17000
17001    // In case when MaskVT equals v2i1 or v4i1, low 2 or 4 elements
17002    // are extracted by EXTRACT_SUBVECTOR.
17003    MaskInReg = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
17004                            DAG.getBitcast(BitcastVT, Mask),
17005                            DAG.getIntPtrConstant(0, dl));
17006  }
17007  SDVTList VTs = DAG.getVTList(MaskVT, MVT::Other);
17008  SDValue Ops[] = {Base, Scale, Index, Disp, Segment, MaskInReg, Src, Chain};
17009  SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
17010  return SDValue(Res, 1);
17011}
17012
17013static SDValue getPrefetchNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
17014                               SDValue Mask, SDValue Base, SDValue Index,
17015                               SDValue ScaleOp, SDValue Chain) {
17016  SDLoc dl(Op);
17017  auto *C = cast<ConstantSDNode>(ScaleOp);
17018  SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl, MVT::i8);
17019  SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32);
17020  SDValue Segment = DAG.getRegister(0, MVT::i32);
17021  MVT MaskVT =
17022    MVT::getVectorVT(MVT::i1, Index.getSimpleValueType().getVectorNumElements());
17023  SDValue MaskInReg;
17024  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask);
17025  if (MaskC)
17026    MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), dl, MaskVT);
17027  else
17028    MaskInReg = DAG.getBitcast(MaskVT, Mask);
17029  //SDVTList VTs = DAG.getVTList(MVT::Other);
17030  SDValue Ops[] = {MaskInReg, Base, Scale, Index, Disp, Segment, Chain};
17031  SDNode *Res = DAG.getMachineNode(Opc, dl, MVT::Other, Ops);
17032  return SDValue(Res, 0);
17033}
17034
17035// getReadPerformanceCounter - Handles the lowering of builtin intrinsics that
17036// read performance monitor counters (x86_rdpmc).
17037static void getReadPerformanceCounter(SDNode *N, SDLoc DL,
17038                              SelectionDAG &DAG, const X86Subtarget *Subtarget,
17039                              SmallVectorImpl<SDValue> &Results) {
17040  assert(N->getNumOperands() == 3 && "Unexpected number of operands!");
17041  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
17042  SDValue LO, HI;
17043
17044  // The ECX register is used to select the index of the performance counter
17045  // to read.
17046  SDValue Chain = DAG.getCopyToReg(N->getOperand(0), DL, X86::ECX,
17047                                   N->getOperand(2));
17048  SDValue rd = DAG.getNode(X86ISD::RDPMC_DAG, DL, Tys, Chain);
17049
17050  // Reads the content of a 64-bit performance counter and returns it in the
17051  // registers EDX:EAX.
17052  if (Subtarget->is64Bit()) {
17053    LO = DAG.getCopyFromReg(rd, DL, X86::RAX, MVT::i64, rd.getValue(1));
17054    HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64,
17055                            LO.getValue(2));
17056  } else {
17057    LO = DAG.getCopyFromReg(rd, DL, X86::EAX, MVT::i32, rd.getValue(1));
17058    HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32,
17059                            LO.getValue(2));
17060  }
17061  Chain = HI.getValue(1);
17062
17063  if (Subtarget->is64Bit()) {
17064    // The EAX register is loaded with the low-order 32 bits. The EDX register
17065    // is loaded with the supported high-order bits of the counter.
17066    SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI,
17067                              DAG.getConstant(32, DL, MVT::i8));
17068    Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp));
17069    Results.push_back(Chain);
17070    return;
17071  }
17072
17073  // Use a buildpair to merge the two 32-bit values into a 64-bit one.
17074  SDValue Ops[] = { LO, HI };
17075  SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops);
17076  Results.push_back(Pair);
17077  Results.push_back(Chain);
17078}
17079
17080// getReadTimeStampCounter - Handles the lowering of builtin intrinsics that
17081// read the time stamp counter (x86_rdtsc and x86_rdtscp). This function is
17082// also used to custom lower READCYCLECOUNTER nodes.
17083static void getReadTimeStampCounter(SDNode *N, SDLoc DL, unsigned Opcode,
17084                              SelectionDAG &DAG, const X86Subtarget *Subtarget,
17085                              SmallVectorImpl<SDValue> &Results) {
17086  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
17087  SDValue rd = DAG.getNode(Opcode, DL, Tys, N->getOperand(0));
17088  SDValue LO, HI;
17089
17090  // The processor's time-stamp counter (a 64-bit MSR) is stored into the
17091  // EDX:EAX registers. EDX is loaded with the high-order 32 bits of the MSR
17092  // and the EAX register is loaded with the low-order 32 bits.
17093  if (Subtarget->is64Bit()) {
17094    LO = DAG.getCopyFromReg(rd, DL, X86::RAX, MVT::i64, rd.getValue(1));
17095    HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64,
17096                            LO.getValue(2));
17097  } else {
17098    LO = DAG.getCopyFromReg(rd, DL, X86::EAX, MVT::i32, rd.getValue(1));
17099    HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32,
17100                            LO.getValue(2));
17101  }
17102  SDValue Chain = HI.getValue(1);
17103
17104  if (Opcode == X86ISD::RDTSCP_DAG) {
17105    assert(N->getNumOperands() == 3 && "Unexpected number of operands!");
17106
17107    // Instruction RDTSCP loads the IA32:TSC_AUX_MSR (address C000_0103H) into
17108    // the ECX register. Add 'ecx' explicitly to the chain.
17109    SDValue ecx = DAG.getCopyFromReg(Chain, DL, X86::ECX, MVT::i32,
17110                                     HI.getValue(2));
17111    // Explicitly store the content of ECX at the location passed in input
17112    // to the 'rdtscp' intrinsic.
17113    Chain = DAG.getStore(ecx.getValue(1), DL, ecx, N->getOperand(2),
17114                         MachinePointerInfo(), false, false, 0);
17115  }
17116
17117  if (Subtarget->is64Bit()) {
17118    // The EDX register is loaded with the high-order 32 bits of the MSR, and
17119    // the EAX register is loaded with the low-order 32 bits.
17120    SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI,
17121                              DAG.getConstant(32, DL, MVT::i8));
17122    Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp));
17123    Results.push_back(Chain);
17124    return;
17125  }
17126
17127  // Use a buildpair to merge the two 32-bit values into a 64-bit one.
17128  SDValue Ops[] = { LO, HI };
17129  SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops);
17130  Results.push_back(Pair);
17131  Results.push_back(Chain);
17132}
17133
17134static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget,
17135                                     SelectionDAG &DAG) {
17136  SmallVector<SDValue, 2> Results;
17137  SDLoc DL(Op);
17138  getReadTimeStampCounter(Op.getNode(), DL, X86ISD::RDTSC_DAG, DAG, Subtarget,
17139                          Results);
17140  return DAG.getMergeValues(Results, DL);
17141}
17142
17143static SDValue MarkEHRegistrationNode(SDValue Op, SelectionDAG &DAG) {
17144  MachineFunction &MF = DAG.getMachineFunction();
17145  SDValue Chain = Op.getOperand(0);
17146  SDValue RegNode = Op.getOperand(2);
17147  WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
17148  if (!EHInfo)
17149    report_fatal_error("EH registrations only live in functions using WinEH");
17150
17151  // Cast the operand to an alloca, and remember the frame index.
17152  auto *FINode = dyn_cast<FrameIndexSDNode>(RegNode);
17153  if (!FINode)
17154    report_fatal_error("llvm.x86.seh.ehregnode expects a static alloca");
17155  EHInfo->EHRegNodeFrameIndex = FINode->getIndex();
17156
17157  // Return the chain operand without making any DAG nodes.
17158  return Chain;
17159}
17160
17161/// \brief Lower intrinsics for TRUNCATE_TO_MEM case
17162/// return truncate Store/MaskedStore Node
17163static SDValue LowerINTRINSIC_TRUNCATE_TO_MEM(const SDValue & Op,
17164                                               SelectionDAG &DAG,
17165                                               MVT ElementType) {
17166  SDLoc dl(Op);
17167  SDValue Mask = Op.getOperand(4);
17168  SDValue DataToTruncate = Op.getOperand(3);
17169  SDValue Addr = Op.getOperand(2);
17170  SDValue Chain = Op.getOperand(0);
17171
17172  MVT VT  = DataToTruncate.getSimpleValueType();
17173  MVT SVT = MVT::getVectorVT(ElementType, VT.getVectorNumElements());
17174
17175  if (isAllOnesConstant(Mask)) // return just a truncate store
17176    return DAG.getTruncStore(Chain, dl, DataToTruncate, Addr,
17177                             MachinePointerInfo(), SVT, false, false,
17178                             SVT.getScalarSizeInBits()/8);
17179
17180  MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
17181  MVT BitcastVT = MVT::getVectorVT(MVT::i1,
17182                                   Mask.getSimpleValueType().getSizeInBits());
17183  // In case when MaskVT equals v2i1 or v4i1, low 2 or 4 elements
17184  // are extracted by EXTRACT_SUBVECTOR.
17185  SDValue VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
17186                              DAG.getBitcast(BitcastVT, Mask),
17187                              DAG.getIntPtrConstant(0, dl));
17188
17189  MachineMemOperand *MMO = DAG.getMachineFunction().
17190    getMachineMemOperand(MachinePointerInfo(),
17191                         MachineMemOperand::MOStore, SVT.getStoreSize(),
17192                         SVT.getScalarSizeInBits()/8);
17193
17194  return DAG.getMaskedStore(Chain, dl, DataToTruncate, Addr,
17195                            VMask, SVT, MMO, true);
17196}
17197
17198static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget *Subtarget,
17199                                      SelectionDAG &DAG) {
17200  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
17201
17202  const IntrinsicData* IntrData = getIntrinsicWithChain(IntNo);
17203  if (!IntrData) {
17204    if (IntNo == llvm::Intrinsic::x86_seh_ehregnode)
17205      return MarkEHRegistrationNode(Op, DAG);
17206    return SDValue();
17207  }
17208
17209  SDLoc dl(Op);
17210  switch(IntrData->Type) {
17211  default: llvm_unreachable("Unknown Intrinsic Type");
17212  case RDSEED:
17213  case RDRAND: {
17214    // Emit the node with the right value type.
17215    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other);
17216    SDValue Result = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(0));
17217
17218    // If the value returned by RDRAND/RDSEED was valid (CF=1), return 1.
17219    // Otherwise return the value from Rand, which is always 0, casted to i32.
17220    SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
17221                      DAG.getConstant(1, dl, Op->getValueType(1)),
17222                      DAG.getConstant(X86::COND_B, dl, MVT::i32),
17223                      SDValue(Result.getNode(), 1) };
17224    SDValue isValid = DAG.getNode(X86ISD::CMOV, dl,
17225                                  DAG.getVTList(Op->getValueType(1), MVT::Glue),
17226                                  Ops);
17227
17228    // Return { result, isValid, chain }.
17229    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
17230                       SDValue(Result.getNode(), 2));
17231  }
17232  case GATHER: {
17233  //gather(v1, mask, index, base, scale);
17234    SDValue Chain = Op.getOperand(0);
17235    SDValue Src   = Op.getOperand(2);
17236    SDValue Base  = Op.getOperand(3);
17237    SDValue Index = Op.getOperand(4);
17238    SDValue Mask  = Op.getOperand(5);
17239    SDValue Scale = Op.getOperand(6);
17240    return getGatherNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index, Scale,
17241                         Chain, Subtarget);
17242  }
17243  case SCATTER: {
17244  //scatter(base, mask, index, v1, scale);
17245    SDValue Chain = Op.getOperand(0);
17246    SDValue Base  = Op.getOperand(2);
17247    SDValue Mask  = Op.getOperand(3);
17248    SDValue Index = Op.getOperand(4);
17249    SDValue Src   = Op.getOperand(5);
17250    SDValue Scale = Op.getOperand(6);
17251    return getScatterNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index,
17252                          Scale, Chain);
17253  }
17254  case PREFETCH: {
17255    SDValue Hint = Op.getOperand(6);
17256    unsigned HintVal = cast<ConstantSDNode>(Hint)->getZExtValue();
17257    assert(HintVal < 2 && "Wrong prefetch hint in intrinsic: should be 0 or 1");
17258    unsigned Opcode = (HintVal ? IntrData->Opc1 : IntrData->Opc0);
17259    SDValue Chain = Op.getOperand(0);
17260    SDValue Mask  = Op.getOperand(2);
17261    SDValue Index = Op.getOperand(3);
17262    SDValue Base  = Op.getOperand(4);
17263    SDValue Scale = Op.getOperand(5);
17264    return getPrefetchNode(Opcode, Op, DAG, Mask, Base, Index, Scale, Chain);
17265  }
17266  // Read Time Stamp Counter (RDTSC) and Processor ID (RDTSCP).
17267  case RDTSC: {
17268    SmallVector<SDValue, 2> Results;
17269    getReadTimeStampCounter(Op.getNode(), dl, IntrData->Opc0, DAG, Subtarget,
17270                            Results);
17271    return DAG.getMergeValues(Results, dl);
17272  }
17273  // Read Performance Monitoring Counters.
17274  case RDPMC: {
17275    SmallVector<SDValue, 2> Results;
17276    getReadPerformanceCounter(Op.getNode(), dl, DAG, Subtarget, Results);
17277    return DAG.getMergeValues(Results, dl);
17278  }
17279  // XTEST intrinsics.
17280  case XTEST: {
17281    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Other);
17282    SDValue InTrans = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(0));
17283    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
17284                                DAG.getConstant(X86::COND_NE, dl, MVT::i8),
17285                                InTrans);
17286    SDValue Ret = DAG.getNode(ISD::ZERO_EXTEND, dl, Op->getValueType(0), SetCC);
17287    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(),
17288                       Ret, SDValue(InTrans.getNode(), 1));
17289  }
17290  // ADC/ADCX/SBB
17291  case ADX: {
17292    SmallVector<SDValue, 2> Results;
17293    SDVTList CFVTs = DAG.getVTList(Op->getValueType(0), MVT::Other);
17294    SDVTList VTs = DAG.getVTList(Op.getOperand(3)->getValueType(0), MVT::Other);
17295    SDValue GenCF = DAG.getNode(X86ISD::ADD, dl, CFVTs, Op.getOperand(2),
17296                                DAG.getConstant(-1, dl, MVT::i8));
17297    SDValue Res = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(3),
17298                              Op.getOperand(4), GenCF.getValue(1));
17299    SDValue Store = DAG.getStore(Op.getOperand(0), dl, Res.getValue(0),
17300                                 Op.getOperand(5), MachinePointerInfo(),
17301                                 false, false, 0);
17302    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
17303                                DAG.getConstant(X86::COND_B, dl, MVT::i8),
17304                                Res.getValue(1));
17305    Results.push_back(SetCC);
17306    Results.push_back(Store);
17307    return DAG.getMergeValues(Results, dl);
17308  }
17309  case COMPRESS_TO_MEM: {
17310    SDLoc dl(Op);
17311    SDValue Mask = Op.getOperand(4);
17312    SDValue DataToCompress = Op.getOperand(3);
17313    SDValue Addr = Op.getOperand(2);
17314    SDValue Chain = Op.getOperand(0);
17315
17316    MVT VT = DataToCompress.getSimpleValueType();
17317    if (isAllOnesConstant(Mask)) // return just a store
17318      return DAG.getStore(Chain, dl, DataToCompress, Addr,
17319                          MachinePointerInfo(), false, false,
17320                          VT.getScalarSizeInBits()/8);
17321
17322    SDValue Compressed =
17323      getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, DataToCompress),
17324                           Mask, DAG.getUNDEF(VT), Subtarget, DAG);
17325    return DAG.getStore(Chain, dl, Compressed, Addr,
17326                        MachinePointerInfo(), false, false,
17327                        VT.getScalarSizeInBits()/8);
17328  }
17329  case TRUNCATE_TO_MEM_VI8:
17330    return LowerINTRINSIC_TRUNCATE_TO_MEM(Op, DAG, MVT::i8);
17331  case TRUNCATE_TO_MEM_VI16:
17332    return LowerINTRINSIC_TRUNCATE_TO_MEM(Op, DAG, MVT::i16);
17333  case TRUNCATE_TO_MEM_VI32:
17334    return LowerINTRINSIC_TRUNCATE_TO_MEM(Op, DAG, MVT::i32);
17335  case EXPAND_FROM_MEM: {
17336    SDLoc dl(Op);
17337    SDValue Mask = Op.getOperand(4);
17338    SDValue PassThru = Op.getOperand(3);
17339    SDValue Addr = Op.getOperand(2);
17340    SDValue Chain = Op.getOperand(0);
17341    MVT VT = Op.getSimpleValueType();
17342
17343    if (isAllOnesConstant(Mask)) // return just a load
17344      return DAG.getLoad(VT, dl, Chain, Addr, MachinePointerInfo(), false, false,
17345                         false, VT.getScalarSizeInBits()/8);
17346
17347    SDValue DataToExpand = DAG.getLoad(VT, dl, Chain, Addr, MachinePointerInfo(),
17348                                       false, false, false,
17349                                       VT.getScalarSizeInBits()/8);
17350
17351    SDValue Results[] = {
17352      getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, DataToExpand),
17353                           Mask, PassThru, Subtarget, DAG), Chain};
17354    return DAG.getMergeValues(Results, dl);
17355  }
17356  }
17357}
17358
17359SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
17360                                           SelectionDAG &DAG) const {
17361  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
17362  MFI->setReturnAddressIsTaken(true);
17363
17364  if (verifyReturnAddressArgumentIsConstant(Op, DAG))
17365    return SDValue();
17366
17367  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
17368  SDLoc dl(Op);
17369  EVT PtrVT = getPointerTy(DAG.getDataLayout());
17370
17371  if (Depth > 0) {
17372    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
17373    const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
17374    SDValue Offset = DAG.getConstant(RegInfo->getSlotSize(), dl, PtrVT);
17375    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
17376                       DAG.getNode(ISD::ADD, dl, PtrVT,
17377                                   FrameAddr, Offset),
17378                       MachinePointerInfo(), false, false, false, 0);
17379  }
17380
17381  // Just load the return address.
17382  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
17383  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
17384                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
17385}
17386
17387SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
17388  MachineFunction &MF = DAG.getMachineFunction();
17389  MachineFrameInfo *MFI = MF.getFrameInfo();
17390  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
17391  const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
17392  EVT VT = Op.getValueType();
17393
17394  MFI->setFrameAddressIsTaken(true);
17395
17396  if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
17397    // Depth > 0 makes no sense on targets which use Windows unwind codes.  It
17398    // is not possible to crawl up the stack without looking at the unwind codes
17399    // simultaneously.
17400    int FrameAddrIndex = FuncInfo->getFAIndex();
17401    if (!FrameAddrIndex) {
17402      // Set up a frame object for the return address.
17403      unsigned SlotSize = RegInfo->getSlotSize();
17404      FrameAddrIndex = MF.getFrameInfo()->CreateFixedObject(
17405          SlotSize, /*Offset=*/0, /*IsImmutable=*/false);
17406      FuncInfo->setFAIndex(FrameAddrIndex);
17407    }
17408    return DAG.getFrameIndex(FrameAddrIndex, VT);
17409  }
17410
17411  unsigned FrameReg =
17412      RegInfo->getPtrSizedFrameRegister(DAG.getMachineFunction());
17413  SDLoc dl(Op);  // FIXME probably not meaningful
17414  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
17415  assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
17416          (FrameReg == X86::EBP && VT == MVT::i32)) &&
17417         "Invalid Frame Register!");
17418  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
17419  while (Depth--)
17420    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
17421                            MachinePointerInfo(),
17422                            false, false, false, 0);
17423  return FrameAddr;
17424}
17425
17426// FIXME? Maybe this could be a TableGen attribute on some registers and
17427// this table could be generated automatically from RegInfo.
17428unsigned X86TargetLowering::getRegisterByName(const char* RegName, EVT VT,
17429                                              SelectionDAG &DAG) const {
17430  const TargetFrameLowering &TFI = *Subtarget->getFrameLowering();
17431  const MachineFunction &MF = DAG.getMachineFunction();
17432
17433  unsigned Reg = StringSwitch<unsigned>(RegName)
17434                       .Case("esp", X86::ESP)
17435                       .Case("rsp", X86::RSP)
17436                       .Case("ebp", X86::EBP)
17437                       .Case("rbp", X86::RBP)
17438                       .Default(0);
17439
17440  if (Reg == X86::EBP || Reg == X86::RBP) {
17441    if (!TFI.hasFP(MF))
17442      report_fatal_error("register " + StringRef(RegName) +
17443                         " is allocatable: function has no frame pointer");
17444#ifndef NDEBUG
17445    else {
17446      const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
17447      unsigned FrameReg =
17448          RegInfo->getPtrSizedFrameRegister(DAG.getMachineFunction());
17449      assert((FrameReg == X86::EBP || FrameReg == X86::RBP) &&
17450             "Invalid Frame Register!");
17451    }
17452#endif
17453  }
17454
17455  if (Reg)
17456    return Reg;
17457
17458  report_fatal_error("Invalid register name global variable");
17459}
17460
17461SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
17462                                                     SelectionDAG &DAG) const {
17463  const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
17464  return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize(), SDLoc(Op));
17465}
17466
17467unsigned X86TargetLowering::getExceptionPointerRegister(
17468    const Constant *PersonalityFn) const {
17469  if (classifyEHPersonality(PersonalityFn) == EHPersonality::CoreCLR)
17470    return Subtarget->isTarget64BitLP64() ? X86::RDX : X86::EDX;
17471
17472  return Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX;
17473}
17474
17475unsigned X86TargetLowering::getExceptionSelectorRegister(
17476    const Constant *PersonalityFn) const {
17477  // Funclet personalities don't use selectors (the runtime does the selection).
17478  assert(!isFuncletEHPersonality(classifyEHPersonality(PersonalityFn)));
17479  return Subtarget->isTarget64BitLP64() ? X86::RDX : X86::EDX;
17480}
17481
17482SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
17483  SDValue Chain     = Op.getOperand(0);
17484  SDValue Offset    = Op.getOperand(1);
17485  SDValue Handler   = Op.getOperand(2);
17486  SDLoc dl      (Op);
17487
17488  EVT PtrVT = getPointerTy(DAG.getDataLayout());
17489  const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
17490  unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction());
17491  assert(((FrameReg == X86::RBP && PtrVT == MVT::i64) ||
17492          (FrameReg == X86::EBP && PtrVT == MVT::i32)) &&
17493         "Invalid Frame Register!");
17494  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, PtrVT);
17495  unsigned StoreAddrReg = (PtrVT == MVT::i64) ? X86::RCX : X86::ECX;
17496
17497  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, Frame,
17498                                 DAG.getIntPtrConstant(RegInfo->getSlotSize(),
17499                                                       dl));
17500  StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, StoreAddr, Offset);
17501  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
17502                       false, false, 0);
17503  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
17504
17505  return DAG.getNode(X86ISD::EH_RETURN, dl, MVT::Other, Chain,
17506                     DAG.getRegister(StoreAddrReg, PtrVT));
17507}
17508
17509SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
17510                                               SelectionDAG &DAG) const {
17511  SDLoc DL(Op);
17512  return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL,
17513                     DAG.getVTList(MVT::i32, MVT::Other),
17514                     Op.getOperand(0), Op.getOperand(1));
17515}
17516
17517SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
17518                                                SelectionDAG &DAG) const {
17519  SDLoc DL(Op);
17520  return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
17521                     Op.getOperand(0), Op.getOperand(1));
17522}
17523
17524static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
17525  return Op.getOperand(0);
17526}
17527
17528SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
17529                                                SelectionDAG &DAG) const {
17530  SDValue Root = Op.getOperand(0);
17531  SDValue Trmp = Op.getOperand(1); // trampoline
17532  SDValue FPtr = Op.getOperand(2); // nested function
17533  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
17534  SDLoc dl (Op);
17535
17536  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
17537  const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
17538
17539  if (Subtarget->is64Bit()) {
17540    SDValue OutChains[6];
17541
17542    // Large code-model.
17543    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
17544    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
17545
17546    const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7;
17547    const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7;
17548
17549    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
17550
17551    // Load the pointer to the nested function into R11.
17552    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
17553    SDValue Addr = Trmp;
17554    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, dl, MVT::i16),
17555                                Addr, MachinePointerInfo(TrmpAddr),
17556                                false, false, 0);
17557
17558    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
17559                       DAG.getConstant(2, dl, MVT::i64));
17560    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
17561                                MachinePointerInfo(TrmpAddr, 2),
17562                                false, false, 2);
17563
17564    // Load the 'nest' parameter value into R10.
17565    // R10 is specified in X86CallingConv.td
17566    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
17567    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
17568                       DAG.getConstant(10, dl, MVT::i64));
17569    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, dl, MVT::i16),
17570                                Addr, MachinePointerInfo(TrmpAddr, 10),
17571                                false, false, 0);
17572
17573    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
17574                       DAG.getConstant(12, dl, MVT::i64));
17575    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
17576                                MachinePointerInfo(TrmpAddr, 12),
17577                                false, false, 2);
17578
17579    // Jump to the nested function.
17580    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
17581    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
17582                       DAG.getConstant(20, dl, MVT::i64));
17583    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, dl, MVT::i16),
17584                                Addr, MachinePointerInfo(TrmpAddr, 20),
17585                                false, false, 0);
17586
17587    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
17588    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
17589                       DAG.getConstant(22, dl, MVT::i64));
17590    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, dl, MVT::i8),
17591                                Addr, MachinePointerInfo(TrmpAddr, 22),
17592                                false, false, 0);
17593
17594    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
17595  } else {
17596    const Function *Func =
17597      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
17598    CallingConv::ID CC = Func->getCallingConv();
17599    unsigned NestReg;
17600
17601    switch (CC) {
17602    default:
17603      llvm_unreachable("Unsupported calling convention");
17604    case CallingConv::C:
17605    case CallingConv::X86_StdCall: {
17606      // Pass 'nest' parameter in ECX.
17607      // Must be kept in sync with X86CallingConv.td
17608      NestReg = X86::ECX;
17609
17610      // Check that ECX wasn't needed by an 'inreg' parameter.
17611      FunctionType *FTy = Func->getFunctionType();
17612      const AttributeSet &Attrs = Func->getAttributes();
17613
17614      if (!Attrs.isEmpty() && !Func->isVarArg()) {
17615        unsigned InRegCount = 0;
17616        unsigned Idx = 1;
17617
17618        for (FunctionType::param_iterator I = FTy->param_begin(),
17619             E = FTy->param_end(); I != E; ++I, ++Idx)
17620          if (Attrs.hasAttribute(Idx, Attribute::InReg)) {
17621            auto &DL = DAG.getDataLayout();
17622            // FIXME: should only count parameters that are lowered to integers.
17623            InRegCount += (DL.getTypeSizeInBits(*I) + 31) / 32;
17624          }
17625
17626        if (InRegCount > 2) {
17627          report_fatal_error("Nest register in use - reduce number of inreg"
17628                             " parameters!");
17629        }
17630      }
17631      break;
17632    }
17633    case CallingConv::X86_FastCall:
17634    case CallingConv::X86_ThisCall:
17635    case CallingConv::Fast:
17636      // Pass 'nest' parameter in EAX.
17637      // Must be kept in sync with X86CallingConv.td
17638      NestReg = X86::EAX;
17639      break;
17640    }
17641
17642    SDValue OutChains[4];
17643    SDValue Addr, Disp;
17644
17645    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
17646                       DAG.getConstant(10, dl, MVT::i32));
17647    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
17648
17649    // This is storing the opcode for MOV32ri.
17650    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
17651    const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7;
17652    OutChains[0] = DAG.getStore(Root, dl,
17653                                DAG.getConstant(MOV32ri|N86Reg, dl, MVT::i8),
17654                                Trmp, MachinePointerInfo(TrmpAddr),
17655                                false, false, 0);
17656
17657    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
17658                       DAG.getConstant(1, dl, MVT::i32));
17659    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
17660                                MachinePointerInfo(TrmpAddr, 1),
17661                                false, false, 1);
17662
17663    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
17664    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
17665                       DAG.getConstant(5, dl, MVT::i32));
17666    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, dl, MVT::i8),
17667                                Addr, MachinePointerInfo(TrmpAddr, 5),
17668                                false, false, 1);
17669
17670    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
17671                       DAG.getConstant(6, dl, MVT::i32));
17672    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
17673                                MachinePointerInfo(TrmpAddr, 6),
17674                                false, false, 1);
17675
17676    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
17677  }
17678}
17679
17680SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
17681                                            SelectionDAG &DAG) const {
17682  /*
17683   The rounding mode is in bits 11:10 of FPSR, and has the following
17684   settings:
17685     00 Round to nearest
17686     01 Round to -inf
17687     10 Round to +inf
17688     11 Round to 0
17689
17690  FLT_ROUNDS, on the other hand, expects the following:
17691    -1 Undefined
17692     0 Round to 0
17693     1 Round to nearest
17694     2 Round to +inf
17695     3 Round to -inf
17696
17697  To perform the conversion, we do:
17698    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
17699  */
17700
17701  MachineFunction &MF = DAG.getMachineFunction();
17702  const TargetFrameLowering &TFI = *Subtarget->getFrameLowering();
17703  unsigned StackAlignment = TFI.getStackAlignment();
17704  MVT VT = Op.getSimpleValueType();
17705  SDLoc DL(Op);
17706
17707  // Save FP Control Word to stack slot
17708  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
17709  SDValue StackSlot =
17710      DAG.getFrameIndex(SSFI, getPointerTy(DAG.getDataLayout()));
17711
17712  MachineMemOperand *MMO =
17713      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, SSFI),
17714                              MachineMemOperand::MOStore, 2, 2);
17715
17716  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
17717  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
17718                                          DAG.getVTList(MVT::Other),
17719                                          Ops, MVT::i16, MMO);
17720
17721  // Load FP Control Word from stack slot
17722  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
17723                            MachinePointerInfo(), false, false, false, 0);
17724
17725  // Transform as necessary
17726  SDValue CWD1 =
17727    DAG.getNode(ISD::SRL, DL, MVT::i16,
17728                DAG.getNode(ISD::AND, DL, MVT::i16,
17729                            CWD, DAG.getConstant(0x800, DL, MVT::i16)),
17730                DAG.getConstant(11, DL, MVT::i8));
17731  SDValue CWD2 =
17732    DAG.getNode(ISD::SRL, DL, MVT::i16,
17733                DAG.getNode(ISD::AND, DL, MVT::i16,
17734                            CWD, DAG.getConstant(0x400, DL, MVT::i16)),
17735                DAG.getConstant(9, DL, MVT::i8));
17736
17737  SDValue RetVal =
17738    DAG.getNode(ISD::AND, DL, MVT::i16,
17739                DAG.getNode(ISD::ADD, DL, MVT::i16,
17740                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
17741                            DAG.getConstant(1, DL, MVT::i16)),
17742                DAG.getConstant(3, DL, MVT::i16));
17743
17744  return DAG.getNode((VT.getSizeInBits() < 16 ?
17745                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
17746}
17747
17748/// \brief Lower a vector CTLZ using native supported vector CTLZ instruction.
17749//
17750// 1. i32/i64 128/256-bit vector (native support require VLX) are expended
17751//    to 512-bit vector.
17752// 2. i8/i16 vector implemented using dword LZCNT vector instruction
17753//    ( sub(trunc(lzcnt(zext32(x)))) ). In case zext32(x) is illegal,
17754//    split the vector, perform operation on it's Lo a Hi part and
17755//    concatenate the results.
17756static SDValue LowerVectorCTLZ_AVX512(SDValue Op, SelectionDAG &DAG) {
17757  SDLoc dl(Op);
17758  MVT VT = Op.getSimpleValueType();
17759  MVT EltVT = VT.getVectorElementType();
17760  unsigned NumElems = VT.getVectorNumElements();
17761
17762  if (EltVT == MVT::i64 || EltVT == MVT::i32) {
17763    // Extend to 512 bit vector.
17764    assert((VT.is256BitVector() || VT.is128BitVector()) &&
17765              "Unsupported value type for operation");
17766
17767    MVT NewVT = MVT::getVectorVT(EltVT, 512 / VT.getScalarSizeInBits());
17768    SDValue Vec512 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, NewVT,
17769                                 DAG.getUNDEF(NewVT),
17770                                 Op.getOperand(0),
17771                                 DAG.getIntPtrConstant(0, dl));
17772    SDValue CtlzNode = DAG.getNode(ISD::CTLZ, dl, NewVT, Vec512);
17773
17774    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, CtlzNode,
17775                       DAG.getIntPtrConstant(0, dl));
17776  }
17777
17778  assert((EltVT == MVT::i8 || EltVT == MVT::i16) &&
17779          "Unsupported element type");
17780
17781  if (16 < NumElems) {
17782    // Split vector, it's Lo and Hi parts will be handled in next iteration.
17783    SDValue Lo, Hi;
17784    std::tie(Lo, Hi) = DAG.SplitVector(Op.getOperand(0), dl);
17785    MVT OutVT = MVT::getVectorVT(EltVT, NumElems/2);
17786
17787    Lo = DAG.getNode(Op.getOpcode(), dl, OutVT, Lo);
17788    Hi = DAG.getNode(Op.getOpcode(), dl, OutVT, Hi);
17789
17790    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lo, Hi);
17791  }
17792
17793  MVT NewVT = MVT::getVectorVT(MVT::i32, NumElems);
17794
17795  assert((NewVT.is256BitVector() || NewVT.is512BitVector()) &&
17796          "Unsupported value type for operation");
17797
17798  // Use native supported vector instruction vplzcntd.
17799  Op = DAG.getNode(ISD::ZERO_EXTEND, dl, NewVT, Op.getOperand(0));
17800  SDValue CtlzNode = DAG.getNode(ISD::CTLZ, dl, NewVT, Op);
17801  SDValue TruncNode = DAG.getNode(ISD::TRUNCATE, dl, VT, CtlzNode);
17802  SDValue Delta = DAG.getConstant(32 - EltVT.getSizeInBits(), dl, VT);
17803
17804  return DAG.getNode(ISD::SUB, dl, VT, TruncNode, Delta);
17805}
17806
17807static SDValue LowerCTLZ(SDValue Op, const X86Subtarget *Subtarget,
17808                         SelectionDAG &DAG) {
17809  MVT VT = Op.getSimpleValueType();
17810  MVT OpVT = VT;
17811  unsigned NumBits = VT.getSizeInBits();
17812  SDLoc dl(Op);
17813
17814  if (VT.isVector() && Subtarget->hasAVX512())
17815    return LowerVectorCTLZ_AVX512(Op, DAG);
17816
17817  Op = Op.getOperand(0);
17818  if (VT == MVT::i8) {
17819    // Zero extend to i32 since there is not an i8 bsr.
17820    OpVT = MVT::i32;
17821    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
17822  }
17823
17824  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
17825  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
17826  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
17827
17828  // If src is zero (i.e. bsr sets ZF), returns NumBits.
17829  SDValue Ops[] = {
17830    Op,
17831    DAG.getConstant(NumBits + NumBits - 1, dl, OpVT),
17832    DAG.getConstant(X86::COND_E, dl, MVT::i8),
17833    Op.getValue(1)
17834  };
17835  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops);
17836
17837  // Finally xor with NumBits-1.
17838  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op,
17839                   DAG.getConstant(NumBits - 1, dl, OpVT));
17840
17841  if (VT == MVT::i8)
17842    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
17843  return Op;
17844}
17845
17846static SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, const X86Subtarget *Subtarget,
17847                                    SelectionDAG &DAG) {
17848  MVT VT = Op.getSimpleValueType();
17849  EVT OpVT = VT;
17850  unsigned NumBits = VT.getSizeInBits();
17851  SDLoc dl(Op);
17852
17853  if (VT.isVector() && Subtarget->hasAVX512())
17854    return LowerVectorCTLZ_AVX512(Op, DAG);
17855
17856  Op = Op.getOperand(0);
17857  if (VT == MVT::i8) {
17858    // Zero extend to i32 since there is not an i8 bsr.
17859    OpVT = MVT::i32;
17860    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
17861  }
17862
17863  // Issue a bsr (scan bits in reverse).
17864  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
17865  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
17866
17867  // And xor with NumBits-1.
17868  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op,
17869                   DAG.getConstant(NumBits - 1, dl, OpVT));
17870
17871  if (VT == MVT::i8)
17872    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
17873  return Op;
17874}
17875
17876static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
17877  MVT VT = Op.getSimpleValueType();
17878  unsigned NumBits = VT.getScalarSizeInBits();
17879  SDLoc dl(Op);
17880
17881  if (VT.isVector()) {
17882    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17883
17884    SDValue N0 = Op.getOperand(0);
17885    SDValue Zero = DAG.getConstant(0, dl, VT);
17886
17887    // lsb(x) = (x & -x)
17888    SDValue LSB = DAG.getNode(ISD::AND, dl, VT, N0,
17889                              DAG.getNode(ISD::SUB, dl, VT, Zero, N0));
17890
17891    // cttz_undef(x) = (width - 1) - ctlz(lsb)
17892    if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
17893        TLI.isOperationLegal(ISD::CTLZ, VT)) {
17894      SDValue WidthMinusOne = DAG.getConstant(NumBits - 1, dl, VT);
17895      return DAG.getNode(ISD::SUB, dl, VT, WidthMinusOne,
17896                         DAG.getNode(ISD::CTLZ, dl, VT, LSB));
17897    }
17898
17899    // cttz(x) = ctpop(lsb - 1)
17900    SDValue One = DAG.getConstant(1, dl, VT);
17901    return DAG.getNode(ISD::CTPOP, dl, VT,
17902                       DAG.getNode(ISD::SUB, dl, VT, LSB, One));
17903  }
17904
17905  assert(Op.getOpcode() == ISD::CTTZ &&
17906         "Only scalar CTTZ requires custom lowering");
17907
17908  // Issue a bsf (scan bits forward) which also sets EFLAGS.
17909  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
17910  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op.getOperand(0));
17911
17912  // If src is zero (i.e. bsf sets ZF), returns NumBits.
17913  SDValue Ops[] = {
17914    Op,
17915    DAG.getConstant(NumBits, dl, VT),
17916    DAG.getConstant(X86::COND_E, dl, MVT::i8),
17917    Op.getValue(1)
17918  };
17919  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops);
17920}
17921
17922// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
17923// ones, and then concatenate the result back.
17924static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
17925  MVT VT = Op.getSimpleValueType();
17926
17927  assert(VT.is256BitVector() && VT.isInteger() &&
17928         "Unsupported value type for operation");
17929
17930  unsigned NumElems = VT.getVectorNumElements();
17931  SDLoc dl(Op);
17932
17933  // Extract the LHS vectors
17934  SDValue LHS = Op.getOperand(0);
17935  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
17936  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
17937
17938  // Extract the RHS vectors
17939  SDValue RHS = Op.getOperand(1);
17940  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
17941  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
17942
17943  MVT EltVT = VT.getVectorElementType();
17944  MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
17945
17946  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
17947                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
17948                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
17949}
17950
17951static SDValue LowerADD(SDValue Op, SelectionDAG &DAG) {
17952  if (Op.getValueType() == MVT::i1)
17953    return DAG.getNode(ISD::XOR, SDLoc(Op), Op.getValueType(),
17954                       Op.getOperand(0), Op.getOperand(1));
17955  assert(Op.getSimpleValueType().is256BitVector() &&
17956         Op.getSimpleValueType().isInteger() &&
17957         "Only handle AVX 256-bit vector integer operation");
17958  return Lower256IntArith(Op, DAG);
17959}
17960
17961static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) {
17962  if (Op.getValueType() == MVT::i1)
17963    return DAG.getNode(ISD::XOR, SDLoc(Op), Op.getValueType(),
17964                       Op.getOperand(0), Op.getOperand(1));
17965  assert(Op.getSimpleValueType().is256BitVector() &&
17966         Op.getSimpleValueType().isInteger() &&
17967         "Only handle AVX 256-bit vector integer operation");
17968  return Lower256IntArith(Op, DAG);
17969}
17970
17971static SDValue LowerMINMAX(SDValue Op, SelectionDAG &DAG) {
17972  assert(Op.getSimpleValueType().is256BitVector() &&
17973         Op.getSimpleValueType().isInteger() &&
17974         "Only handle AVX 256-bit vector integer operation");
17975  return Lower256IntArith(Op, DAG);
17976}
17977
17978static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
17979                        SelectionDAG &DAG) {
17980  SDLoc dl(Op);
17981  MVT VT = Op.getSimpleValueType();
17982
17983  if (VT == MVT::i1)
17984    return DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), Op.getOperand(1));
17985
17986  // Decompose 256-bit ops into smaller 128-bit ops.
17987  if (VT.is256BitVector() && !Subtarget->hasInt256())
17988    return Lower256IntArith(Op, DAG);
17989
17990  SDValue A = Op.getOperand(0);
17991  SDValue B = Op.getOperand(1);
17992
17993  // Lower v16i8/v32i8 mul as promotion to v8i16/v16i16 vector
17994  // pairs, multiply and truncate.
17995  if (VT == MVT::v16i8 || VT == MVT::v32i8) {
17996    if (Subtarget->hasInt256()) {
17997      if (VT == MVT::v32i8) {
17998        MVT SubVT = MVT::getVectorVT(MVT::i8, VT.getVectorNumElements() / 2);
17999        SDValue Lo = DAG.getIntPtrConstant(0, dl);
18000        SDValue Hi = DAG.getIntPtrConstant(VT.getVectorNumElements() / 2, dl);
18001        SDValue ALo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, A, Lo);
18002        SDValue BLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, B, Lo);
18003        SDValue AHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, A, Hi);
18004        SDValue BHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, B, Hi);
18005        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
18006                           DAG.getNode(ISD::MUL, dl, SubVT, ALo, BLo),
18007                           DAG.getNode(ISD::MUL, dl, SubVT, AHi, BHi));
18008      }
18009
18010      MVT ExVT = MVT::getVectorVT(MVT::i16, VT.getVectorNumElements());
18011      return DAG.getNode(
18012          ISD::TRUNCATE, dl, VT,
18013          DAG.getNode(ISD::MUL, dl, ExVT,
18014                      DAG.getNode(ISD::SIGN_EXTEND, dl, ExVT, A),
18015                      DAG.getNode(ISD::SIGN_EXTEND, dl, ExVT, B)));
18016    }
18017
18018    assert(VT == MVT::v16i8 &&
18019           "Pre-AVX2 support only supports v16i8 multiplication");
18020    MVT ExVT = MVT::v8i16;
18021
18022    // Extract the lo parts and sign extend to i16
18023    SDValue ALo, BLo;
18024    if (Subtarget->hasSSE41()) {
18025      ALo = DAG.getNode(X86ISD::VSEXT, dl, ExVT, A);
18026      BLo = DAG.getNode(X86ISD::VSEXT, dl, ExVT, B);
18027    } else {
18028      const int ShufMask[] = {-1, 0, -1, 1, -1, 2, -1, 3,
18029                              -1, 4, -1, 5, -1, 6, -1, 7};
18030      ALo = DAG.getVectorShuffle(VT, dl, A, A, ShufMask);
18031      BLo = DAG.getVectorShuffle(VT, dl, B, B, ShufMask);
18032      ALo = DAG.getBitcast(ExVT, ALo);
18033      BLo = DAG.getBitcast(ExVT, BLo);
18034      ALo = DAG.getNode(ISD::SRA, dl, ExVT, ALo, DAG.getConstant(8, dl, ExVT));
18035      BLo = DAG.getNode(ISD::SRA, dl, ExVT, BLo, DAG.getConstant(8, dl, ExVT));
18036    }
18037
18038    // Extract the hi parts and sign extend to i16
18039    SDValue AHi, BHi;
18040    if (Subtarget->hasSSE41()) {
18041      const int ShufMask[] = {8,  9,  10, 11, 12, 13, 14, 15,
18042                              -1, -1, -1, -1, -1, -1, -1, -1};
18043      AHi = DAG.getVectorShuffle(VT, dl, A, A, ShufMask);
18044      BHi = DAG.getVectorShuffle(VT, dl, B, B, ShufMask);
18045      AHi = DAG.getNode(X86ISD::VSEXT, dl, ExVT, AHi);
18046      BHi = DAG.getNode(X86ISD::VSEXT, dl, ExVT, BHi);
18047    } else {
18048      const int ShufMask[] = {-1, 8,  -1, 9,  -1, 10, -1, 11,
18049                              -1, 12, -1, 13, -1, 14, -1, 15};
18050      AHi = DAG.getVectorShuffle(VT, dl, A, A, ShufMask);
18051      BHi = DAG.getVectorShuffle(VT, dl, B, B, ShufMask);
18052      AHi = DAG.getBitcast(ExVT, AHi);
18053      BHi = DAG.getBitcast(ExVT, BHi);
18054      AHi = DAG.getNode(ISD::SRA, dl, ExVT, AHi, DAG.getConstant(8, dl, ExVT));
18055      BHi = DAG.getNode(ISD::SRA, dl, ExVT, BHi, DAG.getConstant(8, dl, ExVT));
18056    }
18057
18058    // Multiply, mask the lower 8bits of the lo/hi results and pack
18059    SDValue RLo = DAG.getNode(ISD::MUL, dl, ExVT, ALo, BLo);
18060    SDValue RHi = DAG.getNode(ISD::MUL, dl, ExVT, AHi, BHi);
18061    RLo = DAG.getNode(ISD::AND, dl, ExVT, RLo, DAG.getConstant(255, dl, ExVT));
18062    RHi = DAG.getNode(ISD::AND, dl, ExVT, RHi, DAG.getConstant(255, dl, ExVT));
18063    return DAG.getNode(X86ISD::PACKUS, dl, VT, RLo, RHi);
18064  }
18065
18066  // Lower v4i32 mul as 2x shuffle, 2x pmuludq, 2x shuffle.
18067  if (VT == MVT::v4i32) {
18068    assert(Subtarget->hasSSE2() && !Subtarget->hasSSE41() &&
18069           "Should not custom lower when pmuldq is available!");
18070
18071    // Extract the odd parts.
18072    static const int UnpackMask[] = { 1, -1, 3, -1 };
18073    SDValue Aodds = DAG.getVectorShuffle(VT, dl, A, A, UnpackMask);
18074    SDValue Bodds = DAG.getVectorShuffle(VT, dl, B, B, UnpackMask);
18075
18076    // Multiply the even parts.
18077    SDValue Evens = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, A, B);
18078    // Now multiply odd parts.
18079    SDValue Odds = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, Aodds, Bodds);
18080
18081    Evens = DAG.getBitcast(VT, Evens);
18082    Odds = DAG.getBitcast(VT, Odds);
18083
18084    // Merge the two vectors back together with a shuffle. This expands into 2
18085    // shuffles.
18086    static const int ShufMask[] = { 0, 4, 2, 6 };
18087    return DAG.getVectorShuffle(VT, dl, Evens, Odds, ShufMask);
18088  }
18089
18090  assert((VT == MVT::v2i64 || VT == MVT::v4i64 || VT == MVT::v8i64) &&
18091         "Only know how to lower V2I64/V4I64/V8I64 multiply");
18092
18093  //  Ahi = psrlqi(a, 32);
18094  //  Bhi = psrlqi(b, 32);
18095  //
18096  //  AloBlo = pmuludq(a, b);
18097  //  AloBhi = pmuludq(a, Bhi);
18098  //  AhiBlo = pmuludq(Ahi, b);
18099
18100  //  AloBhi = psllqi(AloBhi, 32);
18101  //  AhiBlo = psllqi(AhiBlo, 32);
18102  //  return AloBlo + AloBhi + AhiBlo;
18103
18104  SDValue Ahi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, A, 32, DAG);
18105  SDValue Bhi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, B, 32, DAG);
18106
18107  SDValue AhiBlo = Ahi;
18108  SDValue AloBhi = Bhi;
18109  // Bit cast to 32-bit vectors for MULUDQ
18110  MVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 :
18111                                  (VT == MVT::v4i64) ? MVT::v8i32 : MVT::v16i32;
18112  A = DAG.getBitcast(MulVT, A);
18113  B = DAG.getBitcast(MulVT, B);
18114  Ahi = DAG.getBitcast(MulVT, Ahi);
18115  Bhi = DAG.getBitcast(MulVT, Bhi);
18116
18117  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
18118  // After shifting right const values the result may be all-zero.
18119  if (!ISD::isBuildVectorAllZeros(Ahi.getNode())) {
18120    AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
18121    AhiBlo = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, AhiBlo, 32, DAG);
18122  }
18123  if (!ISD::isBuildVectorAllZeros(Bhi.getNode())) {
18124    AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
18125    AloBhi = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, AloBhi, 32, DAG);
18126  }
18127
18128  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
18129  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
18130}
18131
18132SDValue X86TargetLowering::LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const {
18133  assert(Subtarget->isTargetWin64() && "Unexpected target");
18134  EVT VT = Op.getValueType();
18135  assert(VT.isInteger() && VT.getSizeInBits() == 128 &&
18136         "Unexpected return type for lowering");
18137
18138  RTLIB::Libcall LC;
18139  bool isSigned;
18140  switch (Op->getOpcode()) {
18141  default: llvm_unreachable("Unexpected request for libcall!");
18142  case ISD::SDIV:      isSigned = true;  LC = RTLIB::SDIV_I128;    break;
18143  case ISD::UDIV:      isSigned = false; LC = RTLIB::UDIV_I128;    break;
18144  case ISD::SREM:      isSigned = true;  LC = RTLIB::SREM_I128;    break;
18145  case ISD::UREM:      isSigned = false; LC = RTLIB::UREM_I128;    break;
18146  case ISD::SDIVREM:   isSigned = true;  LC = RTLIB::SDIVREM_I128; break;
18147  case ISD::UDIVREM:   isSigned = false; LC = RTLIB::UDIVREM_I128; break;
18148  }
18149
18150  SDLoc dl(Op);
18151  SDValue InChain = DAG.getEntryNode();
18152
18153  TargetLowering::ArgListTy Args;
18154  TargetLowering::ArgListEntry Entry;
18155  for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) {
18156    EVT ArgVT = Op->getOperand(i).getValueType();
18157    assert(ArgVT.isInteger() && ArgVT.getSizeInBits() == 128 &&
18158           "Unexpected argument type for lowering");
18159    SDValue StackPtr = DAG.CreateStackTemporary(ArgVT, 16);
18160    Entry.Node = StackPtr;
18161    InChain = DAG.getStore(InChain, dl, Op->getOperand(i), StackPtr, MachinePointerInfo(),
18162                           false, false, 16);
18163    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
18164    Entry.Ty = PointerType::get(ArgTy,0);
18165    Entry.isSExt = false;
18166    Entry.isZExt = false;
18167    Args.push_back(Entry);
18168  }
18169
18170  SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
18171                                         getPointerTy(DAG.getDataLayout()));
18172
18173  TargetLowering::CallLoweringInfo CLI(DAG);
18174  CLI.setDebugLoc(dl).setChain(InChain)
18175    .setCallee(getLibcallCallingConv(LC),
18176               static_cast<EVT>(MVT::v2i64).getTypeForEVT(*DAG.getContext()),
18177               Callee, std::move(Args), 0)
18178    .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
18179
18180  std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
18181  return DAG.getBitcast(VT, CallInfo.first);
18182}
18183
18184static SDValue LowerMUL_LOHI(SDValue Op, const X86Subtarget *Subtarget,
18185                             SelectionDAG &DAG) {
18186  SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
18187  MVT VT = Op0.getSimpleValueType();
18188  SDLoc dl(Op);
18189
18190  assert((VT == MVT::v4i32 && Subtarget->hasSSE2()) ||
18191         (VT == MVT::v8i32 && Subtarget->hasInt256()));
18192
18193  // PMULxD operations multiply each even value (starting at 0) of LHS with
18194  // the related value of RHS and produce a widen result.
18195  // E.g., PMULUDQ <4 x i32> <a|b|c|d>, <4 x i32> <e|f|g|h>
18196  // => <2 x i64> <ae|cg>
18197  //
18198  // In other word, to have all the results, we need to perform two PMULxD:
18199  // 1. one with the even values.
18200  // 2. one with the odd values.
18201  // To achieve #2, with need to place the odd values at an even position.
18202  //
18203  // Place the odd value at an even position (basically, shift all values 1
18204  // step to the left):
18205  const int Mask[] = {1, -1, 3, -1, 5, -1, 7, -1};
18206  // <a|b|c|d> => <b|undef|d|undef>
18207  SDValue Odd0 = DAG.getVectorShuffle(VT, dl, Op0, Op0, Mask);
18208  // <e|f|g|h> => <f|undef|h|undef>
18209  SDValue Odd1 = DAG.getVectorShuffle(VT, dl, Op1, Op1, Mask);
18210
18211  // Emit two multiplies, one for the lower 2 ints and one for the higher 2
18212  // ints.
18213  MVT MulVT = VT == MVT::v4i32 ? MVT::v2i64 : MVT::v4i64;
18214  bool IsSigned = Op->getOpcode() == ISD::SMUL_LOHI;
18215  unsigned Opcode =
18216      (!IsSigned || !Subtarget->hasSSE41()) ? X86ISD::PMULUDQ : X86ISD::PMULDQ;
18217  // PMULUDQ <4 x i32> <a|b|c|d>, <4 x i32> <e|f|g|h>
18218  // => <2 x i64> <ae|cg>
18219  SDValue Mul1 = DAG.getBitcast(VT, DAG.getNode(Opcode, dl, MulVT, Op0, Op1));
18220  // PMULUDQ <4 x i32> <b|undef|d|undef>, <4 x i32> <f|undef|h|undef>
18221  // => <2 x i64> <bf|dh>
18222  SDValue Mul2 = DAG.getBitcast(VT, DAG.getNode(Opcode, dl, MulVT, Odd0, Odd1));
18223
18224  // Shuffle it back into the right order.
18225  SDValue Highs, Lows;
18226  if (VT == MVT::v8i32) {
18227    const int HighMask[] = {1, 9, 3, 11, 5, 13, 7, 15};
18228    Highs = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, HighMask);
18229    const int LowMask[] = {0, 8, 2, 10, 4, 12, 6, 14};
18230    Lows = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, LowMask);
18231  } else {
18232    const int HighMask[] = {1, 5, 3, 7};
18233    Highs = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, HighMask);
18234    const int LowMask[] = {0, 4, 2, 6};
18235    Lows = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, LowMask);
18236  }
18237
18238  // If we have a signed multiply but no PMULDQ fix up the high parts of a
18239  // unsigned multiply.
18240  if (IsSigned && !Subtarget->hasSSE41()) {
18241    SDValue ShAmt = DAG.getConstant(
18242        31, dl,
18243        DAG.getTargetLoweringInfo().getShiftAmountTy(VT, DAG.getDataLayout()));
18244    SDValue T1 = DAG.getNode(ISD::AND, dl, VT,
18245                             DAG.getNode(ISD::SRA, dl, VT, Op0, ShAmt), Op1);
18246    SDValue T2 = DAG.getNode(ISD::AND, dl, VT,
18247                             DAG.getNode(ISD::SRA, dl, VT, Op1, ShAmt), Op0);
18248
18249    SDValue Fixup = DAG.getNode(ISD::ADD, dl, VT, T1, T2);
18250    Highs = DAG.getNode(ISD::SUB, dl, VT, Highs, Fixup);
18251  }
18252
18253  // The first result of MUL_LOHI is actually the low value, followed by the
18254  // high value.
18255  SDValue Ops[] = {Lows, Highs};
18256  return DAG.getMergeValues(Ops, dl);
18257}
18258
18259// Return true if the required (according to Opcode) shift-imm form is natively
18260// supported by the Subtarget
18261static bool SupportedVectorShiftWithImm(MVT VT, const X86Subtarget *Subtarget,
18262                                        unsigned Opcode) {
18263  if (VT.getScalarSizeInBits() < 16)
18264    return false;
18265
18266  if (VT.is512BitVector() &&
18267      (VT.getScalarSizeInBits() > 16 || Subtarget->hasBWI()))
18268    return true;
18269
18270  bool LShift = VT.is128BitVector() ||
18271    (VT.is256BitVector() && Subtarget->hasInt256());
18272
18273  bool AShift = LShift && (Subtarget->hasVLX() ||
18274    (VT != MVT::v2i64 && VT != MVT::v4i64));
18275  return (Opcode == ISD::SRA) ? AShift : LShift;
18276}
18277
18278// The shift amount is a variable, but it is the same for all vector lanes.
18279// These instructions are defined together with shift-immediate.
18280static
18281bool SupportedVectorShiftWithBaseAmnt(MVT VT, const X86Subtarget *Subtarget,
18282                                      unsigned Opcode) {
18283  return SupportedVectorShiftWithImm(VT, Subtarget, Opcode);
18284}
18285
18286// Return true if the required (according to Opcode) variable-shift form is
18287// natively supported by the Subtarget
18288static bool SupportedVectorVarShift(MVT VT, const X86Subtarget *Subtarget,
18289                                    unsigned Opcode) {
18290
18291  if (!Subtarget->hasInt256() || VT.getScalarSizeInBits() < 16)
18292    return false;
18293
18294  // vXi16 supported only on AVX-512, BWI
18295  if (VT.getScalarSizeInBits() == 16 && !Subtarget->hasBWI())
18296    return false;
18297
18298  if (VT.is512BitVector() || Subtarget->hasVLX())
18299    return true;
18300
18301  bool LShift = VT.is128BitVector() || VT.is256BitVector();
18302  bool AShift = LShift &&  VT != MVT::v2i64 && VT != MVT::v4i64;
18303  return (Opcode == ISD::SRA) ? AShift : LShift;
18304}
18305
18306static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG,
18307                                         const X86Subtarget *Subtarget) {
18308  MVT VT = Op.getSimpleValueType();
18309  SDLoc dl(Op);
18310  SDValue R = Op.getOperand(0);
18311  SDValue Amt = Op.getOperand(1);
18312
18313  unsigned X86Opc = (Op.getOpcode() == ISD::SHL) ? X86ISD::VSHLI :
18314    (Op.getOpcode() == ISD::SRL) ? X86ISD::VSRLI : X86ISD::VSRAI;
18315
18316  auto ArithmeticShiftRight64 = [&](uint64_t ShiftAmt) {
18317    assert((VT == MVT::v2i64 || VT == MVT::v4i64) && "Unexpected SRA type");
18318    MVT ExVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() * 2);
18319    SDValue Ex = DAG.getBitcast(ExVT, R);
18320
18321    if (ShiftAmt >= 32) {
18322      // Splat sign to upper i32 dst, and SRA upper i32 src to lower i32.
18323      SDValue Upper =
18324          getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, Ex, 31, DAG);
18325      SDValue Lower = getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, Ex,
18326                                                 ShiftAmt - 32, DAG);
18327      if (VT == MVT::v2i64)
18328        Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower, {5, 1, 7, 3});
18329      if (VT == MVT::v4i64)
18330        Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower,
18331                                  {9, 1, 11, 3, 13, 5, 15, 7});
18332    } else {
18333      // SRA upper i32, SHL whole i64 and select lower i32.
18334      SDValue Upper = getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, Ex,
18335                                                 ShiftAmt, DAG);
18336      SDValue Lower =
18337          getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, R, ShiftAmt, DAG);
18338      Lower = DAG.getBitcast(ExVT, Lower);
18339      if (VT == MVT::v2i64)
18340        Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower, {4, 1, 6, 3});
18341      if (VT == MVT::v4i64)
18342        Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower,
18343                                  {8, 1, 10, 3, 12, 5, 14, 7});
18344    }
18345    return DAG.getBitcast(VT, Ex);
18346  };
18347
18348  // Optimize shl/srl/sra with constant shift amount.
18349  if (auto *BVAmt = dyn_cast<BuildVectorSDNode>(Amt)) {
18350    if (auto *ShiftConst = BVAmt->getConstantSplatNode()) {
18351      uint64_t ShiftAmt = ShiftConst->getZExtValue();
18352
18353      if (SupportedVectorShiftWithImm(VT, Subtarget, Op.getOpcode()))
18354        return getTargetVShiftByConstNode(X86Opc, dl, VT, R, ShiftAmt, DAG);
18355
18356      // i64 SRA needs to be performed as partial shifts.
18357      if ((VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64)) &&
18358          Op.getOpcode() == ISD::SRA && !Subtarget->hasXOP())
18359        return ArithmeticShiftRight64(ShiftAmt);
18360
18361      if (VT == MVT::v16i8 || (Subtarget->hasInt256() && VT == MVT::v32i8)) {
18362        unsigned NumElts = VT.getVectorNumElements();
18363        MVT ShiftVT = MVT::getVectorVT(MVT::i16, NumElts / 2);
18364
18365        // Simple i8 add case
18366        if (Op.getOpcode() == ISD::SHL && ShiftAmt == 1)
18367          return DAG.getNode(ISD::ADD, dl, VT, R, R);
18368
18369        // ashr(R, 7)  === cmp_slt(R, 0)
18370        if (Op.getOpcode() == ISD::SRA && ShiftAmt == 7) {
18371          SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
18372          return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
18373        }
18374
18375        // XOP can shift v16i8 directly instead of as shift v8i16 + mask.
18376        if (VT == MVT::v16i8 && Subtarget->hasXOP())
18377          return SDValue();
18378
18379        if (Op.getOpcode() == ISD::SHL) {
18380          // Make a large shift.
18381          SDValue SHL = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, ShiftVT,
18382                                                   R, ShiftAmt, DAG);
18383          SHL = DAG.getBitcast(VT, SHL);
18384          // Zero out the rightmost bits.
18385          SmallVector<SDValue, 32> V(
18386              NumElts, DAG.getConstant(uint8_t(-1U << ShiftAmt), dl, MVT::i8));
18387          return DAG.getNode(ISD::AND, dl, VT, SHL,
18388                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V));
18389        }
18390        if (Op.getOpcode() == ISD::SRL) {
18391          // Make a large shift.
18392          SDValue SRL = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, ShiftVT,
18393                                                   R, ShiftAmt, DAG);
18394          SRL = DAG.getBitcast(VT, SRL);
18395          // Zero out the leftmost bits.
18396          SmallVector<SDValue, 32> V(
18397              NumElts, DAG.getConstant(uint8_t(-1U) >> ShiftAmt, dl, MVT::i8));
18398          return DAG.getNode(ISD::AND, dl, VT, SRL,
18399                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V));
18400        }
18401        if (Op.getOpcode() == ISD::SRA) {
18402          // ashr(R, Amt) === sub(xor(lshr(R, Amt), Mask), Mask)
18403          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
18404          SmallVector<SDValue, 32> V(NumElts,
18405                                     DAG.getConstant(128 >> ShiftAmt, dl,
18406                                                     MVT::i8));
18407          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V);
18408          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
18409          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
18410          return Res;
18411        }
18412        llvm_unreachable("Unknown shift opcode.");
18413      }
18414    }
18415  }
18416
18417  // Special case in 32-bit mode, where i64 is expanded into high and low parts.
18418  if (!Subtarget->is64Bit() && !Subtarget->hasXOP() &&
18419      (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64))) {
18420
18421    // Peek through any splat that was introduced for i64 shift vectorization.
18422    int SplatIndex = -1;
18423    if (ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(Amt.getNode()))
18424      if (SVN->isSplat()) {
18425        SplatIndex = SVN->getSplatIndex();
18426        Amt = Amt.getOperand(0);
18427        assert(SplatIndex < (int)VT.getVectorNumElements() &&
18428               "Splat shuffle referencing second operand");
18429      }
18430
18431    if (Amt.getOpcode() != ISD::BITCAST ||
18432        Amt.getOperand(0).getOpcode() != ISD::BUILD_VECTOR)
18433      return SDValue();
18434
18435    Amt = Amt.getOperand(0);
18436    unsigned Ratio = Amt.getSimpleValueType().getVectorNumElements() /
18437                     VT.getVectorNumElements();
18438    unsigned RatioInLog2 = Log2_32_Ceil(Ratio);
18439    uint64_t ShiftAmt = 0;
18440    unsigned BaseOp = (SplatIndex < 0 ? 0 : SplatIndex * Ratio);
18441    for (unsigned i = 0; i != Ratio; ++i) {
18442      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i + BaseOp));
18443      if (!C)
18444        return SDValue();
18445      // 6 == Log2(64)
18446      ShiftAmt |= C->getZExtValue() << (i * (1 << (6 - RatioInLog2)));
18447    }
18448
18449    // Check remaining shift amounts (if not a splat).
18450    if (SplatIndex < 0) {
18451      for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
18452        uint64_t ShAmt = 0;
18453        for (unsigned j = 0; j != Ratio; ++j) {
18454          ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i + j));
18455          if (!C)
18456            return SDValue();
18457          // 6 == Log2(64)
18458          ShAmt |= C->getZExtValue() << (j * (1 << (6 - RatioInLog2)));
18459        }
18460        if (ShAmt != ShiftAmt)
18461          return SDValue();
18462      }
18463    }
18464
18465    if (SupportedVectorShiftWithImm(VT, Subtarget, Op.getOpcode()))
18466      return getTargetVShiftByConstNode(X86Opc, dl, VT, R, ShiftAmt, DAG);
18467
18468    if (Op.getOpcode() == ISD::SRA)
18469      return ArithmeticShiftRight64(ShiftAmt);
18470  }
18471
18472  return SDValue();
18473}
18474
18475static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG,
18476                                        const X86Subtarget* Subtarget) {
18477  MVT VT = Op.getSimpleValueType();
18478  SDLoc dl(Op);
18479  SDValue R = Op.getOperand(0);
18480  SDValue Amt = Op.getOperand(1);
18481
18482  unsigned X86OpcI = (Op.getOpcode() == ISD::SHL) ? X86ISD::VSHLI :
18483    (Op.getOpcode() == ISD::SRL) ? X86ISD::VSRLI : X86ISD::VSRAI;
18484
18485  unsigned X86OpcV = (Op.getOpcode() == ISD::SHL) ? X86ISD::VSHL :
18486    (Op.getOpcode() == ISD::SRL) ? X86ISD::VSRL : X86ISD::VSRA;
18487
18488  if (SupportedVectorShiftWithBaseAmnt(VT, Subtarget, Op.getOpcode())) {
18489    SDValue BaseShAmt;
18490    MVT EltVT = VT.getVectorElementType();
18491
18492    if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Amt)) {
18493      // Check if this build_vector node is doing a splat.
18494      // If so, then set BaseShAmt equal to the splat value.
18495      BaseShAmt = BV->getSplatValue();
18496      if (BaseShAmt && BaseShAmt.getOpcode() == ISD::UNDEF)
18497        BaseShAmt = SDValue();
18498    } else {
18499      if (Amt.getOpcode() == ISD::EXTRACT_SUBVECTOR)
18500        Amt = Amt.getOperand(0);
18501
18502      ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(Amt);
18503      if (SVN && SVN->isSplat()) {
18504        unsigned SplatIdx = (unsigned)SVN->getSplatIndex();
18505        SDValue InVec = Amt.getOperand(0);
18506        if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
18507          assert((SplatIdx < InVec.getSimpleValueType().getVectorNumElements()) &&
18508                 "Unexpected shuffle index found!");
18509          BaseShAmt = InVec.getOperand(SplatIdx);
18510        } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
18511           if (ConstantSDNode *C =
18512               dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
18513             if (C->getZExtValue() == SplatIdx)
18514               BaseShAmt = InVec.getOperand(1);
18515           }
18516        }
18517
18518        if (!BaseShAmt)
18519          // Avoid introducing an extract element from a shuffle.
18520          BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InVec,
18521                                  DAG.getIntPtrConstant(SplatIdx, dl));
18522      }
18523    }
18524
18525    if (BaseShAmt.getNode()) {
18526      assert(EltVT.bitsLE(MVT::i64) && "Unexpected element type!");
18527      if (EltVT != MVT::i64 && EltVT.bitsGT(MVT::i32))
18528        BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, BaseShAmt);
18529      else if (EltVT.bitsLT(MVT::i32))
18530        BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, BaseShAmt);
18531
18532      return getTargetVShiftNode(X86OpcI, dl, VT, R, BaseShAmt, DAG);
18533    }
18534  }
18535
18536  // Special case in 32-bit mode, where i64 is expanded into high and low parts.
18537  if (!Subtarget->is64Bit() && VT == MVT::v2i64  &&
18538      Amt.getOpcode() == ISD::BITCAST &&
18539      Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
18540    Amt = Amt.getOperand(0);
18541    unsigned Ratio = Amt.getSimpleValueType().getVectorNumElements() /
18542                     VT.getVectorNumElements();
18543    std::vector<SDValue> Vals(Ratio);
18544    for (unsigned i = 0; i != Ratio; ++i)
18545      Vals[i] = Amt.getOperand(i);
18546    for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
18547      for (unsigned j = 0; j != Ratio; ++j)
18548        if (Vals[j] != Amt.getOperand(i + j))
18549          return SDValue();
18550    }
18551
18552    if (SupportedVectorShiftWithBaseAmnt(VT, Subtarget, Op.getOpcode()))
18553      return DAG.getNode(X86OpcV, dl, VT, R, Op.getOperand(1));
18554  }
18555  return SDValue();
18556}
18557
18558static SDValue LowerShift(SDValue Op, const X86Subtarget* Subtarget,
18559                          SelectionDAG &DAG) {
18560  MVT VT = Op.getSimpleValueType();
18561  SDLoc dl(Op);
18562  SDValue R = Op.getOperand(0);
18563  SDValue Amt = Op.getOperand(1);
18564
18565  assert(VT.isVector() && "Custom lowering only for vector shifts!");
18566  assert(Subtarget->hasSSE2() && "Only custom lower when we have SSE2!");
18567
18568  if (SDValue V = LowerScalarImmediateShift(Op, DAG, Subtarget))
18569    return V;
18570
18571  if (SDValue V = LowerScalarVariableShift(Op, DAG, Subtarget))
18572    return V;
18573
18574  if (SupportedVectorVarShift(VT, Subtarget, Op.getOpcode()))
18575    return Op;
18576
18577  // XOP has 128-bit variable logical/arithmetic shifts.
18578  // +ve/-ve Amt = shift left/right.
18579  if (Subtarget->hasXOP() &&
18580      (VT == MVT::v2i64 || VT == MVT::v4i32 ||
18581       VT == MVT::v8i16 || VT == MVT::v16i8)) {
18582    if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) {
18583      SDValue Zero = getZeroVector(VT, Subtarget, DAG, dl);
18584      Amt = DAG.getNode(ISD::SUB, dl, VT, Zero, Amt);
18585    }
18586    if (Op.getOpcode() == ISD::SHL || Op.getOpcode() == ISD::SRL)
18587      return DAG.getNode(X86ISD::VPSHL, dl, VT, R, Amt);
18588    if (Op.getOpcode() == ISD::SRA)
18589      return DAG.getNode(X86ISD::VPSHA, dl, VT, R, Amt);
18590  }
18591
18592  // 2i64 vector logical shifts can efficiently avoid scalarization - do the
18593  // shifts per-lane and then shuffle the partial results back together.
18594  if (VT == MVT::v2i64 && Op.getOpcode() != ISD::SRA) {
18595    // Splat the shift amounts so the scalar shifts above will catch it.
18596    SDValue Amt0 = DAG.getVectorShuffle(VT, dl, Amt, Amt, {0, 0});
18597    SDValue Amt1 = DAG.getVectorShuffle(VT, dl, Amt, Amt, {1, 1});
18598    SDValue R0 = DAG.getNode(Op->getOpcode(), dl, VT, R, Amt0);
18599    SDValue R1 = DAG.getNode(Op->getOpcode(), dl, VT, R, Amt1);
18600    return DAG.getVectorShuffle(VT, dl, R0, R1, {0, 3});
18601  }
18602
18603  // i64 vector arithmetic shift can be emulated with the transform:
18604  // M = lshr(SIGN_BIT, Amt)
18605  // ashr(R, Amt) === sub(xor(lshr(R, Amt), M), M)
18606  if ((VT == MVT::v2i64 || (VT == MVT::v4i64 && Subtarget->hasInt256())) &&
18607      Op.getOpcode() == ISD::SRA) {
18608    SDValue S = DAG.getConstant(APInt::getSignBit(64), dl, VT);
18609    SDValue M = DAG.getNode(ISD::SRL, dl, VT, S, Amt);
18610    R = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
18611    R = DAG.getNode(ISD::XOR, dl, VT, R, M);
18612    R = DAG.getNode(ISD::SUB, dl, VT, R, M);
18613    return R;
18614  }
18615
18616  // If possible, lower this packed shift into a vector multiply instead of
18617  // expanding it into a sequence of scalar shifts.
18618  // Do this only if the vector shift count is a constant build_vector.
18619  if (Op.getOpcode() == ISD::SHL &&
18620      (VT == MVT::v8i16 || VT == MVT::v4i32 ||
18621       (Subtarget->hasInt256() && VT == MVT::v16i16)) &&
18622      ISD::isBuildVectorOfConstantSDNodes(Amt.getNode())) {
18623    SmallVector<SDValue, 8> Elts;
18624    MVT SVT = VT.getVectorElementType();
18625    unsigned SVTBits = SVT.getSizeInBits();
18626    APInt One(SVTBits, 1);
18627    unsigned NumElems = VT.getVectorNumElements();
18628
18629    for (unsigned i=0; i !=NumElems; ++i) {
18630      SDValue Op = Amt->getOperand(i);
18631      if (Op->getOpcode() == ISD::UNDEF) {
18632        Elts.push_back(Op);
18633        continue;
18634      }
18635
18636      ConstantSDNode *ND = cast<ConstantSDNode>(Op);
18637      APInt C(SVTBits, ND->getAPIntValue().getZExtValue());
18638      uint64_t ShAmt = C.getZExtValue();
18639      if (ShAmt >= SVTBits) {
18640        Elts.push_back(DAG.getUNDEF(SVT));
18641        continue;
18642      }
18643      Elts.push_back(DAG.getConstant(One.shl(ShAmt), dl, SVT));
18644    }
18645    SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Elts);
18646    return DAG.getNode(ISD::MUL, dl, VT, R, BV);
18647  }
18648
18649  // Lower SHL with variable shift amount.
18650  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
18651    Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(23, dl, VT));
18652
18653    Op = DAG.getNode(ISD::ADD, dl, VT, Op,
18654                     DAG.getConstant(0x3f800000U, dl, VT));
18655    Op = DAG.getBitcast(MVT::v4f32, Op);
18656    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
18657    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
18658  }
18659
18660  // If possible, lower this shift as a sequence of two shifts by
18661  // constant plus a MOVSS/MOVSD instead of scalarizing it.
18662  // Example:
18663  //   (v4i32 (srl A, (build_vector < X, Y, Y, Y>)))
18664  //
18665  // Could be rewritten as:
18666  //   (v4i32 (MOVSS (srl A, <Y,Y,Y,Y>), (srl A, <X,X,X,X>)))
18667  //
18668  // The advantage is that the two shifts from the example would be
18669  // lowered as X86ISD::VSRLI nodes. This would be cheaper than scalarizing
18670  // the vector shift into four scalar shifts plus four pairs of vector
18671  // insert/extract.
18672  if ((VT == MVT::v8i16 || VT == MVT::v4i32) &&
18673      ISD::isBuildVectorOfConstantSDNodes(Amt.getNode())) {
18674    unsigned TargetOpcode = X86ISD::MOVSS;
18675    bool CanBeSimplified;
18676    // The splat value for the first packed shift (the 'X' from the example).
18677    SDValue Amt1 = Amt->getOperand(0);
18678    // The splat value for the second packed shift (the 'Y' from the example).
18679    SDValue Amt2 = (VT == MVT::v4i32) ? Amt->getOperand(1) :
18680                                        Amt->getOperand(2);
18681
18682    // See if it is possible to replace this node with a sequence of
18683    // two shifts followed by a MOVSS/MOVSD
18684    if (VT == MVT::v4i32) {
18685      // Check if it is legal to use a MOVSS.
18686      CanBeSimplified = Amt2 == Amt->getOperand(2) &&
18687                        Amt2 == Amt->getOperand(3);
18688      if (!CanBeSimplified) {
18689        // Otherwise, check if we can still simplify this node using a MOVSD.
18690        CanBeSimplified = Amt1 == Amt->getOperand(1) &&
18691                          Amt->getOperand(2) == Amt->getOperand(3);
18692        TargetOpcode = X86ISD::MOVSD;
18693        Amt2 = Amt->getOperand(2);
18694      }
18695    } else {
18696      // Do similar checks for the case where the machine value type
18697      // is MVT::v8i16.
18698      CanBeSimplified = Amt1 == Amt->getOperand(1);
18699      for (unsigned i=3; i != 8 && CanBeSimplified; ++i)
18700        CanBeSimplified = Amt2 == Amt->getOperand(i);
18701
18702      if (!CanBeSimplified) {
18703        TargetOpcode = X86ISD::MOVSD;
18704        CanBeSimplified = true;
18705        Amt2 = Amt->getOperand(4);
18706        for (unsigned i=0; i != 4 && CanBeSimplified; ++i)
18707          CanBeSimplified = Amt1 == Amt->getOperand(i);
18708        for (unsigned j=4; j != 8 && CanBeSimplified; ++j)
18709          CanBeSimplified = Amt2 == Amt->getOperand(j);
18710      }
18711    }
18712
18713    if (CanBeSimplified && isa<ConstantSDNode>(Amt1) &&
18714        isa<ConstantSDNode>(Amt2)) {
18715      // Replace this node with two shifts followed by a MOVSS/MOVSD.
18716      MVT CastVT = MVT::v4i32;
18717      SDValue Splat1 =
18718        DAG.getConstant(cast<ConstantSDNode>(Amt1)->getAPIntValue(), dl, VT);
18719      SDValue Shift1 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat1);
18720      SDValue Splat2 =
18721        DAG.getConstant(cast<ConstantSDNode>(Amt2)->getAPIntValue(), dl, VT);
18722      SDValue Shift2 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat2);
18723      if (TargetOpcode == X86ISD::MOVSD)
18724        CastVT = MVT::v2i64;
18725      SDValue BitCast1 = DAG.getBitcast(CastVT, Shift1);
18726      SDValue BitCast2 = DAG.getBitcast(CastVT, Shift2);
18727      SDValue Result = getTargetShuffleNode(TargetOpcode, dl, CastVT, BitCast2,
18728                                            BitCast1, DAG);
18729      return DAG.getBitcast(VT, Result);
18730    }
18731  }
18732
18733  // v4i32 Non Uniform Shifts.
18734  // If the shift amount is constant we can shift each lane using the SSE2
18735  // immediate shifts, else we need to zero-extend each lane to the lower i64
18736  // and shift using the SSE2 variable shifts.
18737  // The separate results can then be blended together.
18738  if (VT == MVT::v4i32) {
18739    unsigned Opc = Op.getOpcode();
18740    SDValue Amt0, Amt1, Amt2, Amt3;
18741    if (ISD::isBuildVectorOfConstantSDNodes(Amt.getNode())) {
18742      Amt0 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {0, 0, 0, 0});
18743      Amt1 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {1, 1, 1, 1});
18744      Amt2 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {2, 2, 2, 2});
18745      Amt3 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {3, 3, 3, 3});
18746    } else {
18747      // ISD::SHL is handled above but we include it here for completeness.
18748      switch (Opc) {
18749      default:
18750        llvm_unreachable("Unknown target vector shift node");
18751      case ISD::SHL:
18752        Opc = X86ISD::VSHL;
18753        break;
18754      case ISD::SRL:
18755        Opc = X86ISD::VSRL;
18756        break;
18757      case ISD::SRA:
18758        Opc = X86ISD::VSRA;
18759        break;
18760      }
18761      // The SSE2 shifts use the lower i64 as the same shift amount for
18762      // all lanes and the upper i64 is ignored. These shuffle masks
18763      // optimally zero-extend each lanes on SSE2/SSE41/AVX targets.
18764      SDValue Z = getZeroVector(VT, Subtarget, DAG, dl);
18765      Amt0 = DAG.getVectorShuffle(VT, dl, Amt, Z, {0, 4, -1, -1});
18766      Amt1 = DAG.getVectorShuffle(VT, dl, Amt, Z, {1, 5, -1, -1});
18767      Amt2 = DAG.getVectorShuffle(VT, dl, Amt, Z, {2, 6, -1, -1});
18768      Amt3 = DAG.getVectorShuffle(VT, dl, Amt, Z, {3, 7, -1, -1});
18769    }
18770
18771    SDValue R0 = DAG.getNode(Opc, dl, VT, R, Amt0);
18772    SDValue R1 = DAG.getNode(Opc, dl, VT, R, Amt1);
18773    SDValue R2 = DAG.getNode(Opc, dl, VT, R, Amt2);
18774    SDValue R3 = DAG.getNode(Opc, dl, VT, R, Amt3);
18775    SDValue R02 = DAG.getVectorShuffle(VT, dl, R0, R2, {0, -1, 6, -1});
18776    SDValue R13 = DAG.getVectorShuffle(VT, dl, R1, R3, {-1, 1, -1, 7});
18777    return DAG.getVectorShuffle(VT, dl, R02, R13, {0, 5, 2, 7});
18778  }
18779
18780  if (VT == MVT::v16i8 ||
18781      (VT == MVT::v32i8 && Subtarget->hasInt256() && !Subtarget->hasXOP())) {
18782    MVT ExtVT = MVT::getVectorVT(MVT::i16, VT.getVectorNumElements() / 2);
18783    unsigned ShiftOpcode = Op->getOpcode();
18784
18785    auto SignBitSelect = [&](MVT SelVT, SDValue Sel, SDValue V0, SDValue V1) {
18786      // On SSE41 targets we make use of the fact that VSELECT lowers
18787      // to PBLENDVB which selects bytes based just on the sign bit.
18788      if (Subtarget->hasSSE41()) {
18789        V0 = DAG.getBitcast(VT, V0);
18790        V1 = DAG.getBitcast(VT, V1);
18791        Sel = DAG.getBitcast(VT, Sel);
18792        return DAG.getBitcast(SelVT,
18793                              DAG.getNode(ISD::VSELECT, dl, VT, Sel, V0, V1));
18794      }
18795      // On pre-SSE41 targets we test for the sign bit by comparing to
18796      // zero - a negative value will set all bits of the lanes to true
18797      // and VSELECT uses that in its OR(AND(V0,C),AND(V1,~C)) lowering.
18798      SDValue Z = getZeroVector(SelVT, Subtarget, DAG, dl);
18799      SDValue C = DAG.getNode(X86ISD::PCMPGT, dl, SelVT, Z, Sel);
18800      return DAG.getNode(ISD::VSELECT, dl, SelVT, C, V0, V1);
18801    };
18802
18803    // Turn 'a' into a mask suitable for VSELECT: a = a << 5;
18804    // We can safely do this using i16 shifts as we're only interested in
18805    // the 3 lower bits of each byte.
18806    Amt = DAG.getBitcast(ExtVT, Amt);
18807    Amt = DAG.getNode(ISD::SHL, dl, ExtVT, Amt, DAG.getConstant(5, dl, ExtVT));
18808    Amt = DAG.getBitcast(VT, Amt);
18809
18810    if (Op->getOpcode() == ISD::SHL || Op->getOpcode() == ISD::SRL) {
18811      // r = VSELECT(r, shift(r, 4), a);
18812      SDValue M =
18813          DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(4, dl, VT));
18814      R = SignBitSelect(VT, Amt, M, R);
18815
18816      // a += a
18817      Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
18818
18819      // r = VSELECT(r, shift(r, 2), a);
18820      M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(2, dl, VT));
18821      R = SignBitSelect(VT, Amt, M, R);
18822
18823      // a += a
18824      Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
18825
18826      // return VSELECT(r, shift(r, 1), a);
18827      M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(1, dl, VT));
18828      R = SignBitSelect(VT, Amt, M, R);
18829      return R;
18830    }
18831
18832    if (Op->getOpcode() == ISD::SRA) {
18833      // For SRA we need to unpack each byte to the higher byte of a i16 vector
18834      // so we can correctly sign extend. We don't care what happens to the
18835      // lower byte.
18836      SDValue ALo = DAG.getNode(X86ISD::UNPCKL, dl, VT, DAG.getUNDEF(VT), Amt);
18837      SDValue AHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, DAG.getUNDEF(VT), Amt);
18838      SDValue RLo = DAG.getNode(X86ISD::UNPCKL, dl, VT, DAG.getUNDEF(VT), R);
18839      SDValue RHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, DAG.getUNDEF(VT), R);
18840      ALo = DAG.getBitcast(ExtVT, ALo);
18841      AHi = DAG.getBitcast(ExtVT, AHi);
18842      RLo = DAG.getBitcast(ExtVT, RLo);
18843      RHi = DAG.getBitcast(ExtVT, RHi);
18844
18845      // r = VSELECT(r, shift(r, 4), a);
18846      SDValue MLo = DAG.getNode(ShiftOpcode, dl, ExtVT, RLo,
18847                                DAG.getConstant(4, dl, ExtVT));
18848      SDValue MHi = DAG.getNode(ShiftOpcode, dl, ExtVT, RHi,
18849                                DAG.getConstant(4, dl, ExtVT));
18850      RLo = SignBitSelect(ExtVT, ALo, MLo, RLo);
18851      RHi = SignBitSelect(ExtVT, AHi, MHi, RHi);
18852
18853      // a += a
18854      ALo = DAG.getNode(ISD::ADD, dl, ExtVT, ALo, ALo);
18855      AHi = DAG.getNode(ISD::ADD, dl, ExtVT, AHi, AHi);
18856
18857      // r = VSELECT(r, shift(r, 2), a);
18858      MLo = DAG.getNode(ShiftOpcode, dl, ExtVT, RLo,
18859                        DAG.getConstant(2, dl, ExtVT));
18860      MHi = DAG.getNode(ShiftOpcode, dl, ExtVT, RHi,
18861                        DAG.getConstant(2, dl, ExtVT));
18862      RLo = SignBitSelect(ExtVT, ALo, MLo, RLo);
18863      RHi = SignBitSelect(ExtVT, AHi, MHi, RHi);
18864
18865      // a += a
18866      ALo = DAG.getNode(ISD::ADD, dl, ExtVT, ALo, ALo);
18867      AHi = DAG.getNode(ISD::ADD, dl, ExtVT, AHi, AHi);
18868
18869      // r = VSELECT(r, shift(r, 1), a);
18870      MLo = DAG.getNode(ShiftOpcode, dl, ExtVT, RLo,
18871                        DAG.getConstant(1, dl, ExtVT));
18872      MHi = DAG.getNode(ShiftOpcode, dl, ExtVT, RHi,
18873                        DAG.getConstant(1, dl, ExtVT));
18874      RLo = SignBitSelect(ExtVT, ALo, MLo, RLo);
18875      RHi = SignBitSelect(ExtVT, AHi, MHi, RHi);
18876
18877      // Logical shift the result back to the lower byte, leaving a zero upper
18878      // byte
18879      // meaning that we can safely pack with PACKUSWB.
18880      RLo =
18881          DAG.getNode(ISD::SRL, dl, ExtVT, RLo, DAG.getConstant(8, dl, ExtVT));
18882      RHi =
18883          DAG.getNode(ISD::SRL, dl, ExtVT, RHi, DAG.getConstant(8, dl, ExtVT));
18884      return DAG.getNode(X86ISD::PACKUS, dl, VT, RLo, RHi);
18885    }
18886  }
18887
18888  // It's worth extending once and using the v8i32 shifts for 16-bit types, but
18889  // the extra overheads to get from v16i8 to v8i32 make the existing SSE
18890  // solution better.
18891  if (Subtarget->hasInt256() && VT == MVT::v8i16) {
18892    MVT ExtVT = MVT::v8i32;
18893    unsigned ExtOpc =
18894        Op.getOpcode() == ISD::SRA ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
18895    R = DAG.getNode(ExtOpc, dl, ExtVT, R);
18896    Amt = DAG.getNode(ISD::ANY_EXTEND, dl, ExtVT, Amt);
18897    return DAG.getNode(ISD::TRUNCATE, dl, VT,
18898                       DAG.getNode(Op.getOpcode(), dl, ExtVT, R, Amt));
18899  }
18900
18901  if (Subtarget->hasInt256() && !Subtarget->hasXOP() && VT == MVT::v16i16) {
18902    MVT ExtVT = MVT::v8i32;
18903    SDValue Z = getZeroVector(VT, Subtarget, DAG, dl);
18904    SDValue ALo = DAG.getNode(X86ISD::UNPCKL, dl, VT, Amt, Z);
18905    SDValue AHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, Amt, Z);
18906    SDValue RLo = DAG.getNode(X86ISD::UNPCKL, dl, VT, R, R);
18907    SDValue RHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, R, R);
18908    ALo = DAG.getBitcast(ExtVT, ALo);
18909    AHi = DAG.getBitcast(ExtVT, AHi);
18910    RLo = DAG.getBitcast(ExtVT, RLo);
18911    RHi = DAG.getBitcast(ExtVT, RHi);
18912    SDValue Lo = DAG.getNode(Op.getOpcode(), dl, ExtVT, RLo, ALo);
18913    SDValue Hi = DAG.getNode(Op.getOpcode(), dl, ExtVT, RHi, AHi);
18914    Lo = DAG.getNode(ISD::SRL, dl, ExtVT, Lo, DAG.getConstant(16, dl, ExtVT));
18915    Hi = DAG.getNode(ISD::SRL, dl, ExtVT, Hi, DAG.getConstant(16, dl, ExtVT));
18916    return DAG.getNode(X86ISD::PACKUS, dl, VT, Lo, Hi);
18917  }
18918
18919  if (VT == MVT::v8i16) {
18920    unsigned ShiftOpcode = Op->getOpcode();
18921
18922    auto SignBitSelect = [&](SDValue Sel, SDValue V0, SDValue V1) {
18923      // On SSE41 targets we make use of the fact that VSELECT lowers
18924      // to PBLENDVB which selects bytes based just on the sign bit.
18925      if (Subtarget->hasSSE41()) {
18926        MVT ExtVT = MVT::getVectorVT(MVT::i8, VT.getVectorNumElements() * 2);
18927        V0 = DAG.getBitcast(ExtVT, V0);
18928        V1 = DAG.getBitcast(ExtVT, V1);
18929        Sel = DAG.getBitcast(ExtVT, Sel);
18930        return DAG.getBitcast(
18931            VT, DAG.getNode(ISD::VSELECT, dl, ExtVT, Sel, V0, V1));
18932      }
18933      // On pre-SSE41 targets we splat the sign bit - a negative value will
18934      // set all bits of the lanes to true and VSELECT uses that in
18935      // its OR(AND(V0,C),AND(V1,~C)) lowering.
18936      SDValue C =
18937          DAG.getNode(ISD::SRA, dl, VT, Sel, DAG.getConstant(15, dl, VT));
18938      return DAG.getNode(ISD::VSELECT, dl, VT, C, V0, V1);
18939    };
18940
18941    // Turn 'a' into a mask suitable for VSELECT: a = a << 12;
18942    if (Subtarget->hasSSE41()) {
18943      // On SSE41 targets we need to replicate the shift mask in both
18944      // bytes for PBLENDVB.
18945      Amt = DAG.getNode(
18946          ISD::OR, dl, VT,
18947          DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(4, dl, VT)),
18948          DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(12, dl, VT)));
18949    } else {
18950      Amt = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(12, dl, VT));
18951    }
18952
18953    // r = VSELECT(r, shift(r, 8), a);
18954    SDValue M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(8, dl, VT));
18955    R = SignBitSelect(Amt, M, R);
18956
18957    // a += a
18958    Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
18959
18960    // r = VSELECT(r, shift(r, 4), a);
18961    M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(4, dl, VT));
18962    R = SignBitSelect(Amt, M, R);
18963
18964    // a += a
18965    Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
18966
18967    // r = VSELECT(r, shift(r, 2), a);
18968    M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(2, dl, VT));
18969    R = SignBitSelect(Amt, M, R);
18970
18971    // a += a
18972    Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
18973
18974    // return VSELECT(r, shift(r, 1), a);
18975    M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(1, dl, VT));
18976    R = SignBitSelect(Amt, M, R);
18977    return R;
18978  }
18979
18980  // Decompose 256-bit shifts into smaller 128-bit shifts.
18981  if (VT.is256BitVector()) {
18982    unsigned NumElems = VT.getVectorNumElements();
18983    MVT EltVT = VT.getVectorElementType();
18984    MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
18985
18986    // Extract the two vectors
18987    SDValue V1 = Extract128BitVector(R, 0, DAG, dl);
18988    SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl);
18989
18990    // Recreate the shift amount vectors
18991    SDValue Amt1, Amt2;
18992    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
18993      // Constant shift amount
18994      SmallVector<SDValue, 8> Ops(Amt->op_begin(), Amt->op_begin() + NumElems);
18995      ArrayRef<SDValue> Amt1Csts = makeArrayRef(Ops).slice(0, NumElems / 2);
18996      ArrayRef<SDValue> Amt2Csts = makeArrayRef(Ops).slice(NumElems / 2);
18997
18998      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, Amt1Csts);
18999      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, Amt2Csts);
19000    } else {
19001      // Variable shift amount
19002      Amt1 = Extract128BitVector(Amt, 0, DAG, dl);
19003      Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl);
19004    }
19005
19006    // Issue new vector shifts for the smaller types
19007    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
19008    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
19009
19010    // Concatenate the result back
19011    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
19012  }
19013
19014  return SDValue();
19015}
19016
19017static SDValue LowerRotate(SDValue Op, const X86Subtarget *Subtarget,
19018                           SelectionDAG &DAG) {
19019  MVT VT = Op.getSimpleValueType();
19020  SDLoc DL(Op);
19021  SDValue R = Op.getOperand(0);
19022  SDValue Amt = Op.getOperand(1);
19023
19024  assert(VT.isVector() && "Custom lowering only for vector rotates!");
19025  assert(Subtarget->hasXOP() && "XOP support required for vector rotates!");
19026  assert((Op.getOpcode() == ISD::ROTL) && "Only ROTL supported");
19027
19028  // XOP has 128-bit vector variable + immediate rotates.
19029  // +ve/-ve Amt = rotate left/right.
19030
19031  // Split 256-bit integers.
19032  if (VT.is256BitVector())
19033    return Lower256IntArith(Op, DAG);
19034
19035  assert(VT.is128BitVector() && "Only rotate 128-bit vectors!");
19036
19037  // Attempt to rotate by immediate.
19038  if (auto *BVAmt = dyn_cast<BuildVectorSDNode>(Amt)) {
19039    if (auto *RotateConst = BVAmt->getConstantSplatNode()) {
19040      uint64_t RotateAmt = RotateConst->getAPIntValue().getZExtValue();
19041      assert(RotateAmt < VT.getScalarSizeInBits() && "Rotation out of range");
19042      return DAG.getNode(X86ISD::VPROTI, DL, VT, R,
19043                         DAG.getConstant(RotateAmt, DL, MVT::i8));
19044    }
19045  }
19046
19047  // Use general rotate by variable (per-element).
19048  return DAG.getNode(X86ISD::VPROT, DL, VT, R, Amt);
19049}
19050
19051static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
19052  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
19053  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
19054  // looks for this combo and may remove the "setcc" instruction if the "setcc"
19055  // has only one use.
19056  SDNode *N = Op.getNode();
19057  SDValue LHS = N->getOperand(0);
19058  SDValue RHS = N->getOperand(1);
19059  unsigned BaseOp = 0;
19060  unsigned Cond = 0;
19061  SDLoc DL(Op);
19062  switch (Op.getOpcode()) {
19063  default: llvm_unreachable("Unknown ovf instruction!");
19064  case ISD::SADDO:
19065    // A subtract of one will be selected as a INC. Note that INC doesn't
19066    // set CF, so we can't do this for UADDO.
19067    if (isOneConstant(RHS)) {
19068        BaseOp = X86ISD::INC;
19069        Cond = X86::COND_O;
19070        break;
19071      }
19072    BaseOp = X86ISD::ADD;
19073    Cond = X86::COND_O;
19074    break;
19075  case ISD::UADDO:
19076    BaseOp = X86ISD::ADD;
19077    Cond = X86::COND_B;
19078    break;
19079  case ISD::SSUBO:
19080    // A subtract of one will be selected as a DEC. Note that DEC doesn't
19081    // set CF, so we can't do this for USUBO.
19082    if (isOneConstant(RHS)) {
19083        BaseOp = X86ISD::DEC;
19084        Cond = X86::COND_O;
19085        break;
19086      }
19087    BaseOp = X86ISD::SUB;
19088    Cond = X86::COND_O;
19089    break;
19090  case ISD::USUBO:
19091    BaseOp = X86ISD::SUB;
19092    Cond = X86::COND_B;
19093    break;
19094  case ISD::SMULO:
19095    BaseOp = N->getValueType(0) == MVT::i8 ? X86ISD::SMUL8 : X86ISD::SMUL;
19096    Cond = X86::COND_O;
19097    break;
19098  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
19099    if (N->getValueType(0) == MVT::i8) {
19100      BaseOp = X86ISD::UMUL8;
19101      Cond = X86::COND_O;
19102      break;
19103    }
19104    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
19105                                 MVT::i32);
19106    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
19107
19108    SDValue SetCC =
19109      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
19110                  DAG.getConstant(X86::COND_O, DL, MVT::i32),
19111                  SDValue(Sum.getNode(), 2));
19112
19113    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
19114  }
19115  }
19116
19117  // Also sets EFLAGS.
19118  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
19119  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
19120
19121  SDValue SetCC =
19122    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
19123                DAG.getConstant(Cond, DL, MVT::i32),
19124                SDValue(Sum.getNode(), 1));
19125
19126  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
19127}
19128
19129/// Returns true if the operand type is exactly twice the native width, and
19130/// the corresponding cmpxchg8b or cmpxchg16b instruction is available.
19131/// Used to know whether to use cmpxchg8/16b when expanding atomic operations
19132/// (otherwise we leave them alone to become __sync_fetch_and_... calls).
19133bool X86TargetLowering::needsCmpXchgNb(Type *MemType) const {
19134  unsigned OpWidth = MemType->getPrimitiveSizeInBits();
19135
19136  if (OpWidth == 64)
19137    return !Subtarget->is64Bit(); // FIXME this should be Subtarget.hasCmpxchg8b
19138  else if (OpWidth == 128)
19139    return Subtarget->hasCmpxchg16b();
19140  else
19141    return false;
19142}
19143
19144bool X86TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
19145  return needsCmpXchgNb(SI->getValueOperand()->getType());
19146}
19147
19148// Note: this turns large loads into lock cmpxchg8b/16b.
19149// FIXME: On 32 bits x86, fild/movq might be faster than lock cmpxchg8b.
19150TargetLowering::AtomicExpansionKind
19151X86TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
19152  auto PTy = cast<PointerType>(LI->getPointerOperand()->getType());
19153  return needsCmpXchgNb(PTy->getElementType()) ? AtomicExpansionKind::CmpXChg
19154                                               : AtomicExpansionKind::None;
19155}
19156
19157TargetLowering::AtomicExpansionKind
19158X86TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
19159  unsigned NativeWidth = Subtarget->is64Bit() ? 64 : 32;
19160  Type *MemType = AI->getType();
19161
19162  // If the operand is too big, we must see if cmpxchg8/16b is available
19163  // and default to library calls otherwise.
19164  if (MemType->getPrimitiveSizeInBits() > NativeWidth) {
19165    return needsCmpXchgNb(MemType) ? AtomicExpansionKind::CmpXChg
19166                                   : AtomicExpansionKind::None;
19167  }
19168
19169  AtomicRMWInst::BinOp Op = AI->getOperation();
19170  switch (Op) {
19171  default:
19172    llvm_unreachable("Unknown atomic operation");
19173  case AtomicRMWInst::Xchg:
19174  case AtomicRMWInst::Add:
19175  case AtomicRMWInst::Sub:
19176    // It's better to use xadd, xsub or xchg for these in all cases.
19177    return AtomicExpansionKind::None;
19178  case AtomicRMWInst::Or:
19179  case AtomicRMWInst::And:
19180  case AtomicRMWInst::Xor:
19181    // If the atomicrmw's result isn't actually used, we can just add a "lock"
19182    // prefix to a normal instruction for these operations.
19183    return !AI->use_empty() ? AtomicExpansionKind::CmpXChg
19184                            : AtomicExpansionKind::None;
19185  case AtomicRMWInst::Nand:
19186  case AtomicRMWInst::Max:
19187  case AtomicRMWInst::Min:
19188  case AtomicRMWInst::UMax:
19189  case AtomicRMWInst::UMin:
19190    // These always require a non-trivial set of data operations on x86. We must
19191    // use a cmpxchg loop.
19192    return AtomicExpansionKind::CmpXChg;
19193  }
19194}
19195
19196static bool hasMFENCE(const X86Subtarget& Subtarget) {
19197  // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
19198  // no-sse2). There isn't any reason to disable it if the target processor
19199  // supports it.
19200  return Subtarget.hasSSE2() || Subtarget.is64Bit();
19201}
19202
19203LoadInst *
19204X86TargetLowering::lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const {
19205  unsigned NativeWidth = Subtarget->is64Bit() ? 64 : 32;
19206  Type *MemType = AI->getType();
19207  // Accesses larger than the native width are turned into cmpxchg/libcalls, so
19208  // there is no benefit in turning such RMWs into loads, and it is actually
19209  // harmful as it introduces a mfence.
19210  if (MemType->getPrimitiveSizeInBits() > NativeWidth)
19211    return nullptr;
19212
19213  auto Builder = IRBuilder<>(AI);
19214  Module *M = Builder.GetInsertBlock()->getParent()->getParent();
19215  auto SynchScope = AI->getSynchScope();
19216  // We must restrict the ordering to avoid generating loads with Release or
19217  // ReleaseAcquire orderings.
19218  auto Order = AtomicCmpXchgInst::getStrongestFailureOrdering(AI->getOrdering());
19219  auto Ptr = AI->getPointerOperand();
19220
19221  // Before the load we need a fence. Here is an example lifted from
19222  // http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf showing why a fence
19223  // is required:
19224  // Thread 0:
19225  //   x.store(1, relaxed);
19226  //   r1 = y.fetch_add(0, release);
19227  // Thread 1:
19228  //   y.fetch_add(42, acquire);
19229  //   r2 = x.load(relaxed);
19230  // r1 = r2 = 0 is impossible, but becomes possible if the idempotent rmw is
19231  // lowered to just a load without a fence. A mfence flushes the store buffer,
19232  // making the optimization clearly correct.
19233  // FIXME: it is required if isAtLeastRelease(Order) but it is not clear
19234  // otherwise, we might be able to be more aggressive on relaxed idempotent
19235  // rmw. In practice, they do not look useful, so we don't try to be
19236  // especially clever.
19237  if (SynchScope == SingleThread)
19238    // FIXME: we could just insert an X86ISD::MEMBARRIER here, except we are at
19239    // the IR level, so we must wrap it in an intrinsic.
19240    return nullptr;
19241
19242  if (!hasMFENCE(*Subtarget))
19243    // FIXME: it might make sense to use a locked operation here but on a
19244    // different cache-line to prevent cache-line bouncing. In practice it
19245    // is probably a small win, and x86 processors without mfence are rare
19246    // enough that we do not bother.
19247    return nullptr;
19248
19249  Function *MFence =
19250      llvm::Intrinsic::getDeclaration(M, Intrinsic::x86_sse2_mfence);
19251  Builder.CreateCall(MFence, {});
19252
19253  // Finally we can emit the atomic load.
19254  LoadInst *Loaded = Builder.CreateAlignedLoad(Ptr,
19255          AI->getType()->getPrimitiveSizeInBits());
19256  Loaded->setAtomic(Order, SynchScope);
19257  AI->replaceAllUsesWith(Loaded);
19258  AI->eraseFromParent();
19259  return Loaded;
19260}
19261
19262static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget,
19263                                 SelectionDAG &DAG) {
19264  SDLoc dl(Op);
19265  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
19266    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
19267  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
19268    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
19269
19270  // The only fence that needs an instruction is a sequentially-consistent
19271  // cross-thread fence.
19272  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
19273    if (hasMFENCE(*Subtarget))
19274      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
19275
19276    SDValue Chain = Op.getOperand(0);
19277    SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
19278    SDValue Ops[] = {
19279      DAG.getRegister(X86::ESP, MVT::i32),     // Base
19280      DAG.getTargetConstant(1, dl, MVT::i8),   // Scale
19281      DAG.getRegister(0, MVT::i32),            // Index
19282      DAG.getTargetConstant(0, dl, MVT::i32),  // Disp
19283      DAG.getRegister(0, MVT::i32),            // Segment.
19284      Zero,
19285      Chain
19286    };
19287    SDNode *Res = DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops);
19288    return SDValue(Res, 0);
19289  }
19290
19291  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
19292  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
19293}
19294
19295static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget,
19296                             SelectionDAG &DAG) {
19297  MVT T = Op.getSimpleValueType();
19298  SDLoc DL(Op);
19299  unsigned Reg = 0;
19300  unsigned size = 0;
19301  switch(T.SimpleTy) {
19302  default: llvm_unreachable("Invalid value type!");
19303  case MVT::i8:  Reg = X86::AL;  size = 1; break;
19304  case MVT::i16: Reg = X86::AX;  size = 2; break;
19305  case MVT::i32: Reg = X86::EAX; size = 4; break;
19306  case MVT::i64:
19307    assert(Subtarget->is64Bit() && "Node not type legal!");
19308    Reg = X86::RAX; size = 8;
19309    break;
19310  }
19311  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
19312                                  Op.getOperand(2), SDValue());
19313  SDValue Ops[] = { cpIn.getValue(0),
19314                    Op.getOperand(1),
19315                    Op.getOperand(3),
19316                    DAG.getTargetConstant(size, DL, MVT::i8),
19317                    cpIn.getValue(1) };
19318  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
19319  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
19320  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
19321                                           Ops, T, MMO);
19322
19323  SDValue cpOut =
19324    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
19325  SDValue EFLAGS = DAG.getCopyFromReg(cpOut.getValue(1), DL, X86::EFLAGS,
19326                                      MVT::i32, cpOut.getValue(2));
19327  SDValue Success = DAG.getNode(X86ISD::SETCC, DL, Op->getValueType(1),
19328                                DAG.getConstant(X86::COND_E, DL, MVT::i8),
19329                                EFLAGS);
19330
19331  DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), cpOut);
19332  DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
19333  DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), EFLAGS.getValue(1));
19334  return SDValue();
19335}
19336
19337static SDValue LowerBITCAST(SDValue Op, const X86Subtarget *Subtarget,
19338                            SelectionDAG &DAG) {
19339  MVT SrcVT = Op.getOperand(0).getSimpleValueType();
19340  MVT DstVT = Op.getSimpleValueType();
19341
19342  if (SrcVT == MVT::v2i32 || SrcVT == MVT::v4i16 || SrcVT == MVT::v8i8) {
19343    assert(Subtarget->hasSSE2() && "Requires at least SSE2!");
19344    if (DstVT != MVT::f64)
19345      // This conversion needs to be expanded.
19346      return SDValue();
19347
19348    SDValue InVec = Op->getOperand(0);
19349    SDLoc dl(Op);
19350    unsigned NumElts = SrcVT.getVectorNumElements();
19351    MVT SVT = SrcVT.getVectorElementType();
19352
19353    // Widen the vector in input in the case of MVT::v2i32.
19354    // Example: from MVT::v2i32 to MVT::v4i32.
19355    SmallVector<SDValue, 16> Elts;
19356    for (unsigned i = 0, e = NumElts; i != e; ++i)
19357      Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SVT, InVec,
19358                                 DAG.getIntPtrConstant(i, dl)));
19359
19360    // Explicitly mark the extra elements as Undef.
19361    Elts.append(NumElts, DAG.getUNDEF(SVT));
19362
19363    EVT NewVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumElts * 2);
19364    SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, Elts);
19365    SDValue ToV2F64 = DAG.getBitcast(MVT::v2f64, BV);
19366    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, ToV2F64,
19367                       DAG.getIntPtrConstant(0, dl));
19368  }
19369
19370  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
19371         Subtarget->hasMMX() && "Unexpected custom BITCAST");
19372  assert((DstVT == MVT::i64 ||
19373          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
19374         "Unexpected custom BITCAST");
19375  // i64 <=> MMX conversions are Legal.
19376  if (SrcVT==MVT::i64 && DstVT.isVector())
19377    return Op;
19378  if (DstVT==MVT::i64 && SrcVT.isVector())
19379    return Op;
19380  // MMX <=> MMX conversions are Legal.
19381  if (SrcVT.isVector() && DstVT.isVector())
19382    return Op;
19383  // All other conversions need to be expanded.
19384  return SDValue();
19385}
19386
19387/// Compute the horizontal sum of bytes in V for the elements of VT.
19388///
19389/// Requires V to be a byte vector and VT to be an integer vector type with
19390/// wider elements than V's type. The width of the elements of VT determines
19391/// how many bytes of V are summed horizontally to produce each element of the
19392/// result.
19393static SDValue LowerHorizontalByteSum(SDValue V, MVT VT,
19394                                      const X86Subtarget *Subtarget,
19395                                      SelectionDAG &DAG) {
19396  SDLoc DL(V);
19397  MVT ByteVecVT = V.getSimpleValueType();
19398  MVT EltVT = VT.getVectorElementType();
19399  int NumElts = VT.getVectorNumElements();
19400  assert(ByteVecVT.getVectorElementType() == MVT::i8 &&
19401         "Expected value to have byte element type.");
19402  assert(EltVT != MVT::i8 &&
19403         "Horizontal byte sum only makes sense for wider elements!");
19404  unsigned VecSize = VT.getSizeInBits();
19405  assert(ByteVecVT.getSizeInBits() == VecSize && "Cannot change vector size!");
19406
19407  // PSADBW instruction horizontally add all bytes and leave the result in i64
19408  // chunks, thus directly computes the pop count for v2i64 and v4i64.
19409  if (EltVT == MVT::i64) {
19410    SDValue Zeros = getZeroVector(ByteVecVT, Subtarget, DAG, DL);
19411    MVT SadVecVT = MVT::getVectorVT(MVT::i64, VecSize / 64);
19412    V = DAG.getNode(X86ISD::PSADBW, DL, SadVecVT, V, Zeros);
19413    return DAG.getBitcast(VT, V);
19414  }
19415
19416  if (EltVT == MVT::i32) {
19417    // We unpack the low half and high half into i32s interleaved with zeros so
19418    // that we can use PSADBW to horizontally sum them. The most useful part of
19419    // this is that it lines up the results of two PSADBW instructions to be
19420    // two v2i64 vectors which concatenated are the 4 population counts. We can
19421    // then use PACKUSWB to shrink and concatenate them into a v4i32 again.
19422    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, DL);
19423    SDValue Low = DAG.getNode(X86ISD::UNPCKL, DL, VT, V, Zeros);
19424    SDValue High = DAG.getNode(X86ISD::UNPCKH, DL, VT, V, Zeros);
19425
19426    // Do the horizontal sums into two v2i64s.
19427    Zeros = getZeroVector(ByteVecVT, Subtarget, DAG, DL);
19428    MVT SadVecVT = MVT::getVectorVT(MVT::i64, VecSize / 64);
19429    Low = DAG.getNode(X86ISD::PSADBW, DL, SadVecVT,
19430                      DAG.getBitcast(ByteVecVT, Low), Zeros);
19431    High = DAG.getNode(X86ISD::PSADBW, DL, SadVecVT,
19432                       DAG.getBitcast(ByteVecVT, High), Zeros);
19433
19434    // Merge them together.
19435    MVT ShortVecVT = MVT::getVectorVT(MVT::i16, VecSize / 16);
19436    V = DAG.getNode(X86ISD::PACKUS, DL, ByteVecVT,
19437                    DAG.getBitcast(ShortVecVT, Low),
19438                    DAG.getBitcast(ShortVecVT, High));
19439
19440    return DAG.getBitcast(VT, V);
19441  }
19442
19443  // The only element type left is i16.
19444  assert(EltVT == MVT::i16 && "Unknown how to handle type");
19445
19446  // To obtain pop count for each i16 element starting from the pop count for
19447  // i8 elements, shift the i16s left by 8, sum as i8s, and then shift as i16s
19448  // right by 8. It is important to shift as i16s as i8 vector shift isn't
19449  // directly supported.
19450  SmallVector<SDValue, 16> Shifters(NumElts, DAG.getConstant(8, DL, EltVT));
19451  SDValue Shifter = DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Shifters);
19452  SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, DAG.getBitcast(VT, V), Shifter);
19453  V = DAG.getNode(ISD::ADD, DL, ByteVecVT, DAG.getBitcast(ByteVecVT, Shl),
19454                  DAG.getBitcast(ByteVecVT, V));
19455  return DAG.getNode(ISD::SRL, DL, VT, DAG.getBitcast(VT, V), Shifter);
19456}
19457
19458static SDValue LowerVectorCTPOPInRegLUT(SDValue Op, SDLoc DL,
19459                                        const X86Subtarget *Subtarget,
19460                                        SelectionDAG &DAG) {
19461  MVT VT = Op.getSimpleValueType();
19462  MVT EltVT = VT.getVectorElementType();
19463  unsigned VecSize = VT.getSizeInBits();
19464
19465  // Implement a lookup table in register by using an algorithm based on:
19466  // http://wm.ite.pl/articles/sse-popcount.html
19467  //
19468  // The general idea is that every lower byte nibble in the input vector is an
19469  // index into a in-register pre-computed pop count table. We then split up the
19470  // input vector in two new ones: (1) a vector with only the shifted-right
19471  // higher nibbles for each byte and (2) a vector with the lower nibbles (and
19472  // masked out higher ones) for each byte. PSHUB is used separately with both
19473  // to index the in-register table. Next, both are added and the result is a
19474  // i8 vector where each element contains the pop count for input byte.
19475  //
19476  // To obtain the pop count for elements != i8, we follow up with the same
19477  // approach and use additional tricks as described below.
19478  //
19479  const int LUT[16] = {/* 0 */ 0, /* 1 */ 1, /* 2 */ 1, /* 3 */ 2,
19480                       /* 4 */ 1, /* 5 */ 2, /* 6 */ 2, /* 7 */ 3,
19481                       /* 8 */ 1, /* 9 */ 2, /* a */ 2, /* b */ 3,
19482                       /* c */ 2, /* d */ 3, /* e */ 3, /* f */ 4};
19483
19484  int NumByteElts = VecSize / 8;
19485  MVT ByteVecVT = MVT::getVectorVT(MVT::i8, NumByteElts);
19486  SDValue In = DAG.getBitcast(ByteVecVT, Op);
19487  SmallVector<SDValue, 16> LUTVec;
19488  for (int i = 0; i < NumByteElts; ++i)
19489    LUTVec.push_back(DAG.getConstant(LUT[i % 16], DL, MVT::i8));
19490  SDValue InRegLUT = DAG.getNode(ISD::BUILD_VECTOR, DL, ByteVecVT, LUTVec);
19491  SmallVector<SDValue, 16> Mask0F(NumByteElts,
19492                                  DAG.getConstant(0x0F, DL, MVT::i8));
19493  SDValue M0F = DAG.getNode(ISD::BUILD_VECTOR, DL, ByteVecVT, Mask0F);
19494
19495  // High nibbles
19496  SmallVector<SDValue, 16> Four(NumByteElts, DAG.getConstant(4, DL, MVT::i8));
19497  SDValue FourV = DAG.getNode(ISD::BUILD_VECTOR, DL, ByteVecVT, Four);
19498  SDValue HighNibbles = DAG.getNode(ISD::SRL, DL, ByteVecVT, In, FourV);
19499
19500  // Low nibbles
19501  SDValue LowNibbles = DAG.getNode(ISD::AND, DL, ByteVecVT, In, M0F);
19502
19503  // The input vector is used as the shuffle mask that index elements into the
19504  // LUT. After counting low and high nibbles, add the vector to obtain the
19505  // final pop count per i8 element.
19506  SDValue HighPopCnt =
19507      DAG.getNode(X86ISD::PSHUFB, DL, ByteVecVT, InRegLUT, HighNibbles);
19508  SDValue LowPopCnt =
19509      DAG.getNode(X86ISD::PSHUFB, DL, ByteVecVT, InRegLUT, LowNibbles);
19510  SDValue PopCnt = DAG.getNode(ISD::ADD, DL, ByteVecVT, HighPopCnt, LowPopCnt);
19511
19512  if (EltVT == MVT::i8)
19513    return PopCnt;
19514
19515  return LowerHorizontalByteSum(PopCnt, VT, Subtarget, DAG);
19516}
19517
19518static SDValue LowerVectorCTPOPBitmath(SDValue Op, SDLoc DL,
19519                                       const X86Subtarget *Subtarget,
19520                                       SelectionDAG &DAG) {
19521  MVT VT = Op.getSimpleValueType();
19522  assert(VT.is128BitVector() &&
19523         "Only 128-bit vector bitmath lowering supported.");
19524
19525  int VecSize = VT.getSizeInBits();
19526  MVT EltVT = VT.getVectorElementType();
19527  int Len = EltVT.getSizeInBits();
19528
19529  // This is the vectorized version of the "best" algorithm from
19530  // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
19531  // with a minor tweak to use a series of adds + shifts instead of vector
19532  // multiplications. Implemented for all integer vector types. We only use
19533  // this when we don't have SSSE3 which allows a LUT-based lowering that is
19534  // much faster, even faster than using native popcnt instructions.
19535
19536  auto GetShift = [&](unsigned OpCode, SDValue V, int Shifter) {
19537    MVT VT = V.getSimpleValueType();
19538    SmallVector<SDValue, 32> Shifters(
19539        VT.getVectorNumElements(),
19540        DAG.getConstant(Shifter, DL, VT.getVectorElementType()));
19541    return DAG.getNode(OpCode, DL, VT, V,
19542                       DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Shifters));
19543  };
19544  auto GetMask = [&](SDValue V, APInt Mask) {
19545    MVT VT = V.getSimpleValueType();
19546    SmallVector<SDValue, 32> Masks(
19547        VT.getVectorNumElements(),
19548        DAG.getConstant(Mask, DL, VT.getVectorElementType()));
19549    return DAG.getNode(ISD::AND, DL, VT, V,
19550                       DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Masks));
19551  };
19552
19553  // We don't want to incur the implicit masks required to SRL vNi8 vectors on
19554  // x86, so set the SRL type to have elements at least i16 wide. This is
19555  // correct because all of our SRLs are followed immediately by a mask anyways
19556  // that handles any bits that sneak into the high bits of the byte elements.
19557  MVT SrlVT = Len > 8 ? VT : MVT::getVectorVT(MVT::i16, VecSize / 16);
19558
19559  SDValue V = Op;
19560
19561  // v = v - ((v >> 1) & 0x55555555...)
19562  SDValue Srl =
19563      DAG.getBitcast(VT, GetShift(ISD::SRL, DAG.getBitcast(SrlVT, V), 1));
19564  SDValue And = GetMask(Srl, APInt::getSplat(Len, APInt(8, 0x55)));
19565  V = DAG.getNode(ISD::SUB, DL, VT, V, And);
19566
19567  // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
19568  SDValue AndLHS = GetMask(V, APInt::getSplat(Len, APInt(8, 0x33)));
19569  Srl = DAG.getBitcast(VT, GetShift(ISD::SRL, DAG.getBitcast(SrlVT, V), 2));
19570  SDValue AndRHS = GetMask(Srl, APInt::getSplat(Len, APInt(8, 0x33)));
19571  V = DAG.getNode(ISD::ADD, DL, VT, AndLHS, AndRHS);
19572
19573  // v = (v + (v >> 4)) & 0x0F0F0F0F...
19574  Srl = DAG.getBitcast(VT, GetShift(ISD::SRL, DAG.getBitcast(SrlVT, V), 4));
19575  SDValue Add = DAG.getNode(ISD::ADD, DL, VT, V, Srl);
19576  V = GetMask(Add, APInt::getSplat(Len, APInt(8, 0x0F)));
19577
19578  // At this point, V contains the byte-wise population count, and we are
19579  // merely doing a horizontal sum if necessary to get the wider element
19580  // counts.
19581  if (EltVT == MVT::i8)
19582    return V;
19583
19584  return LowerHorizontalByteSum(
19585      DAG.getBitcast(MVT::getVectorVT(MVT::i8, VecSize / 8), V), VT, Subtarget,
19586      DAG);
19587}
19588
19589static SDValue LowerVectorCTPOP(SDValue Op, const X86Subtarget *Subtarget,
19590                                SelectionDAG &DAG) {
19591  MVT VT = Op.getSimpleValueType();
19592  // FIXME: Need to add AVX-512 support here!
19593  assert((VT.is256BitVector() || VT.is128BitVector()) &&
19594         "Unknown CTPOP type to handle");
19595  SDLoc DL(Op.getNode());
19596  SDValue Op0 = Op.getOperand(0);
19597
19598  if (!Subtarget->hasSSSE3()) {
19599    // We can't use the fast LUT approach, so fall back on vectorized bitmath.
19600    assert(VT.is128BitVector() && "Only 128-bit vectors supported in SSE!");
19601    return LowerVectorCTPOPBitmath(Op0, DL, Subtarget, DAG);
19602  }
19603
19604  if (VT.is256BitVector() && !Subtarget->hasInt256()) {
19605    unsigned NumElems = VT.getVectorNumElements();
19606
19607    // Extract each 128-bit vector, compute pop count and concat the result.
19608    SDValue LHS = Extract128BitVector(Op0, 0, DAG, DL);
19609    SDValue RHS = Extract128BitVector(Op0, NumElems/2, DAG, DL);
19610
19611    return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT,
19612                       LowerVectorCTPOPInRegLUT(LHS, DL, Subtarget, DAG),
19613                       LowerVectorCTPOPInRegLUT(RHS, DL, Subtarget, DAG));
19614  }
19615
19616  return LowerVectorCTPOPInRegLUT(Op0, DL, Subtarget, DAG);
19617}
19618
19619static SDValue LowerCTPOP(SDValue Op, const X86Subtarget *Subtarget,
19620                          SelectionDAG &DAG) {
19621  assert(Op.getSimpleValueType().isVector() &&
19622         "We only do custom lowering for vector population count.");
19623  return LowerVectorCTPOP(Op, Subtarget, DAG);
19624}
19625
19626static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
19627  SDNode *Node = Op.getNode();
19628  SDLoc dl(Node);
19629  EVT T = Node->getValueType(0);
19630  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
19631                              DAG.getConstant(0, dl, T), Node->getOperand(2));
19632  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
19633                       cast<AtomicSDNode>(Node)->getMemoryVT(),
19634                       Node->getOperand(0),
19635                       Node->getOperand(1), negOp,
19636                       cast<AtomicSDNode>(Node)->getMemOperand(),
19637                       cast<AtomicSDNode>(Node)->getOrdering(),
19638                       cast<AtomicSDNode>(Node)->getSynchScope());
19639}
19640
19641static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
19642  SDNode *Node = Op.getNode();
19643  SDLoc dl(Node);
19644  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
19645
19646  // Convert seq_cst store -> xchg
19647  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
19648  // FIXME: On 32-bit, store -> fist or movq would be more efficient
19649  //        (The only way to get a 16-byte store is cmpxchg16b)
19650  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
19651  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
19652      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
19653    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
19654                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
19655                                 Node->getOperand(0),
19656                                 Node->getOperand(1), Node->getOperand(2),
19657                                 cast<AtomicSDNode>(Node)->getMemOperand(),
19658                                 cast<AtomicSDNode>(Node)->getOrdering(),
19659                                 cast<AtomicSDNode>(Node)->getSynchScope());
19660    return Swap.getValue(1);
19661  }
19662  // Other atomic stores have a simple pattern.
19663  return Op;
19664}
19665
19666static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
19667  MVT VT = Op.getNode()->getSimpleValueType(0);
19668
19669  // Let legalize expand this if it isn't a legal type yet.
19670  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
19671    return SDValue();
19672
19673  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
19674
19675  unsigned Opc;
19676  bool ExtraOp = false;
19677  switch (Op.getOpcode()) {
19678  default: llvm_unreachable("Invalid code");
19679  case ISD::ADDC: Opc = X86ISD::ADD; break;
19680  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
19681  case ISD::SUBC: Opc = X86ISD::SUB; break;
19682  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
19683  }
19684
19685  if (!ExtraOp)
19686    return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
19687                       Op.getOperand(1));
19688  return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
19689                     Op.getOperand(1), Op.getOperand(2));
19690}
19691
19692static SDValue LowerFSINCOS(SDValue Op, const X86Subtarget *Subtarget,
19693                            SelectionDAG &DAG) {
19694  assert(Subtarget->isTargetDarwin() && Subtarget->is64Bit());
19695
19696  // For MacOSX, we want to call an alternative entry point: __sincos_stret,
19697  // which returns the values as { float, float } (in XMM0) or
19698  // { double, double } (which is returned in XMM0, XMM1).
19699  SDLoc dl(Op);
19700  SDValue Arg = Op.getOperand(0);
19701  EVT ArgVT = Arg.getValueType();
19702  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
19703
19704  TargetLowering::ArgListTy Args;
19705  TargetLowering::ArgListEntry Entry;
19706
19707  Entry.Node = Arg;
19708  Entry.Ty = ArgTy;
19709  Entry.isSExt = false;
19710  Entry.isZExt = false;
19711  Args.push_back(Entry);
19712
19713  bool isF64 = ArgVT == MVT::f64;
19714  // Only optimize x86_64 for now. i386 is a bit messy. For f32,
19715  // the small struct {f32, f32} is returned in (eax, edx). For f64,
19716  // the results are returned via SRet in memory.
19717  const char *LibcallName =  isF64 ? "__sincos_stret" : "__sincosf_stret";
19718  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
19719  SDValue Callee =
19720      DAG.getExternalSymbol(LibcallName, TLI.getPointerTy(DAG.getDataLayout()));
19721
19722  Type *RetTy = isF64
19723    ? (Type*)StructType::get(ArgTy, ArgTy, nullptr)
19724    : (Type*)VectorType::get(ArgTy, 4);
19725
19726  TargetLowering::CallLoweringInfo CLI(DAG);
19727  CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
19728    .setCallee(CallingConv::C, RetTy, Callee, std::move(Args), 0);
19729
19730  std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
19731
19732  if (isF64)
19733    // Returned in xmm0 and xmm1.
19734    return CallResult.first;
19735
19736  // Returned in bits 0:31 and 32:64 xmm0.
19737  SDValue SinVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
19738                               CallResult.first, DAG.getIntPtrConstant(0, dl));
19739  SDValue CosVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
19740                               CallResult.first, DAG.getIntPtrConstant(1, dl));
19741  SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
19742  return DAG.getNode(ISD::MERGE_VALUES, dl, Tys, SinVal, CosVal);
19743}
19744
19745/// Widen a vector input to a vector of NVT.  The
19746/// input vector must have the same element type as NVT.
19747static SDValue ExtendToType(SDValue InOp, MVT NVT, SelectionDAG &DAG,
19748                            bool FillWithZeroes = false) {
19749  // Check if InOp already has the right width.
19750  MVT InVT = InOp.getSimpleValueType();
19751  if (InVT == NVT)
19752    return InOp;
19753
19754  if (InOp.isUndef())
19755    return DAG.getUNDEF(NVT);
19756
19757  assert(InVT.getVectorElementType() == NVT.getVectorElementType() &&
19758         "input and widen element type must match");
19759
19760  unsigned InNumElts = InVT.getVectorNumElements();
19761  unsigned WidenNumElts = NVT.getVectorNumElements();
19762  assert(WidenNumElts > InNumElts && WidenNumElts % InNumElts == 0 &&
19763         "Unexpected request for vector widening");
19764
19765  EVT EltVT = NVT.getVectorElementType();
19766
19767  SDLoc dl(InOp);
19768  if (InOp.getOpcode() == ISD::CONCAT_VECTORS &&
19769      InOp.getNumOperands() == 2) {
19770    SDValue N1 = InOp.getOperand(1);
19771    if ((ISD::isBuildVectorAllZeros(N1.getNode()) && FillWithZeroes) ||
19772        N1.isUndef()) {
19773      InOp = InOp.getOperand(0);
19774      InVT = InOp.getSimpleValueType();
19775      InNumElts = InVT.getVectorNumElements();
19776    }
19777  }
19778  if (ISD::isBuildVectorOfConstantSDNodes(InOp.getNode()) ||
19779      ISD::isBuildVectorOfConstantFPSDNodes(InOp.getNode())) {
19780    SmallVector<SDValue, 16> Ops;
19781    for (unsigned i = 0; i < InNumElts; ++i)
19782      Ops.push_back(InOp.getOperand(i));
19783
19784    SDValue FillVal = FillWithZeroes ? DAG.getConstant(0, dl, EltVT) :
19785      DAG.getUNDEF(EltVT);
19786    for (unsigned i = 0; i < WidenNumElts - InNumElts; ++i)
19787      Ops.push_back(FillVal);
19788    return DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, Ops);
19789  }
19790  SDValue FillVal = FillWithZeroes ? DAG.getConstant(0, dl, NVT) :
19791    DAG.getUNDEF(NVT);
19792  return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, NVT, FillVal,
19793                     InOp, DAG.getIntPtrConstant(0, dl));
19794}
19795
19796static SDValue LowerMSCATTER(SDValue Op, const X86Subtarget *Subtarget,
19797                             SelectionDAG &DAG) {
19798  assert(Subtarget->hasAVX512() &&
19799         "MGATHER/MSCATTER are supported on AVX-512 arch only");
19800
19801  // X86 scatter kills mask register, so its type should be added to
19802  // the list of return values.
19803  // If the "scatter" has 2 return values, it is already handled.
19804  if (Op.getNode()->getNumValues() == 2)
19805    return Op;
19806
19807  MaskedScatterSDNode *N = cast<MaskedScatterSDNode>(Op.getNode());
19808  SDValue Src = N->getValue();
19809  MVT VT = Src.getSimpleValueType();
19810  assert(VT.getScalarSizeInBits() >= 32 && "Unsupported scatter op");
19811  SDLoc dl(Op);
19812
19813  SDValue NewScatter;
19814  SDValue Index = N->getIndex();
19815  SDValue Mask = N->getMask();
19816  SDValue Chain = N->getChain();
19817  SDValue BasePtr = N->getBasePtr();
19818  MVT MemVT = N->getMemoryVT().getSimpleVT();
19819  MVT IndexVT = Index.getSimpleValueType();
19820  MVT MaskVT = Mask.getSimpleValueType();
19821
19822  if (MemVT.getScalarSizeInBits() < VT.getScalarSizeInBits()) {
19823    // The v2i32 value was promoted to v2i64.
19824    // Now we "redo" the type legalizer's work and widen the original
19825    // v2i32 value to v4i32. The original v2i32 is retrieved from v2i64
19826    // with a shuffle.
19827    assert((MemVT == MVT::v2i32 && VT == MVT::v2i64) &&
19828           "Unexpected memory type");
19829    int ShuffleMask[] = {0, 2, -1, -1};
19830    Src = DAG.getVectorShuffle(MVT::v4i32, dl, DAG.getBitcast(MVT::v4i32, Src),
19831                               DAG.getUNDEF(MVT::v4i32), ShuffleMask);
19832    // Now we have 4 elements instead of 2.
19833    // Expand the index.
19834    MVT NewIndexVT = MVT::getVectorVT(IndexVT.getScalarType(), 4);
19835    Index = ExtendToType(Index, NewIndexVT, DAG);
19836
19837    // Expand the mask with zeroes
19838    // Mask may be <2 x i64> or <2 x i1> at this moment
19839    assert((MaskVT == MVT::v2i1 || MaskVT == MVT::v2i64) &&
19840           "Unexpected mask type");
19841    MVT ExtMaskVT = MVT::getVectorVT(MaskVT.getScalarType(), 4);
19842    Mask = ExtendToType(Mask, ExtMaskVT, DAG, true);
19843    VT = MVT::v4i32;
19844  }
19845
19846  unsigned NumElts = VT.getVectorNumElements();
19847  if (!Subtarget->hasVLX() && !VT.is512BitVector() &&
19848      !Index.getSimpleValueType().is512BitVector()) {
19849    // AVX512F supports only 512-bit vectors. Or data or index should
19850    // be 512 bit wide. If now the both index and data are 256-bit, but
19851    // the vector contains 8 elements, we just sign-extend the index
19852    if (IndexVT == MVT::v8i32)
19853      // Just extend index
19854      Index = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i64, Index);
19855    else {
19856      // The minimal number of elts in scatter is 8
19857      NumElts = 8;
19858      // Index
19859      MVT NewIndexVT = MVT::getVectorVT(IndexVT.getScalarType(), NumElts);
19860      // Use original index here, do not modify the index twice
19861      Index = ExtendToType(N->getIndex(), NewIndexVT, DAG);
19862      if (IndexVT.getScalarType() == MVT::i32)
19863        Index = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i64, Index);
19864
19865      // Mask
19866      // At this point we have promoted mask operand
19867      assert(MaskVT.getScalarSizeInBits() >= 32 && "unexpected mask type");
19868      MVT ExtMaskVT = MVT::getVectorVT(MaskVT.getScalarType(), NumElts);
19869      // Use the original mask here, do not modify the mask twice
19870      Mask = ExtendToType(N->getMask(), ExtMaskVT, DAG, true);
19871
19872      // The value that should be stored
19873      MVT NewVT = MVT::getVectorVT(VT.getScalarType(), NumElts);
19874      Src = ExtendToType(Src, NewVT, DAG);
19875    }
19876  }
19877  // If the mask is "wide" at this point - truncate it to i1 vector
19878  MVT BitMaskVT = MVT::getVectorVT(MVT::i1, NumElts);
19879  Mask = DAG.getNode(ISD::TRUNCATE, dl, BitMaskVT, Mask);
19880
19881  // The mask is killed by scatter, add it to the values
19882  SDVTList VTs = DAG.getVTList(BitMaskVT, MVT::Other);
19883  SDValue Ops[] = {Chain, Src, Mask, BasePtr, Index};
19884  NewScatter = DAG.getMaskedScatter(VTs, N->getMemoryVT(), dl, Ops,
19885                                    N->getMemOperand());
19886  DAG.ReplaceAllUsesWith(Op, SDValue(NewScatter.getNode(), 1));
19887  return SDValue(NewScatter.getNode(), 0);
19888}
19889
19890static SDValue LowerMLOAD(SDValue Op, const X86Subtarget *Subtarget,
19891                          SelectionDAG &DAG) {
19892
19893  MaskedLoadSDNode *N = cast<MaskedLoadSDNode>(Op.getNode());
19894  MVT VT = Op.getSimpleValueType();
19895  SDValue Mask = N->getMask();
19896  SDLoc dl(Op);
19897
19898  if (Subtarget->hasAVX512() && !Subtarget->hasVLX() &&
19899      !VT.is512BitVector() && Mask.getValueType() == MVT::v8i1) {
19900    // This operation is legal for targets with VLX, but without
19901    // VLX the vector should be widened to 512 bit
19902    unsigned NumEltsInWideVec = 512/VT.getScalarSizeInBits();
19903    MVT WideDataVT = MVT::getVectorVT(VT.getScalarType(), NumEltsInWideVec);
19904    MVT WideMaskVT = MVT::getVectorVT(MVT::i1, NumEltsInWideVec);
19905    SDValue Src0 = N->getSrc0();
19906    Src0 = ExtendToType(Src0, WideDataVT, DAG);
19907    Mask = ExtendToType(Mask, WideMaskVT, DAG, true);
19908    SDValue NewLoad = DAG.getMaskedLoad(WideDataVT, dl, N->getChain(),
19909                                        N->getBasePtr(), Mask, Src0,
19910                                        N->getMemoryVT(), N->getMemOperand(),
19911                                        N->getExtensionType());
19912
19913    SDValue Exract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
19914                                 NewLoad.getValue(0),
19915                                 DAG.getIntPtrConstant(0, dl));
19916    SDValue RetOps[] = {Exract, NewLoad.getValue(1)};
19917    return DAG.getMergeValues(RetOps, dl);
19918  }
19919  return Op;
19920}
19921
19922static SDValue LowerMSTORE(SDValue Op, const X86Subtarget *Subtarget,
19923                           SelectionDAG &DAG) {
19924  MaskedStoreSDNode *N = cast<MaskedStoreSDNode>(Op.getNode());
19925  SDValue DataToStore = N->getValue();
19926  MVT VT = DataToStore.getSimpleValueType();
19927  SDValue Mask = N->getMask();
19928  SDLoc dl(Op);
19929
19930  if (Subtarget->hasAVX512() && !Subtarget->hasVLX() &&
19931      !VT.is512BitVector() && Mask.getValueType() == MVT::v8i1) {
19932    // This operation is legal for targets with VLX, but without
19933    // VLX the vector should be widened to 512 bit
19934    unsigned NumEltsInWideVec = 512/VT.getScalarSizeInBits();
19935    MVT WideDataVT = MVT::getVectorVT(VT.getScalarType(), NumEltsInWideVec);
19936    MVT WideMaskVT = MVT::getVectorVT(MVT::i1, NumEltsInWideVec);
19937    DataToStore = ExtendToType(DataToStore, WideDataVT, DAG);
19938    Mask = ExtendToType(Mask, WideMaskVT, DAG, true);
19939    return DAG.getMaskedStore(N->getChain(), dl, DataToStore, N->getBasePtr(),
19940                              Mask, N->getMemoryVT(), N->getMemOperand(),
19941                              N->isTruncatingStore());
19942  }
19943  return Op;
19944}
19945
19946static SDValue LowerMGATHER(SDValue Op, const X86Subtarget *Subtarget,
19947                            SelectionDAG &DAG) {
19948  assert(Subtarget->hasAVX512() &&
19949         "MGATHER/MSCATTER are supported on AVX-512 arch only");
19950
19951  MaskedGatherSDNode *N = cast<MaskedGatherSDNode>(Op.getNode());
19952  SDLoc dl(Op);
19953  MVT VT = Op.getSimpleValueType();
19954  SDValue Index = N->getIndex();
19955  SDValue Mask = N->getMask();
19956  SDValue Src0 = N->getValue();
19957  MVT IndexVT = Index.getSimpleValueType();
19958  MVT MaskVT = Mask.getSimpleValueType();
19959
19960  unsigned NumElts = VT.getVectorNumElements();
19961  assert(VT.getScalarSizeInBits() >= 32 && "Unsupported gather op");
19962
19963  if (!Subtarget->hasVLX() && !VT.is512BitVector() &&
19964      !Index.getSimpleValueType().is512BitVector()) {
19965    // AVX512F supports only 512-bit vectors. Or data or index should
19966    // be 512 bit wide. If now the both index and data are 256-bit, but
19967    // the vector contains 8 elements, we just sign-extend the index
19968    if (NumElts == 8) {
19969      Index = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i64, Index);
19970      SDValue Ops[] = { N->getOperand(0), N->getOperand(1),  N->getOperand(2),
19971                        N->getOperand(3), Index };
19972      DAG.UpdateNodeOperands(N, Ops);
19973      return Op;
19974    }
19975
19976    // Minimal number of elements in Gather
19977    NumElts = 8;
19978    // Index
19979    MVT NewIndexVT = MVT::getVectorVT(IndexVT.getScalarType(), NumElts);
19980    Index = ExtendToType(Index, NewIndexVT, DAG);
19981    if (IndexVT.getScalarType() == MVT::i32)
19982      Index = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i64, Index);
19983
19984    // Mask
19985    MVT MaskBitVT = MVT::getVectorVT(MVT::i1, NumElts);
19986    // At this point we have promoted mask operand
19987    assert(MaskVT.getScalarSizeInBits() >= 32 && "unexpected mask type");
19988    MVT ExtMaskVT = MVT::getVectorVT(MaskVT.getScalarType(), NumElts);
19989    Mask = ExtendToType(Mask, ExtMaskVT, DAG, true);
19990    Mask = DAG.getNode(ISD::TRUNCATE, dl, MaskBitVT, Mask);
19991
19992    // The pass-thru value
19993    MVT NewVT = MVT::getVectorVT(VT.getScalarType(), NumElts);
19994    Src0 = ExtendToType(Src0, NewVT, DAG);
19995
19996    SDValue Ops[] = { N->getChain(), Src0, Mask, N->getBasePtr(), Index };
19997    SDValue NewGather = DAG.getMaskedGather(DAG.getVTList(NewVT, MVT::Other),
19998                                            N->getMemoryVT(), dl, Ops,
19999                                            N->getMemOperand());
20000    SDValue Exract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
20001                                 NewGather.getValue(0),
20002                                 DAG.getIntPtrConstant(0, dl));
20003    SDValue RetOps[] = {Exract, NewGather.getValue(1)};
20004    return DAG.getMergeValues(RetOps, dl);
20005  }
20006  return Op;
20007}
20008
20009SDValue X86TargetLowering::LowerGC_TRANSITION_START(SDValue Op,
20010                                                    SelectionDAG &DAG) const {
20011  // TODO: Eventually, the lowering of these nodes should be informed by or
20012  // deferred to the GC strategy for the function in which they appear. For
20013  // now, however, they must be lowered to something. Since they are logically
20014  // no-ops in the case of a null GC strategy (or a GC strategy which does not
20015  // require special handling for these nodes), lower them as literal NOOPs for
20016  // the time being.
20017  SmallVector<SDValue, 2> Ops;
20018
20019  Ops.push_back(Op.getOperand(0));
20020  if (Op->getGluedNode())
20021    Ops.push_back(Op->getOperand(Op->getNumOperands() - 1));
20022
20023  SDLoc OpDL(Op);
20024  SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
20025  SDValue NOOP(DAG.getMachineNode(X86::NOOP, SDLoc(Op), VTs, Ops), 0);
20026
20027  return NOOP;
20028}
20029
20030SDValue X86TargetLowering::LowerGC_TRANSITION_END(SDValue Op,
20031                                                  SelectionDAG &DAG) const {
20032  // TODO: Eventually, the lowering of these nodes should be informed by or
20033  // deferred to the GC strategy for the function in which they appear. For
20034  // now, however, they must be lowered to something. Since they are logically
20035  // no-ops in the case of a null GC strategy (or a GC strategy which does not
20036  // require special handling for these nodes), lower them as literal NOOPs for
20037  // the time being.
20038  SmallVector<SDValue, 2> Ops;
20039
20040  Ops.push_back(Op.getOperand(0));
20041  if (Op->getGluedNode())
20042    Ops.push_back(Op->getOperand(Op->getNumOperands() - 1));
20043
20044  SDLoc OpDL(Op);
20045  SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
20046  SDValue NOOP(DAG.getMachineNode(X86::NOOP, SDLoc(Op), VTs, Ops), 0);
20047
20048  return NOOP;
20049}
20050
20051/// LowerOperation - Provide custom lowering hooks for some operations.
20052///
20053SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
20054  switch (Op.getOpcode()) {
20055  default: llvm_unreachable("Should not custom lower this!");
20056  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, Subtarget, DAG);
20057  case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
20058    return LowerCMP_SWAP(Op, Subtarget, DAG);
20059  case ISD::CTPOP:              return LowerCTPOP(Op, Subtarget, DAG);
20060  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
20061  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
20062  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
20063  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, Subtarget, DAG);
20064  case ISD::VECTOR_SHUFFLE:     return lowerVectorShuffle(Op, Subtarget, DAG);
20065  case ISD::VSELECT:            return LowerVSELECT(Op, DAG);
20066  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
20067  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
20068  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG);
20069  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG);
20070  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
20071  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
20072  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
20073  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
20074  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
20075  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
20076  case ISD::SHL_PARTS:
20077  case ISD::SRA_PARTS:
20078  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
20079  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
20080  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
20081  case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
20082  case ISD::ZERO_EXTEND:        return LowerZERO_EXTEND(Op, Subtarget, DAG);
20083  case ISD::SIGN_EXTEND:        return LowerSIGN_EXTEND(Op, Subtarget, DAG);
20084  case ISD::ANY_EXTEND:         return LowerANY_EXTEND(Op, Subtarget, DAG);
20085  case ISD::SIGN_EXTEND_VECTOR_INREG:
20086    return LowerSIGN_EXTEND_VECTOR_INREG(Op, Subtarget, DAG);
20087  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
20088  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
20089  case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
20090  case ISD::LOAD:               return LowerExtendedLoad(Op, Subtarget, DAG);
20091  case ISD::FABS:
20092  case ISD::FNEG:               return LowerFABSorFNEG(Op, DAG);
20093  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
20094  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
20095  case ISD::SETCC:              return LowerSETCC(Op, DAG);
20096  case ISD::SETCCE:             return LowerSETCCE(Op, DAG);
20097  case ISD::SELECT:             return LowerSELECT(Op, DAG);
20098  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
20099  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
20100  case ISD::VASTART:            return LowerVASTART(Op, DAG);
20101  case ISD::VAARG:              return LowerVAARG(Op, DAG);
20102  case ISD::VACOPY:             return LowerVACOPY(Op, Subtarget, DAG);
20103  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, Subtarget, DAG);
20104  case ISD::INTRINSIC_VOID:
20105  case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, Subtarget, DAG);
20106  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
20107  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
20108  case ISD::FRAME_TO_ARGS_OFFSET:
20109                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
20110  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
20111  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
20112  case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
20113  case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
20114  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
20115  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
20116  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
20117  case ISD::CTLZ:               return LowerCTLZ(Op, Subtarget, DAG);
20118  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, Subtarget, DAG);
20119  case ISD::CTTZ:
20120  case ISD::CTTZ_ZERO_UNDEF:    return LowerCTTZ(Op, DAG);
20121  case ISD::MUL:                return LowerMUL(Op, Subtarget, DAG);
20122  case ISD::UMUL_LOHI:
20123  case ISD::SMUL_LOHI:          return LowerMUL_LOHI(Op, Subtarget, DAG);
20124  case ISD::ROTL:               return LowerRotate(Op, Subtarget, DAG);
20125  case ISD::SRA:
20126  case ISD::SRL:
20127  case ISD::SHL:                return LowerShift(Op, Subtarget, DAG);
20128  case ISD::SADDO:
20129  case ISD::UADDO:
20130  case ISD::SSUBO:
20131  case ISD::USUBO:
20132  case ISD::SMULO:
20133  case ISD::UMULO:              return LowerXALUO(Op, DAG);
20134  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, Subtarget,DAG);
20135  case ISD::BITCAST:            return LowerBITCAST(Op, Subtarget, DAG);
20136  case ISD::ADDC:
20137  case ISD::ADDE:
20138  case ISD::SUBC:
20139  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
20140  case ISD::ADD:                return LowerADD(Op, DAG);
20141  case ISD::SUB:                return LowerSUB(Op, DAG);
20142  case ISD::SMAX:
20143  case ISD::SMIN:
20144  case ISD::UMAX:
20145  case ISD::UMIN:               return LowerMINMAX(Op, DAG);
20146  case ISD::FSINCOS:            return LowerFSINCOS(Op, Subtarget, DAG);
20147  case ISD::MLOAD:              return LowerMLOAD(Op, Subtarget, DAG);
20148  case ISD::MSTORE:             return LowerMSTORE(Op, Subtarget, DAG);
20149  case ISD::MGATHER:            return LowerMGATHER(Op, Subtarget, DAG);
20150  case ISD::MSCATTER:           return LowerMSCATTER(Op, Subtarget, DAG);
20151  case ISD::GC_TRANSITION_START:
20152                                return LowerGC_TRANSITION_START(Op, DAG);
20153  case ISD::GC_TRANSITION_END:  return LowerGC_TRANSITION_END(Op, DAG);
20154  }
20155}
20156
20157/// ReplaceNodeResults - Replace a node with an illegal result type
20158/// with a new node built out of custom code.
20159void X86TargetLowering::ReplaceNodeResults(SDNode *N,
20160                                           SmallVectorImpl<SDValue>&Results,
20161                                           SelectionDAG &DAG) const {
20162  SDLoc dl(N);
20163  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
20164  switch (N->getOpcode()) {
20165  default:
20166    llvm_unreachable("Do not know how to custom type legalize this operation!");
20167  case X86ISD::AVG: {
20168    // Legalize types for X86ISD::AVG by expanding vectors.
20169    assert(Subtarget->hasSSE2() && "Requires at least SSE2!");
20170
20171    auto InVT = N->getValueType(0);
20172    auto InVTSize = InVT.getSizeInBits();
20173    const unsigned RegSize =
20174        (InVTSize > 128) ? ((InVTSize > 256) ? 512 : 256) : 128;
20175    assert((!Subtarget->hasAVX512() || RegSize < 512) &&
20176           "512-bit vector requires AVX512");
20177    assert((!Subtarget->hasAVX2() || RegSize < 256) &&
20178           "256-bit vector requires AVX2");
20179
20180    auto ElemVT = InVT.getVectorElementType();
20181    auto RegVT = EVT::getVectorVT(*DAG.getContext(), ElemVT,
20182                                  RegSize / ElemVT.getSizeInBits());
20183    assert(RegSize % InVT.getSizeInBits() == 0);
20184    unsigned NumConcat = RegSize / InVT.getSizeInBits();
20185
20186    SmallVector<SDValue, 16> Ops(NumConcat, DAG.getUNDEF(InVT));
20187    Ops[0] = N->getOperand(0);
20188    SDValue InVec0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, RegVT, Ops);
20189    Ops[0] = N->getOperand(1);
20190    SDValue InVec1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, RegVT, Ops);
20191
20192    SDValue Res = DAG.getNode(X86ISD::AVG, dl, RegVT, InVec0, InVec1);
20193    Results.push_back(DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InVT, Res,
20194                                  DAG.getIntPtrConstant(0, dl)));
20195    return;
20196  }
20197  // We might have generated v2f32 FMIN/FMAX operations. Widen them to v4f32.
20198  case X86ISD::FMINC:
20199  case X86ISD::FMIN:
20200  case X86ISD::FMAXC:
20201  case X86ISD::FMAX: {
20202    EVT VT = N->getValueType(0);
20203    assert(VT == MVT::v2f32 && "Unexpected type (!= v2f32) on FMIN/FMAX.");
20204    SDValue UNDEF = DAG.getUNDEF(VT);
20205    SDValue LHS = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32,
20206                              N->getOperand(0), UNDEF);
20207    SDValue RHS = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32,
20208                              N->getOperand(1), UNDEF);
20209    Results.push_back(DAG.getNode(N->getOpcode(), dl, MVT::v4f32, LHS, RHS));
20210    return;
20211  }
20212  case ISD::SIGN_EXTEND_INREG:
20213  case ISD::ADDC:
20214  case ISD::ADDE:
20215  case ISD::SUBC:
20216  case ISD::SUBE:
20217    // We don't want to expand or promote these.
20218    return;
20219  case ISD::SDIV:
20220  case ISD::UDIV:
20221  case ISD::SREM:
20222  case ISD::UREM:
20223  case ISD::SDIVREM:
20224  case ISD::UDIVREM: {
20225    SDValue V = LowerWin64_i128OP(SDValue(N,0), DAG);
20226    Results.push_back(V);
20227    return;
20228  }
20229  case ISD::FP_TO_SINT:
20230  case ISD::FP_TO_UINT: {
20231    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
20232
20233    std::pair<SDValue,SDValue> Vals =
20234        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
20235    SDValue FIST = Vals.first, StackSlot = Vals.second;
20236    if (FIST.getNode()) {
20237      EVT VT = N->getValueType(0);
20238      // Return a load from the stack slot.
20239      if (StackSlot.getNode())
20240        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
20241                                      MachinePointerInfo(),
20242                                      false, false, false, 0));
20243      else
20244        Results.push_back(FIST);
20245    }
20246    return;
20247  }
20248  case ISD::UINT_TO_FP: {
20249    assert(Subtarget->hasSSE2() && "Requires at least SSE2!");
20250    if (N->getOperand(0).getValueType() != MVT::v2i32 ||
20251        N->getValueType(0) != MVT::v2f32)
20252      return;
20253    SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64,
20254                                 N->getOperand(0));
20255    SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), dl,
20256                                     MVT::f64);
20257    SDValue VBias = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2f64, Bias, Bias);
20258    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn,
20259                             DAG.getBitcast(MVT::v2i64, VBias));
20260    Or = DAG.getBitcast(MVT::v2f64, Or);
20261    // TODO: Are there any fast-math-flags to propagate here?
20262    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias);
20263    Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub));
20264    return;
20265  }
20266  case ISD::FP_ROUND: {
20267    if (!TLI.isTypeLegal(N->getOperand(0).getValueType()))
20268        return;
20269    SDValue V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0));
20270    Results.push_back(V);
20271    return;
20272  }
20273  case ISD::FP_EXTEND: {
20274    // Right now, only MVT::v2f32 has OperationAction for FP_EXTEND.
20275    // No other ValueType for FP_EXTEND should reach this point.
20276    assert(N->getValueType(0) == MVT::v2f32 &&
20277           "Do not know how to legalize this Node");
20278    return;
20279  }
20280  case ISD::INTRINSIC_W_CHAIN: {
20281    unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
20282    switch (IntNo) {
20283    default : llvm_unreachable("Do not know how to custom type "
20284                               "legalize this intrinsic operation!");
20285    case Intrinsic::x86_rdtsc:
20286      return getReadTimeStampCounter(N, dl, X86ISD::RDTSC_DAG, DAG, Subtarget,
20287                                     Results);
20288    case Intrinsic::x86_rdtscp:
20289      return getReadTimeStampCounter(N, dl, X86ISD::RDTSCP_DAG, DAG, Subtarget,
20290                                     Results);
20291    case Intrinsic::x86_rdpmc:
20292      return getReadPerformanceCounter(N, dl, DAG, Subtarget, Results);
20293    }
20294  }
20295  case ISD::INTRINSIC_WO_CHAIN: {
20296    if (SDValue V = LowerINTRINSIC_WO_CHAIN(SDValue(N, 0), Subtarget, DAG))
20297      Results.push_back(V);
20298    return;
20299  }
20300  case ISD::READCYCLECOUNTER: {
20301    return getReadTimeStampCounter(N, dl, X86ISD::RDTSC_DAG, DAG, Subtarget,
20302                                   Results);
20303  }
20304  case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
20305    EVT T = N->getValueType(0);
20306    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
20307    bool Regs64bit = T == MVT::i128;
20308    MVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
20309    SDValue cpInL, cpInH;
20310    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
20311                        DAG.getConstant(0, dl, HalfT));
20312    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
20313                        DAG.getConstant(1, dl, HalfT));
20314    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
20315                             Regs64bit ? X86::RAX : X86::EAX,
20316                             cpInL, SDValue());
20317    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
20318                             Regs64bit ? X86::RDX : X86::EDX,
20319                             cpInH, cpInL.getValue(1));
20320    SDValue swapInL, swapInH;
20321    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
20322                          DAG.getConstant(0, dl, HalfT));
20323    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
20324                          DAG.getConstant(1, dl, HalfT));
20325    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
20326                               Regs64bit ? X86::RBX : X86::EBX,
20327                               swapInL, cpInH.getValue(1));
20328    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
20329                               Regs64bit ? X86::RCX : X86::ECX,
20330                               swapInH, swapInL.getValue(1));
20331    SDValue Ops[] = { swapInH.getValue(0),
20332                      N->getOperand(1),
20333                      swapInH.getValue(1) };
20334    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
20335    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
20336    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
20337                                  X86ISD::LCMPXCHG8_DAG;
20338    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys, Ops, T, MMO);
20339    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
20340                                        Regs64bit ? X86::RAX : X86::EAX,
20341                                        HalfT, Result.getValue(1));
20342    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
20343                                        Regs64bit ? X86::RDX : X86::EDX,
20344                                        HalfT, cpOutL.getValue(2));
20345    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
20346
20347    SDValue EFLAGS = DAG.getCopyFromReg(cpOutH.getValue(1), dl, X86::EFLAGS,
20348                                        MVT::i32, cpOutH.getValue(2));
20349    SDValue Success =
20350        DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
20351                    DAG.getConstant(X86::COND_E, dl, MVT::i8), EFLAGS);
20352    Success = DAG.getZExtOrTrunc(Success, dl, N->getValueType(1));
20353
20354    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF));
20355    Results.push_back(Success);
20356    Results.push_back(EFLAGS.getValue(1));
20357    return;
20358  }
20359  case ISD::ATOMIC_SWAP:
20360  case ISD::ATOMIC_LOAD_ADD:
20361  case ISD::ATOMIC_LOAD_SUB:
20362  case ISD::ATOMIC_LOAD_AND:
20363  case ISD::ATOMIC_LOAD_OR:
20364  case ISD::ATOMIC_LOAD_XOR:
20365  case ISD::ATOMIC_LOAD_NAND:
20366  case ISD::ATOMIC_LOAD_MIN:
20367  case ISD::ATOMIC_LOAD_MAX:
20368  case ISD::ATOMIC_LOAD_UMIN:
20369  case ISD::ATOMIC_LOAD_UMAX:
20370  case ISD::ATOMIC_LOAD: {
20371    // Delegate to generic TypeLegalization. Situations we can really handle
20372    // should have already been dealt with by AtomicExpandPass.cpp.
20373    break;
20374  }
20375  case ISD::BITCAST: {
20376    assert(Subtarget->hasSSE2() && "Requires at least SSE2!");
20377    EVT DstVT = N->getValueType(0);
20378    EVT SrcVT = N->getOperand(0)->getValueType(0);
20379
20380    if (SrcVT != MVT::f64 ||
20381        (DstVT != MVT::v2i32 && DstVT != MVT::v4i16 && DstVT != MVT::v8i8))
20382      return;
20383
20384    unsigned NumElts = DstVT.getVectorNumElements();
20385    EVT SVT = DstVT.getVectorElementType();
20386    EVT WiderVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumElts * 2);
20387    SDValue Expanded = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
20388                                   MVT::v2f64, N->getOperand(0));
20389    SDValue ToVecInt = DAG.getBitcast(WiderVT, Expanded);
20390
20391    if (ExperimentalVectorWideningLegalization) {
20392      // If we are legalizing vectors by widening, we already have the desired
20393      // legal vector type, just return it.
20394      Results.push_back(ToVecInt);
20395      return;
20396    }
20397
20398    SmallVector<SDValue, 8> Elts;
20399    for (unsigned i = 0, e = NumElts; i != e; ++i)
20400      Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SVT,
20401                                   ToVecInt, DAG.getIntPtrConstant(i, dl)));
20402
20403    Results.push_back(DAG.getNode(ISD::BUILD_VECTOR, dl, DstVT, Elts));
20404  }
20405  }
20406}
20407
20408const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
20409  switch ((X86ISD::NodeType)Opcode) {
20410  case X86ISD::FIRST_NUMBER:       break;
20411  case X86ISD::BSF:                return "X86ISD::BSF";
20412  case X86ISD::BSR:                return "X86ISD::BSR";
20413  case X86ISD::SHLD:               return "X86ISD::SHLD";
20414  case X86ISD::SHRD:               return "X86ISD::SHRD";
20415  case X86ISD::FAND:               return "X86ISD::FAND";
20416  case X86ISD::FANDN:              return "X86ISD::FANDN";
20417  case X86ISD::FOR:                return "X86ISD::FOR";
20418  case X86ISD::FXOR:               return "X86ISD::FXOR";
20419  case X86ISD::FILD:               return "X86ISD::FILD";
20420  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
20421  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
20422  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
20423  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
20424  case X86ISD::FLD:                return "X86ISD::FLD";
20425  case X86ISD::FST:                return "X86ISD::FST";
20426  case X86ISD::CALL:               return "X86ISD::CALL";
20427  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
20428  case X86ISD::RDTSCP_DAG:         return "X86ISD::RDTSCP_DAG";
20429  case X86ISD::RDPMC_DAG:          return "X86ISD::RDPMC_DAG";
20430  case X86ISD::BT:                 return "X86ISD::BT";
20431  case X86ISD::CMP:                return "X86ISD::CMP";
20432  case X86ISD::COMI:               return "X86ISD::COMI";
20433  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
20434  case X86ISD::CMPM:               return "X86ISD::CMPM";
20435  case X86ISD::CMPMU:              return "X86ISD::CMPMU";
20436  case X86ISD::CMPM_RND:           return "X86ISD::CMPM_RND";
20437  case X86ISD::SETCC:              return "X86ISD::SETCC";
20438  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
20439  case X86ISD::FSETCC:             return "X86ISD::FSETCC";
20440  case X86ISD::FGETSIGNx86:        return "X86ISD::FGETSIGNx86";
20441  case X86ISD::CMOV:               return "X86ISD::CMOV";
20442  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
20443  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
20444  case X86ISD::IRET:               return "X86ISD::IRET";
20445  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
20446  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
20447  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
20448  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
20449  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
20450  case X86ISD::MOVDQ2Q:            return "X86ISD::MOVDQ2Q";
20451  case X86ISD::MMX_MOVD2W:         return "X86ISD::MMX_MOVD2W";
20452  case X86ISD::MMX_MOVW2D:         return "X86ISD::MMX_MOVW2D";
20453  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
20454  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
20455  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
20456  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
20457  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
20458  case X86ISD::MMX_PINSRW:         return "X86ISD::MMX_PINSRW";
20459  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
20460  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
20461  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
20462  case X86ISD::BLENDI:             return "X86ISD::BLENDI";
20463  case X86ISD::SHRUNKBLEND:        return "X86ISD::SHRUNKBLEND";
20464  case X86ISD::ADDUS:              return "X86ISD::ADDUS";
20465  case X86ISD::SUBUS:              return "X86ISD::SUBUS";
20466  case X86ISD::HADD:               return "X86ISD::HADD";
20467  case X86ISD::HSUB:               return "X86ISD::HSUB";
20468  case X86ISD::FHADD:              return "X86ISD::FHADD";
20469  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
20470  case X86ISD::ABS:                return "X86ISD::ABS";
20471  case X86ISD::CONFLICT:           return "X86ISD::CONFLICT";
20472  case X86ISD::FMAX:               return "X86ISD::FMAX";
20473  case X86ISD::FMAX_RND:           return "X86ISD::FMAX_RND";
20474  case X86ISD::FMIN:               return "X86ISD::FMIN";
20475  case X86ISD::FMIN_RND:           return "X86ISD::FMIN_RND";
20476  case X86ISD::FMAXC:              return "X86ISD::FMAXC";
20477  case X86ISD::FMINC:              return "X86ISD::FMINC";
20478  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
20479  case X86ISD::FRCP:               return "X86ISD::FRCP";
20480  case X86ISD::EXTRQI:             return "X86ISD::EXTRQI";
20481  case X86ISD::INSERTQI:           return "X86ISD::INSERTQI";
20482  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
20483  case X86ISD::TLSBASEADDR:        return "X86ISD::TLSBASEADDR";
20484  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
20485  case X86ISD::EH_SJLJ_SETJMP:     return "X86ISD::EH_SJLJ_SETJMP";
20486  case X86ISD::EH_SJLJ_LONGJMP:    return "X86ISD::EH_SJLJ_LONGJMP";
20487  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
20488  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
20489  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
20490  case X86ISD::FNSTSW16r:          return "X86ISD::FNSTSW16r";
20491  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
20492  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
20493  case X86ISD::LCMPXCHG16_DAG:     return "X86ISD::LCMPXCHG16_DAG";
20494  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
20495  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
20496  case X86ISD::VZEXT:              return "X86ISD::VZEXT";
20497  case X86ISD::VSEXT:              return "X86ISD::VSEXT";
20498  case X86ISD::VTRUNC:             return "X86ISD::VTRUNC";
20499  case X86ISD::VTRUNCS:            return "X86ISD::VTRUNCS";
20500  case X86ISD::VTRUNCUS:           return "X86ISD::VTRUNCUS";
20501  case X86ISD::VINSERT:            return "X86ISD::VINSERT";
20502  case X86ISD::VFPEXT:             return "X86ISD::VFPEXT";
20503  case X86ISD::VFPROUND:           return "X86ISD::VFPROUND";
20504  case X86ISD::CVTDQ2PD:           return "X86ISD::CVTDQ2PD";
20505  case X86ISD::CVTUDQ2PD:          return "X86ISD::CVTUDQ2PD";
20506  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
20507  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
20508  case X86ISD::VSHL:               return "X86ISD::VSHL";
20509  case X86ISD::VSRL:               return "X86ISD::VSRL";
20510  case X86ISD::VSRA:               return "X86ISD::VSRA";
20511  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
20512  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
20513  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
20514  case X86ISD::CMPP:               return "X86ISD::CMPP";
20515  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
20516  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
20517  case X86ISD::PCMPEQM:            return "X86ISD::PCMPEQM";
20518  case X86ISD::PCMPGTM:            return "X86ISD::PCMPGTM";
20519  case X86ISD::ADD:                return "X86ISD::ADD";
20520  case X86ISD::SUB:                return "X86ISD::SUB";
20521  case X86ISD::ADC:                return "X86ISD::ADC";
20522  case X86ISD::SBB:                return "X86ISD::SBB";
20523  case X86ISD::SMUL:               return "X86ISD::SMUL";
20524  case X86ISD::UMUL:               return "X86ISD::UMUL";
20525  case X86ISD::SMUL8:              return "X86ISD::SMUL8";
20526  case X86ISD::UMUL8:              return "X86ISD::UMUL8";
20527  case X86ISD::SDIVREM8_SEXT_HREG: return "X86ISD::SDIVREM8_SEXT_HREG";
20528  case X86ISD::UDIVREM8_ZEXT_HREG: return "X86ISD::UDIVREM8_ZEXT_HREG";
20529  case X86ISD::INC:                return "X86ISD::INC";
20530  case X86ISD::DEC:                return "X86ISD::DEC";
20531  case X86ISD::OR:                 return "X86ISD::OR";
20532  case X86ISD::XOR:                return "X86ISD::XOR";
20533  case X86ISD::AND:                return "X86ISD::AND";
20534  case X86ISD::BEXTR:              return "X86ISD::BEXTR";
20535  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
20536  case X86ISD::PTEST:              return "X86ISD::PTEST";
20537  case X86ISD::TESTP:              return "X86ISD::TESTP";
20538  case X86ISD::TESTM:              return "X86ISD::TESTM";
20539  case X86ISD::TESTNM:             return "X86ISD::TESTNM";
20540  case X86ISD::KORTEST:            return "X86ISD::KORTEST";
20541  case X86ISD::KTEST:              return "X86ISD::KTEST";
20542  case X86ISD::PACKSS:             return "X86ISD::PACKSS";
20543  case X86ISD::PACKUS:             return "X86ISD::PACKUS";
20544  case X86ISD::PALIGNR:            return "X86ISD::PALIGNR";
20545  case X86ISD::VALIGN:             return "X86ISD::VALIGN";
20546  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
20547  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
20548  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
20549  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
20550  case X86ISD::SHUF128:            return "X86ISD::SHUF128";
20551  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
20552  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
20553  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
20554  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
20555  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
20556  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
20557  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
20558  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
20559  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
20560  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
20561  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
20562  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
20563  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
20564  case X86ISD::VBROADCASTM:        return "X86ISD::VBROADCASTM";
20565  case X86ISD::SUBV_BROADCAST:     return "X86ISD::SUBV_BROADCAST";
20566  case X86ISD::VEXTRACT:           return "X86ISD::VEXTRACT";
20567  case X86ISD::VPERMILPV:          return "X86ISD::VPERMILPV";
20568  case X86ISD::VPERMILPI:          return "X86ISD::VPERMILPI";
20569  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
20570  case X86ISD::VPERMV:             return "X86ISD::VPERMV";
20571  case X86ISD::VPERMV3:            return "X86ISD::VPERMV3";
20572  case X86ISD::VPERMIV3:           return "X86ISD::VPERMIV3";
20573  case X86ISD::VPERMI:             return "X86ISD::VPERMI";
20574  case X86ISD::VPTERNLOG:          return "X86ISD::VPTERNLOG";
20575  case X86ISD::VFIXUPIMM:          return "X86ISD::VFIXUPIMM";
20576  case X86ISD::VRANGE:             return "X86ISD::VRANGE";
20577  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
20578  case X86ISD::PMULDQ:             return "X86ISD::PMULDQ";
20579  case X86ISD::PSADBW:             return "X86ISD::PSADBW";
20580  case X86ISD::DBPSADBW:           return "X86ISD::DBPSADBW";
20581  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
20582  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
20583  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
20584  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
20585  case X86ISD::MFENCE:             return "X86ISD::MFENCE";
20586  case X86ISD::SFENCE:             return "X86ISD::SFENCE";
20587  case X86ISD::LFENCE:             return "X86ISD::LFENCE";
20588  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
20589  case X86ISD::SAHF:               return "X86ISD::SAHF";
20590  case X86ISD::RDRAND:             return "X86ISD::RDRAND";
20591  case X86ISD::RDSEED:             return "X86ISD::RDSEED";
20592  case X86ISD::VPMADDUBSW:         return "X86ISD::VPMADDUBSW";
20593  case X86ISD::VPMADDWD:           return "X86ISD::VPMADDWD";
20594  case X86ISD::VPROT:              return "X86ISD::VPROT";
20595  case X86ISD::VPROTI:             return "X86ISD::VPROTI";
20596  case X86ISD::VPSHA:              return "X86ISD::VPSHA";
20597  case X86ISD::VPSHL:              return "X86ISD::VPSHL";
20598  case X86ISD::VPCOM:              return "X86ISD::VPCOM";
20599  case X86ISD::VPCOMU:             return "X86ISD::VPCOMU";
20600  case X86ISD::FMADD:              return "X86ISD::FMADD";
20601  case X86ISD::FMSUB:              return "X86ISD::FMSUB";
20602  case X86ISD::FNMADD:             return "X86ISD::FNMADD";
20603  case X86ISD::FNMSUB:             return "X86ISD::FNMSUB";
20604  case X86ISD::FMADDSUB:           return "X86ISD::FMADDSUB";
20605  case X86ISD::FMSUBADD:           return "X86ISD::FMSUBADD";
20606  case X86ISD::FMADD_RND:          return "X86ISD::FMADD_RND";
20607  case X86ISD::FNMADD_RND:         return "X86ISD::FNMADD_RND";
20608  case X86ISD::FMSUB_RND:          return "X86ISD::FMSUB_RND";
20609  case X86ISD::FNMSUB_RND:         return "X86ISD::FNMSUB_RND";
20610  case X86ISD::FMADDSUB_RND:       return "X86ISD::FMADDSUB_RND";
20611  case X86ISD::FMSUBADD_RND:       return "X86ISD::FMSUBADD_RND";
20612  case X86ISD::VRNDSCALE:          return "X86ISD::VRNDSCALE";
20613  case X86ISD::VREDUCE:            return "X86ISD::VREDUCE";
20614  case X86ISD::VGETMANT:           return "X86ISD::VGETMANT";
20615  case X86ISD::PCMPESTRI:          return "X86ISD::PCMPESTRI";
20616  case X86ISD::PCMPISTRI:          return "X86ISD::PCMPISTRI";
20617  case X86ISD::XTEST:              return "X86ISD::XTEST";
20618  case X86ISD::COMPRESS:           return "X86ISD::COMPRESS";
20619  case X86ISD::EXPAND:             return "X86ISD::EXPAND";
20620  case X86ISD::SELECT:             return "X86ISD::SELECT";
20621  case X86ISD::ADDSUB:             return "X86ISD::ADDSUB";
20622  case X86ISD::RCP28:              return "X86ISD::RCP28";
20623  case X86ISD::EXP2:               return "X86ISD::EXP2";
20624  case X86ISD::RSQRT28:            return "X86ISD::RSQRT28";
20625  case X86ISD::FADD_RND:           return "X86ISD::FADD_RND";
20626  case X86ISD::FSUB_RND:           return "X86ISD::FSUB_RND";
20627  case X86ISD::FMUL_RND:           return "X86ISD::FMUL_RND";
20628  case X86ISD::FDIV_RND:           return "X86ISD::FDIV_RND";
20629  case X86ISD::FSQRT_RND:          return "X86ISD::FSQRT_RND";
20630  case X86ISD::FGETEXP_RND:        return "X86ISD::FGETEXP_RND";
20631  case X86ISD::SCALEF:             return "X86ISD::SCALEF";
20632  case X86ISD::ADDS:               return "X86ISD::ADDS";
20633  case X86ISD::SUBS:               return "X86ISD::SUBS";
20634  case X86ISD::AVG:                return "X86ISD::AVG";
20635  case X86ISD::MULHRS:             return "X86ISD::MULHRS";
20636  case X86ISD::SINT_TO_FP_RND:     return "X86ISD::SINT_TO_FP_RND";
20637  case X86ISD::UINT_TO_FP_RND:     return "X86ISD::UINT_TO_FP_RND";
20638  case X86ISD::FP_TO_SINT_RND:     return "X86ISD::FP_TO_SINT_RND";
20639  case X86ISD::FP_TO_UINT_RND:     return "X86ISD::FP_TO_UINT_RND";
20640  case X86ISD::VFPCLASS:           return "X86ISD::VFPCLASS";
20641  case X86ISD::VFPCLASSS:          return "X86ISD::VFPCLASSS";
20642  }
20643  return nullptr;
20644}
20645
20646// isLegalAddressingMode - Return true if the addressing mode represented
20647// by AM is legal for this target, for a load/store of the specified type.
20648bool X86TargetLowering::isLegalAddressingMode(const DataLayout &DL,
20649                                              const AddrMode &AM, Type *Ty,
20650                                              unsigned AS) const {
20651  // X86 supports extremely general addressing modes.
20652  CodeModel::Model M = getTargetMachine().getCodeModel();
20653  Reloc::Model R = getTargetMachine().getRelocationModel();
20654
20655  // X86 allows a sign-extended 32-bit immediate field as a displacement.
20656  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != nullptr))
20657    return false;
20658
20659  if (AM.BaseGV) {
20660    unsigned GVFlags =
20661      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
20662
20663    // If a reference to this global requires an extra load, we can't fold it.
20664    if (isGlobalStubReference(GVFlags))
20665      return false;
20666
20667    // If BaseGV requires a register for the PIC base, we cannot also have a
20668    // BaseReg specified.
20669    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
20670      return false;
20671
20672    // If lower 4G is not available, then we must use rip-relative addressing.
20673    if ((M != CodeModel::Small || R != Reloc::Static) &&
20674        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
20675      return false;
20676  }
20677
20678  switch (AM.Scale) {
20679  case 0:
20680  case 1:
20681  case 2:
20682  case 4:
20683  case 8:
20684    // These scales always work.
20685    break;
20686  case 3:
20687  case 5:
20688  case 9:
20689    // These scales are formed with basereg+scalereg.  Only accept if there is
20690    // no basereg yet.
20691    if (AM.HasBaseReg)
20692      return false;
20693    break;
20694  default:  // Other stuff never works.
20695    return false;
20696  }
20697
20698  return true;
20699}
20700
20701bool X86TargetLowering::isVectorShiftByScalarCheap(Type *Ty) const {
20702  unsigned Bits = Ty->getScalarSizeInBits();
20703
20704  // 8-bit shifts are always expensive, but versions with a scalar amount aren't
20705  // particularly cheaper than those without.
20706  if (Bits == 8)
20707    return false;
20708
20709  // On AVX2 there are new vpsllv[dq] instructions (and other shifts), that make
20710  // variable shifts just as cheap as scalar ones.
20711  if (Subtarget->hasInt256() && (Bits == 32 || Bits == 64))
20712    return false;
20713
20714  // Otherwise, it's significantly cheaper to shift by a scalar amount than by a
20715  // fully general vector.
20716  return true;
20717}
20718
20719bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
20720  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
20721    return false;
20722  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
20723  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
20724  return NumBits1 > NumBits2;
20725}
20726
20727bool X86TargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
20728  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
20729    return false;
20730
20731  if (!isTypeLegal(EVT::getEVT(Ty1)))
20732    return false;
20733
20734  assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
20735
20736  // Assuming the caller doesn't have a zeroext or signext return parameter,
20737  // truncation all the way down to i1 is valid.
20738  return true;
20739}
20740
20741bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const {
20742  return isInt<32>(Imm);
20743}
20744
20745bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const {
20746  // Can also use sub to handle negated immediates.
20747  return isInt<32>(Imm);
20748}
20749
20750bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
20751  if (!VT1.isInteger() || !VT2.isInteger())
20752    return false;
20753  unsigned NumBits1 = VT1.getSizeInBits();
20754  unsigned NumBits2 = VT2.getSizeInBits();
20755  return NumBits1 > NumBits2;
20756}
20757
20758bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
20759  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
20760  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
20761}
20762
20763bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
20764  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
20765  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
20766}
20767
20768bool X86TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
20769  EVT VT1 = Val.getValueType();
20770  if (isZExtFree(VT1, VT2))
20771    return true;
20772
20773  if (Val.getOpcode() != ISD::LOAD)
20774    return false;
20775
20776  if (!VT1.isSimple() || !VT1.isInteger() ||
20777      !VT2.isSimple() || !VT2.isInteger())
20778    return false;
20779
20780  switch (VT1.getSimpleVT().SimpleTy) {
20781  default: break;
20782  case MVT::i8:
20783  case MVT::i16:
20784  case MVT::i32:
20785    // X86 has 8, 16, and 32-bit zero-extending loads.
20786    return true;
20787  }
20788
20789  return false;
20790}
20791
20792bool X86TargetLowering::isVectorLoadExtDesirable(SDValue) const { return true; }
20793
20794bool
20795X86TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
20796  if (!Subtarget->hasAnyFMA())
20797    return false;
20798
20799  VT = VT.getScalarType();
20800
20801  if (!VT.isSimple())
20802    return false;
20803
20804  switch (VT.getSimpleVT().SimpleTy) {
20805  case MVT::f32:
20806  case MVT::f64:
20807    return true;
20808  default:
20809    break;
20810  }
20811
20812  return false;
20813}
20814
20815bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
20816  // i16 instructions are longer (0x66 prefix) and potentially slower.
20817  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
20818}
20819
20820/// isShuffleMaskLegal - Targets can use this to indicate that they only
20821/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
20822/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
20823/// are assumed to be legal.
20824bool
20825X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
20826                                      EVT VT) const {
20827  if (!VT.isSimple())
20828    return false;
20829
20830  // Not for i1 vectors
20831  if (VT.getSimpleVT().getScalarType() == MVT::i1)
20832    return false;
20833
20834  // Very little shuffling can be done for 64-bit vectors right now.
20835  if (VT.getSimpleVT().getSizeInBits() == 64)
20836    return false;
20837
20838  // We only care that the types being shuffled are legal. The lowering can
20839  // handle any possible shuffle mask that results.
20840  return isTypeLegal(VT.getSimpleVT());
20841}
20842
20843bool
20844X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
20845                                          EVT VT) const {
20846  // Just delegate to the generic legality, clear masks aren't special.
20847  return isShuffleMaskLegal(Mask, VT);
20848}
20849
20850//===----------------------------------------------------------------------===//
20851//                           X86 Scheduler Hooks
20852//===----------------------------------------------------------------------===//
20853
20854/// Utility function to emit xbegin specifying the start of an RTM region.
20855static MachineBasicBlock *EmitXBegin(MachineInstr *MI, MachineBasicBlock *MBB,
20856                                     const TargetInstrInfo *TII) {
20857  DebugLoc DL = MI->getDebugLoc();
20858
20859  const BasicBlock *BB = MBB->getBasicBlock();
20860  MachineFunction::iterator I = ++MBB->getIterator();
20861
20862  // For the v = xbegin(), we generate
20863  //
20864  // thisMBB:
20865  //  xbegin sinkMBB
20866  //
20867  // mainMBB:
20868  //  eax = -1
20869  //
20870  // sinkMBB:
20871  //  v = eax
20872
20873  MachineBasicBlock *thisMBB = MBB;
20874  MachineFunction *MF = MBB->getParent();
20875  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
20876  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
20877  MF->insert(I, mainMBB);
20878  MF->insert(I, sinkMBB);
20879
20880  // Transfer the remainder of BB and its successor edges to sinkMBB.
20881  sinkMBB->splice(sinkMBB->begin(), MBB,
20882                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
20883  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
20884
20885  // thisMBB:
20886  //  xbegin sinkMBB
20887  //  # fallthrough to mainMBB
20888  //  # abortion to sinkMBB
20889  BuildMI(thisMBB, DL, TII->get(X86::XBEGIN_4)).addMBB(sinkMBB);
20890  thisMBB->addSuccessor(mainMBB);
20891  thisMBB->addSuccessor(sinkMBB);
20892
20893  // mainMBB:
20894  //  EAX = -1
20895  BuildMI(mainMBB, DL, TII->get(X86::MOV32ri), X86::EAX).addImm(-1);
20896  mainMBB->addSuccessor(sinkMBB);
20897
20898  // sinkMBB:
20899  // EAX is live into the sinkMBB
20900  sinkMBB->addLiveIn(X86::EAX);
20901  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
20902          TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
20903    .addReg(X86::EAX);
20904
20905  MI->eraseFromParent();
20906  return sinkMBB;
20907}
20908
20909// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
20910// or XMM0_V32I8 in AVX all of this code can be replaced with that
20911// in the .td file.
20912static MachineBasicBlock *EmitPCMPSTRM(MachineInstr *MI, MachineBasicBlock *BB,
20913                                       const TargetInstrInfo *TII) {
20914  unsigned Opc;
20915  switch (MI->getOpcode()) {
20916  default: llvm_unreachable("illegal opcode!");
20917  case X86::PCMPISTRM128REG:  Opc = X86::PCMPISTRM128rr;  break;
20918  case X86::VPCMPISTRM128REG: Opc = X86::VPCMPISTRM128rr; break;
20919  case X86::PCMPISTRM128MEM:  Opc = X86::PCMPISTRM128rm;  break;
20920  case X86::VPCMPISTRM128MEM: Opc = X86::VPCMPISTRM128rm; break;
20921  case X86::PCMPESTRM128REG:  Opc = X86::PCMPESTRM128rr;  break;
20922  case X86::VPCMPESTRM128REG: Opc = X86::VPCMPESTRM128rr; break;
20923  case X86::PCMPESTRM128MEM:  Opc = X86::PCMPESTRM128rm;  break;
20924  case X86::VPCMPESTRM128MEM: Opc = X86::VPCMPESTRM128rm; break;
20925  }
20926
20927  DebugLoc dl = MI->getDebugLoc();
20928  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
20929
20930  unsigned NumArgs = MI->getNumOperands();
20931  for (unsigned i = 1; i < NumArgs; ++i) {
20932    MachineOperand &Op = MI->getOperand(i);
20933    if (!(Op.isReg() && Op.isImplicit()))
20934      MIB.addOperand(Op);
20935  }
20936  if (MI->hasOneMemOperand())
20937    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
20938
20939  BuildMI(*BB, MI, dl,
20940    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
20941    .addReg(X86::XMM0);
20942
20943  MI->eraseFromParent();
20944  return BB;
20945}
20946
20947// FIXME: Custom handling because TableGen doesn't support multiple implicit
20948// defs in an instruction pattern
20949static MachineBasicBlock *EmitPCMPSTRI(MachineInstr *MI, MachineBasicBlock *BB,
20950                                       const TargetInstrInfo *TII) {
20951  unsigned Opc;
20952  switch (MI->getOpcode()) {
20953  default: llvm_unreachable("illegal opcode!");
20954  case X86::PCMPISTRIREG:  Opc = X86::PCMPISTRIrr;  break;
20955  case X86::VPCMPISTRIREG: Opc = X86::VPCMPISTRIrr; break;
20956  case X86::PCMPISTRIMEM:  Opc = X86::PCMPISTRIrm;  break;
20957  case X86::VPCMPISTRIMEM: Opc = X86::VPCMPISTRIrm; break;
20958  case X86::PCMPESTRIREG:  Opc = X86::PCMPESTRIrr;  break;
20959  case X86::VPCMPESTRIREG: Opc = X86::VPCMPESTRIrr; break;
20960  case X86::PCMPESTRIMEM:  Opc = X86::PCMPESTRIrm;  break;
20961  case X86::VPCMPESTRIMEM: Opc = X86::VPCMPESTRIrm; break;
20962  }
20963
20964  DebugLoc dl = MI->getDebugLoc();
20965  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
20966
20967  unsigned NumArgs = MI->getNumOperands(); // remove the results
20968  for (unsigned i = 1; i < NumArgs; ++i) {
20969    MachineOperand &Op = MI->getOperand(i);
20970    if (!(Op.isReg() && Op.isImplicit()))
20971      MIB.addOperand(Op);
20972  }
20973  if (MI->hasOneMemOperand())
20974    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
20975
20976  BuildMI(*BB, MI, dl,
20977    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
20978    .addReg(X86::ECX);
20979
20980  MI->eraseFromParent();
20981  return BB;
20982}
20983
20984static MachineBasicBlock *EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB,
20985                                      const X86Subtarget *Subtarget) {
20986  DebugLoc dl = MI->getDebugLoc();
20987  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
20988  // Address into RAX/EAX, other two args into ECX, EDX.
20989  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
20990  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
20991  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
20992  for (int i = 0; i < X86::AddrNumOperands; ++i)
20993    MIB.addOperand(MI->getOperand(i));
20994
20995  unsigned ValOps = X86::AddrNumOperands;
20996  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
20997    .addReg(MI->getOperand(ValOps).getReg());
20998  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
20999    .addReg(MI->getOperand(ValOps+1).getReg());
21000
21001  // The instruction doesn't actually take any operands though.
21002  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
21003
21004  MI->eraseFromParent(); // The pseudo is gone now.
21005  return BB;
21006}
21007
21008MachineBasicBlock *
21009X86TargetLowering::EmitVAARG64WithCustomInserter(MachineInstr *MI,
21010                                                 MachineBasicBlock *MBB) const {
21011  // Emit va_arg instruction on X86-64.
21012
21013  // Operands to this pseudo-instruction:
21014  // 0  ) Output        : destination address (reg)
21015  // 1-5) Input         : va_list address (addr, i64mem)
21016  // 6  ) ArgSize       : Size (in bytes) of vararg type
21017  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
21018  // 8  ) Align         : Alignment of type
21019  // 9  ) EFLAGS (implicit-def)
21020
21021  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
21022  static_assert(X86::AddrNumOperands == 5,
21023                "VAARG_64 assumes 5 address operands");
21024
21025  unsigned DestReg = MI->getOperand(0).getReg();
21026  MachineOperand &Base = MI->getOperand(1);
21027  MachineOperand &Scale = MI->getOperand(2);
21028  MachineOperand &Index = MI->getOperand(3);
21029  MachineOperand &Disp = MI->getOperand(4);
21030  MachineOperand &Segment = MI->getOperand(5);
21031  unsigned ArgSize = MI->getOperand(6).getImm();
21032  unsigned ArgMode = MI->getOperand(7).getImm();
21033  unsigned Align = MI->getOperand(8).getImm();
21034
21035  // Memory Reference
21036  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
21037  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
21038  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
21039
21040  // Machine Information
21041  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
21042  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
21043  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
21044  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
21045  DebugLoc DL = MI->getDebugLoc();
21046
21047  // struct va_list {
21048  //   i32   gp_offset
21049  //   i32   fp_offset
21050  //   i64   overflow_area (address)
21051  //   i64   reg_save_area (address)
21052  // }
21053  // sizeof(va_list) = 24
21054  // alignment(va_list) = 8
21055
21056  unsigned TotalNumIntRegs = 6;
21057  unsigned TotalNumXMMRegs = 8;
21058  bool UseGPOffset = (ArgMode == 1);
21059  bool UseFPOffset = (ArgMode == 2);
21060  unsigned MaxOffset = TotalNumIntRegs * 8 +
21061                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
21062
21063  /* Align ArgSize to a multiple of 8 */
21064  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
21065  bool NeedsAlign = (Align > 8);
21066
21067  MachineBasicBlock *thisMBB = MBB;
21068  MachineBasicBlock *overflowMBB;
21069  MachineBasicBlock *offsetMBB;
21070  MachineBasicBlock *endMBB;
21071
21072  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
21073  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
21074  unsigned OffsetReg = 0;
21075
21076  if (!UseGPOffset && !UseFPOffset) {
21077    // If we only pull from the overflow region, we don't create a branch.
21078    // We don't need to alter control flow.
21079    OffsetDestReg = 0; // unused
21080    OverflowDestReg = DestReg;
21081
21082    offsetMBB = nullptr;
21083    overflowMBB = thisMBB;
21084    endMBB = thisMBB;
21085  } else {
21086    // First emit code to check if gp_offset (or fp_offset) is below the bound.
21087    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
21088    // If not, pull from overflow_area. (branch to overflowMBB)
21089    //
21090    //       thisMBB
21091    //         |     .
21092    //         |        .
21093    //     offsetMBB   overflowMBB
21094    //         |        .
21095    //         |     .
21096    //        endMBB
21097
21098    // Registers for the PHI in endMBB
21099    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
21100    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
21101
21102    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
21103    MachineFunction *MF = MBB->getParent();
21104    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
21105    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
21106    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
21107
21108    MachineFunction::iterator MBBIter = ++MBB->getIterator();
21109
21110    // Insert the new basic blocks
21111    MF->insert(MBBIter, offsetMBB);
21112    MF->insert(MBBIter, overflowMBB);
21113    MF->insert(MBBIter, endMBB);
21114
21115    // Transfer the remainder of MBB and its successor edges to endMBB.
21116    endMBB->splice(endMBB->begin(), thisMBB,
21117                   std::next(MachineBasicBlock::iterator(MI)), thisMBB->end());
21118    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
21119
21120    // Make offsetMBB and overflowMBB successors of thisMBB
21121    thisMBB->addSuccessor(offsetMBB);
21122    thisMBB->addSuccessor(overflowMBB);
21123
21124    // endMBB is a successor of both offsetMBB and overflowMBB
21125    offsetMBB->addSuccessor(endMBB);
21126    overflowMBB->addSuccessor(endMBB);
21127
21128    // Load the offset value into a register
21129    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
21130    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
21131      .addOperand(Base)
21132      .addOperand(Scale)
21133      .addOperand(Index)
21134      .addDisp(Disp, UseFPOffset ? 4 : 0)
21135      .addOperand(Segment)
21136      .setMemRefs(MMOBegin, MMOEnd);
21137
21138    // Check if there is enough room left to pull this argument.
21139    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
21140      .addReg(OffsetReg)
21141      .addImm(MaxOffset + 8 - ArgSizeA8);
21142
21143    // Branch to "overflowMBB" if offset >= max
21144    // Fall through to "offsetMBB" otherwise
21145    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
21146      .addMBB(overflowMBB);
21147  }
21148
21149  // In offsetMBB, emit code to use the reg_save_area.
21150  if (offsetMBB) {
21151    assert(OffsetReg != 0);
21152
21153    // Read the reg_save_area address.
21154    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
21155    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
21156      .addOperand(Base)
21157      .addOperand(Scale)
21158      .addOperand(Index)
21159      .addDisp(Disp, 16)
21160      .addOperand(Segment)
21161      .setMemRefs(MMOBegin, MMOEnd);
21162
21163    // Zero-extend the offset
21164    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
21165      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
21166        .addImm(0)
21167        .addReg(OffsetReg)
21168        .addImm(X86::sub_32bit);
21169
21170    // Add the offset to the reg_save_area to get the final address.
21171    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
21172      .addReg(OffsetReg64)
21173      .addReg(RegSaveReg);
21174
21175    // Compute the offset for the next argument
21176    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
21177    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
21178      .addReg(OffsetReg)
21179      .addImm(UseFPOffset ? 16 : 8);
21180
21181    // Store it back into the va_list.
21182    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
21183      .addOperand(Base)
21184      .addOperand(Scale)
21185      .addOperand(Index)
21186      .addDisp(Disp, UseFPOffset ? 4 : 0)
21187      .addOperand(Segment)
21188      .addReg(NextOffsetReg)
21189      .setMemRefs(MMOBegin, MMOEnd);
21190
21191    // Jump to endMBB
21192    BuildMI(offsetMBB, DL, TII->get(X86::JMP_1))
21193      .addMBB(endMBB);
21194  }
21195
21196  //
21197  // Emit code to use overflow area
21198  //
21199
21200  // Load the overflow_area address into a register.
21201  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
21202  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
21203    .addOperand(Base)
21204    .addOperand(Scale)
21205    .addOperand(Index)
21206    .addDisp(Disp, 8)
21207    .addOperand(Segment)
21208    .setMemRefs(MMOBegin, MMOEnd);
21209
21210  // If we need to align it, do so. Otherwise, just copy the address
21211  // to OverflowDestReg.
21212  if (NeedsAlign) {
21213    // Align the overflow address
21214    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
21215    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
21216
21217    // aligned_addr = (addr + (align-1)) & ~(align-1)
21218    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
21219      .addReg(OverflowAddrReg)
21220      .addImm(Align-1);
21221
21222    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
21223      .addReg(TmpReg)
21224      .addImm(~(uint64_t)(Align-1));
21225  } else {
21226    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
21227      .addReg(OverflowAddrReg);
21228  }
21229
21230  // Compute the next overflow address after this argument.
21231  // (the overflow address should be kept 8-byte aligned)
21232  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
21233  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
21234    .addReg(OverflowDestReg)
21235    .addImm(ArgSizeA8);
21236
21237  // Store the new overflow address.
21238  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
21239    .addOperand(Base)
21240    .addOperand(Scale)
21241    .addOperand(Index)
21242    .addDisp(Disp, 8)
21243    .addOperand(Segment)
21244    .addReg(NextAddrReg)
21245    .setMemRefs(MMOBegin, MMOEnd);
21246
21247  // If we branched, emit the PHI to the front of endMBB.
21248  if (offsetMBB) {
21249    BuildMI(*endMBB, endMBB->begin(), DL,
21250            TII->get(X86::PHI), DestReg)
21251      .addReg(OffsetDestReg).addMBB(offsetMBB)
21252      .addReg(OverflowDestReg).addMBB(overflowMBB);
21253  }
21254
21255  // Erase the pseudo instruction
21256  MI->eraseFromParent();
21257
21258  return endMBB;
21259}
21260
21261MachineBasicBlock *
21262X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
21263                                                 MachineInstr *MI,
21264                                                 MachineBasicBlock *MBB) const {
21265  // Emit code to save XMM registers to the stack. The ABI says that the
21266  // number of registers to save is given in %al, so it's theoretically
21267  // possible to do an indirect jump trick to avoid saving all of them,
21268  // however this code takes a simpler approach and just executes all
21269  // of the stores if %al is non-zero. It's less code, and it's probably
21270  // easier on the hardware branch predictor, and stores aren't all that
21271  // expensive anyway.
21272
21273  // Create the new basic blocks. One block contains all the XMM stores,
21274  // and one block is the final destination regardless of whether any
21275  // stores were performed.
21276  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
21277  MachineFunction *F = MBB->getParent();
21278  MachineFunction::iterator MBBIter = ++MBB->getIterator();
21279  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
21280  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
21281  F->insert(MBBIter, XMMSaveMBB);
21282  F->insert(MBBIter, EndMBB);
21283
21284  // Transfer the remainder of MBB and its successor edges to EndMBB.
21285  EndMBB->splice(EndMBB->begin(), MBB,
21286                 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
21287  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
21288
21289  // The original block will now fall through to the XMM save block.
21290  MBB->addSuccessor(XMMSaveMBB);
21291  // The XMMSaveMBB will fall through to the end block.
21292  XMMSaveMBB->addSuccessor(EndMBB);
21293
21294  // Now add the instructions.
21295  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
21296  DebugLoc DL = MI->getDebugLoc();
21297
21298  unsigned CountReg = MI->getOperand(0).getReg();
21299  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
21300  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
21301
21302  if (!Subtarget->isCallingConvWin64(F->getFunction()->getCallingConv())) {
21303    // If %al is 0, branch around the XMM save block.
21304    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
21305    BuildMI(MBB, DL, TII->get(X86::JE_1)).addMBB(EndMBB);
21306    MBB->addSuccessor(EndMBB);
21307  }
21308
21309  // Make sure the last operand is EFLAGS, which gets clobbered by the branch
21310  // that was just emitted, but clearly shouldn't be "saved".
21311  assert((MI->getNumOperands() <= 3 ||
21312          !MI->getOperand(MI->getNumOperands() - 1).isReg() ||
21313          MI->getOperand(MI->getNumOperands() - 1).getReg() == X86::EFLAGS)
21314         && "Expected last argument to be EFLAGS");
21315  unsigned MOVOpc = Subtarget->hasFp256() ? X86::VMOVAPSmr : X86::MOVAPSmr;
21316  // In the XMM save block, save all the XMM argument registers.
21317  for (int i = 3, e = MI->getNumOperands() - 1; i != e; ++i) {
21318    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
21319    MachineMemOperand *MMO = F->getMachineMemOperand(
21320        MachinePointerInfo::getFixedStack(*F, RegSaveFrameIndex, Offset),
21321        MachineMemOperand::MOStore,
21322        /*Size=*/16, /*Align=*/16);
21323    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
21324      .addFrameIndex(RegSaveFrameIndex)
21325      .addImm(/*Scale=*/1)
21326      .addReg(/*IndexReg=*/0)
21327      .addImm(/*Disp=*/Offset)
21328      .addReg(/*Segment=*/0)
21329      .addReg(MI->getOperand(i).getReg())
21330      .addMemOperand(MMO);
21331  }
21332
21333  MI->eraseFromParent();   // The pseudo instruction is gone now.
21334
21335  return EndMBB;
21336}
21337
21338// The EFLAGS operand of SelectItr might be missing a kill marker
21339// because there were multiple uses of EFLAGS, and ISel didn't know
21340// which to mark. Figure out whether SelectItr should have had a
21341// kill marker, and set it if it should. Returns the correct kill
21342// marker value.
21343static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
21344                                     MachineBasicBlock* BB,
21345                                     const TargetRegisterInfo* TRI) {
21346  // Scan forward through BB for a use/def of EFLAGS.
21347  MachineBasicBlock::iterator miI(std::next(SelectItr));
21348  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
21349    const MachineInstr& mi = *miI;
21350    if (mi.readsRegister(X86::EFLAGS))
21351      return false;
21352    if (mi.definesRegister(X86::EFLAGS))
21353      break; // Should have kill-flag - update below.
21354  }
21355
21356  // If we hit the end of the block, check whether EFLAGS is live into a
21357  // successor.
21358  if (miI == BB->end()) {
21359    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
21360                                          sEnd = BB->succ_end();
21361         sItr != sEnd; ++sItr) {
21362      MachineBasicBlock* succ = *sItr;
21363      if (succ->isLiveIn(X86::EFLAGS))
21364        return false;
21365    }
21366  }
21367
21368  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
21369  // out. SelectMI should have a kill flag on EFLAGS.
21370  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
21371  return true;
21372}
21373
21374// Return true if it is OK for this CMOV pseudo-opcode to be cascaded
21375// together with other CMOV pseudo-opcodes into a single basic-block with
21376// conditional jump around it.
21377static bool isCMOVPseudo(MachineInstr *MI) {
21378  switch (MI->getOpcode()) {
21379  case X86::CMOV_FR32:
21380  case X86::CMOV_FR64:
21381  case X86::CMOV_GR8:
21382  case X86::CMOV_GR16:
21383  case X86::CMOV_GR32:
21384  case X86::CMOV_RFP32:
21385  case X86::CMOV_RFP64:
21386  case X86::CMOV_RFP80:
21387  case X86::CMOV_V2F64:
21388  case X86::CMOV_V2I64:
21389  case X86::CMOV_V4F32:
21390  case X86::CMOV_V4F64:
21391  case X86::CMOV_V4I64:
21392  case X86::CMOV_V16F32:
21393  case X86::CMOV_V8F32:
21394  case X86::CMOV_V8F64:
21395  case X86::CMOV_V8I64:
21396  case X86::CMOV_V8I1:
21397  case X86::CMOV_V16I1:
21398  case X86::CMOV_V32I1:
21399  case X86::CMOV_V64I1:
21400    return true;
21401
21402  default:
21403    return false;
21404  }
21405}
21406
21407MachineBasicBlock *
21408X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
21409                                     MachineBasicBlock *BB) const {
21410  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
21411  DebugLoc DL = MI->getDebugLoc();
21412
21413  // To "insert" a SELECT_CC instruction, we actually have to insert the
21414  // diamond control-flow pattern.  The incoming instruction knows the
21415  // destination vreg to set, the condition code register to branch on, the
21416  // true/false values to select between, and a branch opcode to use.
21417  const BasicBlock *LLVM_BB = BB->getBasicBlock();
21418  MachineFunction::iterator It = ++BB->getIterator();
21419
21420  //  thisMBB:
21421  //  ...
21422  //   TrueVal = ...
21423  //   cmpTY ccX, r1, r2
21424  //   bCC copy1MBB
21425  //   fallthrough --> copy0MBB
21426  MachineBasicBlock *thisMBB = BB;
21427  MachineFunction *F = BB->getParent();
21428
21429  // This code lowers all pseudo-CMOV instructions. Generally it lowers these
21430  // as described above, by inserting a BB, and then making a PHI at the join
21431  // point to select the true and false operands of the CMOV in the PHI.
21432  //
21433  // The code also handles two different cases of multiple CMOV opcodes
21434  // in a row.
21435  //
21436  // Case 1:
21437  // In this case, there are multiple CMOVs in a row, all which are based on
21438  // the same condition setting (or the exact opposite condition setting).
21439  // In this case we can lower all the CMOVs using a single inserted BB, and
21440  // then make a number of PHIs at the join point to model the CMOVs. The only
21441  // trickiness here, is that in a case like:
21442  //
21443  // t2 = CMOV cond1 t1, f1
21444  // t3 = CMOV cond1 t2, f2
21445  //
21446  // when rewriting this into PHIs, we have to perform some renaming on the
21447  // temps since you cannot have a PHI operand refer to a PHI result earlier
21448  // in the same block.  The "simple" but wrong lowering would be:
21449  //
21450  // t2 = PHI t1(BB1), f1(BB2)
21451  // t3 = PHI t2(BB1), f2(BB2)
21452  //
21453  // but clearly t2 is not defined in BB1, so that is incorrect. The proper
21454  // renaming is to note that on the path through BB1, t2 is really just a
21455  // copy of t1, and do that renaming, properly generating:
21456  //
21457  // t2 = PHI t1(BB1), f1(BB2)
21458  // t3 = PHI t1(BB1), f2(BB2)
21459  //
21460  // Case 2, we lower cascaded CMOVs such as
21461  //
21462  //   (CMOV (CMOV F, T, cc1), T, cc2)
21463  //
21464  // to two successives branches.  For that, we look for another CMOV as the
21465  // following instruction.
21466  //
21467  // Without this, we would add a PHI between the two jumps, which ends up
21468  // creating a few copies all around. For instance, for
21469  //
21470  //    (sitofp (zext (fcmp une)))
21471  //
21472  // we would generate:
21473  //
21474  //         ucomiss %xmm1, %xmm0
21475  //         movss  <1.0f>, %xmm0
21476  //         movaps  %xmm0, %xmm1
21477  //         jne     .LBB5_2
21478  //         xorps   %xmm1, %xmm1
21479  // .LBB5_2:
21480  //         jp      .LBB5_4
21481  //         movaps  %xmm1, %xmm0
21482  // .LBB5_4:
21483  //         retq
21484  //
21485  // because this custom-inserter would have generated:
21486  //
21487  //   A
21488  //   | \
21489  //   |  B
21490  //   | /
21491  //   C
21492  //   | \
21493  //   |  D
21494  //   | /
21495  //   E
21496  //
21497  // A: X = ...; Y = ...
21498  // B: empty
21499  // C: Z = PHI [X, A], [Y, B]
21500  // D: empty
21501  // E: PHI [X, C], [Z, D]
21502  //
21503  // If we lower both CMOVs in a single step, we can instead generate:
21504  //
21505  //   A
21506  //   | \
21507  //   |  C
21508  //   | /|
21509  //   |/ |
21510  //   |  |
21511  //   |  D
21512  //   | /
21513  //   E
21514  //
21515  // A: X = ...; Y = ...
21516  // D: empty
21517  // E: PHI [X, A], [X, C], [Y, D]
21518  //
21519  // Which, in our sitofp/fcmp example, gives us something like:
21520  //
21521  //         ucomiss %xmm1, %xmm0
21522  //         movss  <1.0f>, %xmm0
21523  //         jne     .LBB5_4
21524  //         jp      .LBB5_4
21525  //         xorps   %xmm0, %xmm0
21526  // .LBB5_4:
21527  //         retq
21528  //
21529  MachineInstr *CascadedCMOV = nullptr;
21530  MachineInstr *LastCMOV = MI;
21531  X86::CondCode CC = X86::CondCode(MI->getOperand(3).getImm());
21532  X86::CondCode OppCC = X86::GetOppositeBranchCondition(CC);
21533  MachineBasicBlock::iterator NextMIIt =
21534      std::next(MachineBasicBlock::iterator(MI));
21535
21536  // Check for case 1, where there are multiple CMOVs with the same condition
21537  // first.  Of the two cases of multiple CMOV lowerings, case 1 reduces the
21538  // number of jumps the most.
21539
21540  if (isCMOVPseudo(MI)) {
21541    // See if we have a string of CMOVS with the same condition.
21542    while (NextMIIt != BB->end() &&
21543           isCMOVPseudo(NextMIIt) &&
21544           (NextMIIt->getOperand(3).getImm() == CC ||
21545            NextMIIt->getOperand(3).getImm() == OppCC)) {
21546      LastCMOV = &*NextMIIt;
21547      ++NextMIIt;
21548    }
21549  }
21550
21551  // This checks for case 2, but only do this if we didn't already find
21552  // case 1, as indicated by LastCMOV == MI.
21553  if (LastCMOV == MI &&
21554      NextMIIt != BB->end() && NextMIIt->getOpcode() == MI->getOpcode() &&
21555      NextMIIt->getOperand(2).getReg() == MI->getOperand(2).getReg() &&
21556      NextMIIt->getOperand(1).getReg() == MI->getOperand(0).getReg()) {
21557    CascadedCMOV = &*NextMIIt;
21558  }
21559
21560  MachineBasicBlock *jcc1MBB = nullptr;
21561
21562  // If we have a cascaded CMOV, we lower it to two successive branches to
21563  // the same block.  EFLAGS is used by both, so mark it as live in the second.
21564  if (CascadedCMOV) {
21565    jcc1MBB = F->CreateMachineBasicBlock(LLVM_BB);
21566    F->insert(It, jcc1MBB);
21567    jcc1MBB->addLiveIn(X86::EFLAGS);
21568  }
21569
21570  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
21571  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
21572  F->insert(It, copy0MBB);
21573  F->insert(It, sinkMBB);
21574
21575  // If the EFLAGS register isn't dead in the terminator, then claim that it's
21576  // live into the sink and copy blocks.
21577  const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
21578
21579  MachineInstr *LastEFLAGSUser = CascadedCMOV ? CascadedCMOV : LastCMOV;
21580  if (!LastEFLAGSUser->killsRegister(X86::EFLAGS) &&
21581      !checkAndUpdateEFLAGSKill(LastEFLAGSUser, BB, TRI)) {
21582    copy0MBB->addLiveIn(X86::EFLAGS);
21583    sinkMBB->addLiveIn(X86::EFLAGS);
21584  }
21585
21586  // Transfer the remainder of BB and its successor edges to sinkMBB.
21587  sinkMBB->splice(sinkMBB->begin(), BB,
21588                  std::next(MachineBasicBlock::iterator(LastCMOV)), BB->end());
21589  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
21590
21591  // Add the true and fallthrough blocks as its successors.
21592  if (CascadedCMOV) {
21593    // The fallthrough block may be jcc1MBB, if we have a cascaded CMOV.
21594    BB->addSuccessor(jcc1MBB);
21595
21596    // In that case, jcc1MBB will itself fallthrough the copy0MBB, and
21597    // jump to the sinkMBB.
21598    jcc1MBB->addSuccessor(copy0MBB);
21599    jcc1MBB->addSuccessor(sinkMBB);
21600  } else {
21601    BB->addSuccessor(copy0MBB);
21602  }
21603
21604  // The true block target of the first (or only) branch is always sinkMBB.
21605  BB->addSuccessor(sinkMBB);
21606
21607  // Create the conditional branch instruction.
21608  unsigned Opc = X86::GetCondBranchFromCond(CC);
21609  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
21610
21611  if (CascadedCMOV) {
21612    unsigned Opc2 = X86::GetCondBranchFromCond(
21613        (X86::CondCode)CascadedCMOV->getOperand(3).getImm());
21614    BuildMI(jcc1MBB, DL, TII->get(Opc2)).addMBB(sinkMBB);
21615  }
21616
21617  //  copy0MBB:
21618  //   %FalseValue = ...
21619  //   # fallthrough to sinkMBB
21620  copy0MBB->addSuccessor(sinkMBB);
21621
21622  //  sinkMBB:
21623  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
21624  //  ...
21625  MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI);
21626  MachineBasicBlock::iterator MIItEnd =
21627    std::next(MachineBasicBlock::iterator(LastCMOV));
21628  MachineBasicBlock::iterator SinkInsertionPoint = sinkMBB->begin();
21629  DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
21630  MachineInstrBuilder MIB;
21631
21632  // As we are creating the PHIs, we have to be careful if there is more than
21633  // one.  Later CMOVs may reference the results of earlier CMOVs, but later
21634  // PHIs have to reference the individual true/false inputs from earlier PHIs.
21635  // That also means that PHI construction must work forward from earlier to
21636  // later, and that the code must maintain a mapping from earlier PHI's
21637  // destination registers, and the registers that went into the PHI.
21638
21639  for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) {
21640    unsigned DestReg = MIIt->getOperand(0).getReg();
21641    unsigned Op1Reg = MIIt->getOperand(1).getReg();
21642    unsigned Op2Reg = MIIt->getOperand(2).getReg();
21643
21644    // If this CMOV we are generating is the opposite condition from
21645    // the jump we generated, then we have to swap the operands for the
21646    // PHI that is going to be generated.
21647    if (MIIt->getOperand(3).getImm() == OppCC)
21648        std::swap(Op1Reg, Op2Reg);
21649
21650    if (RegRewriteTable.find(Op1Reg) != RegRewriteTable.end())
21651      Op1Reg = RegRewriteTable[Op1Reg].first;
21652
21653    if (RegRewriteTable.find(Op2Reg) != RegRewriteTable.end())
21654      Op2Reg = RegRewriteTable[Op2Reg].second;
21655
21656    MIB = BuildMI(*sinkMBB, SinkInsertionPoint, DL,
21657                  TII->get(X86::PHI), DestReg)
21658          .addReg(Op1Reg).addMBB(copy0MBB)
21659          .addReg(Op2Reg).addMBB(thisMBB);
21660
21661    // Add this PHI to the rewrite table.
21662    RegRewriteTable[DestReg] = std::make_pair(Op1Reg, Op2Reg);
21663  }
21664
21665  // If we have a cascaded CMOV, the second Jcc provides the same incoming
21666  // value as the first Jcc (the True operand of the SELECT_CC/CMOV nodes).
21667  if (CascadedCMOV) {
21668    MIB.addReg(MI->getOperand(2).getReg()).addMBB(jcc1MBB);
21669    // Copy the PHI result to the register defined by the second CMOV.
21670    BuildMI(*sinkMBB, std::next(MachineBasicBlock::iterator(MIB.getInstr())),
21671            DL, TII->get(TargetOpcode::COPY),
21672            CascadedCMOV->getOperand(0).getReg())
21673        .addReg(MI->getOperand(0).getReg());
21674    CascadedCMOV->eraseFromParent();
21675  }
21676
21677  // Now remove the CMOV(s).
21678  for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; )
21679    (MIIt++)->eraseFromParent();
21680
21681  return sinkMBB;
21682}
21683
21684MachineBasicBlock *
21685X86TargetLowering::EmitLoweredAtomicFP(MachineInstr *MI,
21686                                       MachineBasicBlock *BB) const {
21687  // Combine the following atomic floating-point modification pattern:
21688  //   a.store(reg OP a.load(acquire), release)
21689  // Transform them into:
21690  //   OPss (%gpr), %xmm
21691  //   movss %xmm, (%gpr)
21692  // Or sd equivalent for 64-bit operations.
21693  unsigned MOp, FOp;
21694  switch (MI->getOpcode()) {
21695  default: llvm_unreachable("unexpected instr type for EmitLoweredAtomicFP");
21696  case X86::RELEASE_FADD32mr: MOp = X86::MOVSSmr; FOp = X86::ADDSSrm; break;
21697  case X86::RELEASE_FADD64mr: MOp = X86::MOVSDmr; FOp = X86::ADDSDrm; break;
21698  }
21699  const X86InstrInfo *TII = Subtarget->getInstrInfo();
21700  DebugLoc DL = MI->getDebugLoc();
21701  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
21702  MachineOperand MSrc = MI->getOperand(0);
21703  unsigned VSrc = MI->getOperand(5).getReg();
21704  const MachineOperand &Disp = MI->getOperand(3);
21705  MachineOperand ZeroDisp = MachineOperand::CreateImm(0);
21706  bool hasDisp = Disp.isGlobal() || Disp.isImm();
21707  if (hasDisp && MSrc.isReg())
21708    MSrc.setIsKill(false);
21709  MachineInstrBuilder MIM = BuildMI(*BB, MI, DL, TII->get(MOp))
21710                                .addOperand(/*Base=*/MSrc)
21711                                .addImm(/*Scale=*/1)
21712                                .addReg(/*Index=*/0)
21713                                .addDisp(hasDisp ? Disp : ZeroDisp, /*off=*/0)
21714                                .addReg(0);
21715  MachineInstr *MIO = BuildMI(*BB, (MachineInstr *)MIM, DL, TII->get(FOp),
21716                              MRI.createVirtualRegister(MRI.getRegClass(VSrc)))
21717                          .addReg(VSrc)
21718                          .addOperand(/*Base=*/MSrc)
21719                          .addImm(/*Scale=*/1)
21720                          .addReg(/*Index=*/0)
21721                          .addDisp(hasDisp ? Disp : ZeroDisp, /*off=*/0)
21722                          .addReg(/*Segment=*/0);
21723  MIM.addReg(MIO->getOperand(0).getReg(), RegState::Kill);
21724  MI->eraseFromParent(); // The pseudo instruction is gone now.
21725  return BB;
21726}
21727
21728MachineBasicBlock *
21729X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI,
21730                                        MachineBasicBlock *BB) const {
21731  MachineFunction *MF = BB->getParent();
21732  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
21733  DebugLoc DL = MI->getDebugLoc();
21734  const BasicBlock *LLVM_BB = BB->getBasicBlock();
21735
21736  assert(MF->shouldSplitStack());
21737
21738  const bool Is64Bit = Subtarget->is64Bit();
21739  const bool IsLP64 = Subtarget->isTarget64BitLP64();
21740
21741  const unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
21742  const unsigned TlsOffset = IsLP64 ? 0x70 : Is64Bit ? 0x40 : 0x30;
21743
21744  // BB:
21745  //  ... [Till the alloca]
21746  // If stacklet is not large enough, jump to mallocMBB
21747  //
21748  // bumpMBB:
21749  //  Allocate by subtracting from RSP
21750  //  Jump to continueMBB
21751  //
21752  // mallocMBB:
21753  //  Allocate by call to runtime
21754  //
21755  // continueMBB:
21756  //  ...
21757  //  [rest of original BB]
21758  //
21759
21760  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
21761  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
21762  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
21763
21764  MachineRegisterInfo &MRI = MF->getRegInfo();
21765  const TargetRegisterClass *AddrRegClass =
21766      getRegClassFor(getPointerTy(MF->getDataLayout()));
21767
21768  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
21769    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
21770    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
21771    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
21772    sizeVReg = MI->getOperand(1).getReg(),
21773    physSPReg = IsLP64 || Subtarget->isTargetNaCl64() ? X86::RSP : X86::ESP;
21774
21775  MachineFunction::iterator MBBIter = ++BB->getIterator();
21776
21777  MF->insert(MBBIter, bumpMBB);
21778  MF->insert(MBBIter, mallocMBB);
21779  MF->insert(MBBIter, continueMBB);
21780
21781  continueMBB->splice(continueMBB->begin(), BB,
21782                      std::next(MachineBasicBlock::iterator(MI)), BB->end());
21783  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
21784
21785  // Add code to the main basic block to check if the stack limit has been hit,
21786  // and if so, jump to mallocMBB otherwise to bumpMBB.
21787  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
21788  BuildMI(BB, DL, TII->get(IsLP64 ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
21789    .addReg(tmpSPVReg).addReg(sizeVReg);
21790  BuildMI(BB, DL, TII->get(IsLP64 ? X86::CMP64mr:X86::CMP32mr))
21791    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
21792    .addReg(SPLimitVReg);
21793  BuildMI(BB, DL, TII->get(X86::JG_1)).addMBB(mallocMBB);
21794
21795  // bumpMBB simply decreases the stack pointer, since we know the current
21796  // stacklet has enough space.
21797  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
21798    .addReg(SPLimitVReg);
21799  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
21800    .addReg(SPLimitVReg);
21801  BuildMI(bumpMBB, DL, TII->get(X86::JMP_1)).addMBB(continueMBB);
21802
21803  // Calls into a routine in libgcc to allocate more space from the heap.
21804  const uint32_t *RegMask =
21805      Subtarget->getRegisterInfo()->getCallPreservedMask(*MF, CallingConv::C);
21806  if (IsLP64) {
21807    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
21808      .addReg(sizeVReg);
21809    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
21810      .addExternalSymbol("__morestack_allocate_stack_space")
21811      .addRegMask(RegMask)
21812      .addReg(X86::RDI, RegState::Implicit)
21813      .addReg(X86::RAX, RegState::ImplicitDefine);
21814  } else if (Is64Bit) {
21815    BuildMI(mallocMBB, DL, TII->get(X86::MOV32rr), X86::EDI)
21816      .addReg(sizeVReg);
21817    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
21818      .addExternalSymbol("__morestack_allocate_stack_space")
21819      .addRegMask(RegMask)
21820      .addReg(X86::EDI, RegState::Implicit)
21821      .addReg(X86::EAX, RegState::ImplicitDefine);
21822  } else {
21823    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
21824      .addImm(12);
21825    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
21826    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
21827      .addExternalSymbol("__morestack_allocate_stack_space")
21828      .addRegMask(RegMask)
21829      .addReg(X86::EAX, RegState::ImplicitDefine);
21830  }
21831
21832  if (!Is64Bit)
21833    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
21834      .addImm(16);
21835
21836  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
21837    .addReg(IsLP64 ? X86::RAX : X86::EAX);
21838  BuildMI(mallocMBB, DL, TII->get(X86::JMP_1)).addMBB(continueMBB);
21839
21840  // Set up the CFG correctly.
21841  BB->addSuccessor(bumpMBB);
21842  BB->addSuccessor(mallocMBB);
21843  mallocMBB->addSuccessor(continueMBB);
21844  bumpMBB->addSuccessor(continueMBB);
21845
21846  // Take care of the PHI nodes.
21847  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
21848          MI->getOperand(0).getReg())
21849    .addReg(mallocPtrVReg).addMBB(mallocMBB)
21850    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
21851
21852  // Delete the original pseudo instruction.
21853  MI->eraseFromParent();
21854
21855  // And we're done.
21856  return continueMBB;
21857}
21858
21859MachineBasicBlock *
21860X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
21861                                        MachineBasicBlock *BB) const {
21862  assert(!Subtarget->isTargetMachO());
21863  DebugLoc DL = MI->getDebugLoc();
21864  MachineInstr *ResumeMI = Subtarget->getFrameLowering()->emitStackProbe(
21865      *BB->getParent(), *BB, MI, DL, false);
21866  MachineBasicBlock *ResumeBB = ResumeMI->getParent();
21867  MI->eraseFromParent(); // The pseudo instruction is gone now.
21868  return ResumeBB;
21869}
21870
21871MachineBasicBlock *
21872X86TargetLowering::EmitLoweredCatchRet(MachineInstr *MI,
21873                                       MachineBasicBlock *BB) const {
21874  MachineFunction *MF = BB->getParent();
21875  const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
21876  MachineBasicBlock *TargetMBB = MI->getOperand(0).getMBB();
21877  DebugLoc DL = MI->getDebugLoc();
21878
21879  assert(!isAsynchronousEHPersonality(
21880             classifyEHPersonality(MF->getFunction()->getPersonalityFn())) &&
21881         "SEH does not use catchret!");
21882
21883  // Only 32-bit EH needs to worry about manually restoring stack pointers.
21884  if (!Subtarget->is32Bit())
21885    return BB;
21886
21887  // C++ EH creates a new target block to hold the restore code, and wires up
21888  // the new block to the return destination with a normal JMP_4.
21889  MachineBasicBlock *RestoreMBB =
21890      MF->CreateMachineBasicBlock(BB->getBasicBlock());
21891  assert(BB->succ_size() == 1);
21892  MF->insert(std::next(BB->getIterator()), RestoreMBB);
21893  RestoreMBB->transferSuccessorsAndUpdatePHIs(BB);
21894  BB->addSuccessor(RestoreMBB);
21895  MI->getOperand(0).setMBB(RestoreMBB);
21896
21897  auto RestoreMBBI = RestoreMBB->begin();
21898  BuildMI(*RestoreMBB, RestoreMBBI, DL, TII.get(X86::EH_RESTORE));
21899  BuildMI(*RestoreMBB, RestoreMBBI, DL, TII.get(X86::JMP_4)).addMBB(TargetMBB);
21900  return BB;
21901}
21902
21903MachineBasicBlock *
21904X86TargetLowering::EmitLoweredCatchPad(MachineInstr *MI,
21905                                       MachineBasicBlock *BB) const {
21906  MachineFunction *MF = BB->getParent();
21907  const Constant *PerFn = MF->getFunction()->getPersonalityFn();
21908  bool IsSEH = isAsynchronousEHPersonality(classifyEHPersonality(PerFn));
21909  // Only 32-bit SEH requires special handling for catchpad.
21910  if (IsSEH && Subtarget->is32Bit()) {
21911    const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
21912    DebugLoc DL = MI->getDebugLoc();
21913    BuildMI(*BB, MI, DL, TII.get(X86::EH_RESTORE));
21914  }
21915  MI->eraseFromParent();
21916  return BB;
21917}
21918
21919MachineBasicBlock *
21920X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
21921                                      MachineBasicBlock *BB) const {
21922  // This is pretty easy.  We're taking the value that we received from
21923  // our load from the relocation, sticking it in either RDI (x86-64)
21924  // or EAX and doing an indirect call.  The return value will then
21925  // be in the normal return register.
21926  MachineFunction *F = BB->getParent();
21927  const X86InstrInfo *TII = Subtarget->getInstrInfo();
21928  DebugLoc DL = MI->getDebugLoc();
21929
21930  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
21931  assert(MI->getOperand(3).isGlobal() && "This should be a global");
21932
21933  // Get a register mask for the lowered call.
21934  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
21935  // proper register mask.
21936  const uint32_t *RegMask =
21937      Subtarget->is64Bit() ?
21938      Subtarget->getRegisterInfo()->getDarwinTLSCallPreservedMask() :
21939      Subtarget->getRegisterInfo()->getCallPreservedMask(*F, CallingConv::C);
21940  if (Subtarget->is64Bit()) {
21941    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
21942                                      TII->get(X86::MOV64rm), X86::RDI)
21943    .addReg(X86::RIP)
21944    .addImm(0).addReg(0)
21945    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
21946                      MI->getOperand(3).getTargetFlags())
21947    .addReg(0);
21948    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
21949    addDirectMem(MIB, X86::RDI);
21950    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
21951  } else if (F->getTarget().getRelocationModel() != Reloc::PIC_) {
21952    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
21953                                      TII->get(X86::MOV32rm), X86::EAX)
21954    .addReg(0)
21955    .addImm(0).addReg(0)
21956    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
21957                      MI->getOperand(3).getTargetFlags())
21958    .addReg(0);
21959    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
21960    addDirectMem(MIB, X86::EAX);
21961    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
21962  } else {
21963    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
21964                                      TII->get(X86::MOV32rm), X86::EAX)
21965    .addReg(TII->getGlobalBaseReg(F))
21966    .addImm(0).addReg(0)
21967    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
21968                      MI->getOperand(3).getTargetFlags())
21969    .addReg(0);
21970    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
21971    addDirectMem(MIB, X86::EAX);
21972    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
21973  }
21974
21975  MI->eraseFromParent(); // The pseudo instruction is gone now.
21976  return BB;
21977}
21978
21979MachineBasicBlock *
21980X86TargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
21981                                    MachineBasicBlock *MBB) const {
21982  DebugLoc DL = MI->getDebugLoc();
21983  MachineFunction *MF = MBB->getParent();
21984  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
21985  MachineRegisterInfo &MRI = MF->getRegInfo();
21986
21987  const BasicBlock *BB = MBB->getBasicBlock();
21988  MachineFunction::iterator I = ++MBB->getIterator();
21989
21990  // Memory Reference
21991  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
21992  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
21993
21994  unsigned DstReg;
21995  unsigned MemOpndSlot = 0;
21996
21997  unsigned CurOp = 0;
21998
21999  DstReg = MI->getOperand(CurOp++).getReg();
22000  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
22001  assert(RC->hasType(MVT::i32) && "Invalid destination!");
22002  unsigned mainDstReg = MRI.createVirtualRegister(RC);
22003  unsigned restoreDstReg = MRI.createVirtualRegister(RC);
22004
22005  MemOpndSlot = CurOp;
22006
22007  MVT PVT = getPointerTy(MF->getDataLayout());
22008  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
22009         "Invalid Pointer Size!");
22010
22011  // For v = setjmp(buf), we generate
22012  //
22013  // thisMBB:
22014  //  buf[LabelOffset] = restoreMBB <-- takes address of restoreMBB
22015  //  SjLjSetup restoreMBB
22016  //
22017  // mainMBB:
22018  //  v_main = 0
22019  //
22020  // sinkMBB:
22021  //  v = phi(main, restore)
22022  //
22023  // restoreMBB:
22024  //  if base pointer being used, load it from frame
22025  //  v_restore = 1
22026
22027  MachineBasicBlock *thisMBB = MBB;
22028  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
22029  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
22030  MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB);
22031  MF->insert(I, mainMBB);
22032  MF->insert(I, sinkMBB);
22033  MF->push_back(restoreMBB);
22034  restoreMBB->setHasAddressTaken();
22035
22036  MachineInstrBuilder MIB;
22037
22038  // Transfer the remainder of BB and its successor edges to sinkMBB.
22039  sinkMBB->splice(sinkMBB->begin(), MBB,
22040                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
22041  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
22042
22043  // thisMBB:
22044  unsigned PtrStoreOpc = 0;
22045  unsigned LabelReg = 0;
22046  const int64_t LabelOffset = 1 * PVT.getStoreSize();
22047  Reloc::Model RM = MF->getTarget().getRelocationModel();
22048  bool UseImmLabel = (MF->getTarget().getCodeModel() == CodeModel::Small) &&
22049                     (RM == Reloc::Static || RM == Reloc::DynamicNoPIC);
22050
22051  // Prepare IP either in reg or imm.
22052  if (!UseImmLabel) {
22053    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr;
22054    const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
22055    LabelReg = MRI.createVirtualRegister(PtrRC);
22056    if (Subtarget->is64Bit()) {
22057      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA64r), LabelReg)
22058              .addReg(X86::RIP)
22059              .addImm(0)
22060              .addReg(0)
22061              .addMBB(restoreMBB)
22062              .addReg(0);
22063    } else {
22064      const X86InstrInfo *XII = static_cast<const X86InstrInfo*>(TII);
22065      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA32r), LabelReg)
22066              .addReg(XII->getGlobalBaseReg(MF))
22067              .addImm(0)
22068              .addReg(0)
22069              .addMBB(restoreMBB, Subtarget->ClassifyBlockAddressReference())
22070              .addReg(0);
22071    }
22072  } else
22073    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi;
22074  // Store IP
22075  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrStoreOpc));
22076  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
22077    if (i == X86::AddrDisp)
22078      MIB.addDisp(MI->getOperand(MemOpndSlot + i), LabelOffset);
22079    else
22080      MIB.addOperand(MI->getOperand(MemOpndSlot + i));
22081  }
22082  if (!UseImmLabel)
22083    MIB.addReg(LabelReg);
22084  else
22085    MIB.addMBB(restoreMBB);
22086  MIB.setMemRefs(MMOBegin, MMOEnd);
22087  // Setup
22088  MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup))
22089          .addMBB(restoreMBB);
22090
22091  const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
22092  MIB.addRegMask(RegInfo->getNoPreservedMask());
22093  thisMBB->addSuccessor(mainMBB);
22094  thisMBB->addSuccessor(restoreMBB);
22095
22096  // mainMBB:
22097  //  EAX = 0
22098  BuildMI(mainMBB, DL, TII->get(X86::MOV32r0), mainDstReg);
22099  mainMBB->addSuccessor(sinkMBB);
22100
22101  // sinkMBB:
22102  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
22103          TII->get(X86::PHI), DstReg)
22104    .addReg(mainDstReg).addMBB(mainMBB)
22105    .addReg(restoreDstReg).addMBB(restoreMBB);
22106
22107  // restoreMBB:
22108  if (RegInfo->hasBasePointer(*MF)) {
22109    const bool Uses64BitFramePtr =
22110        Subtarget->isTarget64BitLP64() || Subtarget->isTargetNaCl64();
22111    X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
22112    X86FI->setRestoreBasePointer(MF);
22113    unsigned FramePtr = RegInfo->getFrameRegister(*MF);
22114    unsigned BasePtr = RegInfo->getBaseRegister();
22115    unsigned Opm = Uses64BitFramePtr ? X86::MOV64rm : X86::MOV32rm;
22116    addRegOffset(BuildMI(restoreMBB, DL, TII->get(Opm), BasePtr),
22117                 FramePtr, true, X86FI->getRestoreBasePointerOffset())
22118      .setMIFlag(MachineInstr::FrameSetup);
22119  }
22120  BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1);
22121  BuildMI(restoreMBB, DL, TII->get(X86::JMP_1)).addMBB(sinkMBB);
22122  restoreMBB->addSuccessor(sinkMBB);
22123
22124  MI->eraseFromParent();
22125  return sinkMBB;
22126}
22127
22128MachineBasicBlock *
22129X86TargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
22130                                     MachineBasicBlock *MBB) const {
22131  DebugLoc DL = MI->getDebugLoc();
22132  MachineFunction *MF = MBB->getParent();
22133  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
22134  MachineRegisterInfo &MRI = MF->getRegInfo();
22135
22136  // Memory Reference
22137  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
22138  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
22139
22140  MVT PVT = getPointerTy(MF->getDataLayout());
22141  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
22142         "Invalid Pointer Size!");
22143
22144  const TargetRegisterClass *RC =
22145    (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass;
22146  unsigned Tmp = MRI.createVirtualRegister(RC);
22147  // Since FP is only updated here but NOT referenced, it's treated as GPR.
22148  const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
22149  unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP;
22150  unsigned SP = RegInfo->getStackRegister();
22151
22152  MachineInstrBuilder MIB;
22153
22154  const int64_t LabelOffset = 1 * PVT.getStoreSize();
22155  const int64_t SPOffset = 2 * PVT.getStoreSize();
22156
22157  unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm;
22158  unsigned IJmpOpc = (PVT == MVT::i64) ? X86::JMP64r : X86::JMP32r;
22159
22160  // Reload FP
22161  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), FP);
22162  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
22163    MIB.addOperand(MI->getOperand(i));
22164  MIB.setMemRefs(MMOBegin, MMOEnd);
22165  // Reload IP
22166  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), Tmp);
22167  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
22168    if (i == X86::AddrDisp)
22169      MIB.addDisp(MI->getOperand(i), LabelOffset);
22170    else
22171      MIB.addOperand(MI->getOperand(i));
22172  }
22173  MIB.setMemRefs(MMOBegin, MMOEnd);
22174  // Reload SP
22175  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), SP);
22176  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
22177    if (i == X86::AddrDisp)
22178      MIB.addDisp(MI->getOperand(i), SPOffset);
22179    else
22180      MIB.addOperand(MI->getOperand(i));
22181  }
22182  MIB.setMemRefs(MMOBegin, MMOEnd);
22183  // Jump
22184  BuildMI(*MBB, MI, DL, TII->get(IJmpOpc)).addReg(Tmp);
22185
22186  MI->eraseFromParent();
22187  return MBB;
22188}
22189
22190// Replace 213-type (isel default) FMA3 instructions with 231-type for
22191// accumulator loops. Writing back to the accumulator allows the coalescer
22192// to remove extra copies in the loop.
22193// FIXME: Do this on AVX512.  We don't support 231 variants yet (PR23937).
22194MachineBasicBlock *
22195X86TargetLowering::emitFMA3Instr(MachineInstr *MI,
22196                                 MachineBasicBlock *MBB) const {
22197  MachineOperand &AddendOp = MI->getOperand(3);
22198
22199  // Bail out early if the addend isn't a register - we can't switch these.
22200  if (!AddendOp.isReg())
22201    return MBB;
22202
22203  MachineFunction &MF = *MBB->getParent();
22204  MachineRegisterInfo &MRI = MF.getRegInfo();
22205
22206  // Check whether the addend is defined by a PHI:
22207  assert(MRI.hasOneDef(AddendOp.getReg()) && "Multiple defs in SSA?");
22208  MachineInstr &AddendDef = *MRI.def_instr_begin(AddendOp.getReg());
22209  if (!AddendDef.isPHI())
22210    return MBB;
22211
22212  // Look for the following pattern:
22213  // loop:
22214  //   %addend = phi [%entry, 0], [%loop, %result]
22215  //   ...
22216  //   %result<tied1> = FMA213 %m2<tied0>, %m1, %addend
22217
22218  // Replace with:
22219  //   loop:
22220  //   %addend = phi [%entry, 0], [%loop, %result]
22221  //   ...
22222  //   %result<tied1> = FMA231 %addend<tied0>, %m1, %m2
22223
22224  for (unsigned i = 1, e = AddendDef.getNumOperands(); i < e; i += 2) {
22225    assert(AddendDef.getOperand(i).isReg());
22226    MachineOperand PHISrcOp = AddendDef.getOperand(i);
22227    MachineInstr &PHISrcInst = *MRI.def_instr_begin(PHISrcOp.getReg());
22228    if (&PHISrcInst == MI) {
22229      // Found a matching instruction.
22230      unsigned NewFMAOpc = 0;
22231      switch (MI->getOpcode()) {
22232        case X86::VFMADDPDr213r: NewFMAOpc = X86::VFMADDPDr231r; break;
22233        case X86::VFMADDPSr213r: NewFMAOpc = X86::VFMADDPSr231r; break;
22234        case X86::VFMADDSDr213r: NewFMAOpc = X86::VFMADDSDr231r; break;
22235        case X86::VFMADDSSr213r: NewFMAOpc = X86::VFMADDSSr231r; break;
22236        case X86::VFMSUBPDr213r: NewFMAOpc = X86::VFMSUBPDr231r; break;
22237        case X86::VFMSUBPSr213r: NewFMAOpc = X86::VFMSUBPSr231r; break;
22238        case X86::VFMSUBSDr213r: NewFMAOpc = X86::VFMSUBSDr231r; break;
22239        case X86::VFMSUBSSr213r: NewFMAOpc = X86::VFMSUBSSr231r; break;
22240        case X86::VFNMADDPDr213r: NewFMAOpc = X86::VFNMADDPDr231r; break;
22241        case X86::VFNMADDPSr213r: NewFMAOpc = X86::VFNMADDPSr231r; break;
22242        case X86::VFNMADDSDr213r: NewFMAOpc = X86::VFNMADDSDr231r; break;
22243        case X86::VFNMADDSSr213r: NewFMAOpc = X86::VFNMADDSSr231r; break;
22244        case X86::VFNMSUBPDr213r: NewFMAOpc = X86::VFNMSUBPDr231r; break;
22245        case X86::VFNMSUBPSr213r: NewFMAOpc = X86::VFNMSUBPSr231r; break;
22246        case X86::VFNMSUBSDr213r: NewFMAOpc = X86::VFNMSUBSDr231r; break;
22247        case X86::VFNMSUBSSr213r: NewFMAOpc = X86::VFNMSUBSSr231r; break;
22248        case X86::VFMADDSUBPDr213r: NewFMAOpc = X86::VFMADDSUBPDr231r; break;
22249        case X86::VFMADDSUBPSr213r: NewFMAOpc = X86::VFMADDSUBPSr231r; break;
22250        case X86::VFMSUBADDPDr213r: NewFMAOpc = X86::VFMSUBADDPDr231r; break;
22251        case X86::VFMSUBADDPSr213r: NewFMAOpc = X86::VFMSUBADDPSr231r; break;
22252
22253        case X86::VFMADDPDr213rY: NewFMAOpc = X86::VFMADDPDr231rY; break;
22254        case X86::VFMADDPSr213rY: NewFMAOpc = X86::VFMADDPSr231rY; break;
22255        case X86::VFMSUBPDr213rY: NewFMAOpc = X86::VFMSUBPDr231rY; break;
22256        case X86::VFMSUBPSr213rY: NewFMAOpc = X86::VFMSUBPSr231rY; break;
22257        case X86::VFNMADDPDr213rY: NewFMAOpc = X86::VFNMADDPDr231rY; break;
22258        case X86::VFNMADDPSr213rY: NewFMAOpc = X86::VFNMADDPSr231rY; break;
22259        case X86::VFNMSUBPDr213rY: NewFMAOpc = X86::VFNMSUBPDr231rY; break;
22260        case X86::VFNMSUBPSr213rY: NewFMAOpc = X86::VFNMSUBPSr231rY; break;
22261        case X86::VFMADDSUBPDr213rY: NewFMAOpc = X86::VFMADDSUBPDr231rY; break;
22262        case X86::VFMADDSUBPSr213rY: NewFMAOpc = X86::VFMADDSUBPSr231rY; break;
22263        case X86::VFMSUBADDPDr213rY: NewFMAOpc = X86::VFMSUBADDPDr231rY; break;
22264        case X86::VFMSUBADDPSr213rY: NewFMAOpc = X86::VFMSUBADDPSr231rY; break;
22265        default: llvm_unreachable("Unrecognized FMA variant.");
22266      }
22267
22268      const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
22269      MachineInstrBuilder MIB =
22270        BuildMI(MF, MI->getDebugLoc(), TII.get(NewFMAOpc))
22271        .addOperand(MI->getOperand(0))
22272        .addOperand(MI->getOperand(3))
22273        .addOperand(MI->getOperand(2))
22274        .addOperand(MI->getOperand(1));
22275      MBB->insert(MachineBasicBlock::iterator(MI), MIB);
22276      MI->eraseFromParent();
22277    }
22278  }
22279
22280  return MBB;
22281}
22282
22283MachineBasicBlock *
22284X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
22285                                               MachineBasicBlock *BB) const {
22286  switch (MI->getOpcode()) {
22287  default: llvm_unreachable("Unexpected instr type to insert");
22288  case X86::TAILJMPd64:
22289  case X86::TAILJMPr64:
22290  case X86::TAILJMPm64:
22291  case X86::TAILJMPd64_REX:
22292  case X86::TAILJMPr64_REX:
22293  case X86::TAILJMPm64_REX:
22294    llvm_unreachable("TAILJMP64 would not be touched here.");
22295  case X86::TCRETURNdi64:
22296  case X86::TCRETURNri64:
22297  case X86::TCRETURNmi64:
22298    return BB;
22299  case X86::WIN_ALLOCA:
22300    return EmitLoweredWinAlloca(MI, BB);
22301  case X86::CATCHRET:
22302    return EmitLoweredCatchRet(MI, BB);
22303  case X86::CATCHPAD:
22304    return EmitLoweredCatchPad(MI, BB);
22305  case X86::SEG_ALLOCA_32:
22306  case X86::SEG_ALLOCA_64:
22307    return EmitLoweredSegAlloca(MI, BB);
22308  case X86::TLSCall_32:
22309  case X86::TLSCall_64:
22310    return EmitLoweredTLSCall(MI, BB);
22311  case X86::CMOV_FR32:
22312  case X86::CMOV_FR64:
22313  case X86::CMOV_FR128:
22314  case X86::CMOV_GR8:
22315  case X86::CMOV_GR16:
22316  case X86::CMOV_GR32:
22317  case X86::CMOV_RFP32:
22318  case X86::CMOV_RFP64:
22319  case X86::CMOV_RFP80:
22320  case X86::CMOV_V2F64:
22321  case X86::CMOV_V2I64:
22322  case X86::CMOV_V4F32:
22323  case X86::CMOV_V4F64:
22324  case X86::CMOV_V4I64:
22325  case X86::CMOV_V16F32:
22326  case X86::CMOV_V8F32:
22327  case X86::CMOV_V8F64:
22328  case X86::CMOV_V8I64:
22329  case X86::CMOV_V8I1:
22330  case X86::CMOV_V16I1:
22331  case X86::CMOV_V32I1:
22332  case X86::CMOV_V64I1:
22333    return EmitLoweredSelect(MI, BB);
22334
22335  case X86::RELEASE_FADD32mr:
22336  case X86::RELEASE_FADD64mr:
22337    return EmitLoweredAtomicFP(MI, BB);
22338
22339  case X86::FP32_TO_INT16_IN_MEM:
22340  case X86::FP32_TO_INT32_IN_MEM:
22341  case X86::FP32_TO_INT64_IN_MEM:
22342  case X86::FP64_TO_INT16_IN_MEM:
22343  case X86::FP64_TO_INT32_IN_MEM:
22344  case X86::FP64_TO_INT64_IN_MEM:
22345  case X86::FP80_TO_INT16_IN_MEM:
22346  case X86::FP80_TO_INT32_IN_MEM:
22347  case X86::FP80_TO_INT64_IN_MEM: {
22348    MachineFunction *F = BB->getParent();
22349    const TargetInstrInfo *TII = Subtarget->getInstrInfo();
22350    DebugLoc DL = MI->getDebugLoc();
22351
22352    // Change the floating point control register to use "round towards zero"
22353    // mode when truncating to an integer value.
22354    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
22355    addFrameReference(BuildMI(*BB, MI, DL,
22356                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
22357
22358    // Load the old value of the high byte of the control word...
22359    unsigned OldCW =
22360      F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
22361    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
22362                      CWFrameIdx);
22363
22364    // Set the high part to be round to zero...
22365    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
22366      .addImm(0xC7F);
22367
22368    // Reload the modified control word now...
22369    addFrameReference(BuildMI(*BB, MI, DL,
22370                              TII->get(X86::FLDCW16m)), CWFrameIdx);
22371
22372    // Restore the memory image of control word to original value
22373    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
22374      .addReg(OldCW);
22375
22376    // Get the X86 opcode to use.
22377    unsigned Opc;
22378    switch (MI->getOpcode()) {
22379    default: llvm_unreachable("illegal opcode!");
22380    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
22381    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
22382    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
22383    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
22384    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
22385    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
22386    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
22387    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
22388    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
22389    }
22390
22391    X86AddressMode AM;
22392    MachineOperand &Op = MI->getOperand(0);
22393    if (Op.isReg()) {
22394      AM.BaseType = X86AddressMode::RegBase;
22395      AM.Base.Reg = Op.getReg();
22396    } else {
22397      AM.BaseType = X86AddressMode::FrameIndexBase;
22398      AM.Base.FrameIndex = Op.getIndex();
22399    }
22400    Op = MI->getOperand(1);
22401    if (Op.isImm())
22402      AM.Scale = Op.getImm();
22403    Op = MI->getOperand(2);
22404    if (Op.isImm())
22405      AM.IndexReg = Op.getImm();
22406    Op = MI->getOperand(3);
22407    if (Op.isGlobal()) {
22408      AM.GV = Op.getGlobal();
22409    } else {
22410      AM.Disp = Op.getImm();
22411    }
22412    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
22413                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
22414
22415    // Reload the original control word now.
22416    addFrameReference(BuildMI(*BB, MI, DL,
22417                              TII->get(X86::FLDCW16m)), CWFrameIdx);
22418
22419    MI->eraseFromParent();   // The pseudo instruction is gone now.
22420    return BB;
22421  }
22422    // String/text processing lowering.
22423  case X86::PCMPISTRM128REG:
22424  case X86::VPCMPISTRM128REG:
22425  case X86::PCMPISTRM128MEM:
22426  case X86::VPCMPISTRM128MEM:
22427  case X86::PCMPESTRM128REG:
22428  case X86::VPCMPESTRM128REG:
22429  case X86::PCMPESTRM128MEM:
22430  case X86::VPCMPESTRM128MEM:
22431    assert(Subtarget->hasSSE42() &&
22432           "Target must have SSE4.2 or AVX features enabled");
22433    return EmitPCMPSTRM(MI, BB, Subtarget->getInstrInfo());
22434
22435  // String/text processing lowering.
22436  case X86::PCMPISTRIREG:
22437  case X86::VPCMPISTRIREG:
22438  case X86::PCMPISTRIMEM:
22439  case X86::VPCMPISTRIMEM:
22440  case X86::PCMPESTRIREG:
22441  case X86::VPCMPESTRIREG:
22442  case X86::PCMPESTRIMEM:
22443  case X86::VPCMPESTRIMEM:
22444    assert(Subtarget->hasSSE42() &&
22445           "Target must have SSE4.2 or AVX features enabled");
22446    return EmitPCMPSTRI(MI, BB, Subtarget->getInstrInfo());
22447
22448  // Thread synchronization.
22449  case X86::MONITOR:
22450    return EmitMonitor(MI, BB, Subtarget);
22451
22452  // xbegin
22453  case X86::XBEGIN:
22454    return EmitXBegin(MI, BB, Subtarget->getInstrInfo());
22455
22456  case X86::VASTART_SAVE_XMM_REGS:
22457    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
22458
22459  case X86::VAARG_64:
22460    return EmitVAARG64WithCustomInserter(MI, BB);
22461
22462  case X86::EH_SjLj_SetJmp32:
22463  case X86::EH_SjLj_SetJmp64:
22464    return emitEHSjLjSetJmp(MI, BB);
22465
22466  case X86::EH_SjLj_LongJmp32:
22467  case X86::EH_SjLj_LongJmp64:
22468    return emitEHSjLjLongJmp(MI, BB);
22469
22470  case TargetOpcode::STATEPOINT:
22471    // As an implementation detail, STATEPOINT shares the STACKMAP format at
22472    // this point in the process.  We diverge later.
22473    return emitPatchPoint(MI, BB);
22474
22475  case TargetOpcode::STACKMAP:
22476  case TargetOpcode::PATCHPOINT:
22477    return emitPatchPoint(MI, BB);
22478
22479  case X86::VFMADDPDr213r:
22480  case X86::VFMADDPSr213r:
22481  case X86::VFMADDSDr213r:
22482  case X86::VFMADDSSr213r:
22483  case X86::VFMSUBPDr213r:
22484  case X86::VFMSUBPSr213r:
22485  case X86::VFMSUBSDr213r:
22486  case X86::VFMSUBSSr213r:
22487  case X86::VFNMADDPDr213r:
22488  case X86::VFNMADDPSr213r:
22489  case X86::VFNMADDSDr213r:
22490  case X86::VFNMADDSSr213r:
22491  case X86::VFNMSUBPDr213r:
22492  case X86::VFNMSUBPSr213r:
22493  case X86::VFNMSUBSDr213r:
22494  case X86::VFNMSUBSSr213r:
22495  case X86::VFMADDSUBPDr213r:
22496  case X86::VFMADDSUBPSr213r:
22497  case X86::VFMSUBADDPDr213r:
22498  case X86::VFMSUBADDPSr213r:
22499  case X86::VFMADDPDr213rY:
22500  case X86::VFMADDPSr213rY:
22501  case X86::VFMSUBPDr213rY:
22502  case X86::VFMSUBPSr213rY:
22503  case X86::VFNMADDPDr213rY:
22504  case X86::VFNMADDPSr213rY:
22505  case X86::VFNMSUBPDr213rY:
22506  case X86::VFNMSUBPSr213rY:
22507  case X86::VFMADDSUBPDr213rY:
22508  case X86::VFMADDSUBPSr213rY:
22509  case X86::VFMSUBADDPDr213rY:
22510  case X86::VFMSUBADDPSr213rY:
22511    return emitFMA3Instr(MI, BB);
22512  }
22513}
22514
22515//===----------------------------------------------------------------------===//
22516//                           X86 Optimization Hooks
22517//===----------------------------------------------------------------------===//
22518
22519void X86TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
22520                                                      APInt &KnownZero,
22521                                                      APInt &KnownOne,
22522                                                      const SelectionDAG &DAG,
22523                                                      unsigned Depth) const {
22524  unsigned BitWidth = KnownZero.getBitWidth();
22525  unsigned Opc = Op.getOpcode();
22526  assert((Opc >= ISD::BUILTIN_OP_END ||
22527          Opc == ISD::INTRINSIC_WO_CHAIN ||
22528          Opc == ISD::INTRINSIC_W_CHAIN ||
22529          Opc == ISD::INTRINSIC_VOID) &&
22530         "Should use MaskedValueIsZero if you don't know whether Op"
22531         " is a target node!");
22532
22533  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
22534  switch (Opc) {
22535  default: break;
22536  case X86ISD::ADD:
22537  case X86ISD::SUB:
22538  case X86ISD::ADC:
22539  case X86ISD::SBB:
22540  case X86ISD::SMUL:
22541  case X86ISD::UMUL:
22542  case X86ISD::INC:
22543  case X86ISD::DEC:
22544  case X86ISD::OR:
22545  case X86ISD::XOR:
22546  case X86ISD::AND:
22547    // These nodes' second result is a boolean.
22548    if (Op.getResNo() == 0)
22549      break;
22550    // Fallthrough
22551  case X86ISD::SETCC:
22552    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
22553    break;
22554  case ISD::INTRINSIC_WO_CHAIN: {
22555    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
22556    unsigned NumLoBits = 0;
22557    switch (IntId) {
22558    default: break;
22559    case Intrinsic::x86_sse_movmsk_ps:
22560    case Intrinsic::x86_avx_movmsk_ps_256:
22561    case Intrinsic::x86_sse2_movmsk_pd:
22562    case Intrinsic::x86_avx_movmsk_pd_256:
22563    case Intrinsic::x86_mmx_pmovmskb:
22564    case Intrinsic::x86_sse2_pmovmskb_128:
22565    case Intrinsic::x86_avx2_pmovmskb: {
22566      // High bits of movmskp{s|d}, pmovmskb are known zero.
22567      switch (IntId) {
22568        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
22569        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
22570        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
22571        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
22572        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
22573        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
22574        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
22575        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
22576      }
22577      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
22578      break;
22579    }
22580    }
22581    break;
22582  }
22583  }
22584}
22585
22586unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(
22587  SDValue Op,
22588  const SelectionDAG &,
22589  unsigned Depth) const {
22590  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
22591  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
22592    return Op.getValueType().getScalarSizeInBits();
22593
22594  // Fallback case.
22595  return 1;
22596}
22597
22598/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
22599/// node is a GlobalAddress + offset.
22600bool X86TargetLowering::isGAPlusOffset(SDNode *N,
22601                                       const GlobalValue* &GA,
22602                                       int64_t &Offset) const {
22603  if (N->getOpcode() == X86ISD::Wrapper) {
22604    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
22605      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
22606      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
22607      return true;
22608    }
22609  }
22610  return TargetLowering::isGAPlusOffset(N, GA, Offset);
22611}
22612
22613/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
22614/// same as extracting the high 128-bit part of 256-bit vector and then
22615/// inserting the result into the low part of a new 256-bit vector
22616static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
22617  EVT VT = SVOp->getValueType(0);
22618  unsigned NumElems = VT.getVectorNumElements();
22619
22620  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
22621  for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j)
22622    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
22623        SVOp->getMaskElt(j) >= 0)
22624      return false;
22625
22626  return true;
22627}
22628
22629/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
22630/// same as extracting the low 128-bit part of 256-bit vector and then
22631/// inserting the result into the high part of a new 256-bit vector
22632static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
22633  EVT VT = SVOp->getValueType(0);
22634  unsigned NumElems = VT.getVectorNumElements();
22635
22636  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
22637  for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j)
22638    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
22639        SVOp->getMaskElt(j) >= 0)
22640      return false;
22641
22642  return true;
22643}
22644
22645/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
22646static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
22647                                        TargetLowering::DAGCombinerInfo &DCI,
22648                                        const X86Subtarget* Subtarget) {
22649  SDLoc dl(N);
22650  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
22651  SDValue V1 = SVOp->getOperand(0);
22652  SDValue V2 = SVOp->getOperand(1);
22653  MVT VT = SVOp->getSimpleValueType(0);
22654  unsigned NumElems = VT.getVectorNumElements();
22655
22656  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
22657      V2.getOpcode() == ISD::CONCAT_VECTORS) {
22658    //
22659    //                   0,0,0,...
22660    //                      |
22661    //    V      UNDEF    BUILD_VECTOR    UNDEF
22662    //     \      /           \           /
22663    //  CONCAT_VECTOR         CONCAT_VECTOR
22664    //         \                  /
22665    //          \                /
22666    //          RESULT: V + zero extended
22667    //
22668    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
22669        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
22670        V1.getOperand(1).getOpcode() != ISD::UNDEF)
22671      return SDValue();
22672
22673    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
22674      return SDValue();
22675
22676    // To match the shuffle mask, the first half of the mask should
22677    // be exactly the first vector, and all the rest a splat with the
22678    // first element of the second one.
22679    for (unsigned i = 0; i != NumElems/2; ++i)
22680      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
22681          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
22682        return SDValue();
22683
22684    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
22685    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
22686      if (Ld->hasNUsesOfValue(1, 0)) {
22687        SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
22688        SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
22689        SDValue ResNode =
22690          DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops,
22691                                  Ld->getMemoryVT(),
22692                                  Ld->getPointerInfo(),
22693                                  Ld->getAlignment(),
22694                                  false/*isVolatile*/, true/*ReadMem*/,
22695                                  false/*WriteMem*/);
22696
22697        // Make sure the newly-created LOAD is in the same position as Ld in
22698        // terms of dependency. We create a TokenFactor for Ld and ResNode,
22699        // and update uses of Ld's output chain to use the TokenFactor.
22700        if (Ld->hasAnyUseOfValue(1)) {
22701          SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
22702                             SDValue(Ld, 1), SDValue(ResNode.getNode(), 1));
22703          DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), NewChain);
22704          DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(Ld, 1),
22705                                 SDValue(ResNode.getNode(), 1));
22706        }
22707
22708        return DAG.getBitcast(VT, ResNode);
22709      }
22710    }
22711
22712    // Emit a zeroed vector and insert the desired subvector on its
22713    // first half.
22714    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
22715    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl);
22716    return DCI.CombineTo(N, InsV);
22717  }
22718
22719  //===--------------------------------------------------------------------===//
22720  // Combine some shuffles into subvector extracts and inserts:
22721  //
22722
22723  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
22724  if (isShuffleHigh128VectorInsertLow(SVOp)) {
22725    SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl);
22726    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl);
22727    return DCI.CombineTo(N, InsV);
22728  }
22729
22730  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
22731  if (isShuffleLow128VectorInsertHigh(SVOp)) {
22732    SDValue V = Extract128BitVector(V1, 0, DAG, dl);
22733    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl);
22734    return DCI.CombineTo(N, InsV);
22735  }
22736
22737  return SDValue();
22738}
22739
22740/// \brief Combine an arbitrary chain of shuffles into a single instruction if
22741/// possible.
22742///
22743/// This is the leaf of the recursive combinine below. When we have found some
22744/// chain of single-use x86 shuffle instructions and accumulated the combined
22745/// shuffle mask represented by them, this will try to pattern match that mask
22746/// into either a single instruction if there is a special purpose instruction
22747/// for this operation, or into a PSHUFB instruction which is a fully general
22748/// instruction but should only be used to replace chains over a certain depth.
22749static bool combineX86ShuffleChain(SDValue Op, SDValue Root, ArrayRef<int> Mask,
22750                                   int Depth, bool HasPSHUFB, SelectionDAG &DAG,
22751                                   TargetLowering::DAGCombinerInfo &DCI,
22752                                   const X86Subtarget *Subtarget) {
22753  assert(!Mask.empty() && "Cannot combine an empty shuffle mask!");
22754
22755  // Find the operand that enters the chain. Note that multiple uses are OK
22756  // here, we're not going to remove the operand we find.
22757  SDValue Input = Op.getOperand(0);
22758  while (Input.getOpcode() == ISD::BITCAST)
22759    Input = Input.getOperand(0);
22760
22761  MVT VT = Input.getSimpleValueType();
22762  MVT RootVT = Root.getSimpleValueType();
22763  SDLoc DL(Root);
22764
22765  if (Mask.size() == 1) {
22766    int Index = Mask[0];
22767    assert((Index >= 0 || Index == SM_SentinelUndef ||
22768            Index == SM_SentinelZero) &&
22769           "Invalid shuffle index found!");
22770
22771    // We may end up with an accumulated mask of size 1 as a result of
22772    // widening of shuffle operands (see function canWidenShuffleElements).
22773    // If the only shuffle index is equal to SM_SentinelZero then propagate
22774    // a zero vector. Otherwise, the combine shuffle mask is a no-op shuffle
22775    // mask, and therefore the entire chain of shuffles can be folded away.
22776    if (Index == SM_SentinelZero)
22777      DCI.CombineTo(Root.getNode(), getZeroVector(RootVT, Subtarget, DAG, DL));
22778    else
22779      DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Input),
22780                    /*AddTo*/ true);
22781    return true;
22782  }
22783
22784  // Use the float domain if the operand type is a floating point type.
22785  bool FloatDomain = VT.isFloatingPoint();
22786
22787  // For floating point shuffles, we don't have free copies in the shuffle
22788  // instructions or the ability to load as part of the instruction, so
22789  // canonicalize their shuffles to UNPCK or MOV variants.
22790  //
22791  // Note that even with AVX we prefer the PSHUFD form of shuffle for integer
22792  // vectors because it can have a load folded into it that UNPCK cannot. This
22793  // doesn't preclude something switching to the shorter encoding post-RA.
22794  //
22795  // FIXME: Should teach these routines about AVX vector widths.
22796  if (FloatDomain && VT.is128BitVector()) {
22797    if (Mask.equals({0, 0}) || Mask.equals({1, 1})) {
22798      bool Lo = Mask.equals({0, 0});
22799      unsigned Shuffle;
22800      MVT ShuffleVT;
22801      // Check if we have SSE3 which will let us use MOVDDUP. That instruction
22802      // is no slower than UNPCKLPD but has the option to fold the input operand
22803      // into even an unaligned memory load.
22804      if (Lo && Subtarget->hasSSE3()) {
22805        Shuffle = X86ISD::MOVDDUP;
22806        ShuffleVT = MVT::v2f64;
22807      } else {
22808        // We have MOVLHPS and MOVHLPS throughout SSE and they encode smaller
22809        // than the UNPCK variants.
22810        Shuffle = Lo ? X86ISD::MOVLHPS : X86ISD::MOVHLPS;
22811        ShuffleVT = MVT::v4f32;
22812      }
22813      if (Depth == 1 && Root->getOpcode() == Shuffle)
22814        return false; // Nothing to do!
22815      Op = DAG.getBitcast(ShuffleVT, Input);
22816      DCI.AddToWorklist(Op.getNode());
22817      if (Shuffle == X86ISD::MOVDDUP)
22818        Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op);
22819      else
22820        Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op, Op);
22821      DCI.AddToWorklist(Op.getNode());
22822      DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Op),
22823                    /*AddTo*/ true);
22824      return true;
22825    }
22826    if (Subtarget->hasSSE3() &&
22827        (Mask.equals({0, 0, 2, 2}) || Mask.equals({1, 1, 3, 3}))) {
22828      bool Lo = Mask.equals({0, 0, 2, 2});
22829      unsigned Shuffle = Lo ? X86ISD::MOVSLDUP : X86ISD::MOVSHDUP;
22830      MVT ShuffleVT = MVT::v4f32;
22831      if (Depth == 1 && Root->getOpcode() == Shuffle)
22832        return false; // Nothing to do!
22833      Op = DAG.getBitcast(ShuffleVT, Input);
22834      DCI.AddToWorklist(Op.getNode());
22835      Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op);
22836      DCI.AddToWorklist(Op.getNode());
22837      DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Op),
22838                    /*AddTo*/ true);
22839      return true;
22840    }
22841    if (Mask.equals({0, 0, 1, 1}) || Mask.equals({2, 2, 3, 3})) {
22842      bool Lo = Mask.equals({0, 0, 1, 1});
22843      unsigned Shuffle = Lo ? X86ISD::UNPCKL : X86ISD::UNPCKH;
22844      MVT ShuffleVT = MVT::v4f32;
22845      if (Depth == 1 && Root->getOpcode() == Shuffle)
22846        return false; // Nothing to do!
22847      Op = DAG.getBitcast(ShuffleVT, Input);
22848      DCI.AddToWorklist(Op.getNode());
22849      Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op, Op);
22850      DCI.AddToWorklist(Op.getNode());
22851      DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Op),
22852                    /*AddTo*/ true);
22853      return true;
22854    }
22855  }
22856
22857  // We always canonicalize the 8 x i16 and 16 x i8 shuffles into their UNPCK
22858  // variants as none of these have single-instruction variants that are
22859  // superior to the UNPCK formulation.
22860  if (!FloatDomain && VT.is128BitVector() &&
22861      (Mask.equals({0, 0, 1, 1, 2, 2, 3, 3}) ||
22862       Mask.equals({4, 4, 5, 5, 6, 6, 7, 7}) ||
22863       Mask.equals({0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7}) ||
22864       Mask.equals(
22865           {8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15}))) {
22866    bool Lo = Mask[0] == 0;
22867    unsigned Shuffle = Lo ? X86ISD::UNPCKL : X86ISD::UNPCKH;
22868    if (Depth == 1 && Root->getOpcode() == Shuffle)
22869      return false; // Nothing to do!
22870    MVT ShuffleVT;
22871    switch (Mask.size()) {
22872    case 8:
22873      ShuffleVT = MVT::v8i16;
22874      break;
22875    case 16:
22876      ShuffleVT = MVT::v16i8;
22877      break;
22878    default:
22879      llvm_unreachable("Impossible mask size!");
22880    };
22881    Op = DAG.getBitcast(ShuffleVT, Input);
22882    DCI.AddToWorklist(Op.getNode());
22883    Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op, Op);
22884    DCI.AddToWorklist(Op.getNode());
22885    DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Op),
22886                  /*AddTo*/ true);
22887    return true;
22888  }
22889
22890  // Don't try to re-form single instruction chains under any circumstances now
22891  // that we've done encoding canonicalization for them.
22892  if (Depth < 2)
22893    return false;
22894
22895  // If we have 3 or more shuffle instructions or a chain involving PSHUFB, we
22896  // can replace them with a single PSHUFB instruction profitably. Intel's
22897  // manuals suggest only using PSHUFB if doing so replacing 5 instructions, but
22898  // in practice PSHUFB tends to be *very* fast so we're more aggressive.
22899  if ((Depth >= 3 || HasPSHUFB) && Subtarget->hasSSSE3()) {
22900    SmallVector<SDValue, 16> PSHUFBMask;
22901    int NumBytes = VT.getSizeInBits() / 8;
22902    int Ratio = NumBytes / Mask.size();
22903    for (int i = 0; i < NumBytes; ++i) {
22904      if (Mask[i / Ratio] == SM_SentinelUndef) {
22905        PSHUFBMask.push_back(DAG.getUNDEF(MVT::i8));
22906        continue;
22907      }
22908      int M = Mask[i / Ratio] != SM_SentinelZero
22909                  ? Ratio * Mask[i / Ratio] + i % Ratio
22910                  : 255;
22911      PSHUFBMask.push_back(DAG.getConstant(M, DL, MVT::i8));
22912    }
22913    MVT ByteVT = MVT::getVectorVT(MVT::i8, NumBytes);
22914    Op = DAG.getBitcast(ByteVT, Input);
22915    DCI.AddToWorklist(Op.getNode());
22916    SDValue PSHUFBMaskOp =
22917        DAG.getNode(ISD::BUILD_VECTOR, DL, ByteVT, PSHUFBMask);
22918    DCI.AddToWorklist(PSHUFBMaskOp.getNode());
22919    Op = DAG.getNode(X86ISD::PSHUFB, DL, ByteVT, Op, PSHUFBMaskOp);
22920    DCI.AddToWorklist(Op.getNode());
22921    DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Op),
22922                  /*AddTo*/ true);
22923    return true;
22924  }
22925
22926  // Failed to find any combines.
22927  return false;
22928}
22929
22930/// \brief Fully generic combining of x86 shuffle instructions.
22931///
22932/// This should be the last combine run over the x86 shuffle instructions. Once
22933/// they have been fully optimized, this will recursively consider all chains
22934/// of single-use shuffle instructions, build a generic model of the cumulative
22935/// shuffle operation, and check for simpler instructions which implement this
22936/// operation. We use this primarily for two purposes:
22937///
22938/// 1) Collapse generic shuffles to specialized single instructions when
22939///    equivalent. In most cases, this is just an encoding size win, but
22940///    sometimes we will collapse multiple generic shuffles into a single
22941///    special-purpose shuffle.
22942/// 2) Look for sequences of shuffle instructions with 3 or more total
22943///    instructions, and replace them with the slightly more expensive SSSE3
22944///    PSHUFB instruction if available. We do this as the last combining step
22945///    to ensure we avoid using PSHUFB if we can implement the shuffle with
22946///    a suitable short sequence of other instructions. The PHUFB will either
22947///    use a register or have to read from memory and so is slightly (but only
22948///    slightly) more expensive than the other shuffle instructions.
22949///
22950/// Because this is inherently a quadratic operation (for each shuffle in
22951/// a chain, we recurse up the chain), the depth is limited to 8 instructions.
22952/// This should never be an issue in practice as the shuffle lowering doesn't
22953/// produce sequences of more than 8 instructions.
22954///
22955/// FIXME: We will currently miss some cases where the redundant shuffling
22956/// would simplify under the threshold for PSHUFB formation because of
22957/// combine-ordering. To fix this, we should do the redundant instruction
22958/// combining in this recursive walk.
22959static bool combineX86ShufflesRecursively(SDValue Op, SDValue Root,
22960                                          ArrayRef<int> RootMask,
22961                                          int Depth, bool HasPSHUFB,
22962                                          SelectionDAG &DAG,
22963                                          TargetLowering::DAGCombinerInfo &DCI,
22964                                          const X86Subtarget *Subtarget) {
22965  // Bound the depth of our recursive combine because this is ultimately
22966  // quadratic in nature.
22967  if (Depth > 8)
22968    return false;
22969
22970  // Directly rip through bitcasts to find the underlying operand.
22971  while (Op.getOpcode() == ISD::BITCAST && Op.getOperand(0).hasOneUse())
22972    Op = Op.getOperand(0);
22973
22974  MVT VT = Op.getSimpleValueType();
22975  if (!VT.isVector())
22976    return false; // Bail if we hit a non-vector.
22977
22978  assert(Root.getSimpleValueType().isVector() &&
22979         "Shuffles operate on vector types!");
22980  assert(VT.getSizeInBits() == Root.getSimpleValueType().getSizeInBits() &&
22981         "Can only combine shuffles of the same vector register size.");
22982
22983  if (!isTargetShuffle(Op.getOpcode()))
22984    return false;
22985  SmallVector<int, 16> OpMask;
22986  bool IsUnary;
22987  bool HaveMask = getTargetShuffleMask(Op.getNode(), VT, OpMask, IsUnary);
22988  // We only can combine unary shuffles which we can decode the mask for.
22989  if (!HaveMask || !IsUnary)
22990    return false;
22991
22992  assert(VT.getVectorNumElements() == OpMask.size() &&
22993         "Different mask size from vector size!");
22994  assert(((RootMask.size() > OpMask.size() &&
22995           RootMask.size() % OpMask.size() == 0) ||
22996          (OpMask.size() > RootMask.size() &&
22997           OpMask.size() % RootMask.size() == 0) ||
22998          OpMask.size() == RootMask.size()) &&
22999         "The smaller number of elements must divide the larger.");
23000  int RootRatio = std::max<int>(1, OpMask.size() / RootMask.size());
23001  int OpRatio = std::max<int>(1, RootMask.size() / OpMask.size());
23002  assert(((RootRatio == 1 && OpRatio == 1) ||
23003          (RootRatio == 1) != (OpRatio == 1)) &&
23004         "Must not have a ratio for both incoming and op masks!");
23005
23006  SmallVector<int, 16> Mask;
23007  Mask.reserve(std::max(OpMask.size(), RootMask.size()));
23008
23009  // Merge this shuffle operation's mask into our accumulated mask. Note that
23010  // this shuffle's mask will be the first applied to the input, followed by the
23011  // root mask to get us all the way to the root value arrangement. The reason
23012  // for this order is that we are recursing up the operation chain.
23013  for (int i = 0, e = std::max(OpMask.size(), RootMask.size()); i < e; ++i) {
23014    int RootIdx = i / RootRatio;
23015    if (RootMask[RootIdx] < 0) {
23016      // This is a zero or undef lane, we're done.
23017      Mask.push_back(RootMask[RootIdx]);
23018      continue;
23019    }
23020
23021    int RootMaskedIdx = RootMask[RootIdx] * RootRatio + i % RootRatio;
23022    int OpIdx = RootMaskedIdx / OpRatio;
23023    if (OpMask[OpIdx] < 0) {
23024      // The incoming lanes are zero or undef, it doesn't matter which ones we
23025      // are using.
23026      Mask.push_back(OpMask[OpIdx]);
23027      continue;
23028    }
23029
23030    // Ok, we have non-zero lanes, map them through.
23031    Mask.push_back(OpMask[OpIdx] * OpRatio +
23032                   RootMaskedIdx % OpRatio);
23033  }
23034
23035  // See if we can recurse into the operand to combine more things.
23036  switch (Op.getOpcode()) {
23037  case X86ISD::PSHUFB:
23038    HasPSHUFB = true;
23039  case X86ISD::PSHUFD:
23040  case X86ISD::PSHUFHW:
23041  case X86ISD::PSHUFLW:
23042    if (Op.getOperand(0).hasOneUse() &&
23043        combineX86ShufflesRecursively(Op.getOperand(0), Root, Mask, Depth + 1,
23044                                      HasPSHUFB, DAG, DCI, Subtarget))
23045      return true;
23046    break;
23047
23048  case X86ISD::UNPCKL:
23049  case X86ISD::UNPCKH:
23050    assert(Op.getOperand(0) == Op.getOperand(1) &&
23051           "We only combine unary shuffles!");
23052    // We can't check for single use, we have to check that this shuffle is the
23053    // only user.
23054    if (Op->isOnlyUserOf(Op.getOperand(0).getNode()) &&
23055        combineX86ShufflesRecursively(Op.getOperand(0), Root, Mask, Depth + 1,
23056                                      HasPSHUFB, DAG, DCI, Subtarget))
23057      return true;
23058    break;
23059  }
23060
23061  // Minor canonicalization of the accumulated shuffle mask to make it easier
23062  // to match below. All this does is detect masks with squential pairs of
23063  // elements, and shrink them to the half-width mask. It does this in a loop
23064  // so it will reduce the size of the mask to the minimal width mask which
23065  // performs an equivalent shuffle.
23066  SmallVector<int, 16> WidenedMask;
23067  while (Mask.size() > 1 && canWidenShuffleElements(Mask, WidenedMask)) {
23068    Mask = std::move(WidenedMask);
23069    WidenedMask.clear();
23070  }
23071
23072  return combineX86ShuffleChain(Op, Root, Mask, Depth, HasPSHUFB, DAG, DCI,
23073                                Subtarget);
23074}
23075
23076/// \brief Get the PSHUF-style mask from PSHUF node.
23077///
23078/// This is a very minor wrapper around getTargetShuffleMask to easy forming v4
23079/// PSHUF-style masks that can be reused with such instructions.
23080static SmallVector<int, 4> getPSHUFShuffleMask(SDValue N) {
23081  MVT VT = N.getSimpleValueType();
23082  SmallVector<int, 4> Mask;
23083  bool IsUnary;
23084  bool HaveMask = getTargetShuffleMask(N.getNode(), VT, Mask, IsUnary);
23085  (void)HaveMask;
23086  assert(HaveMask);
23087
23088  // If we have more than 128-bits, only the low 128-bits of shuffle mask
23089  // matter. Check that the upper masks are repeats and remove them.
23090  if (VT.getSizeInBits() > 128) {
23091    int LaneElts = 128 / VT.getScalarSizeInBits();
23092#ifndef NDEBUG
23093    for (int i = 1, NumLanes = VT.getSizeInBits() / 128; i < NumLanes; ++i)
23094      for (int j = 0; j < LaneElts; ++j)
23095        assert(Mask[j] == Mask[i * LaneElts + j] - (LaneElts * i) &&
23096               "Mask doesn't repeat in high 128-bit lanes!");
23097#endif
23098    Mask.resize(LaneElts);
23099  }
23100
23101  switch (N.getOpcode()) {
23102  case X86ISD::PSHUFD:
23103    return Mask;
23104  case X86ISD::PSHUFLW:
23105    Mask.resize(4);
23106    return Mask;
23107  case X86ISD::PSHUFHW:
23108    Mask.erase(Mask.begin(), Mask.begin() + 4);
23109    for (int &M : Mask)
23110      M -= 4;
23111    return Mask;
23112  default:
23113    llvm_unreachable("No valid shuffle instruction found!");
23114  }
23115}
23116
23117/// \brief Search for a combinable shuffle across a chain ending in pshufd.
23118///
23119/// We walk up the chain and look for a combinable shuffle, skipping over
23120/// shuffles that we could hoist this shuffle's transformation past without
23121/// altering anything.
23122static SDValue
23123combineRedundantDWordShuffle(SDValue N, MutableArrayRef<int> Mask,
23124                             SelectionDAG &DAG,
23125                             TargetLowering::DAGCombinerInfo &DCI) {
23126  assert(N.getOpcode() == X86ISD::PSHUFD &&
23127         "Called with something other than an x86 128-bit half shuffle!");
23128  SDLoc DL(N);
23129
23130  // Walk up a single-use chain looking for a combinable shuffle. Keep a stack
23131  // of the shuffles in the chain so that we can form a fresh chain to replace
23132  // this one.
23133  SmallVector<SDValue, 8> Chain;
23134  SDValue V = N.getOperand(0);
23135  for (; V.hasOneUse(); V = V.getOperand(0)) {
23136    switch (V.getOpcode()) {
23137    default:
23138      return SDValue(); // Nothing combined!
23139
23140    case ISD::BITCAST:
23141      // Skip bitcasts as we always know the type for the target specific
23142      // instructions.
23143      continue;
23144
23145    case X86ISD::PSHUFD:
23146      // Found another dword shuffle.
23147      break;
23148
23149    case X86ISD::PSHUFLW:
23150      // Check that the low words (being shuffled) are the identity in the
23151      // dword shuffle, and the high words are self-contained.
23152      if (Mask[0] != 0 || Mask[1] != 1 ||
23153          !(Mask[2] >= 2 && Mask[2] < 4 && Mask[3] >= 2 && Mask[3] < 4))
23154        return SDValue();
23155
23156      Chain.push_back(V);
23157      continue;
23158
23159    case X86ISD::PSHUFHW:
23160      // Check that the high words (being shuffled) are the identity in the
23161      // dword shuffle, and the low words are self-contained.
23162      if (Mask[2] != 2 || Mask[3] != 3 ||
23163          !(Mask[0] >= 0 && Mask[0] < 2 && Mask[1] >= 0 && Mask[1] < 2))
23164        return SDValue();
23165
23166      Chain.push_back(V);
23167      continue;
23168
23169    case X86ISD::UNPCKL:
23170    case X86ISD::UNPCKH:
23171      // For either i8 -> i16 or i16 -> i32 unpacks, we can combine a dword
23172      // shuffle into a preceding word shuffle.
23173      if (V.getSimpleValueType().getVectorElementType() != MVT::i8 &&
23174          V.getSimpleValueType().getVectorElementType() != MVT::i16)
23175        return SDValue();
23176
23177      // Search for a half-shuffle which we can combine with.
23178      unsigned CombineOp =
23179          V.getOpcode() == X86ISD::UNPCKL ? X86ISD::PSHUFLW : X86ISD::PSHUFHW;
23180      if (V.getOperand(0) != V.getOperand(1) ||
23181          !V->isOnlyUserOf(V.getOperand(0).getNode()))
23182        return SDValue();
23183      Chain.push_back(V);
23184      V = V.getOperand(0);
23185      do {
23186        switch (V.getOpcode()) {
23187        default:
23188          return SDValue(); // Nothing to combine.
23189
23190        case X86ISD::PSHUFLW:
23191        case X86ISD::PSHUFHW:
23192          if (V.getOpcode() == CombineOp)
23193            break;
23194
23195          Chain.push_back(V);
23196
23197          // Fallthrough!
23198        case ISD::BITCAST:
23199          V = V.getOperand(0);
23200          continue;
23201        }
23202        break;
23203      } while (V.hasOneUse());
23204      break;
23205    }
23206    // Break out of the loop if we break out of the switch.
23207    break;
23208  }
23209
23210  if (!V.hasOneUse())
23211    // We fell out of the loop without finding a viable combining instruction.
23212    return SDValue();
23213
23214  // Merge this node's mask and our incoming mask.
23215  SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
23216  for (int &M : Mask)
23217    M = VMask[M];
23218  V = DAG.getNode(V.getOpcode(), DL, V.getValueType(), V.getOperand(0),
23219                  getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
23220
23221  // Rebuild the chain around this new shuffle.
23222  while (!Chain.empty()) {
23223    SDValue W = Chain.pop_back_val();
23224
23225    if (V.getValueType() != W.getOperand(0).getValueType())
23226      V = DAG.getBitcast(W.getOperand(0).getValueType(), V);
23227
23228    switch (W.getOpcode()) {
23229    default:
23230      llvm_unreachable("Only PSHUF and UNPCK instructions get here!");
23231
23232    case X86ISD::UNPCKL:
23233    case X86ISD::UNPCKH:
23234      V = DAG.getNode(W.getOpcode(), DL, W.getValueType(), V, V);
23235      break;
23236
23237    case X86ISD::PSHUFD:
23238    case X86ISD::PSHUFLW:
23239    case X86ISD::PSHUFHW:
23240      V = DAG.getNode(W.getOpcode(), DL, W.getValueType(), V, W.getOperand(1));
23241      break;
23242    }
23243  }
23244  if (V.getValueType() != N.getValueType())
23245    V = DAG.getBitcast(N.getValueType(), V);
23246
23247  // Return the new chain to replace N.
23248  return V;
23249}
23250
23251/// \brief Search for a combinable shuffle across a chain ending in pshuflw or
23252/// pshufhw.
23253///
23254/// We walk up the chain, skipping shuffles of the other half and looking
23255/// through shuffles which switch halves trying to find a shuffle of the same
23256/// pair of dwords.
23257static bool combineRedundantHalfShuffle(SDValue N, MutableArrayRef<int> Mask,
23258                                        SelectionDAG &DAG,
23259                                        TargetLowering::DAGCombinerInfo &DCI) {
23260  assert(
23261      (N.getOpcode() == X86ISD::PSHUFLW || N.getOpcode() == X86ISD::PSHUFHW) &&
23262      "Called with something other than an x86 128-bit half shuffle!");
23263  SDLoc DL(N);
23264  unsigned CombineOpcode = N.getOpcode();
23265
23266  // Walk up a single-use chain looking for a combinable shuffle.
23267  SDValue V = N.getOperand(0);
23268  for (; V.hasOneUse(); V = V.getOperand(0)) {
23269    switch (V.getOpcode()) {
23270    default:
23271      return false; // Nothing combined!
23272
23273    case ISD::BITCAST:
23274      // Skip bitcasts as we always know the type for the target specific
23275      // instructions.
23276      continue;
23277
23278    case X86ISD::PSHUFLW:
23279    case X86ISD::PSHUFHW:
23280      if (V.getOpcode() == CombineOpcode)
23281        break;
23282
23283      // Other-half shuffles are no-ops.
23284      continue;
23285    }
23286    // Break out of the loop if we break out of the switch.
23287    break;
23288  }
23289
23290  if (!V.hasOneUse())
23291    // We fell out of the loop without finding a viable combining instruction.
23292    return false;
23293
23294  // Combine away the bottom node as its shuffle will be accumulated into
23295  // a preceding shuffle.
23296  DCI.CombineTo(N.getNode(), N.getOperand(0), /*AddTo*/ true);
23297
23298  // Record the old value.
23299  SDValue Old = V;
23300
23301  // Merge this node's mask and our incoming mask (adjusted to account for all
23302  // the pshufd instructions encountered).
23303  SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
23304  for (int &M : Mask)
23305    M = VMask[M];
23306  V = DAG.getNode(V.getOpcode(), DL, MVT::v8i16, V.getOperand(0),
23307                  getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
23308
23309  // Check that the shuffles didn't cancel each other out. If not, we need to
23310  // combine to the new one.
23311  if (Old != V)
23312    // Replace the combinable shuffle with the combined one, updating all users
23313    // so that we re-evaluate the chain here.
23314    DCI.CombineTo(Old.getNode(), V, /*AddTo*/ true);
23315
23316  return true;
23317}
23318
23319/// \brief Try to combine x86 target specific shuffles.
23320static SDValue PerformTargetShuffleCombine(SDValue N, SelectionDAG &DAG,
23321                                           TargetLowering::DAGCombinerInfo &DCI,
23322                                           const X86Subtarget *Subtarget) {
23323  SDLoc DL(N);
23324  MVT VT = N.getSimpleValueType();
23325  SmallVector<int, 4> Mask;
23326
23327  switch (N.getOpcode()) {
23328  case X86ISD::PSHUFD:
23329  case X86ISD::PSHUFLW:
23330  case X86ISD::PSHUFHW:
23331    Mask = getPSHUFShuffleMask(N);
23332    assert(Mask.size() == 4);
23333    break;
23334  case X86ISD::UNPCKL: {
23335    // Combine X86ISD::UNPCKL and ISD::VECTOR_SHUFFLE into X86ISD::UNPCKH, in
23336    // which X86ISD::UNPCKL has a ISD::UNDEF operand, and ISD::VECTOR_SHUFFLE
23337    // moves upper half elements into the lower half part. For example:
23338    //
23339    // t2: v16i8 = vector_shuffle<8,9,10,11,12,13,14,15,u,u,u,u,u,u,u,u> t1,
23340    //     undef:v16i8
23341    // t3: v16i8 = X86ISD::UNPCKL undef:v16i8, t2
23342    //
23343    // will be combined to:
23344    //
23345    // t3: v16i8 = X86ISD::UNPCKH undef:v16i8, t1
23346
23347    // This is only for 128-bit vectors. From SSE4.1 onward this combine may not
23348    // happen due to advanced instructions.
23349    if (!VT.is128BitVector())
23350      return SDValue();
23351
23352    auto Op0 = N.getOperand(0);
23353    auto Op1 = N.getOperand(1);
23354    if (Op0.getOpcode() == ISD::UNDEF &&
23355        Op1.getNode()->getOpcode() == ISD::VECTOR_SHUFFLE) {
23356      ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op1.getNode())->getMask();
23357
23358      unsigned NumElts = VT.getVectorNumElements();
23359      SmallVector<int, 8> ExpectedMask(NumElts, -1);
23360      std::iota(ExpectedMask.begin(), ExpectedMask.begin() + NumElts / 2,
23361                NumElts / 2);
23362
23363      auto ShufOp = Op1.getOperand(0);
23364      if (isShuffleEquivalent(Op1, ShufOp, Mask, ExpectedMask))
23365        return DAG.getNode(X86ISD::UNPCKH, DL, VT, N.getOperand(0), ShufOp);
23366    }
23367    return SDValue();
23368  }
23369  default:
23370    return SDValue();
23371  }
23372
23373  // Nuke no-op shuffles that show up after combining.
23374  if (isNoopShuffleMask(Mask))
23375    return DCI.CombineTo(N.getNode(), N.getOperand(0), /*AddTo*/ true);
23376
23377  // Look for simplifications involving one or two shuffle instructions.
23378  SDValue V = N.getOperand(0);
23379  switch (N.getOpcode()) {
23380  default:
23381    break;
23382  case X86ISD::PSHUFLW:
23383  case X86ISD::PSHUFHW:
23384    assert(VT.getVectorElementType() == MVT::i16 && "Bad word shuffle type!");
23385
23386    if (combineRedundantHalfShuffle(N, Mask, DAG, DCI))
23387      return SDValue(); // We combined away this shuffle, so we're done.
23388
23389    // See if this reduces to a PSHUFD which is no more expensive and can
23390    // combine with more operations. Note that it has to at least flip the
23391    // dwords as otherwise it would have been removed as a no-op.
23392    if (makeArrayRef(Mask).equals({2, 3, 0, 1})) {
23393      int DMask[] = {0, 1, 2, 3};
23394      int DOffset = N.getOpcode() == X86ISD::PSHUFLW ? 0 : 2;
23395      DMask[DOffset + 0] = DOffset + 1;
23396      DMask[DOffset + 1] = DOffset + 0;
23397      MVT DVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() / 2);
23398      V = DAG.getBitcast(DVT, V);
23399      DCI.AddToWorklist(V.getNode());
23400      V = DAG.getNode(X86ISD::PSHUFD, DL, DVT, V,
23401                      getV4X86ShuffleImm8ForMask(DMask, DL, DAG));
23402      DCI.AddToWorklist(V.getNode());
23403      return DAG.getBitcast(VT, V);
23404    }
23405
23406    // Look for shuffle patterns which can be implemented as a single unpack.
23407    // FIXME: This doesn't handle the location of the PSHUFD generically, and
23408    // only works when we have a PSHUFD followed by two half-shuffles.
23409    if (Mask[0] == Mask[1] && Mask[2] == Mask[3] &&
23410        (V.getOpcode() == X86ISD::PSHUFLW ||
23411         V.getOpcode() == X86ISD::PSHUFHW) &&
23412        V.getOpcode() != N.getOpcode() &&
23413        V.hasOneUse()) {
23414      SDValue D = V.getOperand(0);
23415      while (D.getOpcode() == ISD::BITCAST && D.hasOneUse())
23416        D = D.getOperand(0);
23417      if (D.getOpcode() == X86ISD::PSHUFD && D.hasOneUse()) {
23418        SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
23419        SmallVector<int, 4> DMask = getPSHUFShuffleMask(D);
23420        int NOffset = N.getOpcode() == X86ISD::PSHUFLW ? 0 : 4;
23421        int VOffset = V.getOpcode() == X86ISD::PSHUFLW ? 0 : 4;
23422        int WordMask[8];
23423        for (int i = 0; i < 4; ++i) {
23424          WordMask[i + NOffset] = Mask[i] + NOffset;
23425          WordMask[i + VOffset] = VMask[i] + VOffset;
23426        }
23427        // Map the word mask through the DWord mask.
23428        int MappedMask[8];
23429        for (int i = 0; i < 8; ++i)
23430          MappedMask[i] = 2 * DMask[WordMask[i] / 2] + WordMask[i] % 2;
23431        if (makeArrayRef(MappedMask).equals({0, 0, 1, 1, 2, 2, 3, 3}) ||
23432            makeArrayRef(MappedMask).equals({4, 4, 5, 5, 6, 6, 7, 7})) {
23433          // We can replace all three shuffles with an unpack.
23434          V = DAG.getBitcast(VT, D.getOperand(0));
23435          DCI.AddToWorklist(V.getNode());
23436          return DAG.getNode(MappedMask[0] == 0 ? X86ISD::UNPCKL
23437                                                : X86ISD::UNPCKH,
23438                             DL, VT, V, V);
23439        }
23440      }
23441    }
23442
23443    break;
23444
23445  case X86ISD::PSHUFD:
23446    if (SDValue NewN = combineRedundantDWordShuffle(N, Mask, DAG, DCI))
23447      return NewN;
23448
23449    break;
23450  }
23451
23452  return SDValue();
23453}
23454
23455/// \brief Try to combine a shuffle into a target-specific add-sub node.
23456///
23457/// We combine this directly on the abstract vector shuffle nodes so it is
23458/// easier to generically match. We also insert dummy vector shuffle nodes for
23459/// the operands which explicitly discard the lanes which are unused by this
23460/// operation to try to flow through the rest of the combiner the fact that
23461/// they're unused.
23462static SDValue combineShuffleToAddSub(SDNode *N, SelectionDAG &DAG) {
23463  SDLoc DL(N);
23464  EVT VT = N->getValueType(0);
23465
23466  // We only handle target-independent shuffles.
23467  // FIXME: It would be easy and harmless to use the target shuffle mask
23468  // extraction tool to support more.
23469  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
23470    return SDValue();
23471
23472  auto *SVN = cast<ShuffleVectorSDNode>(N);
23473  SmallVector<int, 8> Mask;
23474  for (int M : SVN->getMask())
23475    Mask.push_back(M);
23476
23477  SDValue V1 = N->getOperand(0);
23478  SDValue V2 = N->getOperand(1);
23479
23480  // We require the first shuffle operand to be the FSUB node, and the second to
23481  // be the FADD node.
23482  if (V1.getOpcode() == ISD::FADD && V2.getOpcode() == ISD::FSUB) {
23483    ShuffleVectorSDNode::commuteMask(Mask);
23484    std::swap(V1, V2);
23485  } else if (V1.getOpcode() != ISD::FSUB || V2.getOpcode() != ISD::FADD)
23486    return SDValue();
23487
23488  // If there are other uses of these operations we can't fold them.
23489  if (!V1->hasOneUse() || !V2->hasOneUse())
23490    return SDValue();
23491
23492  // Ensure that both operations have the same operands. Note that we can
23493  // commute the FADD operands.
23494  SDValue LHS = V1->getOperand(0), RHS = V1->getOperand(1);
23495  if ((V2->getOperand(0) != LHS || V2->getOperand(1) != RHS) &&
23496      (V2->getOperand(0) != RHS || V2->getOperand(1) != LHS))
23497    return SDValue();
23498
23499  // We're looking for blends between FADD and FSUB nodes. We insist on these
23500  // nodes being lined up in a specific expected pattern.
23501  if (!(isShuffleEquivalent(V1, V2, Mask, {0, 3}) ||
23502        isShuffleEquivalent(V1, V2, Mask, {0, 5, 2, 7}) ||
23503        isShuffleEquivalent(V1, V2, Mask, {0, 9, 2, 11, 4, 13, 6, 15})))
23504    return SDValue();
23505
23506  // Only specific types are legal at this point, assert so we notice if and
23507  // when these change.
23508  assert((VT == MVT::v4f32 || VT == MVT::v2f64 || VT == MVT::v8f32 ||
23509          VT == MVT::v4f64) &&
23510         "Unknown vector type encountered!");
23511
23512  return DAG.getNode(X86ISD::ADDSUB, DL, VT, LHS, RHS);
23513}
23514
23515/// PerformShuffleCombine - Performs several different shuffle combines.
23516static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
23517                                     TargetLowering::DAGCombinerInfo &DCI,
23518                                     const X86Subtarget *Subtarget) {
23519  SDLoc dl(N);
23520  SDValue N0 = N->getOperand(0);
23521  SDValue N1 = N->getOperand(1);
23522  EVT VT = N->getValueType(0);
23523
23524  // Don't create instructions with illegal types after legalize types has run.
23525  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
23526  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
23527    return SDValue();
23528
23529  // If we have legalized the vector types, look for blends of FADD and FSUB
23530  // nodes that we can fuse into an ADDSUB node.
23531  if (TLI.isTypeLegal(VT) && Subtarget->hasSSE3())
23532    if (SDValue AddSub = combineShuffleToAddSub(N, DAG))
23533      return AddSub;
23534
23535  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
23536  if (TLI.isTypeLegal(VT) && Subtarget->hasFp256() && VT.is256BitVector() &&
23537      N->getOpcode() == ISD::VECTOR_SHUFFLE)
23538    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
23539
23540  // During Type Legalization, when promoting illegal vector types,
23541  // the backend might introduce new shuffle dag nodes and bitcasts.
23542  //
23543  // This code performs the following transformation:
23544  // fold: (shuffle (bitcast (BINOP A, B)), Undef, <Mask>) ->
23545  //       (shuffle (BINOP (bitcast A), (bitcast B)), Undef, <Mask>)
23546  //
23547  // We do this only if both the bitcast and the BINOP dag nodes have
23548  // one use. Also, perform this transformation only if the new binary
23549  // operation is legal. This is to avoid introducing dag nodes that
23550  // potentially need to be further expanded (or custom lowered) into a
23551  // less optimal sequence of dag nodes.
23552  if (!DCI.isBeforeLegalize() && DCI.isBeforeLegalizeOps() &&
23553      N1.getOpcode() == ISD::UNDEF && N0.hasOneUse() &&
23554      N0.getOpcode() == ISD::BITCAST) {
23555    SDValue BC0 = N0.getOperand(0);
23556    EVT SVT = BC0.getValueType();
23557    unsigned Opcode = BC0.getOpcode();
23558    unsigned NumElts = VT.getVectorNumElements();
23559
23560    if (BC0.hasOneUse() && SVT.isVector() &&
23561        SVT.getVectorNumElements() * 2 == NumElts &&
23562        TLI.isOperationLegal(Opcode, VT)) {
23563      bool CanFold = false;
23564      switch (Opcode) {
23565      default : break;
23566      case ISD::ADD :
23567      case ISD::FADD :
23568      case ISD::SUB :
23569      case ISD::FSUB :
23570      case ISD::MUL :
23571      case ISD::FMUL :
23572        CanFold = true;
23573      }
23574
23575      unsigned SVTNumElts = SVT.getVectorNumElements();
23576      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
23577      for (unsigned i = 0, e = SVTNumElts; i != e && CanFold; ++i)
23578        CanFold = SVOp->getMaskElt(i) == (int)(i * 2);
23579      for (unsigned i = SVTNumElts, e = NumElts; i != e && CanFold; ++i)
23580        CanFold = SVOp->getMaskElt(i) < 0;
23581
23582      if (CanFold) {
23583        SDValue BC00 = DAG.getBitcast(VT, BC0.getOperand(0));
23584        SDValue BC01 = DAG.getBitcast(VT, BC0.getOperand(1));
23585        SDValue NewBinOp = DAG.getNode(BC0.getOpcode(), dl, VT, BC00, BC01);
23586        return DAG.getVectorShuffle(VT, dl, NewBinOp, N1, &SVOp->getMask()[0]);
23587      }
23588    }
23589  }
23590
23591  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
23592  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
23593  // consecutive, non-overlapping, and in the right order.
23594  SmallVector<SDValue, 16> Elts;
23595  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
23596    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
23597
23598  if (SDValue LD = EltsFromConsecutiveLoads(VT, Elts, dl, DAG, true))
23599    return LD;
23600
23601  if (isTargetShuffle(N->getOpcode())) {
23602    SDValue Shuffle =
23603        PerformTargetShuffleCombine(SDValue(N, 0), DAG, DCI, Subtarget);
23604    if (Shuffle.getNode())
23605      return Shuffle;
23606
23607    // Try recursively combining arbitrary sequences of x86 shuffle
23608    // instructions into higher-order shuffles. We do this after combining
23609    // specific PSHUF instruction sequences into their minimal form so that we
23610    // can evaluate how many specialized shuffle instructions are involved in
23611    // a particular chain.
23612    SmallVector<int, 1> NonceMask; // Just a placeholder.
23613    NonceMask.push_back(0);
23614    if (combineX86ShufflesRecursively(SDValue(N, 0), SDValue(N, 0), NonceMask,
23615                                      /*Depth*/ 1, /*HasPSHUFB*/ false, DAG,
23616                                      DCI, Subtarget))
23617      return SDValue(); // This routine will use CombineTo to replace N.
23618  }
23619
23620  return SDValue();
23621}
23622
23623/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
23624/// specific shuffle of a load can be folded into a single element load.
23625/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
23626/// shuffles have been custom lowered so we need to handle those here.
23627static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
23628                                         TargetLowering::DAGCombinerInfo &DCI) {
23629  if (DCI.isBeforeLegalizeOps())
23630    return SDValue();
23631
23632  SDValue InVec = N->getOperand(0);
23633  SDValue EltNo = N->getOperand(1);
23634
23635  if (!isa<ConstantSDNode>(EltNo))
23636    return SDValue();
23637
23638  EVT OriginalVT = InVec.getValueType();
23639
23640  if (InVec.getOpcode() == ISD::BITCAST) {
23641    // Don't duplicate a load with other uses.
23642    if (!InVec.hasOneUse())
23643      return SDValue();
23644    EVT BCVT = InVec.getOperand(0).getValueType();
23645    if (!BCVT.isVector() ||
23646        BCVT.getVectorNumElements() != OriginalVT.getVectorNumElements())
23647      return SDValue();
23648    InVec = InVec.getOperand(0);
23649  }
23650
23651  EVT CurrentVT = InVec.getValueType();
23652
23653  if (!isTargetShuffle(InVec.getOpcode()))
23654    return SDValue();
23655
23656  // Don't duplicate a load with other uses.
23657  if (!InVec.hasOneUse())
23658    return SDValue();
23659
23660  SmallVector<int, 16> ShuffleMask;
23661  bool UnaryShuffle;
23662  if (!getTargetShuffleMask(InVec.getNode(), CurrentVT.getSimpleVT(),
23663                            ShuffleMask, UnaryShuffle))
23664    return SDValue();
23665
23666  // Select the input vector, guarding against out of range extract vector.
23667  unsigned NumElems = CurrentVT.getVectorNumElements();
23668  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
23669  int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
23670  SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
23671                                         : InVec.getOperand(1);
23672
23673  // If inputs to shuffle are the same for both ops, then allow 2 uses
23674  unsigned AllowedUses = InVec.getNumOperands() > 1 &&
23675                         InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
23676
23677  if (LdNode.getOpcode() == ISD::BITCAST) {
23678    // Don't duplicate a load with other uses.
23679    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
23680      return SDValue();
23681
23682    AllowedUses = 1; // only allow 1 load use if we have a bitcast
23683    LdNode = LdNode.getOperand(0);
23684  }
23685
23686  if (!ISD::isNormalLoad(LdNode.getNode()))
23687    return SDValue();
23688
23689  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
23690
23691  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
23692    return SDValue();
23693
23694  EVT EltVT = N->getValueType(0);
23695  // If there's a bitcast before the shuffle, check if the load type and
23696  // alignment is valid.
23697  unsigned Align = LN0->getAlignment();
23698  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
23699  unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment(
23700      EltVT.getTypeForEVT(*DAG.getContext()));
23701
23702  if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, EltVT))
23703    return SDValue();
23704
23705  // All checks match so transform back to vector_shuffle so that DAG combiner
23706  // can finish the job
23707  SDLoc dl(N);
23708
23709  // Create shuffle node taking into account the case that its a unary shuffle
23710  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(CurrentVT)
23711                                   : InVec.getOperand(1);
23712  Shuffle = DAG.getVectorShuffle(CurrentVT, dl,
23713                                 InVec.getOperand(0), Shuffle,
23714                                 &ShuffleMask[0]);
23715  Shuffle = DAG.getBitcast(OriginalVT, Shuffle);
23716  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
23717                     EltNo);
23718}
23719
23720static SDValue PerformBITCASTCombine(SDNode *N, SelectionDAG &DAG,
23721                                     const X86Subtarget *Subtarget) {
23722  SDValue N0 = N->getOperand(0);
23723  EVT VT = N->getValueType(0);
23724
23725  // Detect bitcasts between i32 to x86mmx low word. Since MMX types are
23726  // special and don't usually play with other vector types, it's better to
23727  // handle them early to be sure we emit efficient code by avoiding
23728  // store-load conversions.
23729  if (VT == MVT::x86mmx && N0.getOpcode() == ISD::BUILD_VECTOR &&
23730      N0.getValueType() == MVT::v2i32 &&
23731      isNullConstant(N0.getOperand(1))) {
23732    SDValue N00 = N0->getOperand(0);
23733    if (N00.getValueType() == MVT::i32)
23734      return DAG.getNode(X86ISD::MMX_MOVW2D, SDLoc(N00), VT, N00);
23735  }
23736
23737  // Convert a bitcasted integer logic operation that has one bitcasted
23738  // floating-point operand and one constant operand into a floating-point
23739  // logic operation. This may create a load of the constant, but that is
23740  // cheaper than materializing the constant in an integer register and
23741  // transferring it to an SSE register or transferring the SSE operand to
23742  // integer register and back.
23743  unsigned FPOpcode;
23744  switch (N0.getOpcode()) {
23745    case ISD::AND: FPOpcode = X86ISD::FAND; break;
23746    case ISD::OR:  FPOpcode = X86ISD::FOR;  break;
23747    case ISD::XOR: FPOpcode = X86ISD::FXOR; break;
23748    default: return SDValue();
23749  }
23750  if (((Subtarget->hasSSE1() && VT == MVT::f32) ||
23751       (Subtarget->hasSSE2() && VT == MVT::f64)) &&
23752      isa<ConstantSDNode>(N0.getOperand(1)) &&
23753      N0.getOperand(0).getOpcode() == ISD::BITCAST &&
23754      N0.getOperand(0).getOperand(0).getValueType() == VT) {
23755    SDValue N000 = N0.getOperand(0).getOperand(0);
23756    SDValue FPConst = DAG.getBitcast(VT, N0.getOperand(1));
23757    return DAG.getNode(FPOpcode, SDLoc(N0), VT, N000, FPConst);
23758  }
23759
23760  return SDValue();
23761}
23762
23763/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
23764/// generation and convert it from being a bunch of shuffles and extracts
23765/// into a somewhat faster sequence. For i686, the best sequence is apparently
23766/// storing the value and loading scalars back, while for x64 we should
23767/// use 64-bit extracts and shifts.
23768static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
23769                                         TargetLowering::DAGCombinerInfo &DCI) {
23770  if (SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI))
23771    return NewOp;
23772
23773  SDValue InputVector = N->getOperand(0);
23774  SDLoc dl(InputVector);
23775  // Detect mmx to i32 conversion through a v2i32 elt extract.
23776  if (InputVector.getOpcode() == ISD::BITCAST && InputVector.hasOneUse() &&
23777      N->getValueType(0) == MVT::i32 &&
23778      InputVector.getValueType() == MVT::v2i32) {
23779
23780    // The bitcast source is a direct mmx result.
23781    SDValue MMXSrc = InputVector.getNode()->getOperand(0);
23782    if (MMXSrc.getValueType() == MVT::x86mmx)
23783      return DAG.getNode(X86ISD::MMX_MOVD2W, SDLoc(InputVector),
23784                         N->getValueType(0),
23785                         InputVector.getNode()->getOperand(0));
23786
23787    // The mmx is indirect: (i64 extract_elt (v1i64 bitcast (x86mmx ...))).
23788    if (MMXSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT && MMXSrc.hasOneUse() &&
23789        MMXSrc.getValueType() == MVT::i64) {
23790      SDValue MMXSrcOp = MMXSrc.getOperand(0);
23791      if (MMXSrcOp.hasOneUse() && MMXSrcOp.getOpcode() == ISD::BITCAST &&
23792          MMXSrcOp.getValueType() == MVT::v1i64 &&
23793          MMXSrcOp.getOperand(0).getValueType() == MVT::x86mmx)
23794        return DAG.getNode(X86ISD::MMX_MOVD2W, SDLoc(InputVector),
23795                           N->getValueType(0), MMXSrcOp.getOperand(0));
23796    }
23797  }
23798
23799  EVT VT = N->getValueType(0);
23800
23801  if (VT == MVT::i1 && isa<ConstantSDNode>(N->getOperand(1)) &&
23802      InputVector.getOpcode() == ISD::BITCAST &&
23803      isa<ConstantSDNode>(InputVector.getOperand(0))) {
23804    uint64_t ExtractedElt =
23805        cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
23806    uint64_t InputValue =
23807        cast<ConstantSDNode>(InputVector.getOperand(0))->getZExtValue();
23808    uint64_t Res = (InputValue >> ExtractedElt) & 1;
23809    return DAG.getConstant(Res, dl, MVT::i1);
23810  }
23811  // Only operate on vectors of 4 elements, where the alternative shuffling
23812  // gets to be more expensive.
23813  if (InputVector.getValueType() != MVT::v4i32)
23814    return SDValue();
23815
23816  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
23817  // single use which is a sign-extend or zero-extend, and all elements are
23818  // used.
23819  SmallVector<SDNode *, 4> Uses;
23820  unsigned ExtractedElements = 0;
23821  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
23822       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
23823    if (UI.getUse().getResNo() != InputVector.getResNo())
23824      return SDValue();
23825
23826    SDNode *Extract = *UI;
23827    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
23828      return SDValue();
23829
23830    if (Extract->getValueType(0) != MVT::i32)
23831      return SDValue();
23832    if (!Extract->hasOneUse())
23833      return SDValue();
23834    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
23835        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
23836      return SDValue();
23837    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
23838      return SDValue();
23839
23840    // Record which element was extracted.
23841    ExtractedElements |=
23842      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
23843
23844    Uses.push_back(Extract);
23845  }
23846
23847  // If not all the elements were used, this may not be worthwhile.
23848  if (ExtractedElements != 15)
23849    return SDValue();
23850
23851  // Ok, we've now decided to do the transformation.
23852  // If 64-bit shifts are legal, use the extract-shift sequence,
23853  // otherwise bounce the vector off the cache.
23854  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
23855  SDValue Vals[4];
23856
23857  if (TLI.isOperationLegal(ISD::SRA, MVT::i64)) {
23858    SDValue Cst = DAG.getBitcast(MVT::v2i64, InputVector);
23859    auto &DL = DAG.getDataLayout();
23860    EVT VecIdxTy = DAG.getTargetLoweringInfo().getVectorIdxTy(DL);
23861    SDValue BottomHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Cst,
23862      DAG.getConstant(0, dl, VecIdxTy));
23863    SDValue TopHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Cst,
23864      DAG.getConstant(1, dl, VecIdxTy));
23865
23866    SDValue ShAmt = DAG.getConstant(
23867        32, dl, DAG.getTargetLoweringInfo().getShiftAmountTy(MVT::i64, DL));
23868    Vals[0] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BottomHalf);
23869    Vals[1] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32,
23870      DAG.getNode(ISD::SRA, dl, MVT::i64, BottomHalf, ShAmt));
23871    Vals[2] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, TopHalf);
23872    Vals[3] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32,
23873      DAG.getNode(ISD::SRA, dl, MVT::i64, TopHalf, ShAmt));
23874  } else {
23875    // Store the value to a temporary stack slot.
23876    SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
23877    SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
23878      MachinePointerInfo(), false, false, 0);
23879
23880    EVT ElementType = InputVector.getValueType().getVectorElementType();
23881    unsigned EltSize = ElementType.getSizeInBits() / 8;
23882
23883    // Replace each use (extract) with a load of the appropriate element.
23884    for (unsigned i = 0; i < 4; ++i) {
23885      uint64_t Offset = EltSize * i;
23886      auto PtrVT = TLI.getPointerTy(DAG.getDataLayout());
23887      SDValue OffsetVal = DAG.getConstant(Offset, dl, PtrVT);
23888
23889      SDValue ScalarAddr =
23890          DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, OffsetVal);
23891
23892      // Load the scalar.
23893      Vals[i] = DAG.getLoad(ElementType, dl, Ch,
23894                            ScalarAddr, MachinePointerInfo(),
23895                            false, false, false, 0);
23896
23897    }
23898  }
23899
23900  // Replace the extracts
23901  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
23902    UE = Uses.end(); UI != UE; ++UI) {
23903    SDNode *Extract = *UI;
23904
23905    SDValue Idx = Extract->getOperand(1);
23906    uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
23907    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), Vals[IdxVal]);
23908  }
23909
23910  // The replacement was made in place; don't return anything.
23911  return SDValue();
23912}
23913
23914static SDValue
23915transformVSELECTtoBlendVECTOR_SHUFFLE(SDNode *N, SelectionDAG &DAG,
23916                                      const X86Subtarget *Subtarget) {
23917  SDLoc dl(N);
23918  SDValue Cond = N->getOperand(0);
23919  SDValue LHS = N->getOperand(1);
23920  SDValue RHS = N->getOperand(2);
23921
23922  if (Cond.getOpcode() == ISD::SIGN_EXTEND) {
23923    SDValue CondSrc = Cond->getOperand(0);
23924    if (CondSrc->getOpcode() == ISD::SIGN_EXTEND_INREG)
23925      Cond = CondSrc->getOperand(0);
23926  }
23927
23928  if (!ISD::isBuildVectorOfConstantSDNodes(Cond.getNode()))
23929    return SDValue();
23930
23931  // A vselect where all conditions and data are constants can be optimized into
23932  // a single vector load by SelectionDAGLegalize::ExpandBUILD_VECTOR().
23933  if (ISD::isBuildVectorOfConstantSDNodes(LHS.getNode()) &&
23934      ISD::isBuildVectorOfConstantSDNodes(RHS.getNode()))
23935    return SDValue();
23936
23937  unsigned MaskValue = 0;
23938  if (!BUILD_VECTORtoBlendMask(cast<BuildVectorSDNode>(Cond), MaskValue))
23939    return SDValue();
23940
23941  MVT VT = N->getSimpleValueType(0);
23942  unsigned NumElems = VT.getVectorNumElements();
23943  SmallVector<int, 8> ShuffleMask(NumElems, -1);
23944  for (unsigned i = 0; i < NumElems; ++i) {
23945    // Be sure we emit undef where we can.
23946    if (Cond.getOperand(i)->getOpcode() == ISD::UNDEF)
23947      ShuffleMask[i] = -1;
23948    else
23949      ShuffleMask[i] = i + NumElems * ((MaskValue >> i) & 1);
23950  }
23951
23952  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
23953  if (!TLI.isShuffleMaskLegal(ShuffleMask, VT))
23954    return SDValue();
23955  return DAG.getVectorShuffle(VT, dl, LHS, RHS, &ShuffleMask[0]);
23956}
23957
23958/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
23959/// nodes.
23960static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
23961                                    TargetLowering::DAGCombinerInfo &DCI,
23962                                    const X86Subtarget *Subtarget) {
23963  SDLoc DL(N);
23964  SDValue Cond = N->getOperand(0);
23965  // Get the LHS/RHS of the select.
23966  SDValue LHS = N->getOperand(1);
23967  SDValue RHS = N->getOperand(2);
23968  EVT VT = LHS.getValueType();
23969  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
23970
23971  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
23972  // instructions match the semantics of the common C idiom x<y?x:y but not
23973  // x<=y?x:y, because of how they handle negative zero (which can be
23974  // ignored in unsafe-math mode).
23975  // We also try to create v2f32 min/max nodes, which we later widen to v4f32.
23976  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
23977      VT != MVT::f80 && VT != MVT::f128 &&
23978      (TLI.isTypeLegal(VT) || VT == MVT::v2f32) &&
23979      (Subtarget->hasSSE2() ||
23980       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
23981    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
23982
23983    unsigned Opcode = 0;
23984    // Check for x CC y ? x : y.
23985    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
23986        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
23987      switch (CC) {
23988      default: break;
23989      case ISD::SETULT:
23990        // Converting this to a min would handle NaNs incorrectly, and swapping
23991        // the operands would cause it to handle comparisons between positive
23992        // and negative zero incorrectly.
23993        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
23994          if (!DAG.getTarget().Options.UnsafeFPMath &&
23995              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
23996            break;
23997          std::swap(LHS, RHS);
23998        }
23999        Opcode = X86ISD::FMIN;
24000        break;
24001      case ISD::SETOLE:
24002        // Converting this to a min would handle comparisons between positive
24003        // and negative zero incorrectly.
24004        if (!DAG.getTarget().Options.UnsafeFPMath &&
24005            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
24006          break;
24007        Opcode = X86ISD::FMIN;
24008        break;
24009      case ISD::SETULE:
24010        // Converting this to a min would handle both negative zeros and NaNs
24011        // incorrectly, but we can swap the operands to fix both.
24012        std::swap(LHS, RHS);
24013      case ISD::SETOLT:
24014      case ISD::SETLT:
24015      case ISD::SETLE:
24016        Opcode = X86ISD::FMIN;
24017        break;
24018
24019      case ISD::SETOGE:
24020        // Converting this to a max would handle comparisons between positive
24021        // and negative zero incorrectly.
24022        if (!DAG.getTarget().Options.UnsafeFPMath &&
24023            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
24024          break;
24025        Opcode = X86ISD::FMAX;
24026        break;
24027      case ISD::SETUGT:
24028        // Converting this to a max would handle NaNs incorrectly, and swapping
24029        // the operands would cause it to handle comparisons between positive
24030        // and negative zero incorrectly.
24031        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
24032          if (!DAG.getTarget().Options.UnsafeFPMath &&
24033              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
24034            break;
24035          std::swap(LHS, RHS);
24036        }
24037        Opcode = X86ISD::FMAX;
24038        break;
24039      case ISD::SETUGE:
24040        // Converting this to a max would handle both negative zeros and NaNs
24041        // incorrectly, but we can swap the operands to fix both.
24042        std::swap(LHS, RHS);
24043      case ISD::SETOGT:
24044      case ISD::SETGT:
24045      case ISD::SETGE:
24046        Opcode = X86ISD::FMAX;
24047        break;
24048      }
24049    // Check for x CC y ? y : x -- a min/max with reversed arms.
24050    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
24051               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
24052      switch (CC) {
24053      default: break;
24054      case ISD::SETOGE:
24055        // Converting this to a min would handle comparisons between positive
24056        // and negative zero incorrectly, and swapping the operands would
24057        // cause it to handle NaNs incorrectly.
24058        if (!DAG.getTarget().Options.UnsafeFPMath &&
24059            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
24060          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
24061            break;
24062          std::swap(LHS, RHS);
24063        }
24064        Opcode = X86ISD::FMIN;
24065        break;
24066      case ISD::SETUGT:
24067        // Converting this to a min would handle NaNs incorrectly.
24068        if (!DAG.getTarget().Options.UnsafeFPMath &&
24069            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
24070          break;
24071        Opcode = X86ISD::FMIN;
24072        break;
24073      case ISD::SETUGE:
24074        // Converting this to a min would handle both negative zeros and NaNs
24075        // incorrectly, but we can swap the operands to fix both.
24076        std::swap(LHS, RHS);
24077      case ISD::SETOGT:
24078      case ISD::SETGT:
24079      case ISD::SETGE:
24080        Opcode = X86ISD::FMIN;
24081        break;
24082
24083      case ISD::SETULT:
24084        // Converting this to a max would handle NaNs incorrectly.
24085        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
24086          break;
24087        Opcode = X86ISD::FMAX;
24088        break;
24089      case ISD::SETOLE:
24090        // Converting this to a max would handle comparisons between positive
24091        // and negative zero incorrectly, and swapping the operands would
24092        // cause it to handle NaNs incorrectly.
24093        if (!DAG.getTarget().Options.UnsafeFPMath &&
24094            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
24095          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
24096            break;
24097          std::swap(LHS, RHS);
24098        }
24099        Opcode = X86ISD::FMAX;
24100        break;
24101      case ISD::SETULE:
24102        // Converting this to a max would handle both negative zeros and NaNs
24103        // incorrectly, but we can swap the operands to fix both.
24104        std::swap(LHS, RHS);
24105      case ISD::SETOLT:
24106      case ISD::SETLT:
24107      case ISD::SETLE:
24108        Opcode = X86ISD::FMAX;
24109        break;
24110      }
24111    }
24112
24113    if (Opcode)
24114      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
24115  }
24116
24117  EVT CondVT = Cond.getValueType();
24118  if (Subtarget->hasAVX512() && VT.isVector() && CondVT.isVector() &&
24119      CondVT.getVectorElementType() == MVT::i1) {
24120    // v16i8 (select v16i1, v16i8, v16i8) does not have a proper
24121    // lowering on KNL. In this case we convert it to
24122    // v16i8 (select v16i8, v16i8, v16i8) and use AVX instruction.
24123    // The same situation for all 128 and 256-bit vectors of i8 and i16.
24124    // Since SKX these selects have a proper lowering.
24125    EVT OpVT = LHS.getValueType();
24126    if ((OpVT.is128BitVector() || OpVT.is256BitVector()) &&
24127        (OpVT.getVectorElementType() == MVT::i8 ||
24128         OpVT.getVectorElementType() == MVT::i16) &&
24129        !(Subtarget->hasBWI() && Subtarget->hasVLX())) {
24130      Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, OpVT, Cond);
24131      DCI.AddToWorklist(Cond.getNode());
24132      return DAG.getNode(N->getOpcode(), DL, OpVT, Cond, LHS, RHS);
24133    }
24134  }
24135  // If this is a select between two integer constants, try to do some
24136  // optimizations.
24137  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
24138    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
24139      // Don't do this for crazy integer types.
24140      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
24141        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
24142        // so that TrueC (the true value) is larger than FalseC.
24143        bool NeedsCondInvert = false;
24144
24145        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
24146            // Efficiently invertible.
24147            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
24148             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
24149              isa<ConstantSDNode>(Cond.getOperand(1))))) {
24150          NeedsCondInvert = true;
24151          std::swap(TrueC, FalseC);
24152        }
24153
24154        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
24155        if (FalseC->getAPIntValue() == 0 &&
24156            TrueC->getAPIntValue().isPowerOf2()) {
24157          if (NeedsCondInvert) // Invert the condition if needed.
24158            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
24159                               DAG.getConstant(1, DL, Cond.getValueType()));
24160
24161          // Zero extend the condition if needed.
24162          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
24163
24164          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
24165          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
24166                             DAG.getConstant(ShAmt, DL, MVT::i8));
24167        }
24168
24169        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
24170        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
24171          if (NeedsCondInvert) // Invert the condition if needed.
24172            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
24173                               DAG.getConstant(1, DL, Cond.getValueType()));
24174
24175          // Zero extend the condition if needed.
24176          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
24177                             FalseC->getValueType(0), Cond);
24178          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
24179                             SDValue(FalseC, 0));
24180        }
24181
24182        // Optimize cases that will turn into an LEA instruction.  This requires
24183        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
24184        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
24185          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
24186          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
24187
24188          bool isFastMultiplier = false;
24189          if (Diff < 10) {
24190            switch ((unsigned char)Diff) {
24191              default: break;
24192              case 1:  // result = add base, cond
24193              case 2:  // result = lea base(    , cond*2)
24194              case 3:  // result = lea base(cond, cond*2)
24195              case 4:  // result = lea base(    , cond*4)
24196              case 5:  // result = lea base(cond, cond*4)
24197              case 8:  // result = lea base(    , cond*8)
24198              case 9:  // result = lea base(cond, cond*8)
24199                isFastMultiplier = true;
24200                break;
24201            }
24202          }
24203
24204          if (isFastMultiplier) {
24205            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
24206            if (NeedsCondInvert) // Invert the condition if needed.
24207              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
24208                                 DAG.getConstant(1, DL, Cond.getValueType()));
24209
24210            // Zero extend the condition if needed.
24211            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
24212                               Cond);
24213            // Scale the condition by the difference.
24214            if (Diff != 1)
24215              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
24216                                 DAG.getConstant(Diff, DL,
24217                                                 Cond.getValueType()));
24218
24219            // Add the base if non-zero.
24220            if (FalseC->getAPIntValue() != 0)
24221              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
24222                                 SDValue(FalseC, 0));
24223            return Cond;
24224          }
24225        }
24226      }
24227  }
24228
24229  // Canonicalize max and min:
24230  // (x > y) ? x : y -> (x >= y) ? x : y
24231  // (x < y) ? x : y -> (x <= y) ? x : y
24232  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
24233  // the need for an extra compare
24234  // against zero. e.g.
24235  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
24236  // subl   %esi, %edi
24237  // testl  %edi, %edi
24238  // movl   $0, %eax
24239  // cmovgl %edi, %eax
24240  // =>
24241  // xorl   %eax, %eax
24242  // subl   %esi, $edi
24243  // cmovsl %eax, %edi
24244  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
24245      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
24246      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
24247    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
24248    switch (CC) {
24249    default: break;
24250    case ISD::SETLT:
24251    case ISD::SETGT: {
24252      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
24253      Cond = DAG.getSetCC(SDLoc(Cond), Cond.getValueType(),
24254                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
24255      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
24256    }
24257    }
24258  }
24259
24260  // Early exit check
24261  if (!TLI.isTypeLegal(VT))
24262    return SDValue();
24263
24264  // Match VSELECTs into subs with unsigned saturation.
24265  if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
24266      // psubus is available in SSE2 and AVX2 for i8 and i16 vectors.
24267      ((Subtarget->hasSSE2() && (VT == MVT::v16i8 || VT == MVT::v8i16)) ||
24268       (Subtarget->hasAVX2() && (VT == MVT::v32i8 || VT == MVT::v16i16)))) {
24269    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
24270
24271    // Check if one of the arms of the VSELECT is a zero vector. If it's on the
24272    // left side invert the predicate to simplify logic below.
24273    SDValue Other;
24274    if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
24275      Other = RHS;
24276      CC = ISD::getSetCCInverse(CC, true);
24277    } else if (ISD::isBuildVectorAllZeros(RHS.getNode())) {
24278      Other = LHS;
24279    }
24280
24281    if (Other.getNode() && Other->getNumOperands() == 2 &&
24282        DAG.isEqualTo(Other->getOperand(0), Cond.getOperand(0))) {
24283      SDValue OpLHS = Other->getOperand(0), OpRHS = Other->getOperand(1);
24284      SDValue CondRHS = Cond->getOperand(1);
24285
24286      // Look for a general sub with unsigned saturation first.
24287      // x >= y ? x-y : 0 --> subus x, y
24288      // x >  y ? x-y : 0 --> subus x, y
24289      if ((CC == ISD::SETUGE || CC == ISD::SETUGT) &&
24290          Other->getOpcode() == ISD::SUB && DAG.isEqualTo(OpRHS, CondRHS))
24291        return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS);
24292
24293      if (auto *OpRHSBV = dyn_cast<BuildVectorSDNode>(OpRHS))
24294        if (auto *OpRHSConst = OpRHSBV->getConstantSplatNode()) {
24295          if (auto *CondRHSBV = dyn_cast<BuildVectorSDNode>(CondRHS))
24296            if (auto *CondRHSConst = CondRHSBV->getConstantSplatNode())
24297              // If the RHS is a constant we have to reverse the const
24298              // canonicalization.
24299              // x > C-1 ? x+-C : 0 --> subus x, C
24300              if (CC == ISD::SETUGT && Other->getOpcode() == ISD::ADD &&
24301                  CondRHSConst->getAPIntValue() ==
24302                      (-OpRHSConst->getAPIntValue() - 1))
24303                return DAG.getNode(
24304                    X86ISD::SUBUS, DL, VT, OpLHS,
24305                    DAG.getConstant(-OpRHSConst->getAPIntValue(), DL, VT));
24306
24307          // Another special case: If C was a sign bit, the sub has been
24308          // canonicalized into a xor.
24309          // FIXME: Would it be better to use computeKnownBits to determine
24310          //        whether it's safe to decanonicalize the xor?
24311          // x s< 0 ? x^C : 0 --> subus x, C
24312          if (CC == ISD::SETLT && Other->getOpcode() == ISD::XOR &&
24313              ISD::isBuildVectorAllZeros(CondRHS.getNode()) &&
24314              OpRHSConst->getAPIntValue().isSignBit())
24315            // Note that we have to rebuild the RHS constant here to ensure we
24316            // don't rely on particular values of undef lanes.
24317            return DAG.getNode(
24318                X86ISD::SUBUS, DL, VT, OpLHS,
24319                DAG.getConstant(OpRHSConst->getAPIntValue(), DL, VT));
24320        }
24321    }
24322  }
24323
24324  // Simplify vector selection if condition value type matches vselect
24325  // operand type
24326  if (N->getOpcode() == ISD::VSELECT && CondVT == VT) {
24327    assert(Cond.getValueType().isVector() &&
24328           "vector select expects a vector selector!");
24329
24330    bool TValIsAllOnes = ISD::isBuildVectorAllOnes(LHS.getNode());
24331    bool FValIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
24332
24333    // Try invert the condition if true value is not all 1s and false value
24334    // is not all 0s.
24335    if (!TValIsAllOnes && !FValIsAllZeros &&
24336        // Check if the selector will be produced by CMPP*/PCMP*
24337        Cond.getOpcode() == ISD::SETCC &&
24338        // Check if SETCC has already been promoted
24339        TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT) ==
24340            CondVT) {
24341      bool TValIsAllZeros = ISD::isBuildVectorAllZeros(LHS.getNode());
24342      bool FValIsAllOnes = ISD::isBuildVectorAllOnes(RHS.getNode());
24343
24344      if (TValIsAllZeros || FValIsAllOnes) {
24345        SDValue CC = Cond.getOperand(2);
24346        ISD::CondCode NewCC =
24347          ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
24348                               Cond.getOperand(0).getValueType().isInteger());
24349        Cond = DAG.getSetCC(DL, CondVT, Cond.getOperand(0), Cond.getOperand(1), NewCC);
24350        std::swap(LHS, RHS);
24351        TValIsAllOnes = FValIsAllOnes;
24352        FValIsAllZeros = TValIsAllZeros;
24353      }
24354    }
24355
24356    if (TValIsAllOnes || FValIsAllZeros) {
24357      SDValue Ret;
24358
24359      if (TValIsAllOnes && FValIsAllZeros)
24360        Ret = Cond;
24361      else if (TValIsAllOnes)
24362        Ret =
24363            DAG.getNode(ISD::OR, DL, CondVT, Cond, DAG.getBitcast(CondVT, RHS));
24364      else if (FValIsAllZeros)
24365        Ret = DAG.getNode(ISD::AND, DL, CondVT, Cond,
24366                          DAG.getBitcast(CondVT, LHS));
24367
24368      return DAG.getBitcast(VT, Ret);
24369    }
24370  }
24371
24372  // We should generate an X86ISD::BLENDI from a vselect if its argument
24373  // is a sign_extend_inreg of an any_extend of a BUILD_VECTOR of
24374  // constants. This specific pattern gets generated when we split a
24375  // selector for a 512 bit vector in a machine without AVX512 (but with
24376  // 256-bit vectors), during legalization:
24377  //
24378  // (vselect (sign_extend (any_extend (BUILD_VECTOR)) i1) LHS RHS)
24379  //
24380  // Iff we find this pattern and the build_vectors are built from
24381  // constants, we translate the vselect into a shuffle_vector that we
24382  // know will be matched by LowerVECTOR_SHUFFLEtoBlend.
24383  if ((N->getOpcode() == ISD::VSELECT ||
24384       N->getOpcode() == X86ISD::SHRUNKBLEND) &&
24385      !DCI.isBeforeLegalize() && !VT.is512BitVector()) {
24386    SDValue Shuffle = transformVSELECTtoBlendVECTOR_SHUFFLE(N, DAG, Subtarget);
24387    if (Shuffle.getNode())
24388      return Shuffle;
24389  }
24390
24391  // If this is a *dynamic* select (non-constant condition) and we can match
24392  // this node with one of the variable blend instructions, restructure the
24393  // condition so that the blends can use the high bit of each element and use
24394  // SimplifyDemandedBits to simplify the condition operand.
24395  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
24396      !DCI.isBeforeLegalize() &&
24397      !ISD::isBuildVectorOfConstantSDNodes(Cond.getNode())) {
24398    unsigned BitWidth = Cond.getValueType().getScalarSizeInBits();
24399
24400    // Don't optimize vector selects that map to mask-registers.
24401    if (BitWidth == 1)
24402      return SDValue();
24403
24404    // We can only handle the cases where VSELECT is directly legal on the
24405    // subtarget. We custom lower VSELECT nodes with constant conditions and
24406    // this makes it hard to see whether a dynamic VSELECT will correctly
24407    // lower, so we both check the operation's status and explicitly handle the
24408    // cases where a *dynamic* blend will fail even though a constant-condition
24409    // blend could be custom lowered.
24410    // FIXME: We should find a better way to handle this class of problems.
24411    // Potentially, we should combine constant-condition vselect nodes
24412    // pre-legalization into shuffles and not mark as many types as custom
24413    // lowered.
24414    if (!TLI.isOperationLegalOrCustom(ISD::VSELECT, VT))
24415      return SDValue();
24416    // FIXME: We don't support i16-element blends currently. We could and
24417    // should support them by making *all* the bits in the condition be set
24418    // rather than just the high bit and using an i8-element blend.
24419    if (VT.getVectorElementType() == MVT::i16)
24420      return SDValue();
24421    // Dynamic blending was only available from SSE4.1 onward.
24422    if (VT.is128BitVector() && !Subtarget->hasSSE41())
24423      return SDValue();
24424    // Byte blends are only available in AVX2
24425    if (VT == MVT::v32i8 && !Subtarget->hasAVX2())
24426      return SDValue();
24427
24428    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
24429    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
24430
24431    APInt KnownZero, KnownOne;
24432    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
24433                                          DCI.isBeforeLegalizeOps());
24434    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
24435        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne,
24436                                 TLO)) {
24437      // If we changed the computation somewhere in the DAG, this change
24438      // will affect all users of Cond.
24439      // Make sure it is fine and update all the nodes so that we do not
24440      // use the generic VSELECT anymore. Otherwise, we may perform
24441      // wrong optimizations as we messed up with the actual expectation
24442      // for the vector boolean values.
24443      if (Cond != TLO.Old) {
24444        // Check all uses of that condition operand to check whether it will be
24445        // consumed by non-BLEND instructions, which may depend on all bits are
24446        // set properly.
24447        for (SDNode::use_iterator I = Cond->use_begin(), E = Cond->use_end();
24448             I != E; ++I)
24449          if (I->getOpcode() != ISD::VSELECT)
24450            // TODO: Add other opcodes eventually lowered into BLEND.
24451            return SDValue();
24452
24453        // Update all the users of the condition, before committing the change,
24454        // so that the VSELECT optimizations that expect the correct vector
24455        // boolean value will not be triggered.
24456        for (SDNode::use_iterator I = Cond->use_begin(), E = Cond->use_end();
24457             I != E; ++I)
24458          DAG.ReplaceAllUsesOfValueWith(
24459              SDValue(*I, 0),
24460              DAG.getNode(X86ISD::SHRUNKBLEND, SDLoc(*I), I->getValueType(0),
24461                          Cond, I->getOperand(1), I->getOperand(2)));
24462        DCI.CommitTargetLoweringOpt(TLO);
24463        return SDValue();
24464      }
24465      // At this point, only Cond is changed. Change the condition
24466      // just for N to keep the opportunity to optimize all other
24467      // users their own way.
24468      DAG.ReplaceAllUsesOfValueWith(
24469          SDValue(N, 0),
24470          DAG.getNode(X86ISD::SHRUNKBLEND, SDLoc(N), N->getValueType(0),
24471                      TLO.New, N->getOperand(1), N->getOperand(2)));
24472      return SDValue();
24473    }
24474  }
24475
24476  return SDValue();
24477}
24478
24479// Check whether a boolean test is testing a boolean value generated by
24480// X86ISD::SETCC. If so, return the operand of that SETCC and proper condition
24481// code.
24482//
24483// Simplify the following patterns:
24484// (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or
24485// (Op (CMP (SETCC Cond EFLAGS) 0) NEQ)
24486// to (Op EFLAGS Cond)
24487//
24488// (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or
24489// (Op (CMP (SETCC Cond EFLAGS) 1) NEQ)
24490// to (Op EFLAGS !Cond)
24491//
24492// where Op could be BRCOND or CMOV.
24493//
24494static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) {
24495  // Quit if not CMP and SUB with its value result used.
24496  if (Cmp.getOpcode() != X86ISD::CMP &&
24497      (Cmp.getOpcode() != X86ISD::SUB || Cmp.getNode()->hasAnyUseOfValue(0)))
24498      return SDValue();
24499
24500  // Quit if not used as a boolean value.
24501  if (CC != X86::COND_E && CC != X86::COND_NE)
24502    return SDValue();
24503
24504  // Check CMP operands. One of them should be 0 or 1 and the other should be
24505  // an SetCC or extended from it.
24506  SDValue Op1 = Cmp.getOperand(0);
24507  SDValue Op2 = Cmp.getOperand(1);
24508
24509  SDValue SetCC;
24510  const ConstantSDNode* C = nullptr;
24511  bool needOppositeCond = (CC == X86::COND_E);
24512  bool checkAgainstTrue = false; // Is it a comparison against 1?
24513
24514  if ((C = dyn_cast<ConstantSDNode>(Op1)))
24515    SetCC = Op2;
24516  else if ((C = dyn_cast<ConstantSDNode>(Op2)))
24517    SetCC = Op1;
24518  else // Quit if all operands are not constants.
24519    return SDValue();
24520
24521  if (C->getZExtValue() == 1) {
24522    needOppositeCond = !needOppositeCond;
24523    checkAgainstTrue = true;
24524  } else if (C->getZExtValue() != 0)
24525    // Quit if the constant is neither 0 or 1.
24526    return SDValue();
24527
24528  bool truncatedToBoolWithAnd = false;
24529  // Skip (zext $x), (trunc $x), or (and $x, 1) node.
24530  while (SetCC.getOpcode() == ISD::ZERO_EXTEND ||
24531         SetCC.getOpcode() == ISD::TRUNCATE ||
24532         SetCC.getOpcode() == ISD::AND) {
24533    if (SetCC.getOpcode() == ISD::AND) {
24534      int OpIdx = -1;
24535      if (isOneConstant(SetCC.getOperand(0)))
24536        OpIdx = 1;
24537      if (isOneConstant(SetCC.getOperand(1)))
24538        OpIdx = 0;
24539      if (OpIdx == -1)
24540        break;
24541      SetCC = SetCC.getOperand(OpIdx);
24542      truncatedToBoolWithAnd = true;
24543    } else
24544      SetCC = SetCC.getOperand(0);
24545  }
24546
24547  switch (SetCC.getOpcode()) {
24548  case X86ISD::SETCC_CARRY:
24549    // Since SETCC_CARRY gives output based on R = CF ? ~0 : 0, it's unsafe to
24550    // simplify it if the result of SETCC_CARRY is not canonicalized to 0 or 1,
24551    // i.e. it's a comparison against true but the result of SETCC_CARRY is not
24552    // truncated to i1 using 'and'.
24553    if (checkAgainstTrue && !truncatedToBoolWithAnd)
24554      break;
24555    assert(X86::CondCode(SetCC.getConstantOperandVal(0)) == X86::COND_B &&
24556           "Invalid use of SETCC_CARRY!");
24557    // FALL THROUGH
24558  case X86ISD::SETCC:
24559    // Set the condition code or opposite one if necessary.
24560    CC = X86::CondCode(SetCC.getConstantOperandVal(0));
24561    if (needOppositeCond)
24562      CC = X86::GetOppositeBranchCondition(CC);
24563    return SetCC.getOperand(1);
24564  case X86ISD::CMOV: {
24565    // Check whether false/true value has canonical one, i.e. 0 or 1.
24566    ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0));
24567    ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1));
24568    // Quit if true value is not a constant.
24569    if (!TVal)
24570      return SDValue();
24571    // Quit if false value is not a constant.
24572    if (!FVal) {
24573      SDValue Op = SetCC.getOperand(0);
24574      // Skip 'zext' or 'trunc' node.
24575      if (Op.getOpcode() == ISD::ZERO_EXTEND ||
24576          Op.getOpcode() == ISD::TRUNCATE)
24577        Op = Op.getOperand(0);
24578      // A special case for rdrand/rdseed, where 0 is set if false cond is
24579      // found.
24580      if ((Op.getOpcode() != X86ISD::RDRAND &&
24581           Op.getOpcode() != X86ISD::RDSEED) || Op.getResNo() != 0)
24582        return SDValue();
24583    }
24584    // Quit if false value is not the constant 0 or 1.
24585    bool FValIsFalse = true;
24586    if (FVal && FVal->getZExtValue() != 0) {
24587      if (FVal->getZExtValue() != 1)
24588        return SDValue();
24589      // If FVal is 1, opposite cond is needed.
24590      needOppositeCond = !needOppositeCond;
24591      FValIsFalse = false;
24592    }
24593    // Quit if TVal is not the constant opposite of FVal.
24594    if (FValIsFalse && TVal->getZExtValue() != 1)
24595      return SDValue();
24596    if (!FValIsFalse && TVal->getZExtValue() != 0)
24597      return SDValue();
24598    CC = X86::CondCode(SetCC.getConstantOperandVal(2));
24599    if (needOppositeCond)
24600      CC = X86::GetOppositeBranchCondition(CC);
24601    return SetCC.getOperand(3);
24602  }
24603  }
24604
24605  return SDValue();
24606}
24607
24608/// Check whether Cond is an AND/OR of SETCCs off of the same EFLAGS.
24609/// Match:
24610///   (X86or (X86setcc) (X86setcc))
24611///   (X86cmp (and (X86setcc) (X86setcc)), 0)
24612static bool checkBoolTestAndOrSetCCCombine(SDValue Cond, X86::CondCode &CC0,
24613                                           X86::CondCode &CC1, SDValue &Flags,
24614                                           bool &isAnd) {
24615  if (Cond->getOpcode() == X86ISD::CMP) {
24616    if (!isNullConstant(Cond->getOperand(1)))
24617      return false;
24618
24619    Cond = Cond->getOperand(0);
24620  }
24621
24622  isAnd = false;
24623
24624  SDValue SetCC0, SetCC1;
24625  switch (Cond->getOpcode()) {
24626  default: return false;
24627  case ISD::AND:
24628  case X86ISD::AND:
24629    isAnd = true;
24630    // fallthru
24631  case ISD::OR:
24632  case X86ISD::OR:
24633    SetCC0 = Cond->getOperand(0);
24634    SetCC1 = Cond->getOperand(1);
24635    break;
24636  };
24637
24638  // Make sure we have SETCC nodes, using the same flags value.
24639  if (SetCC0.getOpcode() != X86ISD::SETCC ||
24640      SetCC1.getOpcode() != X86ISD::SETCC ||
24641      SetCC0->getOperand(1) != SetCC1->getOperand(1))
24642    return false;
24643
24644  CC0 = (X86::CondCode)SetCC0->getConstantOperandVal(0);
24645  CC1 = (X86::CondCode)SetCC1->getConstantOperandVal(0);
24646  Flags = SetCC0->getOperand(1);
24647  return true;
24648}
24649
24650/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
24651static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
24652                                  TargetLowering::DAGCombinerInfo &DCI,
24653                                  const X86Subtarget *Subtarget) {
24654  SDLoc DL(N);
24655
24656  // If the flag operand isn't dead, don't touch this CMOV.
24657  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
24658    return SDValue();
24659
24660  SDValue FalseOp = N->getOperand(0);
24661  SDValue TrueOp = N->getOperand(1);
24662  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
24663  SDValue Cond = N->getOperand(3);
24664
24665  if (CC == X86::COND_E || CC == X86::COND_NE) {
24666    switch (Cond.getOpcode()) {
24667    default: break;
24668    case X86ISD::BSR:
24669    case X86ISD::BSF:
24670      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
24671      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
24672        return (CC == X86::COND_E) ? FalseOp : TrueOp;
24673    }
24674  }
24675
24676  SDValue Flags;
24677
24678  Flags = checkBoolTestSetCCCombine(Cond, CC);
24679  if (Flags.getNode() &&
24680      // Extra check as FCMOV only supports a subset of X86 cond.
24681      (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC))) {
24682    SDValue Ops[] = { FalseOp, TrueOp,
24683                      DAG.getConstant(CC, DL, MVT::i8), Flags };
24684    return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(), Ops);
24685  }
24686
24687  // If this is a select between two integer constants, try to do some
24688  // optimizations.  Note that the operands are ordered the opposite of SELECT
24689  // operands.
24690  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
24691    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
24692      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
24693      // larger than FalseC (the false value).
24694      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
24695        CC = X86::GetOppositeBranchCondition(CC);
24696        std::swap(TrueC, FalseC);
24697        std::swap(TrueOp, FalseOp);
24698      }
24699
24700      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
24701      // This is efficient for any integer data type (including i8/i16) and
24702      // shift amount.
24703      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
24704        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
24705                           DAG.getConstant(CC, DL, MVT::i8), Cond);
24706
24707        // Zero extend the condition if needed.
24708        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
24709
24710        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
24711        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
24712                           DAG.getConstant(ShAmt, DL, MVT::i8));
24713        if (N->getNumValues() == 2)  // Dead flag value?
24714          return DCI.CombineTo(N, Cond, SDValue());
24715        return Cond;
24716      }
24717
24718      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
24719      // for any integer data type, including i8/i16.
24720      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
24721        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
24722                           DAG.getConstant(CC, DL, MVT::i8), Cond);
24723
24724        // Zero extend the condition if needed.
24725        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
24726                           FalseC->getValueType(0), Cond);
24727        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
24728                           SDValue(FalseC, 0));
24729
24730        if (N->getNumValues() == 2)  // Dead flag value?
24731          return DCI.CombineTo(N, Cond, SDValue());
24732        return Cond;
24733      }
24734
24735      // Optimize cases that will turn into an LEA instruction.  This requires
24736      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
24737      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
24738        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
24739        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
24740
24741        bool isFastMultiplier = false;
24742        if (Diff < 10) {
24743          switch ((unsigned char)Diff) {
24744          default: break;
24745          case 1:  // result = add base, cond
24746          case 2:  // result = lea base(    , cond*2)
24747          case 3:  // result = lea base(cond, cond*2)
24748          case 4:  // result = lea base(    , cond*4)
24749          case 5:  // result = lea base(cond, cond*4)
24750          case 8:  // result = lea base(    , cond*8)
24751          case 9:  // result = lea base(cond, cond*8)
24752            isFastMultiplier = true;
24753            break;
24754          }
24755        }
24756
24757        if (isFastMultiplier) {
24758          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
24759          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
24760                             DAG.getConstant(CC, DL, MVT::i8), Cond);
24761          // Zero extend the condition if needed.
24762          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
24763                             Cond);
24764          // Scale the condition by the difference.
24765          if (Diff != 1)
24766            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
24767                               DAG.getConstant(Diff, DL, Cond.getValueType()));
24768
24769          // Add the base if non-zero.
24770          if (FalseC->getAPIntValue() != 0)
24771            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
24772                               SDValue(FalseC, 0));
24773          if (N->getNumValues() == 2)  // Dead flag value?
24774            return DCI.CombineTo(N, Cond, SDValue());
24775          return Cond;
24776        }
24777      }
24778    }
24779  }
24780
24781  // Handle these cases:
24782  //   (select (x != c), e, c) -> select (x != c), e, x),
24783  //   (select (x == c), c, e) -> select (x == c), x, e)
24784  // where the c is an integer constant, and the "select" is the combination
24785  // of CMOV and CMP.
24786  //
24787  // The rationale for this change is that the conditional-move from a constant
24788  // needs two instructions, however, conditional-move from a register needs
24789  // only one instruction.
24790  //
24791  // CAVEAT: By replacing a constant with a symbolic value, it may obscure
24792  //  some instruction-combining opportunities. This opt needs to be
24793  //  postponed as late as possible.
24794  //
24795  if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) {
24796    // the DCI.xxxx conditions are provided to postpone the optimization as
24797    // late as possible.
24798
24799    ConstantSDNode *CmpAgainst = nullptr;
24800    if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) &&
24801        (CmpAgainst = dyn_cast<ConstantSDNode>(Cond.getOperand(1))) &&
24802        !isa<ConstantSDNode>(Cond.getOperand(0))) {
24803
24804      if (CC == X86::COND_NE &&
24805          CmpAgainst == dyn_cast<ConstantSDNode>(FalseOp)) {
24806        CC = X86::GetOppositeBranchCondition(CC);
24807        std::swap(TrueOp, FalseOp);
24808      }
24809
24810      if (CC == X86::COND_E &&
24811          CmpAgainst == dyn_cast<ConstantSDNode>(TrueOp)) {
24812        SDValue Ops[] = { FalseOp, Cond.getOperand(0),
24813                          DAG.getConstant(CC, DL, MVT::i8), Cond };
24814        return DAG.getNode(X86ISD::CMOV, DL, N->getVTList (), Ops);
24815      }
24816    }
24817  }
24818
24819  // Fold and/or of setcc's to double CMOV:
24820  //   (CMOV F, T, ((cc1 | cc2) != 0)) -> (CMOV (CMOV F, T, cc1), T, cc2)
24821  //   (CMOV F, T, ((cc1 & cc2) != 0)) -> (CMOV (CMOV T, F, !cc1), F, !cc2)
24822  //
24823  // This combine lets us generate:
24824  //   cmovcc1 (jcc1 if we don't have CMOV)
24825  //   cmovcc2 (same)
24826  // instead of:
24827  //   setcc1
24828  //   setcc2
24829  //   and/or
24830  //   cmovne (jne if we don't have CMOV)
24831  // When we can't use the CMOV instruction, it might increase branch
24832  // mispredicts.
24833  // When we can use CMOV, or when there is no mispredict, this improves
24834  // throughput and reduces register pressure.
24835  //
24836  if (CC == X86::COND_NE) {
24837    SDValue Flags;
24838    X86::CondCode CC0, CC1;
24839    bool isAndSetCC;
24840    if (checkBoolTestAndOrSetCCCombine(Cond, CC0, CC1, Flags, isAndSetCC)) {
24841      if (isAndSetCC) {
24842        std::swap(FalseOp, TrueOp);
24843        CC0 = X86::GetOppositeBranchCondition(CC0);
24844        CC1 = X86::GetOppositeBranchCondition(CC1);
24845      }
24846
24847      SDValue LOps[] = {FalseOp, TrueOp, DAG.getConstant(CC0, DL, MVT::i8),
24848        Flags};
24849      SDValue LCMOV = DAG.getNode(X86ISD::CMOV, DL, N->getVTList(), LOps);
24850      SDValue Ops[] = {LCMOV, TrueOp, DAG.getConstant(CC1, DL, MVT::i8), Flags};
24851      SDValue CMOV = DAG.getNode(X86ISD::CMOV, DL, N->getVTList(), Ops);
24852      DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SDValue(CMOV.getNode(), 1));
24853      return CMOV;
24854    }
24855  }
24856
24857  return SDValue();
24858}
24859
24860/// PerformMulCombine - Optimize a single multiply with constant into two
24861/// in order to implement it with two cheaper instructions, e.g.
24862/// LEA + SHL, LEA + LEA.
24863static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
24864                                 TargetLowering::DAGCombinerInfo &DCI) {
24865  // An imul is usually smaller than the alternative sequence.
24866  if (DAG.getMachineFunction().getFunction()->optForMinSize())
24867    return SDValue();
24868
24869  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
24870    return SDValue();
24871
24872  EVT VT = N->getValueType(0);
24873  if (VT != MVT::i64 && VT != MVT::i32)
24874    return SDValue();
24875
24876  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
24877  if (!C)
24878    return SDValue();
24879  uint64_t MulAmt = C->getZExtValue();
24880  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
24881    return SDValue();
24882
24883  uint64_t MulAmt1 = 0;
24884  uint64_t MulAmt2 = 0;
24885  if ((MulAmt % 9) == 0) {
24886    MulAmt1 = 9;
24887    MulAmt2 = MulAmt / 9;
24888  } else if ((MulAmt % 5) == 0) {
24889    MulAmt1 = 5;
24890    MulAmt2 = MulAmt / 5;
24891  } else if ((MulAmt % 3) == 0) {
24892    MulAmt1 = 3;
24893    MulAmt2 = MulAmt / 3;
24894  }
24895
24896  SDLoc DL(N);
24897  SDValue NewMul;
24898  if (MulAmt2 &&
24899      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
24900
24901    if (isPowerOf2_64(MulAmt2) &&
24902        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
24903      // If second multiplifer is pow2, issue it first. We want the multiply by
24904      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
24905      // is an add.
24906      std::swap(MulAmt1, MulAmt2);
24907
24908    if (isPowerOf2_64(MulAmt1))
24909      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
24910                           DAG.getConstant(Log2_64(MulAmt1), DL, MVT::i8));
24911    else
24912      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
24913                           DAG.getConstant(MulAmt1, DL, VT));
24914
24915    if (isPowerOf2_64(MulAmt2))
24916      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
24917                           DAG.getConstant(Log2_64(MulAmt2), DL, MVT::i8));
24918    else
24919      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
24920                           DAG.getConstant(MulAmt2, DL, VT));
24921  }
24922
24923  if (!NewMul) {
24924    assert(MulAmt != 0 && MulAmt != (VT == MVT::i64 ? UINT64_MAX : UINT32_MAX)
24925           && "Both cases that could cause potential overflows should have "
24926              "already been handled.");
24927    if (isPowerOf2_64(MulAmt - 1))
24928      // (mul x, 2^N + 1) => (add (shl x, N), x)
24929      NewMul = DAG.getNode(ISD::ADD, DL, VT, N->getOperand(0),
24930                                DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
24931                                DAG.getConstant(Log2_64(MulAmt - 1), DL,
24932                                MVT::i8)));
24933
24934    else if (isPowerOf2_64(MulAmt + 1))
24935      // (mul x, 2^N - 1) => (sub (shl x, N), x)
24936      NewMul = DAG.getNode(ISD::SUB, DL, VT, DAG.getNode(ISD::SHL, DL, VT,
24937                                N->getOperand(0),
24938                                DAG.getConstant(Log2_64(MulAmt + 1),
24939                                DL, MVT::i8)), N->getOperand(0));
24940  }
24941
24942  if (NewMul)
24943    // Do not add new nodes to DAG combiner worklist.
24944    DCI.CombineTo(N, NewMul, false);
24945
24946  return SDValue();
24947}
24948
24949static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
24950  SDValue N0 = N->getOperand(0);
24951  SDValue N1 = N->getOperand(1);
24952  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
24953  EVT VT = N0.getValueType();
24954
24955  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
24956  // since the result of setcc_c is all zero's or all ones.
24957  if (VT.isInteger() && !VT.isVector() &&
24958      N1C && N0.getOpcode() == ISD::AND &&
24959      N0.getOperand(1).getOpcode() == ISD::Constant) {
24960    SDValue N00 = N0.getOperand(0);
24961    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
24962    APInt ShAmt = N1C->getAPIntValue();
24963    Mask = Mask.shl(ShAmt);
24964    bool MaskOK = false;
24965    // We can handle cases concerning bit-widening nodes containing setcc_c if
24966    // we carefully interrogate the mask to make sure we are semantics
24967    // preserving.
24968    // The transform is not safe if the result of C1 << C2 exceeds the bitwidth
24969    // of the underlying setcc_c operation if the setcc_c was zero extended.
24970    // Consider the following example:
24971    //   zext(setcc_c)                 -> i32 0x0000FFFF
24972    //   c1                            -> i32 0x0000FFFF
24973    //   c2                            -> i32 0x00000001
24974    //   (shl (and (setcc_c), c1), c2) -> i32 0x0001FFFE
24975    //   (and setcc_c, (c1 << c2))     -> i32 0x0000FFFE
24976    if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
24977      MaskOK = true;
24978    } else if (N00.getOpcode() == ISD::SIGN_EXTEND &&
24979               N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
24980      MaskOK = true;
24981    } else if ((N00.getOpcode() == ISD::ZERO_EXTEND ||
24982                N00.getOpcode() == ISD::ANY_EXTEND) &&
24983               N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
24984      MaskOK = Mask.isIntN(N00.getOperand(0).getValueSizeInBits());
24985    }
24986    if (MaskOK && Mask != 0) {
24987      SDLoc DL(N);
24988      return DAG.getNode(ISD::AND, DL, VT, N00, DAG.getConstant(Mask, DL, VT));
24989    }
24990  }
24991
24992  // Hardware support for vector shifts is sparse which makes us scalarize the
24993  // vector operations in many cases. Also, on sandybridge ADD is faster than
24994  // shl.
24995  // (shl V, 1) -> add V,V
24996  if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
24997    if (auto *N1SplatC = N1BV->getConstantSplatNode()) {
24998      assert(N0.getValueType().isVector() && "Invalid vector shift type");
24999      // We shift all of the values by one. In many cases we do not have
25000      // hardware support for this operation. This is better expressed as an ADD
25001      // of two values.
25002      if (N1SplatC->getAPIntValue() == 1)
25003        return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N0);
25004    }
25005
25006  return SDValue();
25007}
25008
25009static SDValue PerformSRACombine(SDNode *N, SelectionDAG &DAG) {
25010  SDValue N0 = N->getOperand(0);
25011  SDValue N1 = N->getOperand(1);
25012  EVT VT = N0.getValueType();
25013  unsigned Size = VT.getSizeInBits();
25014
25015  // fold (ashr (shl, a, [56,48,32,24,16]), SarConst)
25016  // into (shl, (sext (a), [56,48,32,24,16] - SarConst)) or
25017  // into (lshr, (sext (a), SarConst - [56,48,32,24,16]))
25018  // depending on sign of (SarConst - [56,48,32,24,16])
25019
25020  // sexts in X86 are MOVs. The MOVs have the same code size
25021  // as above SHIFTs (only SHIFT on 1 has lower code size).
25022  // However the MOVs have 2 advantages to a SHIFT:
25023  // 1. MOVs can write to a register that differs from source
25024  // 2. MOVs accept memory operands
25025
25026  if (!VT.isInteger() || VT.isVector() || N1.getOpcode() != ISD::Constant ||
25027      N0.getOpcode() != ISD::SHL || !N0.hasOneUse() ||
25028      N0.getOperand(1).getOpcode() != ISD::Constant)
25029    return SDValue();
25030
25031  SDValue N00 = N0.getOperand(0);
25032  SDValue N01 = N0.getOperand(1);
25033  APInt ShlConst = (cast<ConstantSDNode>(N01))->getAPIntValue();
25034  APInt SarConst = (cast<ConstantSDNode>(N1))->getAPIntValue();
25035  EVT CVT = N1.getValueType();
25036
25037  if (SarConst.isNegative())
25038    return SDValue();
25039
25040  for (MVT SVT : MVT::integer_valuetypes()) {
25041    unsigned ShiftSize = SVT.getSizeInBits();
25042    // skipping types without corresponding sext/zext and
25043    // ShlConst that is not one of [56,48,32,24,16]
25044    if (ShiftSize < 8 || ShiftSize > 64 || ShlConst != Size - ShiftSize)
25045      continue;
25046    SDLoc DL(N);
25047    SDValue NN =
25048        DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, N00, DAG.getValueType(SVT));
25049    SarConst = SarConst - (Size - ShiftSize);
25050    if (SarConst == 0)
25051      return NN;
25052    else if (SarConst.isNegative())
25053      return DAG.getNode(ISD::SHL, DL, VT, NN,
25054                         DAG.getConstant(-SarConst, DL, CVT));
25055    else
25056      return DAG.getNode(ISD::SRA, DL, VT, NN,
25057                         DAG.getConstant(SarConst, DL, CVT));
25058  }
25059  return SDValue();
25060}
25061
25062/// \brief Returns a vector of 0s if the node in input is a vector logical
25063/// shift by a constant amount which is known to be bigger than or equal
25064/// to the vector element size in bits.
25065static SDValue performShiftToAllZeros(SDNode *N, SelectionDAG &DAG,
25066                                      const X86Subtarget *Subtarget) {
25067  EVT VT = N->getValueType(0);
25068
25069  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
25070      (!Subtarget->hasInt256() ||
25071       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
25072    return SDValue();
25073
25074  SDValue Amt = N->getOperand(1);
25075  SDLoc DL(N);
25076  if (auto *AmtBV = dyn_cast<BuildVectorSDNode>(Amt))
25077    if (auto *AmtSplat = AmtBV->getConstantSplatNode()) {
25078      APInt ShiftAmt = AmtSplat->getAPIntValue();
25079      unsigned MaxAmount =
25080        VT.getSimpleVT().getVectorElementType().getSizeInBits();
25081
25082      // SSE2/AVX2 logical shifts always return a vector of 0s
25083      // if the shift amount is bigger than or equal to
25084      // the element size. The constant shift amount will be
25085      // encoded as a 8-bit immediate.
25086      if (ShiftAmt.trunc(8).uge(MaxAmount))
25087        return getZeroVector(VT.getSimpleVT(), Subtarget, DAG, DL);
25088    }
25089
25090  return SDValue();
25091}
25092
25093/// PerformShiftCombine - Combine shifts.
25094static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
25095                                   TargetLowering::DAGCombinerInfo &DCI,
25096                                   const X86Subtarget *Subtarget) {
25097  if (N->getOpcode() == ISD::SHL)
25098    if (SDValue V = PerformSHLCombine(N, DAG))
25099      return V;
25100
25101  if (N->getOpcode() == ISD::SRA)
25102    if (SDValue V = PerformSRACombine(N, DAG))
25103      return V;
25104
25105  // Try to fold this logical shift into a zero vector.
25106  if (N->getOpcode() != ISD::SRA)
25107    if (SDValue V = performShiftToAllZeros(N, DAG, Subtarget))
25108      return V;
25109
25110  return SDValue();
25111}
25112
25113// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
25114// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
25115// and friends.  Likewise for OR -> CMPNEQSS.
25116static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
25117                            TargetLowering::DAGCombinerInfo &DCI,
25118                            const X86Subtarget *Subtarget) {
25119  unsigned opcode;
25120
25121  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
25122  // we're requiring SSE2 for both.
25123  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
25124    SDValue N0 = N->getOperand(0);
25125    SDValue N1 = N->getOperand(1);
25126    SDValue CMP0 = N0->getOperand(1);
25127    SDValue CMP1 = N1->getOperand(1);
25128    SDLoc DL(N);
25129
25130    // The SETCCs should both refer to the same CMP.
25131    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
25132      return SDValue();
25133
25134    SDValue CMP00 = CMP0->getOperand(0);
25135    SDValue CMP01 = CMP0->getOperand(1);
25136    EVT     VT    = CMP00.getValueType();
25137
25138    if (VT == MVT::f32 || VT == MVT::f64) {
25139      bool ExpectingFlags = false;
25140      // Check for any users that want flags:
25141      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
25142           !ExpectingFlags && UI != UE; ++UI)
25143        switch (UI->getOpcode()) {
25144        default:
25145        case ISD::BR_CC:
25146        case ISD::BRCOND:
25147        case ISD::SELECT:
25148          ExpectingFlags = true;
25149          break;
25150        case ISD::CopyToReg:
25151        case ISD::SIGN_EXTEND:
25152        case ISD::ZERO_EXTEND:
25153        case ISD::ANY_EXTEND:
25154          break;
25155        }
25156
25157      if (!ExpectingFlags) {
25158        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
25159        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
25160
25161        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
25162          X86::CondCode tmp = cc0;
25163          cc0 = cc1;
25164          cc1 = tmp;
25165        }
25166
25167        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
25168            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
25169          // FIXME: need symbolic constants for these magic numbers.
25170          // See X86ATTInstPrinter.cpp:printSSECC().
25171          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
25172          if (Subtarget->hasAVX512()) {
25173            SDValue FSetCC = DAG.getNode(X86ISD::FSETCC, DL, MVT::i1, CMP00,
25174                                         CMP01,
25175                                         DAG.getConstant(x86cc, DL, MVT::i8));
25176            if (N->getValueType(0) != MVT::i1)
25177              return DAG.getNode(ISD::ZERO_EXTEND, DL, N->getValueType(0),
25178                                 FSetCC);
25179            return FSetCC;
25180          }
25181          SDValue OnesOrZeroesF = DAG.getNode(X86ISD::FSETCC, DL,
25182                                              CMP00.getValueType(), CMP00, CMP01,
25183                                              DAG.getConstant(x86cc, DL,
25184                                                              MVT::i8));
25185
25186          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
25187          MVT IntVT = is64BitFP ? MVT::i64 : MVT::i32;
25188
25189          if (is64BitFP && !Subtarget->is64Bit()) {
25190            // On a 32-bit target, we cannot bitcast the 64-bit float to a
25191            // 64-bit integer, since that's not a legal type. Since
25192            // OnesOrZeroesF is all ones of all zeroes, we don't need all the
25193            // bits, but can do this little dance to extract the lowest 32 bits
25194            // and work with those going forward.
25195            SDValue Vector64 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64,
25196                                           OnesOrZeroesF);
25197            SDValue Vector32 = DAG.getBitcast(MVT::v4f32, Vector64);
25198            OnesOrZeroesF = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32,
25199                                        Vector32, DAG.getIntPtrConstant(0, DL));
25200            IntVT = MVT::i32;
25201          }
25202
25203          SDValue OnesOrZeroesI = DAG.getBitcast(IntVT, OnesOrZeroesF);
25204          SDValue ANDed = DAG.getNode(ISD::AND, DL, IntVT, OnesOrZeroesI,
25205                                      DAG.getConstant(1, DL, IntVT));
25206          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8,
25207                                              ANDed);
25208          return OneBitOfTruth;
25209        }
25210      }
25211    }
25212  }
25213  return SDValue();
25214}
25215
25216/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
25217/// so it can be folded inside ANDNP.
25218static bool CanFoldXORWithAllOnes(const SDNode *N) {
25219  EVT VT = N->getValueType(0);
25220
25221  // Match direct AllOnes for 128 and 256-bit vectors
25222  if (ISD::isBuildVectorAllOnes(N))
25223    return true;
25224
25225  // Look through a bit convert.
25226  if (N->getOpcode() == ISD::BITCAST)
25227    N = N->getOperand(0).getNode();
25228
25229  // Sometimes the operand may come from a insert_subvector building a 256-bit
25230  // allones vector
25231  if (VT.is256BitVector() &&
25232      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
25233    SDValue V1 = N->getOperand(0);
25234    SDValue V2 = N->getOperand(1);
25235
25236    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
25237        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
25238        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
25239        ISD::isBuildVectorAllOnes(V2.getNode()))
25240      return true;
25241  }
25242
25243  return false;
25244}
25245
25246// On AVX/AVX2 the type v8i1 is legalized to v8i16, which is an XMM sized
25247// register. In most cases we actually compare or select YMM-sized registers
25248// and mixing the two types creates horrible code. This method optimizes
25249// some of the transition sequences.
25250static SDValue WidenMaskArithmetic(SDNode *N, SelectionDAG &DAG,
25251                                 TargetLowering::DAGCombinerInfo &DCI,
25252                                 const X86Subtarget *Subtarget) {
25253  EVT VT = N->getValueType(0);
25254  if (!VT.is256BitVector())
25255    return SDValue();
25256
25257  assert((N->getOpcode() == ISD::ANY_EXTEND ||
25258          N->getOpcode() == ISD::ZERO_EXTEND ||
25259          N->getOpcode() == ISD::SIGN_EXTEND) && "Invalid Node");
25260
25261  SDValue Narrow = N->getOperand(0);
25262  EVT NarrowVT = Narrow->getValueType(0);
25263  if (!NarrowVT.is128BitVector())
25264    return SDValue();
25265
25266  if (Narrow->getOpcode() != ISD::XOR &&
25267      Narrow->getOpcode() != ISD::AND &&
25268      Narrow->getOpcode() != ISD::OR)
25269    return SDValue();
25270
25271  SDValue N0  = Narrow->getOperand(0);
25272  SDValue N1  = Narrow->getOperand(1);
25273  SDLoc DL(Narrow);
25274
25275  // The Left side has to be a trunc.
25276  if (N0.getOpcode() != ISD::TRUNCATE)
25277    return SDValue();
25278
25279  // The type of the truncated inputs.
25280  EVT WideVT = N0->getOperand(0)->getValueType(0);
25281  if (WideVT != VT)
25282    return SDValue();
25283
25284  // The right side has to be a 'trunc' or a constant vector.
25285  bool RHSTrunc = N1.getOpcode() == ISD::TRUNCATE;
25286  ConstantSDNode *RHSConstSplat = nullptr;
25287  if (auto *RHSBV = dyn_cast<BuildVectorSDNode>(N1))
25288    RHSConstSplat = RHSBV->getConstantSplatNode();
25289  if (!RHSTrunc && !RHSConstSplat)
25290    return SDValue();
25291
25292  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
25293
25294  if (!TLI.isOperationLegalOrPromote(Narrow->getOpcode(), WideVT))
25295    return SDValue();
25296
25297  // Set N0 and N1 to hold the inputs to the new wide operation.
25298  N0 = N0->getOperand(0);
25299  if (RHSConstSplat) {
25300    N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT.getVectorElementType(),
25301                     SDValue(RHSConstSplat, 0));
25302    SmallVector<SDValue, 8> C(WideVT.getVectorNumElements(), N1);
25303    N1 = DAG.getNode(ISD::BUILD_VECTOR, DL, WideVT, C);
25304  } else if (RHSTrunc) {
25305    N1 = N1->getOperand(0);
25306  }
25307
25308  // Generate the wide operation.
25309  SDValue Op = DAG.getNode(Narrow->getOpcode(), DL, WideVT, N0, N1);
25310  unsigned Opcode = N->getOpcode();
25311  switch (Opcode) {
25312  case ISD::ANY_EXTEND:
25313    return Op;
25314  case ISD::ZERO_EXTEND: {
25315    unsigned InBits = NarrowVT.getScalarSizeInBits();
25316    APInt Mask = APInt::getAllOnesValue(InBits);
25317    Mask = Mask.zext(VT.getScalarSizeInBits());
25318    return DAG.getNode(ISD::AND, DL, VT,
25319                       Op, DAG.getConstant(Mask, DL, VT));
25320  }
25321  case ISD::SIGN_EXTEND:
25322    return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT,
25323                       Op, DAG.getValueType(NarrowVT));
25324  default:
25325    llvm_unreachable("Unexpected opcode");
25326  }
25327}
25328
25329static SDValue VectorZextCombine(SDNode *N, SelectionDAG &DAG,
25330                                 TargetLowering::DAGCombinerInfo &DCI,
25331                                 const X86Subtarget *Subtarget) {
25332  SDValue N0 = N->getOperand(0);
25333  SDValue N1 = N->getOperand(1);
25334  SDLoc DL(N);
25335
25336  // A vector zext_in_reg may be represented as a shuffle,
25337  // feeding into a bitcast (this represents anyext) feeding into
25338  // an and with a mask.
25339  // We'd like to try to combine that into a shuffle with zero
25340  // plus a bitcast, removing the and.
25341  if (N0.getOpcode() != ISD::BITCAST ||
25342      N0.getOperand(0).getOpcode() != ISD::VECTOR_SHUFFLE)
25343    return SDValue();
25344
25345  // The other side of the AND should be a splat of 2^C, where C
25346  // is the number of bits in the source type.
25347  if (N1.getOpcode() == ISD::BITCAST)
25348    N1 = N1.getOperand(0);
25349  if (N1.getOpcode() != ISD::BUILD_VECTOR)
25350    return SDValue();
25351  BuildVectorSDNode *Vector = cast<BuildVectorSDNode>(N1);
25352
25353  ShuffleVectorSDNode *Shuffle = cast<ShuffleVectorSDNode>(N0.getOperand(0));
25354  EVT SrcType = Shuffle->getValueType(0);
25355
25356  // We expect a single-source shuffle
25357  if (Shuffle->getOperand(1)->getOpcode() != ISD::UNDEF)
25358    return SDValue();
25359
25360  unsigned SrcSize = SrcType.getScalarSizeInBits();
25361
25362  APInt SplatValue, SplatUndef;
25363  unsigned SplatBitSize;
25364  bool HasAnyUndefs;
25365  if (!Vector->isConstantSplat(SplatValue, SplatUndef,
25366                                SplatBitSize, HasAnyUndefs))
25367    return SDValue();
25368
25369  unsigned ResSize = N1.getValueType().getScalarSizeInBits();
25370  // Make sure the splat matches the mask we expect
25371  if (SplatBitSize > ResSize ||
25372      (SplatValue + 1).exactLogBase2() != (int)SrcSize)
25373    return SDValue();
25374
25375  // Make sure the input and output size make sense
25376  if (SrcSize >= ResSize || ResSize % SrcSize)
25377    return SDValue();
25378
25379  // We expect a shuffle of the form <0, u, u, u, 1, u, u, u...>
25380  // The number of u's between each two values depends on the ratio between
25381  // the source and dest type.
25382  unsigned ZextRatio = ResSize / SrcSize;
25383  bool IsZext = true;
25384  for (unsigned i = 0; i < SrcType.getVectorNumElements(); ++i) {
25385    if (i % ZextRatio) {
25386      if (Shuffle->getMaskElt(i) > 0) {
25387        // Expected undef
25388        IsZext = false;
25389        break;
25390      }
25391    } else {
25392      if (Shuffle->getMaskElt(i) != (int)(i / ZextRatio)) {
25393        // Expected element number
25394        IsZext = false;
25395        break;
25396      }
25397    }
25398  }
25399
25400  if (!IsZext)
25401    return SDValue();
25402
25403  // Ok, perform the transformation - replace the shuffle with
25404  // a shuffle of the form <0, k, k, k, 1, k, k, k> with zero
25405  // (instead of undef) where the k elements come from the zero vector.
25406  SmallVector<int, 8> Mask;
25407  unsigned NumElems = SrcType.getVectorNumElements();
25408  for (unsigned i = 0; i < NumElems; ++i)
25409    if (i % ZextRatio)
25410      Mask.push_back(NumElems);
25411    else
25412      Mask.push_back(i / ZextRatio);
25413
25414  SDValue NewShuffle = DAG.getVectorShuffle(Shuffle->getValueType(0), DL,
25415    Shuffle->getOperand(0), DAG.getConstant(0, DL, SrcType), Mask);
25416  return DAG.getBitcast(N0.getValueType(), NewShuffle);
25417}
25418
25419/// If both input operands of a logic op are being cast from floating point
25420/// types, try to convert this into a floating point logic node to avoid
25421/// unnecessary moves from SSE to integer registers.
25422static SDValue convertIntLogicToFPLogic(SDNode *N, SelectionDAG &DAG,
25423                                        const X86Subtarget *Subtarget) {
25424  unsigned FPOpcode = ISD::DELETED_NODE;
25425  if (N->getOpcode() == ISD::AND)
25426    FPOpcode = X86ISD::FAND;
25427  else if (N->getOpcode() == ISD::OR)
25428    FPOpcode = X86ISD::FOR;
25429  else if (N->getOpcode() == ISD::XOR)
25430    FPOpcode = X86ISD::FXOR;
25431
25432  assert(FPOpcode != ISD::DELETED_NODE &&
25433         "Unexpected input node for FP logic conversion");
25434
25435  EVT VT = N->getValueType(0);
25436  SDValue N0 = N->getOperand(0);
25437  SDValue N1 = N->getOperand(1);
25438  SDLoc DL(N);
25439  if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST &&
25440      ((Subtarget->hasSSE1() && VT == MVT::i32) ||
25441       (Subtarget->hasSSE2() && VT == MVT::i64))) {
25442    SDValue N00 = N0.getOperand(0);
25443    SDValue N10 = N1.getOperand(0);
25444    EVT N00Type = N00.getValueType();
25445    EVT N10Type = N10.getValueType();
25446    if (N00Type.isFloatingPoint() && N10Type.isFloatingPoint()) {
25447      SDValue FPLogic = DAG.getNode(FPOpcode, DL, N00Type, N00, N10);
25448      return DAG.getBitcast(VT, FPLogic);
25449    }
25450  }
25451  return SDValue();
25452}
25453
25454static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
25455                                 TargetLowering::DAGCombinerInfo &DCI,
25456                                 const X86Subtarget *Subtarget) {
25457  if (DCI.isBeforeLegalizeOps())
25458    return SDValue();
25459
25460  if (SDValue Zext = VectorZextCombine(N, DAG, DCI, Subtarget))
25461    return Zext;
25462
25463  if (SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget))
25464    return R;
25465
25466  if (SDValue FPLogic = convertIntLogicToFPLogic(N, DAG, Subtarget))
25467    return FPLogic;
25468
25469  EVT VT = N->getValueType(0);
25470  SDValue N0 = N->getOperand(0);
25471  SDValue N1 = N->getOperand(1);
25472  SDLoc DL(N);
25473
25474  // Create BEXTR instructions
25475  // BEXTR is ((X >> imm) & (2**size-1))
25476  if (VT == MVT::i32 || VT == MVT::i64) {
25477    // Check for BEXTR.
25478    if ((Subtarget->hasBMI() || Subtarget->hasTBM()) &&
25479        (N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::SRL)) {
25480      ConstantSDNode *MaskNode = dyn_cast<ConstantSDNode>(N1);
25481      ConstantSDNode *ShiftNode = dyn_cast<ConstantSDNode>(N0.getOperand(1));
25482      if (MaskNode && ShiftNode) {
25483        uint64_t Mask = MaskNode->getZExtValue();
25484        uint64_t Shift = ShiftNode->getZExtValue();
25485        if (isMask_64(Mask)) {
25486          uint64_t MaskSize = countPopulation(Mask);
25487          if (Shift + MaskSize <= VT.getSizeInBits())
25488            return DAG.getNode(X86ISD::BEXTR, DL, VT, N0.getOperand(0),
25489                               DAG.getConstant(Shift | (MaskSize << 8), DL,
25490                                               VT));
25491        }
25492      }
25493    } // BEXTR
25494
25495    return SDValue();
25496  }
25497
25498  // Want to form ANDNP nodes:
25499  // 1) In the hopes of then easily combining them with OR and AND nodes
25500  //    to form PBLEND/PSIGN.
25501  // 2) To match ANDN packed intrinsics
25502  if (VT != MVT::v2i64 && VT != MVT::v4i64)
25503    return SDValue();
25504
25505  // Check LHS for vnot
25506  if (N0.getOpcode() == ISD::XOR &&
25507      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
25508      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
25509    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
25510
25511  // Check RHS for vnot
25512  if (N1.getOpcode() == ISD::XOR &&
25513      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
25514      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
25515    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
25516
25517  return SDValue();
25518}
25519
25520static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
25521                                TargetLowering::DAGCombinerInfo &DCI,
25522                                const X86Subtarget *Subtarget) {
25523  if (DCI.isBeforeLegalizeOps())
25524    return SDValue();
25525
25526  if (SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget))
25527    return R;
25528
25529  if (SDValue FPLogic = convertIntLogicToFPLogic(N, DAG, Subtarget))
25530    return FPLogic;
25531
25532  SDValue N0 = N->getOperand(0);
25533  SDValue N1 = N->getOperand(1);
25534  EVT VT = N->getValueType(0);
25535
25536  // look for psign/blend
25537  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
25538    if (!Subtarget->hasSSSE3() ||
25539        (VT == MVT::v4i64 && !Subtarget->hasInt256()))
25540      return SDValue();
25541
25542    // Canonicalize pandn to RHS
25543    if (N0.getOpcode() == X86ISD::ANDNP)
25544      std::swap(N0, N1);
25545    // or (and (m, y), (pandn m, x))
25546    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
25547      SDValue Mask = N1.getOperand(0);
25548      SDValue X    = N1.getOperand(1);
25549      SDValue Y;
25550      if (N0.getOperand(0) == Mask)
25551        Y = N0.getOperand(1);
25552      if (N0.getOperand(1) == Mask)
25553        Y = N0.getOperand(0);
25554
25555      // Check to see if the mask appeared in both the AND and ANDNP and
25556      if (!Y.getNode())
25557        return SDValue();
25558
25559      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
25560      // Look through mask bitcast.
25561      if (Mask.getOpcode() == ISD::BITCAST)
25562        Mask = Mask.getOperand(0);
25563      if (X.getOpcode() == ISD::BITCAST)
25564        X = X.getOperand(0);
25565      if (Y.getOpcode() == ISD::BITCAST)
25566        Y = Y.getOperand(0);
25567
25568      EVT MaskVT = Mask.getValueType();
25569
25570      // Validate that the Mask operand is a vector sra node.
25571      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
25572      // there is no psrai.b
25573      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
25574      unsigned SraAmt = ~0;
25575      if (Mask.getOpcode() == ISD::SRA) {
25576        if (auto *AmtBV = dyn_cast<BuildVectorSDNode>(Mask.getOperand(1)))
25577          if (auto *AmtConst = AmtBV->getConstantSplatNode())
25578            SraAmt = AmtConst->getZExtValue();
25579      } else if (Mask.getOpcode() == X86ISD::VSRAI) {
25580        SDValue SraC = Mask.getOperand(1);
25581        SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
25582      }
25583      if ((SraAmt + 1) != EltBits)
25584        return SDValue();
25585
25586      SDLoc DL(N);
25587
25588      // Now we know we at least have a plendvb with the mask val.  See if
25589      // we can form a psignb/w/d.
25590      // psign = x.type == y.type == mask.type && y = sub(0, x);
25591      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
25592          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
25593          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
25594        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
25595               "Unsupported VT for PSIGN");
25596        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
25597        return DAG.getBitcast(VT, Mask);
25598      }
25599      // PBLENDVB only available on SSE 4.1
25600      if (!Subtarget->hasSSE41())
25601        return SDValue();
25602
25603      MVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
25604
25605      X = DAG.getBitcast(BlendVT, X);
25606      Y = DAG.getBitcast(BlendVT, Y);
25607      Mask = DAG.getBitcast(BlendVT, Mask);
25608      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
25609      return DAG.getBitcast(VT, Mask);
25610    }
25611  }
25612
25613  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
25614    return SDValue();
25615
25616  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
25617  bool OptForSize = DAG.getMachineFunction().getFunction()->optForSize();
25618
25619  // SHLD/SHRD instructions have lower register pressure, but on some
25620  // platforms they have higher latency than the equivalent
25621  // series of shifts/or that would otherwise be generated.
25622  // Don't fold (or (x << c) | (y >> (64 - c))) if SHLD/SHRD instructions
25623  // have higher latencies and we are not optimizing for size.
25624  if (!OptForSize && Subtarget->isSHLDSlow())
25625    return SDValue();
25626
25627  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
25628    std::swap(N0, N1);
25629  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
25630    return SDValue();
25631  if (!N0.hasOneUse() || !N1.hasOneUse())
25632    return SDValue();
25633
25634  SDValue ShAmt0 = N0.getOperand(1);
25635  if (ShAmt0.getValueType() != MVT::i8)
25636    return SDValue();
25637  SDValue ShAmt1 = N1.getOperand(1);
25638  if (ShAmt1.getValueType() != MVT::i8)
25639    return SDValue();
25640  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
25641    ShAmt0 = ShAmt0.getOperand(0);
25642  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
25643    ShAmt1 = ShAmt1.getOperand(0);
25644
25645  SDLoc DL(N);
25646  unsigned Opc = X86ISD::SHLD;
25647  SDValue Op0 = N0.getOperand(0);
25648  SDValue Op1 = N1.getOperand(0);
25649  if (ShAmt0.getOpcode() == ISD::SUB) {
25650    Opc = X86ISD::SHRD;
25651    std::swap(Op0, Op1);
25652    std::swap(ShAmt0, ShAmt1);
25653  }
25654
25655  unsigned Bits = VT.getSizeInBits();
25656  if (ShAmt1.getOpcode() == ISD::SUB) {
25657    SDValue Sum = ShAmt1.getOperand(0);
25658    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
25659      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
25660      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
25661        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
25662      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
25663        return DAG.getNode(Opc, DL, VT,
25664                           Op0, Op1,
25665                           DAG.getNode(ISD::TRUNCATE, DL,
25666                                       MVT::i8, ShAmt0));
25667    }
25668  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
25669    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
25670    if (ShAmt0C &&
25671        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
25672      return DAG.getNode(Opc, DL, VT,
25673                         N0.getOperand(0), N1.getOperand(0),
25674                         DAG.getNode(ISD::TRUNCATE, DL,
25675                                       MVT::i8, ShAmt0));
25676  }
25677
25678  return SDValue();
25679}
25680
25681// Generate NEG and CMOV for integer abs.
25682static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
25683  EVT VT = N->getValueType(0);
25684
25685  // Since X86 does not have CMOV for 8-bit integer, we don't convert
25686  // 8-bit integer abs to NEG and CMOV.
25687  if (VT.isInteger() && VT.getSizeInBits() == 8)
25688    return SDValue();
25689
25690  SDValue N0 = N->getOperand(0);
25691  SDValue N1 = N->getOperand(1);
25692  SDLoc DL(N);
25693
25694  // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
25695  // and change it to SUB and CMOV.
25696  if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
25697      N0.getOpcode() == ISD::ADD &&
25698      N0.getOperand(1) == N1 &&
25699      N1.getOpcode() == ISD::SRA &&
25700      N1.getOperand(0) == N0.getOperand(0))
25701    if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
25702      if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) {
25703        // Generate SUB & CMOV.
25704        SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
25705                                  DAG.getConstant(0, DL, VT), N0.getOperand(0));
25706
25707        SDValue Ops[] = { N0.getOperand(0), Neg,
25708                          DAG.getConstant(X86::COND_GE, DL, MVT::i8),
25709                          SDValue(Neg.getNode(), 1) };
25710        return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue), Ops);
25711      }
25712  return SDValue();
25713}
25714
25715// Try to turn tests against the signbit in the form of:
25716//   XOR(TRUNCATE(SRL(X, size(X)-1)), 1)
25717// into:
25718//   SETGT(X, -1)
25719static SDValue foldXorTruncShiftIntoCmp(SDNode *N, SelectionDAG &DAG) {
25720  // This is only worth doing if the output type is i8.
25721  if (N->getValueType(0) != MVT::i8)
25722    return SDValue();
25723
25724  SDValue N0 = N->getOperand(0);
25725  SDValue N1 = N->getOperand(1);
25726
25727  // We should be performing an xor against a truncated shift.
25728  if (N0.getOpcode() != ISD::TRUNCATE || !N0.hasOneUse())
25729    return SDValue();
25730
25731  // Make sure we are performing an xor against one.
25732  if (!isOneConstant(N1))
25733    return SDValue();
25734
25735  // SetCC on x86 zero extends so only act on this if it's a logical shift.
25736  SDValue Shift = N0.getOperand(0);
25737  if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse())
25738    return SDValue();
25739
25740  // Make sure we are truncating from one of i16, i32 or i64.
25741  EVT ShiftTy = Shift.getValueType();
25742  if (ShiftTy != MVT::i16 && ShiftTy != MVT::i32 && ShiftTy != MVT::i64)
25743    return SDValue();
25744
25745  // Make sure the shift amount extracts the sign bit.
25746  if (!isa<ConstantSDNode>(Shift.getOperand(1)) ||
25747      Shift.getConstantOperandVal(1) != ShiftTy.getSizeInBits() - 1)
25748    return SDValue();
25749
25750  // Create a greater-than comparison against -1.
25751  // N.B. Using SETGE against 0 works but we want a canonical looking
25752  // comparison, using SETGT matches up with what TranslateX86CC.
25753  SDLoc DL(N);
25754  SDValue ShiftOp = Shift.getOperand(0);
25755  EVT ShiftOpTy = ShiftOp.getValueType();
25756  SDValue Cond = DAG.getSetCC(DL, MVT::i8, ShiftOp,
25757                              DAG.getConstant(-1, DL, ShiftOpTy), ISD::SETGT);
25758  return Cond;
25759}
25760
25761static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
25762                                 TargetLowering::DAGCombinerInfo &DCI,
25763                                 const X86Subtarget *Subtarget) {
25764  if (DCI.isBeforeLegalizeOps())
25765    return SDValue();
25766
25767  if (SDValue RV = foldXorTruncShiftIntoCmp(N, DAG))
25768    return RV;
25769
25770  if (Subtarget->hasCMov())
25771    if (SDValue RV = performIntegerAbsCombine(N, DAG))
25772      return RV;
25773
25774  if (SDValue FPLogic = convertIntLogicToFPLogic(N, DAG, Subtarget))
25775    return FPLogic;
25776
25777  return SDValue();
25778}
25779
25780/// This function detects the AVG pattern between vectors of unsigned i8/i16,
25781/// which is c = (a + b + 1) / 2, and replace this operation with the efficient
25782/// X86ISD::AVG instruction.
25783static SDValue detectAVGPattern(SDValue In, EVT VT, SelectionDAG &DAG,
25784                                const X86Subtarget *Subtarget, SDLoc DL) {
25785  if (!VT.isVector() || !VT.isSimple())
25786    return SDValue();
25787  EVT InVT = In.getValueType();
25788  unsigned NumElems = VT.getVectorNumElements();
25789
25790  EVT ScalarVT = VT.getVectorElementType();
25791  if (!((ScalarVT == MVT::i8 || ScalarVT == MVT::i16) &&
25792        isPowerOf2_32(NumElems)))
25793    return SDValue();
25794
25795  // InScalarVT is the intermediate type in AVG pattern and it should be greater
25796  // than the original input type (i8/i16).
25797  EVT InScalarVT = InVT.getVectorElementType();
25798  if (InScalarVT.getSizeInBits() <= ScalarVT.getSizeInBits())
25799    return SDValue();
25800
25801  if (Subtarget->hasAVX512()) {
25802    if (VT.getSizeInBits() > 512)
25803      return SDValue();
25804  } else if (Subtarget->hasAVX2()) {
25805    if (VT.getSizeInBits() > 256)
25806      return SDValue();
25807  } else {
25808    if (VT.getSizeInBits() > 128)
25809      return SDValue();
25810  }
25811
25812  // Detect the following pattern:
25813  //
25814  //   %1 = zext <N x i8> %a to <N x i32>
25815  //   %2 = zext <N x i8> %b to <N x i32>
25816  //   %3 = add nuw nsw <N x i32> %1, <i32 1 x N>
25817  //   %4 = add nuw nsw <N x i32> %3, %2
25818  //   %5 = lshr <N x i32> %N, <i32 1 x N>
25819  //   %6 = trunc <N x i32> %5 to <N x i8>
25820  //
25821  // In AVX512, the last instruction can also be a trunc store.
25822
25823  if (In.getOpcode() != ISD::SRL)
25824    return SDValue();
25825
25826  // A lambda checking the given SDValue is a constant vector and each element
25827  // is in the range [Min, Max].
25828  auto IsConstVectorInRange = [](SDValue V, unsigned Min, unsigned Max) {
25829    BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(V);
25830    if (!BV || !BV->isConstant())
25831      return false;
25832    for (unsigned i = 0, e = V.getNumOperands(); i < e; i++) {
25833      ConstantSDNode *C = dyn_cast<ConstantSDNode>(V.getOperand(i));
25834      if (!C)
25835        return false;
25836      uint64_t Val = C->getZExtValue();
25837      if (Val < Min || Val > Max)
25838        return false;
25839    }
25840    return true;
25841  };
25842
25843  // Check if each element of the vector is left-shifted by one.
25844  auto LHS = In.getOperand(0);
25845  auto RHS = In.getOperand(1);
25846  if (!IsConstVectorInRange(RHS, 1, 1))
25847    return SDValue();
25848  if (LHS.getOpcode() != ISD::ADD)
25849    return SDValue();
25850
25851  // Detect a pattern of a + b + 1 where the order doesn't matter.
25852  SDValue Operands[3];
25853  Operands[0] = LHS.getOperand(0);
25854  Operands[1] = LHS.getOperand(1);
25855
25856  // Take care of the case when one of the operands is a constant vector whose
25857  // element is in the range [1, 256].
25858  if (IsConstVectorInRange(Operands[1], 1, ScalarVT == MVT::i8 ? 256 : 65536) &&
25859      Operands[0].getOpcode() == ISD::ZERO_EXTEND &&
25860      Operands[0].getOperand(0).getValueType() == VT) {
25861    // The pattern is detected. Subtract one from the constant vector, then
25862    // demote it and emit X86ISD::AVG instruction.
25863    SDValue One = DAG.getConstant(1, DL, InScalarVT);
25864    SDValue Ones = DAG.getNode(ISD::BUILD_VECTOR, DL, InVT,
25865                               SmallVector<SDValue, 8>(NumElems, One));
25866    Operands[1] = DAG.getNode(ISD::SUB, DL, InVT, Operands[1], Ones);
25867    Operands[1] = DAG.getNode(ISD::TRUNCATE, DL, VT, Operands[1]);
25868    return DAG.getNode(X86ISD::AVG, DL, VT, Operands[0].getOperand(0),
25869                       Operands[1]);
25870  }
25871
25872  if (Operands[0].getOpcode() == ISD::ADD)
25873    std::swap(Operands[0], Operands[1]);
25874  else if (Operands[1].getOpcode() != ISD::ADD)
25875    return SDValue();
25876  Operands[2] = Operands[1].getOperand(0);
25877  Operands[1] = Operands[1].getOperand(1);
25878
25879  // Now we have three operands of two additions. Check that one of them is a
25880  // constant vector with ones, and the other two are promoted from i8/i16.
25881  for (int i = 0; i < 3; ++i) {
25882    if (!IsConstVectorInRange(Operands[i], 1, 1))
25883      continue;
25884    std::swap(Operands[i], Operands[2]);
25885
25886    // Check if Operands[0] and Operands[1] are results of type promotion.
25887    for (int j = 0; j < 2; ++j)
25888      if (Operands[j].getOpcode() != ISD::ZERO_EXTEND ||
25889          Operands[j].getOperand(0).getValueType() != VT)
25890        return SDValue();
25891
25892    // The pattern is detected, emit X86ISD::AVG instruction.
25893    return DAG.getNode(X86ISD::AVG, DL, VT, Operands[0].getOperand(0),
25894                       Operands[1].getOperand(0));
25895  }
25896
25897  return SDValue();
25898}
25899
25900/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
25901static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
25902                                  TargetLowering::DAGCombinerInfo &DCI,
25903                                  const X86Subtarget *Subtarget) {
25904  LoadSDNode *Ld = cast<LoadSDNode>(N);
25905  EVT RegVT = Ld->getValueType(0);
25906  EVT MemVT = Ld->getMemoryVT();
25907  SDLoc dl(Ld);
25908  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
25909
25910  // For chips with slow 32-byte unaligned loads, break the 32-byte operation
25911  // into two 16-byte operations.
25912  ISD::LoadExtType Ext = Ld->getExtensionType();
25913  bool Fast;
25914  unsigned AddressSpace = Ld->getAddressSpace();
25915  unsigned Alignment = Ld->getAlignment();
25916  if (RegVT.is256BitVector() && !DCI.isBeforeLegalizeOps() &&
25917      Ext == ISD::NON_EXTLOAD &&
25918      TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), RegVT,
25919                             AddressSpace, Alignment, &Fast) && !Fast) {
25920    unsigned NumElems = RegVT.getVectorNumElements();
25921    if (NumElems < 2)
25922      return SDValue();
25923
25924    SDValue Ptr = Ld->getBasePtr();
25925    SDValue Increment =
25926        DAG.getConstant(16, dl, TLI.getPointerTy(DAG.getDataLayout()));
25927
25928    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
25929                                  NumElems/2);
25930    SDValue Load1 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
25931                                Ld->getPointerInfo(), Ld->isVolatile(),
25932                                Ld->isNonTemporal(), Ld->isInvariant(),
25933                                Alignment);
25934    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
25935    SDValue Load2 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
25936                                Ld->getPointerInfo(), Ld->isVolatile(),
25937                                Ld->isNonTemporal(), Ld->isInvariant(),
25938                                std::min(16U, Alignment));
25939    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
25940                             Load1.getValue(1),
25941                             Load2.getValue(1));
25942
25943    SDValue NewVec = DAG.getUNDEF(RegVT);
25944    NewVec = Insert128BitVector(NewVec, Load1, 0, DAG, dl);
25945    NewVec = Insert128BitVector(NewVec, Load2, NumElems/2, DAG, dl);
25946    return DCI.CombineTo(N, NewVec, TF, true);
25947  }
25948
25949  return SDValue();
25950}
25951
25952/// PerformMLOADCombine - Resolve extending loads
25953static SDValue PerformMLOADCombine(SDNode *N, SelectionDAG &DAG,
25954                                   TargetLowering::DAGCombinerInfo &DCI,
25955                                   const X86Subtarget *Subtarget) {
25956  MaskedLoadSDNode *Mld = cast<MaskedLoadSDNode>(N);
25957  if (Mld->getExtensionType() != ISD::SEXTLOAD)
25958    return SDValue();
25959
25960  EVT VT = Mld->getValueType(0);
25961  unsigned NumElems = VT.getVectorNumElements();
25962  EVT LdVT = Mld->getMemoryVT();
25963  SDLoc dl(Mld);
25964
25965  assert(LdVT != VT && "Cannot extend to the same type");
25966  unsigned ToSz = VT.getVectorElementType().getSizeInBits();
25967  unsigned FromSz = LdVT.getVectorElementType().getSizeInBits();
25968  // From, To sizes and ElemCount must be pow of two
25969  assert (isPowerOf2_32(NumElems * FromSz * ToSz) &&
25970    "Unexpected size for extending masked load");
25971
25972  unsigned SizeRatio  = ToSz / FromSz;
25973  assert(SizeRatio * NumElems * FromSz == VT.getSizeInBits());
25974
25975  // Create a type on which we perform the shuffle
25976  EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
25977          LdVT.getScalarType(), NumElems*SizeRatio);
25978  assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
25979
25980  // Convert Src0 value
25981  SDValue WideSrc0 = DAG.getBitcast(WideVecVT, Mld->getSrc0());
25982  if (Mld->getSrc0().getOpcode() != ISD::UNDEF) {
25983    SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
25984    for (unsigned i = 0; i != NumElems; ++i)
25985      ShuffleVec[i] = i * SizeRatio;
25986
25987    // Can't shuffle using an illegal type.
25988    assert(DAG.getTargetLoweringInfo().isTypeLegal(WideVecVT) &&
25989           "WideVecVT should be legal");
25990    WideSrc0 = DAG.getVectorShuffle(WideVecVT, dl, WideSrc0,
25991                                    DAG.getUNDEF(WideVecVT), &ShuffleVec[0]);
25992  }
25993  // Prepare the new mask
25994  SDValue NewMask;
25995  SDValue Mask = Mld->getMask();
25996  if (Mask.getValueType() == VT) {
25997    // Mask and original value have the same type
25998    NewMask = DAG.getBitcast(WideVecVT, Mask);
25999    SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
26000    for (unsigned i = 0; i != NumElems; ++i)
26001      ShuffleVec[i] = i * SizeRatio;
26002    for (unsigned i = NumElems; i != NumElems * SizeRatio; ++i)
26003      ShuffleVec[i] = NumElems * SizeRatio;
26004    NewMask = DAG.getVectorShuffle(WideVecVT, dl, NewMask,
26005                                   DAG.getConstant(0, dl, WideVecVT),
26006                                   &ShuffleVec[0]);
26007  }
26008  else {
26009    assert(Mask.getValueType().getVectorElementType() == MVT::i1);
26010    unsigned WidenNumElts = NumElems*SizeRatio;
26011    unsigned MaskNumElts = VT.getVectorNumElements();
26012    EVT NewMaskVT = EVT::getVectorVT(*DAG.getContext(),  MVT::i1,
26013                                     WidenNumElts);
26014
26015    unsigned NumConcat = WidenNumElts / MaskNumElts;
26016    SmallVector<SDValue, 16> Ops(NumConcat);
26017    SDValue ZeroVal = DAG.getConstant(0, dl, Mask.getValueType());
26018    Ops[0] = Mask;
26019    for (unsigned i = 1; i != NumConcat; ++i)
26020      Ops[i] = ZeroVal;
26021
26022    NewMask = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewMaskVT, Ops);
26023  }
26024
26025  SDValue WideLd = DAG.getMaskedLoad(WideVecVT, dl, Mld->getChain(),
26026                                     Mld->getBasePtr(), NewMask, WideSrc0,
26027                                     Mld->getMemoryVT(), Mld->getMemOperand(),
26028                                     ISD::NON_EXTLOAD);
26029  SDValue NewVec = DAG.getNode(X86ISD::VSEXT, dl, VT, WideLd);
26030  return DCI.CombineTo(N, NewVec, WideLd.getValue(1), true);
26031}
26032/// PerformMSTORECombine - Resolve truncating stores
26033static SDValue PerformMSTORECombine(SDNode *N, SelectionDAG &DAG,
26034                                    const X86Subtarget *Subtarget) {
26035  MaskedStoreSDNode *Mst = cast<MaskedStoreSDNode>(N);
26036  if (!Mst->isTruncatingStore())
26037    return SDValue();
26038
26039  EVT VT = Mst->getValue().getValueType();
26040  unsigned NumElems = VT.getVectorNumElements();
26041  EVT StVT = Mst->getMemoryVT();
26042  SDLoc dl(Mst);
26043
26044  assert(StVT != VT && "Cannot truncate to the same type");
26045  unsigned FromSz = VT.getVectorElementType().getSizeInBits();
26046  unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
26047
26048  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
26049
26050  // The truncating store is legal in some cases. For example
26051  // vpmovqb, vpmovqw, vpmovqd, vpmovdb, vpmovdw
26052  // are designated for truncate store.
26053  // In this case we don't need any further transformations.
26054  if (TLI.isTruncStoreLegal(VT, StVT))
26055    return SDValue();
26056
26057  // From, To sizes and ElemCount must be pow of two
26058  assert (isPowerOf2_32(NumElems * FromSz * ToSz) &&
26059    "Unexpected size for truncating masked store");
26060  // We are going to use the original vector elt for storing.
26061  // Accumulated smaller vector elements must be a multiple of the store size.
26062  assert (((NumElems * FromSz) % ToSz) == 0 &&
26063          "Unexpected ratio for truncating masked store");
26064
26065  unsigned SizeRatio  = FromSz / ToSz;
26066  assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
26067
26068  // Create a type on which we perform the shuffle
26069  EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
26070          StVT.getScalarType(), NumElems*SizeRatio);
26071
26072  assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
26073
26074  SDValue WideVec = DAG.getBitcast(WideVecVT, Mst->getValue());
26075  SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
26076  for (unsigned i = 0; i != NumElems; ++i)
26077    ShuffleVec[i] = i * SizeRatio;
26078
26079  // Can't shuffle using an illegal type.
26080  assert(DAG.getTargetLoweringInfo().isTypeLegal(WideVecVT) &&
26081         "WideVecVT should be legal");
26082
26083  SDValue TruncatedVal = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
26084                                              DAG.getUNDEF(WideVecVT),
26085                                              &ShuffleVec[0]);
26086
26087  SDValue NewMask;
26088  SDValue Mask = Mst->getMask();
26089  if (Mask.getValueType() == VT) {
26090    // Mask and original value have the same type
26091    NewMask = DAG.getBitcast(WideVecVT, Mask);
26092    for (unsigned i = 0; i != NumElems; ++i)
26093      ShuffleVec[i] = i * SizeRatio;
26094    for (unsigned i = NumElems; i != NumElems*SizeRatio; ++i)
26095      ShuffleVec[i] = NumElems*SizeRatio;
26096    NewMask = DAG.getVectorShuffle(WideVecVT, dl, NewMask,
26097                                   DAG.getConstant(0, dl, WideVecVT),
26098                                   &ShuffleVec[0]);
26099  }
26100  else {
26101    assert(Mask.getValueType().getVectorElementType() == MVT::i1);
26102    unsigned WidenNumElts = NumElems*SizeRatio;
26103    unsigned MaskNumElts = VT.getVectorNumElements();
26104    EVT NewMaskVT = EVT::getVectorVT(*DAG.getContext(),  MVT::i1,
26105                                     WidenNumElts);
26106
26107    unsigned NumConcat = WidenNumElts / MaskNumElts;
26108    SmallVector<SDValue, 16> Ops(NumConcat);
26109    SDValue ZeroVal = DAG.getConstant(0, dl, Mask.getValueType());
26110    Ops[0] = Mask;
26111    for (unsigned i = 1; i != NumConcat; ++i)
26112      Ops[i] = ZeroVal;
26113
26114    NewMask = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewMaskVT, Ops);
26115  }
26116
26117  return DAG.getMaskedStore(Mst->getChain(), dl, TruncatedVal,
26118                            Mst->getBasePtr(), NewMask, StVT,
26119                            Mst->getMemOperand(), false);
26120}
26121/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
26122static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
26123                                   const X86Subtarget *Subtarget) {
26124  StoreSDNode *St = cast<StoreSDNode>(N);
26125  EVT VT = St->getValue().getValueType();
26126  EVT StVT = St->getMemoryVT();
26127  SDLoc dl(St);
26128  SDValue StoredVal = St->getOperand(1);
26129  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
26130
26131  // If we are saving a concatenation of two XMM registers and 32-byte stores
26132  // are slow, such as on Sandy Bridge, perform two 16-byte stores.
26133  bool Fast;
26134  unsigned AddressSpace = St->getAddressSpace();
26135  unsigned Alignment = St->getAlignment();
26136  if (VT.is256BitVector() && StVT == VT &&
26137      TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
26138                             AddressSpace, Alignment, &Fast) && !Fast) {
26139    unsigned NumElems = VT.getVectorNumElements();
26140    if (NumElems < 2)
26141      return SDValue();
26142
26143    SDValue Value0 = Extract128BitVector(StoredVal, 0, DAG, dl);
26144    SDValue Value1 = Extract128BitVector(StoredVal, NumElems/2, DAG, dl);
26145
26146    SDValue Stride =
26147        DAG.getConstant(16, dl, TLI.getPointerTy(DAG.getDataLayout()));
26148    SDValue Ptr0 = St->getBasePtr();
26149    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
26150
26151    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
26152                                St->getPointerInfo(), St->isVolatile(),
26153                                St->isNonTemporal(), Alignment);
26154    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
26155                                St->getPointerInfo(), St->isVolatile(),
26156                                St->isNonTemporal(),
26157                                std::min(16U, Alignment));
26158    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
26159  }
26160
26161  // Optimize trunc store (of multiple scalars) to shuffle and store.
26162  // First, pack all of the elements in one place. Next, store to memory
26163  // in fewer chunks.
26164  if (St->isTruncatingStore() && VT.isVector()) {
26165    // Check if we can detect an AVG pattern from the truncation. If yes,
26166    // replace the trunc store by a normal store with the result of X86ISD::AVG
26167    // instruction.
26168    SDValue Avg =
26169        detectAVGPattern(St->getValue(), St->getMemoryVT(), DAG, Subtarget, dl);
26170    if (Avg.getNode())
26171      return DAG.getStore(St->getChain(), dl, Avg, St->getBasePtr(),
26172                          St->getPointerInfo(), St->isVolatile(),
26173                          St->isNonTemporal(), St->getAlignment());
26174
26175    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
26176    unsigned NumElems = VT.getVectorNumElements();
26177    assert(StVT != VT && "Cannot truncate to the same type");
26178    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
26179    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
26180
26181    // The truncating store is legal in some cases. For example
26182    // vpmovqb, vpmovqw, vpmovqd, vpmovdb, vpmovdw
26183    // are designated for truncate store.
26184    // In this case we don't need any further transformations.
26185    if (TLI.isTruncStoreLegal(VT, StVT))
26186      return SDValue();
26187
26188    // From, To sizes and ElemCount must be pow of two
26189    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
26190    // We are going to use the original vector elt for storing.
26191    // Accumulated smaller vector elements must be a multiple of the store size.
26192    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
26193
26194    unsigned SizeRatio  = FromSz / ToSz;
26195
26196    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
26197
26198    // Create a type on which we perform the shuffle
26199    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
26200            StVT.getScalarType(), NumElems*SizeRatio);
26201
26202    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
26203
26204    SDValue WideVec = DAG.getBitcast(WideVecVT, St->getValue());
26205    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
26206    for (unsigned i = 0; i != NumElems; ++i)
26207      ShuffleVec[i] = i * SizeRatio;
26208
26209    // Can't shuffle using an illegal type.
26210    if (!TLI.isTypeLegal(WideVecVT))
26211      return SDValue();
26212
26213    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
26214                                         DAG.getUNDEF(WideVecVT),
26215                                         &ShuffleVec[0]);
26216    // At this point all of the data is stored at the bottom of the
26217    // register. We now need to save it to mem.
26218
26219    // Find the largest store unit
26220    MVT StoreType = MVT::i8;
26221    for (MVT Tp : MVT::integer_valuetypes()) {
26222      if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz)
26223        StoreType = Tp;
26224    }
26225
26226    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
26227    if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 &&
26228        (64 <= NumElems * ToSz))
26229      StoreType = MVT::f64;
26230
26231    // Bitcast the original vector into a vector of store-size units
26232    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
26233            StoreType, VT.getSizeInBits()/StoreType.getSizeInBits());
26234    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
26235    SDValue ShuffWide = DAG.getBitcast(StoreVecVT, Shuff);
26236    SmallVector<SDValue, 8> Chains;
26237    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits() / 8, dl,
26238                                        TLI.getPointerTy(DAG.getDataLayout()));
26239    SDValue Ptr = St->getBasePtr();
26240
26241    // Perform one or more big stores into memory.
26242    for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
26243      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
26244                                   StoreType, ShuffWide,
26245                                   DAG.getIntPtrConstant(i, dl));
26246      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
26247                                St->getPointerInfo(), St->isVolatile(),
26248                                St->isNonTemporal(), St->getAlignment());
26249      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
26250      Chains.push_back(Ch);
26251    }
26252
26253    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
26254  }
26255
26256  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
26257  // the FP state in cases where an emms may be missing.
26258  // A preferable solution to the general problem is to figure out the right
26259  // places to insert EMMS.  This qualifies as a quick hack.
26260
26261  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
26262  if (VT.getSizeInBits() != 64)
26263    return SDValue();
26264
26265  const Function *F = DAG.getMachineFunction().getFunction();
26266  bool NoImplicitFloatOps = F->hasFnAttribute(Attribute::NoImplicitFloat);
26267  bool F64IsLegal =
26268      !Subtarget->useSoftFloat() && !NoImplicitFloatOps && Subtarget->hasSSE2();
26269  if ((VT.isVector() ||
26270       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
26271      isa<LoadSDNode>(St->getValue()) &&
26272      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
26273      St->getChain().hasOneUse() && !St->isVolatile()) {
26274    SDNode* LdVal = St->getValue().getNode();
26275    LoadSDNode *Ld = nullptr;
26276    int TokenFactorIndex = -1;
26277    SmallVector<SDValue, 8> Ops;
26278    SDNode* ChainVal = St->getChain().getNode();
26279    // Must be a store of a load.  We currently handle two cases:  the load
26280    // is a direct child, and it's under an intervening TokenFactor.  It is
26281    // possible to dig deeper under nested TokenFactors.
26282    if (ChainVal == LdVal)
26283      Ld = cast<LoadSDNode>(St->getChain());
26284    else if (St->getValue().hasOneUse() &&
26285             ChainVal->getOpcode() == ISD::TokenFactor) {
26286      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
26287        if (ChainVal->getOperand(i).getNode() == LdVal) {
26288          TokenFactorIndex = i;
26289          Ld = cast<LoadSDNode>(St->getValue());
26290        } else
26291          Ops.push_back(ChainVal->getOperand(i));
26292      }
26293    }
26294
26295    if (!Ld || !ISD::isNormalLoad(Ld))
26296      return SDValue();
26297
26298    // If this is not the MMX case, i.e. we are just turning i64 load/store
26299    // into f64 load/store, avoid the transformation if there are multiple
26300    // uses of the loaded value.
26301    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
26302      return SDValue();
26303
26304    SDLoc LdDL(Ld);
26305    SDLoc StDL(N);
26306    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
26307    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
26308    // pair instead.
26309    if (Subtarget->is64Bit() || F64IsLegal) {
26310      MVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
26311      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
26312                                  Ld->getPointerInfo(), Ld->isVolatile(),
26313                                  Ld->isNonTemporal(), Ld->isInvariant(),
26314                                  Ld->getAlignment());
26315      SDValue NewChain = NewLd.getValue(1);
26316      if (TokenFactorIndex != -1) {
26317        Ops.push_back(NewChain);
26318        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, Ops);
26319      }
26320      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
26321                          St->getPointerInfo(),
26322                          St->isVolatile(), St->isNonTemporal(),
26323                          St->getAlignment());
26324    }
26325
26326    // Otherwise, lower to two pairs of 32-bit loads / stores.
26327    SDValue LoAddr = Ld->getBasePtr();
26328    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
26329                                 DAG.getConstant(4, LdDL, MVT::i32));
26330
26331    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
26332                               Ld->getPointerInfo(),
26333                               Ld->isVolatile(), Ld->isNonTemporal(),
26334                               Ld->isInvariant(), Ld->getAlignment());
26335    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
26336                               Ld->getPointerInfo().getWithOffset(4),
26337                               Ld->isVolatile(), Ld->isNonTemporal(),
26338                               Ld->isInvariant(),
26339                               MinAlign(Ld->getAlignment(), 4));
26340
26341    SDValue NewChain = LoLd.getValue(1);
26342    if (TokenFactorIndex != -1) {
26343      Ops.push_back(LoLd);
26344      Ops.push_back(HiLd);
26345      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, Ops);
26346    }
26347
26348    LoAddr = St->getBasePtr();
26349    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
26350                         DAG.getConstant(4, StDL, MVT::i32));
26351
26352    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
26353                                St->getPointerInfo(),
26354                                St->isVolatile(), St->isNonTemporal(),
26355                                St->getAlignment());
26356    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
26357                                St->getPointerInfo().getWithOffset(4),
26358                                St->isVolatile(),
26359                                St->isNonTemporal(),
26360                                MinAlign(St->getAlignment(), 4));
26361    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
26362  }
26363
26364  // This is similar to the above case, but here we handle a scalar 64-bit
26365  // integer store that is extracted from a vector on a 32-bit target.
26366  // If we have SSE2, then we can treat it like a floating-point double
26367  // to get past legalization. The execution dependencies fixup pass will
26368  // choose the optimal machine instruction for the store if this really is
26369  // an integer or v2f32 rather than an f64.
26370  if (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit() &&
26371      St->getOperand(1).getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
26372    SDValue OldExtract = St->getOperand(1);
26373    SDValue ExtOp0 = OldExtract.getOperand(0);
26374    unsigned VecSize = ExtOp0.getValueSizeInBits();
26375    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, VecSize / 64);
26376    SDValue BitCast = DAG.getBitcast(VecVT, ExtOp0);
26377    SDValue NewExtract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
26378                                     BitCast, OldExtract.getOperand(1));
26379    return DAG.getStore(St->getChain(), dl, NewExtract, St->getBasePtr(),
26380                        St->getPointerInfo(), St->isVolatile(),
26381                        St->isNonTemporal(), St->getAlignment());
26382  }
26383
26384  return SDValue();
26385}
26386
26387/// Return 'true' if this vector operation is "horizontal"
26388/// and return the operands for the horizontal operation in LHS and RHS.  A
26389/// horizontal operation performs the binary operation on successive elements
26390/// of its first operand, then on successive elements of its second operand,
26391/// returning the resulting values in a vector.  For example, if
26392///   A = < float a0, float a1, float a2, float a3 >
26393/// and
26394///   B = < float b0, float b1, float b2, float b3 >
26395/// then the result of doing a horizontal operation on A and B is
26396///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
26397/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
26398/// A horizontal-op B, for some already available A and B, and if so then LHS is
26399/// set to A, RHS to B, and the routine returns 'true'.
26400/// Note that the binary operation should have the property that if one of the
26401/// operands is UNDEF then the result is UNDEF.
26402static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
26403  // Look for the following pattern: if
26404  //   A = < float a0, float a1, float a2, float a3 >
26405  //   B = < float b0, float b1, float b2, float b3 >
26406  // and
26407  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
26408  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
26409  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
26410  // which is A horizontal-op B.
26411
26412  // At least one of the operands should be a vector shuffle.
26413  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
26414      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
26415    return false;
26416
26417  MVT VT = LHS.getSimpleValueType();
26418
26419  assert((VT.is128BitVector() || VT.is256BitVector()) &&
26420         "Unsupported vector type for horizontal add/sub");
26421
26422  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
26423  // operate independently on 128-bit lanes.
26424  unsigned NumElts = VT.getVectorNumElements();
26425  unsigned NumLanes = VT.getSizeInBits()/128;
26426  unsigned NumLaneElts = NumElts / NumLanes;
26427  assert((NumLaneElts % 2 == 0) &&
26428         "Vector type should have an even number of elements in each lane");
26429  unsigned HalfLaneElts = NumLaneElts/2;
26430
26431  // View LHS in the form
26432  //   LHS = VECTOR_SHUFFLE A, B, LMask
26433  // If LHS is not a shuffle then pretend it is the shuffle
26434  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
26435  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
26436  // type VT.
26437  SDValue A, B;
26438  SmallVector<int, 16> LMask(NumElts);
26439  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
26440    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
26441      A = LHS.getOperand(0);
26442    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
26443      B = LHS.getOperand(1);
26444    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
26445    std::copy(Mask.begin(), Mask.end(), LMask.begin());
26446  } else {
26447    if (LHS.getOpcode() != ISD::UNDEF)
26448      A = LHS;
26449    for (unsigned i = 0; i != NumElts; ++i)
26450      LMask[i] = i;
26451  }
26452
26453  // Likewise, view RHS in the form
26454  //   RHS = VECTOR_SHUFFLE C, D, RMask
26455  SDValue C, D;
26456  SmallVector<int, 16> RMask(NumElts);
26457  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
26458    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
26459      C = RHS.getOperand(0);
26460    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
26461      D = RHS.getOperand(1);
26462    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
26463    std::copy(Mask.begin(), Mask.end(), RMask.begin());
26464  } else {
26465    if (RHS.getOpcode() != ISD::UNDEF)
26466      C = RHS;
26467    for (unsigned i = 0; i != NumElts; ++i)
26468      RMask[i] = i;
26469  }
26470
26471  // Check that the shuffles are both shuffling the same vectors.
26472  if (!(A == C && B == D) && !(A == D && B == C))
26473    return false;
26474
26475  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
26476  if (!A.getNode() && !B.getNode())
26477    return false;
26478
26479  // If A and B occur in reverse order in RHS, then "swap" them (which means
26480  // rewriting the mask).
26481  if (A != C)
26482    ShuffleVectorSDNode::commuteMask(RMask);
26483
26484  // At this point LHS and RHS are equivalent to
26485  //   LHS = VECTOR_SHUFFLE A, B, LMask
26486  //   RHS = VECTOR_SHUFFLE A, B, RMask
26487  // Check that the masks correspond to performing a horizontal operation.
26488  for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
26489    for (unsigned i = 0; i != NumLaneElts; ++i) {
26490      int LIdx = LMask[i+l], RIdx = RMask[i+l];
26491
26492      // Ignore any UNDEF components.
26493      if (LIdx < 0 || RIdx < 0 ||
26494          (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
26495          (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
26496        continue;
26497
26498      // Check that successive elements are being operated on.  If not, this is
26499      // not a horizontal operation.
26500      unsigned Src = (i/HalfLaneElts); // each lane is split between srcs
26501      int Index = 2*(i%HalfLaneElts) + NumElts*Src + l;
26502      if (!(LIdx == Index && RIdx == Index + 1) &&
26503          !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
26504        return false;
26505    }
26506  }
26507
26508  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
26509  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
26510  return true;
26511}
26512
26513/// Do target-specific dag combines on floating point adds.
26514static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
26515                                  const X86Subtarget *Subtarget) {
26516  EVT VT = N->getValueType(0);
26517  SDValue LHS = N->getOperand(0);
26518  SDValue RHS = N->getOperand(1);
26519
26520  // Try to synthesize horizontal adds from adds of shuffles.
26521  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
26522       (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
26523      isHorizontalBinOp(LHS, RHS, true))
26524    return DAG.getNode(X86ISD::FHADD, SDLoc(N), VT, LHS, RHS);
26525  return SDValue();
26526}
26527
26528/// Do target-specific dag combines on floating point subs.
26529static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
26530                                  const X86Subtarget *Subtarget) {
26531  EVT VT = N->getValueType(0);
26532  SDValue LHS = N->getOperand(0);
26533  SDValue RHS = N->getOperand(1);
26534
26535  // Try to synthesize horizontal subs from subs of shuffles.
26536  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
26537       (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
26538      isHorizontalBinOp(LHS, RHS, false))
26539    return DAG.getNode(X86ISD::FHSUB, SDLoc(N), VT, LHS, RHS);
26540  return SDValue();
26541}
26542
26543/// Truncate a group of v4i32 into v16i8/v8i16 using X86ISD::PACKUS.
26544static SDValue
26545combineVectorTruncationWithPACKUS(SDNode *N, SelectionDAG &DAG,
26546                                  SmallVector<SDValue, 8> &Regs) {
26547  assert(Regs.size() > 0 && (Regs[0].getValueType() == MVT::v4i32 ||
26548                             Regs[0].getValueType() == MVT::v2i64));
26549  EVT OutVT = N->getValueType(0);
26550  EVT OutSVT = OutVT.getVectorElementType();
26551  EVT InVT = Regs[0].getValueType();
26552  EVT InSVT = InVT.getVectorElementType();
26553  SDLoc DL(N);
26554
26555  // First, use mask to unset all bits that won't appear in the result.
26556  assert((OutSVT == MVT::i8 || OutSVT == MVT::i16) &&
26557         "OutSVT can only be either i8 or i16.");
26558  SDValue MaskVal =
26559      DAG.getConstant(OutSVT == MVT::i8 ? 0xFF : 0xFFFF, DL, InSVT);
26560  SDValue MaskVec = DAG.getNode(
26561      ISD::BUILD_VECTOR, DL, InVT,
26562      SmallVector<SDValue, 8>(InVT.getVectorNumElements(), MaskVal));
26563  for (auto &Reg : Regs)
26564    Reg = DAG.getNode(ISD::AND, DL, InVT, MaskVec, Reg);
26565
26566  MVT UnpackedVT, PackedVT;
26567  if (OutSVT == MVT::i8) {
26568    UnpackedVT = MVT::v8i16;
26569    PackedVT = MVT::v16i8;
26570  } else {
26571    UnpackedVT = MVT::v4i32;
26572    PackedVT = MVT::v8i16;
26573  }
26574
26575  // In each iteration, truncate the type by a half size.
26576  auto RegNum = Regs.size();
26577  for (unsigned j = 1, e = InSVT.getSizeInBits() / OutSVT.getSizeInBits();
26578       j < e; j *= 2, RegNum /= 2) {
26579    for (unsigned i = 0; i < RegNum; i++)
26580      Regs[i] = DAG.getNode(ISD::BITCAST, DL, UnpackedVT, Regs[i]);
26581    for (unsigned i = 0; i < RegNum / 2; i++)
26582      Regs[i] = DAG.getNode(X86ISD::PACKUS, DL, PackedVT, Regs[i * 2],
26583                            Regs[i * 2 + 1]);
26584  }
26585
26586  // If the type of the result is v8i8, we need do one more X86ISD::PACKUS, and
26587  // then extract a subvector as the result since v8i8 is not a legal type.
26588  if (OutVT == MVT::v8i8) {
26589    Regs[0] = DAG.getNode(X86ISD::PACKUS, DL, PackedVT, Regs[0], Regs[0]);
26590    Regs[0] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, Regs[0],
26591                          DAG.getIntPtrConstant(0, DL));
26592    return Regs[0];
26593  } else if (RegNum > 1) {
26594    Regs.resize(RegNum);
26595    return DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Regs);
26596  } else
26597    return Regs[0];
26598}
26599
26600/// Truncate a group of v4i32 into v8i16 using X86ISD::PACKSS.
26601static SDValue
26602combineVectorTruncationWithPACKSS(SDNode *N, SelectionDAG &DAG,
26603                                  SmallVector<SDValue, 8> &Regs) {
26604  assert(Regs.size() > 0 && Regs[0].getValueType() == MVT::v4i32);
26605  EVT OutVT = N->getValueType(0);
26606  SDLoc DL(N);
26607
26608  // Shift left by 16 bits, then arithmetic-shift right by 16 bits.
26609  SDValue ShAmt = DAG.getConstant(16, DL, MVT::i32);
26610  for (auto &Reg : Regs) {
26611    Reg = getTargetVShiftNode(X86ISD::VSHLI, DL, MVT::v4i32, Reg, ShAmt, DAG);
26612    Reg = getTargetVShiftNode(X86ISD::VSRAI, DL, MVT::v4i32, Reg, ShAmt, DAG);
26613  }
26614
26615  for (unsigned i = 0, e = Regs.size() / 2; i < e; i++)
26616    Regs[i] = DAG.getNode(X86ISD::PACKSS, DL, MVT::v8i16, Regs[i * 2],
26617                          Regs[i * 2 + 1]);
26618
26619  if (Regs.size() > 2) {
26620    Regs.resize(Regs.size() / 2);
26621    return DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Regs);
26622  } else
26623    return Regs[0];
26624}
26625
26626/// This function transforms truncation from vXi32/vXi64 to vXi8/vXi16 into
26627/// X86ISD::PACKUS/X86ISD::PACKSS operations. We do it here because after type
26628/// legalization the truncation will be translated into a BUILD_VECTOR with each
26629/// element that is extracted from a vector and then truncated, and it is
26630/// diffcult to do this optimization based on them.
26631static SDValue combineVectorTruncation(SDNode *N, SelectionDAG &DAG,
26632                                       const X86Subtarget *Subtarget) {
26633  EVT OutVT = N->getValueType(0);
26634  if (!OutVT.isVector())
26635    return SDValue();
26636
26637  SDValue In = N->getOperand(0);
26638  if (!In.getValueType().isSimple())
26639    return SDValue();
26640
26641  EVT InVT = In.getValueType();
26642  unsigned NumElems = OutVT.getVectorNumElements();
26643
26644  // TODO: On AVX2, the behavior of X86ISD::PACKUS is different from that on
26645  // SSE2, and we need to take care of it specially.
26646  // AVX512 provides vpmovdb.
26647  if (!Subtarget->hasSSE2() || Subtarget->hasAVX2())
26648    return SDValue();
26649
26650  EVT OutSVT = OutVT.getVectorElementType();
26651  EVT InSVT = InVT.getVectorElementType();
26652  if (!((InSVT == MVT::i32 || InSVT == MVT::i64) &&
26653        (OutSVT == MVT::i8 || OutSVT == MVT::i16) && isPowerOf2_32(NumElems) &&
26654        NumElems >= 8))
26655    return SDValue();
26656
26657  // SSSE3's pshufb results in less instructions in the cases below.
26658  if (Subtarget->hasSSSE3() && NumElems == 8 &&
26659      ((OutSVT == MVT::i8 && InSVT != MVT::i64) ||
26660       (InSVT == MVT::i32 && OutSVT == MVT::i16)))
26661    return SDValue();
26662
26663  SDLoc DL(N);
26664
26665  // Split a long vector into vectors of legal type.
26666  unsigned RegNum = InVT.getSizeInBits() / 128;
26667  SmallVector<SDValue, 8> SubVec(RegNum);
26668  if (InSVT == MVT::i32) {
26669    for (unsigned i = 0; i < RegNum; i++)
26670      SubVec[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
26671                              DAG.getIntPtrConstant(i * 4, DL));
26672  } else {
26673    for (unsigned i = 0; i < RegNum; i++)
26674      SubVec[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
26675                              DAG.getIntPtrConstant(i * 2, DL));
26676  }
26677
26678  // SSE2 provides PACKUS for only 2 x v8i16 -> v16i8 and SSE4.1 provides PAKCUS
26679  // for 2 x v4i32 -> v8i16. For SSSE3 and below, we need to use PACKSS to
26680  // truncate 2 x v4i32 to v8i16.
26681  if (Subtarget->hasSSE41() || OutSVT == MVT::i8)
26682    return combineVectorTruncationWithPACKUS(N, DAG, SubVec);
26683  else if (InSVT == MVT::i32)
26684    return combineVectorTruncationWithPACKSS(N, DAG, SubVec);
26685  else
26686    return SDValue();
26687}
26688
26689static SDValue PerformTRUNCATECombine(SDNode *N, SelectionDAG &DAG,
26690                                      const X86Subtarget *Subtarget) {
26691  // Try to detect AVG pattern first.
26692  SDValue Avg = detectAVGPattern(N->getOperand(0), N->getValueType(0), DAG,
26693                                 Subtarget, SDLoc(N));
26694  if (Avg.getNode())
26695    return Avg;
26696
26697  return combineVectorTruncation(N, DAG, Subtarget);
26698}
26699
26700/// Do target-specific dag combines on floating point negations.
26701static SDValue PerformFNEGCombine(SDNode *N, SelectionDAG &DAG,
26702                                  const X86Subtarget *Subtarget) {
26703  EVT VT = N->getValueType(0);
26704  EVT SVT = VT.getScalarType();
26705  SDValue Arg = N->getOperand(0);
26706  SDLoc DL(N);
26707
26708  // Let legalize expand this if it isn't a legal type yet.
26709  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
26710    return SDValue();
26711
26712  // If we're negating a FMUL node on a target with FMA, then we can avoid the
26713  // use of a constant by performing (-0 - A*B) instead.
26714  // FIXME: Check rounding control flags as well once it becomes available.
26715  if (Arg.getOpcode() == ISD::FMUL && (SVT == MVT::f32 || SVT == MVT::f64) &&
26716      Arg->getFlags()->hasNoSignedZeros() && Subtarget->hasAnyFMA()) {
26717    SDValue Zero = DAG.getConstantFP(0.0, DL, VT);
26718    return DAG.getNode(X86ISD::FNMSUB, DL, VT, Arg.getOperand(0),
26719                       Arg.getOperand(1), Zero);
26720  }
26721
26722  // If we're negating a FMA node, then we can adjust the
26723  // instruction to include the extra negation.
26724  if (Arg.hasOneUse()) {
26725    switch (Arg.getOpcode()) {
26726    case X86ISD::FMADD:
26727      return DAG.getNode(X86ISD::FNMSUB, DL, VT, Arg.getOperand(0),
26728                         Arg.getOperand(1), Arg.getOperand(2));
26729    case X86ISD::FMSUB:
26730      return DAG.getNode(X86ISD::FNMADD, DL, VT, Arg.getOperand(0),
26731                         Arg.getOperand(1), Arg.getOperand(2));
26732    case X86ISD::FNMADD:
26733      return DAG.getNode(X86ISD::FMSUB, DL, VT, Arg.getOperand(0),
26734                         Arg.getOperand(1), Arg.getOperand(2));
26735    case X86ISD::FNMSUB:
26736      return DAG.getNode(X86ISD::FMADD, DL, VT, Arg.getOperand(0),
26737                         Arg.getOperand(1), Arg.getOperand(2));
26738    }
26739  }
26740  return SDValue();
26741}
26742
26743static SDValue lowerX86FPLogicOp(SDNode *N, SelectionDAG &DAG,
26744                              const X86Subtarget *Subtarget) {
26745  EVT VT = N->getValueType(0);
26746  if (VT.is512BitVector() && !Subtarget->hasDQI()) {
26747    // VXORPS, VORPS, VANDPS, VANDNPS are supported only under DQ extention.
26748    // These logic operations may be executed in the integer domain.
26749    SDLoc dl(N);
26750    MVT IntScalar = MVT::getIntegerVT(VT.getScalarSizeInBits());
26751    MVT IntVT = MVT::getVectorVT(IntScalar, VT.getVectorNumElements());
26752
26753    SDValue Op0 = DAG.getNode(ISD::BITCAST, dl, IntVT, N->getOperand(0));
26754    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, IntVT, N->getOperand(1));
26755    unsigned IntOpcode = 0;
26756    switch (N->getOpcode()) {
26757      default: llvm_unreachable("Unexpected FP logic op");
26758      case X86ISD::FOR: IntOpcode = ISD::OR; break;
26759      case X86ISD::FXOR: IntOpcode = ISD::XOR; break;
26760      case X86ISD::FAND: IntOpcode = ISD::AND; break;
26761      case X86ISD::FANDN: IntOpcode = X86ISD::ANDNP; break;
26762    }
26763    SDValue IntOp = DAG.getNode(IntOpcode, dl, IntVT, Op0, Op1);
26764    return  DAG.getNode(ISD::BITCAST, dl, VT, IntOp);
26765  }
26766  return SDValue();
26767}
26768/// Do target-specific dag combines on X86ISD::FOR and X86ISD::FXOR nodes.
26769static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG,
26770                                 const X86Subtarget *Subtarget) {
26771  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
26772
26773  // F[X]OR(0.0, x) -> x
26774  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
26775    if (C->getValueAPF().isPosZero())
26776      return N->getOperand(1);
26777
26778  // F[X]OR(x, 0.0) -> x
26779  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
26780    if (C->getValueAPF().isPosZero())
26781      return N->getOperand(0);
26782
26783  return lowerX86FPLogicOp(N, DAG, Subtarget);
26784}
26785
26786/// Do target-specific dag combines on X86ISD::FMIN and X86ISD::FMAX nodes.
26787static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) {
26788  assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX);
26789
26790  // Only perform optimizations if UnsafeMath is used.
26791  if (!DAG.getTarget().Options.UnsafeFPMath)
26792    return SDValue();
26793
26794  // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes
26795  // into FMINC and FMAXC, which are Commutative operations.
26796  unsigned NewOp = 0;
26797  switch (N->getOpcode()) {
26798    default: llvm_unreachable("unknown opcode");
26799    case X86ISD::FMIN:  NewOp = X86ISD::FMINC; break;
26800    case X86ISD::FMAX:  NewOp = X86ISD::FMAXC; break;
26801  }
26802
26803  return DAG.getNode(NewOp, SDLoc(N), N->getValueType(0),
26804                     N->getOperand(0), N->getOperand(1));
26805}
26806
26807static SDValue performFMaxNumCombine(SDNode *N, SelectionDAG &DAG,
26808                                     const X86Subtarget *Subtarget) {
26809  // This takes at least 3 instructions, so favor a library call when
26810  // minimizing code size.
26811  if (DAG.getMachineFunction().getFunction()->optForMinSize())
26812    return SDValue();
26813
26814  EVT VT = N->getValueType(0);
26815
26816  // TODO: Check for global or instruction-level "nnan". In that case, we
26817  //       should be able to lower to FMAX/FMIN alone.
26818  // TODO: If an operand is already known to be a NaN or not a NaN, this
26819  //       should be an optional swap and FMAX/FMIN.
26820  // TODO: Allow f64, vectors, and fminnum.
26821
26822  if (VT != MVT::f32 || !Subtarget->hasSSE1() || Subtarget->useSoftFloat())
26823    return SDValue();
26824
26825  SDValue Op0 = N->getOperand(0);
26826  SDValue Op1 = N->getOperand(1);
26827  SDLoc DL(N);
26828  EVT SetCCType = DAG.getTargetLoweringInfo().getSetCCResultType(
26829      DAG.getDataLayout(), *DAG.getContext(), VT);
26830
26831  // There are 4 possibilities involving NaN inputs, and these are the required
26832  // outputs:
26833  //                   Op1
26834  //               Num     NaN
26835  //            ----------------
26836  //       Num  |  Max  |  Op0 |
26837  // Op0        ----------------
26838  //       NaN  |  Op1  |  NaN |
26839  //            ----------------
26840  //
26841  // The SSE FP max/min instructions were not designed for this case, but rather
26842  // to implement:
26843  //   Max = Op1 > Op0 ? Op1 : Op0
26844  //
26845  // So they always return Op0 if either input is a NaN. However, we can still
26846  // use those instructions for fmaxnum by selecting away a NaN input.
26847
26848  // If either operand is NaN, the 2nd source operand (Op0) is passed through.
26849  SDValue Max = DAG.getNode(X86ISD::FMAX, DL, VT, Op1, Op0);
26850  SDValue IsOp0Nan = DAG.getSetCC(DL, SetCCType , Op0, Op0, ISD::SETUO);
26851
26852  // If Op0 is a NaN, select Op1. Otherwise, select the max. If both operands
26853  // are NaN, the NaN value of Op1 is the result.
26854  return DAG.getNode(ISD::SELECT, DL, VT, IsOp0Nan, Op1, Max);
26855}
26856
26857/// Do target-specific dag combines on X86ISD::FAND nodes.
26858static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG,
26859                                  const X86Subtarget *Subtarget) {
26860  // FAND(0.0, x) -> 0.0
26861  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
26862    if (C->getValueAPF().isPosZero())
26863      return N->getOperand(0);
26864
26865  // FAND(x, 0.0) -> 0.0
26866  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
26867    if (C->getValueAPF().isPosZero())
26868      return N->getOperand(1);
26869
26870  return lowerX86FPLogicOp(N, DAG, Subtarget);
26871}
26872
26873/// Do target-specific dag combines on X86ISD::FANDN nodes
26874static SDValue PerformFANDNCombine(SDNode *N, SelectionDAG &DAG,
26875                                   const X86Subtarget *Subtarget) {
26876  // FANDN(0.0, x) -> x
26877  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
26878    if (C->getValueAPF().isPosZero())
26879      return N->getOperand(1);
26880
26881  // FANDN(x, 0.0) -> 0.0
26882  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
26883    if (C->getValueAPF().isPosZero())
26884      return N->getOperand(1);
26885
26886  return lowerX86FPLogicOp(N, DAG, Subtarget);
26887}
26888
26889static SDValue PerformBTCombine(SDNode *N,
26890                                SelectionDAG &DAG,
26891                                TargetLowering::DAGCombinerInfo &DCI) {
26892  // BT ignores high bits in the bit index operand.
26893  SDValue Op1 = N->getOperand(1);
26894  if (Op1.hasOneUse()) {
26895    unsigned BitWidth = Op1.getValueSizeInBits();
26896    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
26897    APInt KnownZero, KnownOne;
26898    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
26899                                          !DCI.isBeforeLegalizeOps());
26900    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
26901    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
26902        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
26903      DCI.CommitTargetLoweringOpt(TLO);
26904  }
26905  return SDValue();
26906}
26907
26908static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
26909  SDValue Op = N->getOperand(0);
26910  if (Op.getOpcode() == ISD::BITCAST)
26911    Op = Op.getOperand(0);
26912  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
26913  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
26914      VT.getVectorElementType().getSizeInBits() ==
26915      OpVT.getVectorElementType().getSizeInBits()) {
26916    return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
26917  }
26918  return SDValue();
26919}
26920
26921static SDValue PerformSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
26922                                               const X86Subtarget *Subtarget) {
26923  EVT VT = N->getValueType(0);
26924  if (!VT.isVector())
26925    return SDValue();
26926
26927  SDValue N0 = N->getOperand(0);
26928  SDValue N1 = N->getOperand(1);
26929  EVT ExtraVT = cast<VTSDNode>(N1)->getVT();
26930  SDLoc dl(N);
26931
26932  // The SIGN_EXTEND_INREG to v4i64 is expensive operation on the
26933  // both SSE and AVX2 since there is no sign-extended shift right
26934  // operation on a vector with 64-bit elements.
26935  //(sext_in_reg (v4i64 anyext (v4i32 x )), ExtraVT) ->
26936  // (v4i64 sext (v4i32 sext_in_reg (v4i32 x , ExtraVT)))
26937  if (VT == MVT::v4i64 && (N0.getOpcode() == ISD::ANY_EXTEND ||
26938      N0.getOpcode() == ISD::SIGN_EXTEND)) {
26939    SDValue N00 = N0.getOperand(0);
26940
26941    // EXTLOAD has a better solution on AVX2,
26942    // it may be replaced with X86ISD::VSEXT node.
26943    if (N00.getOpcode() == ISD::LOAD && Subtarget->hasInt256())
26944      if (!ISD::isNormalLoad(N00.getNode()))
26945        return SDValue();
26946
26947    if (N00.getValueType() == MVT::v4i32 && ExtraVT.getSizeInBits() < 128) {
26948        SDValue Tmp = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32,
26949                                  N00, N1);
26950      return DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i64, Tmp);
26951    }
26952  }
26953  return SDValue();
26954}
26955
26956/// sext(add_nsw(x, C)) --> add(sext(x), C_sext)
26957/// Promoting a sign extension ahead of an 'add nsw' exposes opportunities
26958/// to combine math ops, use an LEA, or use a complex addressing mode. This can
26959/// eliminate extend, add, and shift instructions.
26960static SDValue promoteSextBeforeAddNSW(SDNode *Sext, SelectionDAG &DAG,
26961                                       const X86Subtarget *Subtarget) {
26962  // TODO: This should be valid for other integer types.
26963  EVT VT = Sext->getValueType(0);
26964  if (VT != MVT::i64)
26965    return SDValue();
26966
26967  // We need an 'add nsw' feeding into the 'sext'.
26968  SDValue Add = Sext->getOperand(0);
26969  if (Add.getOpcode() != ISD::ADD || !Add->getFlags()->hasNoSignedWrap())
26970    return SDValue();
26971
26972  // Having a constant operand to the 'add' ensures that we are not increasing
26973  // the instruction count because the constant is extended for free below.
26974  // A constant operand can also become the displacement field of an LEA.
26975  auto *AddOp1 = dyn_cast<ConstantSDNode>(Add.getOperand(1));
26976  if (!AddOp1)
26977    return SDValue();
26978
26979  // Don't make the 'add' bigger if there's no hope of combining it with some
26980  // other 'add' or 'shl' instruction.
26981  // TODO: It may be profitable to generate simpler LEA instructions in place
26982  // of single 'add' instructions, but the cost model for selecting an LEA
26983  // currently has a high threshold.
26984  bool HasLEAPotential = false;
26985  for (auto *User : Sext->uses()) {
26986    if (User->getOpcode() == ISD::ADD || User->getOpcode() == ISD::SHL) {
26987      HasLEAPotential = true;
26988      break;
26989    }
26990  }
26991  if (!HasLEAPotential)
26992    return SDValue();
26993
26994  // Everything looks good, so pull the 'sext' ahead of the 'add'.
26995  int64_t AddConstant = AddOp1->getSExtValue();
26996  SDValue AddOp0 = Add.getOperand(0);
26997  SDValue NewSext = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(Sext), VT, AddOp0);
26998  SDValue NewConstant = DAG.getConstant(AddConstant, SDLoc(Add), VT);
26999
27000  // The wider add is guaranteed to not wrap because both operands are
27001  // sign-extended.
27002  SDNodeFlags Flags;
27003  Flags.setNoSignedWrap(true);
27004  return DAG.getNode(ISD::ADD, SDLoc(Add), VT, NewSext, NewConstant, &Flags);
27005}
27006
27007static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
27008                                  TargetLowering::DAGCombinerInfo &DCI,
27009                                  const X86Subtarget *Subtarget) {
27010  SDValue N0 = N->getOperand(0);
27011  EVT VT = N->getValueType(0);
27012  EVT SVT = VT.getScalarType();
27013  EVT InVT = N0.getValueType();
27014  EVT InSVT = InVT.getScalarType();
27015  SDLoc DL(N);
27016
27017  // (i8,i32 sext (sdivrem (i8 x, i8 y)) ->
27018  // (i8,i32 (sdivrem_sext_hreg (i8 x, i8 y)
27019  // This exposes the sext to the sdivrem lowering, so that it directly extends
27020  // from AH (which we otherwise need to do contortions to access).
27021  if (N0.getOpcode() == ISD::SDIVREM && N0.getResNo() == 1 &&
27022      InVT == MVT::i8 && VT == MVT::i32) {
27023    SDVTList NodeTys = DAG.getVTList(MVT::i8, VT);
27024    SDValue R = DAG.getNode(X86ISD::SDIVREM8_SEXT_HREG, DL, NodeTys,
27025                            N0.getOperand(0), N0.getOperand(1));
27026    DAG.ReplaceAllUsesOfValueWith(N0.getValue(0), R.getValue(0));
27027    return R.getValue(1);
27028  }
27029
27030  if (!DCI.isBeforeLegalizeOps()) {
27031    if (InVT == MVT::i1) {
27032      SDValue Zero = DAG.getConstant(0, DL, VT);
27033      SDValue AllOnes =
27034        DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL, VT);
27035      return DAG.getNode(ISD::SELECT, DL, VT, N0, AllOnes, Zero);
27036    }
27037    return SDValue();
27038  }
27039
27040  if (VT.isVector() && Subtarget->hasSSE2()) {
27041    auto ExtendVecSize = [&DAG](SDLoc DL, SDValue N, unsigned Size) {
27042      EVT InVT = N.getValueType();
27043      EVT OutVT = EVT::getVectorVT(*DAG.getContext(), InVT.getScalarType(),
27044                                   Size / InVT.getScalarSizeInBits());
27045      SmallVector<SDValue, 8> Opnds(Size / InVT.getSizeInBits(),
27046                                    DAG.getUNDEF(InVT));
27047      Opnds[0] = N;
27048      return DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Opnds);
27049    };
27050
27051    // If target-size is less than 128-bits, extend to a type that would extend
27052    // to 128 bits, extend that and extract the original target vector.
27053    if (VT.getSizeInBits() < 128 && !(128 % VT.getSizeInBits()) &&
27054        (SVT == MVT::i64 || SVT == MVT::i32 || SVT == MVT::i16) &&
27055        (InSVT == MVT::i32 || InSVT == MVT::i16 || InSVT == MVT::i8)) {
27056      unsigned Scale = 128 / VT.getSizeInBits();
27057      EVT ExVT =
27058          EVT::getVectorVT(*DAG.getContext(), SVT, 128 / SVT.getSizeInBits());
27059      SDValue Ex = ExtendVecSize(DL, N0, Scale * InVT.getSizeInBits());
27060      SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, ExVT, Ex);
27061      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, SExt,
27062                         DAG.getIntPtrConstant(0, DL));
27063    }
27064
27065    // If target-size is 128-bits, then convert to ISD::SIGN_EXTEND_VECTOR_INREG
27066    // which ensures lowering to X86ISD::VSEXT (pmovsx*).
27067    if (VT.getSizeInBits() == 128 &&
27068        (SVT == MVT::i64 || SVT == MVT::i32 || SVT == MVT::i16) &&
27069        (InSVT == MVT::i32 || InSVT == MVT::i16 || InSVT == MVT::i8)) {
27070      SDValue ExOp = ExtendVecSize(DL, N0, 128);
27071      return DAG.getSignExtendVectorInReg(ExOp, DL, VT);
27072    }
27073
27074    // On pre-AVX2 targets, split into 128-bit nodes of
27075    // ISD::SIGN_EXTEND_VECTOR_INREG.
27076    if (!Subtarget->hasInt256() && !(VT.getSizeInBits() % 128) &&
27077        (SVT == MVT::i64 || SVT == MVT::i32 || SVT == MVT::i16) &&
27078        (InSVT == MVT::i32 || InSVT == MVT::i16 || InSVT == MVT::i8)) {
27079      unsigned NumVecs = VT.getSizeInBits() / 128;
27080      unsigned NumSubElts = 128 / SVT.getSizeInBits();
27081      EVT SubVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumSubElts);
27082      EVT InSubVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumSubElts);
27083
27084      SmallVector<SDValue, 8> Opnds;
27085      for (unsigned i = 0, Offset = 0; i != NumVecs;
27086           ++i, Offset += NumSubElts) {
27087        SDValue SrcVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InSubVT, N0,
27088                                     DAG.getIntPtrConstant(Offset, DL));
27089        SrcVec = ExtendVecSize(DL, SrcVec, 128);
27090        SrcVec = DAG.getSignExtendVectorInReg(SrcVec, DL, SubVT);
27091        Opnds.push_back(SrcVec);
27092      }
27093      return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Opnds);
27094    }
27095  }
27096
27097  if (Subtarget->hasAVX() && VT.is256BitVector())
27098    if (SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget))
27099      return R;
27100
27101  if (SDValue NewAdd = promoteSextBeforeAddNSW(N, DAG, Subtarget))
27102    return NewAdd;
27103
27104  return SDValue();
27105}
27106
27107static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG,
27108                                 const X86Subtarget* Subtarget) {
27109  SDLoc dl(N);
27110  EVT VT = N->getValueType(0);
27111
27112  // Let legalize expand this if it isn't a legal type yet.
27113  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
27114    return SDValue();
27115
27116  EVT ScalarVT = VT.getScalarType();
27117  if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) || !Subtarget->hasAnyFMA())
27118    return SDValue();
27119
27120  SDValue A = N->getOperand(0);
27121  SDValue B = N->getOperand(1);
27122  SDValue C = N->getOperand(2);
27123
27124  bool NegA = (A.getOpcode() == ISD::FNEG);
27125  bool NegB = (B.getOpcode() == ISD::FNEG);
27126  bool NegC = (C.getOpcode() == ISD::FNEG);
27127
27128  // Negative multiplication when NegA xor NegB
27129  bool NegMul = (NegA != NegB);
27130  if (NegA)
27131    A = A.getOperand(0);
27132  if (NegB)
27133    B = B.getOperand(0);
27134  if (NegC)
27135    C = C.getOperand(0);
27136
27137  unsigned Opcode;
27138  if (!NegMul)
27139    Opcode = (!NegC) ? X86ISD::FMADD : X86ISD::FMSUB;
27140  else
27141    Opcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB;
27142
27143  return DAG.getNode(Opcode, dl, VT, A, B, C);
27144}
27145
27146static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
27147                                  TargetLowering::DAGCombinerInfo &DCI,
27148                                  const X86Subtarget *Subtarget) {
27149  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
27150  //           (and (i32 x86isd::setcc_carry), 1)
27151  // This eliminates the zext. This transformation is necessary because
27152  // ISD::SETCC is always legalized to i8.
27153  SDLoc dl(N);
27154  SDValue N0 = N->getOperand(0);
27155  EVT VT = N->getValueType(0);
27156
27157  if (N0.getOpcode() == ISD::AND &&
27158      N0.hasOneUse() &&
27159      N0.getOperand(0).hasOneUse()) {
27160    SDValue N00 = N0.getOperand(0);
27161    if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
27162      if (!isOneConstant(N0.getOperand(1)))
27163        return SDValue();
27164      return DAG.getNode(ISD::AND, dl, VT,
27165                         DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
27166                                     N00.getOperand(0), N00.getOperand(1)),
27167                         DAG.getConstant(1, dl, VT));
27168    }
27169  }
27170
27171  if (N0.getOpcode() == ISD::TRUNCATE &&
27172      N0.hasOneUse() &&
27173      N0.getOperand(0).hasOneUse()) {
27174    SDValue N00 = N0.getOperand(0);
27175    if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
27176      return DAG.getNode(ISD::AND, dl, VT,
27177                         DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
27178                                     N00.getOperand(0), N00.getOperand(1)),
27179                         DAG.getConstant(1, dl, VT));
27180    }
27181  }
27182
27183  if (VT.is256BitVector())
27184    if (SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget))
27185      return R;
27186
27187  // (i8,i32 zext (udivrem (i8 x, i8 y)) ->
27188  // (i8,i32 (udivrem_zext_hreg (i8 x, i8 y)
27189  // This exposes the zext to the udivrem lowering, so that it directly extends
27190  // from AH (which we otherwise need to do contortions to access).
27191  if (N0.getOpcode() == ISD::UDIVREM &&
27192      N0.getResNo() == 1 && N0.getValueType() == MVT::i8 &&
27193      (VT == MVT::i32 || VT == MVT::i64)) {
27194    SDVTList NodeTys = DAG.getVTList(MVT::i8, VT);
27195    SDValue R = DAG.getNode(X86ISD::UDIVREM8_ZEXT_HREG, dl, NodeTys,
27196                            N0.getOperand(0), N0.getOperand(1));
27197    DAG.ReplaceAllUsesOfValueWith(N0.getValue(0), R.getValue(0));
27198    return R.getValue(1);
27199  }
27200
27201  return SDValue();
27202}
27203
27204// Optimize x == -y --> x+y == 0
27205//          x != -y --> x+y != 0
27206static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG,
27207                                      const X86Subtarget* Subtarget) {
27208  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
27209  SDValue LHS = N->getOperand(0);
27210  SDValue RHS = N->getOperand(1);
27211  EVT VT = N->getValueType(0);
27212  SDLoc DL(N);
27213
27214  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
27215    if (isNullConstant(LHS.getOperand(0)) && LHS.hasOneUse()) {
27216      SDValue addV = DAG.getNode(ISD::ADD, DL, LHS.getValueType(), RHS,
27217                                 LHS.getOperand(1));
27218      return DAG.getSetCC(DL, N->getValueType(0), addV,
27219                          DAG.getConstant(0, DL, addV.getValueType()), CC);
27220    }
27221  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
27222    if (isNullConstant(RHS.getOperand(0)) && RHS.hasOneUse()) {
27223      SDValue addV = DAG.getNode(ISD::ADD, DL, RHS.getValueType(), LHS,
27224                                 RHS.getOperand(1));
27225      return DAG.getSetCC(DL, N->getValueType(0), addV,
27226                          DAG.getConstant(0, DL, addV.getValueType()), CC);
27227    }
27228
27229  if (VT.getScalarType() == MVT::i1 &&
27230      (CC == ISD::SETNE || CC == ISD::SETEQ || ISD::isSignedIntSetCC(CC))) {
27231    bool IsSEXT0 =
27232        (LHS.getOpcode() == ISD::SIGN_EXTEND) &&
27233        (LHS.getOperand(0).getValueType().getScalarType() == MVT::i1);
27234    bool IsVZero1 = ISD::isBuildVectorAllZeros(RHS.getNode());
27235
27236    if (!IsSEXT0 || !IsVZero1) {
27237      // Swap the operands and update the condition code.
27238      std::swap(LHS, RHS);
27239      CC = ISD::getSetCCSwappedOperands(CC);
27240
27241      IsSEXT0 = (LHS.getOpcode() == ISD::SIGN_EXTEND) &&
27242                (LHS.getOperand(0).getValueType().getScalarType() == MVT::i1);
27243      IsVZero1 = ISD::isBuildVectorAllZeros(RHS.getNode());
27244    }
27245
27246    if (IsSEXT0 && IsVZero1) {
27247      assert(VT == LHS.getOperand(0).getValueType() &&
27248             "Uexpected operand type");
27249      if (CC == ISD::SETGT)
27250        return DAG.getConstant(0, DL, VT);
27251      if (CC == ISD::SETLE)
27252        return DAG.getConstant(1, DL, VT);
27253      if (CC == ISD::SETEQ || CC == ISD::SETGE)
27254        return DAG.getNOT(DL, LHS.getOperand(0), VT);
27255
27256      assert((CC == ISD::SETNE || CC == ISD::SETLT) &&
27257             "Unexpected condition code!");
27258      return LHS.getOperand(0);
27259    }
27260  }
27261
27262  return SDValue();
27263}
27264
27265static SDValue PerformBLENDICombine(SDNode *N, SelectionDAG &DAG) {
27266  SDValue V0 = N->getOperand(0);
27267  SDValue V1 = N->getOperand(1);
27268  SDLoc DL(N);
27269  EVT VT = N->getValueType(0);
27270
27271  // Canonicalize a v2f64 blend with a mask of 2 by swapping the vector
27272  // operands and changing the mask to 1. This saves us a bunch of
27273  // pattern-matching possibilities related to scalar math ops in SSE/AVX.
27274  // x86InstrInfo knows how to commute this back after instruction selection
27275  // if it would help register allocation.
27276
27277  // TODO: If optimizing for size or a processor that doesn't suffer from
27278  // partial register update stalls, this should be transformed into a MOVSD
27279  // instruction because a MOVSD is 1-2 bytes smaller than a BLENDPD.
27280
27281  if (VT == MVT::v2f64)
27282    if (auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(2)))
27283      if (Mask->getZExtValue() == 2 && !isShuffleFoldableLoad(V0)) {
27284        SDValue NewMask = DAG.getConstant(1, DL, MVT::i8);
27285        return DAG.getNode(X86ISD::BLENDI, DL, VT, V1, V0, NewMask);
27286      }
27287
27288  return SDValue();
27289}
27290
27291static SDValue PerformGatherScatterCombine(SDNode *N, SelectionDAG &DAG) {
27292  SDLoc DL(N);
27293  // Gather and Scatter instructions use k-registers for masks. The type of
27294  // the masks is v*i1. So the mask will be truncated anyway.
27295  // The SIGN_EXTEND_INREG my be dropped.
27296  SDValue Mask = N->getOperand(2);
27297  if (Mask.getOpcode() == ISD::SIGN_EXTEND_INREG) {
27298    SmallVector<SDValue, 5> NewOps(N->op_begin(), N->op_end());
27299    NewOps[2] = Mask.getOperand(0);
27300    DAG.UpdateNodeOperands(N, NewOps);
27301  }
27302  return SDValue();
27303}
27304
27305// Helper function of PerformSETCCCombine. It is to materialize "setb reg"
27306// as "sbb reg,reg", since it can be extended without zext and produces
27307// an all-ones bit which is more useful than 0/1 in some cases.
27308static SDValue MaterializeSETB(SDLoc DL, SDValue EFLAGS, SelectionDAG &DAG,
27309                               MVT VT) {
27310  if (VT == MVT::i8)
27311    return DAG.getNode(ISD::AND, DL, VT,
27312                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
27313                                   DAG.getConstant(X86::COND_B, DL, MVT::i8),
27314                                   EFLAGS),
27315                       DAG.getConstant(1, DL, VT));
27316  assert (VT == MVT::i1 && "Unexpected type for SECCC node");
27317  return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1,
27318                     DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
27319                                 DAG.getConstant(X86::COND_B, DL, MVT::i8),
27320                                 EFLAGS));
27321}
27322
27323// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
27324static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG,
27325                                   TargetLowering::DAGCombinerInfo &DCI,
27326                                   const X86Subtarget *Subtarget) {
27327  SDLoc DL(N);
27328  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0));
27329  SDValue EFLAGS = N->getOperand(1);
27330
27331  if (CC == X86::COND_A) {
27332    // Try to convert COND_A into COND_B in an attempt to facilitate
27333    // materializing "setb reg".
27334    //
27335    // Do not flip "e > c", where "c" is a constant, because Cmp instruction
27336    // cannot take an immediate as its first operand.
27337    //
27338    if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() &&
27339        EFLAGS.getValueType().isInteger() &&
27340        !isa<ConstantSDNode>(EFLAGS.getOperand(1))) {
27341      SDValue NewSub = DAG.getNode(X86ISD::SUB, SDLoc(EFLAGS),
27342                                   EFLAGS.getNode()->getVTList(),
27343                                   EFLAGS.getOperand(1), EFLAGS.getOperand(0));
27344      SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo());
27345      return MaterializeSETB(DL, NewEFLAGS, DAG, N->getSimpleValueType(0));
27346    }
27347  }
27348
27349  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
27350  // a zext and produces an all-ones bit which is more useful than 0/1 in some
27351  // cases.
27352  if (CC == X86::COND_B)
27353    return MaterializeSETB(DL, EFLAGS, DAG, N->getSimpleValueType(0));
27354
27355  if (SDValue Flags = checkBoolTestSetCCCombine(EFLAGS, CC)) {
27356    SDValue Cond = DAG.getConstant(CC, DL, MVT::i8);
27357    return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags);
27358  }
27359
27360  return SDValue();
27361}
27362
27363// Optimize branch condition evaluation.
27364//
27365static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG,
27366                                    TargetLowering::DAGCombinerInfo &DCI,
27367                                    const X86Subtarget *Subtarget) {
27368  SDLoc DL(N);
27369  SDValue Chain = N->getOperand(0);
27370  SDValue Dest = N->getOperand(1);
27371  SDValue EFLAGS = N->getOperand(3);
27372  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2));
27373
27374  if (SDValue Flags = checkBoolTestSetCCCombine(EFLAGS, CC)) {
27375    SDValue Cond = DAG.getConstant(CC, DL, MVT::i8);
27376    return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond,
27377                       Flags);
27378  }
27379
27380  return SDValue();
27381}
27382
27383static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
27384                                                         SelectionDAG &DAG) {
27385  // Take advantage of vector comparisons producing 0 or -1 in each lane to
27386  // optimize away operation when it's from a constant.
27387  //
27388  // The general transformation is:
27389  //    UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
27390  //       AND(VECTOR_CMP(x,y), constant2)
27391  //    constant2 = UNARYOP(constant)
27392
27393  // Early exit if this isn't a vector operation, the operand of the
27394  // unary operation isn't a bitwise AND, or if the sizes of the operations
27395  // aren't the same.
27396  EVT VT = N->getValueType(0);
27397  if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
27398      N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
27399      VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
27400    return SDValue();
27401
27402  // Now check that the other operand of the AND is a constant. We could
27403  // make the transformation for non-constant splats as well, but it's unclear
27404  // that would be a benefit as it would not eliminate any operations, just
27405  // perform one more step in scalar code before moving to the vector unit.
27406  if (BuildVectorSDNode *BV =
27407          dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
27408    // Bail out if the vector isn't a constant.
27409    if (!BV->isConstant())
27410      return SDValue();
27411
27412    // Everything checks out. Build up the new and improved node.
27413    SDLoc DL(N);
27414    EVT IntVT = BV->getValueType(0);
27415    // Create a new constant of the appropriate type for the transformed
27416    // DAG.
27417    SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
27418    // The AND node needs bitcasts to/from an integer vector type around it.
27419    SDValue MaskConst = DAG.getBitcast(IntVT, SourceConst);
27420    SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
27421                                 N->getOperand(0)->getOperand(0), MaskConst);
27422    SDValue Res = DAG.getBitcast(VT, NewAnd);
27423    return Res;
27424  }
27425
27426  return SDValue();
27427}
27428
27429static SDValue PerformUINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
27430                                        const X86Subtarget *Subtarget) {
27431  SDValue Op0 = N->getOperand(0);
27432  EVT VT = N->getValueType(0);
27433  EVT InVT = Op0.getValueType();
27434  EVT InSVT = InVT.getScalarType();
27435  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
27436
27437  // UINT_TO_FP(vXi8) -> SINT_TO_FP(ZEXT(vXi8 to vXi32))
27438  // UINT_TO_FP(vXi16) -> SINT_TO_FP(ZEXT(vXi16 to vXi32))
27439  if (InVT.isVector() && (InSVT == MVT::i8 || InSVT == MVT::i16)) {
27440    SDLoc dl(N);
27441    EVT DstVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
27442                                 InVT.getVectorNumElements());
27443    SDValue P = DAG.getNode(ISD::ZERO_EXTEND, dl, DstVT, Op0);
27444
27445    if (TLI.isOperationLegal(ISD::UINT_TO_FP, DstVT))
27446      return DAG.getNode(ISD::UINT_TO_FP, dl, VT, P);
27447
27448    return DAG.getNode(ISD::SINT_TO_FP, dl, VT, P);
27449  }
27450
27451  return SDValue();
27452}
27453
27454static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
27455                                        const X86Subtarget *Subtarget) {
27456  // First try to optimize away the conversion entirely when it's
27457  // conditionally from a constant. Vectors only.
27458  if (SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG))
27459    return Res;
27460
27461  // Now move on to more general possibilities.
27462  SDValue Op0 = N->getOperand(0);
27463  EVT VT = N->getValueType(0);
27464  EVT InVT = Op0.getValueType();
27465  EVT InSVT = InVT.getScalarType();
27466
27467  // SINT_TO_FP(vXi8) -> SINT_TO_FP(SEXT(vXi8 to vXi32))
27468  // SINT_TO_FP(vXi16) -> SINT_TO_FP(SEXT(vXi16 to vXi32))
27469  if (InVT.isVector() && (InSVT == MVT::i8 || InSVT == MVT::i16)) {
27470    SDLoc dl(N);
27471    EVT DstVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
27472                                 InVT.getVectorNumElements());
27473    SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
27474    return DAG.getNode(ISD::SINT_TO_FP, dl, VT, P);
27475  }
27476
27477  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
27478  // a 32-bit target where SSE doesn't support i64->FP operations.
27479  if (!Subtarget->useSoftFloat() && Op0.getOpcode() == ISD::LOAD) {
27480    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
27481    EVT LdVT = Ld->getValueType(0);
27482
27483    // This transformation is not supported if the result type is f16
27484    if (VT == MVT::f16)
27485      return SDValue();
27486
27487    if (!Ld->isVolatile() && !VT.isVector() &&
27488        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
27489        !Subtarget->is64Bit() && LdVT == MVT::i64) {
27490      SDValue FILDChain = Subtarget->getTargetLowering()->BuildFILD(
27491          SDValue(N, 0), LdVT, Ld->getChain(), Op0, DAG);
27492      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
27493      return FILDChain;
27494    }
27495  }
27496  return SDValue();
27497}
27498
27499// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
27500static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
27501                                 X86TargetLowering::DAGCombinerInfo &DCI) {
27502  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
27503  // the result is either zero or one (depending on the input carry bit).
27504  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
27505  if (X86::isZeroNode(N->getOperand(0)) &&
27506      X86::isZeroNode(N->getOperand(1)) &&
27507      // We don't have a good way to replace an EFLAGS use, so only do this when
27508      // dead right now.
27509      SDValue(N, 1).use_empty()) {
27510    SDLoc DL(N);
27511    EVT VT = N->getValueType(0);
27512    SDValue CarryOut = DAG.getConstant(0, DL, N->getValueType(1));
27513    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
27514                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
27515                                           DAG.getConstant(X86::COND_B, DL,
27516                                                           MVT::i8),
27517                                           N->getOperand(2)),
27518                               DAG.getConstant(1, DL, VT));
27519    return DCI.CombineTo(N, Res1, CarryOut);
27520  }
27521
27522  return SDValue();
27523}
27524
27525// fold (add Y, (sete  X, 0)) -> adc  0, Y
27526//      (add Y, (setne X, 0)) -> sbb -1, Y
27527//      (sub (sete  X, 0), Y) -> sbb  0, Y
27528//      (sub (setne X, 0), Y) -> adc -1, Y
27529static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
27530  SDLoc DL(N);
27531
27532  // Look through ZExts.
27533  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
27534  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
27535    return SDValue();
27536
27537  SDValue SetCC = Ext.getOperand(0);
27538  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
27539    return SDValue();
27540
27541  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
27542  if (CC != X86::COND_E && CC != X86::COND_NE)
27543    return SDValue();
27544
27545  SDValue Cmp = SetCC.getOperand(1);
27546  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
27547      !X86::isZeroNode(Cmp.getOperand(1)) ||
27548      !Cmp.getOperand(0).getValueType().isInteger())
27549    return SDValue();
27550
27551  SDValue CmpOp0 = Cmp.getOperand(0);
27552  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
27553                               DAG.getConstant(1, DL, CmpOp0.getValueType()));
27554
27555  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
27556  if (CC == X86::COND_NE)
27557    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
27558                       DL, OtherVal.getValueType(), OtherVal,
27559                       DAG.getConstant(-1ULL, DL, OtherVal.getValueType()),
27560                       NewCmp);
27561  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
27562                     DL, OtherVal.getValueType(), OtherVal,
27563                     DAG.getConstant(0, DL, OtherVal.getValueType()), NewCmp);
27564}
27565
27566/// PerformADDCombine - Do target-specific dag combines on integer adds.
27567static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
27568                                 const X86Subtarget *Subtarget) {
27569  EVT VT = N->getValueType(0);
27570  SDValue Op0 = N->getOperand(0);
27571  SDValue Op1 = N->getOperand(1);
27572
27573  // Try to synthesize horizontal adds from adds of shuffles.
27574  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
27575       (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
27576      isHorizontalBinOp(Op0, Op1, true))
27577    return DAG.getNode(X86ISD::HADD, SDLoc(N), VT, Op0, Op1);
27578
27579  return OptimizeConditionalInDecrement(N, DAG);
27580}
27581
27582static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
27583                                 const X86Subtarget *Subtarget) {
27584  SDValue Op0 = N->getOperand(0);
27585  SDValue Op1 = N->getOperand(1);
27586
27587  // X86 can't encode an immediate LHS of a sub. See if we can push the
27588  // negation into a preceding instruction.
27589  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
27590    // If the RHS of the sub is a XOR with one use and a constant, invert the
27591    // immediate. Then add one to the LHS of the sub so we can turn
27592    // X-Y -> X+~Y+1, saving one register.
27593    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
27594        isa<ConstantSDNode>(Op1.getOperand(1))) {
27595      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
27596      EVT VT = Op0.getValueType();
27597      SDValue NewXor = DAG.getNode(ISD::XOR, SDLoc(Op1), VT,
27598                                   Op1.getOperand(0),
27599                                   DAG.getConstant(~XorC, SDLoc(Op1), VT));
27600      return DAG.getNode(ISD::ADD, SDLoc(N), VT, NewXor,
27601                         DAG.getConstant(C->getAPIntValue() + 1, SDLoc(N), VT));
27602    }
27603  }
27604
27605  // Try to synthesize horizontal adds from adds of shuffles.
27606  EVT VT = N->getValueType(0);
27607  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
27608       (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
27609      isHorizontalBinOp(Op0, Op1, true))
27610    return DAG.getNode(X86ISD::HSUB, SDLoc(N), VT, Op0, Op1);
27611
27612  return OptimizeConditionalInDecrement(N, DAG);
27613}
27614
27615/// performVZEXTCombine - Performs build vector combines
27616static SDValue performVZEXTCombine(SDNode *N, SelectionDAG &DAG,
27617                                   TargetLowering::DAGCombinerInfo &DCI,
27618                                   const X86Subtarget *Subtarget) {
27619  SDLoc DL(N);
27620  MVT VT = N->getSimpleValueType(0);
27621  SDValue Op = N->getOperand(0);
27622  MVT OpVT = Op.getSimpleValueType();
27623  MVT OpEltVT = OpVT.getVectorElementType();
27624  unsigned InputBits = OpEltVT.getSizeInBits() * VT.getVectorNumElements();
27625
27626  // (vzext (bitcast (vzext (x)) -> (vzext x)
27627  SDValue V = Op;
27628  while (V.getOpcode() == ISD::BITCAST)
27629    V = V.getOperand(0);
27630
27631  if (V != Op && V.getOpcode() == X86ISD::VZEXT) {
27632    MVT InnerVT = V.getSimpleValueType();
27633    MVT InnerEltVT = InnerVT.getVectorElementType();
27634
27635    // If the element sizes match exactly, we can just do one larger vzext. This
27636    // is always an exact type match as vzext operates on integer types.
27637    if (OpEltVT == InnerEltVT) {
27638      assert(OpVT == InnerVT && "Types must match for vzext!");
27639      return DAG.getNode(X86ISD::VZEXT, DL, VT, V.getOperand(0));
27640    }
27641
27642    // The only other way we can combine them is if only a single element of the
27643    // inner vzext is used in the input to the outer vzext.
27644    if (InnerEltVT.getSizeInBits() < InputBits)
27645      return SDValue();
27646
27647    // In this case, the inner vzext is completely dead because we're going to
27648    // only look at bits inside of the low element. Just do the outer vzext on
27649    // a bitcast of the input to the inner.
27650    return DAG.getNode(X86ISD::VZEXT, DL, VT, DAG.getBitcast(OpVT, V));
27651  }
27652
27653  // Check if we can bypass extracting and re-inserting an element of an input
27654  // vector. Essentially:
27655  // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x)
27656  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR &&
27657      V.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
27658      V.getOperand(0).getSimpleValueType().getSizeInBits() == InputBits) {
27659    SDValue ExtractedV = V.getOperand(0);
27660    SDValue OrigV = ExtractedV.getOperand(0);
27661    if (isNullConstant(ExtractedV.getOperand(1))) {
27662        MVT OrigVT = OrigV.getSimpleValueType();
27663        // Extract a subvector if necessary...
27664        if (OrigVT.getSizeInBits() > OpVT.getSizeInBits()) {
27665          int Ratio = OrigVT.getSizeInBits() / OpVT.getSizeInBits();
27666          OrigVT = MVT::getVectorVT(OrigVT.getVectorElementType(),
27667                                    OrigVT.getVectorNumElements() / Ratio);
27668          OrigV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigVT, OrigV,
27669                              DAG.getIntPtrConstant(0, DL));
27670        }
27671        Op = DAG.getBitcast(OpVT, OrigV);
27672        return DAG.getNode(X86ISD::VZEXT, DL, VT, Op);
27673      }
27674  }
27675
27676  return SDValue();
27677}
27678
27679SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
27680                                             DAGCombinerInfo &DCI) const {
27681  SelectionDAG &DAG = DCI.DAG;
27682  switch (N->getOpcode()) {
27683  default: break;
27684  case ISD::EXTRACT_VECTOR_ELT:
27685    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
27686  case ISD::VSELECT:
27687  case ISD::SELECT:
27688  case X86ISD::SHRUNKBLEND:
27689    return PerformSELECTCombine(N, DAG, DCI, Subtarget);
27690  case ISD::BITCAST:        return PerformBITCASTCombine(N, DAG, Subtarget);
27691  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI, Subtarget);
27692  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
27693  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
27694  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
27695  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
27696  case ISD::SHL:
27697  case ISD::SRA:
27698  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
27699  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
27700  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
27701  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
27702  case ISD::LOAD:           return PerformLOADCombine(N, DAG, DCI, Subtarget);
27703  case ISD::MLOAD:          return PerformMLOADCombine(N, DAG, DCI, Subtarget);
27704  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
27705  case ISD::MSTORE:         return PerformMSTORECombine(N, DAG, Subtarget);
27706  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, Subtarget);
27707  case ISD::UINT_TO_FP:     return PerformUINT_TO_FPCombine(N, DAG, Subtarget);
27708  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
27709  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
27710  case ISD::FNEG:           return PerformFNEGCombine(N, DAG, Subtarget);
27711  case ISD::TRUNCATE:       return PerformTRUNCATECombine(N, DAG, Subtarget);
27712  case X86ISD::FXOR:
27713  case X86ISD::FOR:         return PerformFORCombine(N, DAG, Subtarget);
27714  case X86ISD::FMIN:
27715  case X86ISD::FMAX:        return PerformFMinFMaxCombine(N, DAG);
27716  case ISD::FMAXNUM:        return performFMaxNumCombine(N, DAG, Subtarget);
27717  case X86ISD::FAND:        return PerformFANDCombine(N, DAG, Subtarget);
27718  case X86ISD::FANDN:       return PerformFANDNCombine(N, DAG, Subtarget);
27719  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
27720  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
27721  case ISD::ANY_EXTEND:
27722  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, DCI, Subtarget);
27723  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
27724  case ISD::SIGN_EXTEND_INREG:
27725    return PerformSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
27726  case ISD::SETCC:          return PerformISDSETCCCombine(N, DAG, Subtarget);
27727  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG, DCI, Subtarget);
27728  case X86ISD::BRCOND:      return PerformBrCondCombine(N, DAG, DCI, Subtarget);
27729  case X86ISD::VZEXT:       return performVZEXTCombine(N, DAG, DCI, Subtarget);
27730  case X86ISD::SHUFP:       // Handle all target specific shuffles
27731  case X86ISD::PALIGNR:
27732  case X86ISD::UNPCKH:
27733  case X86ISD::UNPCKL:
27734  case X86ISD::MOVHLPS:
27735  case X86ISD::MOVLHPS:
27736  case X86ISD::PSHUFB:
27737  case X86ISD::PSHUFD:
27738  case X86ISD::PSHUFHW:
27739  case X86ISD::PSHUFLW:
27740  case X86ISD::MOVSS:
27741  case X86ISD::MOVSD:
27742  case X86ISD::VPERMILPI:
27743  case X86ISD::VPERM2X128:
27744  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
27745  case ISD::FMA:            return PerformFMACombine(N, DAG, Subtarget);
27746  case X86ISD::BLENDI:    return PerformBLENDICombine(N, DAG);
27747  case ISD::MGATHER:
27748  case ISD::MSCATTER:       return PerformGatherScatterCombine(N, DAG);
27749  }
27750
27751  return SDValue();
27752}
27753
27754/// isTypeDesirableForOp - Return true if the target has native support for
27755/// the specified value type and it is 'desirable' to use the type for the
27756/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
27757/// instruction encodings are longer and some i16 instructions are slow.
27758bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
27759  if (!isTypeLegal(VT))
27760    return false;
27761  if (VT != MVT::i16)
27762    return true;
27763
27764  switch (Opc) {
27765  default:
27766    return true;
27767  case ISD::LOAD:
27768  case ISD::SIGN_EXTEND:
27769  case ISD::ZERO_EXTEND:
27770  case ISD::ANY_EXTEND:
27771  case ISD::SHL:
27772  case ISD::SRL:
27773  case ISD::SUB:
27774  case ISD::ADD:
27775  case ISD::MUL:
27776  case ISD::AND:
27777  case ISD::OR:
27778  case ISD::XOR:
27779    return false;
27780  }
27781}
27782
27783/// IsDesirableToPromoteOp - This method query the target whether it is
27784/// beneficial for dag combiner to promote the specified node. If true, it
27785/// should return the desired promotion type by reference.
27786bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
27787  EVT VT = Op.getValueType();
27788  if (VT != MVT::i16)
27789    return false;
27790
27791  bool Promote = false;
27792  bool Commute = false;
27793  switch (Op.getOpcode()) {
27794  default: break;
27795  case ISD::LOAD: {
27796    LoadSDNode *LD = cast<LoadSDNode>(Op);
27797    // If the non-extending load has a single use and it's not live out, then it
27798    // might be folded.
27799    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
27800                                                     Op.hasOneUse()*/) {
27801      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
27802             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
27803        // The only case where we'd want to promote LOAD (rather then it being
27804        // promoted as an operand is when it's only use is liveout.
27805        if (UI->getOpcode() != ISD::CopyToReg)
27806          return false;
27807      }
27808    }
27809    Promote = true;
27810    break;
27811  }
27812  case ISD::SIGN_EXTEND:
27813  case ISD::ZERO_EXTEND:
27814  case ISD::ANY_EXTEND:
27815    Promote = true;
27816    break;
27817  case ISD::SHL:
27818  case ISD::SRL: {
27819    SDValue N0 = Op.getOperand(0);
27820    // Look out for (store (shl (load), x)).
27821    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
27822      return false;
27823    Promote = true;
27824    break;
27825  }
27826  case ISD::ADD:
27827  case ISD::MUL:
27828  case ISD::AND:
27829  case ISD::OR:
27830  case ISD::XOR:
27831    Commute = true;
27832    // fallthrough
27833  case ISD::SUB: {
27834    SDValue N0 = Op.getOperand(0);
27835    SDValue N1 = Op.getOperand(1);
27836    if (!Commute && MayFoldLoad(N1))
27837      return false;
27838    // Avoid disabling potential load folding opportunities.
27839    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
27840      return false;
27841    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
27842      return false;
27843    Promote = true;
27844  }
27845  }
27846
27847  PVT = MVT::i32;
27848  return Promote;
27849}
27850
27851//===----------------------------------------------------------------------===//
27852//                           X86 Inline Assembly Support
27853//===----------------------------------------------------------------------===//
27854
27855// Helper to match a string separated by whitespace.
27856static bool matchAsm(StringRef S, ArrayRef<const char *> Pieces) {
27857  S = S.substr(S.find_first_not_of(" \t")); // Skip leading whitespace.
27858
27859  for (StringRef Piece : Pieces) {
27860    if (!S.startswith(Piece)) // Check if the piece matches.
27861      return false;
27862
27863    S = S.substr(Piece.size());
27864    StringRef::size_type Pos = S.find_first_not_of(" \t");
27865    if (Pos == 0) // We matched a prefix.
27866      return false;
27867
27868    S = S.substr(Pos);
27869  }
27870
27871  return S.empty();
27872}
27873
27874static bool clobbersFlagRegisters(const SmallVector<StringRef, 4> &AsmPieces) {
27875
27876  if (AsmPieces.size() == 3 || AsmPieces.size() == 4) {
27877    if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{cc}") &&
27878        std::count(AsmPieces.begin(), AsmPieces.end(), "~{flags}") &&
27879        std::count(AsmPieces.begin(), AsmPieces.end(), "~{fpsr}")) {
27880
27881      if (AsmPieces.size() == 3)
27882        return true;
27883      else if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{dirflag}"))
27884        return true;
27885    }
27886  }
27887  return false;
27888}
27889
27890bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
27891  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
27892
27893  std::string AsmStr = IA->getAsmString();
27894
27895  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
27896  if (!Ty || Ty->getBitWidth() % 16 != 0)
27897    return false;
27898
27899  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
27900  SmallVector<StringRef, 4> AsmPieces;
27901  SplitString(AsmStr, AsmPieces, ";\n");
27902
27903  switch (AsmPieces.size()) {
27904  default: return false;
27905  case 1:
27906    // FIXME: this should verify that we are targeting a 486 or better.  If not,
27907    // we will turn this bswap into something that will be lowered to logical
27908    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
27909    // lower so don't worry about this.
27910    // bswap $0
27911    if (matchAsm(AsmPieces[0], {"bswap", "$0"}) ||
27912        matchAsm(AsmPieces[0], {"bswapl", "$0"}) ||
27913        matchAsm(AsmPieces[0], {"bswapq", "$0"}) ||
27914        matchAsm(AsmPieces[0], {"bswap", "${0:q}"}) ||
27915        matchAsm(AsmPieces[0], {"bswapl", "${0:q}"}) ||
27916        matchAsm(AsmPieces[0], {"bswapq", "${0:q}"})) {
27917      // No need to check constraints, nothing other than the equivalent of
27918      // "=r,0" would be valid here.
27919      return IntrinsicLowering::LowerToByteSwap(CI);
27920    }
27921
27922    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
27923    if (CI->getType()->isIntegerTy(16) &&
27924        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
27925        (matchAsm(AsmPieces[0], {"rorw", "$$8,", "${0:w}"}) ||
27926         matchAsm(AsmPieces[0], {"rolw", "$$8,", "${0:w}"}))) {
27927      AsmPieces.clear();
27928      StringRef ConstraintsStr = IA->getConstraintString();
27929      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
27930      array_pod_sort(AsmPieces.begin(), AsmPieces.end());
27931      if (clobbersFlagRegisters(AsmPieces))
27932        return IntrinsicLowering::LowerToByteSwap(CI);
27933    }
27934    break;
27935  case 3:
27936    if (CI->getType()->isIntegerTy(32) &&
27937        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
27938        matchAsm(AsmPieces[0], {"rorw", "$$8,", "${0:w}"}) &&
27939        matchAsm(AsmPieces[1], {"rorl", "$$16,", "$0"}) &&
27940        matchAsm(AsmPieces[2], {"rorw", "$$8,", "${0:w}"})) {
27941      AsmPieces.clear();
27942      StringRef ConstraintsStr = IA->getConstraintString();
27943      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
27944      array_pod_sort(AsmPieces.begin(), AsmPieces.end());
27945      if (clobbersFlagRegisters(AsmPieces))
27946        return IntrinsicLowering::LowerToByteSwap(CI);
27947    }
27948
27949    if (CI->getType()->isIntegerTy(64)) {
27950      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
27951      if (Constraints.size() >= 2 &&
27952          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
27953          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
27954        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
27955        if (matchAsm(AsmPieces[0], {"bswap", "%eax"}) &&
27956            matchAsm(AsmPieces[1], {"bswap", "%edx"}) &&
27957            matchAsm(AsmPieces[2], {"xchgl", "%eax,", "%edx"}))
27958          return IntrinsicLowering::LowerToByteSwap(CI);
27959      }
27960    }
27961    break;
27962  }
27963  return false;
27964}
27965
27966/// getConstraintType - Given a constraint letter, return the type of
27967/// constraint it is for this target.
27968X86TargetLowering::ConstraintType
27969X86TargetLowering::getConstraintType(StringRef Constraint) const {
27970  if (Constraint.size() == 1) {
27971    switch (Constraint[0]) {
27972    case 'R':
27973    case 'q':
27974    case 'Q':
27975    case 'f':
27976    case 't':
27977    case 'u':
27978    case 'y':
27979    case 'x':
27980    case 'Y':
27981    case 'l':
27982      return C_RegisterClass;
27983    case 'a':
27984    case 'b':
27985    case 'c':
27986    case 'd':
27987    case 'S':
27988    case 'D':
27989    case 'A':
27990      return C_Register;
27991    case 'I':
27992    case 'J':
27993    case 'K':
27994    case 'L':
27995    case 'M':
27996    case 'N':
27997    case 'G':
27998    case 'C':
27999    case 'e':
28000    case 'Z':
28001      return C_Other;
28002    default:
28003      break;
28004    }
28005  }
28006  return TargetLowering::getConstraintType(Constraint);
28007}
28008
28009/// Examine constraint type and operand type and determine a weight value.
28010/// This object must already have been set up with the operand type
28011/// and the current alternative constraint selected.
28012TargetLowering::ConstraintWeight
28013  X86TargetLowering::getSingleConstraintMatchWeight(
28014    AsmOperandInfo &info, const char *constraint) const {
28015  ConstraintWeight weight = CW_Invalid;
28016  Value *CallOperandVal = info.CallOperandVal;
28017    // If we don't have a value, we can't do a match,
28018    // but allow it at the lowest weight.
28019  if (!CallOperandVal)
28020    return CW_Default;
28021  Type *type = CallOperandVal->getType();
28022  // Look at the constraint type.
28023  switch (*constraint) {
28024  default:
28025    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
28026  case 'R':
28027  case 'q':
28028  case 'Q':
28029  case 'a':
28030  case 'b':
28031  case 'c':
28032  case 'd':
28033  case 'S':
28034  case 'D':
28035  case 'A':
28036    if (CallOperandVal->getType()->isIntegerTy())
28037      weight = CW_SpecificReg;
28038    break;
28039  case 'f':
28040  case 't':
28041  case 'u':
28042    if (type->isFloatingPointTy())
28043      weight = CW_SpecificReg;
28044    break;
28045  case 'y':
28046    if (type->isX86_MMXTy() && Subtarget->hasMMX())
28047      weight = CW_SpecificReg;
28048    break;
28049  case 'x':
28050  case 'Y':
28051    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
28052        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasFp256()))
28053      weight = CW_Register;
28054    break;
28055  case 'I':
28056    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
28057      if (C->getZExtValue() <= 31)
28058        weight = CW_Constant;
28059    }
28060    break;
28061  case 'J':
28062    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
28063      if (C->getZExtValue() <= 63)
28064        weight = CW_Constant;
28065    }
28066    break;
28067  case 'K':
28068    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
28069      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
28070        weight = CW_Constant;
28071    }
28072    break;
28073  case 'L':
28074    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
28075      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
28076        weight = CW_Constant;
28077    }
28078    break;
28079  case 'M':
28080    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
28081      if (C->getZExtValue() <= 3)
28082        weight = CW_Constant;
28083    }
28084    break;
28085  case 'N':
28086    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
28087      if (C->getZExtValue() <= 0xff)
28088        weight = CW_Constant;
28089    }
28090    break;
28091  case 'G':
28092  case 'C':
28093    if (isa<ConstantFP>(CallOperandVal)) {
28094      weight = CW_Constant;
28095    }
28096    break;
28097  case 'e':
28098    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
28099      if ((C->getSExtValue() >= -0x80000000LL) &&
28100          (C->getSExtValue() <= 0x7fffffffLL))
28101        weight = CW_Constant;
28102    }
28103    break;
28104  case 'Z':
28105    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
28106      if (C->getZExtValue() <= 0xffffffff)
28107        weight = CW_Constant;
28108    }
28109    break;
28110  }
28111  return weight;
28112}
28113
28114/// LowerXConstraint - try to replace an X constraint, which matches anything,
28115/// with another that has more specific requirements based on the type of the
28116/// corresponding operand.
28117const char *X86TargetLowering::
28118LowerXConstraint(EVT ConstraintVT) const {
28119  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
28120  // 'f' like normal targets.
28121  if (ConstraintVT.isFloatingPoint()) {
28122    if (Subtarget->hasSSE2())
28123      return "Y";
28124    if (Subtarget->hasSSE1())
28125      return "x";
28126  }
28127
28128  return TargetLowering::LowerXConstraint(ConstraintVT);
28129}
28130
28131/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
28132/// vector.  If it is invalid, don't add anything to Ops.
28133void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
28134                                                     std::string &Constraint,
28135                                                     std::vector<SDValue>&Ops,
28136                                                     SelectionDAG &DAG) const {
28137  SDValue Result;
28138
28139  // Only support length 1 constraints for now.
28140  if (Constraint.length() > 1) return;
28141
28142  char ConstraintLetter = Constraint[0];
28143  switch (ConstraintLetter) {
28144  default: break;
28145  case 'I':
28146    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
28147      if (C->getZExtValue() <= 31) {
28148        Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
28149                                       Op.getValueType());
28150        break;
28151      }
28152    }
28153    return;
28154  case 'J':
28155    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
28156      if (C->getZExtValue() <= 63) {
28157        Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
28158                                       Op.getValueType());
28159        break;
28160      }
28161    }
28162    return;
28163  case 'K':
28164    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
28165      if (isInt<8>(C->getSExtValue())) {
28166        Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
28167                                       Op.getValueType());
28168        break;
28169      }
28170    }
28171    return;
28172  case 'L':
28173    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
28174      if (C->getZExtValue() == 0xff || C->getZExtValue() == 0xffff ||
28175          (Subtarget->is64Bit() && C->getZExtValue() == 0xffffffff)) {
28176        Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
28177                                       Op.getValueType());
28178        break;
28179      }
28180    }
28181    return;
28182  case 'M':
28183    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
28184      if (C->getZExtValue() <= 3) {
28185        Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
28186                                       Op.getValueType());
28187        break;
28188      }
28189    }
28190    return;
28191  case 'N':
28192    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
28193      if (C->getZExtValue() <= 255) {
28194        Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
28195                                       Op.getValueType());
28196        break;
28197      }
28198    }
28199    return;
28200  case 'O':
28201    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
28202      if (C->getZExtValue() <= 127) {
28203        Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
28204                                       Op.getValueType());
28205        break;
28206      }
28207    }
28208    return;
28209  case 'e': {
28210    // 32-bit signed value
28211    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
28212      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
28213                                           C->getSExtValue())) {
28214        // Widen to 64 bits here to get it sign extended.
28215        Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), MVT::i64);
28216        break;
28217      }
28218    // FIXME gcc accepts some relocatable values here too, but only in certain
28219    // memory models; it's complicated.
28220    }
28221    return;
28222  }
28223  case 'Z': {
28224    // 32-bit unsigned value
28225    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
28226      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
28227                                           C->getZExtValue())) {
28228        Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
28229                                       Op.getValueType());
28230        break;
28231      }
28232    }
28233    // FIXME gcc accepts some relocatable values here too, but only in certain
28234    // memory models; it's complicated.
28235    return;
28236  }
28237  case 'i': {
28238    // Literal immediates are always ok.
28239    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
28240      // Widen to 64 bits here to get it sign extended.
28241      Result = DAG.getTargetConstant(CST->getSExtValue(), SDLoc(Op), MVT::i64);
28242      break;
28243    }
28244
28245    // In any sort of PIC mode addresses need to be computed at runtime by
28246    // adding in a register or some sort of table lookup.  These can't
28247    // be used as immediates.
28248    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
28249      return;
28250
28251    // If we are in non-pic codegen mode, we allow the address of a global (with
28252    // an optional displacement) to be used with 'i'.
28253    GlobalAddressSDNode *GA = nullptr;
28254    int64_t Offset = 0;
28255
28256    // Match either (GA), (GA+C), (GA+C1+C2), etc.
28257    while (1) {
28258      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
28259        Offset += GA->getOffset();
28260        break;
28261      } else if (Op.getOpcode() == ISD::ADD) {
28262        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
28263          Offset += C->getZExtValue();
28264          Op = Op.getOperand(0);
28265          continue;
28266        }
28267      } else if (Op.getOpcode() == ISD::SUB) {
28268        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
28269          Offset += -C->getZExtValue();
28270          Op = Op.getOperand(0);
28271          continue;
28272        }
28273      }
28274
28275      // Otherwise, this isn't something we can handle, reject it.
28276      return;
28277    }
28278
28279    const GlobalValue *GV = GA->getGlobal();
28280    // If we require an extra load to get this address, as in PIC mode, we
28281    // can't accept it.
28282    if (isGlobalStubReference(
28283            Subtarget->ClassifyGlobalReference(GV, DAG.getTarget())))
28284      return;
28285
28286    Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op),
28287                                        GA->getValueType(0), Offset);
28288    break;
28289  }
28290  }
28291
28292  if (Result.getNode()) {
28293    Ops.push_back(Result);
28294    return;
28295  }
28296  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
28297}
28298
28299std::pair<unsigned, const TargetRegisterClass *>
28300X86TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
28301                                                StringRef Constraint,
28302                                                MVT VT) const {
28303  // First, see if this is a constraint that directly corresponds to an LLVM
28304  // register class.
28305  if (Constraint.size() == 1) {
28306    // GCC Constraint Letters
28307    switch (Constraint[0]) {
28308    default: break;
28309      // TODO: Slight differences here in allocation order and leaving
28310      // RIP in the class. Do they matter any more here than they do
28311      // in the normal allocation?
28312    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
28313      if (Subtarget->is64Bit()) {
28314        if (VT == MVT::i32 || VT == MVT::f32)
28315          return std::make_pair(0U, &X86::GR32RegClass);
28316        if (VT == MVT::i16)
28317          return std::make_pair(0U, &X86::GR16RegClass);
28318        if (VT == MVT::i8 || VT == MVT::i1)
28319          return std::make_pair(0U, &X86::GR8RegClass);
28320        if (VT == MVT::i64 || VT == MVT::f64)
28321          return std::make_pair(0U, &X86::GR64RegClass);
28322        break;
28323      }
28324      // 32-bit fallthrough
28325    case 'Q':   // Q_REGS
28326      if (VT == MVT::i32 || VT == MVT::f32)
28327        return std::make_pair(0U, &X86::GR32_ABCDRegClass);
28328      if (VT == MVT::i16)
28329        return std::make_pair(0U, &X86::GR16_ABCDRegClass);
28330      if (VT == MVT::i8 || VT == MVT::i1)
28331        return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
28332      if (VT == MVT::i64)
28333        return std::make_pair(0U, &X86::GR64_ABCDRegClass);
28334      break;
28335    case 'r':   // GENERAL_REGS
28336    case 'l':   // INDEX_REGS
28337      if (VT == MVT::i8 || VT == MVT::i1)
28338        return std::make_pair(0U, &X86::GR8RegClass);
28339      if (VT == MVT::i16)
28340        return std::make_pair(0U, &X86::GR16RegClass);
28341      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
28342        return std::make_pair(0U, &X86::GR32RegClass);
28343      return std::make_pair(0U, &X86::GR64RegClass);
28344    case 'R':   // LEGACY_REGS
28345      if (VT == MVT::i8 || VT == MVT::i1)
28346        return std::make_pair(0U, &X86::GR8_NOREXRegClass);
28347      if (VT == MVT::i16)
28348        return std::make_pair(0U, &X86::GR16_NOREXRegClass);
28349      if (VT == MVT::i32 || !Subtarget->is64Bit())
28350        return std::make_pair(0U, &X86::GR32_NOREXRegClass);
28351      return std::make_pair(0U, &X86::GR64_NOREXRegClass);
28352    case 'f':  // FP Stack registers.
28353      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
28354      // value to the correct fpstack register class.
28355      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
28356        return std::make_pair(0U, &X86::RFP32RegClass);
28357      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
28358        return std::make_pair(0U, &X86::RFP64RegClass);
28359      return std::make_pair(0U, &X86::RFP80RegClass);
28360    case 'y':   // MMX_REGS if MMX allowed.
28361      if (!Subtarget->hasMMX()) break;
28362      return std::make_pair(0U, &X86::VR64RegClass);
28363    case 'Y':   // SSE_REGS if SSE2 allowed
28364      if (!Subtarget->hasSSE2()) break;
28365      // FALL THROUGH.
28366    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
28367      if (!Subtarget->hasSSE1()) break;
28368
28369      switch (VT.SimpleTy) {
28370      default: break;
28371      // Scalar SSE types.
28372      case MVT::f32:
28373      case MVT::i32:
28374        return std::make_pair(0U, &X86::FR32RegClass);
28375      case MVT::f64:
28376      case MVT::i64:
28377        return std::make_pair(0U, &X86::FR64RegClass);
28378      // TODO: Handle f128 and i128 in FR128RegClass after it is tested well.
28379      // Vector types.
28380      case MVT::v16i8:
28381      case MVT::v8i16:
28382      case MVT::v4i32:
28383      case MVT::v2i64:
28384      case MVT::v4f32:
28385      case MVT::v2f64:
28386        return std::make_pair(0U, &X86::VR128RegClass);
28387      // AVX types.
28388      case MVT::v32i8:
28389      case MVT::v16i16:
28390      case MVT::v8i32:
28391      case MVT::v4i64:
28392      case MVT::v8f32:
28393      case MVT::v4f64:
28394        return std::make_pair(0U, &X86::VR256RegClass);
28395      case MVT::v8f64:
28396      case MVT::v16f32:
28397      case MVT::v16i32:
28398      case MVT::v8i64:
28399        return std::make_pair(0U, &X86::VR512RegClass);
28400      }
28401      break;
28402    }
28403  }
28404
28405  // Use the default implementation in TargetLowering to convert the register
28406  // constraint into a member of a register class.
28407  std::pair<unsigned, const TargetRegisterClass*> Res;
28408  Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
28409
28410  // Not found as a standard register?
28411  if (!Res.second) {
28412    // Map st(0) -> st(7) -> ST0
28413    if (Constraint.size() == 7 && Constraint[0] == '{' &&
28414        tolower(Constraint[1]) == 's' &&
28415        tolower(Constraint[2]) == 't' &&
28416        Constraint[3] == '(' &&
28417        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
28418        Constraint[5] == ')' &&
28419        Constraint[6] == '}') {
28420
28421      Res.first = X86::FP0+Constraint[4]-'0';
28422      Res.second = &X86::RFP80RegClass;
28423      return Res;
28424    }
28425
28426    // GCC allows "st(0)" to be called just plain "st".
28427    if (StringRef("{st}").equals_lower(Constraint)) {
28428      Res.first = X86::FP0;
28429      Res.second = &X86::RFP80RegClass;
28430      return Res;
28431    }
28432
28433    // flags -> EFLAGS
28434    if (StringRef("{flags}").equals_lower(Constraint)) {
28435      Res.first = X86::EFLAGS;
28436      Res.second = &X86::CCRRegClass;
28437      return Res;
28438    }
28439
28440    // 'A' means EAX + EDX.
28441    if (Constraint == "A") {
28442      Res.first = X86::EAX;
28443      Res.second = &X86::GR32_ADRegClass;
28444      return Res;
28445    }
28446    return Res;
28447  }
28448
28449  // Otherwise, check to see if this is a register class of the wrong value
28450  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
28451  // turn into {ax},{dx}.
28452  // MVT::Other is used to specify clobber names.
28453  if (Res.second->hasType(VT) || VT == MVT::Other)
28454    return Res;   // Correct type already, nothing to do.
28455
28456  // Get a matching integer of the correct size. i.e. "ax" with MVT::32 should
28457  // return "eax". This should even work for things like getting 64bit integer
28458  // registers when given an f64 type.
28459  const TargetRegisterClass *Class = Res.second;
28460  if (Class == &X86::GR8RegClass || Class == &X86::GR16RegClass ||
28461      Class == &X86::GR32RegClass || Class == &X86::GR64RegClass) {
28462    unsigned Size = VT.getSizeInBits();
28463    MVT::SimpleValueType SimpleTy = Size == 1 || Size == 8 ? MVT::i8
28464                                  : Size == 16 ? MVT::i16
28465                                  : Size == 32 ? MVT::i32
28466                                  : Size == 64 ? MVT::i64
28467                                  : MVT::Other;
28468    unsigned DestReg = getX86SubSuperRegisterOrZero(Res.first, SimpleTy);
28469    if (DestReg > 0) {
28470      Res.first = DestReg;
28471      Res.second = SimpleTy == MVT::i8 ? &X86::GR8RegClass
28472                 : SimpleTy == MVT::i16 ? &X86::GR16RegClass
28473                 : SimpleTy == MVT::i32 ? &X86::GR32RegClass
28474                 : &X86::GR64RegClass;
28475      assert(Res.second->contains(Res.first) && "Register in register class");
28476    } else {
28477      // No register found/type mismatch.
28478      Res.first = 0;
28479      Res.second = nullptr;
28480    }
28481  } else if (Class == &X86::FR32RegClass || Class == &X86::FR64RegClass ||
28482             Class == &X86::VR128RegClass || Class == &X86::VR256RegClass ||
28483             Class == &X86::FR32XRegClass || Class == &X86::FR64XRegClass ||
28484             Class == &X86::VR128XRegClass || Class == &X86::VR256XRegClass ||
28485             Class == &X86::VR512RegClass) {
28486    // Handle references to XMM physical registers that got mapped into the
28487    // wrong class.  This can happen with constraints like {xmm0} where the
28488    // target independent register mapper will just pick the first match it can
28489    // find, ignoring the required type.
28490
28491    // TODO: Handle f128 and i128 in FR128RegClass after it is tested well.
28492    if (VT == MVT::f32 || VT == MVT::i32)
28493      Res.second = &X86::FR32RegClass;
28494    else if (VT == MVT::f64 || VT == MVT::i64)
28495      Res.second = &X86::FR64RegClass;
28496    else if (X86::VR128RegClass.hasType(VT))
28497      Res.second = &X86::VR128RegClass;
28498    else if (X86::VR256RegClass.hasType(VT))
28499      Res.second = &X86::VR256RegClass;
28500    else if (X86::VR512RegClass.hasType(VT))
28501      Res.second = &X86::VR512RegClass;
28502    else {
28503      // Type mismatch and not a clobber: Return an error;
28504      Res.first = 0;
28505      Res.second = nullptr;
28506    }
28507  }
28508
28509  return Res;
28510}
28511
28512int X86TargetLowering::getScalingFactorCost(const DataLayout &DL,
28513                                            const AddrMode &AM, Type *Ty,
28514                                            unsigned AS) const {
28515  // Scaling factors are not free at all.
28516  // An indexed folded instruction, i.e., inst (reg1, reg2, scale),
28517  // will take 2 allocations in the out of order engine instead of 1
28518  // for plain addressing mode, i.e. inst (reg1).
28519  // E.g.,
28520  // vaddps (%rsi,%drx), %ymm0, %ymm1
28521  // Requires two allocations (one for the load, one for the computation)
28522  // whereas:
28523  // vaddps (%rsi), %ymm0, %ymm1
28524  // Requires just 1 allocation, i.e., freeing allocations for other operations
28525  // and having less micro operations to execute.
28526  //
28527  // For some X86 architectures, this is even worse because for instance for
28528  // stores, the complex addressing mode forces the instruction to use the
28529  // "load" ports instead of the dedicated "store" port.
28530  // E.g., on Haswell:
28531  // vmovaps %ymm1, (%r8, %rdi) can use port 2 or 3.
28532  // vmovaps %ymm1, (%r8) can use port 2, 3, or 7.
28533  if (isLegalAddressingMode(DL, AM, Ty, AS))
28534    // Scale represents reg2 * scale, thus account for 1
28535    // as soon as we use a second register.
28536    return AM.Scale != 0;
28537  return -1;
28538}
28539
28540bool X86TargetLowering::isIntDivCheap(EVT VT, AttributeSet Attr) const {
28541  // Integer division on x86 is expensive. However, when aggressively optimizing
28542  // for code size, we prefer to use a div instruction, as it is usually smaller
28543  // than the alternative sequence.
28544  // The exception to this is vector division. Since x86 doesn't have vector
28545  // integer division, leaving the division as-is is a loss even in terms of
28546  // size, because it will have to be scalarized, while the alternative code
28547  // sequence can be performed in vector form.
28548  bool OptSize = Attr.hasAttribute(AttributeSet::FunctionIndex,
28549                                   Attribute::MinSize);
28550  return OptSize && !VT.isVector();
28551}
28552
28553void X86TargetLowering::markInRegArguments(SelectionDAG &DAG,
28554       TargetLowering::ArgListTy& Args) const {
28555  // The MCU psABI requires some arguments to be passed in-register.
28556  // For regular calls, the inreg arguments are marked by the front-end.
28557  // However, for compiler generated library calls, we have to patch this
28558  // up here.
28559  if (!Subtarget->isTargetMCU() || !Args.size())
28560    return;
28561
28562  unsigned FreeRegs = 3;
28563  for (auto &Arg : Args) {
28564    // For library functions, we do not expect any fancy types.
28565    unsigned Size = DAG.getDataLayout().getTypeSizeInBits(Arg.Ty);
28566    unsigned SizeInRegs = (Size + 31) / 32;
28567    if (SizeInRegs > 2 || SizeInRegs > FreeRegs)
28568      continue;
28569
28570    Arg.isInReg = true;
28571    FreeRegs -= SizeInRegs;
28572    if (!FreeRegs)
28573      break;
28574  }
28575}
28576