ArgumentPromotion.cpp revision 28252b6f0a483ffb0ead991c7a1ead14e3cd2fc1
1//===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This pass promotes "by reference" arguments to be "by value" arguments. In 11// practice, this means looking for internal functions that have pointer 12// arguments. If it can prove, through the use of alias analysis, that an 13// argument is *only* loaded, then it can pass the value into the function 14// instead of the address of the value. This can cause recursive simplification 15// of code and lead to the elimination of allocas (especially in C++ template 16// code like the STL). 17// 18// This pass also handles aggregate arguments that are passed into a function, 19// scalarizing them if the elements of the aggregate are only loaded. Note that 20// by default it refuses to scalarize aggregates which would require passing in 21// more than three operands to the function, because passing thousands of 22// operands for a large array or structure is unprofitable! This limit can be 23// configured or disabled, however. 24// 25// Note that this transformation could also be done for arguments that are only 26// stored to (returning the value instead), but does not currently. This case 27// would be best handled when and if LLVM begins supporting multiple return 28// values from functions. 29// 30//===----------------------------------------------------------------------===// 31 32#define DEBUG_TYPE "argpromotion" 33#include "llvm/Transforms/IPO.h" 34#include "llvm/Constants.h" 35#include "llvm/DerivedTypes.h" 36#include "llvm/Module.h" 37#include "llvm/CallGraphSCCPass.h" 38#include "llvm/Instructions.h" 39#include "llvm/LLVMContext.h" 40#include "llvm/Analysis/AliasAnalysis.h" 41#include "llvm/Analysis/CallGraph.h" 42#include "llvm/Support/CallSite.h" 43#include "llvm/Support/CFG.h" 44#include "llvm/Support/Debug.h" 45#include "llvm/Support/raw_ostream.h" 46#include "llvm/ADT/DepthFirstIterator.h" 47#include "llvm/ADT/Statistic.h" 48#include "llvm/ADT/StringExtras.h" 49#include <set> 50using namespace llvm; 51 52STATISTIC(NumArgumentsPromoted , "Number of pointer arguments promoted"); 53STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted"); 54STATISTIC(NumByValArgsPromoted , "Number of byval arguments promoted"); 55STATISTIC(NumArgumentsDead , "Number of dead pointer args eliminated"); 56 57namespace { 58 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass. 59 /// 60 struct ArgPromotion : public CallGraphSCCPass { 61 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 62 AU.addRequired<AliasAnalysis>(); 63 CallGraphSCCPass::getAnalysisUsage(AU); 64 } 65 66 virtual bool runOnSCC(CallGraphSCC &SCC); 67 static char ID; // Pass identification, replacement for typeid 68 explicit ArgPromotion(unsigned maxElements = 3) 69 : CallGraphSCCPass(ID), maxElements(maxElements) { 70 initializeArgPromotionPass(*PassRegistry::getPassRegistry()); 71 } 72 73 /// A vector used to hold the indices of a single GEP instruction 74 typedef std::vector<uint64_t> IndicesVector; 75 76 private: 77 CallGraphNode *PromoteArguments(CallGraphNode *CGN); 78 bool isSafeToPromoteArgument(Argument *Arg, bool isByVal) const; 79 CallGraphNode *DoPromotion(Function *F, 80 SmallPtrSet<Argument*, 8> &ArgsToPromote, 81 SmallPtrSet<Argument*, 8> &ByValArgsToTransform); 82 /// The maximum number of elements to expand, or 0 for unlimited. 83 unsigned maxElements; 84 }; 85} 86 87char ArgPromotion::ID = 0; 88INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion", 89 "Promote 'by reference' arguments to scalars", false, false) 90INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 91INITIALIZE_AG_DEPENDENCY(CallGraph) 92INITIALIZE_PASS_END(ArgPromotion, "argpromotion", 93 "Promote 'by reference' arguments to scalars", false, false) 94 95Pass *llvm::createArgumentPromotionPass(unsigned maxElements) { 96 return new ArgPromotion(maxElements); 97} 98 99bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) { 100 bool Changed = false, LocalChange; 101 102 do { // Iterate until we stop promoting from this SCC. 103 LocalChange = false; 104 // Attempt to promote arguments from all functions in this SCC. 105 for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) { 106 if (CallGraphNode *CGN = PromoteArguments(*I)) { 107 LocalChange = true; 108 SCC.ReplaceNode(*I, CGN); 109 } 110 } 111 Changed |= LocalChange; // Remember that we changed something. 112 } while (LocalChange); 113 114 return Changed; 115} 116 117/// PromoteArguments - This method checks the specified function to see if there 118/// are any promotable arguments and if it is safe to promote the function (for 119/// example, all callers are direct). If safe to promote some arguments, it 120/// calls the DoPromotion method. 121/// 122CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) { 123 Function *F = CGN->getFunction(); 124 125 // Make sure that it is local to this module. 126 if (!F || !F->hasLocalLinkage()) return 0; 127 128 // First check: see if there are any pointer arguments! If not, quick exit. 129 SmallVector<std::pair<Argument*, unsigned>, 16> PointerArgs; 130 unsigned ArgNo = 0; 131 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); 132 I != E; ++I, ++ArgNo) 133 if (I->getType()->isPointerTy()) 134 PointerArgs.push_back(std::pair<Argument*, unsigned>(I, ArgNo)); 135 if (PointerArgs.empty()) return 0; 136 137 // Second check: make sure that all callers are direct callers. We can't 138 // transform functions that have indirect callers. Also see if the function 139 // is self-recursive. 140 bool isSelfRecursive = false; 141 for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); 142 UI != E; ++UI) { 143 CallSite CS(*UI); 144 // Must be a direct call. 145 if (CS.getInstruction() == 0 || !CS.isCallee(UI)) return 0; 146 147 if (CS.getInstruction()->getParent()->getParent() == F) 148 isSelfRecursive = true; 149 } 150 151 // Check to see which arguments are promotable. If an argument is promotable, 152 // add it to ArgsToPromote. 153 SmallPtrSet<Argument*, 8> ArgsToPromote; 154 SmallPtrSet<Argument*, 8> ByValArgsToTransform; 155 for (unsigned i = 0; i != PointerArgs.size(); ++i) { 156 bool isByVal = F->paramHasAttr(PointerArgs[i].second+1, Attribute::ByVal); 157 Argument *PtrArg = PointerArgs[i].first; 158 const Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType(); 159 160 // If this is a byval argument, and if the aggregate type is small, just 161 // pass the elements, which is always safe. 162 if (isByVal) { 163 if (const StructType *STy = dyn_cast<StructType>(AgTy)) { 164 if (maxElements > 0 && STy->getNumElements() > maxElements) { 165 DEBUG(dbgs() << "argpromotion disable promoting argument '" 166 << PtrArg->getName() << "' because it would require adding more" 167 << " than " << maxElements << " arguments to the function.\n"); 168 continue; 169 } 170 171 // If all the elements are single-value types, we can promote it. 172 bool AllSimple = true; 173 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 174 if (!STy->getElementType(i)->isSingleValueType()) { 175 AllSimple = false; 176 break; 177 } 178 } 179 180 // Safe to transform, don't even bother trying to "promote" it. 181 // Passing the elements as a scalar will allow scalarrepl to hack on 182 // the new alloca we introduce. 183 if (AllSimple) { 184 ByValArgsToTransform.insert(PtrArg); 185 continue; 186 } 187 } 188 } 189 190 // If the argument is a recursive type and we're in a recursive 191 // function, we could end up infinitely peeling the function argument. 192 if (isSelfRecursive) { 193 if (const StructType *STy = dyn_cast<StructType>(AgTy)) { 194 bool RecursiveType = false; 195 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 196 if (STy->getElementType(i) == PtrArg->getType()) { 197 RecursiveType = true; 198 break; 199 } 200 } 201 if (RecursiveType) 202 continue; 203 } 204 } 205 206 // Otherwise, see if we can promote the pointer to its value. 207 if (isSafeToPromoteArgument(PtrArg, isByVal)) 208 ArgsToPromote.insert(PtrArg); 209 } 210 211 // No promotable pointer arguments. 212 if (ArgsToPromote.empty() && ByValArgsToTransform.empty()) 213 return 0; 214 215 return DoPromotion(F, ArgsToPromote, ByValArgsToTransform); 216} 217 218/// AllCallersPassInValidPointerForArgument - Return true if we can prove that 219/// all callees pass in a valid pointer for the specified function argument. 220static bool AllCallersPassInValidPointerForArgument(Argument *Arg) { 221 Function *Callee = Arg->getParent(); 222 223 unsigned ArgNo = std::distance(Callee->arg_begin(), 224 Function::arg_iterator(Arg)); 225 226 // Look at all call sites of the function. At this pointer we know we only 227 // have direct callees. 228 for (Value::use_iterator UI = Callee->use_begin(), E = Callee->use_end(); 229 UI != E; ++UI) { 230 CallSite CS(*UI); 231 assert(CS && "Should only have direct calls!"); 232 233 if (!CS.getArgument(ArgNo)->isDereferenceablePointer()) 234 return false; 235 } 236 return true; 237} 238 239/// Returns true if Prefix is a prefix of longer. That means, Longer has a size 240/// that is greater than or equal to the size of prefix, and each of the 241/// elements in Prefix is the same as the corresponding elements in Longer. 242/// 243/// This means it also returns true when Prefix and Longer are equal! 244static bool IsPrefix(const ArgPromotion::IndicesVector &Prefix, 245 const ArgPromotion::IndicesVector &Longer) { 246 if (Prefix.size() > Longer.size()) 247 return false; 248 for (unsigned i = 0, e = Prefix.size(); i != e; ++i) 249 if (Prefix[i] != Longer[i]) 250 return false; 251 return true; 252} 253 254 255/// Checks if Indices, or a prefix of Indices, is in Set. 256static bool PrefixIn(const ArgPromotion::IndicesVector &Indices, 257 std::set<ArgPromotion::IndicesVector> &Set) { 258 std::set<ArgPromotion::IndicesVector>::iterator Low; 259 Low = Set.upper_bound(Indices); 260 if (Low != Set.begin()) 261 Low--; 262 // Low is now the last element smaller than or equal to Indices. This means 263 // it points to a prefix of Indices (possibly Indices itself), if such 264 // prefix exists. 265 // 266 // This load is safe if any prefix of its operands is safe to load. 267 return Low != Set.end() && IsPrefix(*Low, Indices); 268} 269 270/// Mark the given indices (ToMark) as safe in the given set of indices 271/// (Safe). Marking safe usually means adding ToMark to Safe. However, if there 272/// is already a prefix of Indices in Safe, Indices are implicitely marked safe 273/// already. Furthermore, any indices that Indices is itself a prefix of, are 274/// removed from Safe (since they are implicitely safe because of Indices now). 275static void MarkIndicesSafe(const ArgPromotion::IndicesVector &ToMark, 276 std::set<ArgPromotion::IndicesVector> &Safe) { 277 std::set<ArgPromotion::IndicesVector>::iterator Low; 278 Low = Safe.upper_bound(ToMark); 279 // Guard against the case where Safe is empty 280 if (Low != Safe.begin()) 281 Low--; 282 // Low is now the last element smaller than or equal to Indices. This 283 // means it points to a prefix of Indices (possibly Indices itself), if 284 // such prefix exists. 285 if (Low != Safe.end()) { 286 if (IsPrefix(*Low, ToMark)) 287 // If there is already a prefix of these indices (or exactly these 288 // indices) marked a safe, don't bother adding these indices 289 return; 290 291 // Increment Low, so we can use it as a "insert before" hint 292 ++Low; 293 } 294 // Insert 295 Low = Safe.insert(Low, ToMark); 296 ++Low; 297 // If there we're a prefix of longer index list(s), remove those 298 std::set<ArgPromotion::IndicesVector>::iterator End = Safe.end(); 299 while (Low != End && IsPrefix(ToMark, *Low)) { 300 std::set<ArgPromotion::IndicesVector>::iterator Remove = Low; 301 ++Low; 302 Safe.erase(Remove); 303 } 304} 305 306/// isSafeToPromoteArgument - As you might guess from the name of this method, 307/// it checks to see if it is both safe and useful to promote the argument. 308/// This method limits promotion of aggregates to only promote up to three 309/// elements of the aggregate in order to avoid exploding the number of 310/// arguments passed in. 311bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg, bool isByVal) const { 312 typedef std::set<IndicesVector> GEPIndicesSet; 313 314 // Quick exit for unused arguments 315 if (Arg->use_empty()) 316 return true; 317 318 // We can only promote this argument if all of the uses are loads, or are GEP 319 // instructions (with constant indices) that are subsequently loaded. 320 // 321 // Promoting the argument causes it to be loaded in the caller 322 // unconditionally. This is only safe if we can prove that either the load 323 // would have happened in the callee anyway (ie, there is a load in the entry 324 // block) or the pointer passed in at every call site is guaranteed to be 325 // valid. 326 // In the former case, invalid loads can happen, but would have happened 327 // anyway, in the latter case, invalid loads won't happen. This prevents us 328 // from introducing an invalid load that wouldn't have happened in the 329 // original code. 330 // 331 // This set will contain all sets of indices that are loaded in the entry 332 // block, and thus are safe to unconditionally load in the caller. 333 GEPIndicesSet SafeToUnconditionallyLoad; 334 335 // This set contains all the sets of indices that we are planning to promote. 336 // This makes it possible to limit the number of arguments added. 337 GEPIndicesSet ToPromote; 338 339 // If the pointer is always valid, any load with first index 0 is valid. 340 if (isByVal || AllCallersPassInValidPointerForArgument(Arg)) 341 SafeToUnconditionallyLoad.insert(IndicesVector(1, 0)); 342 343 // First, iterate the entry block and mark loads of (geps of) arguments as 344 // safe. 345 BasicBlock *EntryBlock = Arg->getParent()->begin(); 346 // Declare this here so we can reuse it 347 IndicesVector Indices; 348 for (BasicBlock::iterator I = EntryBlock->begin(), E = EntryBlock->end(); 349 I != E; ++I) 350 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 351 Value *V = LI->getPointerOperand(); 352 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 353 V = GEP->getPointerOperand(); 354 if (V == Arg) { 355 // This load actually loads (part of) Arg? Check the indices then. 356 Indices.reserve(GEP->getNumIndices()); 357 for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end(); 358 II != IE; ++II) 359 if (ConstantInt *CI = dyn_cast<ConstantInt>(*II)) 360 Indices.push_back(CI->getSExtValue()); 361 else 362 // We found a non-constant GEP index for this argument? Bail out 363 // right away, can't promote this argument at all. 364 return false; 365 366 // Indices checked out, mark them as safe 367 MarkIndicesSafe(Indices, SafeToUnconditionallyLoad); 368 Indices.clear(); 369 } 370 } else if (V == Arg) { 371 // Direct loads are equivalent to a GEP with a single 0 index. 372 MarkIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad); 373 } 374 } 375 376 // Now, iterate all uses of the argument to see if there are any uses that are 377 // not (GEP+)loads, or any (GEP+)loads that are not safe to promote. 378 SmallVector<LoadInst*, 16> Loads; 379 IndicesVector Operands; 380 for (Value::use_iterator UI = Arg->use_begin(), E = Arg->use_end(); 381 UI != E; ++UI) { 382 User *U = *UI; 383 Operands.clear(); 384 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 385 if (LI->isVolatile()) return false; // Don't hack volatile loads 386 Loads.push_back(LI); 387 // Direct loads are equivalent to a GEP with a zero index and then a load. 388 Operands.push_back(0); 389 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 390 if (GEP->use_empty()) { 391 // Dead GEP's cause trouble later. Just remove them if we run into 392 // them. 393 getAnalysis<AliasAnalysis>().deleteValue(GEP); 394 GEP->eraseFromParent(); 395 // TODO: This runs the above loop over and over again for dead GEPs 396 // Couldn't we just do increment the UI iterator earlier and erase the 397 // use? 398 return isSafeToPromoteArgument(Arg, isByVal); 399 } 400 401 // Ensure that all of the indices are constants. 402 for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end(); 403 i != e; ++i) 404 if (ConstantInt *C = dyn_cast<ConstantInt>(*i)) 405 Operands.push_back(C->getSExtValue()); 406 else 407 return false; // Not a constant operand GEP! 408 409 // Ensure that the only users of the GEP are load instructions. 410 for (Value::use_iterator UI = GEP->use_begin(), E = GEP->use_end(); 411 UI != E; ++UI) 412 if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) { 413 if (LI->isVolatile()) return false; // Don't hack volatile loads 414 Loads.push_back(LI); 415 } else { 416 // Other uses than load? 417 return false; 418 } 419 } else { 420 return false; // Not a load or a GEP. 421 } 422 423 // Now, see if it is safe to promote this load / loads of this GEP. Loading 424 // is safe if Operands, or a prefix of Operands, is marked as safe. 425 if (!PrefixIn(Operands, SafeToUnconditionallyLoad)) 426 return false; 427 428 // See if we are already promoting a load with these indices. If not, check 429 // to make sure that we aren't promoting too many elements. If so, nothing 430 // to do. 431 if (ToPromote.find(Operands) == ToPromote.end()) { 432 if (maxElements > 0 && ToPromote.size() == maxElements) { 433 DEBUG(dbgs() << "argpromotion not promoting argument '" 434 << Arg->getName() << "' because it would require adding more " 435 << "than " << maxElements << " arguments to the function.\n"); 436 // We limit aggregate promotion to only promoting up to a fixed number 437 // of elements of the aggregate. 438 return false; 439 } 440 ToPromote.insert(Operands); 441 } 442 } 443 444 if (Loads.empty()) return true; // No users, this is a dead argument. 445 446 // Okay, now we know that the argument is only used by load instructions and 447 // it is safe to unconditionally perform all of them. Use alias analysis to 448 // check to see if the pointer is guaranteed to not be modified from entry of 449 // the function to each of the load instructions. 450 451 // Because there could be several/many load instructions, remember which 452 // blocks we know to be transparent to the load. 453 SmallPtrSet<BasicBlock*, 16> TranspBlocks; 454 455 AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); 456 457 for (unsigned i = 0, e = Loads.size(); i != e; ++i) { 458 // Check to see if the load is invalidated from the start of the block to 459 // the load itself. 460 LoadInst *Load = Loads[i]; 461 BasicBlock *BB = Load->getParent(); 462 463 AliasAnalysis::Location Loc = AA.getLocation(Load); 464 if (AA.canInstructionRangeModify(BB->front(), *Load, Loc)) 465 return false; // Pointer is invalidated! 466 467 // Now check every path from the entry block to the load for transparency. 468 // To do this, we perform a depth first search on the inverse CFG from the 469 // loading block. 470 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 471 BasicBlock *P = *PI; 472 for (idf_ext_iterator<BasicBlock*, SmallPtrSet<BasicBlock*, 16> > 473 I = idf_ext_begin(P, TranspBlocks), 474 E = idf_ext_end(P, TranspBlocks); I != E; ++I) 475 if (AA.canBasicBlockModify(**I, Loc)) 476 return false; 477 } 478 } 479 480 // If the path from the entry of the function to each load is free of 481 // instructions that potentially invalidate the load, we can make the 482 // transformation! 483 return true; 484} 485 486/// DoPromotion - This method actually performs the promotion of the specified 487/// arguments, and returns the new function. At this point, we know that it's 488/// safe to do so. 489CallGraphNode *ArgPromotion::DoPromotion(Function *F, 490 SmallPtrSet<Argument*, 8> &ArgsToPromote, 491 SmallPtrSet<Argument*, 8> &ByValArgsToTransform) { 492 493 // Start by computing a new prototype for the function, which is the same as 494 // the old function, but has modified arguments. 495 const FunctionType *FTy = F->getFunctionType(); 496 std::vector<const Type*> Params; 497 498 typedef std::set<IndicesVector> ScalarizeTable; 499 500 // ScalarizedElements - If we are promoting a pointer that has elements 501 // accessed out of it, keep track of which elements are accessed so that we 502 // can add one argument for each. 503 // 504 // Arguments that are directly loaded will have a zero element value here, to 505 // handle cases where there are both a direct load and GEP accesses. 506 // 507 std::map<Argument*, ScalarizeTable> ScalarizedElements; 508 509 // OriginalLoads - Keep track of a representative load instruction from the 510 // original function so that we can tell the alias analysis implementation 511 // what the new GEP/Load instructions we are inserting look like. 512 std::map<IndicesVector, LoadInst*> OriginalLoads; 513 514 // Attributes - Keep track of the parameter attributes for the arguments 515 // that we are *not* promoting. For the ones that we do promote, the parameter 516 // attributes are lost 517 SmallVector<AttributeWithIndex, 8> AttributesVec; 518 const AttrListPtr &PAL = F->getAttributes(); 519 520 // Add any return attributes. 521 if (Attributes attrs = PAL.getRetAttributes()) 522 AttributesVec.push_back(AttributeWithIndex::get(0, attrs)); 523 524 // First, determine the new argument list 525 unsigned ArgIndex = 1; 526 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; 527 ++I, ++ArgIndex) { 528 if (ByValArgsToTransform.count(I)) { 529 // Simple byval argument? Just add all the struct element types. 530 const Type *AgTy = cast<PointerType>(I->getType())->getElementType(); 531 const StructType *STy = cast<StructType>(AgTy); 532 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 533 Params.push_back(STy->getElementType(i)); 534 ++NumByValArgsPromoted; 535 } else if (!ArgsToPromote.count(I)) { 536 // Unchanged argument 537 Params.push_back(I->getType()); 538 if (Attributes attrs = PAL.getParamAttributes(ArgIndex)) 539 AttributesVec.push_back(AttributeWithIndex::get(Params.size(), attrs)); 540 } else if (I->use_empty()) { 541 // Dead argument (which are always marked as promotable) 542 ++NumArgumentsDead; 543 } else { 544 // Okay, this is being promoted. This means that the only uses are loads 545 // or GEPs which are only used by loads 546 547 // In this table, we will track which indices are loaded from the argument 548 // (where direct loads are tracked as no indices). 549 ScalarizeTable &ArgIndices = ScalarizedElements[I]; 550 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 551 ++UI) { 552 Instruction *User = cast<Instruction>(*UI); 553 assert(isa<LoadInst>(User) || isa<GetElementPtrInst>(User)); 554 IndicesVector Indices; 555 Indices.reserve(User->getNumOperands() - 1); 556 // Since loads will only have a single operand, and GEPs only a single 557 // non-index operand, this will record direct loads without any indices, 558 // and gep+loads with the GEP indices. 559 for (User::op_iterator II = User->op_begin() + 1, IE = User->op_end(); 560 II != IE; ++II) 561 Indices.push_back(cast<ConstantInt>(*II)->getSExtValue()); 562 // GEPs with a single 0 index can be merged with direct loads 563 if (Indices.size() == 1 && Indices.front() == 0) 564 Indices.clear(); 565 ArgIndices.insert(Indices); 566 LoadInst *OrigLoad; 567 if (LoadInst *L = dyn_cast<LoadInst>(User)) 568 OrigLoad = L; 569 else 570 // Take any load, we will use it only to update Alias Analysis 571 OrigLoad = cast<LoadInst>(User->use_back()); 572 OriginalLoads[Indices] = OrigLoad; 573 } 574 575 // Add a parameter to the function for each element passed in. 576 for (ScalarizeTable::iterator SI = ArgIndices.begin(), 577 E = ArgIndices.end(); SI != E; ++SI) { 578 // not allowed to dereference ->begin() if size() is 0 579 Params.push_back(GetElementPtrInst::getIndexedType(I->getType(), 580 SI->begin(), 581 SI->end())); 582 assert(Params.back()); 583 } 584 585 if (ArgIndices.size() == 1 && ArgIndices.begin()->empty()) 586 ++NumArgumentsPromoted; 587 else 588 ++NumAggregatesPromoted; 589 } 590 } 591 592 // Add any function attributes. 593 if (Attributes attrs = PAL.getFnAttributes()) 594 AttributesVec.push_back(AttributeWithIndex::get(~0, attrs)); 595 596 const Type *RetTy = FTy->getReturnType(); 597 598 // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which 599 // have zero fixed arguments. 600 bool ExtraArgHack = false; 601 if (Params.empty() && FTy->isVarArg()) { 602 ExtraArgHack = true; 603 Params.push_back(Type::getInt32Ty(F->getContext())); 604 } 605 606 // Construct the new function type using the new arguments. 607 FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg()); 608 609 // Create the new function body and insert it into the module. 610 Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName()); 611 NF->copyAttributesFrom(F); 612 613 614 DEBUG(dbgs() << "ARG PROMOTION: Promoting to:" << *NF << "\n" 615 << "From: " << *F); 616 617 // Recompute the parameter attributes list based on the new arguments for 618 // the function. 619 NF->setAttributes(AttrListPtr::get(AttributesVec.begin(), 620 AttributesVec.end())); 621 AttributesVec.clear(); 622 623 F->getParent()->getFunctionList().insert(F, NF); 624 NF->takeName(F); 625 626 // Get the alias analysis information that we need to update to reflect our 627 // changes. 628 AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); 629 630 // Get the callgraph information that we need to update to reflect our 631 // changes. 632 CallGraph &CG = getAnalysis<CallGraph>(); 633 634 // Get a new callgraph node for NF. 635 CallGraphNode *NF_CGN = CG.getOrInsertFunction(NF); 636 637 // Loop over all of the callers of the function, transforming the call sites 638 // to pass in the loaded pointers. 639 // 640 SmallVector<Value*, 16> Args; 641 while (!F->use_empty()) { 642 CallSite CS(F->use_back()); 643 assert(CS.getCalledFunction() == F); 644 Instruction *Call = CS.getInstruction(); 645 const AttrListPtr &CallPAL = CS.getAttributes(); 646 647 // Add any return attributes. 648 if (Attributes attrs = CallPAL.getRetAttributes()) 649 AttributesVec.push_back(AttributeWithIndex::get(0, attrs)); 650 651 // Loop over the operands, inserting GEP and loads in the caller as 652 // appropriate. 653 CallSite::arg_iterator AI = CS.arg_begin(); 654 ArgIndex = 1; 655 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); 656 I != E; ++I, ++AI, ++ArgIndex) 657 if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) { 658 Args.push_back(*AI); // Unmodified argument 659 660 if (Attributes Attrs = CallPAL.getParamAttributes(ArgIndex)) 661 AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs)); 662 663 } else if (ByValArgsToTransform.count(I)) { 664 // Emit a GEP and load for each element of the struct. 665 const Type *AgTy = cast<PointerType>(I->getType())->getElementType(); 666 const StructType *STy = cast<StructType>(AgTy); 667 Value *Idxs[2] = { 668 ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 }; 669 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 670 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i); 671 Value *Idx = GetElementPtrInst::Create(*AI, Idxs, Idxs+2, 672 (*AI)->getName()+"."+utostr(i), 673 Call); 674 // TODO: Tell AA about the new values? 675 Args.push_back(new LoadInst(Idx, Idx->getName()+".val", Call)); 676 } 677 } else if (!I->use_empty()) { 678 // Non-dead argument: insert GEPs and loads as appropriate. 679 ScalarizeTable &ArgIndices = ScalarizedElements[I]; 680 // Store the Value* version of the indices in here, but declare it now 681 // for reuse. 682 std::vector<Value*> Ops; 683 for (ScalarizeTable::iterator SI = ArgIndices.begin(), 684 E = ArgIndices.end(); SI != E; ++SI) { 685 Value *V = *AI; 686 LoadInst *OrigLoad = OriginalLoads[*SI]; 687 if (!SI->empty()) { 688 Ops.reserve(SI->size()); 689 const Type *ElTy = V->getType(); 690 for (IndicesVector::const_iterator II = SI->begin(), 691 IE = SI->end(); II != IE; ++II) { 692 // Use i32 to index structs, and i64 for others (pointers/arrays). 693 // This satisfies GEP constraints. 694 const Type *IdxTy = (ElTy->isStructTy() ? 695 Type::getInt32Ty(F->getContext()) : 696 Type::getInt64Ty(F->getContext())); 697 Ops.push_back(ConstantInt::get(IdxTy, *II)); 698 // Keep track of the type we're currently indexing. 699 ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(*II); 700 } 701 // And create a GEP to extract those indices. 702 V = GetElementPtrInst::Create(V, Ops.begin(), Ops.end(), 703 V->getName()+".idx", Call); 704 Ops.clear(); 705 AA.copyValue(OrigLoad->getOperand(0), V); 706 } 707 // Since we're replacing a load make sure we take the alignment 708 // of the previous load. 709 LoadInst *newLoad = new LoadInst(V, V->getName()+".val", Call); 710 newLoad->setAlignment(OrigLoad->getAlignment()); 711 // Transfer the TBAA info too. 712 newLoad->setMetadata(LLVMContext::MD_tbaa, 713 OrigLoad->getMetadata(LLVMContext::MD_tbaa)); 714 Args.push_back(newLoad); 715 AA.copyValue(OrigLoad, Args.back()); 716 } 717 } 718 719 if (ExtraArgHack) 720 Args.push_back(Constant::getNullValue(Type::getInt32Ty(F->getContext()))); 721 722 // Push any varargs arguments on the list. 723 for (; AI != CS.arg_end(); ++AI, ++ArgIndex) { 724 Args.push_back(*AI); 725 if (Attributes Attrs = CallPAL.getParamAttributes(ArgIndex)) 726 AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs)); 727 } 728 729 // Add any function attributes. 730 if (Attributes attrs = CallPAL.getFnAttributes()) 731 AttributesVec.push_back(AttributeWithIndex::get(~0, attrs)); 732 733 Instruction *New; 734 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) { 735 New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), 736 Args.begin(), Args.end(), "", Call); 737 cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv()); 738 cast<InvokeInst>(New)->setAttributes(AttrListPtr::get(AttributesVec.begin(), 739 AttributesVec.end())); 740 } else { 741 New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call); 742 cast<CallInst>(New)->setCallingConv(CS.getCallingConv()); 743 cast<CallInst>(New)->setAttributes(AttrListPtr::get(AttributesVec.begin(), 744 AttributesVec.end())); 745 if (cast<CallInst>(Call)->isTailCall()) 746 cast<CallInst>(New)->setTailCall(); 747 } 748 Args.clear(); 749 AttributesVec.clear(); 750 751 // Update the alias analysis implementation to know that we are replacing 752 // the old call with a new one. 753 AA.replaceWithNewValue(Call, New); 754 755 // Update the callgraph to know that the callsite has been transformed. 756 CallGraphNode *CalleeNode = CG[Call->getParent()->getParent()]; 757 CalleeNode->replaceCallEdge(Call, New, NF_CGN); 758 759 if (!Call->use_empty()) { 760 Call->replaceAllUsesWith(New); 761 New->takeName(Call); 762 } 763 764 // Finally, remove the old call from the program, reducing the use-count of 765 // F. 766 Call->eraseFromParent(); 767 } 768 769 // Since we have now created the new function, splice the body of the old 770 // function right into the new function, leaving the old rotting hulk of the 771 // function empty. 772 NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList()); 773 774 // Loop over the argument list, transfering uses of the old arguments over to 775 // the new arguments, also transfering over the names as well. 776 // 777 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(), 778 I2 = NF->arg_begin(); I != E; ++I) { 779 if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) { 780 // If this is an unmodified argument, move the name and users over to the 781 // new version. 782 I->replaceAllUsesWith(I2); 783 I2->takeName(I); 784 AA.replaceWithNewValue(I, I2); 785 ++I2; 786 continue; 787 } 788 789 if (ByValArgsToTransform.count(I)) { 790 // In the callee, we create an alloca, and store each of the new incoming 791 // arguments into the alloca. 792 Instruction *InsertPt = NF->begin()->begin(); 793 794 // Just add all the struct element types. 795 const Type *AgTy = cast<PointerType>(I->getType())->getElementType(); 796 Value *TheAlloca = new AllocaInst(AgTy, 0, "", InsertPt); 797 const StructType *STy = cast<StructType>(AgTy); 798 Value *Idxs[2] = { 799 ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 }; 800 801 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 802 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i); 803 Value *Idx = 804 GetElementPtrInst::Create(TheAlloca, Idxs, Idxs+2, 805 TheAlloca->getName()+"."+Twine(i), 806 InsertPt); 807 I2->setName(I->getName()+"."+Twine(i)); 808 new StoreInst(I2++, Idx, InsertPt); 809 } 810 811 // Anything that used the arg should now use the alloca. 812 I->replaceAllUsesWith(TheAlloca); 813 TheAlloca->takeName(I); 814 AA.replaceWithNewValue(I, TheAlloca); 815 continue; 816 } 817 818 if (I->use_empty()) { 819 AA.deleteValue(I); 820 continue; 821 } 822 823 // Otherwise, if we promoted this argument, then all users are load 824 // instructions (or GEPs with only load users), and all loads should be 825 // using the new argument that we added. 826 ScalarizeTable &ArgIndices = ScalarizedElements[I]; 827 828 while (!I->use_empty()) { 829 if (LoadInst *LI = dyn_cast<LoadInst>(I->use_back())) { 830 assert(ArgIndices.begin()->empty() && 831 "Load element should sort to front!"); 832 I2->setName(I->getName()+".val"); 833 LI->replaceAllUsesWith(I2); 834 AA.replaceWithNewValue(LI, I2); 835 LI->eraseFromParent(); 836 DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName() 837 << "' in function '" << F->getName() << "'\n"); 838 } else { 839 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->use_back()); 840 IndicesVector Operands; 841 Operands.reserve(GEP->getNumIndices()); 842 for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end(); 843 II != IE; ++II) 844 Operands.push_back(cast<ConstantInt>(*II)->getSExtValue()); 845 846 // GEPs with a single 0 index can be merged with direct loads 847 if (Operands.size() == 1 && Operands.front() == 0) 848 Operands.clear(); 849 850 Function::arg_iterator TheArg = I2; 851 for (ScalarizeTable::iterator It = ArgIndices.begin(); 852 *It != Operands; ++It, ++TheArg) { 853 assert(It != ArgIndices.end() && "GEP not handled??"); 854 } 855 856 std::string NewName = I->getName(); 857 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 858 NewName += "." + utostr(Operands[i]); 859 } 860 NewName += ".val"; 861 TheArg->setName(NewName); 862 863 DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName() 864 << "' of function '" << NF->getName() << "'\n"); 865 866 // All of the uses must be load instructions. Replace them all with 867 // the argument specified by ArgNo. 868 while (!GEP->use_empty()) { 869 LoadInst *L = cast<LoadInst>(GEP->use_back()); 870 L->replaceAllUsesWith(TheArg); 871 AA.replaceWithNewValue(L, TheArg); 872 L->eraseFromParent(); 873 } 874 AA.deleteValue(GEP); 875 GEP->eraseFromParent(); 876 } 877 } 878 879 // Increment I2 past all of the arguments added for this promoted pointer. 880 for (unsigned i = 0, e = ArgIndices.size(); i != e; ++i) 881 ++I2; 882 } 883 884 // Notify the alias analysis implementation that we inserted a new argument. 885 if (ExtraArgHack) 886 AA.copyValue(Constant::getNullValue(Type::getInt32Ty(F->getContext())), 887 NF->arg_begin()); 888 889 890 // Tell the alias analysis that the old function is about to disappear. 891 AA.replaceWithNewValue(F, NF); 892 893 894 NF_CGN->stealCalledFunctionsFrom(CG[F]); 895 896 // Now that the old function is dead, delete it. If there is a dangling 897 // reference to the CallgraphNode, just leave the dead function around for 898 // someone else to nuke. 899 CallGraphNode *CGN = CG[F]; 900 if (CGN->getNumReferences() == 0) 901 delete CG.removeFunctionFromModule(CGN); 902 else 903 F->setLinkage(Function::ExternalLinkage); 904 905 return NF_CGN; 906} 907