InstCombinePHI.cpp revision 3ecfc861b4365f341c5c969b40e1afccde676e6f
1//===- InstCombinePHI.cpp -------------------------------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the visitPHINode function. 11// 12//===----------------------------------------------------------------------===// 13 14#include "InstCombine.h" 15#include "llvm/Analysis/InstructionSimplify.h" 16#include "llvm/Target/TargetData.h" 17#include "llvm/ADT/SmallPtrSet.h" 18#include "llvm/ADT/STLExtras.h" 19using namespace llvm; 20 21/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(a,c)] 22/// and if a/b/c and the add's all have a single use, turn this into a phi 23/// and a single binop. 24Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) { 25 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0)); 26 assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)); 27 unsigned Opc = FirstInst->getOpcode(); 28 Value *LHSVal = FirstInst->getOperand(0); 29 Value *RHSVal = FirstInst->getOperand(1); 30 31 const Type *LHSType = LHSVal->getType(); 32 const Type *RHSType = RHSVal->getType(); 33 34 bool isNUW = false, isNSW = false, isExact = false; 35 if (OverflowingBinaryOperator *BO = 36 dyn_cast<OverflowingBinaryOperator>(FirstInst)) { 37 isNUW = BO->hasNoUnsignedWrap(); 38 isNSW = BO->hasNoSignedWrap(); 39 } else if (PossiblyExactOperator *PEO = 40 dyn_cast<PossiblyExactOperator>(FirstInst)) 41 isExact = PEO->isExact(); 42 43 // Scan to see if all operands are the same opcode, and all have one use. 44 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) { 45 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i)); 46 if (!I || I->getOpcode() != Opc || !I->hasOneUse() || 47 // Verify type of the LHS matches so we don't fold cmp's of different 48 // types. 49 I->getOperand(0)->getType() != LHSType || 50 I->getOperand(1)->getType() != RHSType) 51 return 0; 52 53 // If they are CmpInst instructions, check their predicates 54 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 55 if (CI->getPredicate() != cast<CmpInst>(FirstInst)->getPredicate()) 56 return 0; 57 58 if (isNUW) 59 isNUW = cast<OverflowingBinaryOperator>(I)->hasNoUnsignedWrap(); 60 if (isNSW) 61 isNSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 62 if (isExact) 63 isExact = cast<PossiblyExactOperator>(I)->isExact(); 64 65 // Keep track of which operand needs a phi node. 66 if (I->getOperand(0) != LHSVal) LHSVal = 0; 67 if (I->getOperand(1) != RHSVal) RHSVal = 0; 68 } 69 70 // If both LHS and RHS would need a PHI, don't do this transformation, 71 // because it would increase the number of PHIs entering the block, 72 // which leads to higher register pressure. This is especially 73 // bad when the PHIs are in the header of a loop. 74 if (!LHSVal && !RHSVal) 75 return 0; 76 77 // Otherwise, this is safe to transform! 78 79 Value *InLHS = FirstInst->getOperand(0); 80 Value *InRHS = FirstInst->getOperand(1); 81 PHINode *NewLHS = 0, *NewRHS = 0; 82 if (LHSVal == 0) { 83 NewLHS = PHINode::Create(LHSType, PN.getNumIncomingValues(), 84 FirstInst->getOperand(0)->getName() + ".pn"); 85 NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0)); 86 InsertNewInstBefore(NewLHS, PN); 87 LHSVal = NewLHS; 88 } 89 90 if (RHSVal == 0) { 91 NewRHS = PHINode::Create(RHSType, PN.getNumIncomingValues(), 92 FirstInst->getOperand(1)->getName() + ".pn"); 93 NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0)); 94 InsertNewInstBefore(NewRHS, PN); 95 RHSVal = NewRHS; 96 } 97 98 // Add all operands to the new PHIs. 99 if (NewLHS || NewRHS) { 100 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { 101 Instruction *InInst = cast<Instruction>(PN.getIncomingValue(i)); 102 if (NewLHS) { 103 Value *NewInLHS = InInst->getOperand(0); 104 NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i)); 105 } 106 if (NewRHS) { 107 Value *NewInRHS = InInst->getOperand(1); 108 NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i)); 109 } 110 } 111 } 112 113 if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst)) 114 return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), 115 LHSVal, RHSVal); 116 117 BinaryOperator *BinOp = cast<BinaryOperator>(FirstInst); 118 BinaryOperator *NewBinOp = 119 BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal); 120 if (isNUW) NewBinOp->setHasNoUnsignedWrap(); 121 if (isNSW) NewBinOp->setHasNoSignedWrap(); 122 if (isExact) NewBinOp->setIsExact(); 123 return NewBinOp; 124} 125 126Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) { 127 GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0)); 128 129 SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(), 130 FirstInst->op_end()); 131 // This is true if all GEP bases are allocas and if all indices into them are 132 // constants. 133 bool AllBasePointersAreAllocas = true; 134 135 // We don't want to replace this phi if the replacement would require 136 // more than one phi, which leads to higher register pressure. This is 137 // especially bad when the PHIs are in the header of a loop. 138 bool NeededPhi = false; 139 140 bool AllInBounds = true; 141 142 // Scan to see if all operands are the same opcode, and all have one use. 143 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) { 144 GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i)); 145 if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() || 146 GEP->getNumOperands() != FirstInst->getNumOperands()) 147 return 0; 148 149 AllInBounds &= GEP->isInBounds(); 150 151 // Keep track of whether or not all GEPs are of alloca pointers. 152 if (AllBasePointersAreAllocas && 153 (!isa<AllocaInst>(GEP->getOperand(0)) || 154 !GEP->hasAllConstantIndices())) 155 AllBasePointersAreAllocas = false; 156 157 // Compare the operand lists. 158 for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) { 159 if (FirstInst->getOperand(op) == GEP->getOperand(op)) 160 continue; 161 162 // Don't merge two GEPs when two operands differ (introducing phi nodes) 163 // if one of the PHIs has a constant for the index. The index may be 164 // substantially cheaper to compute for the constants, so making it a 165 // variable index could pessimize the path. This also handles the case 166 // for struct indices, which must always be constant. 167 if (isa<ConstantInt>(FirstInst->getOperand(op)) || 168 isa<ConstantInt>(GEP->getOperand(op))) 169 return 0; 170 171 if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType()) 172 return 0; 173 174 // If we already needed a PHI for an earlier operand, and another operand 175 // also requires a PHI, we'd be introducing more PHIs than we're 176 // eliminating, which increases register pressure on entry to the PHI's 177 // block. 178 if (NeededPhi) 179 return 0; 180 181 FixedOperands[op] = 0; // Needs a PHI. 182 NeededPhi = true; 183 } 184 } 185 186 // If all of the base pointers of the PHI'd GEPs are from allocas, don't 187 // bother doing this transformation. At best, this will just save a bit of 188 // offset calculation, but all the predecessors will have to materialize the 189 // stack address into a register anyway. We'd actually rather *clone* the 190 // load up into the predecessors so that we have a load of a gep of an alloca, 191 // which can usually all be folded into the load. 192 if (AllBasePointersAreAllocas) 193 return 0; 194 195 // Otherwise, this is safe to transform. Insert PHI nodes for each operand 196 // that is variable. 197 SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size()); 198 199 bool HasAnyPHIs = false; 200 for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) { 201 if (FixedOperands[i]) continue; // operand doesn't need a phi. 202 Value *FirstOp = FirstInst->getOperand(i); 203 PHINode *NewPN = PHINode::Create(FirstOp->getType(), e, 204 FirstOp->getName()+".pn"); 205 InsertNewInstBefore(NewPN, PN); 206 207 NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0)); 208 OperandPhis[i] = NewPN; 209 FixedOperands[i] = NewPN; 210 HasAnyPHIs = true; 211 } 212 213 214 // Add all operands to the new PHIs. 215 if (HasAnyPHIs) { 216 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { 217 GetElementPtrInst *InGEP =cast<GetElementPtrInst>(PN.getIncomingValue(i)); 218 BasicBlock *InBB = PN.getIncomingBlock(i); 219 220 for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op) 221 if (PHINode *OpPhi = OperandPhis[op]) 222 OpPhi->addIncoming(InGEP->getOperand(op), InBB); 223 } 224 } 225 226 Value *Base = FixedOperands[0]; 227 GetElementPtrInst *NewGEP = 228 GetElementPtrInst::Create(Base, FixedOperands.begin()+1, 229 FixedOperands.end()); 230 if (AllInBounds) NewGEP->setIsInBounds(); 231 return NewGEP; 232} 233 234 235/// isSafeAndProfitableToSinkLoad - Return true if we know that it is safe to 236/// sink the load out of the block that defines it. This means that it must be 237/// obvious the value of the load is not changed from the point of the load to 238/// the end of the block it is in. 239/// 240/// Finally, it is safe, but not profitable, to sink a load targetting a 241/// non-address-taken alloca. Doing so will cause us to not promote the alloca 242/// to a register. 243static bool isSafeAndProfitableToSinkLoad(LoadInst *L) { 244 BasicBlock::iterator BBI = L, E = L->getParent()->end(); 245 246 for (++BBI; BBI != E; ++BBI) 247 if (BBI->mayWriteToMemory()) 248 return false; 249 250 // Check for non-address taken alloca. If not address-taken already, it isn't 251 // profitable to do this xform. 252 if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) { 253 bool isAddressTaken = false; 254 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); 255 UI != E; ++UI) { 256 User *U = *UI; 257 if (isa<LoadInst>(U)) continue; 258 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 259 // If storing TO the alloca, then the address isn't taken. 260 if (SI->getOperand(1) == AI) continue; 261 } 262 isAddressTaken = true; 263 break; 264 } 265 266 if (!isAddressTaken && AI->isStaticAlloca()) 267 return false; 268 } 269 270 // If this load is a load from a GEP with a constant offset from an alloca, 271 // then we don't want to sink it. In its present form, it will be 272 // load [constant stack offset]. Sinking it will cause us to have to 273 // materialize the stack addresses in each predecessor in a register only to 274 // do a shared load from register in the successor. 275 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0))) 276 if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0))) 277 if (AI->isStaticAlloca() && GEP->hasAllConstantIndices()) 278 return false; 279 280 return true; 281} 282 283Instruction *InstCombiner::FoldPHIArgLoadIntoPHI(PHINode &PN) { 284 LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0)); 285 286 // When processing loads, we need to propagate two bits of information to the 287 // sunk load: whether it is volatile, and what its alignment is. We currently 288 // don't sink loads when some have their alignment specified and some don't. 289 // visitLoadInst will propagate an alignment onto the load when TD is around, 290 // and if TD isn't around, we can't handle the mixed case. 291 bool isVolatile = FirstLI->isVolatile(); 292 unsigned LoadAlignment = FirstLI->getAlignment(); 293 unsigned LoadAddrSpace = FirstLI->getPointerAddressSpace(); 294 295 // We can't sink the load if the loaded value could be modified between the 296 // load and the PHI. 297 if (FirstLI->getParent() != PN.getIncomingBlock(0) || 298 !isSafeAndProfitableToSinkLoad(FirstLI)) 299 return 0; 300 301 // If the PHI is of volatile loads and the load block has multiple 302 // successors, sinking it would remove a load of the volatile value from 303 // the path through the other successor. 304 if (isVolatile && 305 FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1) 306 return 0; 307 308 // Check to see if all arguments are the same operation. 309 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { 310 LoadInst *LI = dyn_cast<LoadInst>(PN.getIncomingValue(i)); 311 if (!LI || !LI->hasOneUse()) 312 return 0; 313 314 // We can't sink the load if the loaded value could be modified between 315 // the load and the PHI. 316 if (LI->isVolatile() != isVolatile || 317 LI->getParent() != PN.getIncomingBlock(i) || 318 LI->getPointerAddressSpace() != LoadAddrSpace || 319 !isSafeAndProfitableToSinkLoad(LI)) 320 return 0; 321 322 // If some of the loads have an alignment specified but not all of them, 323 // we can't do the transformation. 324 if ((LoadAlignment != 0) != (LI->getAlignment() != 0)) 325 return 0; 326 327 LoadAlignment = std::min(LoadAlignment, LI->getAlignment()); 328 329 // If the PHI is of volatile loads and the load block has multiple 330 // successors, sinking it would remove a load of the volatile value from 331 // the path through the other successor. 332 if (isVolatile && 333 LI->getParent()->getTerminator()->getNumSuccessors() != 1) 334 return 0; 335 } 336 337 // Okay, they are all the same operation. Create a new PHI node of the 338 // correct type, and PHI together all of the LHS's of the instructions. 339 PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(), 340 PN.getNumIncomingValues(), 341 PN.getName()+".in"); 342 343 Value *InVal = FirstLI->getOperand(0); 344 NewPN->addIncoming(InVal, PN.getIncomingBlock(0)); 345 346 // Add all operands to the new PHI. 347 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { 348 Value *NewInVal = cast<LoadInst>(PN.getIncomingValue(i))->getOperand(0); 349 if (NewInVal != InVal) 350 InVal = 0; 351 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i)); 352 } 353 354 Value *PhiVal; 355 if (InVal) { 356 // The new PHI unions all of the same values together. This is really 357 // common, so we handle it intelligently here for compile-time speed. 358 PhiVal = InVal; 359 delete NewPN; 360 } else { 361 InsertNewInstBefore(NewPN, PN); 362 PhiVal = NewPN; 363 } 364 365 // If this was a volatile load that we are merging, make sure to loop through 366 // and mark all the input loads as non-volatile. If we don't do this, we will 367 // insert a new volatile load and the old ones will not be deletable. 368 if (isVolatile) 369 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 370 cast<LoadInst>(PN.getIncomingValue(i))->setVolatile(false); 371 372 return new LoadInst(PhiVal, "", isVolatile, LoadAlignment); 373} 374 375 376 377/// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary" 378/// operator and they all are only used by the PHI, PHI together their 379/// inputs, and do the operation once, to the result of the PHI. 380Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) { 381 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0)); 382 383 if (isa<GetElementPtrInst>(FirstInst)) 384 return FoldPHIArgGEPIntoPHI(PN); 385 if (isa<LoadInst>(FirstInst)) 386 return FoldPHIArgLoadIntoPHI(PN); 387 388 // Scan the instruction, looking for input operations that can be folded away. 389 // If all input operands to the phi are the same instruction (e.g. a cast from 390 // the same type or "+42") we can pull the operation through the PHI, reducing 391 // code size and simplifying code. 392 Constant *ConstantOp = 0; 393 const Type *CastSrcTy = 0; 394 bool isNUW = false, isNSW = false, isExact = false; 395 396 if (isa<CastInst>(FirstInst)) { 397 CastSrcTy = FirstInst->getOperand(0)->getType(); 398 399 // Be careful about transforming integer PHIs. We don't want to pessimize 400 // the code by turning an i32 into an i1293. 401 if (PN.getType()->isIntegerTy() && CastSrcTy->isIntegerTy()) { 402 if (!ShouldChangeType(PN.getType(), CastSrcTy)) 403 return 0; 404 } 405 } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) { 406 // Can fold binop, compare or shift here if the RHS is a constant, 407 // otherwise call FoldPHIArgBinOpIntoPHI. 408 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1)); 409 if (ConstantOp == 0) 410 return FoldPHIArgBinOpIntoPHI(PN); 411 412 if (OverflowingBinaryOperator *BO = 413 dyn_cast<OverflowingBinaryOperator>(FirstInst)) { 414 isNUW = BO->hasNoUnsignedWrap(); 415 isNSW = BO->hasNoSignedWrap(); 416 } else if (PossiblyExactOperator *PEO = 417 dyn_cast<PossiblyExactOperator>(FirstInst)) 418 isExact = PEO->isExact(); 419 } else { 420 return 0; // Cannot fold this operation. 421 } 422 423 // Check to see if all arguments are the same operation. 424 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { 425 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i)); 426 if (I == 0 || !I->hasOneUse() || !I->isSameOperationAs(FirstInst)) 427 return 0; 428 if (CastSrcTy) { 429 if (I->getOperand(0)->getType() != CastSrcTy) 430 return 0; // Cast operation must match. 431 } else if (I->getOperand(1) != ConstantOp) { 432 return 0; 433 } 434 435 if (isNUW) 436 isNUW = cast<OverflowingBinaryOperator>(I)->hasNoUnsignedWrap(); 437 if (isNSW) 438 isNSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 439 if (isExact) 440 isExact = cast<PossiblyExactOperator>(I)->isExact(); 441 } 442 443 // Okay, they are all the same operation. Create a new PHI node of the 444 // correct type, and PHI together all of the LHS's of the instructions. 445 PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(), 446 PN.getNumIncomingValues(), 447 PN.getName()+".in"); 448 449 Value *InVal = FirstInst->getOperand(0); 450 NewPN->addIncoming(InVal, PN.getIncomingBlock(0)); 451 452 // Add all operands to the new PHI. 453 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { 454 Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0); 455 if (NewInVal != InVal) 456 InVal = 0; 457 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i)); 458 } 459 460 Value *PhiVal; 461 if (InVal) { 462 // The new PHI unions all of the same values together. This is really 463 // common, so we handle it intelligently here for compile-time speed. 464 PhiVal = InVal; 465 delete NewPN; 466 } else { 467 InsertNewInstBefore(NewPN, PN); 468 PhiVal = NewPN; 469 } 470 471 // Insert and return the new operation. 472 if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst)) 473 return CastInst::Create(FirstCI->getOpcode(), PhiVal, PN.getType()); 474 475 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) { 476 BinOp = BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp); 477 if (isNUW) BinOp->setHasNoUnsignedWrap(); 478 if (isNSW) BinOp->setHasNoSignedWrap(); 479 if (isExact) BinOp->setIsExact(); 480 return BinOp; 481 } 482 483 CmpInst *CIOp = cast<CmpInst>(FirstInst); 484 return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), 485 PhiVal, ConstantOp); 486} 487 488/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle 489/// that is dead. 490static bool DeadPHICycle(PHINode *PN, 491 SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) { 492 if (PN->use_empty()) return true; 493 if (!PN->hasOneUse()) return false; 494 495 // Remember this node, and if we find the cycle, return. 496 if (!PotentiallyDeadPHIs.insert(PN)) 497 return true; 498 499 // Don't scan crazily complex things. 500 if (PotentiallyDeadPHIs.size() == 16) 501 return false; 502 503 if (PHINode *PU = dyn_cast<PHINode>(PN->use_back())) 504 return DeadPHICycle(PU, PotentiallyDeadPHIs); 505 506 return false; 507} 508 509/// PHIsEqualValue - Return true if this phi node is always equal to 510/// NonPhiInVal. This happens with mutually cyclic phi nodes like: 511/// z = some value; x = phi (y, z); y = phi (x, z) 512static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal, 513 SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) { 514 // See if we already saw this PHI node. 515 if (!ValueEqualPHIs.insert(PN)) 516 return true; 517 518 // Don't scan crazily complex things. 519 if (ValueEqualPHIs.size() == 16) 520 return false; 521 522 // Scan the operands to see if they are either phi nodes or are equal to 523 // the value. 524 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 525 Value *Op = PN->getIncomingValue(i); 526 if (PHINode *OpPN = dyn_cast<PHINode>(Op)) { 527 if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs)) 528 return false; 529 } else if (Op != NonPhiInVal) 530 return false; 531 } 532 533 return true; 534} 535 536 537namespace { 538struct PHIUsageRecord { 539 unsigned PHIId; // The ID # of the PHI (something determinstic to sort on) 540 unsigned Shift; // The amount shifted. 541 Instruction *Inst; // The trunc instruction. 542 543 PHIUsageRecord(unsigned pn, unsigned Sh, Instruction *User) 544 : PHIId(pn), Shift(Sh), Inst(User) {} 545 546 bool operator<(const PHIUsageRecord &RHS) const { 547 if (PHIId < RHS.PHIId) return true; 548 if (PHIId > RHS.PHIId) return false; 549 if (Shift < RHS.Shift) return true; 550 if (Shift > RHS.Shift) return false; 551 return Inst->getType()->getPrimitiveSizeInBits() < 552 RHS.Inst->getType()->getPrimitiveSizeInBits(); 553 } 554}; 555 556struct LoweredPHIRecord { 557 PHINode *PN; // The PHI that was lowered. 558 unsigned Shift; // The amount shifted. 559 unsigned Width; // The width extracted. 560 561 LoweredPHIRecord(PHINode *pn, unsigned Sh, const Type *Ty) 562 : PN(pn), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {} 563 564 // Ctor form used by DenseMap. 565 LoweredPHIRecord(PHINode *pn, unsigned Sh) 566 : PN(pn), Shift(Sh), Width(0) {} 567}; 568} 569 570namespace llvm { 571 template<> 572 struct DenseMapInfo<LoweredPHIRecord> { 573 static inline LoweredPHIRecord getEmptyKey() { 574 return LoweredPHIRecord(0, 0); 575 } 576 static inline LoweredPHIRecord getTombstoneKey() { 577 return LoweredPHIRecord(0, 1); 578 } 579 static unsigned getHashValue(const LoweredPHIRecord &Val) { 580 return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^ 581 (Val.Width>>3); 582 } 583 static bool isEqual(const LoweredPHIRecord &LHS, 584 const LoweredPHIRecord &RHS) { 585 return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift && 586 LHS.Width == RHS.Width; 587 } 588 }; 589 template <> 590 struct isPodLike<LoweredPHIRecord> { static const bool value = true; }; 591} 592 593 594/// SliceUpIllegalIntegerPHI - This is an integer PHI and we know that it has an 595/// illegal type: see if it is only used by trunc or trunc(lshr) operations. If 596/// so, we split the PHI into the various pieces being extracted. This sort of 597/// thing is introduced when SROA promotes an aggregate to large integer values. 598/// 599/// TODO: The user of the trunc may be an bitcast to float/double/vector or an 600/// inttoptr. We should produce new PHIs in the right type. 601/// 602Instruction *InstCombiner::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) { 603 // PHIUsers - Keep track of all of the truncated values extracted from a set 604 // of PHIs, along with their offset. These are the things we want to rewrite. 605 SmallVector<PHIUsageRecord, 16> PHIUsers; 606 607 // PHIs are often mutually cyclic, so we keep track of a whole set of PHI 608 // nodes which are extracted from. PHIsToSlice is a set we use to avoid 609 // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to 610 // check the uses of (to ensure they are all extracts). 611 SmallVector<PHINode*, 8> PHIsToSlice; 612 SmallPtrSet<PHINode*, 8> PHIsInspected; 613 614 PHIsToSlice.push_back(&FirstPhi); 615 PHIsInspected.insert(&FirstPhi); 616 617 for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) { 618 PHINode *PN = PHIsToSlice[PHIId]; 619 620 // Scan the input list of the PHI. If any input is an invoke, and if the 621 // input is defined in the predecessor, then we won't be split the critical 622 // edge which is required to insert a truncate. Because of this, we have to 623 // bail out. 624 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 625 InvokeInst *II = dyn_cast<InvokeInst>(PN->getIncomingValue(i)); 626 if (II == 0) continue; 627 if (II->getParent() != PN->getIncomingBlock(i)) 628 continue; 629 630 // If we have a phi, and if it's directly in the predecessor, then we have 631 // a critical edge where we need to put the truncate. Since we can't 632 // split the edge in instcombine, we have to bail out. 633 return 0; 634 } 635 636 637 for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); 638 UI != E; ++UI) { 639 Instruction *User = cast<Instruction>(*UI); 640 641 // If the user is a PHI, inspect its uses recursively. 642 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 643 if (PHIsInspected.insert(UserPN)) 644 PHIsToSlice.push_back(UserPN); 645 continue; 646 } 647 648 // Truncates are always ok. 649 if (isa<TruncInst>(User)) { 650 PHIUsers.push_back(PHIUsageRecord(PHIId, 0, User)); 651 continue; 652 } 653 654 // Otherwise it must be a lshr which can only be used by one trunc. 655 if (User->getOpcode() != Instruction::LShr || 656 !User->hasOneUse() || !isa<TruncInst>(User->use_back()) || 657 !isa<ConstantInt>(User->getOperand(1))) 658 return 0; 659 660 unsigned Shift = cast<ConstantInt>(User->getOperand(1))->getZExtValue(); 661 PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, User->use_back())); 662 } 663 } 664 665 // If we have no users, they must be all self uses, just nuke the PHI. 666 if (PHIUsers.empty()) 667 return ReplaceInstUsesWith(FirstPhi, UndefValue::get(FirstPhi.getType())); 668 669 // If this phi node is transformable, create new PHIs for all the pieces 670 // extracted out of it. First, sort the users by their offset and size. 671 array_pod_sort(PHIUsers.begin(), PHIUsers.end()); 672 673 DEBUG(errs() << "SLICING UP PHI: " << FirstPhi << '\n'; 674 for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i) 675 errs() << "AND USER PHI #" << i << ": " << *PHIsToSlice[i] <<'\n'; 676 ); 677 678 // PredValues - This is a temporary used when rewriting PHI nodes. It is 679 // hoisted out here to avoid construction/destruction thrashing. 680 DenseMap<BasicBlock*, Value*> PredValues; 681 682 // ExtractedVals - Each new PHI we introduce is saved here so we don't 683 // introduce redundant PHIs. 684 DenseMap<LoweredPHIRecord, PHINode*> ExtractedVals; 685 686 for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) { 687 unsigned PHIId = PHIUsers[UserI].PHIId; 688 PHINode *PN = PHIsToSlice[PHIId]; 689 unsigned Offset = PHIUsers[UserI].Shift; 690 const Type *Ty = PHIUsers[UserI].Inst->getType(); 691 692 PHINode *EltPHI; 693 694 // If we've already lowered a user like this, reuse the previously lowered 695 // value. 696 if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == 0) { 697 698 // Otherwise, Create the new PHI node for this user. 699 EltPHI = PHINode::Create(Ty, PN->getNumIncomingValues(), 700 PN->getName()+".off"+Twine(Offset), PN); 701 assert(EltPHI->getType() != PN->getType() && 702 "Truncate didn't shrink phi?"); 703 704 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 705 BasicBlock *Pred = PN->getIncomingBlock(i); 706 Value *&PredVal = PredValues[Pred]; 707 708 // If we already have a value for this predecessor, reuse it. 709 if (PredVal) { 710 EltPHI->addIncoming(PredVal, Pred); 711 continue; 712 } 713 714 // Handle the PHI self-reuse case. 715 Value *InVal = PN->getIncomingValue(i); 716 if (InVal == PN) { 717 PredVal = EltPHI; 718 EltPHI->addIncoming(PredVal, Pred); 719 continue; 720 } 721 722 if (PHINode *InPHI = dyn_cast<PHINode>(PN)) { 723 // If the incoming value was a PHI, and if it was one of the PHIs we 724 // already rewrote it, just use the lowered value. 725 if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) { 726 PredVal = Res; 727 EltPHI->addIncoming(PredVal, Pred); 728 continue; 729 } 730 } 731 732 // Otherwise, do an extract in the predecessor. 733 Builder->SetInsertPoint(Pred, Pred->getTerminator()); 734 Value *Res = InVal; 735 if (Offset) 736 Res = Builder->CreateLShr(Res, ConstantInt::get(InVal->getType(), 737 Offset), "extract"); 738 Res = Builder->CreateTrunc(Res, Ty, "extract.t"); 739 PredVal = Res; 740 EltPHI->addIncoming(Res, Pred); 741 742 // If the incoming value was a PHI, and if it was one of the PHIs we are 743 // rewriting, we will ultimately delete the code we inserted. This 744 // means we need to revisit that PHI to make sure we extract out the 745 // needed piece. 746 if (PHINode *OldInVal = dyn_cast<PHINode>(PN->getIncomingValue(i))) 747 if (PHIsInspected.count(OldInVal)) { 748 unsigned RefPHIId = std::find(PHIsToSlice.begin(),PHIsToSlice.end(), 749 OldInVal)-PHIsToSlice.begin(); 750 PHIUsers.push_back(PHIUsageRecord(RefPHIId, Offset, 751 cast<Instruction>(Res))); 752 ++UserE; 753 } 754 } 755 PredValues.clear(); 756 757 DEBUG(errs() << " Made element PHI for offset " << Offset << ": " 758 << *EltPHI << '\n'); 759 ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI; 760 } 761 762 // Replace the use of this piece with the PHI node. 763 ReplaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI); 764 } 765 766 // Replace all the remaining uses of the PHI nodes (self uses and the lshrs) 767 // with undefs. 768 Value *Undef = UndefValue::get(FirstPhi.getType()); 769 for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i) 770 ReplaceInstUsesWith(*PHIsToSlice[i], Undef); 771 return ReplaceInstUsesWith(FirstPhi, Undef); 772} 773 774// PHINode simplification 775// 776Instruction *InstCombiner::visitPHINode(PHINode &PN) { 777 // If LCSSA is around, don't mess with Phi nodes 778 if (MustPreserveLCSSA) return 0; 779 780 if (Value *V = SimplifyInstruction(&PN, TD)) 781 return ReplaceInstUsesWith(PN, V); 782 783 // If all PHI operands are the same operation, pull them through the PHI, 784 // reducing code size. 785 if (isa<Instruction>(PN.getIncomingValue(0)) && 786 isa<Instruction>(PN.getIncomingValue(1)) && 787 cast<Instruction>(PN.getIncomingValue(0))->getOpcode() == 788 cast<Instruction>(PN.getIncomingValue(1))->getOpcode() && 789 // FIXME: The hasOneUse check will fail for PHIs that use the value more 790 // than themselves more than once. 791 PN.getIncomingValue(0)->hasOneUse()) 792 if (Instruction *Result = FoldPHIArgOpIntoPHI(PN)) 793 return Result; 794 795 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if 796 // this PHI only has a single use (a PHI), and if that PHI only has one use (a 797 // PHI)... break the cycle. 798 if (PN.hasOneUse()) { 799 Instruction *PHIUser = cast<Instruction>(PN.use_back()); 800 if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) { 801 SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs; 802 PotentiallyDeadPHIs.insert(&PN); 803 if (DeadPHICycle(PU, PotentiallyDeadPHIs)) 804 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType())); 805 } 806 807 // If this phi has a single use, and if that use just computes a value for 808 // the next iteration of a loop, delete the phi. This occurs with unused 809 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this 810 // common case here is good because the only other things that catch this 811 // are induction variable analysis (sometimes) and ADCE, which is only run 812 // late. 813 if (PHIUser->hasOneUse() && 814 (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) && 815 PHIUser->use_back() == &PN) { 816 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType())); 817 } 818 } 819 820 // We sometimes end up with phi cycles that non-obviously end up being the 821 // same value, for example: 822 // z = some value; x = phi (y, z); y = phi (x, z) 823 // where the phi nodes don't necessarily need to be in the same block. Do a 824 // quick check to see if the PHI node only contains a single non-phi value, if 825 // so, scan to see if the phi cycle is actually equal to that value. 826 { 827 unsigned InValNo = 0, NumOperandVals = PN.getNumIncomingValues(); 828 // Scan for the first non-phi operand. 829 while (InValNo != NumOperandVals && 830 isa<PHINode>(PN.getIncomingValue(InValNo))) 831 ++InValNo; 832 833 if (InValNo != NumOperandVals) { 834 Value *NonPhiInVal = PN.getOperand(InValNo); 835 836 // Scan the rest of the operands to see if there are any conflicts, if so 837 // there is no need to recursively scan other phis. 838 for (++InValNo; InValNo != NumOperandVals; ++InValNo) { 839 Value *OpVal = PN.getIncomingValue(InValNo); 840 if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal)) 841 break; 842 } 843 844 // If we scanned over all operands, then we have one unique value plus 845 // phi values. Scan PHI nodes to see if they all merge in each other or 846 // the value. 847 if (InValNo == NumOperandVals) { 848 SmallPtrSet<PHINode*, 16> ValueEqualPHIs; 849 if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs)) 850 return ReplaceInstUsesWith(PN, NonPhiInVal); 851 } 852 } 853 } 854 855 // If there are multiple PHIs, sort their operands so that they all list 856 // the blocks in the same order. This will help identical PHIs be eliminated 857 // by other passes. Other passes shouldn't depend on this for correctness 858 // however. 859 PHINode *FirstPN = cast<PHINode>(PN.getParent()->begin()); 860 if (&PN != FirstPN) 861 for (unsigned i = 0, e = FirstPN->getNumIncomingValues(); i != e; ++i) { 862 BasicBlock *BBA = PN.getIncomingBlock(i); 863 BasicBlock *BBB = FirstPN->getIncomingBlock(i); 864 if (BBA != BBB) { 865 Value *VA = PN.getIncomingValue(i); 866 unsigned j = PN.getBasicBlockIndex(BBB); 867 Value *VB = PN.getIncomingValue(j); 868 PN.setIncomingBlock(i, BBB); 869 PN.setIncomingValue(i, VB); 870 PN.setIncomingBlock(j, BBA); 871 PN.setIncomingValue(j, VA); 872 // NOTE: Instcombine normally would want us to "return &PN" if we 873 // modified any of the operands of an instruction. However, since we 874 // aren't adding or removing uses (just rearranging them) we don't do 875 // this in this case. 876 } 877 } 878 879 // If this is an integer PHI and we know that it has an illegal type, see if 880 // it is only used by trunc or trunc(lshr) operations. If so, we split the 881 // PHI into the various pieces being extracted. This sort of thing is 882 // introduced when SROA promotes an aggregate to a single large integer type. 883 if (PN.getType()->isIntegerTy() && TD && 884 !TD->isLegalInteger(PN.getType()->getPrimitiveSizeInBits())) 885 if (Instruction *Res = SliceUpIllegalIntegerPHI(PN)) 886 return Res; 887 888 return 0; 889} 890