InstCombinePHI.cpp revision eade00209447c07953a609b30666ce5f6d9f9864
1//===- InstCombinePHI.cpp -------------------------------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the visitPHINode function. 11// 12//===----------------------------------------------------------------------===// 13 14#include "InstCombine.h" 15#include "llvm/Target/TargetData.h" 16#include "llvm/ADT/SmallPtrSet.h" 17#include "llvm/ADT/STLExtras.h" 18using namespace llvm; 19 20/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(a,c)] 21/// and if a/b/c and the add's all have a single use, turn this into a phi 22/// and a single binop. 23Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) { 24 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0)); 25 assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)); 26 unsigned Opc = FirstInst->getOpcode(); 27 Value *LHSVal = FirstInst->getOperand(0); 28 Value *RHSVal = FirstInst->getOperand(1); 29 30 const Type *LHSType = LHSVal->getType(); 31 const Type *RHSType = RHSVal->getType(); 32 33 // Scan to see if all operands are the same opcode, and all have one use. 34 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) { 35 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i)); 36 if (!I || I->getOpcode() != Opc || !I->hasOneUse() || 37 // Verify type of the LHS matches so we don't fold cmp's of different 38 // types or GEP's with different index types. 39 I->getOperand(0)->getType() != LHSType || 40 I->getOperand(1)->getType() != RHSType) 41 return 0; 42 43 // If they are CmpInst instructions, check their predicates 44 if (Opc == Instruction::ICmp || Opc == Instruction::FCmp) 45 if (cast<CmpInst>(I)->getPredicate() != 46 cast<CmpInst>(FirstInst)->getPredicate()) 47 return 0; 48 49 // Keep track of which operand needs a phi node. 50 if (I->getOperand(0) != LHSVal) LHSVal = 0; 51 if (I->getOperand(1) != RHSVal) RHSVal = 0; 52 } 53 54 // If both LHS and RHS would need a PHI, don't do this transformation, 55 // because it would increase the number of PHIs entering the block, 56 // which leads to higher register pressure. This is especially 57 // bad when the PHIs are in the header of a loop. 58 if (!LHSVal && !RHSVal) 59 return 0; 60 61 // Otherwise, this is safe to transform! 62 63 Value *InLHS = FirstInst->getOperand(0); 64 Value *InRHS = FirstInst->getOperand(1); 65 PHINode *NewLHS = 0, *NewRHS = 0; 66 if (LHSVal == 0) { 67 NewLHS = PHINode::Create(LHSType, 68 FirstInst->getOperand(0)->getName() + ".pn"); 69 NewLHS->reserveOperandSpace(PN.getNumOperands()/2); 70 NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0)); 71 InsertNewInstBefore(NewLHS, PN); 72 LHSVal = NewLHS; 73 } 74 75 if (RHSVal == 0) { 76 NewRHS = PHINode::Create(RHSType, 77 FirstInst->getOperand(1)->getName() + ".pn"); 78 NewRHS->reserveOperandSpace(PN.getNumOperands()/2); 79 NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0)); 80 InsertNewInstBefore(NewRHS, PN); 81 RHSVal = NewRHS; 82 } 83 84 // Add all operands to the new PHIs. 85 if (NewLHS || NewRHS) { 86 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { 87 Instruction *InInst = cast<Instruction>(PN.getIncomingValue(i)); 88 if (NewLHS) { 89 Value *NewInLHS = InInst->getOperand(0); 90 NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i)); 91 } 92 if (NewRHS) { 93 Value *NewInRHS = InInst->getOperand(1); 94 NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i)); 95 } 96 } 97 } 98 99 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) 100 return BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal); 101 CmpInst *CIOp = cast<CmpInst>(FirstInst); 102 return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), 103 LHSVal, RHSVal); 104} 105 106Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) { 107 GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0)); 108 109 SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(), 110 FirstInst->op_end()); 111 // This is true if all GEP bases are allocas and if all indices into them are 112 // constants. 113 bool AllBasePointersAreAllocas = true; 114 115 // We don't want to replace this phi if the replacement would require 116 // more than one phi, which leads to higher register pressure. This is 117 // especially bad when the PHIs are in the header of a loop. 118 bool NeededPhi = false; 119 120 // Scan to see if all operands are the same opcode, and all have one use. 121 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) { 122 GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i)); 123 if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() || 124 GEP->getNumOperands() != FirstInst->getNumOperands()) 125 return 0; 126 127 // Keep track of whether or not all GEPs are of alloca pointers. 128 if (AllBasePointersAreAllocas && 129 (!isa<AllocaInst>(GEP->getOperand(0)) || 130 !GEP->hasAllConstantIndices())) 131 AllBasePointersAreAllocas = false; 132 133 // Compare the operand lists. 134 for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) { 135 if (FirstInst->getOperand(op) == GEP->getOperand(op)) 136 continue; 137 138 // Don't merge two GEPs when two operands differ (introducing phi nodes) 139 // if one of the PHIs has a constant for the index. The index may be 140 // substantially cheaper to compute for the constants, so making it a 141 // variable index could pessimize the path. This also handles the case 142 // for struct indices, which must always be constant. 143 if (isa<ConstantInt>(FirstInst->getOperand(op)) || 144 isa<ConstantInt>(GEP->getOperand(op))) 145 return 0; 146 147 if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType()) 148 return 0; 149 150 // If we already needed a PHI for an earlier operand, and another operand 151 // also requires a PHI, we'd be introducing more PHIs than we're 152 // eliminating, which increases register pressure on entry to the PHI's 153 // block. 154 if (NeededPhi) 155 return 0; 156 157 FixedOperands[op] = 0; // Needs a PHI. 158 NeededPhi = true; 159 } 160 } 161 162 // If all of the base pointers of the PHI'd GEPs are from allocas, don't 163 // bother doing this transformation. At best, this will just save a bit of 164 // offset calculation, but all the predecessors will have to materialize the 165 // stack address into a register anyway. We'd actually rather *clone* the 166 // load up into the predecessors so that we have a load of a gep of an alloca, 167 // which can usually all be folded into the load. 168 if (AllBasePointersAreAllocas) 169 return 0; 170 171 // Otherwise, this is safe to transform. Insert PHI nodes for each operand 172 // that is variable. 173 SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size()); 174 175 bool HasAnyPHIs = false; 176 for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) { 177 if (FixedOperands[i]) continue; // operand doesn't need a phi. 178 Value *FirstOp = FirstInst->getOperand(i); 179 PHINode *NewPN = PHINode::Create(FirstOp->getType(), 180 FirstOp->getName()+".pn"); 181 InsertNewInstBefore(NewPN, PN); 182 183 NewPN->reserveOperandSpace(e); 184 NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0)); 185 OperandPhis[i] = NewPN; 186 FixedOperands[i] = NewPN; 187 HasAnyPHIs = true; 188 } 189 190 191 // Add all operands to the new PHIs. 192 if (HasAnyPHIs) { 193 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { 194 GetElementPtrInst *InGEP =cast<GetElementPtrInst>(PN.getIncomingValue(i)); 195 BasicBlock *InBB = PN.getIncomingBlock(i); 196 197 for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op) 198 if (PHINode *OpPhi = OperandPhis[op]) 199 OpPhi->addIncoming(InGEP->getOperand(op), InBB); 200 } 201 } 202 203 Value *Base = FixedOperands[0]; 204 return cast<GEPOperator>(FirstInst)->isInBounds() ? 205 GetElementPtrInst::CreateInBounds(Base, FixedOperands.begin()+1, 206 FixedOperands.end()) : 207 GetElementPtrInst::Create(Base, FixedOperands.begin()+1, 208 FixedOperands.end()); 209} 210 211 212/// isSafeAndProfitableToSinkLoad - Return true if we know that it is safe to 213/// sink the load out of the block that defines it. This means that it must be 214/// obvious the value of the load is not changed from the point of the load to 215/// the end of the block it is in. 216/// 217/// Finally, it is safe, but not profitable, to sink a load targetting a 218/// non-address-taken alloca. Doing so will cause us to not promote the alloca 219/// to a register. 220static bool isSafeAndProfitableToSinkLoad(LoadInst *L) { 221 BasicBlock::iterator BBI = L, E = L->getParent()->end(); 222 223 for (++BBI; BBI != E; ++BBI) 224 if (BBI->mayWriteToMemory()) 225 return false; 226 227 // Check for non-address taken alloca. If not address-taken already, it isn't 228 // profitable to do this xform. 229 if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) { 230 bool isAddressTaken = false; 231 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); 232 UI != E; ++UI) { 233 if (isa<LoadInst>(UI)) continue; 234 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) { 235 // If storing TO the alloca, then the address isn't taken. 236 if (SI->getOperand(1) == AI) continue; 237 } 238 isAddressTaken = true; 239 break; 240 } 241 242 if (!isAddressTaken && AI->isStaticAlloca()) 243 return false; 244 } 245 246 // If this load is a load from a GEP with a constant offset from an alloca, 247 // then we don't want to sink it. In its present form, it will be 248 // load [constant stack offset]. Sinking it will cause us to have to 249 // materialize the stack addresses in each predecessor in a register only to 250 // do a shared load from register in the successor. 251 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0))) 252 if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0))) 253 if (AI->isStaticAlloca() && GEP->hasAllConstantIndices()) 254 return false; 255 256 return true; 257} 258 259Instruction *InstCombiner::FoldPHIArgLoadIntoPHI(PHINode &PN) { 260 LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0)); 261 262 // When processing loads, we need to propagate two bits of information to the 263 // sunk load: whether it is volatile, and what its alignment is. We currently 264 // don't sink loads when some have their alignment specified and some don't. 265 // visitLoadInst will propagate an alignment onto the load when TD is around, 266 // and if TD isn't around, we can't handle the mixed case. 267 bool isVolatile = FirstLI->isVolatile(); 268 unsigned LoadAlignment = FirstLI->getAlignment(); 269 270 // We can't sink the load if the loaded value could be modified between the 271 // load and the PHI. 272 if (FirstLI->getParent() != PN.getIncomingBlock(0) || 273 !isSafeAndProfitableToSinkLoad(FirstLI)) 274 return 0; 275 276 // If the PHI is of volatile loads and the load block has multiple 277 // successors, sinking it would remove a load of the volatile value from 278 // the path through the other successor. 279 if (isVolatile && 280 FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1) 281 return 0; 282 283 // Check to see if all arguments are the same operation. 284 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { 285 LoadInst *LI = dyn_cast<LoadInst>(PN.getIncomingValue(i)); 286 if (!LI || !LI->hasOneUse()) 287 return 0; 288 289 // We can't sink the load if the loaded value could be modified between 290 // the load and the PHI. 291 if (LI->isVolatile() != isVolatile || 292 LI->getParent() != PN.getIncomingBlock(i) || 293 !isSafeAndProfitableToSinkLoad(LI)) 294 return 0; 295 296 // If some of the loads have an alignment specified but not all of them, 297 // we can't do the transformation. 298 if ((LoadAlignment != 0) != (LI->getAlignment() != 0)) 299 return 0; 300 301 LoadAlignment = std::min(LoadAlignment, LI->getAlignment()); 302 303 // If the PHI is of volatile loads and the load block has multiple 304 // successors, sinking it would remove a load of the volatile value from 305 // the path through the other successor. 306 if (isVolatile && 307 LI->getParent()->getTerminator()->getNumSuccessors() != 1) 308 return 0; 309 } 310 311 // Okay, they are all the same operation. Create a new PHI node of the 312 // correct type, and PHI together all of the LHS's of the instructions. 313 PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(), 314 PN.getName()+".in"); 315 NewPN->reserveOperandSpace(PN.getNumOperands()/2); 316 317 Value *InVal = FirstLI->getOperand(0); 318 NewPN->addIncoming(InVal, PN.getIncomingBlock(0)); 319 320 // Add all operands to the new PHI. 321 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { 322 Value *NewInVal = cast<LoadInst>(PN.getIncomingValue(i))->getOperand(0); 323 if (NewInVal != InVal) 324 InVal = 0; 325 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i)); 326 } 327 328 Value *PhiVal; 329 if (InVal) { 330 // The new PHI unions all of the same values together. This is really 331 // common, so we handle it intelligently here for compile-time speed. 332 PhiVal = InVal; 333 delete NewPN; 334 } else { 335 InsertNewInstBefore(NewPN, PN); 336 PhiVal = NewPN; 337 } 338 339 // If this was a volatile load that we are merging, make sure to loop through 340 // and mark all the input loads as non-volatile. If we don't do this, we will 341 // insert a new volatile load and the old ones will not be deletable. 342 if (isVolatile) 343 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 344 cast<LoadInst>(PN.getIncomingValue(i))->setVolatile(false); 345 346 return new LoadInst(PhiVal, "", isVolatile, LoadAlignment); 347} 348 349 350 351/// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary" 352/// operator and they all are only used by the PHI, PHI together their 353/// inputs, and do the operation once, to the result of the PHI. 354Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) { 355 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0)); 356 357 if (isa<GetElementPtrInst>(FirstInst)) 358 return FoldPHIArgGEPIntoPHI(PN); 359 if (isa<LoadInst>(FirstInst)) 360 return FoldPHIArgLoadIntoPHI(PN); 361 362 // Scan the instruction, looking for input operations that can be folded away. 363 // If all input operands to the phi are the same instruction (e.g. a cast from 364 // the same type or "+42") we can pull the operation through the PHI, reducing 365 // code size and simplifying code. 366 Constant *ConstantOp = 0; 367 const Type *CastSrcTy = 0; 368 369 if (isa<CastInst>(FirstInst)) { 370 CastSrcTy = FirstInst->getOperand(0)->getType(); 371 372 // Be careful about transforming integer PHIs. We don't want to pessimize 373 // the code by turning an i32 into an i1293. 374 if (isa<IntegerType>(PN.getType()) && isa<IntegerType>(CastSrcTy)) { 375 if (!ShouldChangeType(PN.getType(), CastSrcTy)) 376 return 0; 377 } 378 } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) { 379 // Can fold binop, compare or shift here if the RHS is a constant, 380 // otherwise call FoldPHIArgBinOpIntoPHI. 381 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1)); 382 if (ConstantOp == 0) 383 return FoldPHIArgBinOpIntoPHI(PN); 384 } else { 385 return 0; // Cannot fold this operation. 386 } 387 388 // Check to see if all arguments are the same operation. 389 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { 390 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i)); 391 if (I == 0 || !I->hasOneUse() || !I->isSameOperationAs(FirstInst)) 392 return 0; 393 if (CastSrcTy) { 394 if (I->getOperand(0)->getType() != CastSrcTy) 395 return 0; // Cast operation must match. 396 } else if (I->getOperand(1) != ConstantOp) { 397 return 0; 398 } 399 } 400 401 // Okay, they are all the same operation. Create a new PHI node of the 402 // correct type, and PHI together all of the LHS's of the instructions. 403 PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(), 404 PN.getName()+".in"); 405 NewPN->reserveOperandSpace(PN.getNumOperands()/2); 406 407 Value *InVal = FirstInst->getOperand(0); 408 NewPN->addIncoming(InVal, PN.getIncomingBlock(0)); 409 410 // Add all operands to the new PHI. 411 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { 412 Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0); 413 if (NewInVal != InVal) 414 InVal = 0; 415 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i)); 416 } 417 418 Value *PhiVal; 419 if (InVal) { 420 // The new PHI unions all of the same values together. This is really 421 // common, so we handle it intelligently here for compile-time speed. 422 PhiVal = InVal; 423 delete NewPN; 424 } else { 425 InsertNewInstBefore(NewPN, PN); 426 PhiVal = NewPN; 427 } 428 429 // Insert and return the new operation. 430 if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst)) 431 return CastInst::Create(FirstCI->getOpcode(), PhiVal, PN.getType()); 432 433 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) 434 return BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp); 435 436 CmpInst *CIOp = cast<CmpInst>(FirstInst); 437 return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), 438 PhiVal, ConstantOp); 439} 440 441/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle 442/// that is dead. 443static bool DeadPHICycle(PHINode *PN, 444 SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) { 445 if (PN->use_empty()) return true; 446 if (!PN->hasOneUse()) return false; 447 448 // Remember this node, and if we find the cycle, return. 449 if (!PotentiallyDeadPHIs.insert(PN)) 450 return true; 451 452 // Don't scan crazily complex things. 453 if (PotentiallyDeadPHIs.size() == 16) 454 return false; 455 456 if (PHINode *PU = dyn_cast<PHINode>(PN->use_back())) 457 return DeadPHICycle(PU, PotentiallyDeadPHIs); 458 459 return false; 460} 461 462/// PHIsEqualValue - Return true if this phi node is always equal to 463/// NonPhiInVal. This happens with mutually cyclic phi nodes like: 464/// z = some value; x = phi (y, z); y = phi (x, z) 465static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal, 466 SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) { 467 // See if we already saw this PHI node. 468 if (!ValueEqualPHIs.insert(PN)) 469 return true; 470 471 // Don't scan crazily complex things. 472 if (ValueEqualPHIs.size() == 16) 473 return false; 474 475 // Scan the operands to see if they are either phi nodes or are equal to 476 // the value. 477 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 478 Value *Op = PN->getIncomingValue(i); 479 if (PHINode *OpPN = dyn_cast<PHINode>(Op)) { 480 if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs)) 481 return false; 482 } else if (Op != NonPhiInVal) 483 return false; 484 } 485 486 return true; 487} 488 489 490namespace { 491struct PHIUsageRecord { 492 unsigned PHIId; // The ID # of the PHI (something determinstic to sort on) 493 unsigned Shift; // The amount shifted. 494 Instruction *Inst; // The trunc instruction. 495 496 PHIUsageRecord(unsigned pn, unsigned Sh, Instruction *User) 497 : PHIId(pn), Shift(Sh), Inst(User) {} 498 499 bool operator<(const PHIUsageRecord &RHS) const { 500 if (PHIId < RHS.PHIId) return true; 501 if (PHIId > RHS.PHIId) return false; 502 if (Shift < RHS.Shift) return true; 503 if (Shift > RHS.Shift) return false; 504 return Inst->getType()->getPrimitiveSizeInBits() < 505 RHS.Inst->getType()->getPrimitiveSizeInBits(); 506 } 507}; 508 509struct LoweredPHIRecord { 510 PHINode *PN; // The PHI that was lowered. 511 unsigned Shift; // The amount shifted. 512 unsigned Width; // The width extracted. 513 514 LoweredPHIRecord(PHINode *pn, unsigned Sh, const Type *Ty) 515 : PN(pn), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {} 516 517 // Ctor form used by DenseMap. 518 LoweredPHIRecord(PHINode *pn, unsigned Sh) 519 : PN(pn), Shift(Sh), Width(0) {} 520}; 521} 522 523namespace llvm { 524 template<> 525 struct DenseMapInfo<LoweredPHIRecord> { 526 static inline LoweredPHIRecord getEmptyKey() { 527 return LoweredPHIRecord(0, 0); 528 } 529 static inline LoweredPHIRecord getTombstoneKey() { 530 return LoweredPHIRecord(0, 1); 531 } 532 static unsigned getHashValue(const LoweredPHIRecord &Val) { 533 return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^ 534 (Val.Width>>3); 535 } 536 static bool isEqual(const LoweredPHIRecord &LHS, 537 const LoweredPHIRecord &RHS) { 538 return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift && 539 LHS.Width == RHS.Width; 540 } 541 }; 542 template <> 543 struct isPodLike<LoweredPHIRecord> { static const bool value = true; }; 544} 545 546 547/// SliceUpIllegalIntegerPHI - This is an integer PHI and we know that it has an 548/// illegal type: see if it is only used by trunc or trunc(lshr) operations. If 549/// so, we split the PHI into the various pieces being extracted. This sort of 550/// thing is introduced when SROA promotes an aggregate to large integer values. 551/// 552/// TODO: The user of the trunc may be an bitcast to float/double/vector or an 553/// inttoptr. We should produce new PHIs in the right type. 554/// 555Instruction *InstCombiner::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) { 556 // PHIUsers - Keep track of all of the truncated values extracted from a set 557 // of PHIs, along with their offset. These are the things we want to rewrite. 558 SmallVector<PHIUsageRecord, 16> PHIUsers; 559 560 // PHIs are often mutually cyclic, so we keep track of a whole set of PHI 561 // nodes which are extracted from. PHIsToSlice is a set we use to avoid 562 // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to 563 // check the uses of (to ensure they are all extracts). 564 SmallVector<PHINode*, 8> PHIsToSlice; 565 SmallPtrSet<PHINode*, 8> PHIsInspected; 566 567 PHIsToSlice.push_back(&FirstPhi); 568 PHIsInspected.insert(&FirstPhi); 569 570 for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) { 571 PHINode *PN = PHIsToSlice[PHIId]; 572 573 // Scan the input list of the PHI. If any input is an invoke, and if the 574 // input is defined in the predecessor, then we won't be split the critical 575 // edge which is required to insert a truncate. Because of this, we have to 576 // bail out. 577 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 578 InvokeInst *II = dyn_cast<InvokeInst>(PN->getIncomingValue(i)); 579 if (II == 0) continue; 580 if (II->getParent() != PN->getIncomingBlock(i)) 581 continue; 582 583 // If we have a phi, and if it's directly in the predecessor, then we have 584 // a critical edge where we need to put the truncate. Since we can't 585 // split the edge in instcombine, we have to bail out. 586 return 0; 587 } 588 589 590 for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); 591 UI != E; ++UI) { 592 Instruction *User = cast<Instruction>(*UI); 593 594 // If the user is a PHI, inspect its uses recursively. 595 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 596 if (PHIsInspected.insert(UserPN)) 597 PHIsToSlice.push_back(UserPN); 598 continue; 599 } 600 601 // Truncates are always ok. 602 if (isa<TruncInst>(User)) { 603 PHIUsers.push_back(PHIUsageRecord(PHIId, 0, User)); 604 continue; 605 } 606 607 // Otherwise it must be a lshr which can only be used by one trunc. 608 if (User->getOpcode() != Instruction::LShr || 609 !User->hasOneUse() || !isa<TruncInst>(User->use_back()) || 610 !isa<ConstantInt>(User->getOperand(1))) 611 return 0; 612 613 unsigned Shift = cast<ConstantInt>(User->getOperand(1))->getZExtValue(); 614 PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, User->use_back())); 615 } 616 } 617 618 // If we have no users, they must be all self uses, just nuke the PHI. 619 if (PHIUsers.empty()) 620 return ReplaceInstUsesWith(FirstPhi, UndefValue::get(FirstPhi.getType())); 621 622 // If this phi node is transformable, create new PHIs for all the pieces 623 // extracted out of it. First, sort the users by their offset and size. 624 array_pod_sort(PHIUsers.begin(), PHIUsers.end()); 625 626 DEBUG(errs() << "SLICING UP PHI: " << FirstPhi << '\n'; 627 for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i) 628 errs() << "AND USER PHI #" << i << ": " << *PHIsToSlice[i] <<'\n'; 629 ); 630 631 // PredValues - This is a temporary used when rewriting PHI nodes. It is 632 // hoisted out here to avoid construction/destruction thrashing. 633 DenseMap<BasicBlock*, Value*> PredValues; 634 635 // ExtractedVals - Each new PHI we introduce is saved here so we don't 636 // introduce redundant PHIs. 637 DenseMap<LoweredPHIRecord, PHINode*> ExtractedVals; 638 639 for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) { 640 unsigned PHIId = PHIUsers[UserI].PHIId; 641 PHINode *PN = PHIsToSlice[PHIId]; 642 unsigned Offset = PHIUsers[UserI].Shift; 643 const Type *Ty = PHIUsers[UserI].Inst->getType(); 644 645 PHINode *EltPHI; 646 647 // If we've already lowered a user like this, reuse the previously lowered 648 // value. 649 if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == 0) { 650 651 // Otherwise, Create the new PHI node for this user. 652 EltPHI = PHINode::Create(Ty, PN->getName()+".off"+Twine(Offset), PN); 653 assert(EltPHI->getType() != PN->getType() && 654 "Truncate didn't shrink phi?"); 655 656 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 657 BasicBlock *Pred = PN->getIncomingBlock(i); 658 Value *&PredVal = PredValues[Pred]; 659 660 // If we already have a value for this predecessor, reuse it. 661 if (PredVal) { 662 EltPHI->addIncoming(PredVal, Pred); 663 continue; 664 } 665 666 // Handle the PHI self-reuse case. 667 Value *InVal = PN->getIncomingValue(i); 668 if (InVal == PN) { 669 PredVal = EltPHI; 670 EltPHI->addIncoming(PredVal, Pred); 671 continue; 672 } 673 674 if (PHINode *InPHI = dyn_cast<PHINode>(PN)) { 675 // If the incoming value was a PHI, and if it was one of the PHIs we 676 // already rewrote it, just use the lowered value. 677 if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) { 678 PredVal = Res; 679 EltPHI->addIncoming(PredVal, Pred); 680 continue; 681 } 682 } 683 684 // Otherwise, do an extract in the predecessor. 685 Builder->SetInsertPoint(Pred, Pred->getTerminator()); 686 Value *Res = InVal; 687 if (Offset) 688 Res = Builder->CreateLShr(Res, ConstantInt::get(InVal->getType(), 689 Offset), "extract"); 690 Res = Builder->CreateTrunc(Res, Ty, "extract.t"); 691 PredVal = Res; 692 EltPHI->addIncoming(Res, Pred); 693 694 // If the incoming value was a PHI, and if it was one of the PHIs we are 695 // rewriting, we will ultimately delete the code we inserted. This 696 // means we need to revisit that PHI to make sure we extract out the 697 // needed piece. 698 if (PHINode *OldInVal = dyn_cast<PHINode>(PN->getIncomingValue(i))) 699 if (PHIsInspected.count(OldInVal)) { 700 unsigned RefPHIId = std::find(PHIsToSlice.begin(),PHIsToSlice.end(), 701 OldInVal)-PHIsToSlice.begin(); 702 PHIUsers.push_back(PHIUsageRecord(RefPHIId, Offset, 703 cast<Instruction>(Res))); 704 ++UserE; 705 } 706 } 707 PredValues.clear(); 708 709 DEBUG(errs() << " Made element PHI for offset " << Offset << ": " 710 << *EltPHI << '\n'); 711 ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI; 712 } 713 714 // Replace the use of this piece with the PHI node. 715 ReplaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI); 716 } 717 718 // Replace all the remaining uses of the PHI nodes (self uses and the lshrs) 719 // with undefs. 720 Value *Undef = UndefValue::get(FirstPhi.getType()); 721 for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i) 722 ReplaceInstUsesWith(*PHIsToSlice[i], Undef); 723 return ReplaceInstUsesWith(FirstPhi, Undef); 724} 725 726// PHINode simplification 727// 728Instruction *InstCombiner::visitPHINode(PHINode &PN) { 729 // If LCSSA is around, don't mess with Phi nodes 730 if (MustPreserveLCSSA) return 0; 731 732 if (Value *V = PN.hasConstantValue()) 733 return ReplaceInstUsesWith(PN, V); 734 735 // If all PHI operands are the same operation, pull them through the PHI, 736 // reducing code size. 737 if (isa<Instruction>(PN.getIncomingValue(0)) && 738 isa<Instruction>(PN.getIncomingValue(1)) && 739 cast<Instruction>(PN.getIncomingValue(0))->getOpcode() == 740 cast<Instruction>(PN.getIncomingValue(1))->getOpcode() && 741 // FIXME: The hasOneUse check will fail for PHIs that use the value more 742 // than themselves more than once. 743 PN.getIncomingValue(0)->hasOneUse()) 744 if (Instruction *Result = FoldPHIArgOpIntoPHI(PN)) 745 return Result; 746 747 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if 748 // this PHI only has a single use (a PHI), and if that PHI only has one use (a 749 // PHI)... break the cycle. 750 if (PN.hasOneUse()) { 751 Instruction *PHIUser = cast<Instruction>(PN.use_back()); 752 if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) { 753 SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs; 754 PotentiallyDeadPHIs.insert(&PN); 755 if (DeadPHICycle(PU, PotentiallyDeadPHIs)) 756 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType())); 757 } 758 759 // If this phi has a single use, and if that use just computes a value for 760 // the next iteration of a loop, delete the phi. This occurs with unused 761 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this 762 // common case here is good because the only other things that catch this 763 // are induction variable analysis (sometimes) and ADCE, which is only run 764 // late. 765 if (PHIUser->hasOneUse() && 766 (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) && 767 PHIUser->use_back() == &PN) { 768 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType())); 769 } 770 } 771 772 // We sometimes end up with phi cycles that non-obviously end up being the 773 // same value, for example: 774 // z = some value; x = phi (y, z); y = phi (x, z) 775 // where the phi nodes don't necessarily need to be in the same block. Do a 776 // quick check to see if the PHI node only contains a single non-phi value, if 777 // so, scan to see if the phi cycle is actually equal to that value. 778 { 779 unsigned InValNo = 0, NumOperandVals = PN.getNumIncomingValues(); 780 // Scan for the first non-phi operand. 781 while (InValNo != NumOperandVals && 782 isa<PHINode>(PN.getIncomingValue(InValNo))) 783 ++InValNo; 784 785 if (InValNo != NumOperandVals) { 786 Value *NonPhiInVal = PN.getOperand(InValNo); 787 788 // Scan the rest of the operands to see if there are any conflicts, if so 789 // there is no need to recursively scan other phis. 790 for (++InValNo; InValNo != NumOperandVals; ++InValNo) { 791 Value *OpVal = PN.getIncomingValue(InValNo); 792 if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal)) 793 break; 794 } 795 796 // If we scanned over all operands, then we have one unique value plus 797 // phi values. Scan PHI nodes to see if they all merge in each other or 798 // the value. 799 if (InValNo == NumOperandVals) { 800 SmallPtrSet<PHINode*, 16> ValueEqualPHIs; 801 if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs)) 802 return ReplaceInstUsesWith(PN, NonPhiInVal); 803 } 804 } 805 } 806 807 // If there are multiple PHIs, sort their operands so that they all list 808 // the blocks in the same order. This will help identical PHIs be eliminated 809 // by other passes. Other passes shouldn't depend on this for correctness 810 // however. 811 PHINode *FirstPN = cast<PHINode>(PN.getParent()->begin()); 812 if (&PN != FirstPN) 813 for (unsigned i = 0, e = FirstPN->getNumIncomingValues(); i != e; ++i) { 814 BasicBlock *BBA = PN.getIncomingBlock(i); 815 BasicBlock *BBB = FirstPN->getIncomingBlock(i); 816 if (BBA != BBB) { 817 Value *VA = PN.getIncomingValue(i); 818 unsigned j = PN.getBasicBlockIndex(BBB); 819 Value *VB = PN.getIncomingValue(j); 820 PN.setIncomingBlock(i, BBB); 821 PN.setIncomingValue(i, VB); 822 PN.setIncomingBlock(j, BBA); 823 PN.setIncomingValue(j, VA); 824 // NOTE: Instcombine normally would want us to "return &PN" if we 825 // modified any of the operands of an instruction. However, since we 826 // aren't adding or removing uses (just rearranging them) we don't do 827 // this in this case. 828 } 829 } 830 831 // If this is an integer PHI and we know that it has an illegal type, see if 832 // it is only used by trunc or trunc(lshr) operations. If so, we split the 833 // PHI into the various pieces being extracted. This sort of thing is 834 // introduced when SROA promotes an aggregate to a single large integer type. 835 if (isa<IntegerType>(PN.getType()) && TD && 836 !TD->isLegalInteger(PN.getType()->getPrimitiveSizeInBits())) 837 if (Instruction *Res = SliceUpIllegalIntegerPHI(PN)) 838 return Res; 839 840 return 0; 841} 842