InstCombinePHI.cpp revision eade00209447c07953a609b30666ce5f6d9f9864
1//===- InstCombinePHI.cpp -------------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitPHINode function.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Target/TargetData.h"
16#include "llvm/ADT/SmallPtrSet.h"
17#include "llvm/ADT/STLExtras.h"
18using namespace llvm;
19
20/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(a,c)]
21/// and if a/b/c and the add's all have a single use, turn this into a phi
22/// and a single binop.
23Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
24  Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
25  assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst));
26  unsigned Opc = FirstInst->getOpcode();
27  Value *LHSVal = FirstInst->getOperand(0);
28  Value *RHSVal = FirstInst->getOperand(1);
29
30  const Type *LHSType = LHSVal->getType();
31  const Type *RHSType = RHSVal->getType();
32
33  // Scan to see if all operands are the same opcode, and all have one use.
34  for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
35    Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
36    if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
37        // Verify type of the LHS matches so we don't fold cmp's of different
38        // types or GEP's with different index types.
39        I->getOperand(0)->getType() != LHSType ||
40        I->getOperand(1)->getType() != RHSType)
41      return 0;
42
43    // If they are CmpInst instructions, check their predicates
44    if (Opc == Instruction::ICmp || Opc == Instruction::FCmp)
45      if (cast<CmpInst>(I)->getPredicate() !=
46          cast<CmpInst>(FirstInst)->getPredicate())
47        return 0;
48
49    // Keep track of which operand needs a phi node.
50    if (I->getOperand(0) != LHSVal) LHSVal = 0;
51    if (I->getOperand(1) != RHSVal) RHSVal = 0;
52  }
53
54  // If both LHS and RHS would need a PHI, don't do this transformation,
55  // because it would increase the number of PHIs entering the block,
56  // which leads to higher register pressure. This is especially
57  // bad when the PHIs are in the header of a loop.
58  if (!LHSVal && !RHSVal)
59    return 0;
60
61  // Otherwise, this is safe to transform!
62
63  Value *InLHS = FirstInst->getOperand(0);
64  Value *InRHS = FirstInst->getOperand(1);
65  PHINode *NewLHS = 0, *NewRHS = 0;
66  if (LHSVal == 0) {
67    NewLHS = PHINode::Create(LHSType,
68                             FirstInst->getOperand(0)->getName() + ".pn");
69    NewLHS->reserveOperandSpace(PN.getNumOperands()/2);
70    NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
71    InsertNewInstBefore(NewLHS, PN);
72    LHSVal = NewLHS;
73  }
74
75  if (RHSVal == 0) {
76    NewRHS = PHINode::Create(RHSType,
77                             FirstInst->getOperand(1)->getName() + ".pn");
78    NewRHS->reserveOperandSpace(PN.getNumOperands()/2);
79    NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
80    InsertNewInstBefore(NewRHS, PN);
81    RHSVal = NewRHS;
82  }
83
84  // Add all operands to the new PHIs.
85  if (NewLHS || NewRHS) {
86    for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
87      Instruction *InInst = cast<Instruction>(PN.getIncomingValue(i));
88      if (NewLHS) {
89        Value *NewInLHS = InInst->getOperand(0);
90        NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
91      }
92      if (NewRHS) {
93        Value *NewInRHS = InInst->getOperand(1);
94        NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
95      }
96    }
97  }
98
99  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
100    return BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
101  CmpInst *CIOp = cast<CmpInst>(FirstInst);
102  return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
103                         LHSVal, RHSVal);
104}
105
106Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
107  GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0));
108
109  SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(),
110                                        FirstInst->op_end());
111  // This is true if all GEP bases are allocas and if all indices into them are
112  // constants.
113  bool AllBasePointersAreAllocas = true;
114
115  // We don't want to replace this phi if the replacement would require
116  // more than one phi, which leads to higher register pressure. This is
117  // especially bad when the PHIs are in the header of a loop.
118  bool NeededPhi = false;
119
120  // Scan to see if all operands are the same opcode, and all have one use.
121  for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
122    GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i));
123    if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() ||
124      GEP->getNumOperands() != FirstInst->getNumOperands())
125      return 0;
126
127    // Keep track of whether or not all GEPs are of alloca pointers.
128    if (AllBasePointersAreAllocas &&
129        (!isa<AllocaInst>(GEP->getOperand(0)) ||
130         !GEP->hasAllConstantIndices()))
131      AllBasePointersAreAllocas = false;
132
133    // Compare the operand lists.
134    for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) {
135      if (FirstInst->getOperand(op) == GEP->getOperand(op))
136        continue;
137
138      // Don't merge two GEPs when two operands differ (introducing phi nodes)
139      // if one of the PHIs has a constant for the index.  The index may be
140      // substantially cheaper to compute for the constants, so making it a
141      // variable index could pessimize the path.  This also handles the case
142      // for struct indices, which must always be constant.
143      if (isa<ConstantInt>(FirstInst->getOperand(op)) ||
144          isa<ConstantInt>(GEP->getOperand(op)))
145        return 0;
146
147      if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType())
148        return 0;
149
150      // If we already needed a PHI for an earlier operand, and another operand
151      // also requires a PHI, we'd be introducing more PHIs than we're
152      // eliminating, which increases register pressure on entry to the PHI's
153      // block.
154      if (NeededPhi)
155        return 0;
156
157      FixedOperands[op] = 0;  // Needs a PHI.
158      NeededPhi = true;
159    }
160  }
161
162  // If all of the base pointers of the PHI'd GEPs are from allocas, don't
163  // bother doing this transformation.  At best, this will just save a bit of
164  // offset calculation, but all the predecessors will have to materialize the
165  // stack address into a register anyway.  We'd actually rather *clone* the
166  // load up into the predecessors so that we have a load of a gep of an alloca,
167  // which can usually all be folded into the load.
168  if (AllBasePointersAreAllocas)
169    return 0;
170
171  // Otherwise, this is safe to transform.  Insert PHI nodes for each operand
172  // that is variable.
173  SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size());
174
175  bool HasAnyPHIs = false;
176  for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) {
177    if (FixedOperands[i]) continue;  // operand doesn't need a phi.
178    Value *FirstOp = FirstInst->getOperand(i);
179    PHINode *NewPN = PHINode::Create(FirstOp->getType(),
180                                     FirstOp->getName()+".pn");
181    InsertNewInstBefore(NewPN, PN);
182
183    NewPN->reserveOperandSpace(e);
184    NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0));
185    OperandPhis[i] = NewPN;
186    FixedOperands[i] = NewPN;
187    HasAnyPHIs = true;
188  }
189
190
191  // Add all operands to the new PHIs.
192  if (HasAnyPHIs) {
193    for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
194      GetElementPtrInst *InGEP =cast<GetElementPtrInst>(PN.getIncomingValue(i));
195      BasicBlock *InBB = PN.getIncomingBlock(i);
196
197      for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op)
198        if (PHINode *OpPhi = OperandPhis[op])
199          OpPhi->addIncoming(InGEP->getOperand(op), InBB);
200    }
201  }
202
203  Value *Base = FixedOperands[0];
204  return cast<GEPOperator>(FirstInst)->isInBounds() ?
205    GetElementPtrInst::CreateInBounds(Base, FixedOperands.begin()+1,
206                                      FixedOperands.end()) :
207    GetElementPtrInst::Create(Base, FixedOperands.begin()+1,
208                              FixedOperands.end());
209}
210
211
212/// isSafeAndProfitableToSinkLoad - Return true if we know that it is safe to
213/// sink the load out of the block that defines it.  This means that it must be
214/// obvious the value of the load is not changed from the point of the load to
215/// the end of the block it is in.
216///
217/// Finally, it is safe, but not profitable, to sink a load targetting a
218/// non-address-taken alloca.  Doing so will cause us to not promote the alloca
219/// to a register.
220static bool isSafeAndProfitableToSinkLoad(LoadInst *L) {
221  BasicBlock::iterator BBI = L, E = L->getParent()->end();
222
223  for (++BBI; BBI != E; ++BBI)
224    if (BBI->mayWriteToMemory())
225      return false;
226
227  // Check for non-address taken alloca.  If not address-taken already, it isn't
228  // profitable to do this xform.
229  if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
230    bool isAddressTaken = false;
231    for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
232         UI != E; ++UI) {
233      if (isa<LoadInst>(UI)) continue;
234      if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
235        // If storing TO the alloca, then the address isn't taken.
236        if (SI->getOperand(1) == AI) continue;
237      }
238      isAddressTaken = true;
239      break;
240    }
241
242    if (!isAddressTaken && AI->isStaticAlloca())
243      return false;
244  }
245
246  // If this load is a load from a GEP with a constant offset from an alloca,
247  // then we don't want to sink it.  In its present form, it will be
248  // load [constant stack offset].  Sinking it will cause us to have to
249  // materialize the stack addresses in each predecessor in a register only to
250  // do a shared load from register in the successor.
251  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0)))
252    if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0)))
253      if (AI->isStaticAlloca() && GEP->hasAllConstantIndices())
254        return false;
255
256  return true;
257}
258
259Instruction *InstCombiner::FoldPHIArgLoadIntoPHI(PHINode &PN) {
260  LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0));
261
262  // When processing loads, we need to propagate two bits of information to the
263  // sunk load: whether it is volatile, and what its alignment is.  We currently
264  // don't sink loads when some have their alignment specified and some don't.
265  // visitLoadInst will propagate an alignment onto the load when TD is around,
266  // and if TD isn't around, we can't handle the mixed case.
267  bool isVolatile = FirstLI->isVolatile();
268  unsigned LoadAlignment = FirstLI->getAlignment();
269
270  // We can't sink the load if the loaded value could be modified between the
271  // load and the PHI.
272  if (FirstLI->getParent() != PN.getIncomingBlock(0) ||
273      !isSafeAndProfitableToSinkLoad(FirstLI))
274    return 0;
275
276  // If the PHI is of volatile loads and the load block has multiple
277  // successors, sinking it would remove a load of the volatile value from
278  // the path through the other successor.
279  if (isVolatile &&
280      FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1)
281    return 0;
282
283  // Check to see if all arguments are the same operation.
284  for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
285    LoadInst *LI = dyn_cast<LoadInst>(PN.getIncomingValue(i));
286    if (!LI || !LI->hasOneUse())
287      return 0;
288
289    // We can't sink the load if the loaded value could be modified between
290    // the load and the PHI.
291    if (LI->isVolatile() != isVolatile ||
292        LI->getParent() != PN.getIncomingBlock(i) ||
293        !isSafeAndProfitableToSinkLoad(LI))
294      return 0;
295
296    // If some of the loads have an alignment specified but not all of them,
297    // we can't do the transformation.
298    if ((LoadAlignment != 0) != (LI->getAlignment() != 0))
299      return 0;
300
301    LoadAlignment = std::min(LoadAlignment, LI->getAlignment());
302
303    // If the PHI is of volatile loads and the load block has multiple
304    // successors, sinking it would remove a load of the volatile value from
305    // the path through the other successor.
306    if (isVolatile &&
307        LI->getParent()->getTerminator()->getNumSuccessors() != 1)
308      return 0;
309  }
310
311  // Okay, they are all the same operation.  Create a new PHI node of the
312  // correct type, and PHI together all of the LHS's of the instructions.
313  PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(),
314                                   PN.getName()+".in");
315  NewPN->reserveOperandSpace(PN.getNumOperands()/2);
316
317  Value *InVal = FirstLI->getOperand(0);
318  NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
319
320  // Add all operands to the new PHI.
321  for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
322    Value *NewInVal = cast<LoadInst>(PN.getIncomingValue(i))->getOperand(0);
323    if (NewInVal != InVal)
324      InVal = 0;
325    NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
326  }
327
328  Value *PhiVal;
329  if (InVal) {
330    // The new PHI unions all of the same values together.  This is really
331    // common, so we handle it intelligently here for compile-time speed.
332    PhiVal = InVal;
333    delete NewPN;
334  } else {
335    InsertNewInstBefore(NewPN, PN);
336    PhiVal = NewPN;
337  }
338
339  // If this was a volatile load that we are merging, make sure to loop through
340  // and mark all the input loads as non-volatile.  If we don't do this, we will
341  // insert a new volatile load and the old ones will not be deletable.
342  if (isVolatile)
343    for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
344      cast<LoadInst>(PN.getIncomingValue(i))->setVolatile(false);
345
346  return new LoadInst(PhiVal, "", isVolatile, LoadAlignment);
347}
348
349
350
351/// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
352/// operator and they all are only used by the PHI, PHI together their
353/// inputs, and do the operation once, to the result of the PHI.
354Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
355  Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
356
357  if (isa<GetElementPtrInst>(FirstInst))
358    return FoldPHIArgGEPIntoPHI(PN);
359  if (isa<LoadInst>(FirstInst))
360    return FoldPHIArgLoadIntoPHI(PN);
361
362  // Scan the instruction, looking for input operations that can be folded away.
363  // If all input operands to the phi are the same instruction (e.g. a cast from
364  // the same type or "+42") we can pull the operation through the PHI, reducing
365  // code size and simplifying code.
366  Constant *ConstantOp = 0;
367  const Type *CastSrcTy = 0;
368
369  if (isa<CastInst>(FirstInst)) {
370    CastSrcTy = FirstInst->getOperand(0)->getType();
371
372    // Be careful about transforming integer PHIs.  We don't want to pessimize
373    // the code by turning an i32 into an i1293.
374    if (isa<IntegerType>(PN.getType()) && isa<IntegerType>(CastSrcTy)) {
375      if (!ShouldChangeType(PN.getType(), CastSrcTy))
376        return 0;
377    }
378  } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
379    // Can fold binop, compare or shift here if the RHS is a constant,
380    // otherwise call FoldPHIArgBinOpIntoPHI.
381    ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
382    if (ConstantOp == 0)
383      return FoldPHIArgBinOpIntoPHI(PN);
384  } else {
385    return 0;  // Cannot fold this operation.
386  }
387
388  // Check to see if all arguments are the same operation.
389  for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
390    Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
391    if (I == 0 || !I->hasOneUse() || !I->isSameOperationAs(FirstInst))
392      return 0;
393    if (CastSrcTy) {
394      if (I->getOperand(0)->getType() != CastSrcTy)
395        return 0;  // Cast operation must match.
396    } else if (I->getOperand(1) != ConstantOp) {
397      return 0;
398    }
399  }
400
401  // Okay, they are all the same operation.  Create a new PHI node of the
402  // correct type, and PHI together all of the LHS's of the instructions.
403  PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
404                                   PN.getName()+".in");
405  NewPN->reserveOperandSpace(PN.getNumOperands()/2);
406
407  Value *InVal = FirstInst->getOperand(0);
408  NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
409
410  // Add all operands to the new PHI.
411  for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
412    Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
413    if (NewInVal != InVal)
414      InVal = 0;
415    NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
416  }
417
418  Value *PhiVal;
419  if (InVal) {
420    // The new PHI unions all of the same values together.  This is really
421    // common, so we handle it intelligently here for compile-time speed.
422    PhiVal = InVal;
423    delete NewPN;
424  } else {
425    InsertNewInstBefore(NewPN, PN);
426    PhiVal = NewPN;
427  }
428
429  // Insert and return the new operation.
430  if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst))
431    return CastInst::Create(FirstCI->getOpcode(), PhiVal, PN.getType());
432
433  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
434    return BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
435
436  CmpInst *CIOp = cast<CmpInst>(FirstInst);
437  return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
438                         PhiVal, ConstantOp);
439}
440
441/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
442/// that is dead.
443static bool DeadPHICycle(PHINode *PN,
444                         SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) {
445  if (PN->use_empty()) return true;
446  if (!PN->hasOneUse()) return false;
447
448  // Remember this node, and if we find the cycle, return.
449  if (!PotentiallyDeadPHIs.insert(PN))
450    return true;
451
452  // Don't scan crazily complex things.
453  if (PotentiallyDeadPHIs.size() == 16)
454    return false;
455
456  if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
457    return DeadPHICycle(PU, PotentiallyDeadPHIs);
458
459  return false;
460}
461
462/// PHIsEqualValue - Return true if this phi node is always equal to
463/// NonPhiInVal.  This happens with mutually cyclic phi nodes like:
464///   z = some value; x = phi (y, z); y = phi (x, z)
465static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
466                           SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) {
467  // See if we already saw this PHI node.
468  if (!ValueEqualPHIs.insert(PN))
469    return true;
470
471  // Don't scan crazily complex things.
472  if (ValueEqualPHIs.size() == 16)
473    return false;
474
475  // Scan the operands to see if they are either phi nodes or are equal to
476  // the value.
477  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
478    Value *Op = PN->getIncomingValue(i);
479    if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
480      if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
481        return false;
482    } else if (Op != NonPhiInVal)
483      return false;
484  }
485
486  return true;
487}
488
489
490namespace {
491struct PHIUsageRecord {
492  unsigned PHIId;     // The ID # of the PHI (something determinstic to sort on)
493  unsigned Shift;     // The amount shifted.
494  Instruction *Inst;  // The trunc instruction.
495
496  PHIUsageRecord(unsigned pn, unsigned Sh, Instruction *User)
497    : PHIId(pn), Shift(Sh), Inst(User) {}
498
499  bool operator<(const PHIUsageRecord &RHS) const {
500    if (PHIId < RHS.PHIId) return true;
501    if (PHIId > RHS.PHIId) return false;
502    if (Shift < RHS.Shift) return true;
503    if (Shift > RHS.Shift) return false;
504    return Inst->getType()->getPrimitiveSizeInBits() <
505           RHS.Inst->getType()->getPrimitiveSizeInBits();
506  }
507};
508
509struct LoweredPHIRecord {
510  PHINode *PN;        // The PHI that was lowered.
511  unsigned Shift;     // The amount shifted.
512  unsigned Width;     // The width extracted.
513
514  LoweredPHIRecord(PHINode *pn, unsigned Sh, const Type *Ty)
515    : PN(pn), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {}
516
517  // Ctor form used by DenseMap.
518  LoweredPHIRecord(PHINode *pn, unsigned Sh)
519    : PN(pn), Shift(Sh), Width(0) {}
520};
521}
522
523namespace llvm {
524  template<>
525  struct DenseMapInfo<LoweredPHIRecord> {
526    static inline LoweredPHIRecord getEmptyKey() {
527      return LoweredPHIRecord(0, 0);
528    }
529    static inline LoweredPHIRecord getTombstoneKey() {
530      return LoweredPHIRecord(0, 1);
531    }
532    static unsigned getHashValue(const LoweredPHIRecord &Val) {
533      return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^
534             (Val.Width>>3);
535    }
536    static bool isEqual(const LoweredPHIRecord &LHS,
537                        const LoweredPHIRecord &RHS) {
538      return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift &&
539             LHS.Width == RHS.Width;
540    }
541  };
542  template <>
543  struct isPodLike<LoweredPHIRecord> { static const bool value = true; };
544}
545
546
547/// SliceUpIllegalIntegerPHI - This is an integer PHI and we know that it has an
548/// illegal type: see if it is only used by trunc or trunc(lshr) operations.  If
549/// so, we split the PHI into the various pieces being extracted.  This sort of
550/// thing is introduced when SROA promotes an aggregate to large integer values.
551///
552/// TODO: The user of the trunc may be an bitcast to float/double/vector or an
553/// inttoptr.  We should produce new PHIs in the right type.
554///
555Instruction *InstCombiner::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) {
556  // PHIUsers - Keep track of all of the truncated values extracted from a set
557  // of PHIs, along with their offset.  These are the things we want to rewrite.
558  SmallVector<PHIUsageRecord, 16> PHIUsers;
559
560  // PHIs are often mutually cyclic, so we keep track of a whole set of PHI
561  // nodes which are extracted from. PHIsToSlice is a set we use to avoid
562  // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to
563  // check the uses of (to ensure they are all extracts).
564  SmallVector<PHINode*, 8> PHIsToSlice;
565  SmallPtrSet<PHINode*, 8> PHIsInspected;
566
567  PHIsToSlice.push_back(&FirstPhi);
568  PHIsInspected.insert(&FirstPhi);
569
570  for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) {
571    PHINode *PN = PHIsToSlice[PHIId];
572
573    // Scan the input list of the PHI.  If any input is an invoke, and if the
574    // input is defined in the predecessor, then we won't be split the critical
575    // edge which is required to insert a truncate.  Because of this, we have to
576    // bail out.
577    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
578      InvokeInst *II = dyn_cast<InvokeInst>(PN->getIncomingValue(i));
579      if (II == 0) continue;
580      if (II->getParent() != PN->getIncomingBlock(i))
581        continue;
582
583      // If we have a phi, and if it's directly in the predecessor, then we have
584      // a critical edge where we need to put the truncate.  Since we can't
585      // split the edge in instcombine, we have to bail out.
586      return 0;
587    }
588
589
590    for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
591         UI != E; ++UI) {
592      Instruction *User = cast<Instruction>(*UI);
593
594      // If the user is a PHI, inspect its uses recursively.
595      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
596        if (PHIsInspected.insert(UserPN))
597          PHIsToSlice.push_back(UserPN);
598        continue;
599      }
600
601      // Truncates are always ok.
602      if (isa<TruncInst>(User)) {
603        PHIUsers.push_back(PHIUsageRecord(PHIId, 0, User));
604        continue;
605      }
606
607      // Otherwise it must be a lshr which can only be used by one trunc.
608      if (User->getOpcode() != Instruction::LShr ||
609          !User->hasOneUse() || !isa<TruncInst>(User->use_back()) ||
610          !isa<ConstantInt>(User->getOperand(1)))
611        return 0;
612
613      unsigned Shift = cast<ConstantInt>(User->getOperand(1))->getZExtValue();
614      PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, User->use_back()));
615    }
616  }
617
618  // If we have no users, they must be all self uses, just nuke the PHI.
619  if (PHIUsers.empty())
620    return ReplaceInstUsesWith(FirstPhi, UndefValue::get(FirstPhi.getType()));
621
622  // If this phi node is transformable, create new PHIs for all the pieces
623  // extracted out of it.  First, sort the users by their offset and size.
624  array_pod_sort(PHIUsers.begin(), PHIUsers.end());
625
626  DEBUG(errs() << "SLICING UP PHI: " << FirstPhi << '\n';
627            for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i)
628              errs() << "AND USER PHI #" << i << ": " << *PHIsToSlice[i] <<'\n';
629        );
630
631  // PredValues - This is a temporary used when rewriting PHI nodes.  It is
632  // hoisted out here to avoid construction/destruction thrashing.
633  DenseMap<BasicBlock*, Value*> PredValues;
634
635  // ExtractedVals - Each new PHI we introduce is saved here so we don't
636  // introduce redundant PHIs.
637  DenseMap<LoweredPHIRecord, PHINode*> ExtractedVals;
638
639  for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) {
640    unsigned PHIId = PHIUsers[UserI].PHIId;
641    PHINode *PN = PHIsToSlice[PHIId];
642    unsigned Offset = PHIUsers[UserI].Shift;
643    const Type *Ty = PHIUsers[UserI].Inst->getType();
644
645    PHINode *EltPHI;
646
647    // If we've already lowered a user like this, reuse the previously lowered
648    // value.
649    if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == 0) {
650
651      // Otherwise, Create the new PHI node for this user.
652      EltPHI = PHINode::Create(Ty, PN->getName()+".off"+Twine(Offset), PN);
653      assert(EltPHI->getType() != PN->getType() &&
654             "Truncate didn't shrink phi?");
655
656      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
657        BasicBlock *Pred = PN->getIncomingBlock(i);
658        Value *&PredVal = PredValues[Pred];
659
660        // If we already have a value for this predecessor, reuse it.
661        if (PredVal) {
662          EltPHI->addIncoming(PredVal, Pred);
663          continue;
664        }
665
666        // Handle the PHI self-reuse case.
667        Value *InVal = PN->getIncomingValue(i);
668        if (InVal == PN) {
669          PredVal = EltPHI;
670          EltPHI->addIncoming(PredVal, Pred);
671          continue;
672        }
673
674        if (PHINode *InPHI = dyn_cast<PHINode>(PN)) {
675          // If the incoming value was a PHI, and if it was one of the PHIs we
676          // already rewrote it, just use the lowered value.
677          if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) {
678            PredVal = Res;
679            EltPHI->addIncoming(PredVal, Pred);
680            continue;
681          }
682        }
683
684        // Otherwise, do an extract in the predecessor.
685        Builder->SetInsertPoint(Pred, Pred->getTerminator());
686        Value *Res = InVal;
687        if (Offset)
688          Res = Builder->CreateLShr(Res, ConstantInt::get(InVal->getType(),
689                                                          Offset), "extract");
690        Res = Builder->CreateTrunc(Res, Ty, "extract.t");
691        PredVal = Res;
692        EltPHI->addIncoming(Res, Pred);
693
694        // If the incoming value was a PHI, and if it was one of the PHIs we are
695        // rewriting, we will ultimately delete the code we inserted.  This
696        // means we need to revisit that PHI to make sure we extract out the
697        // needed piece.
698        if (PHINode *OldInVal = dyn_cast<PHINode>(PN->getIncomingValue(i)))
699          if (PHIsInspected.count(OldInVal)) {
700            unsigned RefPHIId = std::find(PHIsToSlice.begin(),PHIsToSlice.end(),
701                                          OldInVal)-PHIsToSlice.begin();
702            PHIUsers.push_back(PHIUsageRecord(RefPHIId, Offset,
703                                              cast<Instruction>(Res)));
704            ++UserE;
705          }
706      }
707      PredValues.clear();
708
709      DEBUG(errs() << "  Made element PHI for offset " << Offset << ": "
710                   << *EltPHI << '\n');
711      ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI;
712    }
713
714    // Replace the use of this piece with the PHI node.
715    ReplaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI);
716  }
717
718  // Replace all the remaining uses of the PHI nodes (self uses and the lshrs)
719  // with undefs.
720  Value *Undef = UndefValue::get(FirstPhi.getType());
721  for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i)
722    ReplaceInstUsesWith(*PHIsToSlice[i], Undef);
723  return ReplaceInstUsesWith(FirstPhi, Undef);
724}
725
726// PHINode simplification
727//
728Instruction *InstCombiner::visitPHINode(PHINode &PN) {
729  // If LCSSA is around, don't mess with Phi nodes
730  if (MustPreserveLCSSA) return 0;
731
732  if (Value *V = PN.hasConstantValue())
733    return ReplaceInstUsesWith(PN, V);
734
735  // If all PHI operands are the same operation, pull them through the PHI,
736  // reducing code size.
737  if (isa<Instruction>(PN.getIncomingValue(0)) &&
738      isa<Instruction>(PN.getIncomingValue(1)) &&
739      cast<Instruction>(PN.getIncomingValue(0))->getOpcode() ==
740      cast<Instruction>(PN.getIncomingValue(1))->getOpcode() &&
741      // FIXME: The hasOneUse check will fail for PHIs that use the value more
742      // than themselves more than once.
743      PN.getIncomingValue(0)->hasOneUse())
744    if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
745      return Result;
746
747  // If this is a trivial cycle in the PHI node graph, remove it.  Basically, if
748  // this PHI only has a single use (a PHI), and if that PHI only has one use (a
749  // PHI)... break the cycle.
750  if (PN.hasOneUse()) {
751    Instruction *PHIUser = cast<Instruction>(PN.use_back());
752    if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
753      SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
754      PotentiallyDeadPHIs.insert(&PN);
755      if (DeadPHICycle(PU, PotentiallyDeadPHIs))
756        return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
757    }
758
759    // If this phi has a single use, and if that use just computes a value for
760    // the next iteration of a loop, delete the phi.  This occurs with unused
761    // induction variables, e.g. "for (int j = 0; ; ++j);".  Detecting this
762    // common case here is good because the only other things that catch this
763    // are induction variable analysis (sometimes) and ADCE, which is only run
764    // late.
765    if (PHIUser->hasOneUse() &&
766        (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
767        PHIUser->use_back() == &PN) {
768      return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
769    }
770  }
771
772  // We sometimes end up with phi cycles that non-obviously end up being the
773  // same value, for example:
774  //   z = some value; x = phi (y, z); y = phi (x, z)
775  // where the phi nodes don't necessarily need to be in the same block.  Do a
776  // quick check to see if the PHI node only contains a single non-phi value, if
777  // so, scan to see if the phi cycle is actually equal to that value.
778  {
779    unsigned InValNo = 0, NumOperandVals = PN.getNumIncomingValues();
780    // Scan for the first non-phi operand.
781    while (InValNo != NumOperandVals &&
782           isa<PHINode>(PN.getIncomingValue(InValNo)))
783      ++InValNo;
784
785    if (InValNo != NumOperandVals) {
786      Value *NonPhiInVal = PN.getOperand(InValNo);
787
788      // Scan the rest of the operands to see if there are any conflicts, if so
789      // there is no need to recursively scan other phis.
790      for (++InValNo; InValNo != NumOperandVals; ++InValNo) {
791        Value *OpVal = PN.getIncomingValue(InValNo);
792        if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
793          break;
794      }
795
796      // If we scanned over all operands, then we have one unique value plus
797      // phi values.  Scan PHI nodes to see if they all merge in each other or
798      // the value.
799      if (InValNo == NumOperandVals) {
800        SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
801        if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
802          return ReplaceInstUsesWith(PN, NonPhiInVal);
803      }
804    }
805  }
806
807  // If there are multiple PHIs, sort their operands so that they all list
808  // the blocks in the same order. This will help identical PHIs be eliminated
809  // by other passes. Other passes shouldn't depend on this for correctness
810  // however.
811  PHINode *FirstPN = cast<PHINode>(PN.getParent()->begin());
812  if (&PN != FirstPN)
813    for (unsigned i = 0, e = FirstPN->getNumIncomingValues(); i != e; ++i) {
814      BasicBlock *BBA = PN.getIncomingBlock(i);
815      BasicBlock *BBB = FirstPN->getIncomingBlock(i);
816      if (BBA != BBB) {
817        Value *VA = PN.getIncomingValue(i);
818        unsigned j = PN.getBasicBlockIndex(BBB);
819        Value *VB = PN.getIncomingValue(j);
820        PN.setIncomingBlock(i, BBB);
821        PN.setIncomingValue(i, VB);
822        PN.setIncomingBlock(j, BBA);
823        PN.setIncomingValue(j, VA);
824        // NOTE: Instcombine normally would want us to "return &PN" if we
825        // modified any of the operands of an instruction.  However, since we
826        // aren't adding or removing uses (just rearranging them) we don't do
827        // this in this case.
828      }
829    }
830
831  // If this is an integer PHI and we know that it has an illegal type, see if
832  // it is only used by trunc or trunc(lshr) operations.  If so, we split the
833  // PHI into the various pieces being extracted.  This sort of thing is
834  // introduced when SROA promotes an aggregate to a single large integer type.
835  if (isa<IntegerType>(PN.getType()) && TD &&
836      !TD->isLegalInteger(PN.getType()->getPrimitiveSizeInBits()))
837    if (Instruction *Res = SliceUpIllegalIntegerPHI(PN))
838      return Res;
839
840  return 0;
841}
842