DataFlowSanitizer.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===-- DataFlowSanitizer.cpp - dynamic data flow analysis ----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9/// \file 10/// This file is a part of DataFlowSanitizer, a generalised dynamic data flow 11/// analysis. 12/// 13/// Unlike other Sanitizer tools, this tool is not designed to detect a specific 14/// class of bugs on its own. Instead, it provides a generic dynamic data flow 15/// analysis framework to be used by clients to help detect application-specific 16/// issues within their own code. 17/// 18/// The analysis is based on automatic propagation of data flow labels (also 19/// known as taint labels) through a program as it performs computation. Each 20/// byte of application memory is backed by two bytes of shadow memory which 21/// hold the label. On Linux/x86_64, memory is laid out as follows: 22/// 23/// +--------------------+ 0x800000000000 (top of memory) 24/// | application memory | 25/// +--------------------+ 0x700000008000 (kAppAddr) 26/// | | 27/// | unused | 28/// | | 29/// +--------------------+ 0x200200000000 (kUnusedAddr) 30/// | union table | 31/// +--------------------+ 0x200000000000 (kUnionTableAddr) 32/// | shadow memory | 33/// +--------------------+ 0x000000010000 (kShadowAddr) 34/// | reserved by kernel | 35/// +--------------------+ 0x000000000000 36/// 37/// To derive a shadow memory address from an application memory address, 38/// bits 44-46 are cleared to bring the address into the range 39/// [0x000000008000,0x100000000000). Then the address is shifted left by 1 to 40/// account for the double byte representation of shadow labels and move the 41/// address into the shadow memory range. See the function 42/// DataFlowSanitizer::getShadowAddress below. 43/// 44/// For more information, please refer to the design document: 45/// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html 46 47#include "llvm/Transforms/Instrumentation.h" 48#include "llvm/ADT/DenseMap.h" 49#include "llvm/ADT/DenseSet.h" 50#include "llvm/ADT/DepthFirstIterator.h" 51#include "llvm/ADT/StringExtras.h" 52#include "llvm/Analysis/ValueTracking.h" 53#include "llvm/IR/IRBuilder.h" 54#include "llvm/IR/InlineAsm.h" 55#include "llvm/IR/InstVisitor.h" 56#include "llvm/IR/LLVMContext.h" 57#include "llvm/IR/MDBuilder.h" 58#include "llvm/IR/Type.h" 59#include "llvm/IR/Value.h" 60#include "llvm/Pass.h" 61#include "llvm/Support/CommandLine.h" 62#include "llvm/Transforms/Utils/BasicBlockUtils.h" 63#include "llvm/Transforms/Utils/Local.h" 64#include "llvm/Transforms/Utils/SpecialCaseList.h" 65#include <iterator> 66 67using namespace llvm; 68 69// The -dfsan-preserve-alignment flag controls whether this pass assumes that 70// alignment requirements provided by the input IR are correct. For example, 71// if the input IR contains a load with alignment 8, this flag will cause 72// the shadow load to have alignment 16. This flag is disabled by default as 73// we have unfortunately encountered too much code (including Clang itself; 74// see PR14291) which performs misaligned access. 75static cl::opt<bool> ClPreserveAlignment( 76 "dfsan-preserve-alignment", 77 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden, 78 cl::init(false)); 79 80// The ABI list file controls how shadow parameters are passed. The pass treats 81// every function labelled "uninstrumented" in the ABI list file as conforming 82// to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains 83// additional annotations for those functions, a call to one of those functions 84// will produce a warning message, as the labelling behaviour of the function is 85// unknown. The other supported annotations are "functional" and "discard", 86// which are described below under DataFlowSanitizer::WrapperKind. 87static cl::opt<std::string> ClABIListFile( 88 "dfsan-abilist", 89 cl::desc("File listing native ABI functions and how the pass treats them"), 90 cl::Hidden); 91 92// Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented 93// functions (see DataFlowSanitizer::InstrumentedABI below). 94static cl::opt<bool> ClArgsABI( 95 "dfsan-args-abi", 96 cl::desc("Use the argument ABI rather than the TLS ABI"), 97 cl::Hidden); 98 99// Controls whether the pass includes or ignores the labels of pointers in load 100// instructions. 101static cl::opt<bool> ClCombinePointerLabelsOnLoad( 102 "dfsan-combine-pointer-labels-on-load", 103 cl::desc("Combine the label of the pointer with the label of the data when " 104 "loading from memory."), 105 cl::Hidden, cl::init(true)); 106 107// Controls whether the pass includes or ignores the labels of pointers in 108// stores instructions. 109static cl::opt<bool> ClCombinePointerLabelsOnStore( 110 "dfsan-combine-pointer-labels-on-store", 111 cl::desc("Combine the label of the pointer with the label of the data when " 112 "storing in memory."), 113 cl::Hidden, cl::init(false)); 114 115static cl::opt<bool> ClDebugNonzeroLabels( 116 "dfsan-debug-nonzero-labels", 117 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, " 118 "load or return with a nonzero label"), 119 cl::Hidden); 120 121namespace { 122 123class DataFlowSanitizer : public ModulePass { 124 friend struct DFSanFunction; 125 friend class DFSanVisitor; 126 127 enum { 128 ShadowWidth = 16 129 }; 130 131 /// Which ABI should be used for instrumented functions? 132 enum InstrumentedABI { 133 /// Argument and return value labels are passed through additional 134 /// arguments and by modifying the return type. 135 IA_Args, 136 137 /// Argument and return value labels are passed through TLS variables 138 /// __dfsan_arg_tls and __dfsan_retval_tls. 139 IA_TLS 140 }; 141 142 /// How should calls to uninstrumented functions be handled? 143 enum WrapperKind { 144 /// This function is present in an uninstrumented form but we don't know 145 /// how it should be handled. Print a warning and call the function anyway. 146 /// Don't label the return value. 147 WK_Warning, 148 149 /// This function does not write to (user-accessible) memory, and its return 150 /// value is unlabelled. 151 WK_Discard, 152 153 /// This function does not write to (user-accessible) memory, and the label 154 /// of its return value is the union of the label of its arguments. 155 WK_Functional, 156 157 /// Instead of calling the function, a custom wrapper __dfsw_F is called, 158 /// where F is the name of the function. This function may wrap the 159 /// original function or provide its own implementation. This is similar to 160 /// the IA_Args ABI, except that IA_Args uses a struct return type to 161 /// pass the return value shadow in a register, while WK_Custom uses an 162 /// extra pointer argument to return the shadow. This allows the wrapped 163 /// form of the function type to be expressed in C. 164 WK_Custom 165 }; 166 167 const DataLayout *DL; 168 Module *Mod; 169 LLVMContext *Ctx; 170 IntegerType *ShadowTy; 171 PointerType *ShadowPtrTy; 172 IntegerType *IntptrTy; 173 ConstantInt *ZeroShadow; 174 ConstantInt *ShadowPtrMask; 175 ConstantInt *ShadowPtrMul; 176 Constant *ArgTLS; 177 Constant *RetvalTLS; 178 void *(*GetArgTLSPtr)(); 179 void *(*GetRetvalTLSPtr)(); 180 Constant *GetArgTLS; 181 Constant *GetRetvalTLS; 182 FunctionType *DFSanUnionFnTy; 183 FunctionType *DFSanUnionLoadFnTy; 184 FunctionType *DFSanUnimplementedFnTy; 185 FunctionType *DFSanSetLabelFnTy; 186 FunctionType *DFSanNonzeroLabelFnTy; 187 Constant *DFSanUnionFn; 188 Constant *DFSanUnionLoadFn; 189 Constant *DFSanUnimplementedFn; 190 Constant *DFSanSetLabelFn; 191 Constant *DFSanNonzeroLabelFn; 192 MDNode *ColdCallWeights; 193 std::unique_ptr<SpecialCaseList> ABIList; 194 DenseMap<Value *, Function *> UnwrappedFnMap; 195 AttributeSet ReadOnlyNoneAttrs; 196 197 Value *getShadowAddress(Value *Addr, Instruction *Pos); 198 Value *combineShadows(Value *V1, Value *V2, Instruction *Pos); 199 bool isInstrumented(const Function *F); 200 bool isInstrumented(const GlobalAlias *GA); 201 FunctionType *getArgsFunctionType(FunctionType *T); 202 FunctionType *getTrampolineFunctionType(FunctionType *T); 203 FunctionType *getCustomFunctionType(FunctionType *T); 204 InstrumentedABI getInstrumentedABI(); 205 WrapperKind getWrapperKind(Function *F); 206 void addGlobalNamePrefix(GlobalValue *GV); 207 Function *buildWrapperFunction(Function *F, StringRef NewFName, 208 GlobalValue::LinkageTypes NewFLink, 209 FunctionType *NewFT); 210 Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName); 211 212 public: 213 DataFlowSanitizer(StringRef ABIListFile = StringRef(), 214 void *(*getArgTLS)() = 0, void *(*getRetValTLS)() = 0); 215 static char ID; 216 bool doInitialization(Module &M) override; 217 bool runOnModule(Module &M) override; 218}; 219 220struct DFSanFunction { 221 DataFlowSanitizer &DFS; 222 Function *F; 223 DataFlowSanitizer::InstrumentedABI IA; 224 bool IsNativeABI; 225 Value *ArgTLSPtr; 226 Value *RetvalTLSPtr; 227 AllocaInst *LabelReturnAlloca; 228 DenseMap<Value *, Value *> ValShadowMap; 229 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap; 230 std::vector<std::pair<PHINode *, PHINode *> > PHIFixups; 231 DenseSet<Instruction *> SkipInsts; 232 DenseSet<Value *> NonZeroChecks; 233 234 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI) 235 : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()), 236 IsNativeABI(IsNativeABI), ArgTLSPtr(0), RetvalTLSPtr(0), 237 LabelReturnAlloca(0) {} 238 Value *getArgTLSPtr(); 239 Value *getArgTLS(unsigned Index, Instruction *Pos); 240 Value *getRetvalTLS(); 241 Value *getShadow(Value *V); 242 void setShadow(Instruction *I, Value *Shadow); 243 Value *combineOperandShadows(Instruction *Inst); 244 Value *loadShadow(Value *ShadowAddr, uint64_t Size, uint64_t Align, 245 Instruction *Pos); 246 void storeShadow(Value *Addr, uint64_t Size, uint64_t Align, Value *Shadow, 247 Instruction *Pos); 248}; 249 250class DFSanVisitor : public InstVisitor<DFSanVisitor> { 251 public: 252 DFSanFunction &DFSF; 253 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {} 254 255 void visitOperandShadowInst(Instruction &I); 256 257 void visitBinaryOperator(BinaryOperator &BO); 258 void visitCastInst(CastInst &CI); 259 void visitCmpInst(CmpInst &CI); 260 void visitGetElementPtrInst(GetElementPtrInst &GEPI); 261 void visitLoadInst(LoadInst &LI); 262 void visitStoreInst(StoreInst &SI); 263 void visitReturnInst(ReturnInst &RI); 264 void visitCallSite(CallSite CS); 265 void visitPHINode(PHINode &PN); 266 void visitExtractElementInst(ExtractElementInst &I); 267 void visitInsertElementInst(InsertElementInst &I); 268 void visitShuffleVectorInst(ShuffleVectorInst &I); 269 void visitExtractValueInst(ExtractValueInst &I); 270 void visitInsertValueInst(InsertValueInst &I); 271 void visitAllocaInst(AllocaInst &I); 272 void visitSelectInst(SelectInst &I); 273 void visitMemSetInst(MemSetInst &I); 274 void visitMemTransferInst(MemTransferInst &I); 275}; 276 277} 278 279char DataFlowSanitizer::ID; 280INITIALIZE_PASS(DataFlowSanitizer, "dfsan", 281 "DataFlowSanitizer: dynamic data flow analysis.", false, false) 282 283ModulePass *llvm::createDataFlowSanitizerPass(StringRef ABIListFile, 284 void *(*getArgTLS)(), 285 void *(*getRetValTLS)()) { 286 return new DataFlowSanitizer(ABIListFile, getArgTLS, getRetValTLS); 287} 288 289DataFlowSanitizer::DataFlowSanitizer(StringRef ABIListFile, 290 void *(*getArgTLS)(), 291 void *(*getRetValTLS)()) 292 : ModulePass(ID), GetArgTLSPtr(getArgTLS), GetRetvalTLSPtr(getRetValTLS), 293 ABIList(SpecialCaseList::createOrDie(ABIListFile.empty() ? ClABIListFile 294 : ABIListFile)) { 295} 296 297FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) { 298 llvm::SmallVector<Type *, 4> ArgTypes; 299 std::copy(T->param_begin(), T->param_end(), std::back_inserter(ArgTypes)); 300 for (unsigned i = 0, e = T->getNumParams(); i != e; ++i) 301 ArgTypes.push_back(ShadowTy); 302 if (T->isVarArg()) 303 ArgTypes.push_back(ShadowPtrTy); 304 Type *RetType = T->getReturnType(); 305 if (!RetType->isVoidTy()) 306 RetType = StructType::get(RetType, ShadowTy, (Type *)0); 307 return FunctionType::get(RetType, ArgTypes, T->isVarArg()); 308} 309 310FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) { 311 assert(!T->isVarArg()); 312 llvm::SmallVector<Type *, 4> ArgTypes; 313 ArgTypes.push_back(T->getPointerTo()); 314 std::copy(T->param_begin(), T->param_end(), std::back_inserter(ArgTypes)); 315 for (unsigned i = 0, e = T->getNumParams(); i != e; ++i) 316 ArgTypes.push_back(ShadowTy); 317 Type *RetType = T->getReturnType(); 318 if (!RetType->isVoidTy()) 319 ArgTypes.push_back(ShadowPtrTy); 320 return FunctionType::get(T->getReturnType(), ArgTypes, false); 321} 322 323FunctionType *DataFlowSanitizer::getCustomFunctionType(FunctionType *T) { 324 assert(!T->isVarArg()); 325 llvm::SmallVector<Type *, 4> ArgTypes; 326 for (FunctionType::param_iterator i = T->param_begin(), e = T->param_end(); 327 i != e; ++i) { 328 FunctionType *FT; 329 if (isa<PointerType>(*i) && (FT = dyn_cast<FunctionType>(cast<PointerType>( 330 *i)->getElementType()))) { 331 ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo()); 332 ArgTypes.push_back(Type::getInt8PtrTy(*Ctx)); 333 } else { 334 ArgTypes.push_back(*i); 335 } 336 } 337 for (unsigned i = 0, e = T->getNumParams(); i != e; ++i) 338 ArgTypes.push_back(ShadowTy); 339 Type *RetType = T->getReturnType(); 340 if (!RetType->isVoidTy()) 341 ArgTypes.push_back(ShadowPtrTy); 342 return FunctionType::get(T->getReturnType(), ArgTypes, false); 343} 344 345bool DataFlowSanitizer::doInitialization(Module &M) { 346 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 347 if (!DLP) 348 return false; 349 DL = &DLP->getDataLayout(); 350 351 Mod = &M; 352 Ctx = &M.getContext(); 353 ShadowTy = IntegerType::get(*Ctx, ShadowWidth); 354 ShadowPtrTy = PointerType::getUnqual(ShadowTy); 355 IntptrTy = DL->getIntPtrType(*Ctx); 356 ZeroShadow = ConstantInt::getSigned(ShadowTy, 0); 357 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL); 358 ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidth / 8); 359 360 Type *DFSanUnionArgs[2] = { ShadowTy, ShadowTy }; 361 DFSanUnionFnTy = 362 FunctionType::get(ShadowTy, DFSanUnionArgs, /*isVarArg=*/ false); 363 Type *DFSanUnionLoadArgs[2] = { ShadowPtrTy, IntptrTy }; 364 DFSanUnionLoadFnTy = 365 FunctionType::get(ShadowTy, DFSanUnionLoadArgs, /*isVarArg=*/ false); 366 DFSanUnimplementedFnTy = FunctionType::get( 367 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 368 Type *DFSanSetLabelArgs[3] = { ShadowTy, Type::getInt8PtrTy(*Ctx), IntptrTy }; 369 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), 370 DFSanSetLabelArgs, /*isVarArg=*/false); 371 DFSanNonzeroLabelFnTy = FunctionType::get( 372 Type::getVoidTy(*Ctx), ArrayRef<Type *>(), /*isVarArg=*/false); 373 374 if (GetArgTLSPtr) { 375 Type *ArgTLSTy = ArrayType::get(ShadowTy, 64); 376 ArgTLS = 0; 377 GetArgTLS = ConstantExpr::getIntToPtr( 378 ConstantInt::get(IntptrTy, uintptr_t(GetArgTLSPtr)), 379 PointerType::getUnqual( 380 FunctionType::get(PointerType::getUnqual(ArgTLSTy), (Type *)0))); 381 } 382 if (GetRetvalTLSPtr) { 383 RetvalTLS = 0; 384 GetRetvalTLS = ConstantExpr::getIntToPtr( 385 ConstantInt::get(IntptrTy, uintptr_t(GetRetvalTLSPtr)), 386 PointerType::getUnqual( 387 FunctionType::get(PointerType::getUnqual(ShadowTy), (Type *)0))); 388 } 389 390 ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 391 return true; 392} 393 394bool DataFlowSanitizer::isInstrumented(const Function *F) { 395 return !ABIList->isIn(*F, "uninstrumented"); 396} 397 398bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) { 399 return !ABIList->isIn(*GA, "uninstrumented"); 400} 401 402DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() { 403 return ClArgsABI ? IA_Args : IA_TLS; 404} 405 406DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) { 407 if (ABIList->isIn(*F, "functional")) 408 return WK_Functional; 409 if (ABIList->isIn(*F, "discard")) 410 return WK_Discard; 411 if (ABIList->isIn(*F, "custom")) 412 return WK_Custom; 413 414 return WK_Warning; 415} 416 417void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) { 418 std::string GVName = GV->getName(), Prefix = "dfs$"; 419 GV->setName(Prefix + GVName); 420 421 // Try to change the name of the function in module inline asm. We only do 422 // this for specific asm directives, currently only ".symver", to try to avoid 423 // corrupting asm which happens to contain the symbol name as a substring. 424 // Note that the substitution for .symver assumes that the versioned symbol 425 // also has an instrumented name. 426 std::string Asm = GV->getParent()->getModuleInlineAsm(); 427 std::string SearchStr = ".symver " + GVName + ","; 428 size_t Pos = Asm.find(SearchStr); 429 if (Pos != std::string::npos) { 430 Asm.replace(Pos, SearchStr.size(), 431 ".symver " + Prefix + GVName + "," + Prefix); 432 GV->getParent()->setModuleInlineAsm(Asm); 433 } 434} 435 436Function * 437DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName, 438 GlobalValue::LinkageTypes NewFLink, 439 FunctionType *NewFT) { 440 FunctionType *FT = F->getFunctionType(); 441 Function *NewF = Function::Create(NewFT, NewFLink, NewFName, 442 F->getParent()); 443 NewF->copyAttributesFrom(F); 444 NewF->removeAttributes( 445 AttributeSet::ReturnIndex, 446 AttributeFuncs::typeIncompatible(NewFT->getReturnType(), 447 AttributeSet::ReturnIndex)); 448 449 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF); 450 std::vector<Value *> Args; 451 unsigned n = FT->getNumParams(); 452 for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n) 453 Args.push_back(&*ai); 454 CallInst *CI = CallInst::Create(F, Args, "", BB); 455 if (FT->getReturnType()->isVoidTy()) 456 ReturnInst::Create(*Ctx, BB); 457 else 458 ReturnInst::Create(*Ctx, CI, BB); 459 460 return NewF; 461} 462 463Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT, 464 StringRef FName) { 465 FunctionType *FTT = getTrampolineFunctionType(FT); 466 Constant *C = Mod->getOrInsertFunction(FName, FTT); 467 Function *F = dyn_cast<Function>(C); 468 if (F && F->isDeclaration()) { 469 F->setLinkage(GlobalValue::LinkOnceODRLinkage); 470 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F); 471 std::vector<Value *> Args; 472 Function::arg_iterator AI = F->arg_begin(); ++AI; 473 for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N) 474 Args.push_back(&*AI); 475 CallInst *CI = 476 CallInst::Create(&F->getArgumentList().front(), Args, "", BB); 477 ReturnInst *RI; 478 if (FT->getReturnType()->isVoidTy()) 479 RI = ReturnInst::Create(*Ctx, BB); 480 else 481 RI = ReturnInst::Create(*Ctx, CI, BB); 482 483 DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true); 484 Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; ++ValAI; 485 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N) 486 DFSF.ValShadowMap[ValAI] = ShadowAI; 487 DFSanVisitor(DFSF).visitCallInst(*CI); 488 if (!FT->getReturnType()->isVoidTy()) 489 new StoreInst(DFSF.getShadow(RI->getReturnValue()), 490 &F->getArgumentList().back(), RI); 491 } 492 493 return C; 494} 495 496bool DataFlowSanitizer::runOnModule(Module &M) { 497 if (!DL) 498 return false; 499 500 if (ABIList->isIn(M, "skip")) 501 return false; 502 503 if (!GetArgTLSPtr) { 504 Type *ArgTLSTy = ArrayType::get(ShadowTy, 64); 505 ArgTLS = Mod->getOrInsertGlobal("__dfsan_arg_tls", ArgTLSTy); 506 if (GlobalVariable *G = dyn_cast<GlobalVariable>(ArgTLS)) 507 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 508 } 509 if (!GetRetvalTLSPtr) { 510 RetvalTLS = Mod->getOrInsertGlobal("__dfsan_retval_tls", ShadowTy); 511 if (GlobalVariable *G = dyn_cast<GlobalVariable>(RetvalTLS)) 512 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 513 } 514 515 DFSanUnionFn = Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy); 516 if (Function *F = dyn_cast<Function>(DFSanUnionFn)) { 517 F->addAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone); 518 F->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt); 519 F->addAttribute(1, Attribute::ZExt); 520 F->addAttribute(2, Attribute::ZExt); 521 } 522 DFSanUnionLoadFn = 523 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy); 524 if (Function *F = dyn_cast<Function>(DFSanUnionLoadFn)) { 525 F->addAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly); 526 F->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt); 527 } 528 DFSanUnimplementedFn = 529 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy); 530 DFSanSetLabelFn = 531 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy); 532 if (Function *F = dyn_cast<Function>(DFSanSetLabelFn)) { 533 F->addAttribute(1, Attribute::ZExt); 534 } 535 DFSanNonzeroLabelFn = 536 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy); 537 538 std::vector<Function *> FnsToInstrument; 539 llvm::SmallPtrSet<Function *, 2> FnsWithNativeABI; 540 for (Module::iterator i = M.begin(), e = M.end(); i != e; ++i) { 541 if (!i->isIntrinsic() && 542 i != DFSanUnionFn && 543 i != DFSanUnionLoadFn && 544 i != DFSanUnimplementedFn && 545 i != DFSanSetLabelFn && 546 i != DFSanNonzeroLabelFn) 547 FnsToInstrument.push_back(&*i); 548 } 549 550 // Give function aliases prefixes when necessary, and build wrappers where the 551 // instrumentedness is inconsistent. 552 for (Module::alias_iterator i = M.alias_begin(), e = M.alias_end(); i != e;) { 553 GlobalAlias *GA = &*i; 554 ++i; 555 // Don't stop on weak. We assume people aren't playing games with the 556 // instrumentedness of overridden weak aliases. 557 if (Function *F = dyn_cast<Function>(GA->getAliasedGlobal())) { 558 bool GAInst = isInstrumented(GA), FInst = isInstrumented(F); 559 if (GAInst && FInst) { 560 addGlobalNamePrefix(GA); 561 } else if (GAInst != FInst) { 562 // Non-instrumented alias of an instrumented function, or vice versa. 563 // Replace the alias with a native-ABI wrapper of the aliasee. The pass 564 // below will take care of instrumenting it. 565 Function *NewF = 566 buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType()); 567 GA->replaceAllUsesWith(NewF); 568 NewF->takeName(GA); 569 GA->eraseFromParent(); 570 FnsToInstrument.push_back(NewF); 571 } 572 } 573 } 574 575 AttrBuilder B; 576 B.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone); 577 ReadOnlyNoneAttrs = AttributeSet::get(*Ctx, AttributeSet::FunctionIndex, B); 578 579 // First, change the ABI of every function in the module. ABI-listed 580 // functions keep their original ABI and get a wrapper function. 581 for (std::vector<Function *>::iterator i = FnsToInstrument.begin(), 582 e = FnsToInstrument.end(); 583 i != e; ++i) { 584 Function &F = **i; 585 FunctionType *FT = F.getFunctionType(); 586 587 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() && 588 FT->getReturnType()->isVoidTy()); 589 590 if (isInstrumented(&F)) { 591 // Instrumented functions get a 'dfs$' prefix. This allows us to more 592 // easily identify cases of mismatching ABIs. 593 if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) { 594 FunctionType *NewFT = getArgsFunctionType(FT); 595 Function *NewF = Function::Create(NewFT, F.getLinkage(), "", &M); 596 NewF->copyAttributesFrom(&F); 597 NewF->removeAttributes( 598 AttributeSet::ReturnIndex, 599 AttributeFuncs::typeIncompatible(NewFT->getReturnType(), 600 AttributeSet::ReturnIndex)); 601 for (Function::arg_iterator FArg = F.arg_begin(), 602 NewFArg = NewF->arg_begin(), 603 FArgEnd = F.arg_end(); 604 FArg != FArgEnd; ++FArg, ++NewFArg) { 605 FArg->replaceAllUsesWith(NewFArg); 606 } 607 NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList()); 608 609 for (Function::user_iterator UI = F.user_begin(), UE = F.user_end(); 610 UI != UE;) { 611 BlockAddress *BA = dyn_cast<BlockAddress>(*UI); 612 ++UI; 613 if (BA) { 614 BA->replaceAllUsesWith( 615 BlockAddress::get(NewF, BA->getBasicBlock())); 616 delete BA; 617 } 618 } 619 F.replaceAllUsesWith( 620 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT))); 621 NewF->takeName(&F); 622 F.eraseFromParent(); 623 *i = NewF; 624 addGlobalNamePrefix(NewF); 625 } else { 626 addGlobalNamePrefix(&F); 627 } 628 // Hopefully, nobody will try to indirectly call a vararg 629 // function... yet. 630 } else if (FT->isVarArg()) { 631 UnwrappedFnMap[&F] = &F; 632 *i = 0; 633 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) { 634 // Build a wrapper function for F. The wrapper simply calls F, and is 635 // added to FnsToInstrument so that any instrumentation according to its 636 // WrapperKind is done in the second pass below. 637 FunctionType *NewFT = getInstrumentedABI() == IA_Args 638 ? getArgsFunctionType(FT) 639 : FT; 640 Function *NewF = buildWrapperFunction( 641 &F, std::string("dfsw$") + std::string(F.getName()), 642 GlobalValue::LinkOnceODRLinkage, NewFT); 643 if (getInstrumentedABI() == IA_TLS) 644 NewF->removeAttributes(AttributeSet::FunctionIndex, ReadOnlyNoneAttrs); 645 646 Value *WrappedFnCst = 647 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)); 648 F.replaceAllUsesWith(WrappedFnCst); 649 UnwrappedFnMap[WrappedFnCst] = &F; 650 *i = NewF; 651 652 if (!F.isDeclaration()) { 653 // This function is probably defining an interposition of an 654 // uninstrumented function and hence needs to keep the original ABI. 655 // But any functions it may call need to use the instrumented ABI, so 656 // we instrument it in a mode which preserves the original ABI. 657 FnsWithNativeABI.insert(&F); 658 659 // This code needs to rebuild the iterators, as they may be invalidated 660 // by the push_back, taking care that the new range does not include 661 // any functions added by this code. 662 size_t N = i - FnsToInstrument.begin(), 663 Count = e - FnsToInstrument.begin(); 664 FnsToInstrument.push_back(&F); 665 i = FnsToInstrument.begin() + N; 666 e = FnsToInstrument.begin() + Count; 667 } 668 } 669 } 670 671 for (std::vector<Function *>::iterator i = FnsToInstrument.begin(), 672 e = FnsToInstrument.end(); 673 i != e; ++i) { 674 if (!*i || (*i)->isDeclaration()) 675 continue; 676 677 removeUnreachableBlocks(**i); 678 679 DFSanFunction DFSF(*this, *i, FnsWithNativeABI.count(*i)); 680 681 // DFSanVisitor may create new basic blocks, which confuses df_iterator. 682 // Build a copy of the list before iterating over it. 683 llvm::SmallVector<BasicBlock *, 4> BBList; 684 std::copy(df_begin(&(*i)->getEntryBlock()), df_end(&(*i)->getEntryBlock()), 685 std::back_inserter(BBList)); 686 687 for (llvm::SmallVector<BasicBlock *, 4>::iterator i = BBList.begin(), 688 e = BBList.end(); 689 i != e; ++i) { 690 Instruction *Inst = &(*i)->front(); 691 while (1) { 692 // DFSanVisitor may split the current basic block, changing the current 693 // instruction's next pointer and moving the next instruction to the 694 // tail block from which we should continue. 695 Instruction *Next = Inst->getNextNode(); 696 // DFSanVisitor may delete Inst, so keep track of whether it was a 697 // terminator. 698 bool IsTerminator = isa<TerminatorInst>(Inst); 699 if (!DFSF.SkipInsts.count(Inst)) 700 DFSanVisitor(DFSF).visit(Inst); 701 if (IsTerminator) 702 break; 703 Inst = Next; 704 } 705 } 706 707 // We will not necessarily be able to compute the shadow for every phi node 708 // until we have visited every block. Therefore, the code that handles phi 709 // nodes adds them to the PHIFixups list so that they can be properly 710 // handled here. 711 for (std::vector<std::pair<PHINode *, PHINode *> >::iterator 712 i = DFSF.PHIFixups.begin(), 713 e = DFSF.PHIFixups.end(); 714 i != e; ++i) { 715 for (unsigned val = 0, n = i->first->getNumIncomingValues(); val != n; 716 ++val) { 717 i->second->setIncomingValue( 718 val, DFSF.getShadow(i->first->getIncomingValue(val))); 719 } 720 } 721 722 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy 723 // places (i.e. instructions in basic blocks we haven't even begun visiting 724 // yet). To make our life easier, do this work in a pass after the main 725 // instrumentation. 726 if (ClDebugNonzeroLabels) { 727 for (DenseSet<Value *>::iterator i = DFSF.NonZeroChecks.begin(), 728 e = DFSF.NonZeroChecks.end(); 729 i != e; ++i) { 730 Instruction *Pos; 731 if (Instruction *I = dyn_cast<Instruction>(*i)) 732 Pos = I->getNextNode(); 733 else 734 Pos = DFSF.F->getEntryBlock().begin(); 735 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos)) 736 Pos = Pos->getNextNode(); 737 IRBuilder<> IRB(Pos); 738 Value *Ne = IRB.CreateICmpNE(*i, DFSF.DFS.ZeroShadow); 739 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 740 Ne, Pos, /*Unreachable=*/false, ColdCallWeights)); 741 IRBuilder<> ThenIRB(BI); 742 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn); 743 } 744 } 745 } 746 747 return false; 748} 749 750Value *DFSanFunction::getArgTLSPtr() { 751 if (ArgTLSPtr) 752 return ArgTLSPtr; 753 if (DFS.ArgTLS) 754 return ArgTLSPtr = DFS.ArgTLS; 755 756 IRBuilder<> IRB(F->getEntryBlock().begin()); 757 return ArgTLSPtr = IRB.CreateCall(DFS.GetArgTLS); 758} 759 760Value *DFSanFunction::getRetvalTLS() { 761 if (RetvalTLSPtr) 762 return RetvalTLSPtr; 763 if (DFS.RetvalTLS) 764 return RetvalTLSPtr = DFS.RetvalTLS; 765 766 IRBuilder<> IRB(F->getEntryBlock().begin()); 767 return RetvalTLSPtr = IRB.CreateCall(DFS.GetRetvalTLS); 768} 769 770Value *DFSanFunction::getArgTLS(unsigned Idx, Instruction *Pos) { 771 IRBuilder<> IRB(Pos); 772 return IRB.CreateConstGEP2_64(getArgTLSPtr(), 0, Idx); 773} 774 775Value *DFSanFunction::getShadow(Value *V) { 776 if (!isa<Argument>(V) && !isa<Instruction>(V)) 777 return DFS.ZeroShadow; 778 Value *&Shadow = ValShadowMap[V]; 779 if (!Shadow) { 780 if (Argument *A = dyn_cast<Argument>(V)) { 781 if (IsNativeABI) 782 return DFS.ZeroShadow; 783 switch (IA) { 784 case DataFlowSanitizer::IA_TLS: { 785 Value *ArgTLSPtr = getArgTLSPtr(); 786 Instruction *ArgTLSPos = 787 DFS.ArgTLS ? &*F->getEntryBlock().begin() 788 : cast<Instruction>(ArgTLSPtr)->getNextNode(); 789 IRBuilder<> IRB(ArgTLSPos); 790 Shadow = IRB.CreateLoad(getArgTLS(A->getArgNo(), ArgTLSPos)); 791 break; 792 } 793 case DataFlowSanitizer::IA_Args: { 794 unsigned ArgIdx = A->getArgNo() + F->getArgumentList().size() / 2; 795 Function::arg_iterator i = F->arg_begin(); 796 while (ArgIdx--) 797 ++i; 798 Shadow = i; 799 assert(Shadow->getType() == DFS.ShadowTy); 800 break; 801 } 802 } 803 NonZeroChecks.insert(Shadow); 804 } else { 805 Shadow = DFS.ZeroShadow; 806 } 807 } 808 return Shadow; 809} 810 811void DFSanFunction::setShadow(Instruction *I, Value *Shadow) { 812 assert(!ValShadowMap.count(I)); 813 assert(Shadow->getType() == DFS.ShadowTy); 814 ValShadowMap[I] = Shadow; 815} 816 817Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) { 818 assert(Addr != RetvalTLS && "Reinstrumenting?"); 819 IRBuilder<> IRB(Pos); 820 return IRB.CreateIntToPtr( 821 IRB.CreateMul( 822 IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy), ShadowPtrMask), 823 ShadowPtrMul), 824 ShadowPtrTy); 825} 826 827// Generates IR to compute the union of the two given shadows, inserting it 828// before Pos. Returns the computed union Value. 829Value *DataFlowSanitizer::combineShadows(Value *V1, Value *V2, 830 Instruction *Pos) { 831 if (V1 == ZeroShadow) 832 return V2; 833 if (V2 == ZeroShadow) 834 return V1; 835 if (V1 == V2) 836 return V1; 837 IRBuilder<> IRB(Pos); 838 BasicBlock *Head = Pos->getParent(); 839 Value *Ne = IRB.CreateICmpNE(V1, V2); 840 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 841 Ne, Pos, /*Unreachable=*/false, ColdCallWeights)); 842 IRBuilder<> ThenIRB(BI); 843 CallInst *Call = ThenIRB.CreateCall2(DFSanUnionFn, V1, V2); 844 Call->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt); 845 Call->addAttribute(1, Attribute::ZExt); 846 Call->addAttribute(2, Attribute::ZExt); 847 848 BasicBlock *Tail = BI->getSuccessor(0); 849 PHINode *Phi = PHINode::Create(ShadowTy, 2, "", Tail->begin()); 850 Phi->addIncoming(Call, Call->getParent()); 851 Phi->addIncoming(V1, Head); 852 return Phi; 853} 854 855// A convenience function which folds the shadows of each of the operands 856// of the provided instruction Inst, inserting the IR before Inst. Returns 857// the computed union Value. 858Value *DFSanFunction::combineOperandShadows(Instruction *Inst) { 859 if (Inst->getNumOperands() == 0) 860 return DFS.ZeroShadow; 861 862 Value *Shadow = getShadow(Inst->getOperand(0)); 863 for (unsigned i = 1, n = Inst->getNumOperands(); i != n; ++i) { 864 Shadow = DFS.combineShadows(Shadow, getShadow(Inst->getOperand(i)), Inst); 865 } 866 return Shadow; 867} 868 869void DFSanVisitor::visitOperandShadowInst(Instruction &I) { 870 Value *CombinedShadow = DFSF.combineOperandShadows(&I); 871 DFSF.setShadow(&I, CombinedShadow); 872} 873 874// Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where 875// Addr has alignment Align, and take the union of each of those shadows. 876Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align, 877 Instruction *Pos) { 878 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 879 llvm::DenseMap<AllocaInst *, AllocaInst *>::iterator i = 880 AllocaShadowMap.find(AI); 881 if (i != AllocaShadowMap.end()) { 882 IRBuilder<> IRB(Pos); 883 return IRB.CreateLoad(i->second); 884 } 885 } 886 887 uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8; 888 SmallVector<Value *, 2> Objs; 889 GetUnderlyingObjects(Addr, Objs, DFS.DL); 890 bool AllConstants = true; 891 for (SmallVector<Value *, 2>::iterator i = Objs.begin(), e = Objs.end(); 892 i != e; ++i) { 893 if (isa<Function>(*i) || isa<BlockAddress>(*i)) 894 continue; 895 if (isa<GlobalVariable>(*i) && cast<GlobalVariable>(*i)->isConstant()) 896 continue; 897 898 AllConstants = false; 899 break; 900 } 901 if (AllConstants) 902 return DFS.ZeroShadow; 903 904 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 905 switch (Size) { 906 case 0: 907 return DFS.ZeroShadow; 908 case 1: { 909 LoadInst *LI = new LoadInst(ShadowAddr, "", Pos); 910 LI->setAlignment(ShadowAlign); 911 return LI; 912 } 913 case 2: { 914 IRBuilder<> IRB(Pos); 915 Value *ShadowAddr1 = 916 IRB.CreateGEP(ShadowAddr, ConstantInt::get(DFS.IntptrTy, 1)); 917 return DFS.combineShadows(IRB.CreateAlignedLoad(ShadowAddr, ShadowAlign), 918 IRB.CreateAlignedLoad(ShadowAddr1, ShadowAlign), 919 Pos); 920 } 921 } 922 if (Size % (64 / DFS.ShadowWidth) == 0) { 923 // Fast path for the common case where each byte has identical shadow: load 924 // shadow 64 bits at a time, fall out to a __dfsan_union_load call if any 925 // shadow is non-equal. 926 BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F); 927 IRBuilder<> FallbackIRB(FallbackBB); 928 CallInst *FallbackCall = FallbackIRB.CreateCall2( 929 DFS.DFSanUnionLoadFn, ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)); 930 FallbackCall->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt); 931 932 // Compare each of the shadows stored in the loaded 64 bits to each other, 933 // by computing (WideShadow rotl ShadowWidth) == WideShadow. 934 IRBuilder<> IRB(Pos); 935 Value *WideAddr = 936 IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx)); 937 Value *WideShadow = IRB.CreateAlignedLoad(WideAddr, ShadowAlign); 938 Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.ShadowTy); 939 Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidth); 940 Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidth); 941 Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow); 942 Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow); 943 944 BasicBlock *Head = Pos->getParent(); 945 BasicBlock *Tail = Head->splitBasicBlock(Pos); 946 // In the following code LastBr will refer to the previous basic block's 947 // conditional branch instruction, whose true successor is fixed up to point 948 // to the next block during the loop below or to the tail after the final 949 // iteration. 950 BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq); 951 ReplaceInstWithInst(Head->getTerminator(), LastBr); 952 953 for (uint64_t Ofs = 64 / DFS.ShadowWidth; Ofs != Size; 954 Ofs += 64 / DFS.ShadowWidth) { 955 BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F); 956 IRBuilder<> NextIRB(NextBB); 957 WideAddr = NextIRB.CreateGEP(WideAddr, ConstantInt::get(DFS.IntptrTy, 1)); 958 Value *NextWideShadow = NextIRB.CreateAlignedLoad(WideAddr, ShadowAlign); 959 ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow); 960 LastBr->setSuccessor(0, NextBB); 961 LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB); 962 } 963 964 LastBr->setSuccessor(0, Tail); 965 FallbackIRB.CreateBr(Tail); 966 PHINode *Shadow = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front()); 967 Shadow->addIncoming(FallbackCall, FallbackBB); 968 Shadow->addIncoming(TruncShadow, LastBr->getParent()); 969 return Shadow; 970 } 971 972 IRBuilder<> IRB(Pos); 973 CallInst *FallbackCall = IRB.CreateCall2( 974 DFS.DFSanUnionLoadFn, ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)); 975 FallbackCall->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt); 976 return FallbackCall; 977} 978 979void DFSanVisitor::visitLoadInst(LoadInst &LI) { 980 uint64_t Size = DFSF.DFS.DL->getTypeStoreSize(LI.getType()); 981 uint64_t Align; 982 if (ClPreserveAlignment) { 983 Align = LI.getAlignment(); 984 if (Align == 0) 985 Align = DFSF.DFS.DL->getABITypeAlignment(LI.getType()); 986 } else { 987 Align = 1; 988 } 989 IRBuilder<> IRB(&LI); 990 Value *Shadow = DFSF.loadShadow(LI.getPointerOperand(), Size, Align, &LI); 991 if (ClCombinePointerLabelsOnLoad) { 992 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand()); 993 Shadow = DFSF.DFS.combineShadows(Shadow, PtrShadow, &LI); 994 } 995 if (Shadow != DFSF.DFS.ZeroShadow) 996 DFSF.NonZeroChecks.insert(Shadow); 997 998 DFSF.setShadow(&LI, Shadow); 999} 1000 1001void DFSanFunction::storeShadow(Value *Addr, uint64_t Size, uint64_t Align, 1002 Value *Shadow, Instruction *Pos) { 1003 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 1004 llvm::DenseMap<AllocaInst *, AllocaInst *>::iterator i = 1005 AllocaShadowMap.find(AI); 1006 if (i != AllocaShadowMap.end()) { 1007 IRBuilder<> IRB(Pos); 1008 IRB.CreateStore(Shadow, i->second); 1009 return; 1010 } 1011 } 1012 1013 uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8; 1014 IRBuilder<> IRB(Pos); 1015 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 1016 if (Shadow == DFS.ZeroShadow) { 1017 IntegerType *ShadowTy = IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidth); 1018 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0); 1019 Value *ExtShadowAddr = 1020 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy)); 1021 IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign); 1022 return; 1023 } 1024 1025 const unsigned ShadowVecSize = 128 / DFS.ShadowWidth; 1026 uint64_t Offset = 0; 1027 if (Size >= ShadowVecSize) { 1028 VectorType *ShadowVecTy = VectorType::get(DFS.ShadowTy, ShadowVecSize); 1029 Value *ShadowVec = UndefValue::get(ShadowVecTy); 1030 for (unsigned i = 0; i != ShadowVecSize; ++i) { 1031 ShadowVec = IRB.CreateInsertElement( 1032 ShadowVec, Shadow, ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), i)); 1033 } 1034 Value *ShadowVecAddr = 1035 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy)); 1036 do { 1037 Value *CurShadowVecAddr = IRB.CreateConstGEP1_32(ShadowVecAddr, Offset); 1038 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign); 1039 Size -= ShadowVecSize; 1040 ++Offset; 1041 } while (Size >= ShadowVecSize); 1042 Offset *= ShadowVecSize; 1043 } 1044 while (Size > 0) { 1045 Value *CurShadowAddr = IRB.CreateConstGEP1_32(ShadowAddr, Offset); 1046 IRB.CreateAlignedStore(Shadow, CurShadowAddr, ShadowAlign); 1047 --Size; 1048 ++Offset; 1049 } 1050} 1051 1052void DFSanVisitor::visitStoreInst(StoreInst &SI) { 1053 uint64_t Size = 1054 DFSF.DFS.DL->getTypeStoreSize(SI.getValueOperand()->getType()); 1055 uint64_t Align; 1056 if (ClPreserveAlignment) { 1057 Align = SI.getAlignment(); 1058 if (Align == 0) 1059 Align = DFSF.DFS.DL->getABITypeAlignment(SI.getValueOperand()->getType()); 1060 } else { 1061 Align = 1; 1062 } 1063 1064 Value* Shadow = DFSF.getShadow(SI.getValueOperand()); 1065 if (ClCombinePointerLabelsOnStore) { 1066 Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand()); 1067 Shadow = DFSF.DFS.combineShadows(Shadow, PtrShadow, &SI); 1068 } 1069 DFSF.storeShadow(SI.getPointerOperand(), Size, Align, Shadow, &SI); 1070} 1071 1072void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) { 1073 visitOperandShadowInst(BO); 1074} 1075 1076void DFSanVisitor::visitCastInst(CastInst &CI) { visitOperandShadowInst(CI); } 1077 1078void DFSanVisitor::visitCmpInst(CmpInst &CI) { visitOperandShadowInst(CI); } 1079 1080void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { 1081 visitOperandShadowInst(GEPI); 1082} 1083 1084void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) { 1085 visitOperandShadowInst(I); 1086} 1087 1088void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) { 1089 visitOperandShadowInst(I); 1090} 1091 1092void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) { 1093 visitOperandShadowInst(I); 1094} 1095 1096void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) { 1097 visitOperandShadowInst(I); 1098} 1099 1100void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) { 1101 visitOperandShadowInst(I); 1102} 1103 1104void DFSanVisitor::visitAllocaInst(AllocaInst &I) { 1105 bool AllLoadsStores = true; 1106 for (User *U : I.users()) { 1107 if (isa<LoadInst>(U)) 1108 continue; 1109 1110 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1111 if (SI->getPointerOperand() == &I) 1112 continue; 1113 } 1114 1115 AllLoadsStores = false; 1116 break; 1117 } 1118 if (AllLoadsStores) { 1119 IRBuilder<> IRB(&I); 1120 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.ShadowTy); 1121 } 1122 DFSF.setShadow(&I, DFSF.DFS.ZeroShadow); 1123} 1124 1125void DFSanVisitor::visitSelectInst(SelectInst &I) { 1126 Value *CondShadow = DFSF.getShadow(I.getCondition()); 1127 Value *TrueShadow = DFSF.getShadow(I.getTrueValue()); 1128 Value *FalseShadow = DFSF.getShadow(I.getFalseValue()); 1129 1130 if (isa<VectorType>(I.getCondition()->getType())) { 1131 DFSF.setShadow( 1132 &I, DFSF.DFS.combineShadows( 1133 CondShadow, 1134 DFSF.DFS.combineShadows(TrueShadow, FalseShadow, &I), &I)); 1135 } else { 1136 Value *ShadowSel; 1137 if (TrueShadow == FalseShadow) { 1138 ShadowSel = TrueShadow; 1139 } else { 1140 ShadowSel = 1141 SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I); 1142 } 1143 DFSF.setShadow(&I, DFSF.DFS.combineShadows(CondShadow, ShadowSel, &I)); 1144 } 1145} 1146 1147void DFSanVisitor::visitMemSetInst(MemSetInst &I) { 1148 IRBuilder<> IRB(&I); 1149 Value *ValShadow = DFSF.getShadow(I.getValue()); 1150 IRB.CreateCall3( 1151 DFSF.DFS.DFSanSetLabelFn, ValShadow, 1152 IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(*DFSF.DFS.Ctx)), 1153 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)); 1154} 1155 1156void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) { 1157 IRBuilder<> IRB(&I); 1158 Value *DestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I); 1159 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I); 1160 Value *LenShadow = IRB.CreateMul( 1161 I.getLength(), 1162 ConstantInt::get(I.getLength()->getType(), DFSF.DFS.ShadowWidth / 8)); 1163 Value *AlignShadow; 1164 if (ClPreserveAlignment) { 1165 AlignShadow = IRB.CreateMul(I.getAlignmentCst(), 1166 ConstantInt::get(I.getAlignmentCst()->getType(), 1167 DFSF.DFS.ShadowWidth / 8)); 1168 } else { 1169 AlignShadow = ConstantInt::get(I.getAlignmentCst()->getType(), 1170 DFSF.DFS.ShadowWidth / 8); 1171 } 1172 Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx); 1173 DestShadow = IRB.CreateBitCast(DestShadow, Int8Ptr); 1174 SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr); 1175 IRB.CreateCall5(I.getCalledValue(), DestShadow, SrcShadow, LenShadow, 1176 AlignShadow, I.getVolatileCst()); 1177} 1178 1179void DFSanVisitor::visitReturnInst(ReturnInst &RI) { 1180 if (!DFSF.IsNativeABI && RI.getReturnValue()) { 1181 switch (DFSF.IA) { 1182 case DataFlowSanitizer::IA_TLS: { 1183 Value *S = DFSF.getShadow(RI.getReturnValue()); 1184 IRBuilder<> IRB(&RI); 1185 IRB.CreateStore(S, DFSF.getRetvalTLS()); 1186 break; 1187 } 1188 case DataFlowSanitizer::IA_Args: { 1189 IRBuilder<> IRB(&RI); 1190 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 1191 Value *InsVal = 1192 IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0); 1193 Value *InsShadow = 1194 IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1); 1195 RI.setOperand(0, InsShadow); 1196 break; 1197 } 1198 } 1199 } 1200} 1201 1202void DFSanVisitor::visitCallSite(CallSite CS) { 1203 Function *F = CS.getCalledFunction(); 1204 if ((F && F->isIntrinsic()) || isa<InlineAsm>(CS.getCalledValue())) { 1205 visitOperandShadowInst(*CS.getInstruction()); 1206 return; 1207 } 1208 1209 IRBuilder<> IRB(CS.getInstruction()); 1210 1211 DenseMap<Value *, Function *>::iterator i = 1212 DFSF.DFS.UnwrappedFnMap.find(CS.getCalledValue()); 1213 if (i != DFSF.DFS.UnwrappedFnMap.end()) { 1214 Function *F = i->second; 1215 switch (DFSF.DFS.getWrapperKind(F)) { 1216 case DataFlowSanitizer::WK_Warning: { 1217 CS.setCalledFunction(F); 1218 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn, 1219 IRB.CreateGlobalStringPtr(F->getName())); 1220 DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow); 1221 return; 1222 } 1223 case DataFlowSanitizer::WK_Discard: { 1224 CS.setCalledFunction(F); 1225 DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow); 1226 return; 1227 } 1228 case DataFlowSanitizer::WK_Functional: { 1229 CS.setCalledFunction(F); 1230 visitOperandShadowInst(*CS.getInstruction()); 1231 return; 1232 } 1233 case DataFlowSanitizer::WK_Custom: { 1234 // Don't try to handle invokes of custom functions, it's too complicated. 1235 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_ 1236 // wrapper. 1237 if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) { 1238 FunctionType *FT = F->getFunctionType(); 1239 FunctionType *CustomFT = DFSF.DFS.getCustomFunctionType(FT); 1240 std::string CustomFName = "__dfsw_"; 1241 CustomFName += F->getName(); 1242 Constant *CustomF = 1243 DFSF.DFS.Mod->getOrInsertFunction(CustomFName, CustomFT); 1244 if (Function *CustomFn = dyn_cast<Function>(CustomF)) { 1245 CustomFn->copyAttributesFrom(F); 1246 1247 // Custom functions returning non-void will write to the return label. 1248 if (!FT->getReturnType()->isVoidTy()) { 1249 CustomFn->removeAttributes(AttributeSet::FunctionIndex, 1250 DFSF.DFS.ReadOnlyNoneAttrs); 1251 } 1252 } 1253 1254 std::vector<Value *> Args; 1255 1256 CallSite::arg_iterator i = CS.arg_begin(); 1257 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) { 1258 Type *T = (*i)->getType(); 1259 FunctionType *ParamFT; 1260 if (isa<PointerType>(T) && 1261 (ParamFT = dyn_cast<FunctionType>( 1262 cast<PointerType>(T)->getElementType()))) { 1263 std::string TName = "dfst"; 1264 TName += utostr(FT->getNumParams() - n); 1265 TName += "$"; 1266 TName += F->getName(); 1267 Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName); 1268 Args.push_back(T); 1269 Args.push_back( 1270 IRB.CreateBitCast(*i, Type::getInt8PtrTy(*DFSF.DFS.Ctx))); 1271 } else { 1272 Args.push_back(*i); 1273 } 1274 } 1275 1276 i = CS.arg_begin(); 1277 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 1278 Args.push_back(DFSF.getShadow(*i)); 1279 1280 if (!FT->getReturnType()->isVoidTy()) { 1281 if (!DFSF.LabelReturnAlloca) { 1282 DFSF.LabelReturnAlloca = 1283 new AllocaInst(DFSF.DFS.ShadowTy, "labelreturn", 1284 DFSF.F->getEntryBlock().begin()); 1285 } 1286 Args.push_back(DFSF.LabelReturnAlloca); 1287 } 1288 1289 CallInst *CustomCI = IRB.CreateCall(CustomF, Args); 1290 CustomCI->setCallingConv(CI->getCallingConv()); 1291 CustomCI->setAttributes(CI->getAttributes()); 1292 1293 if (!FT->getReturnType()->isVoidTy()) { 1294 LoadInst *LabelLoad = IRB.CreateLoad(DFSF.LabelReturnAlloca); 1295 DFSF.setShadow(CustomCI, LabelLoad); 1296 } 1297 1298 CI->replaceAllUsesWith(CustomCI); 1299 CI->eraseFromParent(); 1300 return; 1301 } 1302 break; 1303 } 1304 } 1305 } 1306 1307 FunctionType *FT = cast<FunctionType>( 1308 CS.getCalledValue()->getType()->getPointerElementType()); 1309 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 1310 for (unsigned i = 0, n = FT->getNumParams(); i != n; ++i) { 1311 IRB.CreateStore(DFSF.getShadow(CS.getArgument(i)), 1312 DFSF.getArgTLS(i, CS.getInstruction())); 1313 } 1314 } 1315 1316 Instruction *Next = 0; 1317 if (!CS.getType()->isVoidTy()) { 1318 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) { 1319 if (II->getNormalDest()->getSinglePredecessor()) { 1320 Next = II->getNormalDest()->begin(); 1321 } else { 1322 BasicBlock *NewBB = 1323 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DFS); 1324 Next = NewBB->begin(); 1325 } 1326 } else { 1327 Next = CS->getNextNode(); 1328 } 1329 1330 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 1331 IRBuilder<> NextIRB(Next); 1332 LoadInst *LI = NextIRB.CreateLoad(DFSF.getRetvalTLS()); 1333 DFSF.SkipInsts.insert(LI); 1334 DFSF.setShadow(CS.getInstruction(), LI); 1335 DFSF.NonZeroChecks.insert(LI); 1336 } 1337 } 1338 1339 // Do all instrumentation for IA_Args down here to defer tampering with the 1340 // CFG in a way that SplitEdge may be able to detect. 1341 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) { 1342 FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT); 1343 Value *Func = 1344 IRB.CreateBitCast(CS.getCalledValue(), PointerType::getUnqual(NewFT)); 1345 std::vector<Value *> Args; 1346 1347 CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 1348 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 1349 Args.push_back(*i); 1350 1351 i = CS.arg_begin(); 1352 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 1353 Args.push_back(DFSF.getShadow(*i)); 1354 1355 if (FT->isVarArg()) { 1356 unsigned VarArgSize = CS.arg_size() - FT->getNumParams(); 1357 ArrayType *VarArgArrayTy = ArrayType::get(DFSF.DFS.ShadowTy, VarArgSize); 1358 AllocaInst *VarArgShadow = 1359 new AllocaInst(VarArgArrayTy, "", DFSF.F->getEntryBlock().begin()); 1360 Args.push_back(IRB.CreateConstGEP2_32(VarArgShadow, 0, 0)); 1361 for (unsigned n = 0; i != e; ++i, ++n) { 1362 IRB.CreateStore(DFSF.getShadow(*i), 1363 IRB.CreateConstGEP2_32(VarArgShadow, 0, n)); 1364 Args.push_back(*i); 1365 } 1366 } 1367 1368 CallSite NewCS; 1369 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) { 1370 NewCS = IRB.CreateInvoke(Func, II->getNormalDest(), II->getUnwindDest(), 1371 Args); 1372 } else { 1373 NewCS = IRB.CreateCall(Func, Args); 1374 } 1375 NewCS.setCallingConv(CS.getCallingConv()); 1376 NewCS.setAttributes(CS.getAttributes().removeAttributes( 1377 *DFSF.DFS.Ctx, AttributeSet::ReturnIndex, 1378 AttributeFuncs::typeIncompatible(NewCS.getInstruction()->getType(), 1379 AttributeSet::ReturnIndex))); 1380 1381 if (Next) { 1382 ExtractValueInst *ExVal = 1383 ExtractValueInst::Create(NewCS.getInstruction(), 0, "", Next); 1384 DFSF.SkipInsts.insert(ExVal); 1385 ExtractValueInst *ExShadow = 1386 ExtractValueInst::Create(NewCS.getInstruction(), 1, "", Next); 1387 DFSF.SkipInsts.insert(ExShadow); 1388 DFSF.setShadow(ExVal, ExShadow); 1389 DFSF.NonZeroChecks.insert(ExShadow); 1390 1391 CS.getInstruction()->replaceAllUsesWith(ExVal); 1392 } 1393 1394 CS.getInstruction()->eraseFromParent(); 1395 } 1396} 1397 1398void DFSanVisitor::visitPHINode(PHINode &PN) { 1399 PHINode *ShadowPN = 1400 PHINode::Create(DFSF.DFS.ShadowTy, PN.getNumIncomingValues(), "", &PN); 1401 1402 // Give the shadow phi node valid predecessors to fool SplitEdge into working. 1403 Value *UndefShadow = UndefValue::get(DFSF.DFS.ShadowTy); 1404 for (PHINode::block_iterator i = PN.block_begin(), e = PN.block_end(); i != e; 1405 ++i) { 1406 ShadowPN->addIncoming(UndefShadow, *i); 1407 } 1408 1409 DFSF.PHIFixups.push_back(std::make_pair(&PN, ShadowPN)); 1410 DFSF.setShadow(&PN, ShadowPN); 1411} 1412